]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000e/ethtool.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke...
[mv-sheeva.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(m)           E1000_STATS, \
49                                 sizeof(((struct e1000_adapter *)0)->m), \
50                                 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
52                                 sizeof(((struct net_device *)0)->m), \
53                                 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorc) },
59         { "tx_bytes", E1000_STAT(stats.gotc) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117                               struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121         u32 status;
122
123         if (hw->phy.media_type == e1000_media_type_copper) {
124
125                 ecmd->supported = (SUPPORTED_10baseT_Half |
126                                    SUPPORTED_10baseT_Full |
127                                    SUPPORTED_100baseT_Half |
128                                    SUPPORTED_100baseT_Full |
129                                    SUPPORTED_1000baseT_Full |
130                                    SUPPORTED_Autoneg |
131                                    SUPPORTED_TP);
132                 if (hw->phy.type == e1000_phy_ife)
133                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if (hw->mac.autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138                         /* the e1000 autoneg seems to match ethtool nicely */
139                         ecmd->advertising |= hw->phy.autoneg_advertised;
140                 }
141
142                 ecmd->port = PORT_TP;
143                 ecmd->phy_address = hw->phy.addr;
144                 ecmd->transceiver = XCVR_INTERNAL;
145
146         } else {
147                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
148                                      SUPPORTED_FIBRE |
149                                      SUPPORTED_Autoneg);
150
151                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152                                      ADVERTISED_FIBRE |
153                                      ADVERTISED_Autoneg);
154
155                 ecmd->port = PORT_FIBRE;
156                 ecmd->transceiver = XCVR_EXTERNAL;
157         }
158
159         status = er32(STATUS);
160         if (status & E1000_STATUS_LU) {
161                 if (status & E1000_STATUS_SPEED_1000)
162                         ecmd->speed = 1000;
163                 else if (status & E1000_STATUS_SPEED_100)
164                         ecmd->speed = 100;
165                 else
166                         ecmd->speed = 10;
167
168                 if (status & E1000_STATUS_FD)
169                         ecmd->duplex = DUPLEX_FULL;
170                 else
171                         ecmd->duplex = DUPLEX_HALF;
172         } else {
173                 ecmd->speed = -1;
174                 ecmd->duplex = -1;
175         }
176
177         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
178                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
179
180         /* MDI-X => 2; MDI =>1; Invalid =>0 */
181         if ((hw->phy.media_type == e1000_media_type_copper) &&
182             !hw->mac.get_link_status)
183                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
184                                                       ETH_TP_MDI;
185         else
186                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
187
188         return 0;
189 }
190
191 static u32 e1000_get_link(struct net_device *netdev)
192 {
193         struct e1000_adapter *adapter = netdev_priv(netdev);
194         struct e1000_mac_info *mac = &adapter->hw.mac;
195
196         /*
197          * If the link is not reported up to netdev, interrupts are disabled,
198          * and so the physical link state may have changed since we last
199          * looked. Set get_link_status to make sure that the true link
200          * state is interrogated, rather than pulling a cached and possibly
201          * stale link state from the driver.
202          */
203         if (!netif_carrier_ok(netdev))
204                 mac->get_link_status = 1;
205
206         return e1000e_has_link(adapter);
207 }
208
209 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
210 {
211         struct e1000_mac_info *mac = &adapter->hw.mac;
212
213         mac->autoneg = 0;
214
215         /* Fiber NICs only allow 1000 gbps Full duplex */
216         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
218                 e_err("Unsupported Speed/Duplex configuration\n");
219                 return -EINVAL;
220         }
221
222         switch (spddplx) {
223         case SPEED_10 + DUPLEX_HALF:
224                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
225                 break;
226         case SPEED_10 + DUPLEX_FULL:
227                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
228                 break;
229         case SPEED_100 + DUPLEX_HALF:
230                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
231                 break;
232         case SPEED_100 + DUPLEX_FULL:
233                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
234                 break;
235         case SPEED_1000 + DUPLEX_FULL:
236                 mac->autoneg = 1;
237                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238                 break;
239         case SPEED_1000 + DUPLEX_HALF: /* not supported */
240         default:
241                 e_err("Unsupported Speed/Duplex configuration\n");
242                 return -EINVAL;
243         }
244         return 0;
245 }
246
247 static int e1000_set_settings(struct net_device *netdev,
248                               struct ethtool_cmd *ecmd)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         /*
254          * When SoL/IDER sessions are active, autoneg/speed/duplex
255          * cannot be changed
256          */
257         if (e1000_check_reset_block(hw)) {
258                 e_err("Cannot change link characteristics when SoL/IDER is "
259                       "active.\n");
260                 return -EINVAL;
261         }
262
263         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
264                 msleep(1);
265
266         if (ecmd->autoneg == AUTONEG_ENABLE) {
267                 hw->mac.autoneg = 1;
268                 if (hw->phy.media_type == e1000_media_type_fiber)
269                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
270                                                      ADVERTISED_FIBRE |
271                                                      ADVERTISED_Autoneg;
272                 else
273                         hw->phy.autoneg_advertised = ecmd->advertising |
274                                                      ADVERTISED_TP |
275                                                      ADVERTISED_Autoneg;
276                 ecmd->advertising = hw->phy.autoneg_advertised;
277                 if (adapter->fc_autoneg)
278                         hw->fc.requested_mode = e1000_fc_default;
279         } else {
280                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
281                         clear_bit(__E1000_RESETTING, &adapter->state);
282                         return -EINVAL;
283                 }
284         }
285
286         /* reset the link */
287
288         if (netif_running(adapter->netdev)) {
289                 e1000e_down(adapter);
290                 e1000e_up(adapter);
291         } else {
292                 e1000e_reset(adapter);
293         }
294
295         clear_bit(__E1000_RESETTING, &adapter->state);
296         return 0;
297 }
298
299 static void e1000_get_pauseparam(struct net_device *netdev,
300                                  struct ethtool_pauseparam *pause)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         struct e1000_hw *hw = &adapter->hw;
304
305         pause->autoneg =
306                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
307
308         if (hw->fc.current_mode == e1000_fc_rx_pause) {
309                 pause->rx_pause = 1;
310         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
311                 pause->tx_pause = 1;
312         } else if (hw->fc.current_mode == e1000_fc_full) {
313                 pause->rx_pause = 1;
314                 pause->tx_pause = 1;
315         }
316 }
317
318 static int e1000_set_pauseparam(struct net_device *netdev,
319                                 struct ethtool_pauseparam *pause)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         struct e1000_hw *hw = &adapter->hw;
323         int retval = 0;
324
325         adapter->fc_autoneg = pause->autoneg;
326
327         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
328                 msleep(1);
329
330         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
331                 hw->fc.requested_mode = e1000_fc_default;
332                 if (netif_running(adapter->netdev)) {
333                         e1000e_down(adapter);
334                         e1000e_up(adapter);
335                 } else {
336                         e1000e_reset(adapter);
337                 }
338         } else {
339                 if (pause->rx_pause && pause->tx_pause)
340                         hw->fc.requested_mode = e1000_fc_full;
341                 else if (pause->rx_pause && !pause->tx_pause)
342                         hw->fc.requested_mode = e1000_fc_rx_pause;
343                 else if (!pause->rx_pause && pause->tx_pause)
344                         hw->fc.requested_mode = e1000_fc_tx_pause;
345                 else if (!pause->rx_pause && !pause->tx_pause)
346                         hw->fc.requested_mode = e1000_fc_none;
347
348                 hw->fc.current_mode = hw->fc.requested_mode;
349
350                 if (hw->phy.media_type == e1000_media_type_fiber) {
351                         retval = hw->mac.ops.setup_link(hw);
352                         /* implicit goto out */
353                 } else {
354                         retval = e1000e_force_mac_fc(hw);
355                         if (retval)
356                                 goto out;
357                         e1000e_set_fc_watermarks(hw);
358                 }
359         }
360
361 out:
362         clear_bit(__E1000_RESETTING, &adapter->state);
363         return retval;
364 }
365
366 static u32 e1000_get_rx_csum(struct net_device *netdev)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
370 }
371
372 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
373 {
374         struct e1000_adapter *adapter = netdev_priv(netdev);
375
376         if (data)
377                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
378         else
379                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
380
381         if (netif_running(netdev))
382                 e1000e_reinit_locked(adapter);
383         else
384                 e1000e_reset(adapter);
385         return 0;
386 }
387
388 static u32 e1000_get_tx_csum(struct net_device *netdev)
389 {
390         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
391 }
392
393 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
394 {
395         if (data)
396                 netdev->features |= NETIF_F_HW_CSUM;
397         else
398                 netdev->features &= ~NETIF_F_HW_CSUM;
399
400         return 0;
401 }
402
403 static int e1000_set_tso(struct net_device *netdev, u32 data)
404 {
405         struct e1000_adapter *adapter = netdev_priv(netdev);
406
407         if (data) {
408                 netdev->features |= NETIF_F_TSO;
409                 netdev->features |= NETIF_F_TSO6;
410         } else {
411                 netdev->features &= ~NETIF_F_TSO;
412                 netdev->features &= ~NETIF_F_TSO6;
413         }
414
415         adapter->flags |= FLAG_TSO_FORCE;
416         return 0;
417 }
418
419 static u32 e1000_get_msglevel(struct net_device *netdev)
420 {
421         struct e1000_adapter *adapter = netdev_priv(netdev);
422         return adapter->msg_enable;
423 }
424
425 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
426 {
427         struct e1000_adapter *adapter = netdev_priv(netdev);
428         adapter->msg_enable = data;
429 }
430
431 static int e1000_get_regs_len(struct net_device *netdev)
432 {
433 #define E1000_REGS_LEN 32 /* overestimate */
434         return E1000_REGS_LEN * sizeof(u32);
435 }
436
437 static void e1000_get_regs(struct net_device *netdev,
438                            struct ethtool_regs *regs, void *p)
439 {
440         struct e1000_adapter *adapter = netdev_priv(netdev);
441         struct e1000_hw *hw = &adapter->hw;
442         u32 *regs_buff = p;
443         u16 phy_data;
444         u8 revision_id;
445
446         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
447
448         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
449
450         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
451
452         regs_buff[0]  = er32(CTRL);
453         regs_buff[1]  = er32(STATUS);
454
455         regs_buff[2]  = er32(RCTL);
456         regs_buff[3]  = er32(RDLEN);
457         regs_buff[4]  = er32(RDH);
458         regs_buff[5]  = er32(RDT);
459         regs_buff[6]  = er32(RDTR);
460
461         regs_buff[7]  = er32(TCTL);
462         regs_buff[8]  = er32(TDLEN);
463         regs_buff[9]  = er32(TDH);
464         regs_buff[10] = er32(TDT);
465         regs_buff[11] = er32(TIDV);
466
467         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
468
469         /* ethtool doesn't use anything past this point, so all this
470          * code is likely legacy junk for apps that may or may not
471          * exist */
472         if (hw->phy.type == e1000_phy_m88) {
473                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
474                 regs_buff[13] = (u32)phy_data; /* cable length */
475                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
479                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
480                 regs_buff[18] = regs_buff[13]; /* cable polarity */
481                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
482                 regs_buff[20] = regs_buff[17]; /* polarity correction */
483                 /* phy receive errors */
484                 regs_buff[22] = adapter->phy_stats.receive_errors;
485                 regs_buff[23] = regs_buff[13]; /* mdix mode */
486         }
487         regs_buff[21] = 0; /* was idle_errors */
488         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
489         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
490         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495         struct e1000_adapter *adapter = netdev_priv(netdev);
496         return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500                             struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         u16 *eeprom_buff;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EINVAL;
512
513         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518         eeprom_buff = kmalloc(sizeof(u16) *
519                         (last_word - first_word + 1), GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
524                 ret_val = e1000_read_nvm(hw, first_word,
525                                          last_word - first_word + 1,
526                                          eeprom_buff);
527         } else {
528                 for (i = 0; i < last_word - first_word + 1; i++) {
529                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
530                                                       &eeprom_buff[i]);
531                         if (ret_val)
532                                 break;
533                 }
534         }
535
536         if (ret_val) {
537                 /* a read error occurred, throw away the result */
538                 memset(eeprom_buff, 0xff, sizeof(u16) *
539                        (last_word - first_word + 1));
540         } else {
541                 /* Device's eeprom is always little-endian, word addressable */
542                 for (i = 0; i < last_word - first_word + 1; i++)
543                         le16_to_cpus(&eeprom_buff[i]);
544         }
545
546         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
547         kfree(eeprom_buff);
548
549         return ret_val;
550 }
551
552 static int e1000_set_eeprom(struct net_device *netdev,
553                             struct ethtool_eeprom *eeprom, u8 *bytes)
554 {
555         struct e1000_adapter *adapter = netdev_priv(netdev);
556         struct e1000_hw *hw = &adapter->hw;
557         u16 *eeprom_buff;
558         void *ptr;
559         int max_len;
560         int first_word;
561         int last_word;
562         int ret_val = 0;
563         u16 i;
564
565         if (eeprom->len == 0)
566                 return -EOPNOTSUPP;
567
568         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569                 return -EFAULT;
570
571         if (adapter->flags & FLAG_READ_ONLY_NVM)
572                 return -EINVAL;
573
574         max_len = hw->nvm.word_size * 2;
575
576         first_word = eeprom->offset >> 1;
577         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579         if (!eeprom_buff)
580                 return -ENOMEM;
581
582         ptr = (void *)eeprom_buff;
583
584         if (eeprom->offset & 1) {
585                 /* need read/modify/write of first changed EEPROM word */
586                 /* only the second byte of the word is being modified */
587                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
588                 ptr++;
589         }
590         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
591                 /* need read/modify/write of last changed EEPROM word */
592                 /* only the first byte of the word is being modified */
593                 ret_val = e1000_read_nvm(hw, last_word, 1,
594                                   &eeprom_buff[last_word - first_word]);
595
596         if (ret_val)
597                 goto out;
598
599         /* Device's eeprom is always little-endian, word addressable */
600         for (i = 0; i < last_word - first_word + 1; i++)
601                 le16_to_cpus(&eeprom_buff[i]);
602
603         memcpy(ptr, bytes, eeprom->len);
604
605         for (i = 0; i < last_word - first_word + 1; i++)
606                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
607
608         ret_val = e1000_write_nvm(hw, first_word,
609                                   last_word - first_word + 1, eeprom_buff);
610
611         if (ret_val)
612                 goto out;
613
614         /*
615          * Update the checksum over the first part of the EEPROM if needed
616          * and flush shadow RAM for applicable controllers
617          */
618         if ((first_word <= NVM_CHECKSUM_REG) ||
619             (hw->mac.type == e1000_82583) ||
620             (hw->mac.type == e1000_82574) ||
621             (hw->mac.type == e1000_82573))
622                 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625         kfree(eeprom_buff);
626         return ret_val;
627 }
628
629 static void e1000_get_drvinfo(struct net_device *netdev,
630                               struct ethtool_drvinfo *drvinfo)
631 {
632         struct e1000_adapter *adapter = netdev_priv(netdev);
633         char firmware_version[32];
634
635         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
636         strncpy(drvinfo->version, e1000e_driver_version, 32);
637
638         /*
639          * EEPROM image version # is reported as firmware version # for
640          * PCI-E controllers
641          */
642         sprintf(firmware_version, "%d.%d-%d",
643                 (adapter->eeprom_vers & 0xF000) >> 12,
644                 (adapter->eeprom_vers & 0x0FF0) >> 4,
645                 (adapter->eeprom_vers & 0x000F));
646
647         strncpy(drvinfo->fw_version, firmware_version, 32);
648         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
649         drvinfo->regdump_len = e1000_get_regs_len(netdev);
650         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
651 }
652
653 static void e1000_get_ringparam(struct net_device *netdev,
654                                 struct ethtool_ringparam *ring)
655 {
656         struct e1000_adapter *adapter = netdev_priv(netdev);
657         struct e1000_ring *tx_ring = adapter->tx_ring;
658         struct e1000_ring *rx_ring = adapter->rx_ring;
659
660         ring->rx_max_pending = E1000_MAX_RXD;
661         ring->tx_max_pending = E1000_MAX_TXD;
662         ring->rx_mini_max_pending = 0;
663         ring->rx_jumbo_max_pending = 0;
664         ring->rx_pending = rx_ring->count;
665         ring->tx_pending = tx_ring->count;
666         ring->rx_mini_pending = 0;
667         ring->rx_jumbo_pending = 0;
668 }
669
670 static int e1000_set_ringparam(struct net_device *netdev,
671                                struct ethtool_ringparam *ring)
672 {
673         struct e1000_adapter *adapter = netdev_priv(netdev);
674         struct e1000_ring *tx_ring, *tx_old;
675         struct e1000_ring *rx_ring, *rx_old;
676         int err;
677
678         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
679                 return -EINVAL;
680
681         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
682                 msleep(1);
683
684         if (netif_running(adapter->netdev))
685                 e1000e_down(adapter);
686
687         tx_old = adapter->tx_ring;
688         rx_old = adapter->rx_ring;
689
690         err = -ENOMEM;
691         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
692         if (!tx_ring)
693                 goto err_alloc_tx;
694         /*
695          * use a memcpy to save any previously configured
696          * items like napi structs from having to be
697          * reinitialized
698          */
699         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
700
701         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
702         if (!rx_ring)
703                 goto err_alloc_rx;
704         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
705
706         adapter->tx_ring = tx_ring;
707         adapter->rx_ring = rx_ring;
708
709         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
710         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
711         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
712
713         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
714         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
715         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
716
717         if (netif_running(adapter->netdev)) {
718                 /* Try to get new resources before deleting old */
719                 err = e1000e_setup_rx_resources(adapter);
720                 if (err)
721                         goto err_setup_rx;
722                 err = e1000e_setup_tx_resources(adapter);
723                 if (err)
724                         goto err_setup_tx;
725
726                 /*
727                  * restore the old in order to free it,
728                  * then add in the new
729                  */
730                 adapter->rx_ring = rx_old;
731                 adapter->tx_ring = tx_old;
732                 e1000e_free_rx_resources(adapter);
733                 e1000e_free_tx_resources(adapter);
734                 kfree(tx_old);
735                 kfree(rx_old);
736                 adapter->rx_ring = rx_ring;
737                 adapter->tx_ring = tx_ring;
738                 err = e1000e_up(adapter);
739                 if (err)
740                         goto err_setup;
741         }
742
743         clear_bit(__E1000_RESETTING, &adapter->state);
744         return 0;
745 err_setup_tx:
746         e1000e_free_rx_resources(adapter);
747 err_setup_rx:
748         adapter->rx_ring = rx_old;
749         adapter->tx_ring = tx_old;
750         kfree(rx_ring);
751 err_alloc_rx:
752         kfree(tx_ring);
753 err_alloc_tx:
754         e1000e_up(adapter);
755 err_setup:
756         clear_bit(__E1000_RESETTING, &adapter->state);
757         return err;
758 }
759
760 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
761                              int reg, int offset, u32 mask, u32 write)
762 {
763         u32 pat, val;
764         static const u32 test[] =
765                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
766         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
767                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
768                                       (test[pat] & write));
769                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
770                 if (val != (test[pat] & write & mask)) {
771                         e_err("pattern test reg %04X failed: got 0x%08X "
772                               "expected 0x%08X\n", reg + offset, val,
773                               (test[pat] & write & mask));
774                         *data = reg;
775                         return 1;
776                 }
777         }
778         return 0;
779 }
780
781 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
782                               int reg, u32 mask, u32 write)
783 {
784         u32 val;
785         __ew32(&adapter->hw, reg, write & mask);
786         val = __er32(&adapter->hw, reg);
787         if ((write & mask) != (val & mask)) {
788                 e_err("set/check reg %04X test failed: got 0x%08X "
789                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
790                 *data = reg;
791                 return 1;
792         }
793         return 0;
794 }
795 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
796         do {                                                                   \
797                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
798                         return 1;                                              \
799         } while (0)
800 #define REG_PATTERN_TEST(reg, mask, write)                                     \
801         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
802
803 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
804         do {                                                                   \
805                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
806                         return 1;                                              \
807         } while (0)
808
809 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
810 {
811         struct e1000_hw *hw = &adapter->hw;
812         struct e1000_mac_info *mac = &adapter->hw.mac;
813         u32 value;
814         u32 before;
815         u32 after;
816         u32 i;
817         u32 toggle;
818         u32 mask;
819
820         /*
821          * The status register is Read Only, so a write should fail.
822          * Some bits that get toggled are ignored.
823          */
824         switch (mac->type) {
825         /* there are several bits on newer hardware that are r/w */
826         case e1000_82571:
827         case e1000_82572:
828         case e1000_80003es2lan:
829                 toggle = 0x7FFFF3FF;
830                 break;
831         default:
832                 toggle = 0x7FFFF033;
833                 break;
834         }
835
836         before = er32(STATUS);
837         value = (er32(STATUS) & toggle);
838         ew32(STATUS, toggle);
839         after = er32(STATUS) & toggle;
840         if (value != after) {
841                 e_err("failed STATUS register test got: 0x%08X expected: "
842                       "0x%08X\n", after, value);
843                 *data = 1;
844                 return 1;
845         }
846         /* restore previous status */
847         ew32(STATUS, before);
848
849         if (!(adapter->flags & FLAG_IS_ICH)) {
850                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
851                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
852                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
853                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
854         }
855
856         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
857         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
858         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
859         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
860         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
861         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
862         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
863         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
864         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
865         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
866
867         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
868
869         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
870         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
871         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
872
873         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
874         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
875         if (!(adapter->flags & FLAG_IS_ICH))
876                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
877         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
878         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
879         mask = 0x8003FFFF;
880         switch (mac->type) {
881         case e1000_ich10lan:
882         case e1000_pchlan:
883                 mask |= (1 << 18);
884                 break;
885         default:
886                 break;
887         }
888         for (i = 0; i < mac->rar_entry_count; i++)
889                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
890                                        mask, 0xFFFFFFFF);
891
892         for (i = 0; i < mac->mta_reg_count; i++)
893                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
894
895         *data = 0;
896         return 0;
897 }
898
899 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
900 {
901         u16 temp;
902         u16 checksum = 0;
903         u16 i;
904
905         *data = 0;
906         /* Read and add up the contents of the EEPROM */
907         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
908                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
909                         *data = 1;
910                         return *data;
911                 }
912                 checksum += temp;
913         }
914
915         /* If Checksum is not Correct return error else test passed */
916         if ((checksum != (u16) NVM_SUM) && !(*data))
917                 *data = 2;
918
919         return *data;
920 }
921
922 static irqreturn_t e1000_test_intr(int irq, void *data)
923 {
924         struct net_device *netdev = (struct net_device *) data;
925         struct e1000_adapter *adapter = netdev_priv(netdev);
926         struct e1000_hw *hw = &adapter->hw;
927
928         adapter->test_icr |= er32(ICR);
929
930         return IRQ_HANDLED;
931 }
932
933 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
934 {
935         struct net_device *netdev = adapter->netdev;
936         struct e1000_hw *hw = &adapter->hw;
937         u32 mask;
938         u32 shared_int = 1;
939         u32 irq = adapter->pdev->irq;
940         int i;
941         int ret_val = 0;
942         int int_mode = E1000E_INT_MODE_LEGACY;
943
944         *data = 0;
945
946         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
947         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
948                 int_mode = adapter->int_mode;
949                 e1000e_reset_interrupt_capability(adapter);
950                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
951                 e1000e_set_interrupt_capability(adapter);
952         }
953         /* Hook up test interrupt handler just for this test */
954         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
955                          netdev)) {
956                 shared_int = 0;
957         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
958                  netdev->name, netdev)) {
959                 *data = 1;
960                 ret_val = -1;
961                 goto out;
962         }
963         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
964
965         /* Disable all the interrupts */
966         ew32(IMC, 0xFFFFFFFF);
967         msleep(10);
968
969         /* Test each interrupt */
970         for (i = 0; i < 10; i++) {
971                 /* Interrupt to test */
972                 mask = 1 << i;
973
974                 if (adapter->flags & FLAG_IS_ICH) {
975                         switch (mask) {
976                         case E1000_ICR_RXSEQ:
977                                 continue;
978                         case 0x00000100:
979                                 if (adapter->hw.mac.type == e1000_ich8lan ||
980                                     adapter->hw.mac.type == e1000_ich9lan)
981                                         continue;
982                                 break;
983                         default:
984                                 break;
985                         }
986                 }
987
988                 if (!shared_int) {
989                         /*
990                          * Disable the interrupt to be reported in
991                          * the cause register and then force the same
992                          * interrupt and see if one gets posted.  If
993                          * an interrupt was posted to the bus, the
994                          * test failed.
995                          */
996                         adapter->test_icr = 0;
997                         ew32(IMC, mask);
998                         ew32(ICS, mask);
999                         msleep(10);
1000
1001                         if (adapter->test_icr & mask) {
1002                                 *data = 3;
1003                                 break;
1004                         }
1005                 }
1006
1007                 /*
1008                  * Enable the interrupt to be reported in
1009                  * the cause register and then force the same
1010                  * interrupt and see if one gets posted.  If
1011                  * an interrupt was not posted to the bus, the
1012                  * test failed.
1013                  */
1014                 adapter->test_icr = 0;
1015                 ew32(IMS, mask);
1016                 ew32(ICS, mask);
1017                 msleep(10);
1018
1019                 if (!(adapter->test_icr & mask)) {
1020                         *data = 4;
1021                         break;
1022                 }
1023
1024                 if (!shared_int) {
1025                         /*
1026                          * Disable the other interrupts to be reported in
1027                          * the cause register and then force the other
1028                          * interrupts and see if any get posted.  If
1029                          * an interrupt was posted to the bus, the
1030                          * test failed.
1031                          */
1032                         adapter->test_icr = 0;
1033                         ew32(IMC, ~mask & 0x00007FFF);
1034                         ew32(ICS, ~mask & 0x00007FFF);
1035                         msleep(10);
1036
1037                         if (adapter->test_icr) {
1038                                 *data = 5;
1039                                 break;
1040                         }
1041                 }
1042         }
1043
1044         /* Disable all the interrupts */
1045         ew32(IMC, 0xFFFFFFFF);
1046         msleep(10);
1047
1048         /* Unhook test interrupt handler */
1049         free_irq(irq, netdev);
1050
1051 out:
1052         if (int_mode == E1000E_INT_MODE_MSIX) {
1053                 e1000e_reset_interrupt_capability(adapter);
1054                 adapter->int_mode = int_mode;
1055                 e1000e_set_interrupt_capability(adapter);
1056         }
1057
1058         return ret_val;
1059 }
1060
1061 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1062 {
1063         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1064         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1065         struct pci_dev *pdev = adapter->pdev;
1066         int i;
1067
1068         if (tx_ring->desc && tx_ring->buffer_info) {
1069                 for (i = 0; i < tx_ring->count; i++) {
1070                         if (tx_ring->buffer_info[i].dma)
1071                                 dma_unmap_single(&pdev->dev,
1072                                         tx_ring->buffer_info[i].dma,
1073                                         tx_ring->buffer_info[i].length,
1074                                         DMA_TO_DEVICE);
1075                         if (tx_ring->buffer_info[i].skb)
1076                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1077                 }
1078         }
1079
1080         if (rx_ring->desc && rx_ring->buffer_info) {
1081                 for (i = 0; i < rx_ring->count; i++) {
1082                         if (rx_ring->buffer_info[i].dma)
1083                                 dma_unmap_single(&pdev->dev,
1084                                         rx_ring->buffer_info[i].dma,
1085                                         2048, DMA_FROM_DEVICE);
1086                         if (rx_ring->buffer_info[i].skb)
1087                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1088                 }
1089         }
1090
1091         if (tx_ring->desc) {
1092                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1093                                   tx_ring->dma);
1094                 tx_ring->desc = NULL;
1095         }
1096         if (rx_ring->desc) {
1097                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1098                                   rx_ring->dma);
1099                 rx_ring->desc = NULL;
1100         }
1101
1102         kfree(tx_ring->buffer_info);
1103         tx_ring->buffer_info = NULL;
1104         kfree(rx_ring->buffer_info);
1105         rx_ring->buffer_info = NULL;
1106 }
1107
1108 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1109 {
1110         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1111         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1112         struct pci_dev *pdev = adapter->pdev;
1113         struct e1000_hw *hw = &adapter->hw;
1114         u32 rctl;
1115         int i;
1116         int ret_val;
1117
1118         /* Setup Tx descriptor ring and Tx buffers */
1119
1120         if (!tx_ring->count)
1121                 tx_ring->count = E1000_DEFAULT_TXD;
1122
1123         tx_ring->buffer_info = kcalloc(tx_ring->count,
1124                                        sizeof(struct e1000_buffer),
1125                                        GFP_KERNEL);
1126         if (!(tx_ring->buffer_info)) {
1127                 ret_val = 1;
1128                 goto err_nomem;
1129         }
1130
1131         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1132         tx_ring->size = ALIGN(tx_ring->size, 4096);
1133         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1134                                            &tx_ring->dma, GFP_KERNEL);
1135         if (!tx_ring->desc) {
1136                 ret_val = 2;
1137                 goto err_nomem;
1138         }
1139         tx_ring->next_to_use = 0;
1140         tx_ring->next_to_clean = 0;
1141
1142         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1143         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1144         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1145         ew32(TDH, 0);
1146         ew32(TDT, 0);
1147         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1148              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1149              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1150
1151         for (i = 0; i < tx_ring->count; i++) {
1152                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1153                 struct sk_buff *skb;
1154                 unsigned int skb_size = 1024;
1155
1156                 skb = alloc_skb(skb_size, GFP_KERNEL);
1157                 if (!skb) {
1158                         ret_val = 3;
1159                         goto err_nomem;
1160                 }
1161                 skb_put(skb, skb_size);
1162                 tx_ring->buffer_info[i].skb = skb;
1163                 tx_ring->buffer_info[i].length = skb->len;
1164                 tx_ring->buffer_info[i].dma =
1165                         dma_map_single(&pdev->dev, skb->data, skb->len,
1166                                        DMA_TO_DEVICE);
1167                 if (dma_mapping_error(&pdev->dev,
1168                                       tx_ring->buffer_info[i].dma)) {
1169                         ret_val = 4;
1170                         goto err_nomem;
1171                 }
1172                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1173                 tx_desc->lower.data = cpu_to_le32(skb->len);
1174                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1175                                                    E1000_TXD_CMD_IFCS |
1176                                                    E1000_TXD_CMD_RS);
1177                 tx_desc->upper.data = 0;
1178         }
1179
1180         /* Setup Rx descriptor ring and Rx buffers */
1181
1182         if (!rx_ring->count)
1183                 rx_ring->count = E1000_DEFAULT_RXD;
1184
1185         rx_ring->buffer_info = kcalloc(rx_ring->count,
1186                                        sizeof(struct e1000_buffer),
1187                                        GFP_KERNEL);
1188         if (!(rx_ring->buffer_info)) {
1189                 ret_val = 5;
1190                 goto err_nomem;
1191         }
1192
1193         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1194         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1195                                            &rx_ring->dma, GFP_KERNEL);
1196         if (!rx_ring->desc) {
1197                 ret_val = 6;
1198                 goto err_nomem;
1199         }
1200         rx_ring->next_to_use = 0;
1201         rx_ring->next_to_clean = 0;
1202
1203         rctl = er32(RCTL);
1204         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1205         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1206         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1207         ew32(RDLEN, rx_ring->size);
1208         ew32(RDH, 0);
1209         ew32(RDT, 0);
1210         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1211                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1212                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1213                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1214                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1215         ew32(RCTL, rctl);
1216
1217         for (i = 0; i < rx_ring->count; i++) {
1218                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1219                 struct sk_buff *skb;
1220
1221                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1222                 if (!skb) {
1223                         ret_val = 7;
1224                         goto err_nomem;
1225                 }
1226                 skb_reserve(skb, NET_IP_ALIGN);
1227                 rx_ring->buffer_info[i].skb = skb;
1228                 rx_ring->buffer_info[i].dma =
1229                         dma_map_single(&pdev->dev, skb->data, 2048,
1230                                        DMA_FROM_DEVICE);
1231                 if (dma_mapping_error(&pdev->dev,
1232                                       rx_ring->buffer_info[i].dma)) {
1233                         ret_val = 8;
1234                         goto err_nomem;
1235                 }
1236                 rx_desc->buffer_addr =
1237                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1238                 memset(skb->data, 0x00, skb->len);
1239         }
1240
1241         return 0;
1242
1243 err_nomem:
1244         e1000_free_desc_rings(adapter);
1245         return ret_val;
1246 }
1247
1248 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1249 {
1250         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1251         e1e_wphy(&adapter->hw, 29, 0x001F);
1252         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1253         e1e_wphy(&adapter->hw, 29, 0x001A);
1254         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1255 }
1256
1257 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1258 {
1259         struct e1000_hw *hw = &adapter->hw;
1260         u32 ctrl_reg = 0;
1261         u32 stat_reg = 0;
1262         u16 phy_reg = 0;
1263
1264         hw->mac.autoneg = 0;
1265
1266         /* Workaround: K1 must be disabled for stable 1Gbps operation */
1267         if (hw->mac.type == e1000_pchlan)
1268                 e1000_configure_k1_ich8lan(hw, false);
1269
1270         if (hw->phy.type == e1000_phy_m88) {
1271                 /* Auto-MDI/MDIX Off */
1272                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1273                 /* reset to update Auto-MDI/MDIX */
1274                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1275                 /* autoneg off */
1276                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1277         } else if (hw->phy.type == e1000_phy_gg82563)
1278                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1279
1280         ctrl_reg = er32(CTRL);
1281
1282         switch (hw->phy.type) {
1283         case e1000_phy_ife:
1284                 /* force 100, set loopback */
1285                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1286
1287                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1288                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1289                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1290                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1291                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1292                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1293                 break;
1294         case e1000_phy_bm:
1295                 /* Set Default MAC Interface speed to 1GB */
1296                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1297                 phy_reg &= ~0x0007;
1298                 phy_reg |= 0x006;
1299                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1300                 /* Assert SW reset for above settings to take effect */
1301                 e1000e_commit_phy(hw);
1302                 mdelay(1);
1303                 /* Force Full Duplex */
1304                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1305                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1306                 /* Set Link Up (in force link) */
1307                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1308                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1309                 /* Force Link */
1310                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1311                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1312                 /* Set Early Link Enable */
1313                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1314                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1315                 /* fall through */
1316         default:
1317                 /* force 1000, set loopback */
1318                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1319                 mdelay(250);
1320
1321                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1322                 ctrl_reg = er32(CTRL);
1323                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1327                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1328
1329                 if (adapter->flags & FLAG_IS_ICH)
1330                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1331         }
1332
1333         if (hw->phy.media_type == e1000_media_type_copper &&
1334             hw->phy.type == e1000_phy_m88) {
1335                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1336         } else {
1337                 /*
1338                  * Set the ILOS bit on the fiber Nic if half duplex link is
1339                  * detected.
1340                  */
1341                 stat_reg = er32(STATUS);
1342                 if ((stat_reg & E1000_STATUS_FD) == 0)
1343                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1344         }
1345
1346         ew32(CTRL, ctrl_reg);
1347
1348         /*
1349          * Disable the receiver on the PHY so when a cable is plugged in, the
1350          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1351          */
1352         if (hw->phy.type == e1000_phy_m88)
1353                 e1000_phy_disable_receiver(adapter);
1354
1355         udelay(500);
1356
1357         return 0;
1358 }
1359
1360 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1361 {
1362         struct e1000_hw *hw = &adapter->hw;
1363         u32 ctrl = er32(CTRL);
1364         int link = 0;
1365
1366         /* special requirements for 82571/82572 fiber adapters */
1367
1368         /*
1369          * jump through hoops to make sure link is up because serdes
1370          * link is hardwired up
1371          */
1372         ctrl |= E1000_CTRL_SLU;
1373         ew32(CTRL, ctrl);
1374
1375         /* disable autoneg */
1376         ctrl = er32(TXCW);
1377         ctrl &= ~(1 << 31);
1378         ew32(TXCW, ctrl);
1379
1380         link = (er32(STATUS) & E1000_STATUS_LU);
1381
1382         if (!link) {
1383                 /* set invert loss of signal */
1384                 ctrl = er32(CTRL);
1385                 ctrl |= E1000_CTRL_ILOS;
1386                 ew32(CTRL, ctrl);
1387         }
1388
1389         /*
1390          * special write to serdes control register to enable SerDes analog
1391          * loopback
1392          */
1393 #define E1000_SERDES_LB_ON 0x410
1394         ew32(SCTL, E1000_SERDES_LB_ON);
1395         msleep(10);
1396
1397         return 0;
1398 }
1399
1400 /* only call this for fiber/serdes connections to es2lan */
1401 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         u32 ctrlext = er32(CTRL_EXT);
1405         u32 ctrl = er32(CTRL);
1406
1407         /*
1408          * save CTRL_EXT to restore later, reuse an empty variable (unused
1409          * on mac_type 80003es2lan)
1410          */
1411         adapter->tx_fifo_head = ctrlext;
1412
1413         /* clear the serdes mode bits, putting the device into mac loopback */
1414         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1415         ew32(CTRL_EXT, ctrlext);
1416
1417         /* force speed to 1000/FD, link up */
1418         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1419         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1420                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1421         ew32(CTRL, ctrl);
1422
1423         /* set mac loopback */
1424         ctrl = er32(RCTL);
1425         ctrl |= E1000_RCTL_LBM_MAC;
1426         ew32(RCTL, ctrl);
1427
1428         /* set testing mode parameters (no need to reset later) */
1429 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1430 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1431         ew32(KMRNCTRLSTA,
1432              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1433
1434         return 0;
1435 }
1436
1437 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1438 {
1439         struct e1000_hw *hw = &adapter->hw;
1440         u32 rctl;
1441
1442         if (hw->phy.media_type == e1000_media_type_fiber ||
1443             hw->phy.media_type == e1000_media_type_internal_serdes) {
1444                 switch (hw->mac.type) {
1445                 case e1000_80003es2lan:
1446                         return e1000_set_es2lan_mac_loopback(adapter);
1447                         break;
1448                 case e1000_82571:
1449                 case e1000_82572:
1450                         return e1000_set_82571_fiber_loopback(adapter);
1451                         break;
1452                 default:
1453                         rctl = er32(RCTL);
1454                         rctl |= E1000_RCTL_LBM_TCVR;
1455                         ew32(RCTL, rctl);
1456                         return 0;
1457                 }
1458         } else if (hw->phy.media_type == e1000_media_type_copper) {
1459                 return e1000_integrated_phy_loopback(adapter);
1460         }
1461
1462         return 7;
1463 }
1464
1465 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1466 {
1467         struct e1000_hw *hw = &adapter->hw;
1468         u32 rctl;
1469         u16 phy_reg;
1470
1471         rctl = er32(RCTL);
1472         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1473         ew32(RCTL, rctl);
1474
1475         switch (hw->mac.type) {
1476         case e1000_80003es2lan:
1477                 if (hw->phy.media_type == e1000_media_type_fiber ||
1478                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1479                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1480                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1481                         adapter->tx_fifo_head = 0;
1482                 }
1483                 /* fall through */
1484         case e1000_82571:
1485         case e1000_82572:
1486                 if (hw->phy.media_type == e1000_media_type_fiber ||
1487                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1488 #define E1000_SERDES_LB_OFF 0x400
1489                         ew32(SCTL, E1000_SERDES_LB_OFF);
1490                         msleep(10);
1491                         break;
1492                 }
1493                 /* Fall Through */
1494         default:
1495                 hw->mac.autoneg = 1;
1496                 if (hw->phy.type == e1000_phy_gg82563)
1497                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1498                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1499                 if (phy_reg & MII_CR_LOOPBACK) {
1500                         phy_reg &= ~MII_CR_LOOPBACK;
1501                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1502                         e1000e_commit_phy(hw);
1503                 }
1504                 break;
1505         }
1506 }
1507
1508 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1509                                       unsigned int frame_size)
1510 {
1511         memset(skb->data, 0xFF, frame_size);
1512         frame_size &= ~1;
1513         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1514         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1515         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1516 }
1517
1518 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1519                                     unsigned int frame_size)
1520 {
1521         frame_size &= ~1;
1522         if (*(skb->data + 3) == 0xFF)
1523                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1524                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1525                         return 0;
1526         return 13;
1527 }
1528
1529 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1530 {
1531         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1532         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1533         struct pci_dev *pdev = adapter->pdev;
1534         struct e1000_hw *hw = &adapter->hw;
1535         int i, j, k, l;
1536         int lc;
1537         int good_cnt;
1538         int ret_val = 0;
1539         unsigned long time;
1540
1541         ew32(RDT, rx_ring->count - 1);
1542
1543         /*
1544          * Calculate the loop count based on the largest descriptor ring
1545          * The idea is to wrap the largest ring a number of times using 64
1546          * send/receive pairs during each loop
1547          */
1548
1549         if (rx_ring->count <= tx_ring->count)
1550                 lc = ((tx_ring->count / 64) * 2) + 1;
1551         else
1552                 lc = ((rx_ring->count / 64) * 2) + 1;
1553
1554         k = 0;
1555         l = 0;
1556         for (j = 0; j <= lc; j++) { /* loop count loop */
1557                 for (i = 0; i < 64; i++) { /* send the packets */
1558                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1559                                                   1024);
1560                         dma_sync_single_for_device(&pdev->dev,
1561                                         tx_ring->buffer_info[k].dma,
1562                                         tx_ring->buffer_info[k].length,
1563                                         DMA_TO_DEVICE);
1564                         k++;
1565                         if (k == tx_ring->count)
1566                                 k = 0;
1567                 }
1568                 ew32(TDT, k);
1569                 msleep(200);
1570                 time = jiffies; /* set the start time for the receive */
1571                 good_cnt = 0;
1572                 do { /* receive the sent packets */
1573                         dma_sync_single_for_cpu(&pdev->dev,
1574                                         rx_ring->buffer_info[l].dma, 2048,
1575                                         DMA_FROM_DEVICE);
1576
1577                         ret_val = e1000_check_lbtest_frame(
1578                                         rx_ring->buffer_info[l].skb, 1024);
1579                         if (!ret_val)
1580                                 good_cnt++;
1581                         l++;
1582                         if (l == rx_ring->count)
1583                                 l = 0;
1584                         /*
1585                          * time + 20 msecs (200 msecs on 2.4) is more than
1586                          * enough time to complete the receives, if it's
1587                          * exceeded, break and error off
1588                          */
1589                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1590                 if (good_cnt != 64) {
1591                         ret_val = 13; /* ret_val is the same as mis-compare */
1592                         break;
1593                 }
1594                 if (jiffies >= (time + 20)) {
1595                         ret_val = 14; /* error code for time out error */
1596                         break;
1597                 }
1598         } /* end loop count loop */
1599         return ret_val;
1600 }
1601
1602 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1603 {
1604         /*
1605          * PHY loopback cannot be performed if SoL/IDER
1606          * sessions are active
1607          */
1608         if (e1000_check_reset_block(&adapter->hw)) {
1609                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1610                 *data = 0;
1611                 goto out;
1612         }
1613
1614         *data = e1000_setup_desc_rings(adapter);
1615         if (*data)
1616                 goto out;
1617
1618         *data = e1000_setup_loopback_test(adapter);
1619         if (*data)
1620                 goto err_loopback;
1621
1622         *data = e1000_run_loopback_test(adapter);
1623         e1000_loopback_cleanup(adapter);
1624
1625 err_loopback:
1626         e1000_free_desc_rings(adapter);
1627 out:
1628         return *data;
1629 }
1630
1631 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1632 {
1633         struct e1000_hw *hw = &adapter->hw;
1634
1635         *data = 0;
1636         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1637                 int i = 0;
1638                 hw->mac.serdes_has_link = false;
1639
1640                 /*
1641                  * On some blade server designs, link establishment
1642                  * could take as long as 2-3 minutes
1643                  */
1644                 do {
1645                         hw->mac.ops.check_for_link(hw);
1646                         if (hw->mac.serdes_has_link)
1647                                 return *data;
1648                         msleep(20);
1649                 } while (i++ < 3750);
1650
1651                 *data = 1;
1652         } else {
1653                 hw->mac.ops.check_for_link(hw);
1654                 if (hw->mac.autoneg)
1655                         msleep(4000);
1656
1657                 if (!(er32(STATUS) &
1658                       E1000_STATUS_LU))
1659                         *data = 1;
1660         }
1661         return *data;
1662 }
1663
1664 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1665 {
1666         switch (sset) {
1667         case ETH_SS_TEST:
1668                 return E1000_TEST_LEN;
1669         case ETH_SS_STATS:
1670                 return E1000_STATS_LEN;
1671         default:
1672                 return -EOPNOTSUPP;
1673         }
1674 }
1675
1676 static void e1000_diag_test(struct net_device *netdev,
1677                             struct ethtool_test *eth_test, u64 *data)
1678 {
1679         struct e1000_adapter *adapter = netdev_priv(netdev);
1680         u16 autoneg_advertised;
1681         u8 forced_speed_duplex;
1682         u8 autoneg;
1683         bool if_running = netif_running(netdev);
1684
1685         set_bit(__E1000_TESTING, &adapter->state);
1686         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1687                 /* Offline tests */
1688
1689                 /* save speed, duplex, autoneg settings */
1690                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1691                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1692                 autoneg = adapter->hw.mac.autoneg;
1693
1694                 e_info("offline testing starting\n");
1695
1696                 /*
1697                  * Link test performed before hardware reset so autoneg doesn't
1698                  * interfere with test result
1699                  */
1700                 if (e1000_link_test(adapter, &data[4]))
1701                         eth_test->flags |= ETH_TEST_FL_FAILED;
1702
1703                 if (if_running)
1704                         /* indicate we're in test mode */
1705                         dev_close(netdev);
1706                 else
1707                         e1000e_reset(adapter);
1708
1709                 if (e1000_reg_test(adapter, &data[0]))
1710                         eth_test->flags |= ETH_TEST_FL_FAILED;
1711
1712                 e1000e_reset(adapter);
1713                 if (e1000_eeprom_test(adapter, &data[1]))
1714                         eth_test->flags |= ETH_TEST_FL_FAILED;
1715
1716                 e1000e_reset(adapter);
1717                 if (e1000_intr_test(adapter, &data[2]))
1718                         eth_test->flags |= ETH_TEST_FL_FAILED;
1719
1720                 e1000e_reset(adapter);
1721                 /* make sure the phy is powered up */
1722                 e1000e_power_up_phy(adapter);
1723                 if (e1000_loopback_test(adapter, &data[3]))
1724                         eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726                 /* restore speed, duplex, autoneg settings */
1727                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1728                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1729                 adapter->hw.mac.autoneg = autoneg;
1730
1731                 /* force this routine to wait until autoneg complete/timeout */
1732                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1733                 e1000e_reset(adapter);
1734                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1735
1736                 clear_bit(__E1000_TESTING, &adapter->state);
1737                 if (if_running)
1738                         dev_open(netdev);
1739         } else {
1740                 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1741                         clear_bit(__E1000_TESTING, &adapter->state);
1742                         dev_open(netdev);
1743                         set_bit(__E1000_TESTING, &adapter->state);
1744                 }
1745
1746                 e_info("online testing starting\n");
1747                 /* Online tests */
1748                 if (e1000_link_test(adapter, &data[4]))
1749                         eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751                 /* Online tests aren't run; pass by default */
1752                 data[0] = 0;
1753                 data[1] = 0;
1754                 data[2] = 0;
1755                 data[3] = 0;
1756
1757                 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1758                         dev_close(netdev);
1759
1760                 clear_bit(__E1000_TESTING, &adapter->state);
1761         }
1762         msleep_interruptible(4 * 1000);
1763 }
1764
1765 static void e1000_get_wol(struct net_device *netdev,
1766                           struct ethtool_wolinfo *wol)
1767 {
1768         struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770         wol->supported = 0;
1771         wol->wolopts = 0;
1772
1773         if (!(adapter->flags & FLAG_HAS_WOL) ||
1774             !device_can_wakeup(&adapter->pdev->dev))
1775                 return;
1776
1777         wol->supported = WAKE_UCAST | WAKE_MCAST |
1778                          WAKE_BCAST | WAKE_MAGIC |
1779                          WAKE_PHY | WAKE_ARP;
1780
1781         /* apply any specific unsupported masks here */
1782         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1783                 wol->supported &= ~WAKE_UCAST;
1784
1785                 if (adapter->wol & E1000_WUFC_EX)
1786                         e_err("Interface does not support directed (unicast) "
1787                               "frame wake-up packets\n");
1788         }
1789
1790         if (adapter->wol & E1000_WUFC_EX)
1791                 wol->wolopts |= WAKE_UCAST;
1792         if (adapter->wol & E1000_WUFC_MC)
1793                 wol->wolopts |= WAKE_MCAST;
1794         if (adapter->wol & E1000_WUFC_BC)
1795                 wol->wolopts |= WAKE_BCAST;
1796         if (adapter->wol & E1000_WUFC_MAG)
1797                 wol->wolopts |= WAKE_MAGIC;
1798         if (adapter->wol & E1000_WUFC_LNKC)
1799                 wol->wolopts |= WAKE_PHY;
1800         if (adapter->wol & E1000_WUFC_ARP)
1801                 wol->wolopts |= WAKE_ARP;
1802 }
1803
1804 static int e1000_set_wol(struct net_device *netdev,
1805                          struct ethtool_wolinfo *wol)
1806 {
1807         struct e1000_adapter *adapter = netdev_priv(netdev);
1808
1809         if (!(adapter->flags & FLAG_HAS_WOL) ||
1810             !device_can_wakeup(&adapter->pdev->dev) ||
1811             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1812                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1813                 return -EOPNOTSUPP;
1814
1815         /* these settings will always override what we currently have */
1816         adapter->wol = 0;
1817
1818         if (wol->wolopts & WAKE_UCAST)
1819                 adapter->wol |= E1000_WUFC_EX;
1820         if (wol->wolopts & WAKE_MCAST)
1821                 adapter->wol |= E1000_WUFC_MC;
1822         if (wol->wolopts & WAKE_BCAST)
1823                 adapter->wol |= E1000_WUFC_BC;
1824         if (wol->wolopts & WAKE_MAGIC)
1825                 adapter->wol |= E1000_WUFC_MAG;
1826         if (wol->wolopts & WAKE_PHY)
1827                 adapter->wol |= E1000_WUFC_LNKC;
1828         if (wol->wolopts & WAKE_ARP)
1829                 adapter->wol |= E1000_WUFC_ARP;
1830
1831         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1832
1833         return 0;
1834 }
1835
1836 /* toggle LED 4 times per second = 2 "blinks" per second */
1837 #define E1000_ID_INTERVAL       (HZ/4)
1838
1839 /* bit defines for adapter->led_status */
1840 #define E1000_LED_ON            0
1841
1842 static void e1000e_led_blink_task(struct work_struct *work)
1843 {
1844         struct e1000_adapter *adapter = container_of(work,
1845                                         struct e1000_adapter, led_blink_task);
1846
1847         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1848                 adapter->hw.mac.ops.led_off(&adapter->hw);
1849         else
1850                 adapter->hw.mac.ops.led_on(&adapter->hw);
1851 }
1852
1853 static void e1000_led_blink_callback(unsigned long data)
1854 {
1855         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1856
1857         schedule_work(&adapter->led_blink_task);
1858         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1859 }
1860
1861 static int e1000_phys_id(struct net_device *netdev, u32 data)
1862 {
1863         struct e1000_adapter *adapter = netdev_priv(netdev);
1864         struct e1000_hw *hw = &adapter->hw;
1865
1866         if (!data)
1867                 data = INT_MAX;
1868
1869         if ((hw->phy.type == e1000_phy_ife) ||
1870             (hw->mac.type == e1000_pchlan) ||
1871             (hw->mac.type == e1000_82583) ||
1872             (hw->mac.type == e1000_82574)) {
1873                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1874                 if (!adapter->blink_timer.function) {
1875                         init_timer(&adapter->blink_timer);
1876                         adapter->blink_timer.function =
1877                                 e1000_led_blink_callback;
1878                         adapter->blink_timer.data = (unsigned long) adapter;
1879                 }
1880                 mod_timer(&adapter->blink_timer, jiffies);
1881                 msleep_interruptible(data * 1000);
1882                 del_timer_sync(&adapter->blink_timer);
1883                 if (hw->phy.type == e1000_phy_ife)
1884                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1885         } else {
1886                 e1000e_blink_led(hw);
1887                 msleep_interruptible(data * 1000);
1888         }
1889
1890         hw->mac.ops.led_off(hw);
1891         clear_bit(E1000_LED_ON, &adapter->led_status);
1892         hw->mac.ops.cleanup_led(hw);
1893
1894         return 0;
1895 }
1896
1897 static int e1000_get_coalesce(struct net_device *netdev,
1898                               struct ethtool_coalesce *ec)
1899 {
1900         struct e1000_adapter *adapter = netdev_priv(netdev);
1901
1902         if (adapter->itr_setting <= 4)
1903                 ec->rx_coalesce_usecs = adapter->itr_setting;
1904         else
1905                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1906
1907         return 0;
1908 }
1909
1910 static int e1000_set_coalesce(struct net_device *netdev,
1911                               struct ethtool_coalesce *ec)
1912 {
1913         struct e1000_adapter *adapter = netdev_priv(netdev);
1914         struct e1000_hw *hw = &adapter->hw;
1915
1916         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1917             ((ec->rx_coalesce_usecs > 4) &&
1918              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1919             (ec->rx_coalesce_usecs == 2))
1920                 return -EINVAL;
1921
1922         if (ec->rx_coalesce_usecs == 4) {
1923                 adapter->itr = adapter->itr_setting = 4;
1924         } else if (ec->rx_coalesce_usecs <= 3) {
1925                 adapter->itr = 20000;
1926                 adapter->itr_setting = ec->rx_coalesce_usecs;
1927         } else {
1928                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1929                 adapter->itr_setting = adapter->itr & ~3;
1930         }
1931
1932         if (adapter->itr_setting != 0)
1933                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1934         else
1935                 ew32(ITR, 0);
1936
1937         return 0;
1938 }
1939
1940 static int e1000_nway_reset(struct net_device *netdev)
1941 {
1942         struct e1000_adapter *adapter = netdev_priv(netdev);
1943         if (netif_running(netdev))
1944                 e1000e_reinit_locked(adapter);
1945         return 0;
1946 }
1947
1948 static void e1000_get_ethtool_stats(struct net_device *netdev,
1949                                     struct ethtool_stats *stats,
1950                                     u64 *data)
1951 {
1952         struct e1000_adapter *adapter = netdev_priv(netdev);
1953         int i;
1954         char *p = NULL;
1955
1956         e1000e_update_stats(adapter);
1957         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1958                 switch (e1000_gstrings_stats[i].type) {
1959                 case NETDEV_STATS:
1960                         p = (char *) netdev +
1961                                         e1000_gstrings_stats[i].stat_offset;
1962                         break;
1963                 case E1000_STATS:
1964                         p = (char *) adapter +
1965                                         e1000_gstrings_stats[i].stat_offset;
1966                         break;
1967                 }
1968
1969                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1970                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1971         }
1972 }
1973
1974 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1975                               u8 *data)
1976 {
1977         u8 *p = data;
1978         int i;
1979
1980         switch (stringset) {
1981         case ETH_SS_TEST:
1982                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1983                 break;
1984         case ETH_SS_STATS:
1985                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1986                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1987                                ETH_GSTRING_LEN);
1988                         p += ETH_GSTRING_LEN;
1989                 }
1990                 break;
1991         }
1992 }
1993
1994 static const struct ethtool_ops e1000_ethtool_ops = {
1995         .get_settings           = e1000_get_settings,
1996         .set_settings           = e1000_set_settings,
1997         .get_drvinfo            = e1000_get_drvinfo,
1998         .get_regs_len           = e1000_get_regs_len,
1999         .get_regs               = e1000_get_regs,
2000         .get_wol                = e1000_get_wol,
2001         .set_wol                = e1000_set_wol,
2002         .get_msglevel           = e1000_get_msglevel,
2003         .set_msglevel           = e1000_set_msglevel,
2004         .nway_reset             = e1000_nway_reset,
2005         .get_link               = e1000_get_link,
2006         .get_eeprom_len         = e1000_get_eeprom_len,
2007         .get_eeprom             = e1000_get_eeprom,
2008         .set_eeprom             = e1000_set_eeprom,
2009         .get_ringparam          = e1000_get_ringparam,
2010         .set_ringparam          = e1000_set_ringparam,
2011         .get_pauseparam         = e1000_get_pauseparam,
2012         .set_pauseparam         = e1000_set_pauseparam,
2013         .get_rx_csum            = e1000_get_rx_csum,
2014         .set_rx_csum            = e1000_set_rx_csum,
2015         .get_tx_csum            = e1000_get_tx_csum,
2016         .set_tx_csum            = e1000_set_tx_csum,
2017         .get_sg                 = ethtool_op_get_sg,
2018         .set_sg                 = ethtool_op_set_sg,
2019         .get_tso                = ethtool_op_get_tso,
2020         .set_tso                = e1000_set_tso,
2021         .self_test              = e1000_diag_test,
2022         .get_strings            = e1000_get_strings,
2023         .phys_id                = e1000_phys_id,
2024         .get_ethtool_stats      = e1000_get_ethtool_stats,
2025         .get_sset_count         = e1000e_get_sset_count,
2026         .get_coalesce           = e1000_get_coalesce,
2027         .set_coalesce           = e1000_set_coalesce,
2028         .get_flags              = ethtool_op_get_flags,
2029         .set_flags              = ethtool_op_set_flags,
2030 };
2031
2032 void e1000e_set_ethtool_ops(struct net_device *netdev)
2033 {
2034         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2035 }