]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000e/ethtool.c
e1000e: update copyright information
[mv-sheeva.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(m)           E1000_STATS, \
49                                 sizeof(((struct e1000_adapter *)0)->m), \
50                                 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
52                                 sizeof(((struct net_device *)0)->m), \
53                                 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorc) },
59         { "tx_bytes", E1000_STAT(stats.gotc) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117                               struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121         u32 status;
122
123         if (hw->phy.media_type == e1000_media_type_copper) {
124
125                 ecmd->supported = (SUPPORTED_10baseT_Half |
126                                    SUPPORTED_10baseT_Full |
127                                    SUPPORTED_100baseT_Half |
128                                    SUPPORTED_100baseT_Full |
129                                    SUPPORTED_1000baseT_Full |
130                                    SUPPORTED_Autoneg |
131                                    SUPPORTED_TP);
132                 if (hw->phy.type == e1000_phy_ife)
133                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if (hw->mac.autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138                         /* the e1000 autoneg seems to match ethtool nicely */
139                         ecmd->advertising |= hw->phy.autoneg_advertised;
140                 }
141
142                 ecmd->port = PORT_TP;
143                 ecmd->phy_address = hw->phy.addr;
144                 ecmd->transceiver = XCVR_INTERNAL;
145
146         } else {
147                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
148                                      SUPPORTED_FIBRE |
149                                      SUPPORTED_Autoneg);
150
151                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152                                      ADVERTISED_FIBRE |
153                                      ADVERTISED_Autoneg);
154
155                 ecmd->port = PORT_FIBRE;
156                 ecmd->transceiver = XCVR_EXTERNAL;
157         }
158
159         status = er32(STATUS);
160         if (status & E1000_STATUS_LU) {
161                 if (status & E1000_STATUS_SPEED_1000)
162                         ecmd->speed = 1000;
163                 else if (status & E1000_STATUS_SPEED_100)
164                         ecmd->speed = 100;
165                 else
166                         ecmd->speed = 10;
167
168                 if (status & E1000_STATUS_FD)
169                         ecmd->duplex = DUPLEX_FULL;
170                 else
171                         ecmd->duplex = DUPLEX_HALF;
172         } else {
173                 ecmd->speed = -1;
174                 ecmd->duplex = -1;
175         }
176
177         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
178                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
179
180         /* MDI-X => 2; MDI =>1; Invalid =>0 */
181         if ((hw->phy.media_type == e1000_media_type_copper) &&
182             !hw->mac.get_link_status)
183                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
184                                                       ETH_TP_MDI;
185         else
186                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
187
188         return 0;
189 }
190
191 static u32 e1000_get_link(struct net_device *netdev)
192 {
193         struct e1000_adapter *adapter = netdev_priv(netdev);
194         struct e1000_mac_info *mac = &adapter->hw.mac;
195
196         /*
197          * If the link is not reported up to netdev, interrupts are disabled,
198          * and so the physical link state may have changed since we last
199          * looked. Set get_link_status to make sure that the true link
200          * state is interrogated, rather than pulling a cached and possibly
201          * stale link state from the driver.
202          */
203         if (!netif_carrier_ok(netdev))
204                 mac->get_link_status = 1;
205
206         return e1000e_has_link(adapter);
207 }
208
209 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
210 {
211         struct e1000_mac_info *mac = &adapter->hw.mac;
212
213         mac->autoneg = 0;
214
215         /* Fiber NICs only allow 1000 gbps Full duplex */
216         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
218                 e_err("Unsupported Speed/Duplex configuration\n");
219                 return -EINVAL;
220         }
221
222         switch (spddplx) {
223         case SPEED_10 + DUPLEX_HALF:
224                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
225                 break;
226         case SPEED_10 + DUPLEX_FULL:
227                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
228                 break;
229         case SPEED_100 + DUPLEX_HALF:
230                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
231                 break;
232         case SPEED_100 + DUPLEX_FULL:
233                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
234                 break;
235         case SPEED_1000 + DUPLEX_FULL:
236                 mac->autoneg = 1;
237                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238                 break;
239         case SPEED_1000 + DUPLEX_HALF: /* not supported */
240         default:
241                 e_err("Unsupported Speed/Duplex configuration\n");
242                 return -EINVAL;
243         }
244         return 0;
245 }
246
247 static int e1000_set_settings(struct net_device *netdev,
248                               struct ethtool_cmd *ecmd)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         /*
254          * When SoL/IDER sessions are active, autoneg/speed/duplex
255          * cannot be changed
256          */
257         if (e1000_check_reset_block(hw)) {
258                 e_err("Cannot change link characteristics when SoL/IDER is "
259                       "active.\n");
260                 return -EINVAL;
261         }
262
263         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
264                 msleep(1);
265
266         if (ecmd->autoneg == AUTONEG_ENABLE) {
267                 hw->mac.autoneg = 1;
268                 if (hw->phy.media_type == e1000_media_type_fiber)
269                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
270                                                      ADVERTISED_FIBRE |
271                                                      ADVERTISED_Autoneg;
272                 else
273                         hw->phy.autoneg_advertised = ecmd->advertising |
274                                                      ADVERTISED_TP |
275                                                      ADVERTISED_Autoneg;
276                 ecmd->advertising = hw->phy.autoneg_advertised;
277                 if (adapter->fc_autoneg)
278                         hw->fc.requested_mode = e1000_fc_default;
279         } else {
280                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
281                         clear_bit(__E1000_RESETTING, &adapter->state);
282                         return -EINVAL;
283                 }
284         }
285
286         /* reset the link */
287
288         if (netif_running(adapter->netdev)) {
289                 e1000e_down(adapter);
290                 e1000e_up(adapter);
291         } else {
292                 e1000e_reset(adapter);
293         }
294
295         clear_bit(__E1000_RESETTING, &adapter->state);
296         return 0;
297 }
298
299 static void e1000_get_pauseparam(struct net_device *netdev,
300                                  struct ethtool_pauseparam *pause)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         struct e1000_hw *hw = &adapter->hw;
304
305         pause->autoneg =
306                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
307
308         if (hw->fc.current_mode == e1000_fc_rx_pause) {
309                 pause->rx_pause = 1;
310         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
311                 pause->tx_pause = 1;
312         } else if (hw->fc.current_mode == e1000_fc_full) {
313                 pause->rx_pause = 1;
314                 pause->tx_pause = 1;
315         }
316 }
317
318 static int e1000_set_pauseparam(struct net_device *netdev,
319                                 struct ethtool_pauseparam *pause)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         struct e1000_hw *hw = &adapter->hw;
323         int retval = 0;
324
325         adapter->fc_autoneg = pause->autoneg;
326
327         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
328                 msleep(1);
329
330         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
331                 hw->fc.requested_mode = e1000_fc_default;
332                 if (netif_running(adapter->netdev)) {
333                         e1000e_down(adapter);
334                         e1000e_up(adapter);
335                 } else {
336                         e1000e_reset(adapter);
337                 }
338         } else {
339                 if (pause->rx_pause && pause->tx_pause)
340                         hw->fc.requested_mode = e1000_fc_full;
341                 else if (pause->rx_pause && !pause->tx_pause)
342                         hw->fc.requested_mode = e1000_fc_rx_pause;
343                 else if (!pause->rx_pause && pause->tx_pause)
344                         hw->fc.requested_mode = e1000_fc_tx_pause;
345                 else if (!pause->rx_pause && !pause->tx_pause)
346                         hw->fc.requested_mode = e1000_fc_none;
347
348                 hw->fc.current_mode = hw->fc.requested_mode;
349
350                 if (hw->phy.media_type == e1000_media_type_fiber) {
351                         retval = hw->mac.ops.setup_link(hw);
352                         /* implicit goto out */
353                 } else {
354                         retval = e1000e_force_mac_fc(hw);
355                         if (retval)
356                                 goto out;
357                         e1000e_set_fc_watermarks(hw);
358                 }
359         }
360
361 out:
362         clear_bit(__E1000_RESETTING, &adapter->state);
363         return retval;
364 }
365
366 static u32 e1000_get_rx_csum(struct net_device *netdev)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
370 }
371
372 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
373 {
374         struct e1000_adapter *adapter = netdev_priv(netdev);
375
376         if (data)
377                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
378         else
379                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
380
381         if (netif_running(netdev))
382                 e1000e_reinit_locked(adapter);
383         else
384                 e1000e_reset(adapter);
385         return 0;
386 }
387
388 static u32 e1000_get_tx_csum(struct net_device *netdev)
389 {
390         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
391 }
392
393 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
394 {
395         if (data)
396                 netdev->features |= NETIF_F_HW_CSUM;
397         else
398                 netdev->features &= ~NETIF_F_HW_CSUM;
399
400         return 0;
401 }
402
403 static int e1000_set_tso(struct net_device *netdev, u32 data)
404 {
405         struct e1000_adapter *adapter = netdev_priv(netdev);
406
407         if (data) {
408                 netdev->features |= NETIF_F_TSO;
409                 netdev->features |= NETIF_F_TSO6;
410         } else {
411                 netdev->features &= ~NETIF_F_TSO;
412                 netdev->features &= ~NETIF_F_TSO6;
413         }
414
415         adapter->flags |= FLAG_TSO_FORCE;
416         return 0;
417 }
418
419 static u32 e1000_get_msglevel(struct net_device *netdev)
420 {
421         struct e1000_adapter *adapter = netdev_priv(netdev);
422         return adapter->msg_enable;
423 }
424
425 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
426 {
427         struct e1000_adapter *adapter = netdev_priv(netdev);
428         adapter->msg_enable = data;
429 }
430
431 static int e1000_get_regs_len(struct net_device *netdev)
432 {
433 #define E1000_REGS_LEN 32 /* overestimate */
434         return E1000_REGS_LEN * sizeof(u32);
435 }
436
437 static void e1000_get_regs(struct net_device *netdev,
438                            struct ethtool_regs *regs, void *p)
439 {
440         struct e1000_adapter *adapter = netdev_priv(netdev);
441         struct e1000_hw *hw = &adapter->hw;
442         u32 *regs_buff = p;
443         u16 phy_data;
444         u8 revision_id;
445
446         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
447
448         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
449
450         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
451
452         regs_buff[0]  = er32(CTRL);
453         regs_buff[1]  = er32(STATUS);
454
455         regs_buff[2]  = er32(RCTL);
456         regs_buff[3]  = er32(RDLEN);
457         regs_buff[4]  = er32(RDH);
458         regs_buff[5]  = er32(RDT);
459         regs_buff[6]  = er32(RDTR);
460
461         regs_buff[7]  = er32(TCTL);
462         regs_buff[8]  = er32(TDLEN);
463         regs_buff[9]  = er32(TDH);
464         regs_buff[10] = er32(TDT);
465         regs_buff[11] = er32(TIDV);
466
467         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
468
469         /* ethtool doesn't use anything past this point, so all this
470          * code is likely legacy junk for apps that may or may not
471          * exist */
472         if (hw->phy.type == e1000_phy_m88) {
473                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
474                 regs_buff[13] = (u32)phy_data; /* cable length */
475                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
479                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
480                 regs_buff[18] = regs_buff[13]; /* cable polarity */
481                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
482                 regs_buff[20] = regs_buff[17]; /* polarity correction */
483                 /* phy receive errors */
484                 regs_buff[22] = adapter->phy_stats.receive_errors;
485                 regs_buff[23] = regs_buff[13]; /* mdix mode */
486         }
487         regs_buff[21] = 0; /* was idle_errors */
488         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
489         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
490         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495         struct e1000_adapter *adapter = netdev_priv(netdev);
496         return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500                             struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         u16 *eeprom_buff;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EINVAL;
512
513         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518         eeprom_buff = kmalloc(sizeof(u16) *
519                         (last_word - first_word + 1), GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
524                 ret_val = e1000_read_nvm(hw, first_word,
525                                          last_word - first_word + 1,
526                                          eeprom_buff);
527         } else {
528                 for (i = 0; i < last_word - first_word + 1; i++) {
529                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
530                                                       &eeprom_buff[i]);
531                         if (ret_val)
532                                 break;
533                 }
534         }
535
536         if (ret_val) {
537                 /* a read error occurred, throw away the result */
538                 memset(eeprom_buff, 0xff, sizeof(u16) *
539                        (last_word - first_word + 1));
540         } else {
541                 /* Device's eeprom is always little-endian, word addressable */
542                 for (i = 0; i < last_word - first_word + 1; i++)
543                         le16_to_cpus(&eeprom_buff[i]);
544         }
545
546         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
547         kfree(eeprom_buff);
548
549         return ret_val;
550 }
551
552 static int e1000_set_eeprom(struct net_device *netdev,
553                             struct ethtool_eeprom *eeprom, u8 *bytes)
554 {
555         struct e1000_adapter *adapter = netdev_priv(netdev);
556         struct e1000_hw *hw = &adapter->hw;
557         u16 *eeprom_buff;
558         void *ptr;
559         int max_len;
560         int first_word;
561         int last_word;
562         int ret_val = 0;
563         u16 i;
564
565         if (eeprom->len == 0)
566                 return -EOPNOTSUPP;
567
568         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569                 return -EFAULT;
570
571         if (adapter->flags & FLAG_READ_ONLY_NVM)
572                 return -EINVAL;
573
574         max_len = hw->nvm.word_size * 2;
575
576         first_word = eeprom->offset >> 1;
577         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579         if (!eeprom_buff)
580                 return -ENOMEM;
581
582         ptr = (void *)eeprom_buff;
583
584         if (eeprom->offset & 1) {
585                 /* need read/modify/write of first changed EEPROM word */
586                 /* only the second byte of the word is being modified */
587                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
588                 ptr++;
589         }
590         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
591                 /* need read/modify/write of last changed EEPROM word */
592                 /* only the first byte of the word is being modified */
593                 ret_val = e1000_read_nvm(hw, last_word, 1,
594                                   &eeprom_buff[last_word - first_word]);
595
596         if (ret_val)
597                 goto out;
598
599         /* Device's eeprom is always little-endian, word addressable */
600         for (i = 0; i < last_word - first_word + 1; i++)
601                 le16_to_cpus(&eeprom_buff[i]);
602
603         memcpy(ptr, bytes, eeprom->len);
604
605         for (i = 0; i < last_word - first_word + 1; i++)
606                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
607
608         ret_val = e1000_write_nvm(hw, first_word,
609                                   last_word - first_word + 1, eeprom_buff);
610
611         if (ret_val)
612                 goto out;
613
614         /*
615          * Update the checksum over the first part of the EEPROM if needed
616          * and flush shadow RAM for applicable controllers
617          */
618         if ((first_word <= NVM_CHECKSUM_REG) ||
619             (hw->mac.type == e1000_82583) ||
620             (hw->mac.type == e1000_82574) ||
621             (hw->mac.type == e1000_82573))
622                 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625         kfree(eeprom_buff);
626         return ret_val;
627 }
628
629 static void e1000_get_drvinfo(struct net_device *netdev,
630                               struct ethtool_drvinfo *drvinfo)
631 {
632         struct e1000_adapter *adapter = netdev_priv(netdev);
633         char firmware_version[32];
634
635         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
636         strncpy(drvinfo->version, e1000e_driver_version, 32);
637
638         /*
639          * EEPROM image version # is reported as firmware version # for
640          * PCI-E controllers
641          */
642         sprintf(firmware_version, "%d.%d-%d",
643                 (adapter->eeprom_vers & 0xF000) >> 12,
644                 (adapter->eeprom_vers & 0x0FF0) >> 4,
645                 (adapter->eeprom_vers & 0x000F));
646
647         strncpy(drvinfo->fw_version, firmware_version, 32);
648         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
649         drvinfo->regdump_len = e1000_get_regs_len(netdev);
650         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
651 }
652
653 static void e1000_get_ringparam(struct net_device *netdev,
654                                 struct ethtool_ringparam *ring)
655 {
656         struct e1000_adapter *adapter = netdev_priv(netdev);
657         struct e1000_ring *tx_ring = adapter->tx_ring;
658         struct e1000_ring *rx_ring = adapter->rx_ring;
659
660         ring->rx_max_pending = E1000_MAX_RXD;
661         ring->tx_max_pending = E1000_MAX_TXD;
662         ring->rx_mini_max_pending = 0;
663         ring->rx_jumbo_max_pending = 0;
664         ring->rx_pending = rx_ring->count;
665         ring->tx_pending = tx_ring->count;
666         ring->rx_mini_pending = 0;
667         ring->rx_jumbo_pending = 0;
668 }
669
670 static int e1000_set_ringparam(struct net_device *netdev,
671                                struct ethtool_ringparam *ring)
672 {
673         struct e1000_adapter *adapter = netdev_priv(netdev);
674         struct e1000_ring *tx_ring, *tx_old;
675         struct e1000_ring *rx_ring, *rx_old;
676         int err;
677
678         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
679                 return -EINVAL;
680
681         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
682                 msleep(1);
683
684         if (netif_running(adapter->netdev))
685                 e1000e_down(adapter);
686
687         tx_old = adapter->tx_ring;
688         rx_old = adapter->rx_ring;
689
690         err = -ENOMEM;
691         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
692         if (!tx_ring)
693                 goto err_alloc_tx;
694         /*
695          * use a memcpy to save any previously configured
696          * items like napi structs from having to be
697          * reinitialized
698          */
699         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
700
701         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
702         if (!rx_ring)
703                 goto err_alloc_rx;
704         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
705
706         adapter->tx_ring = tx_ring;
707         adapter->rx_ring = rx_ring;
708
709         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
710         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
711         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
712
713         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
714         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
715         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
716
717         if (netif_running(adapter->netdev)) {
718                 /* Try to get new resources before deleting old */
719                 err = e1000e_setup_rx_resources(adapter);
720                 if (err)
721                         goto err_setup_rx;
722                 err = e1000e_setup_tx_resources(adapter);
723                 if (err)
724                         goto err_setup_tx;
725
726                 /*
727                  * restore the old in order to free it,
728                  * then add in the new
729                  */
730                 adapter->rx_ring = rx_old;
731                 adapter->tx_ring = tx_old;
732                 e1000e_free_rx_resources(adapter);
733                 e1000e_free_tx_resources(adapter);
734                 kfree(tx_old);
735                 kfree(rx_old);
736                 adapter->rx_ring = rx_ring;
737                 adapter->tx_ring = tx_ring;
738                 err = e1000e_up(adapter);
739                 if (err)
740                         goto err_setup;
741         }
742
743         clear_bit(__E1000_RESETTING, &adapter->state);
744         return 0;
745 err_setup_tx:
746         e1000e_free_rx_resources(adapter);
747 err_setup_rx:
748         adapter->rx_ring = rx_old;
749         adapter->tx_ring = tx_old;
750         kfree(rx_ring);
751 err_alloc_rx:
752         kfree(tx_ring);
753 err_alloc_tx:
754         e1000e_up(adapter);
755 err_setup:
756         clear_bit(__E1000_RESETTING, &adapter->state);
757         return err;
758 }
759
760 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
761                              int reg, int offset, u32 mask, u32 write)
762 {
763         u32 pat, val;
764         static const u32 test[] =
765                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
766         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
767                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
768                                       (test[pat] & write));
769                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
770                 if (val != (test[pat] & write & mask)) {
771                         e_err("pattern test reg %04X failed: got 0x%08X "
772                               "expected 0x%08X\n", reg + offset, val,
773                               (test[pat] & write & mask));
774                         *data = reg;
775                         return 1;
776                 }
777         }
778         return 0;
779 }
780
781 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
782                               int reg, u32 mask, u32 write)
783 {
784         u32 val;
785         __ew32(&adapter->hw, reg, write & mask);
786         val = __er32(&adapter->hw, reg);
787         if ((write & mask) != (val & mask)) {
788                 e_err("set/check reg %04X test failed: got 0x%08X "
789                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
790                 *data = reg;
791                 return 1;
792         }
793         return 0;
794 }
795 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
796         do {                                                                   \
797                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
798                         return 1;                                              \
799         } while (0)
800 #define REG_PATTERN_TEST(reg, mask, write)                                     \
801         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
802
803 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
804         do {                                                                   \
805                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
806                         return 1;                                              \
807         } while (0)
808
809 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
810 {
811         struct e1000_hw *hw = &adapter->hw;
812         struct e1000_mac_info *mac = &adapter->hw.mac;
813         u32 value;
814         u32 before;
815         u32 after;
816         u32 i;
817         u32 toggle;
818         u32 mask;
819
820         /*
821          * The status register is Read Only, so a write should fail.
822          * Some bits that get toggled are ignored.
823          */
824         switch (mac->type) {
825         /* there are several bits on newer hardware that are r/w */
826         case e1000_82571:
827         case e1000_82572:
828         case e1000_80003es2lan:
829                 toggle = 0x7FFFF3FF;
830                 break;
831         default:
832                 toggle = 0x7FFFF033;
833                 break;
834         }
835
836         before = er32(STATUS);
837         value = (er32(STATUS) & toggle);
838         ew32(STATUS, toggle);
839         after = er32(STATUS) & toggle;
840         if (value != after) {
841                 e_err("failed STATUS register test got: 0x%08X expected: "
842                       "0x%08X\n", after, value);
843                 *data = 1;
844                 return 1;
845         }
846         /* restore previous status */
847         ew32(STATUS, before);
848
849         if (!(adapter->flags & FLAG_IS_ICH)) {
850                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
851                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
852                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
853                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
854         }
855
856         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
857         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
858         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
859         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
860         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
861         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
862         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
863         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
864         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
865         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
866
867         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
868
869         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
870         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
871         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
872
873         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
874         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
875         if (!(adapter->flags & FLAG_IS_ICH))
876                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
877         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
878         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
879         mask = 0x8003FFFF;
880         switch (mac->type) {
881         case e1000_ich10lan:
882         case e1000_pchlan:
883         case e1000_pch2lan:
884                 mask |= (1 << 18);
885                 break;
886         default:
887                 break;
888         }
889         for (i = 0; i < mac->rar_entry_count; i++)
890                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
891                                        mask, 0xFFFFFFFF);
892
893         for (i = 0; i < mac->mta_reg_count; i++)
894                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
895
896         *data = 0;
897         return 0;
898 }
899
900 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
901 {
902         u16 temp;
903         u16 checksum = 0;
904         u16 i;
905
906         *data = 0;
907         /* Read and add up the contents of the EEPROM */
908         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
909                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
910                         *data = 1;
911                         return *data;
912                 }
913                 checksum += temp;
914         }
915
916         /* If Checksum is not Correct return error else test passed */
917         if ((checksum != (u16) NVM_SUM) && !(*data))
918                 *data = 2;
919
920         return *data;
921 }
922
923 static irqreturn_t e1000_test_intr(int irq, void *data)
924 {
925         struct net_device *netdev = (struct net_device *) data;
926         struct e1000_adapter *adapter = netdev_priv(netdev);
927         struct e1000_hw *hw = &adapter->hw;
928
929         adapter->test_icr |= er32(ICR);
930
931         return IRQ_HANDLED;
932 }
933
934 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
935 {
936         struct net_device *netdev = adapter->netdev;
937         struct e1000_hw *hw = &adapter->hw;
938         u32 mask;
939         u32 shared_int = 1;
940         u32 irq = adapter->pdev->irq;
941         int i;
942         int ret_val = 0;
943         int int_mode = E1000E_INT_MODE_LEGACY;
944
945         *data = 0;
946
947         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
948         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
949                 int_mode = adapter->int_mode;
950                 e1000e_reset_interrupt_capability(adapter);
951                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
952                 e1000e_set_interrupt_capability(adapter);
953         }
954         /* Hook up test interrupt handler just for this test */
955         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
956                          netdev)) {
957                 shared_int = 0;
958         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
959                  netdev->name, netdev)) {
960                 *data = 1;
961                 ret_val = -1;
962                 goto out;
963         }
964         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
965
966         /* Disable all the interrupts */
967         ew32(IMC, 0xFFFFFFFF);
968         msleep(10);
969
970         /* Test each interrupt */
971         for (i = 0; i < 10; i++) {
972                 /* Interrupt to test */
973                 mask = 1 << i;
974
975                 if (adapter->flags & FLAG_IS_ICH) {
976                         switch (mask) {
977                         case E1000_ICR_RXSEQ:
978                                 continue;
979                         case 0x00000100:
980                                 if (adapter->hw.mac.type == e1000_ich8lan ||
981                                     adapter->hw.mac.type == e1000_ich9lan)
982                                         continue;
983                                 break;
984                         default:
985                                 break;
986                         }
987                 }
988
989                 if (!shared_int) {
990                         /*
991                          * Disable the interrupt to be reported in
992                          * the cause register and then force the same
993                          * interrupt and see if one gets posted.  If
994                          * an interrupt was posted to the bus, the
995                          * test failed.
996                          */
997                         adapter->test_icr = 0;
998                         ew32(IMC, mask);
999                         ew32(ICS, mask);
1000                         msleep(10);
1001
1002                         if (adapter->test_icr & mask) {
1003                                 *data = 3;
1004                                 break;
1005                         }
1006                 }
1007
1008                 /*
1009                  * Enable the interrupt to be reported in
1010                  * the cause register and then force the same
1011                  * interrupt and see if one gets posted.  If
1012                  * an interrupt was not posted to the bus, the
1013                  * test failed.
1014                  */
1015                 adapter->test_icr = 0;
1016                 ew32(IMS, mask);
1017                 ew32(ICS, mask);
1018                 msleep(10);
1019
1020                 if (!(adapter->test_icr & mask)) {
1021                         *data = 4;
1022                         break;
1023                 }
1024
1025                 if (!shared_int) {
1026                         /*
1027                          * Disable the other interrupts to be reported in
1028                          * the cause register and then force the other
1029                          * interrupts and see if any get posted.  If
1030                          * an interrupt was posted to the bus, the
1031                          * test failed.
1032                          */
1033                         adapter->test_icr = 0;
1034                         ew32(IMC, ~mask & 0x00007FFF);
1035                         ew32(ICS, ~mask & 0x00007FFF);
1036                         msleep(10);
1037
1038                         if (adapter->test_icr) {
1039                                 *data = 5;
1040                                 break;
1041                         }
1042                 }
1043         }
1044
1045         /* Disable all the interrupts */
1046         ew32(IMC, 0xFFFFFFFF);
1047         msleep(10);
1048
1049         /* Unhook test interrupt handler */
1050         free_irq(irq, netdev);
1051
1052 out:
1053         if (int_mode == E1000E_INT_MODE_MSIX) {
1054                 e1000e_reset_interrupt_capability(adapter);
1055                 adapter->int_mode = int_mode;
1056                 e1000e_set_interrupt_capability(adapter);
1057         }
1058
1059         return ret_val;
1060 }
1061
1062 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1065         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1066         struct pci_dev *pdev = adapter->pdev;
1067         int i;
1068
1069         if (tx_ring->desc && tx_ring->buffer_info) {
1070                 for (i = 0; i < tx_ring->count; i++) {
1071                         if (tx_ring->buffer_info[i].dma)
1072                                 dma_unmap_single(&pdev->dev,
1073                                         tx_ring->buffer_info[i].dma,
1074                                         tx_ring->buffer_info[i].length,
1075                                         DMA_TO_DEVICE);
1076                         if (tx_ring->buffer_info[i].skb)
1077                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1078                 }
1079         }
1080
1081         if (rx_ring->desc && rx_ring->buffer_info) {
1082                 for (i = 0; i < rx_ring->count; i++) {
1083                         if (rx_ring->buffer_info[i].dma)
1084                                 dma_unmap_single(&pdev->dev,
1085                                         rx_ring->buffer_info[i].dma,
1086                                         2048, DMA_FROM_DEVICE);
1087                         if (rx_ring->buffer_info[i].skb)
1088                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1089                 }
1090         }
1091
1092         if (tx_ring->desc) {
1093                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1094                                   tx_ring->dma);
1095                 tx_ring->desc = NULL;
1096         }
1097         if (rx_ring->desc) {
1098                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1099                                   rx_ring->dma);
1100                 rx_ring->desc = NULL;
1101         }
1102
1103         kfree(tx_ring->buffer_info);
1104         tx_ring->buffer_info = NULL;
1105         kfree(rx_ring->buffer_info);
1106         rx_ring->buffer_info = NULL;
1107 }
1108
1109 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1110 {
1111         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113         struct pci_dev *pdev = adapter->pdev;
1114         struct e1000_hw *hw = &adapter->hw;
1115         u32 rctl;
1116         int i;
1117         int ret_val;
1118
1119         /* Setup Tx descriptor ring and Tx buffers */
1120
1121         if (!tx_ring->count)
1122                 tx_ring->count = E1000_DEFAULT_TXD;
1123
1124         tx_ring->buffer_info = kcalloc(tx_ring->count,
1125                                        sizeof(struct e1000_buffer),
1126                                        GFP_KERNEL);
1127         if (!(tx_ring->buffer_info)) {
1128                 ret_val = 1;
1129                 goto err_nomem;
1130         }
1131
1132         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1133         tx_ring->size = ALIGN(tx_ring->size, 4096);
1134         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1135                                            &tx_ring->dma, GFP_KERNEL);
1136         if (!tx_ring->desc) {
1137                 ret_val = 2;
1138                 goto err_nomem;
1139         }
1140         tx_ring->next_to_use = 0;
1141         tx_ring->next_to_clean = 0;
1142
1143         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1144         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1145         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1146         ew32(TDH, 0);
1147         ew32(TDT, 0);
1148         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1149              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1150              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1151
1152         for (i = 0; i < tx_ring->count; i++) {
1153                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1154                 struct sk_buff *skb;
1155                 unsigned int skb_size = 1024;
1156
1157                 skb = alloc_skb(skb_size, GFP_KERNEL);
1158                 if (!skb) {
1159                         ret_val = 3;
1160                         goto err_nomem;
1161                 }
1162                 skb_put(skb, skb_size);
1163                 tx_ring->buffer_info[i].skb = skb;
1164                 tx_ring->buffer_info[i].length = skb->len;
1165                 tx_ring->buffer_info[i].dma =
1166                         dma_map_single(&pdev->dev, skb->data, skb->len,
1167                                        DMA_TO_DEVICE);
1168                 if (dma_mapping_error(&pdev->dev,
1169                                       tx_ring->buffer_info[i].dma)) {
1170                         ret_val = 4;
1171                         goto err_nomem;
1172                 }
1173                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1174                 tx_desc->lower.data = cpu_to_le32(skb->len);
1175                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1176                                                    E1000_TXD_CMD_IFCS |
1177                                                    E1000_TXD_CMD_RS);
1178                 tx_desc->upper.data = 0;
1179         }
1180
1181         /* Setup Rx descriptor ring and Rx buffers */
1182
1183         if (!rx_ring->count)
1184                 rx_ring->count = E1000_DEFAULT_RXD;
1185
1186         rx_ring->buffer_info = kcalloc(rx_ring->count,
1187                                        sizeof(struct e1000_buffer),
1188                                        GFP_KERNEL);
1189         if (!(rx_ring->buffer_info)) {
1190                 ret_val = 5;
1191                 goto err_nomem;
1192         }
1193
1194         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1195         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1196                                            &rx_ring->dma, GFP_KERNEL);
1197         if (!rx_ring->desc) {
1198                 ret_val = 6;
1199                 goto err_nomem;
1200         }
1201         rx_ring->next_to_use = 0;
1202         rx_ring->next_to_clean = 0;
1203
1204         rctl = er32(RCTL);
1205         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1206         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1207         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1208         ew32(RDLEN, rx_ring->size);
1209         ew32(RDH, 0);
1210         ew32(RDT, 0);
1211         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1212                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1213                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1214                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1215                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1216         ew32(RCTL, rctl);
1217
1218         for (i = 0; i < rx_ring->count; i++) {
1219                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1220                 struct sk_buff *skb;
1221
1222                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1223                 if (!skb) {
1224                         ret_val = 7;
1225                         goto err_nomem;
1226                 }
1227                 skb_reserve(skb, NET_IP_ALIGN);
1228                 rx_ring->buffer_info[i].skb = skb;
1229                 rx_ring->buffer_info[i].dma =
1230                         dma_map_single(&pdev->dev, skb->data, 2048,
1231                                        DMA_FROM_DEVICE);
1232                 if (dma_mapping_error(&pdev->dev,
1233                                       rx_ring->buffer_info[i].dma)) {
1234                         ret_val = 8;
1235                         goto err_nomem;
1236                 }
1237                 rx_desc->buffer_addr =
1238                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1239                 memset(skb->data, 0x00, skb->len);
1240         }
1241
1242         return 0;
1243
1244 err_nomem:
1245         e1000_free_desc_rings(adapter);
1246         return ret_val;
1247 }
1248
1249 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1250 {
1251         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1252         e1e_wphy(&adapter->hw, 29, 0x001F);
1253         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1254         e1e_wphy(&adapter->hw, 29, 0x001A);
1255         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1256 }
1257
1258 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1259 {
1260         struct e1000_hw *hw = &adapter->hw;
1261         u32 ctrl_reg = 0;
1262         u32 stat_reg = 0;
1263         u16 phy_reg = 0;
1264
1265         hw->mac.autoneg = 0;
1266
1267         if (hw->phy.type == e1000_phy_ife) {
1268                 /* force 100, set loopback */
1269                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1270
1271                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1272                 ctrl_reg = er32(CTRL);
1273                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1274                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1275                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1276                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1277                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1278
1279                 ew32(CTRL, ctrl_reg);
1280                 udelay(500);
1281
1282                 return 0;
1283         }
1284
1285         /* Specific PHY configuration for loopback */
1286         switch (hw->phy.type) {
1287         case e1000_phy_m88:
1288                 /* Auto-MDI/MDIX Off */
1289                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1290                 /* reset to update Auto-MDI/MDIX */
1291                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1292                 /* autoneg off */
1293                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1294                 break;
1295         case e1000_phy_gg82563:
1296                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1297                 break;
1298         case e1000_phy_bm:
1299                 /* Set Default MAC Interface speed to 1GB */
1300                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1301                 phy_reg &= ~0x0007;
1302                 phy_reg |= 0x006;
1303                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1304                 /* Assert SW reset for above settings to take effect */
1305                 e1000e_commit_phy(hw);
1306                 mdelay(1);
1307                 /* Force Full Duplex */
1308                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1309                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1310                 /* Set Link Up (in force link) */
1311                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1312                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1313                 /* Force Link */
1314                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1315                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1316                 /* Set Early Link Enable */
1317                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1318                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1319                 break;
1320         case e1000_phy_82577:
1321         case e1000_phy_82578:
1322                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1323                 e1000_configure_k1_ich8lan(hw, false);
1324                 break;
1325         case e1000_phy_82579:
1326                 /* Disable PHY energy detect power down */
1327                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1328                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1329                 /* Disable full chip energy detect */
1330                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1331                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1332                 /* Enable loopback on the PHY */
1333 #define I82577_PHY_LBK_CTRL          19
1334                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1335                 break;
1336         default:
1337                 break;
1338         }
1339
1340         /* force 1000, set loopback */
1341         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1342         mdelay(250);
1343
1344         /* Now set up the MAC to the same speed/duplex as the PHY. */
1345         ctrl_reg = er32(CTRL);
1346         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1347         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1348                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1349                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1350                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1351
1352         if (adapter->flags & FLAG_IS_ICH)
1353                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1354
1355         if (hw->phy.media_type == e1000_media_type_copper &&
1356             hw->phy.type == e1000_phy_m88) {
1357                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1358         } else {
1359                 /*
1360                  * Set the ILOS bit on the fiber Nic if half duplex link is
1361                  * detected.
1362                  */
1363                 stat_reg = er32(STATUS);
1364                 if ((stat_reg & E1000_STATUS_FD) == 0)
1365                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1366         }
1367
1368         ew32(CTRL, ctrl_reg);
1369
1370         /*
1371          * Disable the receiver on the PHY so when a cable is plugged in, the
1372          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1373          */
1374         if (hw->phy.type == e1000_phy_m88)
1375                 e1000_phy_disable_receiver(adapter);
1376
1377         udelay(500);
1378
1379         return 0;
1380 }
1381
1382 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385         u32 ctrl = er32(CTRL);
1386         int link = 0;
1387
1388         /* special requirements for 82571/82572 fiber adapters */
1389
1390         /*
1391          * jump through hoops to make sure link is up because serdes
1392          * link is hardwired up
1393          */
1394         ctrl |= E1000_CTRL_SLU;
1395         ew32(CTRL, ctrl);
1396
1397         /* disable autoneg */
1398         ctrl = er32(TXCW);
1399         ctrl &= ~(1 << 31);
1400         ew32(TXCW, ctrl);
1401
1402         link = (er32(STATUS) & E1000_STATUS_LU);
1403
1404         if (!link) {
1405                 /* set invert loss of signal */
1406                 ctrl = er32(CTRL);
1407                 ctrl |= E1000_CTRL_ILOS;
1408                 ew32(CTRL, ctrl);
1409         }
1410
1411         /*
1412          * special write to serdes control register to enable SerDes analog
1413          * loopback
1414          */
1415 #define E1000_SERDES_LB_ON 0x410
1416         ew32(SCTL, E1000_SERDES_LB_ON);
1417         msleep(10);
1418
1419         return 0;
1420 }
1421
1422 /* only call this for fiber/serdes connections to es2lan */
1423 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1424 {
1425         struct e1000_hw *hw = &adapter->hw;
1426         u32 ctrlext = er32(CTRL_EXT);
1427         u32 ctrl = er32(CTRL);
1428
1429         /*
1430          * save CTRL_EXT to restore later, reuse an empty variable (unused
1431          * on mac_type 80003es2lan)
1432          */
1433         adapter->tx_fifo_head = ctrlext;
1434
1435         /* clear the serdes mode bits, putting the device into mac loopback */
1436         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1437         ew32(CTRL_EXT, ctrlext);
1438
1439         /* force speed to 1000/FD, link up */
1440         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1441         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1442                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1443         ew32(CTRL, ctrl);
1444
1445         /* set mac loopback */
1446         ctrl = er32(RCTL);
1447         ctrl |= E1000_RCTL_LBM_MAC;
1448         ew32(RCTL, ctrl);
1449
1450         /* set testing mode parameters (no need to reset later) */
1451 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1452 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1453         ew32(KMRNCTRLSTA,
1454              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1455
1456         return 0;
1457 }
1458
1459 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1460 {
1461         struct e1000_hw *hw = &adapter->hw;
1462         u32 rctl;
1463
1464         if (hw->phy.media_type == e1000_media_type_fiber ||
1465             hw->phy.media_type == e1000_media_type_internal_serdes) {
1466                 switch (hw->mac.type) {
1467                 case e1000_80003es2lan:
1468                         return e1000_set_es2lan_mac_loopback(adapter);
1469                         break;
1470                 case e1000_82571:
1471                 case e1000_82572:
1472                         return e1000_set_82571_fiber_loopback(adapter);
1473                         break;
1474                 default:
1475                         rctl = er32(RCTL);
1476                         rctl |= E1000_RCTL_LBM_TCVR;
1477                         ew32(RCTL, rctl);
1478                         return 0;
1479                 }
1480         } else if (hw->phy.media_type == e1000_media_type_copper) {
1481                 return e1000_integrated_phy_loopback(adapter);
1482         }
1483
1484         return 7;
1485 }
1486
1487 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1488 {
1489         struct e1000_hw *hw = &adapter->hw;
1490         u32 rctl;
1491         u16 phy_reg;
1492
1493         rctl = er32(RCTL);
1494         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1495         ew32(RCTL, rctl);
1496
1497         switch (hw->mac.type) {
1498         case e1000_80003es2lan:
1499                 if (hw->phy.media_type == e1000_media_type_fiber ||
1500                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1501                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1502                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1503                         adapter->tx_fifo_head = 0;
1504                 }
1505                 /* fall through */
1506         case e1000_82571:
1507         case e1000_82572:
1508                 if (hw->phy.media_type == e1000_media_type_fiber ||
1509                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1510 #define E1000_SERDES_LB_OFF 0x400
1511                         ew32(SCTL, E1000_SERDES_LB_OFF);
1512                         msleep(10);
1513                         break;
1514                 }
1515                 /* Fall Through */
1516         default:
1517                 hw->mac.autoneg = 1;
1518                 if (hw->phy.type == e1000_phy_gg82563)
1519                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1520                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1521                 if (phy_reg & MII_CR_LOOPBACK) {
1522                         phy_reg &= ~MII_CR_LOOPBACK;
1523                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1524                         e1000e_commit_phy(hw);
1525                 }
1526                 break;
1527         }
1528 }
1529
1530 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1531                                       unsigned int frame_size)
1532 {
1533         memset(skb->data, 0xFF, frame_size);
1534         frame_size &= ~1;
1535         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1536         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1537         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1538 }
1539
1540 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1541                                     unsigned int frame_size)
1542 {
1543         frame_size &= ~1;
1544         if (*(skb->data + 3) == 0xFF)
1545                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1546                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1547                         return 0;
1548         return 13;
1549 }
1550
1551 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1552 {
1553         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1554         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1555         struct pci_dev *pdev = adapter->pdev;
1556         struct e1000_hw *hw = &adapter->hw;
1557         int i, j, k, l;
1558         int lc;
1559         int good_cnt;
1560         int ret_val = 0;
1561         unsigned long time;
1562
1563         ew32(RDT, rx_ring->count - 1);
1564
1565         /*
1566          * Calculate the loop count based on the largest descriptor ring
1567          * The idea is to wrap the largest ring a number of times using 64
1568          * send/receive pairs during each loop
1569          */
1570
1571         if (rx_ring->count <= tx_ring->count)
1572                 lc = ((tx_ring->count / 64) * 2) + 1;
1573         else
1574                 lc = ((rx_ring->count / 64) * 2) + 1;
1575
1576         k = 0;
1577         l = 0;
1578         for (j = 0; j <= lc; j++) { /* loop count loop */
1579                 for (i = 0; i < 64; i++) { /* send the packets */
1580                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1581                                                   1024);
1582                         dma_sync_single_for_device(&pdev->dev,
1583                                         tx_ring->buffer_info[k].dma,
1584                                         tx_ring->buffer_info[k].length,
1585                                         DMA_TO_DEVICE);
1586                         k++;
1587                         if (k == tx_ring->count)
1588                                 k = 0;
1589                 }
1590                 ew32(TDT, k);
1591                 msleep(200);
1592                 time = jiffies; /* set the start time for the receive */
1593                 good_cnt = 0;
1594                 do { /* receive the sent packets */
1595                         dma_sync_single_for_cpu(&pdev->dev,
1596                                         rx_ring->buffer_info[l].dma, 2048,
1597                                         DMA_FROM_DEVICE);
1598
1599                         ret_val = e1000_check_lbtest_frame(
1600                                         rx_ring->buffer_info[l].skb, 1024);
1601                         if (!ret_val)
1602                                 good_cnt++;
1603                         l++;
1604                         if (l == rx_ring->count)
1605                                 l = 0;
1606                         /*
1607                          * time + 20 msecs (200 msecs on 2.4) is more than
1608                          * enough time to complete the receives, if it's
1609                          * exceeded, break and error off
1610                          */
1611                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1612                 if (good_cnt != 64) {
1613                         ret_val = 13; /* ret_val is the same as mis-compare */
1614                         break;
1615                 }
1616                 if (jiffies >= (time + 20)) {
1617                         ret_val = 14; /* error code for time out error */
1618                         break;
1619                 }
1620         } /* end loop count loop */
1621         return ret_val;
1622 }
1623
1624 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1625 {
1626         /*
1627          * PHY loopback cannot be performed if SoL/IDER
1628          * sessions are active
1629          */
1630         if (e1000_check_reset_block(&adapter->hw)) {
1631                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1632                 *data = 0;
1633                 goto out;
1634         }
1635
1636         *data = e1000_setup_desc_rings(adapter);
1637         if (*data)
1638                 goto out;
1639
1640         *data = e1000_setup_loopback_test(adapter);
1641         if (*data)
1642                 goto err_loopback;
1643
1644         *data = e1000_run_loopback_test(adapter);
1645         e1000_loopback_cleanup(adapter);
1646
1647 err_loopback:
1648         e1000_free_desc_rings(adapter);
1649 out:
1650         return *data;
1651 }
1652
1653 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1654 {
1655         struct e1000_hw *hw = &adapter->hw;
1656
1657         *data = 0;
1658         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1659                 int i = 0;
1660                 hw->mac.serdes_has_link = false;
1661
1662                 /*
1663                  * On some blade server designs, link establishment
1664                  * could take as long as 2-3 minutes
1665                  */
1666                 do {
1667                         hw->mac.ops.check_for_link(hw);
1668                         if (hw->mac.serdes_has_link)
1669                                 return *data;
1670                         msleep(20);
1671                 } while (i++ < 3750);
1672
1673                 *data = 1;
1674         } else {
1675                 hw->mac.ops.check_for_link(hw);
1676                 if (hw->mac.autoneg)
1677                         msleep(4000);
1678
1679                 if (!(er32(STATUS) &
1680                       E1000_STATUS_LU))
1681                         *data = 1;
1682         }
1683         return *data;
1684 }
1685
1686 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1687 {
1688         switch (sset) {
1689         case ETH_SS_TEST:
1690                 return E1000_TEST_LEN;
1691         case ETH_SS_STATS:
1692                 return E1000_STATS_LEN;
1693         default:
1694                 return -EOPNOTSUPP;
1695         }
1696 }
1697
1698 static void e1000_diag_test(struct net_device *netdev,
1699                             struct ethtool_test *eth_test, u64 *data)
1700 {
1701         struct e1000_adapter *adapter = netdev_priv(netdev);
1702         u16 autoneg_advertised;
1703         u8 forced_speed_duplex;
1704         u8 autoneg;
1705         bool if_running = netif_running(netdev);
1706
1707         set_bit(__E1000_TESTING, &adapter->state);
1708         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1709                 /* Offline tests */
1710
1711                 /* save speed, duplex, autoneg settings */
1712                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1713                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1714                 autoneg = adapter->hw.mac.autoneg;
1715
1716                 e_info("offline testing starting\n");
1717
1718                 /*
1719                  * Link test performed before hardware reset so autoneg doesn't
1720                  * interfere with test result
1721                  */
1722                 if (e1000_link_test(adapter, &data[4]))
1723                         eth_test->flags |= ETH_TEST_FL_FAILED;
1724
1725                 if (if_running)
1726                         /* indicate we're in test mode */
1727                         dev_close(netdev);
1728                 else
1729                         e1000e_reset(adapter);
1730
1731                 if (e1000_reg_test(adapter, &data[0]))
1732                         eth_test->flags |= ETH_TEST_FL_FAILED;
1733
1734                 e1000e_reset(adapter);
1735                 if (e1000_eeprom_test(adapter, &data[1]))
1736                         eth_test->flags |= ETH_TEST_FL_FAILED;
1737
1738                 e1000e_reset(adapter);
1739                 if (e1000_intr_test(adapter, &data[2]))
1740                         eth_test->flags |= ETH_TEST_FL_FAILED;
1741
1742                 e1000e_reset(adapter);
1743                 /* make sure the phy is powered up */
1744                 e1000e_power_up_phy(adapter);
1745                 if (e1000_loopback_test(adapter, &data[3]))
1746                         eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748                 /* restore speed, duplex, autoneg settings */
1749                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1750                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1751                 adapter->hw.mac.autoneg = autoneg;
1752
1753                 /* force this routine to wait until autoneg complete/timeout */
1754                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1755                 e1000e_reset(adapter);
1756                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1757
1758                 clear_bit(__E1000_TESTING, &adapter->state);
1759                 if (if_running)
1760                         dev_open(netdev);
1761         } else {
1762                 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1763                         clear_bit(__E1000_TESTING, &adapter->state);
1764                         dev_open(netdev);
1765                         set_bit(__E1000_TESTING, &adapter->state);
1766                 }
1767
1768                 e_info("online testing starting\n");
1769                 /* Online tests */
1770                 if (e1000_link_test(adapter, &data[4]))
1771                         eth_test->flags |= ETH_TEST_FL_FAILED;
1772
1773                 /* Online tests aren't run; pass by default */
1774                 data[0] = 0;
1775                 data[1] = 0;
1776                 data[2] = 0;
1777                 data[3] = 0;
1778
1779                 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1780                         dev_close(netdev);
1781
1782                 clear_bit(__E1000_TESTING, &adapter->state);
1783         }
1784         msleep_interruptible(4 * 1000);
1785 }
1786
1787 static void e1000_get_wol(struct net_device *netdev,
1788                           struct ethtool_wolinfo *wol)
1789 {
1790         struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792         wol->supported = 0;
1793         wol->wolopts = 0;
1794
1795         if (!(adapter->flags & FLAG_HAS_WOL) ||
1796             !device_can_wakeup(&adapter->pdev->dev))
1797                 return;
1798
1799         wol->supported = WAKE_UCAST | WAKE_MCAST |
1800                          WAKE_BCAST | WAKE_MAGIC |
1801                          WAKE_PHY | WAKE_ARP;
1802
1803         /* apply any specific unsupported masks here */
1804         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1805                 wol->supported &= ~WAKE_UCAST;
1806
1807                 if (adapter->wol & E1000_WUFC_EX)
1808                         e_err("Interface does not support directed (unicast) "
1809                               "frame wake-up packets\n");
1810         }
1811
1812         if (adapter->wol & E1000_WUFC_EX)
1813                 wol->wolopts |= WAKE_UCAST;
1814         if (adapter->wol & E1000_WUFC_MC)
1815                 wol->wolopts |= WAKE_MCAST;
1816         if (adapter->wol & E1000_WUFC_BC)
1817                 wol->wolopts |= WAKE_BCAST;
1818         if (adapter->wol & E1000_WUFC_MAG)
1819                 wol->wolopts |= WAKE_MAGIC;
1820         if (adapter->wol & E1000_WUFC_LNKC)
1821                 wol->wolopts |= WAKE_PHY;
1822         if (adapter->wol & E1000_WUFC_ARP)
1823                 wol->wolopts |= WAKE_ARP;
1824 }
1825
1826 static int e1000_set_wol(struct net_device *netdev,
1827                          struct ethtool_wolinfo *wol)
1828 {
1829         struct e1000_adapter *adapter = netdev_priv(netdev);
1830
1831         if (!(adapter->flags & FLAG_HAS_WOL) ||
1832             !device_can_wakeup(&adapter->pdev->dev) ||
1833             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1834                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1835                 return -EOPNOTSUPP;
1836
1837         /* these settings will always override what we currently have */
1838         adapter->wol = 0;
1839
1840         if (wol->wolopts & WAKE_UCAST)
1841                 adapter->wol |= E1000_WUFC_EX;
1842         if (wol->wolopts & WAKE_MCAST)
1843                 adapter->wol |= E1000_WUFC_MC;
1844         if (wol->wolopts & WAKE_BCAST)
1845                 adapter->wol |= E1000_WUFC_BC;
1846         if (wol->wolopts & WAKE_MAGIC)
1847                 adapter->wol |= E1000_WUFC_MAG;
1848         if (wol->wolopts & WAKE_PHY)
1849                 adapter->wol |= E1000_WUFC_LNKC;
1850         if (wol->wolopts & WAKE_ARP)
1851                 adapter->wol |= E1000_WUFC_ARP;
1852
1853         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1854
1855         return 0;
1856 }
1857
1858 /* toggle LED 4 times per second = 2 "blinks" per second */
1859 #define E1000_ID_INTERVAL       (HZ/4)
1860
1861 /* bit defines for adapter->led_status */
1862 #define E1000_LED_ON            0
1863
1864 static void e1000e_led_blink_task(struct work_struct *work)
1865 {
1866         struct e1000_adapter *adapter = container_of(work,
1867                                         struct e1000_adapter, led_blink_task);
1868
1869         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1870                 adapter->hw.mac.ops.led_off(&adapter->hw);
1871         else
1872                 adapter->hw.mac.ops.led_on(&adapter->hw);
1873 }
1874
1875 static void e1000_led_blink_callback(unsigned long data)
1876 {
1877         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1878
1879         schedule_work(&adapter->led_blink_task);
1880         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1881 }
1882
1883 static int e1000_phys_id(struct net_device *netdev, u32 data)
1884 {
1885         struct e1000_adapter *adapter = netdev_priv(netdev);
1886         struct e1000_hw *hw = &adapter->hw;
1887
1888         if (!data)
1889                 data = INT_MAX;
1890
1891         if ((hw->phy.type == e1000_phy_ife) ||
1892             (hw->mac.type == e1000_pchlan) ||
1893             (hw->mac.type == e1000_pch2lan) ||
1894             (hw->mac.type == e1000_82583) ||
1895             (hw->mac.type == e1000_82574)) {
1896                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1897                 if (!adapter->blink_timer.function) {
1898                         init_timer(&adapter->blink_timer);
1899                         adapter->blink_timer.function =
1900                                 e1000_led_blink_callback;
1901                         adapter->blink_timer.data = (unsigned long) adapter;
1902                 }
1903                 mod_timer(&adapter->blink_timer, jiffies);
1904                 msleep_interruptible(data * 1000);
1905                 del_timer_sync(&adapter->blink_timer);
1906                 if (hw->phy.type == e1000_phy_ife)
1907                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1908         } else {
1909                 e1000e_blink_led(hw);
1910                 msleep_interruptible(data * 1000);
1911         }
1912
1913         hw->mac.ops.led_off(hw);
1914         clear_bit(E1000_LED_ON, &adapter->led_status);
1915         hw->mac.ops.cleanup_led(hw);
1916
1917         return 0;
1918 }
1919
1920 static int e1000_get_coalesce(struct net_device *netdev,
1921                               struct ethtool_coalesce *ec)
1922 {
1923         struct e1000_adapter *adapter = netdev_priv(netdev);
1924
1925         if (adapter->itr_setting <= 4)
1926                 ec->rx_coalesce_usecs = adapter->itr_setting;
1927         else
1928                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1929
1930         return 0;
1931 }
1932
1933 static int e1000_set_coalesce(struct net_device *netdev,
1934                               struct ethtool_coalesce *ec)
1935 {
1936         struct e1000_adapter *adapter = netdev_priv(netdev);
1937         struct e1000_hw *hw = &adapter->hw;
1938
1939         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1940             ((ec->rx_coalesce_usecs > 4) &&
1941              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1942             (ec->rx_coalesce_usecs == 2))
1943                 return -EINVAL;
1944
1945         if (ec->rx_coalesce_usecs == 4) {
1946                 adapter->itr = adapter->itr_setting = 4;
1947         } else if (ec->rx_coalesce_usecs <= 3) {
1948                 adapter->itr = 20000;
1949                 adapter->itr_setting = ec->rx_coalesce_usecs;
1950         } else {
1951                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1952                 adapter->itr_setting = adapter->itr & ~3;
1953         }
1954
1955         if (adapter->itr_setting != 0)
1956                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1957         else
1958                 ew32(ITR, 0);
1959
1960         return 0;
1961 }
1962
1963 static int e1000_nway_reset(struct net_device *netdev)
1964 {
1965         struct e1000_adapter *adapter = netdev_priv(netdev);
1966         if (netif_running(netdev))
1967                 e1000e_reinit_locked(adapter);
1968         return 0;
1969 }
1970
1971 static void e1000_get_ethtool_stats(struct net_device *netdev,
1972                                     struct ethtool_stats *stats,
1973                                     u64 *data)
1974 {
1975         struct e1000_adapter *adapter = netdev_priv(netdev);
1976         int i;
1977         char *p = NULL;
1978
1979         e1000e_update_stats(adapter);
1980         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981                 switch (e1000_gstrings_stats[i].type) {
1982                 case NETDEV_STATS:
1983                         p = (char *) netdev +
1984                                         e1000_gstrings_stats[i].stat_offset;
1985                         break;
1986                 case E1000_STATS:
1987                         p = (char *) adapter +
1988                                         e1000_gstrings_stats[i].stat_offset;
1989                         break;
1990                 }
1991
1992                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1993                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1994         }
1995 }
1996
1997 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1998                               u8 *data)
1999 {
2000         u8 *p = data;
2001         int i;
2002
2003         switch (stringset) {
2004         case ETH_SS_TEST:
2005                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2006                 break;
2007         case ETH_SS_STATS:
2008                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2009                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2010                                ETH_GSTRING_LEN);
2011                         p += ETH_GSTRING_LEN;
2012                 }
2013                 break;
2014         }
2015 }
2016
2017 static const struct ethtool_ops e1000_ethtool_ops = {
2018         .get_settings           = e1000_get_settings,
2019         .set_settings           = e1000_set_settings,
2020         .get_drvinfo            = e1000_get_drvinfo,
2021         .get_regs_len           = e1000_get_regs_len,
2022         .get_regs               = e1000_get_regs,
2023         .get_wol                = e1000_get_wol,
2024         .set_wol                = e1000_set_wol,
2025         .get_msglevel           = e1000_get_msglevel,
2026         .set_msglevel           = e1000_set_msglevel,
2027         .nway_reset             = e1000_nway_reset,
2028         .get_link               = e1000_get_link,
2029         .get_eeprom_len         = e1000_get_eeprom_len,
2030         .get_eeprom             = e1000_get_eeprom,
2031         .set_eeprom             = e1000_set_eeprom,
2032         .get_ringparam          = e1000_get_ringparam,
2033         .set_ringparam          = e1000_set_ringparam,
2034         .get_pauseparam         = e1000_get_pauseparam,
2035         .set_pauseparam         = e1000_set_pauseparam,
2036         .get_rx_csum            = e1000_get_rx_csum,
2037         .set_rx_csum            = e1000_set_rx_csum,
2038         .get_tx_csum            = e1000_get_tx_csum,
2039         .set_tx_csum            = e1000_set_tx_csum,
2040         .get_sg                 = ethtool_op_get_sg,
2041         .set_sg                 = ethtool_op_set_sg,
2042         .get_tso                = ethtool_op_get_tso,
2043         .set_tso                = e1000_set_tso,
2044         .self_test              = e1000_diag_test,
2045         .get_strings            = e1000_get_strings,
2046         .phys_id                = e1000_phys_id,
2047         .get_ethtool_stats      = e1000_get_ethtool_stats,
2048         .get_sset_count         = e1000e_get_sset_count,
2049         .get_coalesce           = e1000_get_coalesce,
2050         .set_coalesce           = e1000_set_coalesce,
2051         .get_flags              = ethtool_op_get_flags,
2052         .set_flags              = ethtool_op_set_flags,
2053 };
2054
2055 void e1000e_set_ethtool_ops(struct net_device *netdev)
2056 {
2057         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2058 }