]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000e/ethtool.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mv-sheeva.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(m)           E1000_STATS, \
49                                 sizeof(((struct e1000_adapter *)0)->m), \
50                                 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
52                                 sizeof(((struct net_device *)0)->m), \
53                                 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorc) },
59         { "tx_bytes", E1000_STAT(stats.gotc) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117                               struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121         u32 status;
122
123         if (hw->phy.media_type == e1000_media_type_copper) {
124
125                 ecmd->supported = (SUPPORTED_10baseT_Half |
126                                    SUPPORTED_10baseT_Full |
127                                    SUPPORTED_100baseT_Half |
128                                    SUPPORTED_100baseT_Full |
129                                    SUPPORTED_1000baseT_Full |
130                                    SUPPORTED_Autoneg |
131                                    SUPPORTED_TP);
132                 if (hw->phy.type == e1000_phy_ife)
133                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if (hw->mac.autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138                         /* the e1000 autoneg seems to match ethtool nicely */
139                         ecmd->advertising |= hw->phy.autoneg_advertised;
140                 }
141
142                 ecmd->port = PORT_TP;
143                 ecmd->phy_address = hw->phy.addr;
144                 ecmd->transceiver = XCVR_INTERNAL;
145
146         } else {
147                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
148                                      SUPPORTED_FIBRE |
149                                      SUPPORTED_Autoneg);
150
151                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152                                      ADVERTISED_FIBRE |
153                                      ADVERTISED_Autoneg);
154
155                 ecmd->port = PORT_FIBRE;
156                 ecmd->transceiver = XCVR_EXTERNAL;
157         }
158
159         status = er32(STATUS);
160         if (status & E1000_STATUS_LU) {
161                 if (status & E1000_STATUS_SPEED_1000)
162                         ecmd->speed = 1000;
163                 else if (status & E1000_STATUS_SPEED_100)
164                         ecmd->speed = 100;
165                 else
166                         ecmd->speed = 10;
167
168                 if (status & E1000_STATUS_FD)
169                         ecmd->duplex = DUPLEX_FULL;
170                 else
171                         ecmd->duplex = DUPLEX_HALF;
172         } else {
173                 ecmd->speed = -1;
174                 ecmd->duplex = -1;
175         }
176
177         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
178                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
179
180         /* MDI-X => 2; MDI =>1; Invalid =>0 */
181         if ((hw->phy.media_type == e1000_media_type_copper) &&
182             !hw->mac.get_link_status)
183                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
184                                                       ETH_TP_MDI;
185         else
186                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
187
188         return 0;
189 }
190
191 static u32 e1000_get_link(struct net_device *netdev)
192 {
193         struct e1000_adapter *adapter = netdev_priv(netdev);
194         struct e1000_mac_info *mac = &adapter->hw.mac;
195
196         /*
197          * If the link is not reported up to netdev, interrupts are disabled,
198          * and so the physical link state may have changed since we last
199          * looked. Set get_link_status to make sure that the true link
200          * state is interrogated, rather than pulling a cached and possibly
201          * stale link state from the driver.
202          */
203         if (!netif_carrier_ok(netdev))
204                 mac->get_link_status = 1;
205
206         return e1000e_has_link(adapter);
207 }
208
209 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
210 {
211         struct e1000_mac_info *mac = &adapter->hw.mac;
212
213         mac->autoneg = 0;
214
215         /* Fiber NICs only allow 1000 gbps Full duplex */
216         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
218                 e_err("Unsupported Speed/Duplex configuration\n");
219                 return -EINVAL;
220         }
221
222         switch (spddplx) {
223         case SPEED_10 + DUPLEX_HALF:
224                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
225                 break;
226         case SPEED_10 + DUPLEX_FULL:
227                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
228                 break;
229         case SPEED_100 + DUPLEX_HALF:
230                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
231                 break;
232         case SPEED_100 + DUPLEX_FULL:
233                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
234                 break;
235         case SPEED_1000 + DUPLEX_FULL:
236                 mac->autoneg = 1;
237                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238                 break;
239         case SPEED_1000 + DUPLEX_HALF: /* not supported */
240         default:
241                 e_err("Unsupported Speed/Duplex configuration\n");
242                 return -EINVAL;
243         }
244         return 0;
245 }
246
247 static int e1000_set_settings(struct net_device *netdev,
248                               struct ethtool_cmd *ecmd)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         /*
254          * When SoL/IDER sessions are active, autoneg/speed/duplex
255          * cannot be changed
256          */
257         if (e1000_check_reset_block(hw)) {
258                 e_err("Cannot change link characteristics when SoL/IDER is "
259                       "active.\n");
260                 return -EINVAL;
261         }
262
263         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
264                 msleep(1);
265
266         if (ecmd->autoneg == AUTONEG_ENABLE) {
267                 hw->mac.autoneg = 1;
268                 if (hw->phy.media_type == e1000_media_type_fiber)
269                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
270                                                      ADVERTISED_FIBRE |
271                                                      ADVERTISED_Autoneg;
272                 else
273                         hw->phy.autoneg_advertised = ecmd->advertising |
274                                                      ADVERTISED_TP |
275                                                      ADVERTISED_Autoneg;
276                 ecmd->advertising = hw->phy.autoneg_advertised;
277                 if (adapter->fc_autoneg)
278                         hw->fc.requested_mode = e1000_fc_default;
279         } else {
280                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
281                         clear_bit(__E1000_RESETTING, &adapter->state);
282                         return -EINVAL;
283                 }
284         }
285
286         /* reset the link */
287
288         if (netif_running(adapter->netdev)) {
289                 e1000e_down(adapter);
290                 e1000e_up(adapter);
291         } else {
292                 e1000e_reset(adapter);
293         }
294
295         clear_bit(__E1000_RESETTING, &adapter->state);
296         return 0;
297 }
298
299 static void e1000_get_pauseparam(struct net_device *netdev,
300                                  struct ethtool_pauseparam *pause)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         struct e1000_hw *hw = &adapter->hw;
304
305         pause->autoneg =
306                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
307
308         if (hw->fc.current_mode == e1000_fc_rx_pause) {
309                 pause->rx_pause = 1;
310         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
311                 pause->tx_pause = 1;
312         } else if (hw->fc.current_mode == e1000_fc_full) {
313                 pause->rx_pause = 1;
314                 pause->tx_pause = 1;
315         }
316 }
317
318 static int e1000_set_pauseparam(struct net_device *netdev,
319                                 struct ethtool_pauseparam *pause)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         struct e1000_hw *hw = &adapter->hw;
323         int retval = 0;
324
325         adapter->fc_autoneg = pause->autoneg;
326
327         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
328                 msleep(1);
329
330         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
331                 hw->fc.requested_mode = e1000_fc_default;
332                 if (netif_running(adapter->netdev)) {
333                         e1000e_down(adapter);
334                         e1000e_up(adapter);
335                 } else {
336                         e1000e_reset(adapter);
337                 }
338         } else {
339                 if (pause->rx_pause && pause->tx_pause)
340                         hw->fc.requested_mode = e1000_fc_full;
341                 else if (pause->rx_pause && !pause->tx_pause)
342                         hw->fc.requested_mode = e1000_fc_rx_pause;
343                 else if (!pause->rx_pause && pause->tx_pause)
344                         hw->fc.requested_mode = e1000_fc_tx_pause;
345                 else if (!pause->rx_pause && !pause->tx_pause)
346                         hw->fc.requested_mode = e1000_fc_none;
347
348                 hw->fc.current_mode = hw->fc.requested_mode;
349
350                 if (hw->phy.media_type == e1000_media_type_fiber) {
351                         retval = hw->mac.ops.setup_link(hw);
352                         /* implicit goto out */
353                 } else {
354                         retval = e1000e_force_mac_fc(hw);
355                         if (retval)
356                                 goto out;
357                         e1000e_set_fc_watermarks(hw);
358                 }
359         }
360
361 out:
362         clear_bit(__E1000_RESETTING, &adapter->state);
363         return retval;
364 }
365
366 static u32 e1000_get_rx_csum(struct net_device *netdev)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
370 }
371
372 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
373 {
374         struct e1000_adapter *adapter = netdev_priv(netdev);
375
376         if (data)
377                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
378         else
379                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
380
381         if (netif_running(netdev))
382                 e1000e_reinit_locked(adapter);
383         else
384                 e1000e_reset(adapter);
385         return 0;
386 }
387
388 static u32 e1000_get_tx_csum(struct net_device *netdev)
389 {
390         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
391 }
392
393 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
394 {
395         if (data)
396                 netdev->features |= NETIF_F_HW_CSUM;
397         else
398                 netdev->features &= ~NETIF_F_HW_CSUM;
399
400         return 0;
401 }
402
403 static int e1000_set_tso(struct net_device *netdev, u32 data)
404 {
405         struct e1000_adapter *adapter = netdev_priv(netdev);
406
407         if (data) {
408                 netdev->features |= NETIF_F_TSO;
409                 netdev->features |= NETIF_F_TSO6;
410         } else {
411                 netdev->features &= ~NETIF_F_TSO;
412                 netdev->features &= ~NETIF_F_TSO6;
413         }
414
415         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
416         adapter->flags |= FLAG_TSO_FORCE;
417         return 0;
418 }
419
420 static u32 e1000_get_msglevel(struct net_device *netdev)
421 {
422         struct e1000_adapter *adapter = netdev_priv(netdev);
423         return adapter->msg_enable;
424 }
425
426 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
427 {
428         struct e1000_adapter *adapter = netdev_priv(netdev);
429         adapter->msg_enable = data;
430 }
431
432 static int e1000_get_regs_len(struct net_device *netdev)
433 {
434 #define E1000_REGS_LEN 32 /* overestimate */
435         return E1000_REGS_LEN * sizeof(u32);
436 }
437
438 static void e1000_get_regs(struct net_device *netdev,
439                            struct ethtool_regs *regs, void *p)
440 {
441         struct e1000_adapter *adapter = netdev_priv(netdev);
442         struct e1000_hw *hw = &adapter->hw;
443         u32 *regs_buff = p;
444         u16 phy_data;
445         u8 revision_id;
446
447         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
448
449         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
450
451         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
452
453         regs_buff[0]  = er32(CTRL);
454         regs_buff[1]  = er32(STATUS);
455
456         regs_buff[2]  = er32(RCTL);
457         regs_buff[3]  = er32(RDLEN);
458         regs_buff[4]  = er32(RDH);
459         regs_buff[5]  = er32(RDT);
460         regs_buff[6]  = er32(RDTR);
461
462         regs_buff[7]  = er32(TCTL);
463         regs_buff[8]  = er32(TDLEN);
464         regs_buff[9]  = er32(TDH);
465         regs_buff[10] = er32(TDT);
466         regs_buff[11] = er32(TIDV);
467
468         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
469
470         /* ethtool doesn't use anything past this point, so all this
471          * code is likely legacy junk for apps that may or may not
472          * exist */
473         if (hw->phy.type == e1000_phy_m88) {
474                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
475                 regs_buff[13] = (u32)phy_data; /* cable length */
476                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
480                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
481                 regs_buff[18] = regs_buff[13]; /* cable polarity */
482                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
483                 regs_buff[20] = regs_buff[17]; /* polarity correction */
484                 /* phy receive errors */
485                 regs_buff[22] = adapter->phy_stats.receive_errors;
486                 regs_buff[23] = regs_buff[13]; /* mdix mode */
487         }
488         regs_buff[21] = 0; /* was idle_errors */
489         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
490         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
491         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
492 }
493
494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496         struct e1000_adapter *adapter = netdev_priv(netdev);
497         return adapter->hw.nvm.word_size * 2;
498 }
499
500 static int e1000_get_eeprom(struct net_device *netdev,
501                             struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503         struct e1000_adapter *adapter = netdev_priv(netdev);
504         struct e1000_hw *hw = &adapter->hw;
505         u16 *eeprom_buff;
506         int first_word;
507         int last_word;
508         int ret_val = 0;
509         u16 i;
510
511         if (eeprom->len == 0)
512                 return -EINVAL;
513
514         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518
519         eeprom_buff = kmalloc(sizeof(u16) *
520                         (last_word - first_word + 1), GFP_KERNEL);
521         if (!eeprom_buff)
522                 return -ENOMEM;
523
524         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
525                 ret_val = e1000_read_nvm(hw, first_word,
526                                          last_word - first_word + 1,
527                                          eeprom_buff);
528         } else {
529                 for (i = 0; i < last_word - first_word + 1; i++) {
530                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
531                                                       &eeprom_buff[i]);
532                         if (ret_val)
533                                 break;
534                 }
535         }
536
537         if (ret_val) {
538                 /* a read error occurred, throw away the result */
539                 memset(eeprom_buff, 0xff, sizeof(u16) *
540                        (last_word - first_word + 1));
541         } else {
542                 /* Device's eeprom is always little-endian, word addressable */
543                 for (i = 0; i < last_word - first_word + 1; i++)
544                         le16_to_cpus(&eeprom_buff[i]);
545         }
546
547         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
548         kfree(eeprom_buff);
549
550         return ret_val;
551 }
552
553 static int e1000_set_eeprom(struct net_device *netdev,
554                             struct ethtool_eeprom *eeprom, u8 *bytes)
555 {
556         struct e1000_adapter *adapter = netdev_priv(netdev);
557         struct e1000_hw *hw = &adapter->hw;
558         u16 *eeprom_buff;
559         void *ptr;
560         int max_len;
561         int first_word;
562         int last_word;
563         int ret_val = 0;
564         u16 i;
565
566         if (eeprom->len == 0)
567                 return -EOPNOTSUPP;
568
569         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
570                 return -EFAULT;
571
572         if (adapter->flags & FLAG_READ_ONLY_NVM)
573                 return -EINVAL;
574
575         max_len = hw->nvm.word_size * 2;
576
577         first_word = eeprom->offset >> 1;
578         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
579         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
580         if (!eeprom_buff)
581                 return -ENOMEM;
582
583         ptr = (void *)eeprom_buff;
584
585         if (eeprom->offset & 1) {
586                 /* need read/modify/write of first changed EEPROM word */
587                 /* only the second byte of the word is being modified */
588                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589                 ptr++;
590         }
591         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
592                 /* need read/modify/write of last changed EEPROM word */
593                 /* only the first byte of the word is being modified */
594                 ret_val = e1000_read_nvm(hw, last_word, 1,
595                                   &eeprom_buff[last_word - first_word]);
596
597         if (ret_val)
598                 goto out;
599
600         /* Device's eeprom is always little-endian, word addressable */
601         for (i = 0; i < last_word - first_word + 1; i++)
602                 le16_to_cpus(&eeprom_buff[i]);
603
604         memcpy(ptr, bytes, eeprom->len);
605
606         for (i = 0; i < last_word - first_word + 1; i++)
607                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
608
609         ret_val = e1000_write_nvm(hw, first_word,
610                                   last_word - first_word + 1, eeprom_buff);
611
612         if (ret_val)
613                 goto out;
614
615         /*
616          * Update the checksum over the first part of the EEPROM if needed
617          * and flush shadow RAM for applicable controllers
618          */
619         if ((first_word <= NVM_CHECKSUM_REG) ||
620             (hw->mac.type == e1000_82583) ||
621             (hw->mac.type == e1000_82574) ||
622             (hw->mac.type == e1000_82573))
623                 ret_val = e1000e_update_nvm_checksum(hw);
624
625 out:
626         kfree(eeprom_buff);
627         return ret_val;
628 }
629
630 static void e1000_get_drvinfo(struct net_device *netdev,
631                               struct ethtool_drvinfo *drvinfo)
632 {
633         struct e1000_adapter *adapter = netdev_priv(netdev);
634         char firmware_version[32];
635
636         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
637         strncpy(drvinfo->version, e1000e_driver_version, 32);
638
639         /*
640          * EEPROM image version # is reported as firmware version # for
641          * PCI-E controllers
642          */
643         sprintf(firmware_version, "%d.%d-%d",
644                 (adapter->eeprom_vers & 0xF000) >> 12,
645                 (adapter->eeprom_vers & 0x0FF0) >> 4,
646                 (adapter->eeprom_vers & 0x000F));
647
648         strncpy(drvinfo->fw_version, firmware_version, 32);
649         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
650         drvinfo->regdump_len = e1000_get_regs_len(netdev);
651         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
652 }
653
654 static void e1000_get_ringparam(struct net_device *netdev,
655                                 struct ethtool_ringparam *ring)
656 {
657         struct e1000_adapter *adapter = netdev_priv(netdev);
658         struct e1000_ring *tx_ring = adapter->tx_ring;
659         struct e1000_ring *rx_ring = adapter->rx_ring;
660
661         ring->rx_max_pending = E1000_MAX_RXD;
662         ring->tx_max_pending = E1000_MAX_TXD;
663         ring->rx_mini_max_pending = 0;
664         ring->rx_jumbo_max_pending = 0;
665         ring->rx_pending = rx_ring->count;
666         ring->tx_pending = tx_ring->count;
667         ring->rx_mini_pending = 0;
668         ring->rx_jumbo_pending = 0;
669 }
670
671 static int e1000_set_ringparam(struct net_device *netdev,
672                                struct ethtool_ringparam *ring)
673 {
674         struct e1000_adapter *adapter = netdev_priv(netdev);
675         struct e1000_ring *tx_ring, *tx_old;
676         struct e1000_ring *rx_ring, *rx_old;
677         int err;
678
679         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
680                 return -EINVAL;
681
682         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
683                 msleep(1);
684
685         if (netif_running(adapter->netdev))
686                 e1000e_down(adapter);
687
688         tx_old = adapter->tx_ring;
689         rx_old = adapter->rx_ring;
690
691         err = -ENOMEM;
692         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
693         if (!tx_ring)
694                 goto err_alloc_tx;
695         /*
696          * use a memcpy to save any previously configured
697          * items like napi structs from having to be
698          * reinitialized
699          */
700         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
701
702         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
703         if (!rx_ring)
704                 goto err_alloc_rx;
705         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
706
707         adapter->tx_ring = tx_ring;
708         adapter->rx_ring = rx_ring;
709
710         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
711         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
712         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
713
714         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
715         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
716         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
717
718         if (netif_running(adapter->netdev)) {
719                 /* Try to get new resources before deleting old */
720                 err = e1000e_setup_rx_resources(adapter);
721                 if (err)
722                         goto err_setup_rx;
723                 err = e1000e_setup_tx_resources(adapter);
724                 if (err)
725                         goto err_setup_tx;
726
727                 /*
728                  * restore the old in order to free it,
729                  * then add in the new
730                  */
731                 adapter->rx_ring = rx_old;
732                 adapter->tx_ring = tx_old;
733                 e1000e_free_rx_resources(adapter);
734                 e1000e_free_tx_resources(adapter);
735                 kfree(tx_old);
736                 kfree(rx_old);
737                 adapter->rx_ring = rx_ring;
738                 adapter->tx_ring = tx_ring;
739                 err = e1000e_up(adapter);
740                 if (err)
741                         goto err_setup;
742         }
743
744         clear_bit(__E1000_RESETTING, &adapter->state);
745         return 0;
746 err_setup_tx:
747         e1000e_free_rx_resources(adapter);
748 err_setup_rx:
749         adapter->rx_ring = rx_old;
750         adapter->tx_ring = tx_old;
751         kfree(rx_ring);
752 err_alloc_rx:
753         kfree(tx_ring);
754 err_alloc_tx:
755         e1000e_up(adapter);
756 err_setup:
757         clear_bit(__E1000_RESETTING, &adapter->state);
758         return err;
759 }
760
761 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
762                              int reg, int offset, u32 mask, u32 write)
763 {
764         u32 pat, val;
765         static const u32 test[] =
766                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
767         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
768                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
769                                       (test[pat] & write));
770                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
771                 if (val != (test[pat] & write & mask)) {
772                         e_err("pattern test reg %04X failed: got 0x%08X "
773                               "expected 0x%08X\n", reg + offset, val,
774                               (test[pat] & write & mask));
775                         *data = reg;
776                         return 1;
777                 }
778         }
779         return 0;
780 }
781
782 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
783                               int reg, u32 mask, u32 write)
784 {
785         u32 val;
786         __ew32(&adapter->hw, reg, write & mask);
787         val = __er32(&adapter->hw, reg);
788         if ((write & mask) != (val & mask)) {
789                 e_err("set/check reg %04X test failed: got 0x%08X "
790                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
791                 *data = reg;
792                 return 1;
793         }
794         return 0;
795 }
796 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
797         do {                                                                   \
798                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
799                         return 1;                                              \
800         } while (0)
801 #define REG_PATTERN_TEST(reg, mask, write)                                     \
802         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
803
804 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
805         do {                                                                   \
806                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
807                         return 1;                                              \
808         } while (0)
809
810 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
811 {
812         struct e1000_hw *hw = &adapter->hw;
813         struct e1000_mac_info *mac = &adapter->hw.mac;
814         u32 value;
815         u32 before;
816         u32 after;
817         u32 i;
818         u32 toggle;
819         u32 mask;
820
821         /*
822          * The status register is Read Only, so a write should fail.
823          * Some bits that get toggled are ignored.
824          */
825         switch (mac->type) {
826         /* there are several bits on newer hardware that are r/w */
827         case e1000_82571:
828         case e1000_82572:
829         case e1000_80003es2lan:
830                 toggle = 0x7FFFF3FF;
831                 break;
832         default:
833                 toggle = 0x7FFFF033;
834                 break;
835         }
836
837         before = er32(STATUS);
838         value = (er32(STATUS) & toggle);
839         ew32(STATUS, toggle);
840         after = er32(STATUS) & toggle;
841         if (value != after) {
842                 e_err("failed STATUS register test got: 0x%08X expected: "
843                       "0x%08X\n", after, value);
844                 *data = 1;
845                 return 1;
846         }
847         /* restore previous status */
848         ew32(STATUS, before);
849
850         if (!(adapter->flags & FLAG_IS_ICH)) {
851                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
852                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
853                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
854                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
855         }
856
857         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
858         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
859         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
860         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
861         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
862         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
863         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
864         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
865         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
866         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
867
868         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
869
870         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
871         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
872         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
873
874         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
875         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
876         if (!(adapter->flags & FLAG_IS_ICH))
877                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
878         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
879         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
880         mask = 0x8003FFFF;
881         switch (mac->type) {
882         case e1000_ich10lan:
883         case e1000_pchlan:
884                 mask |= (1 << 18);
885                 break;
886         default:
887                 break;
888         }
889         for (i = 0; i < mac->rar_entry_count; i++)
890                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
891                                        mask, 0xFFFFFFFF);
892
893         for (i = 0; i < mac->mta_reg_count; i++)
894                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
895
896         *data = 0;
897         return 0;
898 }
899
900 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
901 {
902         u16 temp;
903         u16 checksum = 0;
904         u16 i;
905
906         *data = 0;
907         /* Read and add up the contents of the EEPROM */
908         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
909                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
910                         *data = 1;
911                         return *data;
912                 }
913                 checksum += temp;
914         }
915
916         /* If Checksum is not Correct return error else test passed */
917         if ((checksum != (u16) NVM_SUM) && !(*data))
918                 *data = 2;
919
920         return *data;
921 }
922
923 static irqreturn_t e1000_test_intr(int irq, void *data)
924 {
925         struct net_device *netdev = (struct net_device *) data;
926         struct e1000_adapter *adapter = netdev_priv(netdev);
927         struct e1000_hw *hw = &adapter->hw;
928
929         adapter->test_icr |= er32(ICR);
930
931         return IRQ_HANDLED;
932 }
933
934 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
935 {
936         struct net_device *netdev = adapter->netdev;
937         struct e1000_hw *hw = &adapter->hw;
938         u32 mask;
939         u32 shared_int = 1;
940         u32 irq = adapter->pdev->irq;
941         int i;
942         int ret_val = 0;
943         int int_mode = E1000E_INT_MODE_LEGACY;
944
945         *data = 0;
946
947         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
948         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
949                 int_mode = adapter->int_mode;
950                 e1000e_reset_interrupt_capability(adapter);
951                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
952                 e1000e_set_interrupt_capability(adapter);
953         }
954         /* Hook up test interrupt handler just for this test */
955         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
956                          netdev)) {
957                 shared_int = 0;
958         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
959                  netdev->name, netdev)) {
960                 *data = 1;
961                 ret_val = -1;
962                 goto out;
963         }
964         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
965
966         /* Disable all the interrupts */
967         ew32(IMC, 0xFFFFFFFF);
968         msleep(10);
969
970         /* Test each interrupt */
971         for (i = 0; i < 10; i++) {
972                 /* Interrupt to test */
973                 mask = 1 << i;
974
975                 if (adapter->flags & FLAG_IS_ICH) {
976                         switch (mask) {
977                         case E1000_ICR_RXSEQ:
978                                 continue;
979                         case 0x00000100:
980                                 if (adapter->hw.mac.type == e1000_ich8lan ||
981                                     adapter->hw.mac.type == e1000_ich9lan)
982                                         continue;
983                                 break;
984                         default:
985                                 break;
986                         }
987                 }
988
989                 if (!shared_int) {
990                         /*
991                          * Disable the interrupt to be reported in
992                          * the cause register and then force the same
993                          * interrupt and see if one gets posted.  If
994                          * an interrupt was posted to the bus, the
995                          * test failed.
996                          */
997                         adapter->test_icr = 0;
998                         ew32(IMC, mask);
999                         ew32(ICS, mask);
1000                         msleep(10);
1001
1002                         if (adapter->test_icr & mask) {
1003                                 *data = 3;
1004                                 break;
1005                         }
1006                 }
1007
1008                 /*
1009                  * Enable the interrupt to be reported in
1010                  * the cause register and then force the same
1011                  * interrupt and see if one gets posted.  If
1012                  * an interrupt was not posted to the bus, the
1013                  * test failed.
1014                  */
1015                 adapter->test_icr = 0;
1016                 ew32(IMS, mask);
1017                 ew32(ICS, mask);
1018                 msleep(10);
1019
1020                 if (!(adapter->test_icr & mask)) {
1021                         *data = 4;
1022                         break;
1023                 }
1024
1025                 if (!shared_int) {
1026                         /*
1027                          * Disable the other interrupts to be reported in
1028                          * the cause register and then force the other
1029                          * interrupts and see if any get posted.  If
1030                          * an interrupt was posted to the bus, the
1031                          * test failed.
1032                          */
1033                         adapter->test_icr = 0;
1034                         ew32(IMC, ~mask & 0x00007FFF);
1035                         ew32(ICS, ~mask & 0x00007FFF);
1036                         msleep(10);
1037
1038                         if (adapter->test_icr) {
1039                                 *data = 5;
1040                                 break;
1041                         }
1042                 }
1043         }
1044
1045         /* Disable all the interrupts */
1046         ew32(IMC, 0xFFFFFFFF);
1047         msleep(10);
1048
1049         /* Unhook test interrupt handler */
1050         free_irq(irq, netdev);
1051
1052 out:
1053         if (int_mode == E1000E_INT_MODE_MSIX) {
1054                 e1000e_reset_interrupt_capability(adapter);
1055                 adapter->int_mode = int_mode;
1056                 e1000e_set_interrupt_capability(adapter);
1057         }
1058
1059         return ret_val;
1060 }
1061
1062 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1065         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1066         struct pci_dev *pdev = adapter->pdev;
1067         int i;
1068
1069         if (tx_ring->desc && tx_ring->buffer_info) {
1070                 for (i = 0; i < tx_ring->count; i++) {
1071                         if (tx_ring->buffer_info[i].dma)
1072                                 pci_unmap_single(pdev,
1073                                         tx_ring->buffer_info[i].dma,
1074                                         tx_ring->buffer_info[i].length,
1075                                         PCI_DMA_TODEVICE);
1076                         if (tx_ring->buffer_info[i].skb)
1077                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1078                 }
1079         }
1080
1081         if (rx_ring->desc && rx_ring->buffer_info) {
1082                 for (i = 0; i < rx_ring->count; i++) {
1083                         if (rx_ring->buffer_info[i].dma)
1084                                 pci_unmap_single(pdev,
1085                                         rx_ring->buffer_info[i].dma,
1086                                         2048, PCI_DMA_FROMDEVICE);
1087                         if (rx_ring->buffer_info[i].skb)
1088                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1089                 }
1090         }
1091
1092         if (tx_ring->desc) {
1093                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1094                                   tx_ring->dma);
1095                 tx_ring->desc = NULL;
1096         }
1097         if (rx_ring->desc) {
1098                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1099                                   rx_ring->dma);
1100                 rx_ring->desc = NULL;
1101         }
1102
1103         kfree(tx_ring->buffer_info);
1104         tx_ring->buffer_info = NULL;
1105         kfree(rx_ring->buffer_info);
1106         rx_ring->buffer_info = NULL;
1107 }
1108
1109 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1110 {
1111         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113         struct pci_dev *pdev = adapter->pdev;
1114         struct e1000_hw *hw = &adapter->hw;
1115         u32 rctl;
1116         int i;
1117         int ret_val;
1118
1119         /* Setup Tx descriptor ring and Tx buffers */
1120
1121         if (!tx_ring->count)
1122                 tx_ring->count = E1000_DEFAULT_TXD;
1123
1124         tx_ring->buffer_info = kcalloc(tx_ring->count,
1125                                        sizeof(struct e1000_buffer),
1126                                        GFP_KERNEL);
1127         if (!(tx_ring->buffer_info)) {
1128                 ret_val = 1;
1129                 goto err_nomem;
1130         }
1131
1132         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1133         tx_ring->size = ALIGN(tx_ring->size, 4096);
1134         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1135                                            &tx_ring->dma, GFP_KERNEL);
1136         if (!tx_ring->desc) {
1137                 ret_val = 2;
1138                 goto err_nomem;
1139         }
1140         tx_ring->next_to_use = 0;
1141         tx_ring->next_to_clean = 0;
1142
1143         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1144         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1145         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1146         ew32(TDH, 0);
1147         ew32(TDT, 0);
1148         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1149              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1150              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1151
1152         for (i = 0; i < tx_ring->count; i++) {
1153                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1154                 struct sk_buff *skb;
1155                 unsigned int skb_size = 1024;
1156
1157                 skb = alloc_skb(skb_size, GFP_KERNEL);
1158                 if (!skb) {
1159                         ret_val = 3;
1160                         goto err_nomem;
1161                 }
1162                 skb_put(skb, skb_size);
1163                 tx_ring->buffer_info[i].skb = skb;
1164                 tx_ring->buffer_info[i].length = skb->len;
1165                 tx_ring->buffer_info[i].dma =
1166                         pci_map_single(pdev, skb->data, skb->len,
1167                                        PCI_DMA_TODEVICE);
1168                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1169                         ret_val = 4;
1170                         goto err_nomem;
1171                 }
1172                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1173                 tx_desc->lower.data = cpu_to_le32(skb->len);
1174                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1175                                                    E1000_TXD_CMD_IFCS |
1176                                                    E1000_TXD_CMD_RS);
1177                 tx_desc->upper.data = 0;
1178         }
1179
1180         /* Setup Rx descriptor ring and Rx buffers */
1181
1182         if (!rx_ring->count)
1183                 rx_ring->count = E1000_DEFAULT_RXD;
1184
1185         rx_ring->buffer_info = kcalloc(rx_ring->count,
1186                                        sizeof(struct e1000_buffer),
1187                                        GFP_KERNEL);
1188         if (!(rx_ring->buffer_info)) {
1189                 ret_val = 5;
1190                 goto err_nomem;
1191         }
1192
1193         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1194         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1195                                            &rx_ring->dma, GFP_KERNEL);
1196         if (!rx_ring->desc) {
1197                 ret_val = 6;
1198                 goto err_nomem;
1199         }
1200         rx_ring->next_to_use = 0;
1201         rx_ring->next_to_clean = 0;
1202
1203         rctl = er32(RCTL);
1204         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1205         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1206         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1207         ew32(RDLEN, rx_ring->size);
1208         ew32(RDH, 0);
1209         ew32(RDT, 0);
1210         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1211                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1212                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1213                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1214                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1215         ew32(RCTL, rctl);
1216
1217         for (i = 0; i < rx_ring->count; i++) {
1218                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1219                 struct sk_buff *skb;
1220
1221                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1222                 if (!skb) {
1223                         ret_val = 7;
1224                         goto err_nomem;
1225                 }
1226                 skb_reserve(skb, NET_IP_ALIGN);
1227                 rx_ring->buffer_info[i].skb = skb;
1228                 rx_ring->buffer_info[i].dma =
1229                         pci_map_single(pdev, skb->data, 2048,
1230                                        PCI_DMA_FROMDEVICE);
1231                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1232                         ret_val = 8;
1233                         goto err_nomem;
1234                 }
1235                 rx_desc->buffer_addr =
1236                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1237                 memset(skb->data, 0x00, skb->len);
1238         }
1239
1240         return 0;
1241
1242 err_nomem:
1243         e1000_free_desc_rings(adapter);
1244         return ret_val;
1245 }
1246
1247 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1248 {
1249         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1250         e1e_wphy(&adapter->hw, 29, 0x001F);
1251         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1252         e1e_wphy(&adapter->hw, 29, 0x001A);
1253         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1254 }
1255
1256 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1257 {
1258         struct e1000_hw *hw = &adapter->hw;
1259         u32 ctrl_reg = 0;
1260         u32 stat_reg = 0;
1261         u16 phy_reg = 0;
1262
1263         hw->mac.autoneg = 0;
1264
1265         /* Workaround: K1 must be disabled for stable 1Gbps operation */
1266         if (hw->mac.type == e1000_pchlan)
1267                 e1000_configure_k1_ich8lan(hw, false);
1268
1269         if (hw->phy.type == e1000_phy_m88) {
1270                 /* Auto-MDI/MDIX Off */
1271                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1272                 /* reset to update Auto-MDI/MDIX */
1273                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1274                 /* autoneg off */
1275                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1276         } else if (hw->phy.type == e1000_phy_gg82563)
1277                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1278
1279         ctrl_reg = er32(CTRL);
1280
1281         switch (hw->phy.type) {
1282         case e1000_phy_ife:
1283                 /* force 100, set loopback */
1284                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1285
1286                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1287                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1288                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1289                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1290                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1291                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1292                 break;
1293         case e1000_phy_bm:
1294                 /* Set Default MAC Interface speed to 1GB */
1295                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1296                 phy_reg &= ~0x0007;
1297                 phy_reg |= 0x006;
1298                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1299                 /* Assert SW reset for above settings to take effect */
1300                 e1000e_commit_phy(hw);
1301                 mdelay(1);
1302                 /* Force Full Duplex */
1303                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1304                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1305                 /* Set Link Up (in force link) */
1306                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1307                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1308                 /* Force Link */
1309                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1310                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1311                 /* Set Early Link Enable */
1312                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1313                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1314                 /* fall through */
1315         default:
1316                 /* force 1000, set loopback */
1317                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1318                 mdelay(250);
1319
1320                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1321                 ctrl_reg = er32(CTRL);
1322                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1323                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1324                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1325                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1326                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1327
1328                 if (adapter->flags & FLAG_IS_ICH)
1329                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1330         }
1331
1332         if (hw->phy.media_type == e1000_media_type_copper &&
1333             hw->phy.type == e1000_phy_m88) {
1334                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1335         } else {
1336                 /*
1337                  * Set the ILOS bit on the fiber Nic if half duplex link is
1338                  * detected.
1339                  */
1340                 stat_reg = er32(STATUS);
1341                 if ((stat_reg & E1000_STATUS_FD) == 0)
1342                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1343         }
1344
1345         ew32(CTRL, ctrl_reg);
1346
1347         /*
1348          * Disable the receiver on the PHY so when a cable is plugged in, the
1349          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1350          */
1351         if (hw->phy.type == e1000_phy_m88)
1352                 e1000_phy_disable_receiver(adapter);
1353
1354         udelay(500);
1355
1356         return 0;
1357 }
1358
1359 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         u32 ctrl = er32(CTRL);
1363         int link = 0;
1364
1365         /* special requirements for 82571/82572 fiber adapters */
1366
1367         /*
1368          * jump through hoops to make sure link is up because serdes
1369          * link is hardwired up
1370          */
1371         ctrl |= E1000_CTRL_SLU;
1372         ew32(CTRL, ctrl);
1373
1374         /* disable autoneg */
1375         ctrl = er32(TXCW);
1376         ctrl &= ~(1 << 31);
1377         ew32(TXCW, ctrl);
1378
1379         link = (er32(STATUS) & E1000_STATUS_LU);
1380
1381         if (!link) {
1382                 /* set invert loss of signal */
1383                 ctrl = er32(CTRL);
1384                 ctrl |= E1000_CTRL_ILOS;
1385                 ew32(CTRL, ctrl);
1386         }
1387
1388         /*
1389          * special write to serdes control register to enable SerDes analog
1390          * loopback
1391          */
1392 #define E1000_SERDES_LB_ON 0x410
1393         ew32(SCTL, E1000_SERDES_LB_ON);
1394         msleep(10);
1395
1396         return 0;
1397 }
1398
1399 /* only call this for fiber/serdes connections to es2lan */
1400 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1401 {
1402         struct e1000_hw *hw = &adapter->hw;
1403         u32 ctrlext = er32(CTRL_EXT);
1404         u32 ctrl = er32(CTRL);
1405
1406         /*
1407          * save CTRL_EXT to restore later, reuse an empty variable (unused
1408          * on mac_type 80003es2lan)
1409          */
1410         adapter->tx_fifo_head = ctrlext;
1411
1412         /* clear the serdes mode bits, putting the device into mac loopback */
1413         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1414         ew32(CTRL_EXT, ctrlext);
1415
1416         /* force speed to 1000/FD, link up */
1417         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1418         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1419                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1420         ew32(CTRL, ctrl);
1421
1422         /* set mac loopback */
1423         ctrl = er32(RCTL);
1424         ctrl |= E1000_RCTL_LBM_MAC;
1425         ew32(RCTL, ctrl);
1426
1427         /* set testing mode parameters (no need to reset later) */
1428 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1429 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1430         ew32(KMRNCTRLSTA,
1431              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1432
1433         return 0;
1434 }
1435
1436 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1437 {
1438         struct e1000_hw *hw = &adapter->hw;
1439         u32 rctl;
1440
1441         if (hw->phy.media_type == e1000_media_type_fiber ||
1442             hw->phy.media_type == e1000_media_type_internal_serdes) {
1443                 switch (hw->mac.type) {
1444                 case e1000_80003es2lan:
1445                         return e1000_set_es2lan_mac_loopback(adapter);
1446                         break;
1447                 case e1000_82571:
1448                 case e1000_82572:
1449                         return e1000_set_82571_fiber_loopback(adapter);
1450                         break;
1451                 default:
1452                         rctl = er32(RCTL);
1453                         rctl |= E1000_RCTL_LBM_TCVR;
1454                         ew32(RCTL, rctl);
1455                         return 0;
1456                 }
1457         } else if (hw->phy.media_type == e1000_media_type_copper) {
1458                 return e1000_integrated_phy_loopback(adapter);
1459         }
1460
1461         return 7;
1462 }
1463
1464 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1465 {
1466         struct e1000_hw *hw = &adapter->hw;
1467         u32 rctl;
1468         u16 phy_reg;
1469
1470         rctl = er32(RCTL);
1471         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1472         ew32(RCTL, rctl);
1473
1474         switch (hw->mac.type) {
1475         case e1000_80003es2lan:
1476                 if (hw->phy.media_type == e1000_media_type_fiber ||
1477                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1478                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1479                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1480                         adapter->tx_fifo_head = 0;
1481                 }
1482                 /* fall through */
1483         case e1000_82571:
1484         case e1000_82572:
1485                 if (hw->phy.media_type == e1000_media_type_fiber ||
1486                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1487 #define E1000_SERDES_LB_OFF 0x400
1488                         ew32(SCTL, E1000_SERDES_LB_OFF);
1489                         msleep(10);
1490                         break;
1491                 }
1492                 /* Fall Through */
1493         default:
1494                 hw->mac.autoneg = 1;
1495                 if (hw->phy.type == e1000_phy_gg82563)
1496                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1497                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1498                 if (phy_reg & MII_CR_LOOPBACK) {
1499                         phy_reg &= ~MII_CR_LOOPBACK;
1500                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1501                         e1000e_commit_phy(hw);
1502                 }
1503                 break;
1504         }
1505 }
1506
1507 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1508                                       unsigned int frame_size)
1509 {
1510         memset(skb->data, 0xFF, frame_size);
1511         frame_size &= ~1;
1512         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1513         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1514         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1515 }
1516
1517 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1518                                     unsigned int frame_size)
1519 {
1520         frame_size &= ~1;
1521         if (*(skb->data + 3) == 0xFF)
1522                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1523                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1524                         return 0;
1525         return 13;
1526 }
1527
1528 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1529 {
1530         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1531         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1532         struct pci_dev *pdev = adapter->pdev;
1533         struct e1000_hw *hw = &adapter->hw;
1534         int i, j, k, l;
1535         int lc;
1536         int good_cnt;
1537         int ret_val = 0;
1538         unsigned long time;
1539
1540         ew32(RDT, rx_ring->count - 1);
1541
1542         /*
1543          * Calculate the loop count based on the largest descriptor ring
1544          * The idea is to wrap the largest ring a number of times using 64
1545          * send/receive pairs during each loop
1546          */
1547
1548         if (rx_ring->count <= tx_ring->count)
1549                 lc = ((tx_ring->count / 64) * 2) + 1;
1550         else
1551                 lc = ((rx_ring->count / 64) * 2) + 1;
1552
1553         k = 0;
1554         l = 0;
1555         for (j = 0; j <= lc; j++) { /* loop count loop */
1556                 for (i = 0; i < 64; i++) { /* send the packets */
1557                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1558                                                   1024);
1559                         pci_dma_sync_single_for_device(pdev,
1560                                         tx_ring->buffer_info[k].dma,
1561                                         tx_ring->buffer_info[k].length,
1562                                         PCI_DMA_TODEVICE);
1563                         k++;
1564                         if (k == tx_ring->count)
1565                                 k = 0;
1566                 }
1567                 ew32(TDT, k);
1568                 msleep(200);
1569                 time = jiffies; /* set the start time for the receive */
1570                 good_cnt = 0;
1571                 do { /* receive the sent packets */
1572                         pci_dma_sync_single_for_cpu(pdev,
1573                                         rx_ring->buffer_info[l].dma, 2048,
1574                                         PCI_DMA_FROMDEVICE);
1575
1576                         ret_val = e1000_check_lbtest_frame(
1577                                         rx_ring->buffer_info[l].skb, 1024);
1578                         if (!ret_val)
1579                                 good_cnt++;
1580                         l++;
1581                         if (l == rx_ring->count)
1582                                 l = 0;
1583                         /*
1584                          * time + 20 msecs (200 msecs on 2.4) is more than
1585                          * enough time to complete the receives, if it's
1586                          * exceeded, break and error off
1587                          */
1588                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1589                 if (good_cnt != 64) {
1590                         ret_val = 13; /* ret_val is the same as mis-compare */
1591                         break;
1592                 }
1593                 if (jiffies >= (time + 20)) {
1594                         ret_val = 14; /* error code for time out error */
1595                         break;
1596                 }
1597         } /* end loop count loop */
1598         return ret_val;
1599 }
1600
1601 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1602 {
1603         /*
1604          * PHY loopback cannot be performed if SoL/IDER
1605          * sessions are active
1606          */
1607         if (e1000_check_reset_block(&adapter->hw)) {
1608                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1609                 *data = 0;
1610                 goto out;
1611         }
1612
1613         *data = e1000_setup_desc_rings(adapter);
1614         if (*data)
1615                 goto out;
1616
1617         *data = e1000_setup_loopback_test(adapter);
1618         if (*data)
1619                 goto err_loopback;
1620
1621         *data = e1000_run_loopback_test(adapter);
1622         e1000_loopback_cleanup(adapter);
1623
1624 err_loopback:
1625         e1000_free_desc_rings(adapter);
1626 out:
1627         return *data;
1628 }
1629
1630 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1631 {
1632         struct e1000_hw *hw = &adapter->hw;
1633
1634         *data = 0;
1635         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1636                 int i = 0;
1637                 hw->mac.serdes_has_link = false;
1638
1639                 /*
1640                  * On some blade server designs, link establishment
1641                  * could take as long as 2-3 minutes
1642                  */
1643                 do {
1644                         hw->mac.ops.check_for_link(hw);
1645                         if (hw->mac.serdes_has_link)
1646                                 return *data;
1647                         msleep(20);
1648                 } while (i++ < 3750);
1649
1650                 *data = 1;
1651         } else {
1652                 hw->mac.ops.check_for_link(hw);
1653                 if (hw->mac.autoneg)
1654                         msleep(4000);
1655
1656                 if (!(er32(STATUS) &
1657                       E1000_STATUS_LU))
1658                         *data = 1;
1659         }
1660         return *data;
1661 }
1662
1663 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1664 {
1665         switch (sset) {
1666         case ETH_SS_TEST:
1667                 return E1000_TEST_LEN;
1668         case ETH_SS_STATS:
1669                 return E1000_STATS_LEN;
1670         default:
1671                 return -EOPNOTSUPP;
1672         }
1673 }
1674
1675 static void e1000_diag_test(struct net_device *netdev,
1676                             struct ethtool_test *eth_test, u64 *data)
1677 {
1678         struct e1000_adapter *adapter = netdev_priv(netdev);
1679         u16 autoneg_advertised;
1680         u8 forced_speed_duplex;
1681         u8 autoneg;
1682         bool if_running = netif_running(netdev);
1683
1684         set_bit(__E1000_TESTING, &adapter->state);
1685         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1686                 /* Offline tests */
1687
1688                 /* save speed, duplex, autoneg settings */
1689                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1690                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1691                 autoneg = adapter->hw.mac.autoneg;
1692
1693                 e_info("offline testing starting\n");
1694
1695                 /*
1696                  * Link test performed before hardware reset so autoneg doesn't
1697                  * interfere with test result
1698                  */
1699                 if (e1000_link_test(adapter, &data[4]))
1700                         eth_test->flags |= ETH_TEST_FL_FAILED;
1701
1702                 if (if_running)
1703                         /* indicate we're in test mode */
1704                         dev_close(netdev);
1705                 else
1706                         e1000e_reset(adapter);
1707
1708                 if (e1000_reg_test(adapter, &data[0]))
1709                         eth_test->flags |= ETH_TEST_FL_FAILED;
1710
1711                 e1000e_reset(adapter);
1712                 if (e1000_eeprom_test(adapter, &data[1]))
1713                         eth_test->flags |= ETH_TEST_FL_FAILED;
1714
1715                 e1000e_reset(adapter);
1716                 if (e1000_intr_test(adapter, &data[2]))
1717                         eth_test->flags |= ETH_TEST_FL_FAILED;
1718
1719                 e1000e_reset(adapter);
1720                 /* make sure the phy is powered up */
1721                 e1000e_power_up_phy(adapter);
1722                 if (e1000_loopback_test(adapter, &data[3]))
1723                         eth_test->flags |= ETH_TEST_FL_FAILED;
1724
1725                 /* restore speed, duplex, autoneg settings */
1726                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1727                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1728                 adapter->hw.mac.autoneg = autoneg;
1729
1730                 /* force this routine to wait until autoneg complete/timeout */
1731                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1732                 e1000e_reset(adapter);
1733                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1734
1735                 clear_bit(__E1000_TESTING, &adapter->state);
1736                 if (if_running)
1737                         dev_open(netdev);
1738         } else {
1739                 e_info("online testing starting\n");
1740                 /* Online tests */
1741                 if (e1000_link_test(adapter, &data[4]))
1742                         eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744                 /* Online tests aren't run; pass by default */
1745                 data[0] = 0;
1746                 data[1] = 0;
1747                 data[2] = 0;
1748                 data[3] = 0;
1749
1750                 clear_bit(__E1000_TESTING, &adapter->state);
1751         }
1752         msleep_interruptible(4 * 1000);
1753 }
1754
1755 static void e1000_get_wol(struct net_device *netdev,
1756                           struct ethtool_wolinfo *wol)
1757 {
1758         struct e1000_adapter *adapter = netdev_priv(netdev);
1759
1760         wol->supported = 0;
1761         wol->wolopts = 0;
1762
1763         if (!(adapter->flags & FLAG_HAS_WOL) ||
1764             !device_can_wakeup(&adapter->pdev->dev))
1765                 return;
1766
1767         wol->supported = WAKE_UCAST | WAKE_MCAST |
1768                          WAKE_BCAST | WAKE_MAGIC |
1769                          WAKE_PHY | WAKE_ARP;
1770
1771         /* apply any specific unsupported masks here */
1772         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1773                 wol->supported &= ~WAKE_UCAST;
1774
1775                 if (adapter->wol & E1000_WUFC_EX)
1776                         e_err("Interface does not support directed (unicast) "
1777                               "frame wake-up packets\n");
1778         }
1779
1780         if (adapter->wol & E1000_WUFC_EX)
1781                 wol->wolopts |= WAKE_UCAST;
1782         if (adapter->wol & E1000_WUFC_MC)
1783                 wol->wolopts |= WAKE_MCAST;
1784         if (adapter->wol & E1000_WUFC_BC)
1785                 wol->wolopts |= WAKE_BCAST;
1786         if (adapter->wol & E1000_WUFC_MAG)
1787                 wol->wolopts |= WAKE_MAGIC;
1788         if (adapter->wol & E1000_WUFC_LNKC)
1789                 wol->wolopts |= WAKE_PHY;
1790         if (adapter->wol & E1000_WUFC_ARP)
1791                 wol->wolopts |= WAKE_ARP;
1792 }
1793
1794 static int e1000_set_wol(struct net_device *netdev,
1795                          struct ethtool_wolinfo *wol)
1796 {
1797         struct e1000_adapter *adapter = netdev_priv(netdev);
1798
1799         if (!(adapter->flags & FLAG_HAS_WOL) ||
1800             !device_can_wakeup(&adapter->pdev->dev) ||
1801             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1802                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1803                 return -EOPNOTSUPP;
1804
1805         /* these settings will always override what we currently have */
1806         adapter->wol = 0;
1807
1808         if (wol->wolopts & WAKE_UCAST)
1809                 adapter->wol |= E1000_WUFC_EX;
1810         if (wol->wolopts & WAKE_MCAST)
1811                 adapter->wol |= E1000_WUFC_MC;
1812         if (wol->wolopts & WAKE_BCAST)
1813                 adapter->wol |= E1000_WUFC_BC;
1814         if (wol->wolopts & WAKE_MAGIC)
1815                 adapter->wol |= E1000_WUFC_MAG;
1816         if (wol->wolopts & WAKE_PHY)
1817                 adapter->wol |= E1000_WUFC_LNKC;
1818         if (wol->wolopts & WAKE_ARP)
1819                 adapter->wol |= E1000_WUFC_ARP;
1820
1821         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1822
1823         return 0;
1824 }
1825
1826 /* toggle LED 4 times per second = 2 "blinks" per second */
1827 #define E1000_ID_INTERVAL       (HZ/4)
1828
1829 /* bit defines for adapter->led_status */
1830 #define E1000_LED_ON            0
1831
1832 static void e1000e_led_blink_task(struct work_struct *work)
1833 {
1834         struct e1000_adapter *adapter = container_of(work,
1835                                         struct e1000_adapter, led_blink_task);
1836
1837         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1838                 adapter->hw.mac.ops.led_off(&adapter->hw);
1839         else
1840                 adapter->hw.mac.ops.led_on(&adapter->hw);
1841 }
1842
1843 static void e1000_led_blink_callback(unsigned long data)
1844 {
1845         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1846
1847         schedule_work(&adapter->led_blink_task);
1848         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1849 }
1850
1851 static int e1000_phys_id(struct net_device *netdev, u32 data)
1852 {
1853         struct e1000_adapter *adapter = netdev_priv(netdev);
1854         struct e1000_hw *hw = &adapter->hw;
1855
1856         if (!data)
1857                 data = INT_MAX;
1858
1859         if ((hw->phy.type == e1000_phy_ife) ||
1860             (hw->mac.type == e1000_pchlan) ||
1861             (hw->mac.type == e1000_82583) ||
1862             (hw->mac.type == e1000_82574)) {
1863                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1864                 if (!adapter->blink_timer.function) {
1865                         init_timer(&adapter->blink_timer);
1866                         adapter->blink_timer.function =
1867                                 e1000_led_blink_callback;
1868                         adapter->blink_timer.data = (unsigned long) adapter;
1869                 }
1870                 mod_timer(&adapter->blink_timer, jiffies);
1871                 msleep_interruptible(data * 1000);
1872                 del_timer_sync(&adapter->blink_timer);
1873                 if (hw->phy.type == e1000_phy_ife)
1874                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1875         } else {
1876                 e1000e_blink_led(hw);
1877                 msleep_interruptible(data * 1000);
1878         }
1879
1880         hw->mac.ops.led_off(hw);
1881         clear_bit(E1000_LED_ON, &adapter->led_status);
1882         hw->mac.ops.cleanup_led(hw);
1883
1884         return 0;
1885 }
1886
1887 static int e1000_get_coalesce(struct net_device *netdev,
1888                               struct ethtool_coalesce *ec)
1889 {
1890         struct e1000_adapter *adapter = netdev_priv(netdev);
1891
1892         if (adapter->itr_setting <= 3)
1893                 ec->rx_coalesce_usecs = adapter->itr_setting;
1894         else
1895                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1896
1897         return 0;
1898 }
1899
1900 static int e1000_set_coalesce(struct net_device *netdev,
1901                               struct ethtool_coalesce *ec)
1902 {
1903         struct e1000_adapter *adapter = netdev_priv(netdev);
1904         struct e1000_hw *hw = &adapter->hw;
1905
1906         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1907             ((ec->rx_coalesce_usecs > 3) &&
1908              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1909             (ec->rx_coalesce_usecs == 2))
1910                 return -EINVAL;
1911
1912         if (ec->rx_coalesce_usecs <= 3) {
1913                 adapter->itr = 20000;
1914                 adapter->itr_setting = ec->rx_coalesce_usecs;
1915         } else {
1916                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1917                 adapter->itr_setting = adapter->itr & ~3;
1918         }
1919
1920         if (adapter->itr_setting != 0)
1921                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1922         else
1923                 ew32(ITR, 0);
1924
1925         return 0;
1926 }
1927
1928 static int e1000_nway_reset(struct net_device *netdev)
1929 {
1930         struct e1000_adapter *adapter = netdev_priv(netdev);
1931         if (netif_running(netdev))
1932                 e1000e_reinit_locked(adapter);
1933         return 0;
1934 }
1935
1936 static void e1000_get_ethtool_stats(struct net_device *netdev,
1937                                     struct ethtool_stats *stats,
1938                                     u64 *data)
1939 {
1940         struct e1000_adapter *adapter = netdev_priv(netdev);
1941         int i;
1942         char *p = NULL;
1943
1944         e1000e_update_stats(adapter);
1945         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1946                 switch (e1000_gstrings_stats[i].type) {
1947                 case NETDEV_STATS:
1948                         p = (char *) netdev +
1949                                         e1000_gstrings_stats[i].stat_offset;
1950                         break;
1951                 case E1000_STATS:
1952                         p = (char *) adapter +
1953                                         e1000_gstrings_stats[i].stat_offset;
1954                         break;
1955                 }
1956
1957                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1958                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1959         }
1960 }
1961
1962 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1963                               u8 *data)
1964 {
1965         u8 *p = data;
1966         int i;
1967
1968         switch (stringset) {
1969         case ETH_SS_TEST:
1970                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1971                 break;
1972         case ETH_SS_STATS:
1973                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1974                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1975                                ETH_GSTRING_LEN);
1976                         p += ETH_GSTRING_LEN;
1977                 }
1978                 break;
1979         }
1980 }
1981
1982 static const struct ethtool_ops e1000_ethtool_ops = {
1983         .get_settings           = e1000_get_settings,
1984         .set_settings           = e1000_set_settings,
1985         .get_drvinfo            = e1000_get_drvinfo,
1986         .get_regs_len           = e1000_get_regs_len,
1987         .get_regs               = e1000_get_regs,
1988         .get_wol                = e1000_get_wol,
1989         .set_wol                = e1000_set_wol,
1990         .get_msglevel           = e1000_get_msglevel,
1991         .set_msglevel           = e1000_set_msglevel,
1992         .nway_reset             = e1000_nway_reset,
1993         .get_link               = e1000_get_link,
1994         .get_eeprom_len         = e1000_get_eeprom_len,
1995         .get_eeprom             = e1000_get_eeprom,
1996         .set_eeprom             = e1000_set_eeprom,
1997         .get_ringparam          = e1000_get_ringparam,
1998         .set_ringparam          = e1000_set_ringparam,
1999         .get_pauseparam         = e1000_get_pauseparam,
2000         .set_pauseparam         = e1000_set_pauseparam,
2001         .get_rx_csum            = e1000_get_rx_csum,
2002         .set_rx_csum            = e1000_set_rx_csum,
2003         .get_tx_csum            = e1000_get_tx_csum,
2004         .set_tx_csum            = e1000_set_tx_csum,
2005         .get_sg                 = ethtool_op_get_sg,
2006         .set_sg                 = ethtool_op_set_sg,
2007         .get_tso                = ethtool_op_get_tso,
2008         .set_tso                = e1000_set_tso,
2009         .self_test              = e1000_diag_test,
2010         .get_strings            = e1000_get_strings,
2011         .phys_id                = e1000_phys_id,
2012         .get_ethtool_stats      = e1000_get_ethtool_stats,
2013         .get_sset_count         = e1000e_get_sset_count,
2014         .get_coalesce           = e1000_get_coalesce,
2015         .set_coalesce           = e1000_set_coalesce,
2016         .get_flags              = ethtool_op_get_flags,
2017         .set_flags              = ethtool_op_set_flags,
2018 };
2019
2020 void e1000e_set_ethtool_ops(struct net_device *netdev)
2021 {
2022         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2023 }