]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000e/ich8lan.c
e1000e: fix checks for manageability enabled and management pass-through
[mv-sheeva.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86 /* FW established a valid mode */
87 #define E1000_ICH_FWSM_FW_VALID         0x00008000
88
89 #define E1000_ICH_MNG_IAMT_MODE         0x2
90
91 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
92                                  (ID_LED_DEF1_OFF2 <<  8) | \
93                                  (ID_LED_DEF1_ON2  <<  4) | \
94                                  (ID_LED_DEF1_DEF2))
95
96 #define E1000_ICH_NVM_SIG_WORD          0x13
97 #define E1000_ICH_NVM_SIG_MASK          0xC000
98 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
99 #define E1000_ICH_NVM_SIG_VALUE         0x80
100
101 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
102
103 #define E1000_FEXTNVM_SW_CONFIG         1
104 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105
106 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
107
108 #define E1000_ICH_RAR_ENTRIES           7
109
110 #define PHY_PAGE_SHIFT 5
111 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
112                            ((reg) & MAX_PHY_REG_ADDRESS))
113 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
114 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
115
116 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
117 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
118 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
119
120 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
121
122 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
123
124 /* SMBus Address Phy Register */
125 #define HV_SMB_ADDR            PHY_REG(768, 26)
126 #define HV_SMB_ADDR_PEC_EN     0x0200
127 #define HV_SMB_ADDR_VALID      0x0080
128
129 /* Strapping Option Register - RO */
130 #define E1000_STRAP                     0x0000C
131 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
132 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
133
134 /* OEM Bits Phy Register */
135 #define HV_OEM_BITS            PHY_REG(768, 25)
136 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
137 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
138 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
139
140 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
141 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
142
143 /* KMRN Mode Control */
144 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
145 #define HV_KMRN_MDIO_SLOW      0x0400
146
147 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
148 /* Offset 04h HSFSTS */
149 union ich8_hws_flash_status {
150         struct ich8_hsfsts {
151                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
152                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
153                 u16 dael       :1; /* bit 2 Direct Access error Log */
154                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
155                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
156                 u16 reserved1  :2; /* bit 13:6 Reserved */
157                 u16 reserved2  :6; /* bit 13:6 Reserved */
158                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
159                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
160         } hsf_status;
161         u16 regval;
162 };
163
164 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
165 /* Offset 06h FLCTL */
166 union ich8_hws_flash_ctrl {
167         struct ich8_hsflctl {
168                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
169                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
170                 u16 reserved   :5;   /* 7:3 Reserved  */
171                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
172                 u16 flockdn    :6;   /* 15:10 Reserved */
173         } hsf_ctrl;
174         u16 regval;
175 };
176
177 /* ICH Flash Region Access Permissions */
178 union ich8_hws_flash_regacc {
179         struct ich8_flracc {
180                 u32 grra      :8; /* 0:7 GbE region Read Access */
181                 u32 grwa      :8; /* 8:15 GbE region Write Access */
182                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
183                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
184         } hsf_flregacc;
185         u16 regval;
186 };
187
188 /* ICH Flash Protected Region */
189 union ich8_flash_protected_range {
190         struct ich8_pr {
191                 u32 base:13;     /* 0:12 Protected Range Base */
192                 u32 reserved1:2; /* 13:14 Reserved */
193                 u32 rpe:1;       /* 15 Read Protection Enable */
194                 u32 limit:13;    /* 16:28 Protected Range Limit */
195                 u32 reserved2:2; /* 29:30 Reserved */
196                 u32 wpe:1;       /* 31 Write Protection Enable */
197         } range;
198         u32 regval;
199 };
200
201 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
202 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
203 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206                                                 u32 offset, u8 byte);
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208                                          u8 *data);
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210                                          u16 *data);
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212                                          u8 size, u16 *data);
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
225 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
226 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
227 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
228 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
229
230 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
231 {
232         return readw(hw->flash_address + reg);
233 }
234
235 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
236 {
237         return readl(hw->flash_address + reg);
238 }
239
240 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
241 {
242         writew(val, hw->flash_address + reg);
243 }
244
245 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
246 {
247         writel(val, hw->flash_address + reg);
248 }
249
250 #define er16flash(reg)          __er16flash(hw, (reg))
251 #define er32flash(reg)          __er32flash(hw, (reg))
252 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
253 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
254
255 /**
256  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
257  *  @hw: pointer to the HW structure
258  *
259  *  Initialize family-specific PHY parameters and function pointers.
260  **/
261 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
262 {
263         struct e1000_phy_info *phy = &hw->phy;
264         u32 ctrl;
265         s32 ret_val = 0;
266
267         phy->addr                     = 1;
268         phy->reset_delay_us           = 100;
269
270         phy->ops.read_reg             = e1000_read_phy_reg_hv;
271         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
272         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
273         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
274         phy->ops.write_reg            = e1000_write_phy_reg_hv;
275         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
276         phy->ops.power_up             = e1000_power_up_phy_copper;
277         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
278         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
279
280         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
281                 /*
282                  * The MAC-PHY interconnect may still be in SMBus mode
283                  * after Sx->S0.  Toggle the LANPHYPC Value bit to force
284                  * the interconnect to PCIe mode, but only if there is no
285                  * firmware present otherwise firmware will have done it.
286                  */
287                 ctrl = er32(CTRL);
288                 ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
289                 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
290                 ew32(CTRL, ctrl);
291                 udelay(10);
292                 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293                 ew32(CTRL, ctrl);
294                 msleep(50);
295         }
296
297         /*
298          * Reset the PHY before any acccess to it.  Doing so, ensures that
299          * the PHY is in a known good state before we read/write PHY registers.
300          * The generic reset is sufficient here, because we haven't determined
301          * the PHY type yet.
302          */
303         ret_val = e1000e_phy_hw_reset_generic(hw);
304         if (ret_val)
305                 goto out;
306
307         phy->id = e1000_phy_unknown;
308         ret_val = e1000e_get_phy_id(hw);
309         if (ret_val)
310                 goto out;
311         if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
312                 /*
313                  * In case the PHY needs to be in mdio slow mode (eg. 82577),
314                  * set slow mode and try to get the PHY id again.
315                  */
316                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
317                 if (ret_val)
318                         goto out;
319                 ret_val = e1000e_get_phy_id(hw);
320                 if (ret_val)
321                         goto out;
322         }
323         phy->type = e1000e_get_phy_type_from_id(phy->id);
324
325         switch (phy->type) {
326         case e1000_phy_82577:
327                 phy->ops.check_polarity = e1000_check_polarity_82577;
328                 phy->ops.force_speed_duplex =
329                         e1000_phy_force_speed_duplex_82577;
330                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
331                 phy->ops.get_info = e1000_get_phy_info_82577;
332                 phy->ops.commit = e1000e_phy_sw_reset;
333                 break;
334         case e1000_phy_82578:
335                 phy->ops.check_polarity = e1000_check_polarity_m88;
336                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
337                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
338                 phy->ops.get_info = e1000e_get_phy_info_m88;
339                 break;
340         default:
341                 ret_val = -E1000_ERR_PHY;
342                 break;
343         }
344
345 out:
346         return ret_val;
347 }
348
349 /**
350  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
351  *  @hw: pointer to the HW structure
352  *
353  *  Initialize family-specific PHY parameters and function pointers.
354  **/
355 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
356 {
357         struct e1000_phy_info *phy = &hw->phy;
358         s32 ret_val;
359         u16 i = 0;
360
361         phy->addr                       = 1;
362         phy->reset_delay_us             = 100;
363
364         phy->ops.power_up               = e1000_power_up_phy_copper;
365         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
366
367         /*
368          * We may need to do this twice - once for IGP and if that fails,
369          * we'll set BM func pointers and try again
370          */
371         ret_val = e1000e_determine_phy_address(hw);
372         if (ret_val) {
373                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
374                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
375                 ret_val = e1000e_determine_phy_address(hw);
376                 if (ret_val) {
377                         e_dbg("Cannot determine PHY addr. Erroring out\n");
378                         return ret_val;
379                 }
380         }
381
382         phy->id = 0;
383         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
384                (i++ < 100)) {
385                 msleep(1);
386                 ret_val = e1000e_get_phy_id(hw);
387                 if (ret_val)
388                         return ret_val;
389         }
390
391         /* Verify phy id */
392         switch (phy->id) {
393         case IGP03E1000_E_PHY_ID:
394                 phy->type = e1000_phy_igp_3;
395                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
396                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
397                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
398                 phy->ops.get_info = e1000e_get_phy_info_igp;
399                 phy->ops.check_polarity = e1000_check_polarity_igp;
400                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
401                 break;
402         case IFE_E_PHY_ID:
403         case IFE_PLUS_E_PHY_ID:
404         case IFE_C_E_PHY_ID:
405                 phy->type = e1000_phy_ife;
406                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
407                 phy->ops.get_info = e1000_get_phy_info_ife;
408                 phy->ops.check_polarity = e1000_check_polarity_ife;
409                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
410                 break;
411         case BME1000_E_PHY_ID:
412                 phy->type = e1000_phy_bm;
413                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
414                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
415                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
416                 phy->ops.commit = e1000e_phy_sw_reset;
417                 phy->ops.get_info = e1000e_get_phy_info_m88;
418                 phy->ops.check_polarity = e1000_check_polarity_m88;
419                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
420                 break;
421         default:
422                 return -E1000_ERR_PHY;
423                 break;
424         }
425
426         return 0;
427 }
428
429 /**
430  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
431  *  @hw: pointer to the HW structure
432  *
433  *  Initialize family-specific NVM parameters and function
434  *  pointers.
435  **/
436 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
437 {
438         struct e1000_nvm_info *nvm = &hw->nvm;
439         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
440         u32 gfpreg, sector_base_addr, sector_end_addr;
441         u16 i;
442
443         /* Can't read flash registers if the register set isn't mapped. */
444         if (!hw->flash_address) {
445                 e_dbg("ERROR: Flash registers not mapped\n");
446                 return -E1000_ERR_CONFIG;
447         }
448
449         nvm->type = e1000_nvm_flash_sw;
450
451         gfpreg = er32flash(ICH_FLASH_GFPREG);
452
453         /*
454          * sector_X_addr is a "sector"-aligned address (4096 bytes)
455          * Add 1 to sector_end_addr since this sector is included in
456          * the overall size.
457          */
458         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
459         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
460
461         /* flash_base_addr is byte-aligned */
462         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
463
464         /*
465          * find total size of the NVM, then cut in half since the total
466          * size represents two separate NVM banks.
467          */
468         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
469                                 << FLASH_SECTOR_ADDR_SHIFT;
470         nvm->flash_bank_size /= 2;
471         /* Adjust to word count */
472         nvm->flash_bank_size /= sizeof(u16);
473
474         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
475
476         /* Clear shadow ram */
477         for (i = 0; i < nvm->word_size; i++) {
478                 dev_spec->shadow_ram[i].modified = false;
479                 dev_spec->shadow_ram[i].value    = 0xFFFF;
480         }
481
482         return 0;
483 }
484
485 /**
486  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
487  *  @hw: pointer to the HW structure
488  *
489  *  Initialize family-specific MAC parameters and function
490  *  pointers.
491  **/
492 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
493 {
494         struct e1000_hw *hw = &adapter->hw;
495         struct e1000_mac_info *mac = &hw->mac;
496
497         /* Set media type function pointer */
498         hw->phy.media_type = e1000_media_type_copper;
499
500         /* Set mta register count */
501         mac->mta_reg_count = 32;
502         /* Set rar entry count */
503         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
504         if (mac->type == e1000_ich8lan)
505                 mac->rar_entry_count--;
506         /* FWSM register */
507         mac->has_fwsm = true;
508         /* ARC subsystem not supported */
509         mac->arc_subsystem_valid = false;
510         /* Adaptive IFS supported */
511         mac->adaptive_ifs = true;
512
513         /* LED operations */
514         switch (mac->type) {
515         case e1000_ich8lan:
516         case e1000_ich9lan:
517         case e1000_ich10lan:
518                 /* ID LED init */
519                 mac->ops.id_led_init = e1000e_id_led_init;
520                 /* setup LED */
521                 mac->ops.setup_led = e1000e_setup_led_generic;
522                 /* cleanup LED */
523                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
524                 /* turn on/off LED */
525                 mac->ops.led_on = e1000_led_on_ich8lan;
526                 mac->ops.led_off = e1000_led_off_ich8lan;
527                 break;
528         case e1000_pchlan:
529                 /* ID LED init */
530                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
531                 /* setup LED */
532                 mac->ops.setup_led = e1000_setup_led_pchlan;
533                 /* cleanup LED */
534                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
535                 /* turn on/off LED */
536                 mac->ops.led_on = e1000_led_on_pchlan;
537                 mac->ops.led_off = e1000_led_off_pchlan;
538                 break;
539         default:
540                 break;
541         }
542
543         /* Enable PCS Lock-loss workaround for ICH8 */
544         if (mac->type == e1000_ich8lan)
545                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
546
547         return 0;
548 }
549
550 /**
551  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
552  *  @hw: pointer to the HW structure
553  *
554  *  Checks to see of the link status of the hardware has changed.  If a
555  *  change in link status has been detected, then we read the PHY registers
556  *  to get the current speed/duplex if link exists.
557  **/
558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
559 {
560         struct e1000_mac_info *mac = &hw->mac;
561         s32 ret_val;
562         bool link;
563
564         /*
565          * We only want to go out to the PHY registers to see if Auto-Neg
566          * has completed and/or if our link status has changed.  The
567          * get_link_status flag is set upon receiving a Link Status
568          * Change or Rx Sequence Error interrupt.
569          */
570         if (!mac->get_link_status) {
571                 ret_val = 0;
572                 goto out;
573         }
574
575         /*
576          * First we want to see if the MII Status Register reports
577          * link.  If so, then we want to get the current speed/duplex
578          * of the PHY.
579          */
580         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
581         if (ret_val)
582                 goto out;
583
584         if (hw->mac.type == e1000_pchlan) {
585                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
586                 if (ret_val)
587                         goto out;
588         }
589
590         if (!link)
591                 goto out; /* No link detected */
592
593         mac->get_link_status = false;
594
595         if (hw->phy.type == e1000_phy_82578) {
596                 ret_val = e1000_link_stall_workaround_hv(hw);
597                 if (ret_val)
598                         goto out;
599         }
600
601         /*
602          * Check if there was DownShift, must be checked
603          * immediately after link-up
604          */
605         e1000e_check_downshift(hw);
606
607         /*
608          * If we are forcing speed/duplex, then we simply return since
609          * we have already determined whether we have link or not.
610          */
611         if (!mac->autoneg) {
612                 ret_val = -E1000_ERR_CONFIG;
613                 goto out;
614         }
615
616         /*
617          * Auto-Neg is enabled.  Auto Speed Detection takes care
618          * of MAC speed/duplex configuration.  So we only need to
619          * configure Collision Distance in the MAC.
620          */
621         e1000e_config_collision_dist(hw);
622
623         /*
624          * Configure Flow Control now that Auto-Neg has completed.
625          * First, we need to restore the desired flow control
626          * settings because we may have had to re-autoneg with a
627          * different link partner.
628          */
629         ret_val = e1000e_config_fc_after_link_up(hw);
630         if (ret_val)
631                 e_dbg("Error configuring flow control\n");
632
633 out:
634         return ret_val;
635 }
636
637 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
638 {
639         struct e1000_hw *hw = &adapter->hw;
640         s32 rc;
641
642         rc = e1000_init_mac_params_ich8lan(adapter);
643         if (rc)
644                 return rc;
645
646         rc = e1000_init_nvm_params_ich8lan(hw);
647         if (rc)
648                 return rc;
649
650         if (hw->mac.type == e1000_pchlan)
651                 rc = e1000_init_phy_params_pchlan(hw);
652         else
653                 rc = e1000_init_phy_params_ich8lan(hw);
654         if (rc)
655                 return rc;
656
657         if (adapter->hw.phy.type == e1000_phy_ife) {
658                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
659                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
660         }
661
662         if ((adapter->hw.mac.type == e1000_ich8lan) &&
663             (adapter->hw.phy.type == e1000_phy_igp_3))
664                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
665
666         return 0;
667 }
668
669 static DEFINE_MUTEX(nvm_mutex);
670
671 /**
672  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
673  *  @hw: pointer to the HW structure
674  *
675  *  Acquires the mutex for performing NVM operations.
676  **/
677 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
678 {
679         mutex_lock(&nvm_mutex);
680
681         return 0;
682 }
683
684 /**
685  *  e1000_release_nvm_ich8lan - Release NVM mutex
686  *  @hw: pointer to the HW structure
687  *
688  *  Releases the mutex used while performing NVM operations.
689  **/
690 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
691 {
692         mutex_unlock(&nvm_mutex);
693
694         return;
695 }
696
697 static DEFINE_MUTEX(swflag_mutex);
698
699 /**
700  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
701  *  @hw: pointer to the HW structure
702  *
703  *  Acquires the software control flag for performing PHY and select
704  *  MAC CSR accesses.
705  **/
706 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
707 {
708         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
709         s32 ret_val = 0;
710
711         mutex_lock(&swflag_mutex);
712
713         while (timeout) {
714                 extcnf_ctrl = er32(EXTCNF_CTRL);
715                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
716                         break;
717
718                 mdelay(1);
719                 timeout--;
720         }
721
722         if (!timeout) {
723                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
724                 ret_val = -E1000_ERR_CONFIG;
725                 goto out;
726         }
727
728         timeout = SW_FLAG_TIMEOUT;
729
730         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
731         ew32(EXTCNF_CTRL, extcnf_ctrl);
732
733         while (timeout) {
734                 extcnf_ctrl = er32(EXTCNF_CTRL);
735                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
736                         break;
737
738                 mdelay(1);
739                 timeout--;
740         }
741
742         if (!timeout) {
743                 e_dbg("Failed to acquire the semaphore.\n");
744                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
745                 ew32(EXTCNF_CTRL, extcnf_ctrl);
746                 ret_val = -E1000_ERR_CONFIG;
747                 goto out;
748         }
749
750 out:
751         if (ret_val)
752                 mutex_unlock(&swflag_mutex);
753
754         return ret_val;
755 }
756
757 /**
758  *  e1000_release_swflag_ich8lan - Release software control flag
759  *  @hw: pointer to the HW structure
760  *
761  *  Releases the software control flag for performing PHY and select
762  *  MAC CSR accesses.
763  **/
764 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
765 {
766         u32 extcnf_ctrl;
767
768         extcnf_ctrl = er32(EXTCNF_CTRL);
769         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
770         ew32(EXTCNF_CTRL, extcnf_ctrl);
771
772         mutex_unlock(&swflag_mutex);
773
774         return;
775 }
776
777 /**
778  *  e1000_check_mng_mode_ich8lan - Checks management mode
779  *  @hw: pointer to the HW structure
780  *
781  *  This checks if the adapter has manageability enabled.
782  *  This is a function pointer entry point only called by read/write
783  *  routines for the PHY and NVM parts.
784  **/
785 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
786 {
787         u32 fwsm;
788
789         fwsm = er32(FWSM);
790
791         return (fwsm & E1000_FWSM_MODE_MASK) ==
792                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
793 }
794
795 /**
796  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
797  *  @hw: pointer to the HW structure
798  *
799  *  Checks if firmware is blocking the reset of the PHY.
800  *  This is a function pointer entry point only called by
801  *  reset routines.
802  **/
803 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
804 {
805         u32 fwsm;
806
807         fwsm = er32(FWSM);
808
809         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
810 }
811
812 /**
813  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
814  *  @hw:   pointer to the HW structure
815  *
816  *  SW should configure the LCD from the NVM extended configuration region
817  *  as a workaround for certain parts.
818  **/
819 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
820 {
821         struct e1000_adapter *adapter = hw->adapter;
822         struct e1000_phy_info *phy = &hw->phy;
823         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
824         s32 ret_val = 0;
825         u16 word_addr, reg_data, reg_addr, phy_page = 0;
826
827         if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
828                 !(hw->mac.type == e1000_pchlan))
829                 return ret_val;
830
831         ret_val = hw->phy.ops.acquire(hw);
832         if (ret_val)
833                 return ret_val;
834
835         /*
836          * Initialize the PHY from the NVM on ICH platforms.  This
837          * is needed due to an issue where the NVM configuration is
838          * not properly autoloaded after power transitions.
839          * Therefore, after each PHY reset, we will load the
840          * configuration data out of the NVM manually.
841          */
842         if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
843             (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
844             (hw->mac.type == e1000_pchlan))
845                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
846         else
847                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
848
849         data = er32(FEXTNVM);
850         if (!(data & sw_cfg_mask))
851                 goto out;
852
853         /* Wait for basic configuration completes before proceeding */
854         e1000_lan_init_done_ich8lan(hw);
855
856         /*
857          * Make sure HW does not configure LCD from PHY
858          * extended configuration before SW configuration
859          */
860         data = er32(EXTCNF_CTRL);
861         if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
862                 goto out;
863
864         cnf_size = er32(EXTCNF_SIZE);
865         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
866         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
867         if (!cnf_size)
868                 goto out;
869
870         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
871         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
872
873         if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
874             (hw->mac.type == e1000_pchlan)) {
875                 /*
876                  * HW configures the SMBus address and LEDs when the
877                  * OEM and LCD Write Enable bits are set in the NVM.
878                  * When both NVM bits are cleared, SW will configure
879                  * them instead.
880                  */
881                 data = er32(STRAP);
882                 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
883                 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
884                 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
885                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
886                                                         reg_data);
887                 if (ret_val)
888                         goto out;
889
890                 data = er32(LEDCTL);
891                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
892                                                         (u16)data);
893                 if (ret_val)
894                         goto out;
895         }
896
897         /* Configure LCD from extended configuration region. */
898
899         /* cnf_base_addr is in DWORD */
900         word_addr = (u16)(cnf_base_addr << 1);
901
902         for (i = 0; i < cnf_size; i++) {
903                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
904                                          &reg_data);
905                 if (ret_val)
906                         goto out;
907
908                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
909                                          1, &reg_addr);
910                 if (ret_val)
911                         goto out;
912
913                 /* Save off the PHY page for future writes. */
914                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
915                         phy_page = reg_data;
916                         continue;
917                 }
918
919                 reg_addr &= PHY_REG_MASK;
920                 reg_addr |= phy_page;
921
922                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
923                                                     reg_data);
924                 if (ret_val)
925                         goto out;
926         }
927
928 out:
929         hw->phy.ops.release(hw);
930         return ret_val;
931 }
932
933 /**
934  *  e1000_k1_gig_workaround_hv - K1 Si workaround
935  *  @hw:   pointer to the HW structure
936  *  @link: link up bool flag
937  *
938  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
939  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
940  *  If link is down, the function will restore the default K1 setting located
941  *  in the NVM.
942  **/
943 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
944 {
945         s32 ret_val = 0;
946         u16 status_reg = 0;
947         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
948
949         if (hw->mac.type != e1000_pchlan)
950                 goto out;
951
952         /* Wrap the whole flow with the sw flag */
953         ret_val = hw->phy.ops.acquire(hw);
954         if (ret_val)
955                 goto out;
956
957         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
958         if (link) {
959                 if (hw->phy.type == e1000_phy_82578) {
960                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
961                                                                   &status_reg);
962                         if (ret_val)
963                                 goto release;
964
965                         status_reg &= BM_CS_STATUS_LINK_UP |
966                                       BM_CS_STATUS_RESOLVED |
967                                       BM_CS_STATUS_SPEED_MASK;
968
969                         if (status_reg == (BM_CS_STATUS_LINK_UP |
970                                            BM_CS_STATUS_RESOLVED |
971                                            BM_CS_STATUS_SPEED_1000))
972                                 k1_enable = false;
973                 }
974
975                 if (hw->phy.type == e1000_phy_82577) {
976                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
977                                                                   &status_reg);
978                         if (ret_val)
979                                 goto release;
980
981                         status_reg &= HV_M_STATUS_LINK_UP |
982                                       HV_M_STATUS_AUTONEG_COMPLETE |
983                                       HV_M_STATUS_SPEED_MASK;
984
985                         if (status_reg == (HV_M_STATUS_LINK_UP |
986                                            HV_M_STATUS_AUTONEG_COMPLETE |
987                                            HV_M_STATUS_SPEED_1000))
988                                 k1_enable = false;
989                 }
990
991                 /* Link stall fix for link up */
992                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
993                                                            0x0100);
994                 if (ret_val)
995                         goto release;
996
997         } else {
998                 /* Link stall fix for link down */
999                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1000                                                            0x4100);
1001                 if (ret_val)
1002                         goto release;
1003         }
1004
1005         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1006
1007 release:
1008         hw->phy.ops.release(hw);
1009 out:
1010         return ret_val;
1011 }
1012
1013 /**
1014  *  e1000_configure_k1_ich8lan - Configure K1 power state
1015  *  @hw: pointer to the HW structure
1016  *  @enable: K1 state to configure
1017  *
1018  *  Configure the K1 power state based on the provided parameter.
1019  *  Assumes semaphore already acquired.
1020  *
1021  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1022  **/
1023 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1024 {
1025         s32 ret_val = 0;
1026         u32 ctrl_reg = 0;
1027         u32 ctrl_ext = 0;
1028         u32 reg = 0;
1029         u16 kmrn_reg = 0;
1030
1031         ret_val = e1000e_read_kmrn_reg_locked(hw,
1032                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1033                                              &kmrn_reg);
1034         if (ret_val)
1035                 goto out;
1036
1037         if (k1_enable)
1038                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1039         else
1040                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1041
1042         ret_val = e1000e_write_kmrn_reg_locked(hw,
1043                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1044                                               kmrn_reg);
1045         if (ret_val)
1046                 goto out;
1047
1048         udelay(20);
1049         ctrl_ext = er32(CTRL_EXT);
1050         ctrl_reg = er32(CTRL);
1051
1052         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1053         reg |= E1000_CTRL_FRCSPD;
1054         ew32(CTRL, reg);
1055
1056         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1057         udelay(20);
1058         ew32(CTRL, ctrl_reg);
1059         ew32(CTRL_EXT, ctrl_ext);
1060         udelay(20);
1061
1062 out:
1063         return ret_val;
1064 }
1065
1066 /**
1067  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1068  *  @hw:       pointer to the HW structure
1069  *  @d0_state: boolean if entering d0 or d3 device state
1070  *
1071  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1072  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1073  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1074  **/
1075 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1076 {
1077         s32 ret_val = 0;
1078         u32 mac_reg;
1079         u16 oem_reg;
1080
1081         if (hw->mac.type != e1000_pchlan)
1082                 return ret_val;
1083
1084         ret_val = hw->phy.ops.acquire(hw);
1085         if (ret_val)
1086                 return ret_val;
1087
1088         mac_reg = er32(EXTCNF_CTRL);
1089         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1090                 goto out;
1091
1092         mac_reg = er32(FEXTNVM);
1093         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1094                 goto out;
1095
1096         mac_reg = er32(PHY_CTRL);
1097
1098         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1099         if (ret_val)
1100                 goto out;
1101
1102         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1103
1104         if (d0_state) {
1105                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1106                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1107
1108                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1109                         oem_reg |= HV_OEM_BITS_LPLU;
1110         } else {
1111                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1112                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1113
1114                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1115                         oem_reg |= HV_OEM_BITS_LPLU;
1116         }
1117         /* Restart auto-neg to activate the bits */
1118         if (!e1000_check_reset_block(hw))
1119                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1120         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1121
1122 out:
1123         hw->phy.ops.release(hw);
1124
1125         return ret_val;
1126 }
1127
1128
1129 /**
1130  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1131  *  @hw:   pointer to the HW structure
1132  **/
1133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1134 {
1135         s32 ret_val;
1136         u16 data;
1137
1138         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1139         if (ret_val)
1140                 return ret_val;
1141
1142         data |= HV_KMRN_MDIO_SLOW;
1143
1144         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1145
1146         return ret_val;
1147 }
1148
1149 /**
1150  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1151  *  done after every PHY reset.
1152  **/
1153 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1154 {
1155         s32 ret_val = 0;
1156         u16 phy_data;
1157
1158         if (hw->mac.type != e1000_pchlan)
1159                 return ret_val;
1160
1161         /* Set MDIO slow mode before any other MDIO access */
1162         if (hw->phy.type == e1000_phy_82577) {
1163                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1164                 if (ret_val)
1165                         goto out;
1166         }
1167
1168         if (((hw->phy.type == e1000_phy_82577) &&
1169              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1170             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1171                 /* Disable generation of early preamble */
1172                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1173                 if (ret_val)
1174                         return ret_val;
1175
1176                 /* Preamble tuning for SSC */
1177                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1178                 if (ret_val)
1179                         return ret_val;
1180         }
1181
1182         if (hw->phy.type == e1000_phy_82578) {
1183                 /*
1184                  * Return registers to default by doing a soft reset then
1185                  * writing 0x3140 to the control register.
1186                  */
1187                 if (hw->phy.revision < 2) {
1188                         e1000e_phy_sw_reset(hw);
1189                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1190                 }
1191         }
1192
1193         /* Select page 0 */
1194         ret_val = hw->phy.ops.acquire(hw);
1195         if (ret_val)
1196                 return ret_val;
1197
1198         hw->phy.addr = 1;
1199         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1200         hw->phy.ops.release(hw);
1201         if (ret_val)
1202                 goto out;
1203
1204         /*
1205          * Configure the K1 Si workaround during phy reset assuming there is
1206          * link so that it disables K1 if link is in 1Gbps.
1207          */
1208         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1209         if (ret_val)
1210                 goto out;
1211
1212         /* Workaround for link disconnects on a busy hub in half duplex */
1213         ret_val = hw->phy.ops.acquire(hw);
1214         if (ret_val)
1215                 goto out;
1216         ret_val = hw->phy.ops.read_reg_locked(hw,
1217                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1218                                               &phy_data);
1219         if (ret_val)
1220                 goto release;
1221         ret_val = hw->phy.ops.write_reg_locked(hw,
1222                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1223                                                phy_data & 0x00FF);
1224 release:
1225         hw->phy.ops.release(hw);
1226 out:
1227         return ret_val;
1228 }
1229
1230 /**
1231  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1232  *  @hw: pointer to the HW structure
1233  *
1234  *  Check the appropriate indication the MAC has finished configuring the
1235  *  PHY after a software reset.
1236  **/
1237 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1238 {
1239         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1240
1241         /* Wait for basic configuration completes before proceeding */
1242         do {
1243                 data = er32(STATUS);
1244                 data &= E1000_STATUS_LAN_INIT_DONE;
1245                 udelay(100);
1246         } while ((!data) && --loop);
1247
1248         /*
1249          * If basic configuration is incomplete before the above loop
1250          * count reaches 0, loading the configuration from NVM will
1251          * leave the PHY in a bad state possibly resulting in no link.
1252          */
1253         if (loop == 0)
1254                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1255
1256         /* Clear the Init Done bit for the next init event */
1257         data = er32(STATUS);
1258         data &= ~E1000_STATUS_LAN_INIT_DONE;
1259         ew32(STATUS, data);
1260 }
1261
1262 /**
1263  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1264  *  @hw: pointer to the HW structure
1265  *
1266  *  Resets the PHY
1267  *  This is a function pointer entry point called by drivers
1268  *  or other shared routines.
1269  **/
1270 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1271 {
1272         s32 ret_val = 0;
1273         u16 reg;
1274
1275         ret_val = e1000e_phy_hw_reset_generic(hw);
1276         if (ret_val)
1277                 return ret_val;
1278
1279         /* Allow time for h/w to get to a quiescent state after reset */
1280         mdelay(10);
1281
1282         /* Perform any necessary post-reset workarounds */
1283         if (hw->mac.type == e1000_pchlan) {
1284                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1285                 if (ret_val)
1286                         return ret_val;
1287         }
1288
1289         /* Dummy read to clear the phy wakeup bit after lcd reset */
1290         if (hw->mac.type == e1000_pchlan)
1291                 e1e_rphy(hw, BM_WUC, &reg);
1292
1293         /* Configure the LCD with the extended configuration region in NVM */
1294         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1295         if (ret_val)
1296                 goto out;
1297
1298         /* Configure the LCD with the OEM bits in NVM */
1299         if (hw->mac.type == e1000_pchlan)
1300                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1301
1302 out:
1303         return 0;
1304 }
1305
1306 /**
1307  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1308  *  @hw: pointer to the HW structure
1309  *  @active: true to enable LPLU, false to disable
1310  *
1311  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1312  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1313  *  the phy speed. This function will manually set the LPLU bit and restart
1314  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1315  *  since it configures the same bit.
1316  **/
1317 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1318 {
1319         s32 ret_val = 0;
1320         u16 oem_reg;
1321
1322         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1323         if (ret_val)
1324                 goto out;
1325
1326         if (active)
1327                 oem_reg |= HV_OEM_BITS_LPLU;
1328         else
1329                 oem_reg &= ~HV_OEM_BITS_LPLU;
1330
1331         oem_reg |= HV_OEM_BITS_RESTART_AN;
1332         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1333
1334 out:
1335         return ret_val;
1336 }
1337
1338 /**
1339  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1340  *  @hw: pointer to the HW structure
1341  *  @active: true to enable LPLU, false to disable
1342  *
1343  *  Sets the LPLU D0 state according to the active flag.  When
1344  *  activating LPLU this function also disables smart speed
1345  *  and vice versa.  LPLU will not be activated unless the
1346  *  device autonegotiation advertisement meets standards of
1347  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1348  *  This is a function pointer entry point only called by
1349  *  PHY setup routines.
1350  **/
1351 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1352 {
1353         struct e1000_phy_info *phy = &hw->phy;
1354         u32 phy_ctrl;
1355         s32 ret_val = 0;
1356         u16 data;
1357
1358         if (phy->type == e1000_phy_ife)
1359                 return ret_val;
1360
1361         phy_ctrl = er32(PHY_CTRL);
1362
1363         if (active) {
1364                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1365                 ew32(PHY_CTRL, phy_ctrl);
1366
1367                 if (phy->type != e1000_phy_igp_3)
1368                         return 0;
1369
1370                 /*
1371                  * Call gig speed drop workaround on LPLU before accessing
1372                  * any PHY registers
1373                  */
1374                 if (hw->mac.type == e1000_ich8lan)
1375                         e1000e_gig_downshift_workaround_ich8lan(hw);
1376
1377                 /* When LPLU is enabled, we should disable SmartSpeed */
1378                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1379                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1380                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1381                 if (ret_val)
1382                         return ret_val;
1383         } else {
1384                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1385                 ew32(PHY_CTRL, phy_ctrl);
1386
1387                 if (phy->type != e1000_phy_igp_3)
1388                         return 0;
1389
1390                 /*
1391                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1392                  * during Dx states where the power conservation is most
1393                  * important.  During driver activity we should enable
1394                  * SmartSpeed, so performance is maintained.
1395                  */
1396                 if (phy->smart_speed == e1000_smart_speed_on) {
1397                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1398                                            &data);
1399                         if (ret_val)
1400                                 return ret_val;
1401
1402                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1403                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1404                                            data);
1405                         if (ret_val)
1406                                 return ret_val;
1407                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1408                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1409                                            &data);
1410                         if (ret_val)
1411                                 return ret_val;
1412
1413                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1414                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1415                                            data);
1416                         if (ret_val)
1417                                 return ret_val;
1418                 }
1419         }
1420
1421         return 0;
1422 }
1423
1424 /**
1425  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1426  *  @hw: pointer to the HW structure
1427  *  @active: true to enable LPLU, false to disable
1428  *
1429  *  Sets the LPLU D3 state according to the active flag.  When
1430  *  activating LPLU this function also disables smart speed
1431  *  and vice versa.  LPLU will not be activated unless the
1432  *  device autonegotiation advertisement meets standards of
1433  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1434  *  This is a function pointer entry point only called by
1435  *  PHY setup routines.
1436  **/
1437 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1438 {
1439         struct e1000_phy_info *phy = &hw->phy;
1440         u32 phy_ctrl;
1441         s32 ret_val;
1442         u16 data;
1443
1444         phy_ctrl = er32(PHY_CTRL);
1445
1446         if (!active) {
1447                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1448                 ew32(PHY_CTRL, phy_ctrl);
1449
1450                 if (phy->type != e1000_phy_igp_3)
1451                         return 0;
1452
1453                 /*
1454                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1455                  * during Dx states where the power conservation is most
1456                  * important.  During driver activity we should enable
1457                  * SmartSpeed, so performance is maintained.
1458                  */
1459                 if (phy->smart_speed == e1000_smart_speed_on) {
1460                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1461                                            &data);
1462                         if (ret_val)
1463                                 return ret_val;
1464
1465                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1466                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1467                                            data);
1468                         if (ret_val)
1469                                 return ret_val;
1470                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1471                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1472                                            &data);
1473                         if (ret_val)
1474                                 return ret_val;
1475
1476                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1477                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1478                                            data);
1479                         if (ret_val)
1480                                 return ret_val;
1481                 }
1482         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1483                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1484                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1485                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1486                 ew32(PHY_CTRL, phy_ctrl);
1487
1488                 if (phy->type != e1000_phy_igp_3)
1489                         return 0;
1490
1491                 /*
1492                  * Call gig speed drop workaround on LPLU before accessing
1493                  * any PHY registers
1494                  */
1495                 if (hw->mac.type == e1000_ich8lan)
1496                         e1000e_gig_downshift_workaround_ich8lan(hw);
1497
1498                 /* When LPLU is enabled, we should disable SmartSpeed */
1499                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1500                 if (ret_val)
1501                         return ret_val;
1502
1503                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1504                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1505         }
1506
1507         return 0;
1508 }
1509
1510 /**
1511  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1512  *  @hw: pointer to the HW structure
1513  *  @bank:  pointer to the variable that returns the active bank
1514  *
1515  *  Reads signature byte from the NVM using the flash access registers.
1516  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1517  **/
1518 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1519 {
1520         u32 eecd;
1521         struct e1000_nvm_info *nvm = &hw->nvm;
1522         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1523         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1524         u8 sig_byte = 0;
1525         s32 ret_val = 0;
1526
1527         switch (hw->mac.type) {
1528         case e1000_ich8lan:
1529         case e1000_ich9lan:
1530                 eecd = er32(EECD);
1531                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1532                     E1000_EECD_SEC1VAL_VALID_MASK) {
1533                         if (eecd & E1000_EECD_SEC1VAL)
1534                                 *bank = 1;
1535                         else
1536                                 *bank = 0;
1537
1538                         return 0;
1539                 }
1540                 e_dbg("Unable to determine valid NVM bank via EEC - "
1541                        "reading flash signature\n");
1542                 /* fall-thru */
1543         default:
1544                 /* set bank to 0 in case flash read fails */
1545                 *bank = 0;
1546
1547                 /* Check bank 0 */
1548                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1549                                                         &sig_byte);
1550                 if (ret_val)
1551                         return ret_val;
1552                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1553                     E1000_ICH_NVM_SIG_VALUE) {
1554                         *bank = 0;
1555                         return 0;
1556                 }
1557
1558                 /* Check bank 1 */
1559                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1560                                                         bank1_offset,
1561                                                         &sig_byte);
1562                 if (ret_val)
1563                         return ret_val;
1564                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1565                     E1000_ICH_NVM_SIG_VALUE) {
1566                         *bank = 1;
1567                         return 0;
1568                 }
1569
1570                 e_dbg("ERROR: No valid NVM bank present\n");
1571                 return -E1000_ERR_NVM;
1572         }
1573
1574         return 0;
1575 }
1576
1577 /**
1578  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1579  *  @hw: pointer to the HW structure
1580  *  @offset: The offset (in bytes) of the word(s) to read.
1581  *  @words: Size of data to read in words
1582  *  @data: Pointer to the word(s) to read at offset.
1583  *
1584  *  Reads a word(s) from the NVM using the flash access registers.
1585  **/
1586 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1587                                   u16 *data)
1588 {
1589         struct e1000_nvm_info *nvm = &hw->nvm;
1590         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1591         u32 act_offset;
1592         s32 ret_val = 0;
1593         u32 bank = 0;
1594         u16 i, word;
1595
1596         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1597             (words == 0)) {
1598                 e_dbg("nvm parameter(s) out of bounds\n");
1599                 ret_val = -E1000_ERR_NVM;
1600                 goto out;
1601         }
1602
1603         nvm->ops.acquire(hw);
1604
1605         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1606         if (ret_val) {
1607                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1608                 bank = 0;
1609         }
1610
1611         act_offset = (bank) ? nvm->flash_bank_size : 0;
1612         act_offset += offset;
1613
1614         ret_val = 0;
1615         for (i = 0; i < words; i++) {
1616                 if ((dev_spec->shadow_ram) &&
1617                     (dev_spec->shadow_ram[offset+i].modified)) {
1618                         data[i] = dev_spec->shadow_ram[offset+i].value;
1619                 } else {
1620                         ret_val = e1000_read_flash_word_ich8lan(hw,
1621                                                                 act_offset + i,
1622                                                                 &word);
1623                         if (ret_val)
1624                                 break;
1625                         data[i] = word;
1626                 }
1627         }
1628
1629         nvm->ops.release(hw);
1630
1631 out:
1632         if (ret_val)
1633                 e_dbg("NVM read error: %d\n", ret_val);
1634
1635         return ret_val;
1636 }
1637
1638 /**
1639  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1640  *  @hw: pointer to the HW structure
1641  *
1642  *  This function does initial flash setup so that a new read/write/erase cycle
1643  *  can be started.
1644  **/
1645 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1646 {
1647         union ich8_hws_flash_status hsfsts;
1648         s32 ret_val = -E1000_ERR_NVM;
1649         s32 i = 0;
1650
1651         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1652
1653         /* Check if the flash descriptor is valid */
1654         if (hsfsts.hsf_status.fldesvalid == 0) {
1655                 e_dbg("Flash descriptor invalid.  "
1656                          "SW Sequencing must be used.\n");
1657                 return -E1000_ERR_NVM;
1658         }
1659
1660         /* Clear FCERR and DAEL in hw status by writing 1 */
1661         hsfsts.hsf_status.flcerr = 1;
1662         hsfsts.hsf_status.dael = 1;
1663
1664         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1665
1666         /*
1667          * Either we should have a hardware SPI cycle in progress
1668          * bit to check against, in order to start a new cycle or
1669          * FDONE bit should be changed in the hardware so that it
1670          * is 1 after hardware reset, which can then be used as an
1671          * indication whether a cycle is in progress or has been
1672          * completed.
1673          */
1674
1675         if (hsfsts.hsf_status.flcinprog == 0) {
1676                 /*
1677                  * There is no cycle running at present,
1678                  * so we can start a cycle.
1679                  * Begin by setting Flash Cycle Done.
1680                  */
1681                 hsfsts.hsf_status.flcdone = 1;
1682                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1683                 ret_val = 0;
1684         } else {
1685                 /*
1686                  * Otherwise poll for sometime so the current
1687                  * cycle has a chance to end before giving up.
1688                  */
1689                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1690                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1691                         if (hsfsts.hsf_status.flcinprog == 0) {
1692                                 ret_val = 0;
1693                                 break;
1694                         }
1695                         udelay(1);
1696                 }
1697                 if (ret_val == 0) {
1698                         /*
1699                          * Successful in waiting for previous cycle to timeout,
1700                          * now set the Flash Cycle Done.
1701                          */
1702                         hsfsts.hsf_status.flcdone = 1;
1703                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1704                 } else {
1705                         e_dbg("Flash controller busy, cannot get access\n");
1706                 }
1707         }
1708
1709         return ret_val;
1710 }
1711
1712 /**
1713  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1714  *  @hw: pointer to the HW structure
1715  *  @timeout: maximum time to wait for completion
1716  *
1717  *  This function starts a flash cycle and waits for its completion.
1718  **/
1719 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1720 {
1721         union ich8_hws_flash_ctrl hsflctl;
1722         union ich8_hws_flash_status hsfsts;
1723         s32 ret_val = -E1000_ERR_NVM;
1724         u32 i = 0;
1725
1726         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1727         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1728         hsflctl.hsf_ctrl.flcgo = 1;
1729         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1730
1731         /* wait till FDONE bit is set to 1 */
1732         do {
1733                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1734                 if (hsfsts.hsf_status.flcdone == 1)
1735                         break;
1736                 udelay(1);
1737         } while (i++ < timeout);
1738
1739         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1740                 return 0;
1741
1742         return ret_val;
1743 }
1744
1745 /**
1746  *  e1000_read_flash_word_ich8lan - Read word from flash
1747  *  @hw: pointer to the HW structure
1748  *  @offset: offset to data location
1749  *  @data: pointer to the location for storing the data
1750  *
1751  *  Reads the flash word at offset into data.  Offset is converted
1752  *  to bytes before read.
1753  **/
1754 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1755                                          u16 *data)
1756 {
1757         /* Must convert offset into bytes. */
1758         offset <<= 1;
1759
1760         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1761 }
1762
1763 /**
1764  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1765  *  @hw: pointer to the HW structure
1766  *  @offset: The offset of the byte to read.
1767  *  @data: Pointer to a byte to store the value read.
1768  *
1769  *  Reads a single byte from the NVM using the flash access registers.
1770  **/
1771 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1772                                          u8 *data)
1773 {
1774         s32 ret_val;
1775         u16 word = 0;
1776
1777         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1778         if (ret_val)
1779                 return ret_val;
1780
1781         *data = (u8)word;
1782
1783         return 0;
1784 }
1785
1786 /**
1787  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1788  *  @hw: pointer to the HW structure
1789  *  @offset: The offset (in bytes) of the byte or word to read.
1790  *  @size: Size of data to read, 1=byte 2=word
1791  *  @data: Pointer to the word to store the value read.
1792  *
1793  *  Reads a byte or word from the NVM using the flash access registers.
1794  **/
1795 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1796                                          u8 size, u16 *data)
1797 {
1798         union ich8_hws_flash_status hsfsts;
1799         union ich8_hws_flash_ctrl hsflctl;
1800         u32 flash_linear_addr;
1801         u32 flash_data = 0;
1802         s32 ret_val = -E1000_ERR_NVM;
1803         u8 count = 0;
1804
1805         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1806                 return -E1000_ERR_NVM;
1807
1808         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1809                             hw->nvm.flash_base_addr;
1810
1811         do {
1812                 udelay(1);
1813                 /* Steps */
1814                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1815                 if (ret_val != 0)
1816                         break;
1817
1818                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1819                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1820                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1821                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1822                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1823
1824                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1825
1826                 ret_val = e1000_flash_cycle_ich8lan(hw,
1827                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1828
1829                 /*
1830                  * Check if FCERR is set to 1, if set to 1, clear it
1831                  * and try the whole sequence a few more times, else
1832                  * read in (shift in) the Flash Data0, the order is
1833                  * least significant byte first msb to lsb
1834                  */
1835                 if (ret_val == 0) {
1836                         flash_data = er32flash(ICH_FLASH_FDATA0);
1837                         if (size == 1) {
1838                                 *data = (u8)(flash_data & 0x000000FF);
1839                         } else if (size == 2) {
1840                                 *data = (u16)(flash_data & 0x0000FFFF);
1841                         }
1842                         break;
1843                 } else {
1844                         /*
1845                          * If we've gotten here, then things are probably
1846                          * completely hosed, but if the error condition is
1847                          * detected, it won't hurt to give it another try...
1848                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1849                          */
1850                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1851                         if (hsfsts.hsf_status.flcerr == 1) {
1852                                 /* Repeat for some time before giving up. */
1853                                 continue;
1854                         } else if (hsfsts.hsf_status.flcdone == 0) {
1855                                 e_dbg("Timeout error - flash cycle "
1856                                          "did not complete.\n");
1857                                 break;
1858                         }
1859                 }
1860         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1861
1862         return ret_val;
1863 }
1864
1865 /**
1866  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1867  *  @hw: pointer to the HW structure
1868  *  @offset: The offset (in bytes) of the word(s) to write.
1869  *  @words: Size of data to write in words
1870  *  @data: Pointer to the word(s) to write at offset.
1871  *
1872  *  Writes a byte or word to the NVM using the flash access registers.
1873  **/
1874 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1875                                    u16 *data)
1876 {
1877         struct e1000_nvm_info *nvm = &hw->nvm;
1878         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1879         u16 i;
1880
1881         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1882             (words == 0)) {
1883                 e_dbg("nvm parameter(s) out of bounds\n");
1884                 return -E1000_ERR_NVM;
1885         }
1886
1887         nvm->ops.acquire(hw);
1888
1889         for (i = 0; i < words; i++) {
1890                 dev_spec->shadow_ram[offset+i].modified = true;
1891                 dev_spec->shadow_ram[offset+i].value = data[i];
1892         }
1893
1894         nvm->ops.release(hw);
1895
1896         return 0;
1897 }
1898
1899 /**
1900  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1901  *  @hw: pointer to the HW structure
1902  *
1903  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1904  *  which writes the checksum to the shadow ram.  The changes in the shadow
1905  *  ram are then committed to the EEPROM by processing each bank at a time
1906  *  checking for the modified bit and writing only the pending changes.
1907  *  After a successful commit, the shadow ram is cleared and is ready for
1908  *  future writes.
1909  **/
1910 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1911 {
1912         struct e1000_nvm_info *nvm = &hw->nvm;
1913         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1914         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1915         s32 ret_val;
1916         u16 data;
1917
1918         ret_val = e1000e_update_nvm_checksum_generic(hw);
1919         if (ret_val)
1920                 goto out;
1921
1922         if (nvm->type != e1000_nvm_flash_sw)
1923                 goto out;
1924
1925         nvm->ops.acquire(hw);
1926
1927         /*
1928          * We're writing to the opposite bank so if we're on bank 1,
1929          * write to bank 0 etc.  We also need to erase the segment that
1930          * is going to be written
1931          */
1932         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1933         if (ret_val) {
1934                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1935                 bank = 0;
1936         }
1937
1938         if (bank == 0) {
1939                 new_bank_offset = nvm->flash_bank_size;
1940                 old_bank_offset = 0;
1941                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1942                 if (ret_val)
1943                         goto release;
1944         } else {
1945                 old_bank_offset = nvm->flash_bank_size;
1946                 new_bank_offset = 0;
1947                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1948                 if (ret_val)
1949                         goto release;
1950         }
1951
1952         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1953                 /*
1954                  * Determine whether to write the value stored
1955                  * in the other NVM bank or a modified value stored
1956                  * in the shadow RAM
1957                  */
1958                 if (dev_spec->shadow_ram[i].modified) {
1959                         data = dev_spec->shadow_ram[i].value;
1960                 } else {
1961                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1962                                                                 old_bank_offset,
1963                                                                 &data);
1964                         if (ret_val)
1965                                 break;
1966                 }
1967
1968                 /*
1969                  * If the word is 0x13, then make sure the signature bits
1970                  * (15:14) are 11b until the commit has completed.
1971                  * This will allow us to write 10b which indicates the
1972                  * signature is valid.  We want to do this after the write
1973                  * has completed so that we don't mark the segment valid
1974                  * while the write is still in progress
1975                  */
1976                 if (i == E1000_ICH_NVM_SIG_WORD)
1977                         data |= E1000_ICH_NVM_SIG_MASK;
1978
1979                 /* Convert offset to bytes. */
1980                 act_offset = (i + new_bank_offset) << 1;
1981
1982                 udelay(100);
1983                 /* Write the bytes to the new bank. */
1984                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1985                                                                act_offset,
1986                                                                (u8)data);
1987                 if (ret_val)
1988                         break;
1989
1990                 udelay(100);
1991                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1992                                                           act_offset + 1,
1993                                                           (u8)(data >> 8));
1994                 if (ret_val)
1995                         break;
1996         }
1997
1998         /*
1999          * Don't bother writing the segment valid bits if sector
2000          * programming failed.
2001          */
2002         if (ret_val) {
2003                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2004                 e_dbg("Flash commit failed.\n");
2005                 goto release;
2006         }
2007
2008         /*
2009          * Finally validate the new segment by setting bit 15:14
2010          * to 10b in word 0x13 , this can be done without an
2011          * erase as well since these bits are 11 to start with
2012          * and we need to change bit 14 to 0b
2013          */
2014         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2015         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2016         if (ret_val)
2017                 goto release;
2018
2019         data &= 0xBFFF;
2020         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2021                                                        act_offset * 2 + 1,
2022                                                        (u8)(data >> 8));
2023         if (ret_val)
2024                 goto release;
2025
2026         /*
2027          * And invalidate the previously valid segment by setting
2028          * its signature word (0x13) high_byte to 0b. This can be
2029          * done without an erase because flash erase sets all bits
2030          * to 1's. We can write 1's to 0's without an erase
2031          */
2032         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2033         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2034         if (ret_val)
2035                 goto release;
2036
2037         /* Great!  Everything worked, we can now clear the cached entries. */
2038         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2039                 dev_spec->shadow_ram[i].modified = false;
2040                 dev_spec->shadow_ram[i].value = 0xFFFF;
2041         }
2042
2043 release:
2044         nvm->ops.release(hw);
2045
2046         /*
2047          * Reload the EEPROM, or else modifications will not appear
2048          * until after the next adapter reset.
2049          */
2050         if (!ret_val) {
2051                 e1000e_reload_nvm(hw);
2052                 msleep(10);
2053         }
2054
2055 out:
2056         if (ret_val)
2057                 e_dbg("NVM update error: %d\n", ret_val);
2058
2059         return ret_val;
2060 }
2061
2062 /**
2063  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2064  *  @hw: pointer to the HW structure
2065  *
2066  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2067  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2068  *  calculated, in which case we need to calculate the checksum and set bit 6.
2069  **/
2070 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2071 {
2072         s32 ret_val;
2073         u16 data;
2074
2075         /*
2076          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2077          * needs to be fixed.  This bit is an indication that the NVM
2078          * was prepared by OEM software and did not calculate the
2079          * checksum...a likely scenario.
2080          */
2081         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2082         if (ret_val)
2083                 return ret_val;
2084
2085         if ((data & 0x40) == 0) {
2086                 data |= 0x40;
2087                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2088                 if (ret_val)
2089                         return ret_val;
2090                 ret_val = e1000e_update_nvm_checksum(hw);
2091                 if (ret_val)
2092                         return ret_val;
2093         }
2094
2095         return e1000e_validate_nvm_checksum_generic(hw);
2096 }
2097
2098 /**
2099  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2100  *  @hw: pointer to the HW structure
2101  *
2102  *  To prevent malicious write/erase of the NVM, set it to be read-only
2103  *  so that the hardware ignores all write/erase cycles of the NVM via
2104  *  the flash control registers.  The shadow-ram copy of the NVM will
2105  *  still be updated, however any updates to this copy will not stick
2106  *  across driver reloads.
2107  **/
2108 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2109 {
2110         struct e1000_nvm_info *nvm = &hw->nvm;
2111         union ich8_flash_protected_range pr0;
2112         union ich8_hws_flash_status hsfsts;
2113         u32 gfpreg;
2114
2115         nvm->ops.acquire(hw);
2116
2117         gfpreg = er32flash(ICH_FLASH_GFPREG);
2118
2119         /* Write-protect GbE Sector of NVM */
2120         pr0.regval = er32flash(ICH_FLASH_PR0);
2121         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2122         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2123         pr0.range.wpe = true;
2124         ew32flash(ICH_FLASH_PR0, pr0.regval);
2125
2126         /*
2127          * Lock down a subset of GbE Flash Control Registers, e.g.
2128          * PR0 to prevent the write-protection from being lifted.
2129          * Once FLOCKDN is set, the registers protected by it cannot
2130          * be written until FLOCKDN is cleared by a hardware reset.
2131          */
2132         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2133         hsfsts.hsf_status.flockdn = true;
2134         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2135
2136         nvm->ops.release(hw);
2137 }
2138
2139 /**
2140  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2141  *  @hw: pointer to the HW structure
2142  *  @offset: The offset (in bytes) of the byte/word to read.
2143  *  @size: Size of data to read, 1=byte 2=word
2144  *  @data: The byte(s) to write to the NVM.
2145  *
2146  *  Writes one/two bytes to the NVM using the flash access registers.
2147  **/
2148 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2149                                           u8 size, u16 data)
2150 {
2151         union ich8_hws_flash_status hsfsts;
2152         union ich8_hws_flash_ctrl hsflctl;
2153         u32 flash_linear_addr;
2154         u32 flash_data = 0;
2155         s32 ret_val;
2156         u8 count = 0;
2157
2158         if (size < 1 || size > 2 || data > size * 0xff ||
2159             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2160                 return -E1000_ERR_NVM;
2161
2162         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2163                             hw->nvm.flash_base_addr;
2164
2165         do {
2166                 udelay(1);
2167                 /* Steps */
2168                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2169                 if (ret_val)
2170                         break;
2171
2172                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2173                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2174                 hsflctl.hsf_ctrl.fldbcount = size -1;
2175                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2176                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2177
2178                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2179
2180                 if (size == 1)
2181                         flash_data = (u32)data & 0x00FF;
2182                 else
2183                         flash_data = (u32)data;
2184
2185                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2186
2187                 /*
2188                  * check if FCERR is set to 1 , if set to 1, clear it
2189                  * and try the whole sequence a few more times else done
2190                  */
2191                 ret_val = e1000_flash_cycle_ich8lan(hw,
2192                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2193                 if (!ret_val)
2194                         break;
2195
2196                 /*
2197                  * If we're here, then things are most likely
2198                  * completely hosed, but if the error condition
2199                  * is detected, it won't hurt to give it another
2200                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2201                  */
2202                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2203                 if (hsfsts.hsf_status.flcerr == 1)
2204                         /* Repeat for some time before giving up. */
2205                         continue;
2206                 if (hsfsts.hsf_status.flcdone == 0) {
2207                         e_dbg("Timeout error - flash cycle "
2208                                  "did not complete.");
2209                         break;
2210                 }
2211         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2212
2213         return ret_val;
2214 }
2215
2216 /**
2217  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2218  *  @hw: pointer to the HW structure
2219  *  @offset: The index of the byte to read.
2220  *  @data: The byte to write to the NVM.
2221  *
2222  *  Writes a single byte to the NVM using the flash access registers.
2223  **/
2224 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2225                                           u8 data)
2226 {
2227         u16 word = (u16)data;
2228
2229         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2230 }
2231
2232 /**
2233  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2234  *  @hw: pointer to the HW structure
2235  *  @offset: The offset of the byte to write.
2236  *  @byte: The byte to write to the NVM.
2237  *
2238  *  Writes a single byte to the NVM using the flash access registers.
2239  *  Goes through a retry algorithm before giving up.
2240  **/
2241 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2242                                                 u32 offset, u8 byte)
2243 {
2244         s32 ret_val;
2245         u16 program_retries;
2246
2247         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2248         if (!ret_val)
2249                 return ret_val;
2250
2251         for (program_retries = 0; program_retries < 100; program_retries++) {
2252                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2253                 udelay(100);
2254                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2255                 if (!ret_val)
2256                         break;
2257         }
2258         if (program_retries == 100)
2259                 return -E1000_ERR_NVM;
2260
2261         return 0;
2262 }
2263
2264 /**
2265  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2266  *  @hw: pointer to the HW structure
2267  *  @bank: 0 for first bank, 1 for second bank, etc.
2268  *
2269  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2270  *  bank N is 4096 * N + flash_reg_addr.
2271  **/
2272 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2273 {
2274         struct e1000_nvm_info *nvm = &hw->nvm;
2275         union ich8_hws_flash_status hsfsts;
2276         union ich8_hws_flash_ctrl hsflctl;
2277         u32 flash_linear_addr;
2278         /* bank size is in 16bit words - adjust to bytes */
2279         u32 flash_bank_size = nvm->flash_bank_size * 2;
2280         s32 ret_val;
2281         s32 count = 0;
2282         s32 j, iteration, sector_size;
2283
2284         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2285
2286         /*
2287          * Determine HW Sector size: Read BERASE bits of hw flash status
2288          * register
2289          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2290          *     consecutive sectors.  The start index for the nth Hw sector
2291          *     can be calculated as = bank * 4096 + n * 256
2292          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2293          *     The start index for the nth Hw sector can be calculated
2294          *     as = bank * 4096
2295          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2296          *     (ich9 only, otherwise error condition)
2297          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2298          */
2299         switch (hsfsts.hsf_status.berasesz) {
2300         case 0:
2301                 /* Hw sector size 256 */
2302                 sector_size = ICH_FLASH_SEG_SIZE_256;
2303                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2304                 break;
2305         case 1:
2306                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2307                 iteration = 1;
2308                 break;
2309         case 2:
2310                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2311                 iteration = 1;
2312                 break;
2313         case 3:
2314                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2315                 iteration = 1;
2316                 break;
2317         default:
2318                 return -E1000_ERR_NVM;
2319         }
2320
2321         /* Start with the base address, then add the sector offset. */
2322         flash_linear_addr = hw->nvm.flash_base_addr;
2323         flash_linear_addr += (bank) ? flash_bank_size : 0;
2324
2325         for (j = 0; j < iteration ; j++) {
2326                 do {
2327                         /* Steps */
2328                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2329                         if (ret_val)
2330                                 return ret_val;
2331
2332                         /*
2333                          * Write a value 11 (block Erase) in Flash
2334                          * Cycle field in hw flash control
2335                          */
2336                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2337                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2338                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2339
2340                         /*
2341                          * Write the last 24 bits of an index within the
2342                          * block into Flash Linear address field in Flash
2343                          * Address.
2344                          */
2345                         flash_linear_addr += (j * sector_size);
2346                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2347
2348                         ret_val = e1000_flash_cycle_ich8lan(hw,
2349                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2350                         if (ret_val == 0)
2351                                 break;
2352
2353                         /*
2354                          * Check if FCERR is set to 1.  If 1,
2355                          * clear it and try the whole sequence
2356                          * a few more times else Done
2357                          */
2358                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2359                         if (hsfsts.hsf_status.flcerr == 1)
2360                                 /* repeat for some time before giving up */
2361                                 continue;
2362                         else if (hsfsts.hsf_status.flcdone == 0)
2363                                 return ret_val;
2364                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2365         }
2366
2367         return 0;
2368 }
2369
2370 /**
2371  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2372  *  @hw: pointer to the HW structure
2373  *  @data: Pointer to the LED settings
2374  *
2375  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2376  *  settings is all 0's or F's, set the LED default to a valid LED default
2377  *  setting.
2378  **/
2379 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2380 {
2381         s32 ret_val;
2382
2383         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2384         if (ret_val) {
2385                 e_dbg("NVM Read Error\n");
2386                 return ret_val;
2387         }
2388
2389         if (*data == ID_LED_RESERVED_0000 ||
2390             *data == ID_LED_RESERVED_FFFF)
2391                 *data = ID_LED_DEFAULT_ICH8LAN;
2392
2393         return 0;
2394 }
2395
2396 /**
2397  *  e1000_id_led_init_pchlan - store LED configurations
2398  *  @hw: pointer to the HW structure
2399  *
2400  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2401  *  the PHY LED configuration register.
2402  *
2403  *  PCH also does not have an "always on" or "always off" mode which
2404  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2405  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2406  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2407  *  link based on logic in e1000_led_[on|off]_pchlan().
2408  **/
2409 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2410 {
2411         struct e1000_mac_info *mac = &hw->mac;
2412         s32 ret_val;
2413         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2414         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2415         u16 data, i, temp, shift;
2416
2417         /* Get default ID LED modes */
2418         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2419         if (ret_val)
2420                 goto out;
2421
2422         mac->ledctl_default = er32(LEDCTL);
2423         mac->ledctl_mode1 = mac->ledctl_default;
2424         mac->ledctl_mode2 = mac->ledctl_default;
2425
2426         for (i = 0; i < 4; i++) {
2427                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2428                 shift = (i * 5);
2429                 switch (temp) {
2430                 case ID_LED_ON1_DEF2:
2431                 case ID_LED_ON1_ON2:
2432                 case ID_LED_ON1_OFF2:
2433                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2434                         mac->ledctl_mode1 |= (ledctl_on << shift);
2435                         break;
2436                 case ID_LED_OFF1_DEF2:
2437                 case ID_LED_OFF1_ON2:
2438                 case ID_LED_OFF1_OFF2:
2439                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2440                         mac->ledctl_mode1 |= (ledctl_off << shift);
2441                         break;
2442                 default:
2443                         /* Do nothing */
2444                         break;
2445                 }
2446                 switch (temp) {
2447                 case ID_LED_DEF1_ON2:
2448                 case ID_LED_ON1_ON2:
2449                 case ID_LED_OFF1_ON2:
2450                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2451                         mac->ledctl_mode2 |= (ledctl_on << shift);
2452                         break;
2453                 case ID_LED_DEF1_OFF2:
2454                 case ID_LED_ON1_OFF2:
2455                 case ID_LED_OFF1_OFF2:
2456                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2457                         mac->ledctl_mode2 |= (ledctl_off << shift);
2458                         break;
2459                 default:
2460                         /* Do nothing */
2461                         break;
2462                 }
2463         }
2464
2465 out:
2466         return ret_val;
2467 }
2468
2469 /**
2470  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2471  *  @hw: pointer to the HW structure
2472  *
2473  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2474  *  register, so the the bus width is hard coded.
2475  **/
2476 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2477 {
2478         struct e1000_bus_info *bus = &hw->bus;
2479         s32 ret_val;
2480
2481         ret_val = e1000e_get_bus_info_pcie(hw);
2482
2483         /*
2484          * ICH devices are "PCI Express"-ish.  They have
2485          * a configuration space, but do not contain
2486          * PCI Express Capability registers, so bus width
2487          * must be hardcoded.
2488          */
2489         if (bus->width == e1000_bus_width_unknown)
2490                 bus->width = e1000_bus_width_pcie_x1;
2491
2492         return ret_val;
2493 }
2494
2495 /**
2496  *  e1000_reset_hw_ich8lan - Reset the hardware
2497  *  @hw: pointer to the HW structure
2498  *
2499  *  Does a full reset of the hardware which includes a reset of the PHY and
2500  *  MAC.
2501  **/
2502 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2503 {
2504         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2505         u16 reg;
2506         u32 ctrl, icr, kab;
2507         s32 ret_val;
2508
2509         /*
2510          * Prevent the PCI-E bus from sticking if there is no TLP connection
2511          * on the last TLP read/write transaction when MAC is reset.
2512          */
2513         ret_val = e1000e_disable_pcie_master(hw);
2514         if (ret_val) {
2515                 e_dbg("PCI-E Master disable polling has failed.\n");
2516         }
2517
2518         e_dbg("Masking off all interrupts\n");
2519         ew32(IMC, 0xffffffff);
2520
2521         /*
2522          * Disable the Transmit and Receive units.  Then delay to allow
2523          * any pending transactions to complete before we hit the MAC
2524          * with the global reset.
2525          */
2526         ew32(RCTL, 0);
2527         ew32(TCTL, E1000_TCTL_PSP);
2528         e1e_flush();
2529
2530         msleep(10);
2531
2532         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2533         if (hw->mac.type == e1000_ich8lan) {
2534                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2535                 ew32(PBA, E1000_PBA_8K);
2536                 /* Set Packet Buffer Size to 16k. */
2537                 ew32(PBS, E1000_PBS_16K);
2538         }
2539
2540         if (hw->mac.type == e1000_pchlan) {
2541                 /* Save the NVM K1 bit setting*/
2542                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2543                 if (ret_val)
2544                         return ret_val;
2545
2546                 if (reg & E1000_NVM_K1_ENABLE)
2547                         dev_spec->nvm_k1_enabled = true;
2548                 else
2549                         dev_spec->nvm_k1_enabled = false;
2550         }
2551
2552         ctrl = er32(CTRL);
2553
2554         if (!e1000_check_reset_block(hw)) {
2555                 /* Clear PHY Reset Asserted bit */
2556                 if (hw->mac.type >= e1000_pchlan) {
2557                         u32 status = er32(STATUS);
2558                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2559                 }
2560
2561                 /*
2562                  * PHY HW reset requires MAC CORE reset at the same
2563                  * time to make sure the interface between MAC and the
2564                  * external PHY is reset.
2565                  */
2566                 ctrl |= E1000_CTRL_PHY_RST;
2567         }
2568         ret_val = e1000_acquire_swflag_ich8lan(hw);
2569         e_dbg("Issuing a global reset to ich8lan\n");
2570         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2571         msleep(20);
2572
2573         if (!ret_val)
2574                 e1000_release_swflag_ich8lan(hw);
2575
2576         /* Perform any necessary post-reset workarounds */
2577         if (hw->mac.type == e1000_pchlan)
2578                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2579
2580         if (ctrl & E1000_CTRL_PHY_RST)
2581                 ret_val = hw->phy.ops.get_cfg_done(hw);
2582
2583         if (hw->mac.type >= e1000_ich10lan) {
2584                 e1000_lan_init_done_ich8lan(hw);
2585         } else {
2586                 ret_val = e1000e_get_auto_rd_done(hw);
2587                 if (ret_val) {
2588                         /*
2589                          * When auto config read does not complete, do not
2590                          * return with an error. This can happen in situations
2591                          * where there is no eeprom and prevents getting link.
2592                          */
2593                         e_dbg("Auto Read Done did not complete\n");
2594                 }
2595         }
2596         /* Dummy read to clear the phy wakeup bit after lcd reset */
2597         if (hw->mac.type == e1000_pchlan)
2598                 e1e_rphy(hw, BM_WUC, &reg);
2599
2600         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2601         if (ret_val)
2602                 goto out;
2603
2604         if (hw->mac.type == e1000_pchlan) {
2605                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2606                 if (ret_val)
2607                         goto out;
2608         }
2609         /*
2610          * For PCH, this write will make sure that any noise
2611          * will be detected as a CRC error and be dropped rather than show up
2612          * as a bad packet to the DMA engine.
2613          */
2614         if (hw->mac.type == e1000_pchlan)
2615                 ew32(CRC_OFFSET, 0x65656565);
2616
2617         ew32(IMC, 0xffffffff);
2618         icr = er32(ICR);
2619
2620         kab = er32(KABGTXD);
2621         kab |= E1000_KABGTXD_BGSQLBIAS;
2622         ew32(KABGTXD, kab);
2623
2624 out:
2625         return ret_val;
2626 }
2627
2628 /**
2629  *  e1000_init_hw_ich8lan - Initialize the hardware
2630  *  @hw: pointer to the HW structure
2631  *
2632  *  Prepares the hardware for transmit and receive by doing the following:
2633  *   - initialize hardware bits
2634  *   - initialize LED identification
2635  *   - setup receive address registers
2636  *   - setup flow control
2637  *   - setup transmit descriptors
2638  *   - clear statistics
2639  **/
2640 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2641 {
2642         struct e1000_mac_info *mac = &hw->mac;
2643         u32 ctrl_ext, txdctl, snoop;
2644         s32 ret_val;
2645         u16 i;
2646
2647         e1000_initialize_hw_bits_ich8lan(hw);
2648
2649         /* Initialize identification LED */
2650         ret_val = mac->ops.id_led_init(hw);
2651         if (ret_val)
2652                 e_dbg("Error initializing identification LED\n");
2653                 /* This is not fatal and we should not stop init due to this */
2654
2655         /* Setup the receive address. */
2656         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2657
2658         /* Zero out the Multicast HASH table */
2659         e_dbg("Zeroing the MTA\n");
2660         for (i = 0; i < mac->mta_reg_count; i++)
2661                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2662
2663         /*
2664          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2665          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2666          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2667          */
2668         if (hw->phy.type == e1000_phy_82578) {
2669                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2670                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2671                 if (ret_val)
2672                         return ret_val;
2673         }
2674
2675         /* Setup link and flow control */
2676         ret_val = e1000_setup_link_ich8lan(hw);
2677
2678         /* Set the transmit descriptor write-back policy for both queues */
2679         txdctl = er32(TXDCTL(0));
2680         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2681                  E1000_TXDCTL_FULL_TX_DESC_WB;
2682         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2683                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2684         ew32(TXDCTL(0), txdctl);
2685         txdctl = er32(TXDCTL(1));
2686         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2687                  E1000_TXDCTL_FULL_TX_DESC_WB;
2688         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2689                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2690         ew32(TXDCTL(1), txdctl);
2691
2692         /*
2693          * ICH8 has opposite polarity of no_snoop bits.
2694          * By default, we should use snoop behavior.
2695          */
2696         if (mac->type == e1000_ich8lan)
2697                 snoop = PCIE_ICH8_SNOOP_ALL;
2698         else
2699                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2700         e1000e_set_pcie_no_snoop(hw, snoop);
2701
2702         ctrl_ext = er32(CTRL_EXT);
2703         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2704         ew32(CTRL_EXT, ctrl_ext);
2705
2706         /*
2707          * Clear all of the statistics registers (clear on read).  It is
2708          * important that we do this after we have tried to establish link
2709          * because the symbol error count will increment wildly if there
2710          * is no link.
2711          */
2712         e1000_clear_hw_cntrs_ich8lan(hw);
2713
2714         return 0;
2715 }
2716 /**
2717  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2718  *  @hw: pointer to the HW structure
2719  *
2720  *  Sets/Clears required hardware bits necessary for correctly setting up the
2721  *  hardware for transmit and receive.
2722  **/
2723 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2724 {
2725         u32 reg;
2726
2727         /* Extended Device Control */
2728         reg = er32(CTRL_EXT);
2729         reg |= (1 << 22);
2730         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2731         if (hw->mac.type >= e1000_pchlan)
2732                 reg |= E1000_CTRL_EXT_PHYPDEN;
2733         ew32(CTRL_EXT, reg);
2734
2735         /* Transmit Descriptor Control 0 */
2736         reg = er32(TXDCTL(0));
2737         reg |= (1 << 22);
2738         ew32(TXDCTL(0), reg);
2739
2740         /* Transmit Descriptor Control 1 */
2741         reg = er32(TXDCTL(1));
2742         reg |= (1 << 22);
2743         ew32(TXDCTL(1), reg);
2744
2745         /* Transmit Arbitration Control 0 */
2746         reg = er32(TARC(0));
2747         if (hw->mac.type == e1000_ich8lan)
2748                 reg |= (1 << 28) | (1 << 29);
2749         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2750         ew32(TARC(0), reg);
2751
2752         /* Transmit Arbitration Control 1 */
2753         reg = er32(TARC(1));
2754         if (er32(TCTL) & E1000_TCTL_MULR)
2755                 reg &= ~(1 << 28);
2756         else
2757                 reg |= (1 << 28);
2758         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2759         ew32(TARC(1), reg);
2760
2761         /* Device Status */
2762         if (hw->mac.type == e1000_ich8lan) {
2763                 reg = er32(STATUS);
2764                 reg &= ~(1 << 31);
2765                 ew32(STATUS, reg);
2766         }
2767
2768         /*
2769          * work-around descriptor data corruption issue during nfs v2 udp
2770          * traffic, just disable the nfs filtering capability
2771          */
2772         reg = er32(RFCTL);
2773         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
2774         ew32(RFCTL, reg);
2775
2776         return;
2777 }
2778
2779 /**
2780  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2781  *  @hw: pointer to the HW structure
2782  *
2783  *  Determines which flow control settings to use, then configures flow
2784  *  control.  Calls the appropriate media-specific link configuration
2785  *  function.  Assuming the adapter has a valid link partner, a valid link
2786  *  should be established.  Assumes the hardware has previously been reset
2787  *  and the transmitter and receiver are not enabled.
2788  **/
2789 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2790 {
2791         s32 ret_val;
2792
2793         if (e1000_check_reset_block(hw))
2794                 return 0;
2795
2796         /*
2797          * ICH parts do not have a word in the NVM to determine
2798          * the default flow control setting, so we explicitly
2799          * set it to full.
2800          */
2801         if (hw->fc.requested_mode == e1000_fc_default) {
2802                 /* Workaround h/w hang when Tx flow control enabled */
2803                 if (hw->mac.type == e1000_pchlan)
2804                         hw->fc.requested_mode = e1000_fc_rx_pause;
2805                 else
2806                         hw->fc.requested_mode = e1000_fc_full;
2807         }
2808
2809         /*
2810          * Save off the requested flow control mode for use later.  Depending
2811          * on the link partner's capabilities, we may or may not use this mode.
2812          */
2813         hw->fc.current_mode = hw->fc.requested_mode;
2814
2815         e_dbg("After fix-ups FlowControl is now = %x\n",
2816                 hw->fc.current_mode);
2817
2818         /* Continue to configure the copper link. */
2819         ret_val = e1000_setup_copper_link_ich8lan(hw);
2820         if (ret_val)
2821                 return ret_val;
2822
2823         ew32(FCTTV, hw->fc.pause_time);
2824         if ((hw->phy.type == e1000_phy_82578) ||
2825             (hw->phy.type == e1000_phy_82577)) {
2826                 ret_val = hw->phy.ops.write_reg(hw,
2827                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2828                                              hw->fc.pause_time);
2829                 if (ret_val)
2830                         return ret_val;
2831         }
2832
2833         return e1000e_set_fc_watermarks(hw);
2834 }
2835
2836 /**
2837  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2838  *  @hw: pointer to the HW structure
2839  *
2840  *  Configures the kumeran interface to the PHY to wait the appropriate time
2841  *  when polling the PHY, then call the generic setup_copper_link to finish
2842  *  configuring the copper link.
2843  **/
2844 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2845 {
2846         u32 ctrl;
2847         s32 ret_val;
2848         u16 reg_data;
2849
2850         ctrl = er32(CTRL);
2851         ctrl |= E1000_CTRL_SLU;
2852         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2853         ew32(CTRL, ctrl);
2854
2855         /*
2856          * Set the mac to wait the maximum time between each iteration
2857          * and increase the max iterations when polling the phy;
2858          * this fixes erroneous timeouts at 10Mbps.
2859          */
2860         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
2861         if (ret_val)
2862                 return ret_val;
2863         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2864                                        &reg_data);
2865         if (ret_val)
2866                 return ret_val;
2867         reg_data |= 0x3F;
2868         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2869                                         reg_data);
2870         if (ret_val)
2871                 return ret_val;
2872
2873         switch (hw->phy.type) {
2874         case e1000_phy_igp_3:
2875                 ret_val = e1000e_copper_link_setup_igp(hw);
2876                 if (ret_val)
2877                         return ret_val;
2878                 break;
2879         case e1000_phy_bm:
2880         case e1000_phy_82578:
2881                 ret_val = e1000e_copper_link_setup_m88(hw);
2882                 if (ret_val)
2883                         return ret_val;
2884                 break;
2885         case e1000_phy_82577:
2886                 ret_val = e1000_copper_link_setup_82577(hw);
2887                 if (ret_val)
2888                         return ret_val;
2889                 break;
2890         case e1000_phy_ife:
2891                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2892                                                &reg_data);
2893                 if (ret_val)
2894                         return ret_val;
2895
2896                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2897
2898                 switch (hw->phy.mdix) {
2899                 case 1:
2900                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2901                         break;
2902                 case 2:
2903                         reg_data |= IFE_PMC_FORCE_MDIX;
2904                         break;
2905                 case 0:
2906                 default:
2907                         reg_data |= IFE_PMC_AUTO_MDIX;
2908                         break;
2909                 }
2910                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2911                                                 reg_data);
2912                 if (ret_val)
2913                         return ret_val;
2914                 break;
2915         default:
2916                 break;
2917         }
2918         return e1000e_setup_copper_link(hw);
2919 }
2920
2921 /**
2922  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2923  *  @hw: pointer to the HW structure
2924  *  @speed: pointer to store current link speed
2925  *  @duplex: pointer to store the current link duplex
2926  *
2927  *  Calls the generic get_speed_and_duplex to retrieve the current link
2928  *  information and then calls the Kumeran lock loss workaround for links at
2929  *  gigabit speeds.
2930  **/
2931 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2932                                           u16 *duplex)
2933 {
2934         s32 ret_val;
2935
2936         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2937         if (ret_val)
2938                 return ret_val;
2939
2940         if ((hw->mac.type == e1000_ich8lan) &&
2941             (hw->phy.type == e1000_phy_igp_3) &&
2942             (*speed == SPEED_1000)) {
2943                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2944         }
2945
2946         return ret_val;
2947 }
2948
2949 /**
2950  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2951  *  @hw: pointer to the HW structure
2952  *
2953  *  Work-around for 82566 Kumeran PCS lock loss:
2954  *  On link status change (i.e. PCI reset, speed change) and link is up and
2955  *  speed is gigabit-
2956  *    0) if workaround is optionally disabled do nothing
2957  *    1) wait 1ms for Kumeran link to come up
2958  *    2) check Kumeran Diagnostic register PCS lock loss bit
2959  *    3) if not set the link is locked (all is good), otherwise...
2960  *    4) reset the PHY
2961  *    5) repeat up to 10 times
2962  *  Note: this is only called for IGP3 copper when speed is 1gb.
2963  **/
2964 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2965 {
2966         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2967         u32 phy_ctrl;
2968         s32 ret_val;
2969         u16 i, data;
2970         bool link;
2971
2972         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2973                 return 0;
2974
2975         /*
2976          * Make sure link is up before proceeding.  If not just return.
2977          * Attempting this while link is negotiating fouled up link
2978          * stability
2979          */
2980         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2981         if (!link)
2982                 return 0;
2983
2984         for (i = 0; i < 10; i++) {
2985                 /* read once to clear */
2986                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2987                 if (ret_val)
2988                         return ret_val;
2989                 /* and again to get new status */
2990                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2991                 if (ret_val)
2992                         return ret_val;
2993
2994                 /* check for PCS lock */
2995                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2996                         return 0;
2997
2998                 /* Issue PHY reset */
2999                 e1000_phy_hw_reset(hw);
3000                 mdelay(5);
3001         }
3002         /* Disable GigE link negotiation */
3003         phy_ctrl = er32(PHY_CTRL);
3004         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3005                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3006         ew32(PHY_CTRL, phy_ctrl);
3007
3008         /*
3009          * Call gig speed drop workaround on Gig disable before accessing
3010          * any PHY registers
3011          */
3012         e1000e_gig_downshift_workaround_ich8lan(hw);
3013
3014         /* unable to acquire PCS lock */
3015         return -E1000_ERR_PHY;
3016 }
3017
3018 /**
3019  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3020  *  @hw: pointer to the HW structure
3021  *  @state: boolean value used to set the current Kumeran workaround state
3022  *
3023  *  If ICH8, set the current Kumeran workaround state (enabled - true
3024  *  /disabled - false).
3025  **/
3026 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3027                                                  bool state)
3028 {
3029         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3030
3031         if (hw->mac.type != e1000_ich8lan) {
3032                 e_dbg("Workaround applies to ICH8 only.\n");
3033                 return;
3034         }
3035
3036         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3037 }
3038
3039 /**
3040  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3041  *  @hw: pointer to the HW structure
3042  *
3043  *  Workaround for 82566 power-down on D3 entry:
3044  *    1) disable gigabit link
3045  *    2) write VR power-down enable
3046  *    3) read it back
3047  *  Continue if successful, else issue LCD reset and repeat
3048  **/
3049 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3050 {
3051         u32 reg;
3052         u16 data;
3053         u8  retry = 0;
3054
3055         if (hw->phy.type != e1000_phy_igp_3)
3056                 return;
3057
3058         /* Try the workaround twice (if needed) */
3059         do {
3060                 /* Disable link */
3061                 reg = er32(PHY_CTRL);
3062                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3063                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3064                 ew32(PHY_CTRL, reg);
3065
3066                 /*
3067                  * Call gig speed drop workaround on Gig disable before
3068                  * accessing any PHY registers
3069                  */
3070                 if (hw->mac.type == e1000_ich8lan)
3071                         e1000e_gig_downshift_workaround_ich8lan(hw);
3072
3073                 /* Write VR power-down enable */
3074                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3075                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3076                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3077
3078                 /* Read it back and test */
3079                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3080                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3081                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3082                         break;
3083
3084                 /* Issue PHY reset and repeat at most one more time */
3085                 reg = er32(CTRL);
3086                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3087                 retry++;
3088         } while (retry);
3089 }
3090
3091 /**
3092  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3093  *  @hw: pointer to the HW structure
3094  *
3095  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3096  *  LPLU, Gig disable, MDIC PHY reset):
3097  *    1) Set Kumeran Near-end loopback
3098  *    2) Clear Kumeran Near-end loopback
3099  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3100  **/
3101 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3102 {
3103         s32 ret_val;
3104         u16 reg_data;
3105
3106         if ((hw->mac.type != e1000_ich8lan) ||
3107             (hw->phy.type != e1000_phy_igp_3))
3108                 return;
3109
3110         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3111                                       &reg_data);
3112         if (ret_val)
3113                 return;
3114         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3115         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3116                                        reg_data);
3117         if (ret_val)
3118                 return;
3119         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3120         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3121                                        reg_data);
3122 }
3123
3124 /**
3125  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3126  *  @hw: pointer to the HW structure
3127  *
3128  *  During S0 to Sx transition, it is possible the link remains at gig
3129  *  instead of negotiating to a lower speed.  Before going to Sx, set
3130  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3131  *  to a lower speed.
3132  *
3133  *  Should only be called for applicable parts.
3134  **/
3135 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3136 {
3137         u32 phy_ctrl;
3138
3139         switch (hw->mac.type) {
3140         case e1000_ich8lan:
3141         case e1000_ich9lan:
3142         case e1000_ich10lan:
3143         case e1000_pchlan:
3144                 phy_ctrl = er32(PHY_CTRL);
3145                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3146                             E1000_PHY_CTRL_GBE_DISABLE;
3147                 ew32(PHY_CTRL, phy_ctrl);
3148
3149                 if (hw->mac.type == e1000_pchlan)
3150                         e1000_phy_hw_reset_ich8lan(hw);
3151         default:
3152                 break;
3153         }
3154
3155         return;
3156 }
3157
3158 /**
3159  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3160  *  @hw: pointer to the HW structure
3161  *
3162  *  Return the LED back to the default configuration.
3163  **/
3164 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3165 {
3166         if (hw->phy.type == e1000_phy_ife)
3167                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3168
3169         ew32(LEDCTL, hw->mac.ledctl_default);
3170         return 0;
3171 }
3172
3173 /**
3174  *  e1000_led_on_ich8lan - Turn LEDs on
3175  *  @hw: pointer to the HW structure
3176  *
3177  *  Turn on the LEDs.
3178  **/
3179 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3180 {
3181         if (hw->phy.type == e1000_phy_ife)
3182                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3183                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3184
3185         ew32(LEDCTL, hw->mac.ledctl_mode2);
3186         return 0;
3187 }
3188
3189 /**
3190  *  e1000_led_off_ich8lan - Turn LEDs off
3191  *  @hw: pointer to the HW structure
3192  *
3193  *  Turn off the LEDs.
3194  **/
3195 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3196 {
3197         if (hw->phy.type == e1000_phy_ife)
3198                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3199                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3200
3201         ew32(LEDCTL, hw->mac.ledctl_mode1);
3202         return 0;
3203 }
3204
3205 /**
3206  *  e1000_setup_led_pchlan - Configures SW controllable LED
3207  *  @hw: pointer to the HW structure
3208  *
3209  *  This prepares the SW controllable LED for use.
3210  **/
3211 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3212 {
3213         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3214                                         (u16)hw->mac.ledctl_mode1);
3215 }
3216
3217 /**
3218  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3219  *  @hw: pointer to the HW structure
3220  *
3221  *  Return the LED back to the default configuration.
3222  **/
3223 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3224 {
3225         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3226                                         (u16)hw->mac.ledctl_default);
3227 }
3228
3229 /**
3230  *  e1000_led_on_pchlan - Turn LEDs on
3231  *  @hw: pointer to the HW structure
3232  *
3233  *  Turn on the LEDs.
3234  **/
3235 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3236 {
3237         u16 data = (u16)hw->mac.ledctl_mode2;
3238         u32 i, led;
3239
3240         /*
3241          * If no link, then turn LED on by setting the invert bit
3242          * for each LED that's mode is "link_up" in ledctl_mode2.
3243          */
3244         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3245                 for (i = 0; i < 3; i++) {
3246                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3247                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3248                             E1000_LEDCTL_MODE_LINK_UP)
3249                                 continue;
3250                         if (led & E1000_PHY_LED0_IVRT)
3251                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3252                         else
3253                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3254                 }
3255         }
3256
3257         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3258 }
3259
3260 /**
3261  *  e1000_led_off_pchlan - Turn LEDs off
3262  *  @hw: pointer to the HW structure
3263  *
3264  *  Turn off the LEDs.
3265  **/
3266 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3267 {
3268         u16 data = (u16)hw->mac.ledctl_mode1;
3269         u32 i, led;
3270
3271         /*
3272          * If no link, then turn LED off by clearing the invert bit
3273          * for each LED that's mode is "link_up" in ledctl_mode1.
3274          */
3275         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3276                 for (i = 0; i < 3; i++) {
3277                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3278                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3279                             E1000_LEDCTL_MODE_LINK_UP)
3280                                 continue;
3281                         if (led & E1000_PHY_LED0_IVRT)
3282                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3283                         else
3284                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3285                 }
3286         }
3287
3288         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3289 }
3290
3291 /**
3292  *  e1000_get_cfg_done_ich8lan - Read config done bit
3293  *  @hw: pointer to the HW structure
3294  *
3295  *  Read the management control register for the config done bit for
3296  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3297  *  to read the config done bit, so an error is *ONLY* logged and returns
3298  *  0.  If we were to return with error, EEPROM-less silicon
3299  *  would not be able to be reset or change link.
3300  **/
3301 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3302 {
3303         u32 bank = 0;
3304
3305         if (hw->mac.type >= e1000_pchlan) {
3306                 u32 status = er32(STATUS);
3307
3308                 if (status & E1000_STATUS_PHYRA)
3309                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3310                 else
3311                         e_dbg("PHY Reset Asserted not set - needs delay\n");
3312         }
3313
3314         e1000e_get_cfg_done(hw);
3315
3316         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3317         if ((hw->mac.type != e1000_ich10lan) &&
3318             (hw->mac.type != e1000_pchlan)) {
3319                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3320                     (hw->phy.type == e1000_phy_igp_3)) {
3321                         e1000e_phy_init_script_igp3(hw);
3322                 }
3323         } else {
3324                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3325                         /* Maybe we should do a basic PHY config */
3326                         e_dbg("EEPROM not present\n");
3327                         return -E1000_ERR_CONFIG;
3328                 }
3329         }
3330
3331         return 0;
3332 }
3333
3334 /**
3335  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3336  * @hw: pointer to the HW structure
3337  *
3338  * In the case of a PHY power down to save power, or to turn off link during a
3339  * driver unload, or wake on lan is not enabled, remove the link.
3340  **/
3341 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3342 {
3343         /* If the management interface is not enabled, then power down */
3344         if (!(hw->mac.ops.check_mng_mode(hw) ||
3345               hw->phy.ops.check_reset_block(hw)))
3346                 e1000_power_down_phy_copper(hw);
3347
3348         return;
3349 }
3350
3351 /**
3352  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3353  *  @hw: pointer to the HW structure
3354  *
3355  *  Clears hardware counters specific to the silicon family and calls
3356  *  clear_hw_cntrs_generic to clear all general purpose counters.
3357  **/
3358 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3359 {
3360         u16 phy_data;
3361
3362         e1000e_clear_hw_cntrs_base(hw);
3363
3364         er32(ALGNERRC);
3365         er32(RXERRC);
3366         er32(TNCRS);
3367         er32(CEXTERR);
3368         er32(TSCTC);
3369         er32(TSCTFC);
3370
3371         er32(MGTPRC);
3372         er32(MGTPDC);
3373         er32(MGTPTC);
3374
3375         er32(IAC);
3376         er32(ICRXOC);
3377
3378         /* Clear PHY statistics registers */
3379         if ((hw->phy.type == e1000_phy_82578) ||
3380             (hw->phy.type == e1000_phy_82577)) {
3381                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3382                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3383                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3384                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3385                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3386                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3387                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3388                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3389                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3390                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3391                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3392                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3393                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3394                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3395         }
3396 }
3397
3398 static struct e1000_mac_operations ich8_mac_ops = {
3399         .id_led_init            = e1000e_id_led_init,
3400         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3401         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3402         /* cleanup_led dependent on mac type */
3403         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3404         .get_bus_info           = e1000_get_bus_info_ich8lan,
3405         .set_lan_id             = e1000_set_lan_id_single_port,
3406         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3407         /* led_on dependent on mac type */
3408         /* led_off dependent on mac type */
3409         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3410         .reset_hw               = e1000_reset_hw_ich8lan,
3411         .init_hw                = e1000_init_hw_ich8lan,
3412         .setup_link             = e1000_setup_link_ich8lan,
3413         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3414         /* id_led_init dependent on mac type */
3415 };
3416
3417 static struct e1000_phy_operations ich8_phy_ops = {
3418         .acquire                = e1000_acquire_swflag_ich8lan,
3419         .check_reset_block      = e1000_check_reset_block_ich8lan,
3420         .commit                 = NULL,
3421         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3422         .get_cable_length       = e1000e_get_cable_length_igp_2,
3423         .read_reg               = e1000e_read_phy_reg_igp,
3424         .release                = e1000_release_swflag_ich8lan,
3425         .reset                  = e1000_phy_hw_reset_ich8lan,
3426         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3427         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3428         .write_reg              = e1000e_write_phy_reg_igp,
3429 };
3430
3431 static struct e1000_nvm_operations ich8_nvm_ops = {
3432         .acquire                = e1000_acquire_nvm_ich8lan,
3433         .read                   = e1000_read_nvm_ich8lan,
3434         .release                = e1000_release_nvm_ich8lan,
3435         .update                 = e1000_update_nvm_checksum_ich8lan,
3436         .valid_led_default      = e1000_valid_led_default_ich8lan,
3437         .validate               = e1000_validate_nvm_checksum_ich8lan,
3438         .write                  = e1000_write_nvm_ich8lan,
3439 };
3440
3441 struct e1000_info e1000_ich8_info = {
3442         .mac                    = e1000_ich8lan,
3443         .flags                  = FLAG_HAS_WOL
3444                                   | FLAG_IS_ICH
3445                                   | FLAG_RX_CSUM_ENABLED
3446                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3447                                   | FLAG_HAS_AMT
3448                                   | FLAG_HAS_FLASH
3449                                   | FLAG_APME_IN_WUC,
3450         .pba                    = 8,
3451         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3452         .get_variants           = e1000_get_variants_ich8lan,
3453         .mac_ops                = &ich8_mac_ops,
3454         .phy_ops                = &ich8_phy_ops,
3455         .nvm_ops                = &ich8_nvm_ops,
3456 };
3457
3458 struct e1000_info e1000_ich9_info = {
3459         .mac                    = e1000_ich9lan,
3460         .flags                  = FLAG_HAS_JUMBO_FRAMES
3461                                   | FLAG_IS_ICH
3462                                   | FLAG_HAS_WOL
3463                                   | FLAG_RX_CSUM_ENABLED
3464                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3465                                   | FLAG_HAS_AMT
3466                                   | FLAG_HAS_ERT
3467                                   | FLAG_HAS_FLASH
3468                                   | FLAG_APME_IN_WUC,
3469         .pba                    = 10,
3470         .max_hw_frame_size      = DEFAULT_JUMBO,
3471         .get_variants           = e1000_get_variants_ich8lan,
3472         .mac_ops                = &ich8_mac_ops,
3473         .phy_ops                = &ich8_phy_ops,
3474         .nvm_ops                = &ich8_nvm_ops,
3475 };
3476
3477 struct e1000_info e1000_ich10_info = {
3478         .mac                    = e1000_ich10lan,
3479         .flags                  = FLAG_HAS_JUMBO_FRAMES
3480                                   | FLAG_IS_ICH
3481                                   | FLAG_HAS_WOL
3482                                   | FLAG_RX_CSUM_ENABLED
3483                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3484                                   | FLAG_HAS_AMT
3485                                   | FLAG_HAS_ERT
3486                                   | FLAG_HAS_FLASH
3487                                   | FLAG_APME_IN_WUC,
3488         .pba                    = 10,
3489         .max_hw_frame_size      = DEFAULT_JUMBO,
3490         .get_variants           = e1000_get_variants_ich8lan,
3491         .mac_ops                = &ich8_mac_ops,
3492         .phy_ops                = &ich8_phy_ops,
3493         .nvm_ops                = &ich8_nvm_ops,
3494 };
3495
3496 struct e1000_info e1000_pch_info = {
3497         .mac                    = e1000_pchlan,
3498         .flags                  = FLAG_IS_ICH
3499                                   | FLAG_HAS_WOL
3500                                   | FLAG_RX_CSUM_ENABLED
3501                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3502                                   | FLAG_HAS_AMT
3503                                   | FLAG_HAS_FLASH
3504                                   | FLAG_HAS_JUMBO_FRAMES
3505                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3506                                   | FLAG_APME_IN_WUC,
3507         .pba                    = 26,
3508         .max_hw_frame_size      = 4096,
3509         .get_variants           = e1000_get_variants_ich8lan,
3510         .mac_ops                = &ich8_mac_ops,
3511         .phy_ops                = &ich8_phy_ops,
3512         .nvm_ops                = &ich8_nvm_ops,
3513 };