]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/e1000e/netdev.c
e1000e: don't inadvertently re-set INTX_DISABLE
[mv-sheeva.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (u64)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (u64)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        le64_to_cpu(u0->a), le64_to_cpu(u0->b),
283                        (u64)buffer_info->dma, buffer_info->length,
284                        buffer_info->next_to_watch, (u64)buffer_info->time_stamp,
285                        buffer_info->skb);
286                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
287                         printk(KERN_CONT " NTC/U\n");
288                 else if (i == tx_ring->next_to_use)
289                         printk(KERN_CONT " NTU\n");
290                 else if (i == tx_ring->next_to_clean)
291                         printk(KERN_CONT " NTC\n");
292                 else
293                         printk(KERN_CONT "\n");
294
295                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
296                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
297                                         16, 1, phys_to_virt(buffer_info->dma),
298                                         buffer_info->length, true);
299         }
300
301         /* Print RX Rings Summary */
302 rx_ring_summary:
303         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
304         printk(KERN_INFO "Queue [NTU] [NTC]\n");
305         printk(KERN_INFO " %5d %5X %5X\n", 0,
306                 rx_ring->next_to_use, rx_ring->next_to_clean);
307
308         /* Print RX Rings */
309         if (!netif_msg_rx_status(adapter))
310                 goto exit;
311
312         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
313         switch (adapter->rx_ps_pages) {
314         case 1:
315         case 2:
316         case 3:
317                 /* [Extended] Packet Split Receive Descriptor Format
318                  *
319                  *    +-----------------------------------------------------+
320                  *  0 |                Buffer Address 0 [63:0]              |
321                  *    +-----------------------------------------------------+
322                  *  8 |                Buffer Address 1 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  * 16 |                Buffer Address 2 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 24 |                Buffer Address 3 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  */
329                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
330                         "[buffer 1 63:0 ] "
331                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
332                        "[bi->skb] <-- Ext Pkt Split format\n");
333                 /* [Extended] Receive Descriptor (Write-Back) Format
334                  *
335                  *   63       48 47    32 31     13 12    8 7    4 3        0
336                  *   +------------------------------------------------------+
337                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
338                  *   | Checksum | Ident  |         | Queue |      |  Type   |
339                  *   +------------------------------------------------------+
340                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
341                  *   +------------------------------------------------------+
342                  *   63       48 47    32 31            20 19               0
343                  */
344                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
345                         "[vl   l0 ee  es] "
346                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
347                        "[bi->skb] <-- Ext Rx Write-Back format\n");
348                 for (i = 0; i < rx_ring->count; i++) {
349                         buffer_info = &rx_ring->buffer_info[i];
350                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
351                         u1 = (struct my_u1 *)rx_desc_ps;
352                         staterr =
353                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
354                         if (staterr & E1000_RXD_STAT_DD) {
355                                 /* Descriptor Done */
356                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
357                                         "%016llX %016llX %016llX "
358                                         "---------------- %p", i,
359                                         le64_to_cpu(u1->a),
360                                         le64_to_cpu(u1->b),
361                                         le64_to_cpu(u1->c),
362                                         le64_to_cpu(u1->d),
363                                         buffer_info->skb);
364                         } else {
365                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
366                                         "%016llX %016llX %016llX %016llX %p", i,
367                                         le64_to_cpu(u1->a),
368                                         le64_to_cpu(u1->b),
369                                         le64_to_cpu(u1->c),
370                                         le64_to_cpu(u1->d),
371                                         (u64)buffer_info->dma,
372                                         buffer_info->skb);
373
374                                 if (netif_msg_pktdata(adapter))
375                                         print_hex_dump(KERN_INFO, "",
376                                                 DUMP_PREFIX_ADDRESS, 16, 1,
377                                                 phys_to_virt(buffer_info->dma),
378                                                 adapter->rx_ps_bsize0, true);
379                         }
380
381                         if (i == rx_ring->next_to_use)
382                                 printk(KERN_CONT " NTU\n");
383                         else if (i == rx_ring->next_to_clean)
384                                 printk(KERN_CONT " NTC\n");
385                         else
386                                 printk(KERN_CONT "\n");
387                 }
388                 break;
389         default:
390         case 0:
391                 /* Legacy Receive Descriptor Format
392                  *
393                  * +-----------------------------------------------------+
394                  * |                Buffer Address [63:0]                |
395                  * +-----------------------------------------------------+
396                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
397                  * +-----------------------------------------------------+
398                  * 63       48 47    40 39      32 31         16 15      0
399                  */
400                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
401                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
402                         "<-- Legacy format\n");
403                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
404                         rx_desc = E1000_RX_DESC(*rx_ring, i);
405                         buffer_info = &rx_ring->buffer_info[i];
406                         u0 = (struct my_u0 *)rx_desc;
407                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
408                                 "%016llX %p",
409                                 i, le64_to_cpu(u0->a), le64_to_cpu(u0->b),
410                                 (u64)buffer_info->dma, buffer_info->skb);
411                         if (i == rx_ring->next_to_use)
412                                 printk(KERN_CONT " NTU\n");
413                         else if (i == rx_ring->next_to_clean)
414                                 printk(KERN_CONT " NTC\n");
415                         else
416                                 printk(KERN_CONT "\n");
417
418                         if (netif_msg_pktdata(adapter))
419                                 print_hex_dump(KERN_INFO, "",
420                                         DUMP_PREFIX_ADDRESS,
421                                         16, 1, phys_to_virt(buffer_info->dma),
422                                         adapter->rx_buffer_len, true);
423                 }
424         }
425
426 exit:
427         return;
428 }
429
430 /**
431  * e1000_desc_unused - calculate if we have unused descriptors
432  **/
433 static int e1000_desc_unused(struct e1000_ring *ring)
434 {
435         if (ring->next_to_clean > ring->next_to_use)
436                 return ring->next_to_clean - ring->next_to_use - 1;
437
438         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
439 }
440
441 /**
442  * e1000_receive_skb - helper function to handle Rx indications
443  * @adapter: board private structure
444  * @status: descriptor status field as written by hardware
445  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
446  * @skb: pointer to sk_buff to be indicated to stack
447  **/
448 static void e1000_receive_skb(struct e1000_adapter *adapter,
449                               struct net_device *netdev,
450                               struct sk_buff *skb,
451                               u8 status, __le16 vlan)
452 {
453         skb->protocol = eth_type_trans(skb, netdev);
454
455         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
456                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
457                                  le16_to_cpu(vlan), skb);
458         else
459                 napi_gro_receive(&adapter->napi, skb);
460 }
461
462 /**
463  * e1000_rx_checksum - Receive Checksum Offload for 82543
464  * @adapter:     board private structure
465  * @status_err:  receive descriptor status and error fields
466  * @csum:       receive descriptor csum field
467  * @sk_buff:     socket buffer with received data
468  **/
469 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
470                               u32 csum, struct sk_buff *skb)
471 {
472         u16 status = (u16)status_err;
473         u8 errors = (u8)(status_err >> 24);
474         skb->ip_summed = CHECKSUM_NONE;
475
476         /* Ignore Checksum bit is set */
477         if (status & E1000_RXD_STAT_IXSM)
478                 return;
479         /* TCP/UDP checksum error bit is set */
480         if (errors & E1000_RXD_ERR_TCPE) {
481                 /* let the stack verify checksum errors */
482                 adapter->hw_csum_err++;
483                 return;
484         }
485
486         /* TCP/UDP Checksum has not been calculated */
487         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
488                 return;
489
490         /* It must be a TCP or UDP packet with a valid checksum */
491         if (status & E1000_RXD_STAT_TCPCS) {
492                 /* TCP checksum is good */
493                 skb->ip_summed = CHECKSUM_UNNECESSARY;
494         } else {
495                 /*
496                  * IP fragment with UDP payload
497                  * Hardware complements the payload checksum, so we undo it
498                  * and then put the value in host order for further stack use.
499                  */
500                 __sum16 sum = (__force __sum16)htons(csum);
501                 skb->csum = csum_unfold(~sum);
502                 skb->ip_summed = CHECKSUM_COMPLETE;
503         }
504         adapter->hw_csum_good++;
505 }
506
507 /**
508  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
509  * @adapter: address of board private structure
510  **/
511 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
512                                    int cleaned_count)
513 {
514         struct net_device *netdev = adapter->netdev;
515         struct pci_dev *pdev = adapter->pdev;
516         struct e1000_ring *rx_ring = adapter->rx_ring;
517         struct e1000_rx_desc *rx_desc;
518         struct e1000_buffer *buffer_info;
519         struct sk_buff *skb;
520         unsigned int i;
521         unsigned int bufsz = adapter->rx_buffer_len;
522
523         i = rx_ring->next_to_use;
524         buffer_info = &rx_ring->buffer_info[i];
525
526         while (cleaned_count--) {
527                 skb = buffer_info->skb;
528                 if (skb) {
529                         skb_trim(skb, 0);
530                         goto map_skb;
531                 }
532
533                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
534                 if (!skb) {
535                         /* Better luck next round */
536                         adapter->alloc_rx_buff_failed++;
537                         break;
538                 }
539
540                 buffer_info->skb = skb;
541 map_skb:
542                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
543                                                   adapter->rx_buffer_len,
544                                                   DMA_FROM_DEVICE);
545                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
546                         dev_err(&pdev->dev, "RX DMA map failed\n");
547                         adapter->rx_dma_failed++;
548                         break;
549                 }
550
551                 rx_desc = E1000_RX_DESC(*rx_ring, i);
552                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
553
554                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
555                         /*
556                          * Force memory writes to complete before letting h/w
557                          * know there are new descriptors to fetch.  (Only
558                          * applicable for weak-ordered memory model archs,
559                          * such as IA-64).
560                          */
561                         wmb();
562                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
563                 }
564                 i++;
565                 if (i == rx_ring->count)
566                         i = 0;
567                 buffer_info = &rx_ring->buffer_info[i];
568         }
569
570         rx_ring->next_to_use = i;
571 }
572
573 /**
574  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
575  * @adapter: address of board private structure
576  **/
577 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
578                                       int cleaned_count)
579 {
580         struct net_device *netdev = adapter->netdev;
581         struct pci_dev *pdev = adapter->pdev;
582         union e1000_rx_desc_packet_split *rx_desc;
583         struct e1000_ring *rx_ring = adapter->rx_ring;
584         struct e1000_buffer *buffer_info;
585         struct e1000_ps_page *ps_page;
586         struct sk_buff *skb;
587         unsigned int i, j;
588
589         i = rx_ring->next_to_use;
590         buffer_info = &rx_ring->buffer_info[i];
591
592         while (cleaned_count--) {
593                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
594
595                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
596                         ps_page = &buffer_info->ps_pages[j];
597                         if (j >= adapter->rx_ps_pages) {
598                                 /* all unused desc entries get hw null ptr */
599                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
600                                 continue;
601                         }
602                         if (!ps_page->page) {
603                                 ps_page->page = alloc_page(GFP_ATOMIC);
604                                 if (!ps_page->page) {
605                                         adapter->alloc_rx_buff_failed++;
606                                         goto no_buffers;
607                                 }
608                                 ps_page->dma = dma_map_page(&pdev->dev,
609                                                             ps_page->page,
610                                                             0, PAGE_SIZE,
611                                                             DMA_FROM_DEVICE);
612                                 if (dma_mapping_error(&pdev->dev,
613                                                       ps_page->dma)) {
614                                         dev_err(&adapter->pdev->dev,
615                                           "RX DMA page map failed\n");
616                                         adapter->rx_dma_failed++;
617                                         goto no_buffers;
618                                 }
619                         }
620                         /*
621                          * Refresh the desc even if buffer_addrs
622                          * didn't change because each write-back
623                          * erases this info.
624                          */
625                         rx_desc->read.buffer_addr[j+1] =
626                              cpu_to_le64(ps_page->dma);
627                 }
628
629                 skb = netdev_alloc_skb_ip_align(netdev,
630                                                 adapter->rx_ps_bsize0);
631
632                 if (!skb) {
633                         adapter->alloc_rx_buff_failed++;
634                         break;
635                 }
636
637                 buffer_info->skb = skb;
638                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
639                                                   adapter->rx_ps_bsize0,
640                                                   DMA_FROM_DEVICE);
641                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
642                         dev_err(&pdev->dev, "RX DMA map failed\n");
643                         adapter->rx_dma_failed++;
644                         /* cleanup skb */
645                         dev_kfree_skb_any(skb);
646                         buffer_info->skb = NULL;
647                         break;
648                 }
649
650                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
651
652                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
653                         /*
654                          * Force memory writes to complete before letting h/w
655                          * know there are new descriptors to fetch.  (Only
656                          * applicable for weak-ordered memory model archs,
657                          * such as IA-64).
658                          */
659                         wmb();
660                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
661                 }
662
663                 i++;
664                 if (i == rx_ring->count)
665                         i = 0;
666                 buffer_info = &rx_ring->buffer_info[i];
667         }
668
669 no_buffers:
670         rx_ring->next_to_use = i;
671 }
672
673 /**
674  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
675  * @adapter: address of board private structure
676  * @cleaned_count: number of buffers to allocate this pass
677  **/
678
679 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
680                                          int cleaned_count)
681 {
682         struct net_device *netdev = adapter->netdev;
683         struct pci_dev *pdev = adapter->pdev;
684         struct e1000_rx_desc *rx_desc;
685         struct e1000_ring *rx_ring = adapter->rx_ring;
686         struct e1000_buffer *buffer_info;
687         struct sk_buff *skb;
688         unsigned int i;
689         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
690
691         i = rx_ring->next_to_use;
692         buffer_info = &rx_ring->buffer_info[i];
693
694         while (cleaned_count--) {
695                 skb = buffer_info->skb;
696                 if (skb) {
697                         skb_trim(skb, 0);
698                         goto check_page;
699                 }
700
701                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
702                 if (unlikely(!skb)) {
703                         /* Better luck next round */
704                         adapter->alloc_rx_buff_failed++;
705                         break;
706                 }
707
708                 buffer_info->skb = skb;
709 check_page:
710                 /* allocate a new page if necessary */
711                 if (!buffer_info->page) {
712                         buffer_info->page = alloc_page(GFP_ATOMIC);
713                         if (unlikely(!buffer_info->page)) {
714                                 adapter->alloc_rx_buff_failed++;
715                                 break;
716                         }
717                 }
718
719                 if (!buffer_info->dma)
720                         buffer_info->dma = dma_map_page(&pdev->dev,
721                                                         buffer_info->page, 0,
722                                                         PAGE_SIZE,
723                                                         DMA_FROM_DEVICE);
724
725                 rx_desc = E1000_RX_DESC(*rx_ring, i);
726                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
727
728                 if (unlikely(++i == rx_ring->count))
729                         i = 0;
730                 buffer_info = &rx_ring->buffer_info[i];
731         }
732
733         if (likely(rx_ring->next_to_use != i)) {
734                 rx_ring->next_to_use = i;
735                 if (unlikely(i-- == 0))
736                         i = (rx_ring->count - 1);
737
738                 /* Force memory writes to complete before letting h/w
739                  * know there are new descriptors to fetch.  (Only
740                  * applicable for weak-ordered memory model archs,
741                  * such as IA-64). */
742                 wmb();
743                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
744         }
745 }
746
747 /**
748  * e1000_clean_rx_irq - Send received data up the network stack; legacy
749  * @adapter: board private structure
750  *
751  * the return value indicates whether actual cleaning was done, there
752  * is no guarantee that everything was cleaned
753  **/
754 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
755                                int *work_done, int work_to_do)
756 {
757         struct net_device *netdev = adapter->netdev;
758         struct pci_dev *pdev = adapter->pdev;
759         struct e1000_hw *hw = &adapter->hw;
760         struct e1000_ring *rx_ring = adapter->rx_ring;
761         struct e1000_rx_desc *rx_desc, *next_rxd;
762         struct e1000_buffer *buffer_info, *next_buffer;
763         u32 length;
764         unsigned int i;
765         int cleaned_count = 0;
766         bool cleaned = 0;
767         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
768
769         i = rx_ring->next_to_clean;
770         rx_desc = E1000_RX_DESC(*rx_ring, i);
771         buffer_info = &rx_ring->buffer_info[i];
772
773         while (rx_desc->status & E1000_RXD_STAT_DD) {
774                 struct sk_buff *skb;
775                 u8 status;
776
777                 if (*work_done >= work_to_do)
778                         break;
779                 (*work_done)++;
780
781                 status = rx_desc->status;
782                 skb = buffer_info->skb;
783                 buffer_info->skb = NULL;
784
785                 prefetch(skb->data - NET_IP_ALIGN);
786
787                 i++;
788                 if (i == rx_ring->count)
789                         i = 0;
790                 next_rxd = E1000_RX_DESC(*rx_ring, i);
791                 prefetch(next_rxd);
792
793                 next_buffer = &rx_ring->buffer_info[i];
794
795                 cleaned = 1;
796                 cleaned_count++;
797                 dma_unmap_single(&pdev->dev,
798                                  buffer_info->dma,
799                                  adapter->rx_buffer_len,
800                                  DMA_FROM_DEVICE);
801                 buffer_info->dma = 0;
802
803                 length = le16_to_cpu(rx_desc->length);
804
805                 /*
806                  * !EOP means multiple descriptors were used to store a single
807                  * packet, if that's the case we need to toss it.  In fact, we
808                  * need to toss every packet with the EOP bit clear and the
809                  * next frame that _does_ have the EOP bit set, as it is by
810                  * definition only a frame fragment
811                  */
812                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
813                         adapter->flags2 |= FLAG2_IS_DISCARDING;
814
815                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
816                         /* All receives must fit into a single buffer */
817                         e_dbg("Receive packet consumed multiple buffers\n");
818                         /* recycle */
819                         buffer_info->skb = skb;
820                         if (status & E1000_RXD_STAT_EOP)
821                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
822                         goto next_desc;
823                 }
824
825                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
826                         /* recycle */
827                         buffer_info->skb = skb;
828                         goto next_desc;
829                 }
830
831                 /* adjust length to remove Ethernet CRC */
832                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
833                         length -= 4;
834
835                 total_rx_bytes += length;
836                 total_rx_packets++;
837
838                 /*
839                  * code added for copybreak, this should improve
840                  * performance for small packets with large amounts
841                  * of reassembly being done in the stack
842                  */
843                 if (length < copybreak) {
844                         struct sk_buff *new_skb =
845                             netdev_alloc_skb_ip_align(netdev, length);
846                         if (new_skb) {
847                                 skb_copy_to_linear_data_offset(new_skb,
848                                                                -NET_IP_ALIGN,
849                                                                (skb->data -
850                                                                 NET_IP_ALIGN),
851                                                                (length +
852                                                                 NET_IP_ALIGN));
853                                 /* save the skb in buffer_info as good */
854                                 buffer_info->skb = skb;
855                                 skb = new_skb;
856                         }
857                         /* else just continue with the old one */
858                 }
859                 /* end copybreak code */
860                 skb_put(skb, length);
861
862                 /* Receive Checksum Offload */
863                 e1000_rx_checksum(adapter,
864                                   (u32)(status) |
865                                   ((u32)(rx_desc->errors) << 24),
866                                   le16_to_cpu(rx_desc->csum), skb);
867
868                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
869
870 next_desc:
871                 rx_desc->status = 0;
872
873                 /* return some buffers to hardware, one at a time is too slow */
874                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
875                         adapter->alloc_rx_buf(adapter, cleaned_count);
876                         cleaned_count = 0;
877                 }
878
879                 /* use prefetched values */
880                 rx_desc = next_rxd;
881                 buffer_info = next_buffer;
882         }
883         rx_ring->next_to_clean = i;
884
885         cleaned_count = e1000_desc_unused(rx_ring);
886         if (cleaned_count)
887                 adapter->alloc_rx_buf(adapter, cleaned_count);
888
889         adapter->total_rx_bytes += total_rx_bytes;
890         adapter->total_rx_packets += total_rx_packets;
891         netdev->stats.rx_bytes += total_rx_bytes;
892         netdev->stats.rx_packets += total_rx_packets;
893         return cleaned;
894 }
895
896 static void e1000_put_txbuf(struct e1000_adapter *adapter,
897                              struct e1000_buffer *buffer_info)
898 {
899         if (buffer_info->dma) {
900                 if (buffer_info->mapped_as_page)
901                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
902                                        buffer_info->length, DMA_TO_DEVICE);
903                 else
904                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
905                                          buffer_info->length, DMA_TO_DEVICE);
906                 buffer_info->dma = 0;
907         }
908         if (buffer_info->skb) {
909                 dev_kfree_skb_any(buffer_info->skb);
910                 buffer_info->skb = NULL;
911         }
912         buffer_info->time_stamp = 0;
913 }
914
915 static void e1000_print_hw_hang(struct work_struct *work)
916 {
917         struct e1000_adapter *adapter = container_of(work,
918                                                      struct e1000_adapter,
919                                                      print_hang_task);
920         struct e1000_ring *tx_ring = adapter->tx_ring;
921         unsigned int i = tx_ring->next_to_clean;
922         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
923         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
924         struct e1000_hw *hw = &adapter->hw;
925         u16 phy_status, phy_1000t_status, phy_ext_status;
926         u16 pci_status;
927
928         e1e_rphy(hw, PHY_STATUS, &phy_status);
929         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
930         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
931
932         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
933
934         /* detected Hardware unit hang */
935         e_err("Detected Hardware Unit Hang:\n"
936               "  TDH                  <%x>\n"
937               "  TDT                  <%x>\n"
938               "  next_to_use          <%x>\n"
939               "  next_to_clean        <%x>\n"
940               "buffer_info[next_to_clean]:\n"
941               "  time_stamp           <%lx>\n"
942               "  next_to_watch        <%x>\n"
943               "  jiffies              <%lx>\n"
944               "  next_to_watch.status <%x>\n"
945               "MAC Status             <%x>\n"
946               "PHY Status             <%x>\n"
947               "PHY 1000BASE-T Status  <%x>\n"
948               "PHY Extended Status    <%x>\n"
949               "PCI Status             <%x>\n",
950               readl(adapter->hw.hw_addr + tx_ring->head),
951               readl(adapter->hw.hw_addr + tx_ring->tail),
952               tx_ring->next_to_use,
953               tx_ring->next_to_clean,
954               tx_ring->buffer_info[eop].time_stamp,
955               eop,
956               jiffies,
957               eop_desc->upper.fields.status,
958               er32(STATUS),
959               phy_status,
960               phy_1000t_status,
961               phy_ext_status,
962               pci_status);
963 }
964
965 /**
966  * e1000_clean_tx_irq - Reclaim resources after transmit completes
967  * @adapter: board private structure
968  *
969  * the return value indicates whether actual cleaning was done, there
970  * is no guarantee that everything was cleaned
971  **/
972 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
973 {
974         struct net_device *netdev = adapter->netdev;
975         struct e1000_hw *hw = &adapter->hw;
976         struct e1000_ring *tx_ring = adapter->tx_ring;
977         struct e1000_tx_desc *tx_desc, *eop_desc;
978         struct e1000_buffer *buffer_info;
979         unsigned int i, eop;
980         unsigned int count = 0;
981         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
982
983         i = tx_ring->next_to_clean;
984         eop = tx_ring->buffer_info[i].next_to_watch;
985         eop_desc = E1000_TX_DESC(*tx_ring, eop);
986
987         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
988                (count < tx_ring->count)) {
989                 bool cleaned = false;
990                 for (; !cleaned; count++) {
991                         tx_desc = E1000_TX_DESC(*tx_ring, i);
992                         buffer_info = &tx_ring->buffer_info[i];
993                         cleaned = (i == eop);
994
995                         if (cleaned) {
996                                 total_tx_packets += buffer_info->segs;
997                                 total_tx_bytes += buffer_info->bytecount;
998                         }
999
1000                         e1000_put_txbuf(adapter, buffer_info);
1001                         tx_desc->upper.data = 0;
1002
1003                         i++;
1004                         if (i == tx_ring->count)
1005                                 i = 0;
1006                 }
1007
1008                 if (i == tx_ring->next_to_use)
1009                         break;
1010                 eop = tx_ring->buffer_info[i].next_to_watch;
1011                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1012         }
1013
1014         tx_ring->next_to_clean = i;
1015
1016 #define TX_WAKE_THRESHOLD 32
1017         if (count && netif_carrier_ok(netdev) &&
1018             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1019                 /* Make sure that anybody stopping the queue after this
1020                  * sees the new next_to_clean.
1021                  */
1022                 smp_mb();
1023
1024                 if (netif_queue_stopped(netdev) &&
1025                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1026                         netif_wake_queue(netdev);
1027                         ++adapter->restart_queue;
1028                 }
1029         }
1030
1031         if (adapter->detect_tx_hung) {
1032                 /*
1033                  * Detect a transmit hang in hardware, this serializes the
1034                  * check with the clearing of time_stamp and movement of i
1035                  */
1036                 adapter->detect_tx_hung = 0;
1037                 if (tx_ring->buffer_info[i].time_stamp &&
1038                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1039                                + (adapter->tx_timeout_factor * HZ)) &&
1040                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1041                         schedule_work(&adapter->print_hang_task);
1042                         netif_stop_queue(netdev);
1043                 }
1044         }
1045         adapter->total_tx_bytes += total_tx_bytes;
1046         adapter->total_tx_packets += total_tx_packets;
1047         netdev->stats.tx_bytes += total_tx_bytes;
1048         netdev->stats.tx_packets += total_tx_packets;
1049         return (count < tx_ring->count);
1050 }
1051
1052 /**
1053  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1054  * @adapter: board private structure
1055  *
1056  * the return value indicates whether actual cleaning was done, there
1057  * is no guarantee that everything was cleaned
1058  **/
1059 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1060                                   int *work_done, int work_to_do)
1061 {
1062         struct e1000_hw *hw = &adapter->hw;
1063         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1064         struct net_device *netdev = adapter->netdev;
1065         struct pci_dev *pdev = adapter->pdev;
1066         struct e1000_ring *rx_ring = adapter->rx_ring;
1067         struct e1000_buffer *buffer_info, *next_buffer;
1068         struct e1000_ps_page *ps_page;
1069         struct sk_buff *skb;
1070         unsigned int i, j;
1071         u32 length, staterr;
1072         int cleaned_count = 0;
1073         bool cleaned = 0;
1074         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1075
1076         i = rx_ring->next_to_clean;
1077         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1078         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1079         buffer_info = &rx_ring->buffer_info[i];
1080
1081         while (staterr & E1000_RXD_STAT_DD) {
1082                 if (*work_done >= work_to_do)
1083                         break;
1084                 (*work_done)++;
1085                 skb = buffer_info->skb;
1086
1087                 /* in the packet split case this is header only */
1088                 prefetch(skb->data - NET_IP_ALIGN);
1089
1090                 i++;
1091                 if (i == rx_ring->count)
1092                         i = 0;
1093                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1094                 prefetch(next_rxd);
1095
1096                 next_buffer = &rx_ring->buffer_info[i];
1097
1098                 cleaned = 1;
1099                 cleaned_count++;
1100                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1101                                  adapter->rx_ps_bsize0,
1102                                  DMA_FROM_DEVICE);
1103                 buffer_info->dma = 0;
1104
1105                 /* see !EOP comment in other rx routine */
1106                 if (!(staterr & E1000_RXD_STAT_EOP))
1107                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1108
1109                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1110                         e_dbg("Packet Split buffers didn't pick up the full "
1111                               "packet\n");
1112                         dev_kfree_skb_irq(skb);
1113                         if (staterr & E1000_RXD_STAT_EOP)
1114                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1115                         goto next_desc;
1116                 }
1117
1118                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1119                         dev_kfree_skb_irq(skb);
1120                         goto next_desc;
1121                 }
1122
1123                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1124
1125                 if (!length) {
1126                         e_dbg("Last part of the packet spanning multiple "
1127                               "descriptors\n");
1128                         dev_kfree_skb_irq(skb);
1129                         goto next_desc;
1130                 }
1131
1132                 /* Good Receive */
1133                 skb_put(skb, length);
1134
1135                 {
1136                 /*
1137                  * this looks ugly, but it seems compiler issues make it
1138                  * more efficient than reusing j
1139                  */
1140                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1141
1142                 /*
1143                  * page alloc/put takes too long and effects small packet
1144                  * throughput, so unsplit small packets and save the alloc/put
1145                  * only valid in softirq (napi) context to call kmap_*
1146                  */
1147                 if (l1 && (l1 <= copybreak) &&
1148                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1149                         u8 *vaddr;
1150
1151                         ps_page = &buffer_info->ps_pages[0];
1152
1153                         /*
1154                          * there is no documentation about how to call
1155                          * kmap_atomic, so we can't hold the mapping
1156                          * very long
1157                          */
1158                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1159                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1160                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1161                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1162                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1163                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1164                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1165
1166                         /* remove the CRC */
1167                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1168                                 l1 -= 4;
1169
1170                         skb_put(skb, l1);
1171                         goto copydone;
1172                 } /* if */
1173                 }
1174
1175                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1176                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1177                         if (!length)
1178                                 break;
1179
1180                         ps_page = &buffer_info->ps_pages[j];
1181                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1182                                        DMA_FROM_DEVICE);
1183                         ps_page->dma = 0;
1184                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1185                         ps_page->page = NULL;
1186                         skb->len += length;
1187                         skb->data_len += length;
1188                         skb->truesize += length;
1189                 }
1190
1191                 /* strip the ethernet crc, problem is we're using pages now so
1192                  * this whole operation can get a little cpu intensive
1193                  */
1194                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1195                         pskb_trim(skb, skb->len - 4);
1196
1197 copydone:
1198                 total_rx_bytes += skb->len;
1199                 total_rx_packets++;
1200
1201                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1202                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1203
1204                 if (rx_desc->wb.upper.header_status &
1205                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1206                         adapter->rx_hdr_split++;
1207
1208                 e1000_receive_skb(adapter, netdev, skb,
1209                                   staterr, rx_desc->wb.middle.vlan);
1210
1211 next_desc:
1212                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1213                 buffer_info->skb = NULL;
1214
1215                 /* return some buffers to hardware, one at a time is too slow */
1216                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1217                         adapter->alloc_rx_buf(adapter, cleaned_count);
1218                         cleaned_count = 0;
1219                 }
1220
1221                 /* use prefetched values */
1222                 rx_desc = next_rxd;
1223                 buffer_info = next_buffer;
1224
1225                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1226         }
1227         rx_ring->next_to_clean = i;
1228
1229         cleaned_count = e1000_desc_unused(rx_ring);
1230         if (cleaned_count)
1231                 adapter->alloc_rx_buf(adapter, cleaned_count);
1232
1233         adapter->total_rx_bytes += total_rx_bytes;
1234         adapter->total_rx_packets += total_rx_packets;
1235         netdev->stats.rx_bytes += total_rx_bytes;
1236         netdev->stats.rx_packets += total_rx_packets;
1237         return cleaned;
1238 }
1239
1240 /**
1241  * e1000_consume_page - helper function
1242  **/
1243 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1244                                u16 length)
1245 {
1246         bi->page = NULL;
1247         skb->len += length;
1248         skb->data_len += length;
1249         skb->truesize += length;
1250 }
1251
1252 /**
1253  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1254  * @adapter: board private structure
1255  *
1256  * the return value indicates whether actual cleaning was done, there
1257  * is no guarantee that everything was cleaned
1258  **/
1259
1260 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1261                                      int *work_done, int work_to_do)
1262 {
1263         struct net_device *netdev = adapter->netdev;
1264         struct pci_dev *pdev = adapter->pdev;
1265         struct e1000_ring *rx_ring = adapter->rx_ring;
1266         struct e1000_rx_desc *rx_desc, *next_rxd;
1267         struct e1000_buffer *buffer_info, *next_buffer;
1268         u32 length;
1269         unsigned int i;
1270         int cleaned_count = 0;
1271         bool cleaned = false;
1272         unsigned int total_rx_bytes=0, total_rx_packets=0;
1273
1274         i = rx_ring->next_to_clean;
1275         rx_desc = E1000_RX_DESC(*rx_ring, i);
1276         buffer_info = &rx_ring->buffer_info[i];
1277
1278         while (rx_desc->status & E1000_RXD_STAT_DD) {
1279                 struct sk_buff *skb;
1280                 u8 status;
1281
1282                 if (*work_done >= work_to_do)
1283                         break;
1284                 (*work_done)++;
1285
1286                 status = rx_desc->status;
1287                 skb = buffer_info->skb;
1288                 buffer_info->skb = NULL;
1289
1290                 ++i;
1291                 if (i == rx_ring->count)
1292                         i = 0;
1293                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1294                 prefetch(next_rxd);
1295
1296                 next_buffer = &rx_ring->buffer_info[i];
1297
1298                 cleaned = true;
1299                 cleaned_count++;
1300                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1301                                DMA_FROM_DEVICE);
1302                 buffer_info->dma = 0;
1303
1304                 length = le16_to_cpu(rx_desc->length);
1305
1306                 /* errors is only valid for DD + EOP descriptors */
1307                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1308                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1309                                 /* recycle both page and skb */
1310                                 buffer_info->skb = skb;
1311                                 /* an error means any chain goes out the window
1312                                  * too */
1313                                 if (rx_ring->rx_skb_top)
1314                                         dev_kfree_skb(rx_ring->rx_skb_top);
1315                                 rx_ring->rx_skb_top = NULL;
1316                                 goto next_desc;
1317                 }
1318
1319 #define rxtop rx_ring->rx_skb_top
1320                 if (!(status & E1000_RXD_STAT_EOP)) {
1321                         /* this descriptor is only the beginning (or middle) */
1322                         if (!rxtop) {
1323                                 /* this is the beginning of a chain */
1324                                 rxtop = skb;
1325                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1326                                                    0, length);
1327                         } else {
1328                                 /* this is the middle of a chain */
1329                                 skb_fill_page_desc(rxtop,
1330                                     skb_shinfo(rxtop)->nr_frags,
1331                                     buffer_info->page, 0, length);
1332                                 /* re-use the skb, only consumed the page */
1333                                 buffer_info->skb = skb;
1334                         }
1335                         e1000_consume_page(buffer_info, rxtop, length);
1336                         goto next_desc;
1337                 } else {
1338                         if (rxtop) {
1339                                 /* end of the chain */
1340                                 skb_fill_page_desc(rxtop,
1341                                     skb_shinfo(rxtop)->nr_frags,
1342                                     buffer_info->page, 0, length);
1343                                 /* re-use the current skb, we only consumed the
1344                                  * page */
1345                                 buffer_info->skb = skb;
1346                                 skb = rxtop;
1347                                 rxtop = NULL;
1348                                 e1000_consume_page(buffer_info, skb, length);
1349                         } else {
1350                                 /* no chain, got EOP, this buf is the packet
1351                                  * copybreak to save the put_page/alloc_page */
1352                                 if (length <= copybreak &&
1353                                     skb_tailroom(skb) >= length) {
1354                                         u8 *vaddr;
1355                                         vaddr = kmap_atomic(buffer_info->page,
1356                                                            KM_SKB_DATA_SOFTIRQ);
1357                                         memcpy(skb_tail_pointer(skb), vaddr,
1358                                                length);
1359                                         kunmap_atomic(vaddr,
1360                                                       KM_SKB_DATA_SOFTIRQ);
1361                                         /* re-use the page, so don't erase
1362                                          * buffer_info->page */
1363                                         skb_put(skb, length);
1364                                 } else {
1365                                         skb_fill_page_desc(skb, 0,
1366                                                            buffer_info->page, 0,
1367                                                            length);
1368                                         e1000_consume_page(buffer_info, skb,
1369                                                            length);
1370                                 }
1371                         }
1372                 }
1373
1374                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1375                 e1000_rx_checksum(adapter,
1376                                   (u32)(status) |
1377                                   ((u32)(rx_desc->errors) << 24),
1378                                   le16_to_cpu(rx_desc->csum), skb);
1379
1380                 /* probably a little skewed due to removing CRC */
1381                 total_rx_bytes += skb->len;
1382                 total_rx_packets++;
1383
1384                 /* eth type trans needs skb->data to point to something */
1385                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1386                         e_err("pskb_may_pull failed.\n");
1387                         dev_kfree_skb(skb);
1388                         goto next_desc;
1389                 }
1390
1391                 e1000_receive_skb(adapter, netdev, skb, status,
1392                                   rx_desc->special);
1393
1394 next_desc:
1395                 rx_desc->status = 0;
1396
1397                 /* return some buffers to hardware, one at a time is too slow */
1398                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1399                         adapter->alloc_rx_buf(adapter, cleaned_count);
1400                         cleaned_count = 0;
1401                 }
1402
1403                 /* use prefetched values */
1404                 rx_desc = next_rxd;
1405                 buffer_info = next_buffer;
1406         }
1407         rx_ring->next_to_clean = i;
1408
1409         cleaned_count = e1000_desc_unused(rx_ring);
1410         if (cleaned_count)
1411                 adapter->alloc_rx_buf(adapter, cleaned_count);
1412
1413         adapter->total_rx_bytes += total_rx_bytes;
1414         adapter->total_rx_packets += total_rx_packets;
1415         netdev->stats.rx_bytes += total_rx_bytes;
1416         netdev->stats.rx_packets += total_rx_packets;
1417         return cleaned;
1418 }
1419
1420 /**
1421  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1422  * @adapter: board private structure
1423  **/
1424 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1425 {
1426         struct e1000_ring *rx_ring = adapter->rx_ring;
1427         struct e1000_buffer *buffer_info;
1428         struct e1000_ps_page *ps_page;
1429         struct pci_dev *pdev = adapter->pdev;
1430         unsigned int i, j;
1431
1432         /* Free all the Rx ring sk_buffs */
1433         for (i = 0; i < rx_ring->count; i++) {
1434                 buffer_info = &rx_ring->buffer_info[i];
1435                 if (buffer_info->dma) {
1436                         if (adapter->clean_rx == e1000_clean_rx_irq)
1437                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1438                                                  adapter->rx_buffer_len,
1439                                                  DMA_FROM_DEVICE);
1440                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1441                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1442                                                PAGE_SIZE,
1443                                                DMA_FROM_DEVICE);
1444                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1445                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1446                                                  adapter->rx_ps_bsize0,
1447                                                  DMA_FROM_DEVICE);
1448                         buffer_info->dma = 0;
1449                 }
1450
1451                 if (buffer_info->page) {
1452                         put_page(buffer_info->page);
1453                         buffer_info->page = NULL;
1454                 }
1455
1456                 if (buffer_info->skb) {
1457                         dev_kfree_skb(buffer_info->skb);
1458                         buffer_info->skb = NULL;
1459                 }
1460
1461                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1462                         ps_page = &buffer_info->ps_pages[j];
1463                         if (!ps_page->page)
1464                                 break;
1465                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1466                                        DMA_FROM_DEVICE);
1467                         ps_page->dma = 0;
1468                         put_page(ps_page->page);
1469                         ps_page->page = NULL;
1470                 }
1471         }
1472
1473         /* there also may be some cached data from a chained receive */
1474         if (rx_ring->rx_skb_top) {
1475                 dev_kfree_skb(rx_ring->rx_skb_top);
1476                 rx_ring->rx_skb_top = NULL;
1477         }
1478
1479         /* Zero out the descriptor ring */
1480         memset(rx_ring->desc, 0, rx_ring->size);
1481
1482         rx_ring->next_to_clean = 0;
1483         rx_ring->next_to_use = 0;
1484         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1485
1486         writel(0, adapter->hw.hw_addr + rx_ring->head);
1487         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1488 }
1489
1490 static void e1000e_downshift_workaround(struct work_struct *work)
1491 {
1492         struct e1000_adapter *adapter = container_of(work,
1493                                         struct e1000_adapter, downshift_task);
1494
1495         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1496 }
1497
1498 /**
1499  * e1000_intr_msi - Interrupt Handler
1500  * @irq: interrupt number
1501  * @data: pointer to a network interface device structure
1502  **/
1503 static irqreturn_t e1000_intr_msi(int irq, void *data)
1504 {
1505         struct net_device *netdev = data;
1506         struct e1000_adapter *adapter = netdev_priv(netdev);
1507         struct e1000_hw *hw = &adapter->hw;
1508         u32 icr = er32(ICR);
1509
1510         /*
1511          * read ICR disables interrupts using IAM
1512          */
1513
1514         if (icr & E1000_ICR_LSC) {
1515                 hw->mac.get_link_status = 1;
1516                 /*
1517                  * ICH8 workaround-- Call gig speed drop workaround on cable
1518                  * disconnect (LSC) before accessing any PHY registers
1519                  */
1520                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1521                     (!(er32(STATUS) & E1000_STATUS_LU)))
1522                         schedule_work(&adapter->downshift_task);
1523
1524                 /*
1525                  * 80003ES2LAN workaround-- For packet buffer work-around on
1526                  * link down event; disable receives here in the ISR and reset
1527                  * adapter in watchdog
1528                  */
1529                 if (netif_carrier_ok(netdev) &&
1530                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1531                         /* disable receives */
1532                         u32 rctl = er32(RCTL);
1533                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1534                         adapter->flags |= FLAG_RX_RESTART_NOW;
1535                 }
1536                 /* guard against interrupt when we're going down */
1537                 if (!test_bit(__E1000_DOWN, &adapter->state))
1538                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1539         }
1540
1541         if (napi_schedule_prep(&adapter->napi)) {
1542                 adapter->total_tx_bytes = 0;
1543                 adapter->total_tx_packets = 0;
1544                 adapter->total_rx_bytes = 0;
1545                 adapter->total_rx_packets = 0;
1546                 __napi_schedule(&adapter->napi);
1547         }
1548
1549         return IRQ_HANDLED;
1550 }
1551
1552 /**
1553  * e1000_intr - Interrupt Handler
1554  * @irq: interrupt number
1555  * @data: pointer to a network interface device structure
1556  **/
1557 static irqreturn_t e1000_intr(int irq, void *data)
1558 {
1559         struct net_device *netdev = data;
1560         struct e1000_adapter *adapter = netdev_priv(netdev);
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 rctl, icr = er32(ICR);
1563
1564         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1565                 return IRQ_NONE;  /* Not our interrupt */
1566
1567         /*
1568          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1569          * not set, then the adapter didn't send an interrupt
1570          */
1571         if (!(icr & E1000_ICR_INT_ASSERTED))
1572                 return IRQ_NONE;
1573
1574         /*
1575          * Interrupt Auto-Mask...upon reading ICR,
1576          * interrupts are masked.  No need for the
1577          * IMC write
1578          */
1579
1580         if (icr & E1000_ICR_LSC) {
1581                 hw->mac.get_link_status = 1;
1582                 /*
1583                  * ICH8 workaround-- Call gig speed drop workaround on cable
1584                  * disconnect (LSC) before accessing any PHY registers
1585                  */
1586                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1587                     (!(er32(STATUS) & E1000_STATUS_LU)))
1588                         schedule_work(&adapter->downshift_task);
1589
1590                 /*
1591                  * 80003ES2LAN workaround--
1592                  * For packet buffer work-around on link down event;
1593                  * disable receives here in the ISR and
1594                  * reset adapter in watchdog
1595                  */
1596                 if (netif_carrier_ok(netdev) &&
1597                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1598                         /* disable receives */
1599                         rctl = er32(RCTL);
1600                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1601                         adapter->flags |= FLAG_RX_RESTART_NOW;
1602                 }
1603                 /* guard against interrupt when we're going down */
1604                 if (!test_bit(__E1000_DOWN, &adapter->state))
1605                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1606         }
1607
1608         if (napi_schedule_prep(&adapter->napi)) {
1609                 adapter->total_tx_bytes = 0;
1610                 adapter->total_tx_packets = 0;
1611                 adapter->total_rx_bytes = 0;
1612                 adapter->total_rx_packets = 0;
1613                 __napi_schedule(&adapter->napi);
1614         }
1615
1616         return IRQ_HANDLED;
1617 }
1618
1619 static irqreturn_t e1000_msix_other(int irq, void *data)
1620 {
1621         struct net_device *netdev = data;
1622         struct e1000_adapter *adapter = netdev_priv(netdev);
1623         struct e1000_hw *hw = &adapter->hw;
1624         u32 icr = er32(ICR);
1625
1626         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1627                 if (!test_bit(__E1000_DOWN, &adapter->state))
1628                         ew32(IMS, E1000_IMS_OTHER);
1629                 return IRQ_NONE;
1630         }
1631
1632         if (icr & adapter->eiac_mask)
1633                 ew32(ICS, (icr & adapter->eiac_mask));
1634
1635         if (icr & E1000_ICR_OTHER) {
1636                 if (!(icr & E1000_ICR_LSC))
1637                         goto no_link_interrupt;
1638                 hw->mac.get_link_status = 1;
1639                 /* guard against interrupt when we're going down */
1640                 if (!test_bit(__E1000_DOWN, &adapter->state))
1641                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1642         }
1643
1644 no_link_interrupt:
1645         if (!test_bit(__E1000_DOWN, &adapter->state))
1646                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1647
1648         return IRQ_HANDLED;
1649 }
1650
1651
1652 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1653 {
1654         struct net_device *netdev = data;
1655         struct e1000_adapter *adapter = netdev_priv(netdev);
1656         struct e1000_hw *hw = &adapter->hw;
1657         struct e1000_ring *tx_ring = adapter->tx_ring;
1658
1659
1660         adapter->total_tx_bytes = 0;
1661         adapter->total_tx_packets = 0;
1662
1663         if (!e1000_clean_tx_irq(adapter))
1664                 /* Ring was not completely cleaned, so fire another interrupt */
1665                 ew32(ICS, tx_ring->ims_val);
1666
1667         return IRQ_HANDLED;
1668 }
1669
1670 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1671 {
1672         struct net_device *netdev = data;
1673         struct e1000_adapter *adapter = netdev_priv(netdev);
1674
1675         /* Write the ITR value calculated at the end of the
1676          * previous interrupt.
1677          */
1678         if (adapter->rx_ring->set_itr) {
1679                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1680                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1681                 adapter->rx_ring->set_itr = 0;
1682         }
1683
1684         if (napi_schedule_prep(&adapter->napi)) {
1685                 adapter->total_rx_bytes = 0;
1686                 adapter->total_rx_packets = 0;
1687                 __napi_schedule(&adapter->napi);
1688         }
1689         return IRQ_HANDLED;
1690 }
1691
1692 /**
1693  * e1000_configure_msix - Configure MSI-X hardware
1694  *
1695  * e1000_configure_msix sets up the hardware to properly
1696  * generate MSI-X interrupts.
1697  **/
1698 static void e1000_configure_msix(struct e1000_adapter *adapter)
1699 {
1700         struct e1000_hw *hw = &adapter->hw;
1701         struct e1000_ring *rx_ring = adapter->rx_ring;
1702         struct e1000_ring *tx_ring = adapter->tx_ring;
1703         int vector = 0;
1704         u32 ctrl_ext, ivar = 0;
1705
1706         adapter->eiac_mask = 0;
1707
1708         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1709         if (hw->mac.type == e1000_82574) {
1710                 u32 rfctl = er32(RFCTL);
1711                 rfctl |= E1000_RFCTL_ACK_DIS;
1712                 ew32(RFCTL, rfctl);
1713         }
1714
1715 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1716         /* Configure Rx vector */
1717         rx_ring->ims_val = E1000_IMS_RXQ0;
1718         adapter->eiac_mask |= rx_ring->ims_val;
1719         if (rx_ring->itr_val)
1720                 writel(1000000000 / (rx_ring->itr_val * 256),
1721                        hw->hw_addr + rx_ring->itr_register);
1722         else
1723                 writel(1, hw->hw_addr + rx_ring->itr_register);
1724         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1725
1726         /* Configure Tx vector */
1727         tx_ring->ims_val = E1000_IMS_TXQ0;
1728         vector++;
1729         if (tx_ring->itr_val)
1730                 writel(1000000000 / (tx_ring->itr_val * 256),
1731                        hw->hw_addr + tx_ring->itr_register);
1732         else
1733                 writel(1, hw->hw_addr + tx_ring->itr_register);
1734         adapter->eiac_mask |= tx_ring->ims_val;
1735         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1736
1737         /* set vector for Other Causes, e.g. link changes */
1738         vector++;
1739         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1740         if (rx_ring->itr_val)
1741                 writel(1000000000 / (rx_ring->itr_val * 256),
1742                        hw->hw_addr + E1000_EITR_82574(vector));
1743         else
1744                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1745
1746         /* Cause Tx interrupts on every write back */
1747         ivar |= (1 << 31);
1748
1749         ew32(IVAR, ivar);
1750
1751         /* enable MSI-X PBA support */
1752         ctrl_ext = er32(CTRL_EXT);
1753         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1754
1755         /* Auto-Mask Other interrupts upon ICR read */
1756 #define E1000_EIAC_MASK_82574   0x01F00000
1757         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1758         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1759         ew32(CTRL_EXT, ctrl_ext);
1760         e1e_flush();
1761 }
1762
1763 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1764 {
1765         if (adapter->msix_entries) {
1766                 pci_disable_msix(adapter->pdev);
1767                 kfree(adapter->msix_entries);
1768                 adapter->msix_entries = NULL;
1769         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1770                 pci_disable_msi(adapter->pdev);
1771                 adapter->flags &= ~FLAG_MSI_ENABLED;
1772         }
1773 }
1774
1775 /**
1776  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1777  *
1778  * Attempt to configure interrupts using the best available
1779  * capabilities of the hardware and kernel.
1780  **/
1781 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1782 {
1783         int err;
1784         int numvecs, i;
1785
1786
1787         switch (adapter->int_mode) {
1788         case E1000E_INT_MODE_MSIX:
1789                 if (adapter->flags & FLAG_HAS_MSIX) {
1790                         numvecs = 3; /* RxQ0, TxQ0 and other */
1791                         adapter->msix_entries = kcalloc(numvecs,
1792                                                       sizeof(struct msix_entry),
1793                                                       GFP_KERNEL);
1794                         if (adapter->msix_entries) {
1795                                 for (i = 0; i < numvecs; i++)
1796                                         adapter->msix_entries[i].entry = i;
1797
1798                                 err = pci_enable_msix(adapter->pdev,
1799                                                       adapter->msix_entries,
1800                                                       numvecs);
1801                                 if (err == 0)
1802                                         return;
1803                         }
1804                         /* MSI-X failed, so fall through and try MSI */
1805                         e_err("Failed to initialize MSI-X interrupts.  "
1806                               "Falling back to MSI interrupts.\n");
1807                         e1000e_reset_interrupt_capability(adapter);
1808                 }
1809                 adapter->int_mode = E1000E_INT_MODE_MSI;
1810                 /* Fall through */
1811         case E1000E_INT_MODE_MSI:
1812                 if (!pci_enable_msi(adapter->pdev)) {
1813                         adapter->flags |= FLAG_MSI_ENABLED;
1814                 } else {
1815                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1816                         e_err("Failed to initialize MSI interrupts.  Falling "
1817                               "back to legacy interrupts.\n");
1818                 }
1819                 /* Fall through */
1820         case E1000E_INT_MODE_LEGACY:
1821                 /* Don't do anything; this is the system default */
1822                 break;
1823         }
1824 }
1825
1826 /**
1827  * e1000_request_msix - Initialize MSI-X interrupts
1828  *
1829  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1830  * kernel.
1831  **/
1832 static int e1000_request_msix(struct e1000_adapter *adapter)
1833 {
1834         struct net_device *netdev = adapter->netdev;
1835         int err = 0, vector = 0;
1836
1837         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1838                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1839         else
1840                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1841         err = request_irq(adapter->msix_entries[vector].vector,
1842                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1843                           netdev);
1844         if (err)
1845                 goto out;
1846         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1847         adapter->rx_ring->itr_val = adapter->itr;
1848         vector++;
1849
1850         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1851                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1852         else
1853                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1854         err = request_irq(adapter->msix_entries[vector].vector,
1855                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1856                           netdev);
1857         if (err)
1858                 goto out;
1859         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1860         adapter->tx_ring->itr_val = adapter->itr;
1861         vector++;
1862
1863         err = request_irq(adapter->msix_entries[vector].vector,
1864                           e1000_msix_other, 0, netdev->name, netdev);
1865         if (err)
1866                 goto out;
1867
1868         e1000_configure_msix(adapter);
1869         return 0;
1870 out:
1871         return err;
1872 }
1873
1874 /**
1875  * e1000_request_irq - initialize interrupts
1876  *
1877  * Attempts to configure interrupts using the best available
1878  * capabilities of the hardware and kernel.
1879  **/
1880 static int e1000_request_irq(struct e1000_adapter *adapter)
1881 {
1882         struct net_device *netdev = adapter->netdev;
1883         int err;
1884
1885         if (adapter->msix_entries) {
1886                 err = e1000_request_msix(adapter);
1887                 if (!err)
1888                         return err;
1889                 /* fall back to MSI */
1890                 e1000e_reset_interrupt_capability(adapter);
1891                 adapter->int_mode = E1000E_INT_MODE_MSI;
1892                 e1000e_set_interrupt_capability(adapter);
1893         }
1894         if (adapter->flags & FLAG_MSI_ENABLED) {
1895                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1896                                   netdev->name, netdev);
1897                 if (!err)
1898                         return err;
1899
1900                 /* fall back to legacy interrupt */
1901                 e1000e_reset_interrupt_capability(adapter);
1902                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1903         }
1904
1905         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1906                           netdev->name, netdev);
1907         if (err)
1908                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1909
1910         return err;
1911 }
1912
1913 static void e1000_free_irq(struct e1000_adapter *adapter)
1914 {
1915         struct net_device *netdev = adapter->netdev;
1916
1917         if (adapter->msix_entries) {
1918                 int vector = 0;
1919
1920                 free_irq(adapter->msix_entries[vector].vector, netdev);
1921                 vector++;
1922
1923                 free_irq(adapter->msix_entries[vector].vector, netdev);
1924                 vector++;
1925
1926                 /* Other Causes interrupt vector */
1927                 free_irq(adapter->msix_entries[vector].vector, netdev);
1928                 return;
1929         }
1930
1931         free_irq(adapter->pdev->irq, netdev);
1932 }
1933
1934 /**
1935  * e1000_irq_disable - Mask off interrupt generation on the NIC
1936  **/
1937 static void e1000_irq_disable(struct e1000_adapter *adapter)
1938 {
1939         struct e1000_hw *hw = &adapter->hw;
1940
1941         ew32(IMC, ~0);
1942         if (adapter->msix_entries)
1943                 ew32(EIAC_82574, 0);
1944         e1e_flush();
1945         synchronize_irq(adapter->pdev->irq);
1946 }
1947
1948 /**
1949  * e1000_irq_enable - Enable default interrupt generation settings
1950  **/
1951 static void e1000_irq_enable(struct e1000_adapter *adapter)
1952 {
1953         struct e1000_hw *hw = &adapter->hw;
1954
1955         if (adapter->msix_entries) {
1956                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1957                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1958         } else {
1959                 ew32(IMS, IMS_ENABLE_MASK);
1960         }
1961         e1e_flush();
1962 }
1963
1964 /**
1965  * e1000_get_hw_control - get control of the h/w from f/w
1966  * @adapter: address of board private structure
1967  *
1968  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1969  * For ASF and Pass Through versions of f/w this means that
1970  * the driver is loaded. For AMT version (only with 82573)
1971  * of the f/w this means that the network i/f is open.
1972  **/
1973 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1974 {
1975         struct e1000_hw *hw = &adapter->hw;
1976         u32 ctrl_ext;
1977         u32 swsm;
1978
1979         /* Let firmware know the driver has taken over */
1980         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1981                 swsm = er32(SWSM);
1982                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1983         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1984                 ctrl_ext = er32(CTRL_EXT);
1985                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1986         }
1987 }
1988
1989 /**
1990  * e1000_release_hw_control - release control of the h/w to f/w
1991  * @adapter: address of board private structure
1992  *
1993  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1994  * For ASF and Pass Through versions of f/w this means that the
1995  * driver is no longer loaded. For AMT version (only with 82573) i
1996  * of the f/w this means that the network i/f is closed.
1997  *
1998  **/
1999 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2000 {
2001         struct e1000_hw *hw = &adapter->hw;
2002         u32 ctrl_ext;
2003         u32 swsm;
2004
2005         /* Let firmware taken over control of h/w */
2006         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2007                 swsm = er32(SWSM);
2008                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2009         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2010                 ctrl_ext = er32(CTRL_EXT);
2011                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2012         }
2013 }
2014
2015 /**
2016  * @e1000_alloc_ring - allocate memory for a ring structure
2017  **/
2018 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2019                                 struct e1000_ring *ring)
2020 {
2021         struct pci_dev *pdev = adapter->pdev;
2022
2023         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2024                                         GFP_KERNEL);
2025         if (!ring->desc)
2026                 return -ENOMEM;
2027
2028         return 0;
2029 }
2030
2031 /**
2032  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2033  * @adapter: board private structure
2034  *
2035  * Return 0 on success, negative on failure
2036  **/
2037 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2038 {
2039         struct e1000_ring *tx_ring = adapter->tx_ring;
2040         int err = -ENOMEM, size;
2041
2042         size = sizeof(struct e1000_buffer) * tx_ring->count;
2043         tx_ring->buffer_info = vmalloc(size);
2044         if (!tx_ring->buffer_info)
2045                 goto err;
2046         memset(tx_ring->buffer_info, 0, size);
2047
2048         /* round up to nearest 4K */
2049         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2050         tx_ring->size = ALIGN(tx_ring->size, 4096);
2051
2052         err = e1000_alloc_ring_dma(adapter, tx_ring);
2053         if (err)
2054                 goto err;
2055
2056         tx_ring->next_to_use = 0;
2057         tx_ring->next_to_clean = 0;
2058
2059         return 0;
2060 err:
2061         vfree(tx_ring->buffer_info);
2062         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2063         return err;
2064 }
2065
2066 /**
2067  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2068  * @adapter: board private structure
2069  *
2070  * Returns 0 on success, negative on failure
2071  **/
2072 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2073 {
2074         struct e1000_ring *rx_ring = adapter->rx_ring;
2075         struct e1000_buffer *buffer_info;
2076         int i, size, desc_len, err = -ENOMEM;
2077
2078         size = sizeof(struct e1000_buffer) * rx_ring->count;
2079         rx_ring->buffer_info = vmalloc(size);
2080         if (!rx_ring->buffer_info)
2081                 goto err;
2082         memset(rx_ring->buffer_info, 0, size);
2083
2084         for (i = 0; i < rx_ring->count; i++) {
2085                 buffer_info = &rx_ring->buffer_info[i];
2086                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2087                                                 sizeof(struct e1000_ps_page),
2088                                                 GFP_KERNEL);
2089                 if (!buffer_info->ps_pages)
2090                         goto err_pages;
2091         }
2092
2093         desc_len = sizeof(union e1000_rx_desc_packet_split);
2094
2095         /* Round up to nearest 4K */
2096         rx_ring->size = rx_ring->count * desc_len;
2097         rx_ring->size = ALIGN(rx_ring->size, 4096);
2098
2099         err = e1000_alloc_ring_dma(adapter, rx_ring);
2100         if (err)
2101                 goto err_pages;
2102
2103         rx_ring->next_to_clean = 0;
2104         rx_ring->next_to_use = 0;
2105         rx_ring->rx_skb_top = NULL;
2106
2107         return 0;
2108
2109 err_pages:
2110         for (i = 0; i < rx_ring->count; i++) {
2111                 buffer_info = &rx_ring->buffer_info[i];
2112                 kfree(buffer_info->ps_pages);
2113         }
2114 err:
2115         vfree(rx_ring->buffer_info);
2116         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2117         return err;
2118 }
2119
2120 /**
2121  * e1000_clean_tx_ring - Free Tx Buffers
2122  * @adapter: board private structure
2123  **/
2124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2125 {
2126         struct e1000_ring *tx_ring = adapter->tx_ring;
2127         struct e1000_buffer *buffer_info;
2128         unsigned long size;
2129         unsigned int i;
2130
2131         for (i = 0; i < tx_ring->count; i++) {
2132                 buffer_info = &tx_ring->buffer_info[i];
2133                 e1000_put_txbuf(adapter, buffer_info);
2134         }
2135
2136         size = sizeof(struct e1000_buffer) * tx_ring->count;
2137         memset(tx_ring->buffer_info, 0, size);
2138
2139         memset(tx_ring->desc, 0, tx_ring->size);
2140
2141         tx_ring->next_to_use = 0;
2142         tx_ring->next_to_clean = 0;
2143
2144         writel(0, adapter->hw.hw_addr + tx_ring->head);
2145         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2146 }
2147
2148 /**
2149  * e1000e_free_tx_resources - Free Tx Resources per Queue
2150  * @adapter: board private structure
2151  *
2152  * Free all transmit software resources
2153  **/
2154 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2155 {
2156         struct pci_dev *pdev = adapter->pdev;
2157         struct e1000_ring *tx_ring = adapter->tx_ring;
2158
2159         e1000_clean_tx_ring(adapter);
2160
2161         vfree(tx_ring->buffer_info);
2162         tx_ring->buffer_info = NULL;
2163
2164         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2165                           tx_ring->dma);
2166         tx_ring->desc = NULL;
2167 }
2168
2169 /**
2170  * e1000e_free_rx_resources - Free Rx Resources
2171  * @adapter: board private structure
2172  *
2173  * Free all receive software resources
2174  **/
2175
2176 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2177 {
2178         struct pci_dev *pdev = adapter->pdev;
2179         struct e1000_ring *rx_ring = adapter->rx_ring;
2180         int i;
2181
2182         e1000_clean_rx_ring(adapter);
2183
2184         for (i = 0; i < rx_ring->count; i++) {
2185                 kfree(rx_ring->buffer_info[i].ps_pages);
2186         }
2187
2188         vfree(rx_ring->buffer_info);
2189         rx_ring->buffer_info = NULL;
2190
2191         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2192                           rx_ring->dma);
2193         rx_ring->desc = NULL;
2194 }
2195
2196 /**
2197  * e1000_update_itr - update the dynamic ITR value based on statistics
2198  * @adapter: pointer to adapter
2199  * @itr_setting: current adapter->itr
2200  * @packets: the number of packets during this measurement interval
2201  * @bytes: the number of bytes during this measurement interval
2202  *
2203  *      Stores a new ITR value based on packets and byte
2204  *      counts during the last interrupt.  The advantage of per interrupt
2205  *      computation is faster updates and more accurate ITR for the current
2206  *      traffic pattern.  Constants in this function were computed
2207  *      based on theoretical maximum wire speed and thresholds were set based
2208  *      on testing data as well as attempting to minimize response time
2209  *      while increasing bulk throughput.  This functionality is controlled
2210  *      by the InterruptThrottleRate module parameter.
2211  **/
2212 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2213                                      u16 itr_setting, int packets,
2214                                      int bytes)
2215 {
2216         unsigned int retval = itr_setting;
2217
2218         if (packets == 0)
2219                 goto update_itr_done;
2220
2221         switch (itr_setting) {
2222         case lowest_latency:
2223                 /* handle TSO and jumbo frames */
2224                 if (bytes/packets > 8000)
2225                         retval = bulk_latency;
2226                 else if ((packets < 5) && (bytes > 512)) {
2227                         retval = low_latency;
2228                 }
2229                 break;
2230         case low_latency:  /* 50 usec aka 20000 ints/s */
2231                 if (bytes > 10000) {
2232                         /* this if handles the TSO accounting */
2233                         if (bytes/packets > 8000) {
2234                                 retval = bulk_latency;
2235                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2236                                 retval = bulk_latency;
2237                         } else if ((packets > 35)) {
2238                                 retval = lowest_latency;
2239                         }
2240                 } else if (bytes/packets > 2000) {
2241                         retval = bulk_latency;
2242                 } else if (packets <= 2 && bytes < 512) {
2243                         retval = lowest_latency;
2244                 }
2245                 break;
2246         case bulk_latency: /* 250 usec aka 4000 ints/s */
2247                 if (bytes > 25000) {
2248                         if (packets > 35) {
2249                                 retval = low_latency;
2250                         }
2251                 } else if (bytes < 6000) {
2252                         retval = low_latency;
2253                 }
2254                 break;
2255         }
2256
2257 update_itr_done:
2258         return retval;
2259 }
2260
2261 static void e1000_set_itr(struct e1000_adapter *adapter)
2262 {
2263         struct e1000_hw *hw = &adapter->hw;
2264         u16 current_itr;
2265         u32 new_itr = adapter->itr;
2266
2267         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2268         if (adapter->link_speed != SPEED_1000) {
2269                 current_itr = 0;
2270                 new_itr = 4000;
2271                 goto set_itr_now;
2272         }
2273
2274         adapter->tx_itr = e1000_update_itr(adapter,
2275                                     adapter->tx_itr,
2276                                     adapter->total_tx_packets,
2277                                     adapter->total_tx_bytes);
2278         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2279         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2280                 adapter->tx_itr = low_latency;
2281
2282         adapter->rx_itr = e1000_update_itr(adapter,
2283                                     adapter->rx_itr,
2284                                     adapter->total_rx_packets,
2285                                     adapter->total_rx_bytes);
2286         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2287         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2288                 adapter->rx_itr = low_latency;
2289
2290         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2291
2292         switch (current_itr) {
2293         /* counts and packets in update_itr are dependent on these numbers */
2294         case lowest_latency:
2295                 new_itr = 70000;
2296                 break;
2297         case low_latency:
2298                 new_itr = 20000; /* aka hwitr = ~200 */
2299                 break;
2300         case bulk_latency:
2301                 new_itr = 4000;
2302                 break;
2303         default:
2304                 break;
2305         }
2306
2307 set_itr_now:
2308         if (new_itr != adapter->itr) {
2309                 /*
2310                  * this attempts to bias the interrupt rate towards Bulk
2311                  * by adding intermediate steps when interrupt rate is
2312                  * increasing
2313                  */
2314                 new_itr = new_itr > adapter->itr ?
2315                              min(adapter->itr + (new_itr >> 2), new_itr) :
2316                              new_itr;
2317                 adapter->itr = new_itr;
2318                 adapter->rx_ring->itr_val = new_itr;
2319                 if (adapter->msix_entries)
2320                         adapter->rx_ring->set_itr = 1;
2321                 else
2322                         ew32(ITR, 1000000000 / (new_itr * 256));
2323         }
2324 }
2325
2326 /**
2327  * e1000_alloc_queues - Allocate memory for all rings
2328  * @adapter: board private structure to initialize
2329  **/
2330 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2331 {
2332         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2333         if (!adapter->tx_ring)
2334                 goto err;
2335
2336         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2337         if (!adapter->rx_ring)
2338                 goto err;
2339
2340         return 0;
2341 err:
2342         e_err("Unable to allocate memory for queues\n");
2343         kfree(adapter->rx_ring);
2344         kfree(adapter->tx_ring);
2345         return -ENOMEM;
2346 }
2347
2348 /**
2349  * e1000_clean - NAPI Rx polling callback
2350  * @napi: struct associated with this polling callback
2351  * @budget: amount of packets driver is allowed to process this poll
2352  **/
2353 static int e1000_clean(struct napi_struct *napi, int budget)
2354 {
2355         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2356         struct e1000_hw *hw = &adapter->hw;
2357         struct net_device *poll_dev = adapter->netdev;
2358         int tx_cleaned = 1, work_done = 0;
2359
2360         adapter = netdev_priv(poll_dev);
2361
2362         if (adapter->msix_entries &&
2363             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2364                 goto clean_rx;
2365
2366         tx_cleaned = e1000_clean_tx_irq(adapter);
2367
2368 clean_rx:
2369         adapter->clean_rx(adapter, &work_done, budget);
2370
2371         if (!tx_cleaned)
2372                 work_done = budget;
2373
2374         /* If budget not fully consumed, exit the polling mode */
2375         if (work_done < budget) {
2376                 if (adapter->itr_setting & 3)
2377                         e1000_set_itr(adapter);
2378                 napi_complete(napi);
2379                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2380                         if (adapter->msix_entries)
2381                                 ew32(IMS, adapter->rx_ring->ims_val);
2382                         else
2383                                 e1000_irq_enable(adapter);
2384                 }
2385         }
2386
2387         return work_done;
2388 }
2389
2390 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2391 {
2392         struct e1000_adapter *adapter = netdev_priv(netdev);
2393         struct e1000_hw *hw = &adapter->hw;
2394         u32 vfta, index;
2395
2396         /* don't update vlan cookie if already programmed */
2397         if ((adapter->hw.mng_cookie.status &
2398              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2399             (vid == adapter->mng_vlan_id))
2400                 return;
2401
2402         /* add VID to filter table */
2403         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2404                 index = (vid >> 5) & 0x7F;
2405                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2406                 vfta |= (1 << (vid & 0x1F));
2407                 hw->mac.ops.write_vfta(hw, index, vfta);
2408         }
2409 }
2410
2411 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2412 {
2413         struct e1000_adapter *adapter = netdev_priv(netdev);
2414         struct e1000_hw *hw = &adapter->hw;
2415         u32 vfta, index;
2416
2417         if (!test_bit(__E1000_DOWN, &adapter->state))
2418                 e1000_irq_disable(adapter);
2419         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2420
2421         if (!test_bit(__E1000_DOWN, &adapter->state))
2422                 e1000_irq_enable(adapter);
2423
2424         if ((adapter->hw.mng_cookie.status &
2425              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2426             (vid == adapter->mng_vlan_id)) {
2427                 /* release control to f/w */
2428                 e1000_release_hw_control(adapter);
2429                 return;
2430         }
2431
2432         /* remove VID from filter table */
2433         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2434                 index = (vid >> 5) & 0x7F;
2435                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2436                 vfta &= ~(1 << (vid & 0x1F));
2437                 hw->mac.ops.write_vfta(hw, index, vfta);
2438         }
2439 }
2440
2441 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2442 {
2443         struct net_device *netdev = adapter->netdev;
2444         u16 vid = adapter->hw.mng_cookie.vlan_id;
2445         u16 old_vid = adapter->mng_vlan_id;
2446
2447         if (!adapter->vlgrp)
2448                 return;
2449
2450         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2451                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2452                 if (adapter->hw.mng_cookie.status &
2453                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2454                         e1000_vlan_rx_add_vid(netdev, vid);
2455                         adapter->mng_vlan_id = vid;
2456                 }
2457
2458                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2459                                 (vid != old_vid) &&
2460                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2461                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2462         } else {
2463                 adapter->mng_vlan_id = vid;
2464         }
2465 }
2466
2467
2468 static void e1000_vlan_rx_register(struct net_device *netdev,
2469                                    struct vlan_group *grp)
2470 {
2471         struct e1000_adapter *adapter = netdev_priv(netdev);
2472         struct e1000_hw *hw = &adapter->hw;
2473         u32 ctrl, rctl;
2474
2475         if (!test_bit(__E1000_DOWN, &adapter->state))
2476                 e1000_irq_disable(adapter);
2477         adapter->vlgrp = grp;
2478
2479         if (grp) {
2480                 /* enable VLAN tag insert/strip */
2481                 ctrl = er32(CTRL);
2482                 ctrl |= E1000_CTRL_VME;
2483                 ew32(CTRL, ctrl);
2484
2485                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2486                         /* enable VLAN receive filtering */
2487                         rctl = er32(RCTL);
2488                         rctl &= ~E1000_RCTL_CFIEN;
2489                         ew32(RCTL, rctl);
2490                         e1000_update_mng_vlan(adapter);
2491                 }
2492         } else {
2493                 /* disable VLAN tag insert/strip */
2494                 ctrl = er32(CTRL);
2495                 ctrl &= ~E1000_CTRL_VME;
2496                 ew32(CTRL, ctrl);
2497
2498                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2499                         if (adapter->mng_vlan_id !=
2500                             (u16)E1000_MNG_VLAN_NONE) {
2501                                 e1000_vlan_rx_kill_vid(netdev,
2502                                                        adapter->mng_vlan_id);
2503                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2504                         }
2505                 }
2506         }
2507
2508         if (!test_bit(__E1000_DOWN, &adapter->state))
2509                 e1000_irq_enable(adapter);
2510 }
2511
2512 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2513 {
2514         u16 vid;
2515
2516         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2517
2518         if (!adapter->vlgrp)
2519                 return;
2520
2521         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2522                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2523                         continue;
2524                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2525         }
2526 }
2527
2528 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2529 {
2530         struct e1000_hw *hw = &adapter->hw;
2531         u32 manc, manc2h, mdef, i, j;
2532
2533         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2534                 return;
2535
2536         manc = er32(MANC);
2537
2538         /*
2539          * enable receiving management packets to the host. this will probably
2540          * generate destination unreachable messages from the host OS, but
2541          * the packets will be handled on SMBUS
2542          */
2543         manc |= E1000_MANC_EN_MNG2HOST;
2544         manc2h = er32(MANC2H);
2545
2546         switch (hw->mac.type) {
2547         default:
2548                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2549                 break;
2550         case e1000_82574:
2551         case e1000_82583:
2552                 /*
2553                  * Check if IPMI pass-through decision filter already exists;
2554                  * if so, enable it.
2555                  */
2556                 for (i = 0, j = 0; i < 8; i++) {
2557                         mdef = er32(MDEF(i));
2558
2559                         /* Ignore filters with anything other than IPMI ports */
2560                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2561                                 continue;
2562
2563                         /* Enable this decision filter in MANC2H */
2564                         if (mdef)
2565                                 manc2h |= (1 << i);
2566
2567                         j |= mdef;
2568                 }
2569
2570                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2571                         break;
2572
2573                 /* Create new decision filter in an empty filter */
2574                 for (i = 0, j = 0; i < 8; i++)
2575                         if (er32(MDEF(i)) == 0) {
2576                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2577                                                E1000_MDEF_PORT_664));
2578                                 manc2h |= (1 << 1);
2579                                 j++;
2580                                 break;
2581                         }
2582
2583                 if (!j)
2584                         e_warn("Unable to create IPMI pass-through filter\n");
2585                 break;
2586         }
2587
2588         ew32(MANC2H, manc2h);
2589         ew32(MANC, manc);
2590 }
2591
2592 /**
2593  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2594  * @adapter: board private structure
2595  *
2596  * Configure the Tx unit of the MAC after a reset.
2597  **/
2598 static void e1000_configure_tx(struct e1000_adapter *adapter)
2599 {
2600         struct e1000_hw *hw = &adapter->hw;
2601         struct e1000_ring *tx_ring = adapter->tx_ring;
2602         u64 tdba;
2603         u32 tdlen, tctl, tipg, tarc;
2604         u32 ipgr1, ipgr2;
2605
2606         /* Setup the HW Tx Head and Tail descriptor pointers */
2607         tdba = tx_ring->dma;
2608         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2609         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2610         ew32(TDBAH, (tdba >> 32));
2611         ew32(TDLEN, tdlen);
2612         ew32(TDH, 0);
2613         ew32(TDT, 0);
2614         tx_ring->head = E1000_TDH;
2615         tx_ring->tail = E1000_TDT;
2616
2617         /* Set the default values for the Tx Inter Packet Gap timer */
2618         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2619         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2620         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2621
2622         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2623                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2624
2625         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2626         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2627         ew32(TIPG, tipg);
2628
2629         /* Set the Tx Interrupt Delay register */
2630         ew32(TIDV, adapter->tx_int_delay);
2631         /* Tx irq moderation */
2632         ew32(TADV, adapter->tx_abs_int_delay);
2633
2634         /* Program the Transmit Control Register */
2635         tctl = er32(TCTL);
2636         tctl &= ~E1000_TCTL_CT;
2637         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2638                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2639
2640         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2641                 tarc = er32(TARC(0));
2642                 /*
2643                  * set the speed mode bit, we'll clear it if we're not at
2644                  * gigabit link later
2645                  */
2646 #define SPEED_MODE_BIT (1 << 21)
2647                 tarc |= SPEED_MODE_BIT;
2648                 ew32(TARC(0), tarc);
2649         }
2650
2651         /* errata: program both queues to unweighted RR */
2652         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2653                 tarc = er32(TARC(0));
2654                 tarc |= 1;
2655                 ew32(TARC(0), tarc);
2656                 tarc = er32(TARC(1));
2657                 tarc |= 1;
2658                 ew32(TARC(1), tarc);
2659         }
2660
2661         /* Setup Transmit Descriptor Settings for eop descriptor */
2662         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2663
2664         /* only set IDE if we are delaying interrupts using the timers */
2665         if (adapter->tx_int_delay)
2666                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2667
2668         /* enable Report Status bit */
2669         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2670
2671         ew32(TCTL, tctl);
2672
2673         e1000e_config_collision_dist(hw);
2674 }
2675
2676 /**
2677  * e1000_setup_rctl - configure the receive control registers
2678  * @adapter: Board private structure
2679  **/
2680 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2681                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2682 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2683 {
2684         struct e1000_hw *hw = &adapter->hw;
2685         u32 rctl, rfctl;
2686         u32 psrctl = 0;
2687         u32 pages = 0;
2688
2689         /* Program MC offset vector base */
2690         rctl = er32(RCTL);
2691         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2692         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2693                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2694                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2695
2696         /* Do not Store bad packets */
2697         rctl &= ~E1000_RCTL_SBP;
2698
2699         /* Enable Long Packet receive */
2700         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2701                 rctl &= ~E1000_RCTL_LPE;
2702         else
2703                 rctl |= E1000_RCTL_LPE;
2704
2705         /* Some systems expect that the CRC is included in SMBUS traffic. The
2706          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2707          * host memory when this is enabled
2708          */
2709         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2710                 rctl |= E1000_RCTL_SECRC;
2711
2712         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2713         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2714                 u16 phy_data;
2715
2716                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2717                 phy_data &= 0xfff8;
2718                 phy_data |= (1 << 2);
2719                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2720
2721                 e1e_rphy(hw, 22, &phy_data);
2722                 phy_data &= 0x0fff;
2723                 phy_data |= (1 << 14);
2724                 e1e_wphy(hw, 0x10, 0x2823);
2725                 e1e_wphy(hw, 0x11, 0x0003);
2726                 e1e_wphy(hw, 22, phy_data);
2727         }
2728
2729         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2730         if (hw->mac.type == e1000_pch2lan) {
2731                 s32 ret_val;
2732
2733                 if (rctl & E1000_RCTL_LPE)
2734                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2735                 else
2736                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2737         }
2738
2739         /* Setup buffer sizes */
2740         rctl &= ~E1000_RCTL_SZ_4096;
2741         rctl |= E1000_RCTL_BSEX;
2742         switch (adapter->rx_buffer_len) {
2743         case 2048:
2744         default:
2745                 rctl |= E1000_RCTL_SZ_2048;
2746                 rctl &= ~E1000_RCTL_BSEX;
2747                 break;
2748         case 4096:
2749                 rctl |= E1000_RCTL_SZ_4096;
2750                 break;
2751         case 8192:
2752                 rctl |= E1000_RCTL_SZ_8192;
2753                 break;
2754         case 16384:
2755                 rctl |= E1000_RCTL_SZ_16384;
2756                 break;
2757         }
2758
2759         /*
2760          * 82571 and greater support packet-split where the protocol
2761          * header is placed in skb->data and the packet data is
2762          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2763          * In the case of a non-split, skb->data is linearly filled,
2764          * followed by the page buffers.  Therefore, skb->data is
2765          * sized to hold the largest protocol header.
2766          *
2767          * allocations using alloc_page take too long for regular MTU
2768          * so only enable packet split for jumbo frames
2769          *
2770          * Using pages when the page size is greater than 16k wastes
2771          * a lot of memory, since we allocate 3 pages at all times
2772          * per packet.
2773          */
2774         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2775         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2776             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2777                 adapter->rx_ps_pages = pages;
2778         else
2779                 adapter->rx_ps_pages = 0;
2780
2781         if (adapter->rx_ps_pages) {
2782                 /* Configure extra packet-split registers */
2783                 rfctl = er32(RFCTL);
2784                 rfctl |= E1000_RFCTL_EXTEN;
2785                 /*
2786                  * disable packet split support for IPv6 extension headers,
2787                  * because some malformed IPv6 headers can hang the Rx
2788                  */
2789                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2790                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2791
2792                 ew32(RFCTL, rfctl);
2793
2794                 /* Enable Packet split descriptors */
2795                 rctl |= E1000_RCTL_DTYP_PS;
2796
2797                 psrctl |= adapter->rx_ps_bsize0 >>
2798                         E1000_PSRCTL_BSIZE0_SHIFT;
2799
2800                 switch (adapter->rx_ps_pages) {
2801                 case 3:
2802                         psrctl |= PAGE_SIZE <<
2803                                 E1000_PSRCTL_BSIZE3_SHIFT;
2804                 case 2:
2805                         psrctl |= PAGE_SIZE <<
2806                                 E1000_PSRCTL_BSIZE2_SHIFT;
2807                 case 1:
2808                         psrctl |= PAGE_SIZE >>
2809                                 E1000_PSRCTL_BSIZE1_SHIFT;
2810                         break;
2811                 }
2812
2813                 ew32(PSRCTL, psrctl);
2814         }
2815
2816         ew32(RCTL, rctl);
2817         /* just started the receive unit, no need to restart */
2818         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2819 }
2820
2821 /**
2822  * e1000_configure_rx - Configure Receive Unit after Reset
2823  * @adapter: board private structure
2824  *
2825  * Configure the Rx unit of the MAC after a reset.
2826  **/
2827 static void e1000_configure_rx(struct e1000_adapter *adapter)
2828 {
2829         struct e1000_hw *hw = &adapter->hw;
2830         struct e1000_ring *rx_ring = adapter->rx_ring;
2831         u64 rdba;
2832         u32 rdlen, rctl, rxcsum, ctrl_ext;
2833
2834         if (adapter->rx_ps_pages) {
2835                 /* this is a 32 byte descriptor */
2836                 rdlen = rx_ring->count *
2837                         sizeof(union e1000_rx_desc_packet_split);
2838                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2839                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2840         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2841                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2842                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2843                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2844         } else {
2845                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2846                 adapter->clean_rx = e1000_clean_rx_irq;
2847                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2848         }
2849
2850         /* disable receives while setting up the descriptors */
2851         rctl = er32(RCTL);
2852         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2853         e1e_flush();
2854         msleep(10);
2855
2856         /* set the Receive Delay Timer Register */
2857         ew32(RDTR, adapter->rx_int_delay);
2858
2859         /* irq moderation */
2860         ew32(RADV, adapter->rx_abs_int_delay);
2861         if (adapter->itr_setting != 0)
2862                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2863
2864         ctrl_ext = er32(CTRL_EXT);
2865         /* Auto-Mask interrupts upon ICR access */
2866         ctrl_ext |= E1000_CTRL_EXT_IAME;
2867         ew32(IAM, 0xffffffff);
2868         ew32(CTRL_EXT, ctrl_ext);
2869         e1e_flush();
2870
2871         /*
2872          * Setup the HW Rx Head and Tail Descriptor Pointers and
2873          * the Base and Length of the Rx Descriptor Ring
2874          */
2875         rdba = rx_ring->dma;
2876         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2877         ew32(RDBAH, (rdba >> 32));
2878         ew32(RDLEN, rdlen);
2879         ew32(RDH, 0);
2880         ew32(RDT, 0);
2881         rx_ring->head = E1000_RDH;
2882         rx_ring->tail = E1000_RDT;
2883
2884         /* Enable Receive Checksum Offload for TCP and UDP */
2885         rxcsum = er32(RXCSUM);
2886         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2887                 rxcsum |= E1000_RXCSUM_TUOFL;
2888
2889                 /*
2890                  * IPv4 payload checksum for UDP fragments must be
2891                  * used in conjunction with packet-split.
2892                  */
2893                 if (adapter->rx_ps_pages)
2894                         rxcsum |= E1000_RXCSUM_IPPCSE;
2895         } else {
2896                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2897                 /* no need to clear IPPCSE as it defaults to 0 */
2898         }
2899         ew32(RXCSUM, rxcsum);
2900
2901         /*
2902          * Enable early receives on supported devices, only takes effect when
2903          * packet size is equal or larger than the specified value (in 8 byte
2904          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2905          */
2906         if (adapter->flags & FLAG_HAS_ERT) {
2907                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2908                         u32 rxdctl = er32(RXDCTL(0));
2909                         ew32(RXDCTL(0), rxdctl | 0x3);
2910                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2911                         /*
2912                          * With jumbo frames and early-receive enabled,
2913                          * excessive C-state transition latencies result in
2914                          * dropped transactions.
2915                          */
2916                         pm_qos_update_request(
2917                                 adapter->netdev->pm_qos_req, 55);
2918                 } else {
2919                         pm_qos_update_request(
2920                                 adapter->netdev->pm_qos_req,
2921                                 PM_QOS_DEFAULT_VALUE);
2922                 }
2923         }
2924
2925         /* Enable Receives */
2926         ew32(RCTL, rctl);
2927 }
2928
2929 /**
2930  *  e1000_update_mc_addr_list - Update Multicast addresses
2931  *  @hw: pointer to the HW structure
2932  *  @mc_addr_list: array of multicast addresses to program
2933  *  @mc_addr_count: number of multicast addresses to program
2934  *
2935  *  Updates the Multicast Table Array.
2936  *  The caller must have a packed mc_addr_list of multicast addresses.
2937  **/
2938 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2939                                       u32 mc_addr_count)
2940 {
2941         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2942 }
2943
2944 /**
2945  * e1000_set_multi - Multicast and Promiscuous mode set
2946  * @netdev: network interface device structure
2947  *
2948  * The set_multi entry point is called whenever the multicast address
2949  * list or the network interface flags are updated.  This routine is
2950  * responsible for configuring the hardware for proper multicast,
2951  * promiscuous mode, and all-multi behavior.
2952  **/
2953 static void e1000_set_multi(struct net_device *netdev)
2954 {
2955         struct e1000_adapter *adapter = netdev_priv(netdev);
2956         struct e1000_hw *hw = &adapter->hw;
2957         struct netdev_hw_addr *ha;
2958         u8  *mta_list;
2959         u32 rctl;
2960         int i;
2961
2962         /* Check for Promiscuous and All Multicast modes */
2963
2964         rctl = er32(RCTL);
2965
2966         if (netdev->flags & IFF_PROMISC) {
2967                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2968                 rctl &= ~E1000_RCTL_VFE;
2969         } else {
2970                 if (netdev->flags & IFF_ALLMULTI) {
2971                         rctl |= E1000_RCTL_MPE;
2972                         rctl &= ~E1000_RCTL_UPE;
2973                 } else {
2974                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2975                 }
2976                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2977                         rctl |= E1000_RCTL_VFE;
2978         }
2979
2980         ew32(RCTL, rctl);
2981
2982         if (!netdev_mc_empty(netdev)) {
2983                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2984                 if (!mta_list)
2985                         return;
2986
2987                 /* prepare a packed array of only addresses. */
2988                 i = 0;
2989                 netdev_for_each_mc_addr(ha, netdev)
2990                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
2991
2992                 e1000_update_mc_addr_list(hw, mta_list, i);
2993                 kfree(mta_list);
2994         } else {
2995                 /*
2996                  * if we're called from probe, we might not have
2997                  * anything to do here, so clear out the list
2998                  */
2999                 e1000_update_mc_addr_list(hw, NULL, 0);
3000         }
3001 }
3002
3003 /**
3004  * e1000_configure - configure the hardware for Rx and Tx
3005  * @adapter: private board structure
3006  **/
3007 static void e1000_configure(struct e1000_adapter *adapter)
3008 {
3009         e1000_set_multi(adapter->netdev);
3010
3011         e1000_restore_vlan(adapter);
3012         e1000_init_manageability_pt(adapter);
3013
3014         e1000_configure_tx(adapter);
3015         e1000_setup_rctl(adapter);
3016         e1000_configure_rx(adapter);
3017         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3018 }
3019
3020 /**
3021  * e1000e_power_up_phy - restore link in case the phy was powered down
3022  * @adapter: address of board private structure
3023  *
3024  * The phy may be powered down to save power and turn off link when the
3025  * driver is unloaded and wake on lan is not enabled (among others)
3026  * *** this routine MUST be followed by a call to e1000e_reset ***
3027  **/
3028 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3029 {
3030         if (adapter->hw.phy.ops.power_up)
3031                 adapter->hw.phy.ops.power_up(&adapter->hw);
3032
3033         adapter->hw.mac.ops.setup_link(&adapter->hw);
3034 }
3035
3036 /**
3037  * e1000_power_down_phy - Power down the PHY
3038  *
3039  * Power down the PHY so no link is implied when interface is down.
3040  * The PHY cannot be powered down if management or WoL is active.
3041  */
3042 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3043 {
3044         /* WoL is enabled */
3045         if (adapter->wol)
3046                 return;
3047
3048         if (adapter->hw.phy.ops.power_down)
3049                 adapter->hw.phy.ops.power_down(&adapter->hw);
3050 }
3051
3052 /**
3053  * e1000e_reset - bring the hardware into a known good state
3054  *
3055  * This function boots the hardware and enables some settings that
3056  * require a configuration cycle of the hardware - those cannot be
3057  * set/changed during runtime. After reset the device needs to be
3058  * properly configured for Rx, Tx etc.
3059  */
3060 void e1000e_reset(struct e1000_adapter *adapter)
3061 {
3062         struct e1000_mac_info *mac = &adapter->hw.mac;
3063         struct e1000_fc_info *fc = &adapter->hw.fc;
3064         struct e1000_hw *hw = &adapter->hw;
3065         u32 tx_space, min_tx_space, min_rx_space;
3066         u32 pba = adapter->pba;
3067         u16 hwm;
3068
3069         /* reset Packet Buffer Allocation to default */
3070         ew32(PBA, pba);
3071
3072         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3073                 /*
3074                  * To maintain wire speed transmits, the Tx FIFO should be
3075                  * large enough to accommodate two full transmit packets,
3076                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3077                  * the Rx FIFO should be large enough to accommodate at least
3078                  * one full receive packet and is similarly rounded up and
3079                  * expressed in KB.
3080                  */
3081                 pba = er32(PBA);
3082                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3083                 tx_space = pba >> 16;
3084                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3085                 pba &= 0xffff;
3086                 /*
3087                  * the Tx fifo also stores 16 bytes of information about the tx
3088                  * but don't include ethernet FCS because hardware appends it
3089                  */
3090                 min_tx_space = (adapter->max_frame_size +
3091                                 sizeof(struct e1000_tx_desc) -
3092                                 ETH_FCS_LEN) * 2;
3093                 min_tx_space = ALIGN(min_tx_space, 1024);
3094                 min_tx_space >>= 10;
3095                 /* software strips receive CRC, so leave room for it */
3096                 min_rx_space = adapter->max_frame_size;
3097                 min_rx_space = ALIGN(min_rx_space, 1024);
3098                 min_rx_space >>= 10;
3099
3100                 /*
3101                  * If current Tx allocation is less than the min Tx FIFO size,
3102                  * and the min Tx FIFO size is less than the current Rx FIFO
3103                  * allocation, take space away from current Rx allocation
3104                  */
3105                 if ((tx_space < min_tx_space) &&
3106                     ((min_tx_space - tx_space) < pba)) {
3107                         pba -= min_tx_space - tx_space;
3108
3109                         /*
3110                          * if short on Rx space, Rx wins and must trump tx
3111                          * adjustment or use Early Receive if available
3112                          */
3113                         if ((pba < min_rx_space) &&
3114                             (!(adapter->flags & FLAG_HAS_ERT)))
3115                                 /* ERT enabled in e1000_configure_rx */
3116                                 pba = min_rx_space;
3117                 }
3118
3119                 ew32(PBA, pba);
3120         }
3121
3122
3123         /*
3124          * flow control settings
3125          *
3126          * The high water mark must be low enough to fit one full frame
3127          * (or the size used for early receive) above it in the Rx FIFO.
3128          * Set it to the lower of:
3129          * - 90% of the Rx FIFO size, and
3130          * - the full Rx FIFO size minus the early receive size (for parts
3131          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3132          * - the full Rx FIFO size minus one full frame
3133          */
3134         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3135                 fc->pause_time = 0xFFFF;
3136         else
3137                 fc->pause_time = E1000_FC_PAUSE_TIME;
3138         fc->send_xon = 1;
3139         fc->current_mode = fc->requested_mode;
3140
3141         switch (hw->mac.type) {
3142         default:
3143                 if ((adapter->flags & FLAG_HAS_ERT) &&
3144                     (adapter->netdev->mtu > ETH_DATA_LEN))
3145                         hwm = min(((pba << 10) * 9 / 10),
3146                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3147                 else
3148                         hwm = min(((pba << 10) * 9 / 10),
3149                                   ((pba << 10) - adapter->max_frame_size));
3150
3151                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3152                 fc->low_water = fc->high_water - 8;
3153                 break;
3154         case e1000_pchlan:
3155                 /*
3156                  * Workaround PCH LOM adapter hangs with certain network
3157                  * loads.  If hangs persist, try disabling Tx flow control.
3158                  */
3159                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3160                         fc->high_water = 0x3500;
3161                         fc->low_water  = 0x1500;
3162                 } else {
3163                         fc->high_water = 0x5000;
3164                         fc->low_water  = 0x3000;
3165                 }
3166                 fc->refresh_time = 0x1000;
3167                 break;
3168         case e1000_pch2lan:
3169                 fc->high_water = 0x05C20;
3170                 fc->low_water = 0x05048;
3171                 fc->pause_time = 0x0650;
3172                 fc->refresh_time = 0x0400;
3173                 break;
3174         }
3175
3176         /* Allow time for pending master requests to run */
3177         mac->ops.reset_hw(hw);
3178
3179         /*
3180          * For parts with AMT enabled, let the firmware know
3181          * that the network interface is in control
3182          */
3183         if (adapter->flags & FLAG_HAS_AMT)
3184                 e1000_get_hw_control(adapter);
3185
3186         ew32(WUC, 0);
3187
3188         if (mac->ops.init_hw(hw))
3189                 e_err("Hardware Error\n");
3190
3191         e1000_update_mng_vlan(adapter);
3192
3193         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3194         ew32(VET, ETH_P_8021Q);
3195
3196         e1000e_reset_adaptive(hw);
3197         e1000_get_phy_info(hw);
3198
3199         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3200             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3201                 u16 phy_data = 0;
3202                 /*
3203                  * speed up time to link by disabling smart power down, ignore
3204                  * the return value of this function because there is nothing
3205                  * different we would do if it failed
3206                  */
3207                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3208                 phy_data &= ~IGP02E1000_PM_SPD;
3209                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3210         }
3211 }
3212
3213 int e1000e_up(struct e1000_adapter *adapter)
3214 {
3215         struct e1000_hw *hw = &adapter->hw;
3216
3217         /* DMA latency requirement to workaround early-receive/jumbo issue */
3218         if (adapter->flags & FLAG_HAS_ERT)
3219                 adapter->netdev->pm_qos_req =
3220                         pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
3221                                        PM_QOS_DEFAULT_VALUE);
3222
3223         /* hardware has been reset, we need to reload some things */
3224         e1000_configure(adapter);
3225
3226         clear_bit(__E1000_DOWN, &adapter->state);
3227
3228         napi_enable(&adapter->napi);
3229         if (adapter->msix_entries)
3230                 e1000_configure_msix(adapter);
3231         e1000_irq_enable(adapter);
3232
3233         netif_wake_queue(adapter->netdev);
3234
3235         /* fire a link change interrupt to start the watchdog */
3236         if (adapter->msix_entries)
3237                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3238         else
3239                 ew32(ICS, E1000_ICS_LSC);
3240
3241         return 0;
3242 }
3243
3244 void e1000e_down(struct e1000_adapter *adapter)
3245 {
3246         struct net_device *netdev = adapter->netdev;
3247         struct e1000_hw *hw = &adapter->hw;
3248         u32 tctl, rctl;
3249
3250         /*
3251          * signal that we're down so the interrupt handler does not
3252          * reschedule our watchdog timer
3253          */
3254         set_bit(__E1000_DOWN, &adapter->state);
3255
3256         /* disable receives in the hardware */
3257         rctl = er32(RCTL);
3258         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3259         /* flush and sleep below */
3260
3261         netif_stop_queue(netdev);
3262
3263         /* disable transmits in the hardware */
3264         tctl = er32(TCTL);
3265         tctl &= ~E1000_TCTL_EN;
3266         ew32(TCTL, tctl);
3267         /* flush both disables and wait for them to finish */
3268         e1e_flush();
3269         msleep(10);
3270
3271         napi_disable(&adapter->napi);
3272         e1000_irq_disable(adapter);
3273
3274         del_timer_sync(&adapter->watchdog_timer);
3275         del_timer_sync(&adapter->phy_info_timer);
3276
3277         netif_carrier_off(netdev);
3278         adapter->link_speed = 0;
3279         adapter->link_duplex = 0;
3280
3281         if (!pci_channel_offline(adapter->pdev))
3282                 e1000e_reset(adapter);
3283         e1000_clean_tx_ring(adapter);
3284         e1000_clean_rx_ring(adapter);
3285
3286         if (adapter->flags & FLAG_HAS_ERT) {
3287                 pm_qos_remove_request(
3288                               adapter->netdev->pm_qos_req);
3289                 adapter->netdev->pm_qos_req = NULL;
3290         }
3291
3292         /*
3293          * TODO: for power management, we could drop the link and
3294          * pci_disable_device here.
3295          */
3296 }
3297
3298 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3299 {
3300         might_sleep();
3301         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3302                 msleep(1);
3303         e1000e_down(adapter);
3304         e1000e_up(adapter);
3305         clear_bit(__E1000_RESETTING, &adapter->state);
3306 }
3307
3308 /**
3309  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3310  * @adapter: board private structure to initialize
3311  *
3312  * e1000_sw_init initializes the Adapter private data structure.
3313  * Fields are initialized based on PCI device information and
3314  * OS network device settings (MTU size).
3315  **/
3316 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3317 {
3318         struct net_device *netdev = adapter->netdev;
3319
3320         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3321         adapter->rx_ps_bsize0 = 128;
3322         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3323         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3324
3325         e1000e_set_interrupt_capability(adapter);
3326
3327         if (e1000_alloc_queues(adapter))
3328                 return -ENOMEM;
3329
3330         /* Explicitly disable IRQ since the NIC can be in any state. */
3331         e1000_irq_disable(adapter);
3332
3333         set_bit(__E1000_DOWN, &adapter->state);
3334         return 0;
3335 }
3336
3337 /**
3338  * e1000_intr_msi_test - Interrupt Handler
3339  * @irq: interrupt number
3340  * @data: pointer to a network interface device structure
3341  **/
3342 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3343 {
3344         struct net_device *netdev = data;
3345         struct e1000_adapter *adapter = netdev_priv(netdev);
3346         struct e1000_hw *hw = &adapter->hw;
3347         u32 icr = er32(ICR);
3348
3349         e_dbg("icr is %08X\n", icr);
3350         if (icr & E1000_ICR_RXSEQ) {
3351                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3352                 wmb();
3353         }
3354
3355         return IRQ_HANDLED;
3356 }
3357
3358 /**
3359  * e1000_test_msi_interrupt - Returns 0 for successful test
3360  * @adapter: board private struct
3361  *
3362  * code flow taken from tg3.c
3363  **/
3364 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3365 {
3366         struct net_device *netdev = adapter->netdev;
3367         struct e1000_hw *hw = &adapter->hw;
3368         int err;
3369
3370         /* poll_enable hasn't been called yet, so don't need disable */
3371         /* clear any pending events */
3372         er32(ICR);
3373
3374         /* free the real vector and request a test handler */
3375         e1000_free_irq(adapter);
3376         e1000e_reset_interrupt_capability(adapter);
3377
3378         /* Assume that the test fails, if it succeeds then the test
3379          * MSI irq handler will unset this flag */
3380         adapter->flags |= FLAG_MSI_TEST_FAILED;
3381
3382         err = pci_enable_msi(adapter->pdev);
3383         if (err)
3384                 goto msi_test_failed;
3385
3386         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3387                           netdev->name, netdev);
3388         if (err) {
3389                 pci_disable_msi(adapter->pdev);
3390                 goto msi_test_failed;
3391         }
3392
3393         wmb();
3394
3395         e1000_irq_enable(adapter);
3396
3397         /* fire an unusual interrupt on the test handler */
3398         ew32(ICS, E1000_ICS_RXSEQ);
3399         e1e_flush();
3400         msleep(50);
3401
3402         e1000_irq_disable(adapter);
3403
3404         rmb();
3405
3406         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3407                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3408                 err = -EIO;
3409                 e_info("MSI interrupt test failed!\n");
3410         }
3411
3412         free_irq(adapter->pdev->irq, netdev);
3413         pci_disable_msi(adapter->pdev);
3414
3415         if (err == -EIO)
3416                 goto msi_test_failed;
3417
3418         /* okay so the test worked, restore settings */
3419         e_dbg("MSI interrupt test succeeded!\n");
3420 msi_test_failed:
3421         e1000e_set_interrupt_capability(adapter);
3422         e1000_request_irq(adapter);
3423         return err;
3424 }
3425
3426 /**
3427  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3428  * @adapter: board private struct
3429  *
3430  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3431  **/
3432 static int e1000_test_msi(struct e1000_adapter *adapter)
3433 {
3434         int err;
3435         u16 pci_cmd;
3436
3437         if (!(adapter->flags & FLAG_MSI_ENABLED))
3438                 return 0;
3439
3440         /* disable SERR in case the MSI write causes a master abort */
3441         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3442         if (pci_cmd & PCI_COMMAND_SERR)
3443                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3444                                       pci_cmd & ~PCI_COMMAND_SERR);
3445
3446         err = e1000_test_msi_interrupt(adapter);
3447
3448         /* re-enable SERR */
3449         if (pci_cmd & PCI_COMMAND_SERR) {
3450                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3451                 pci_cmd |= PCI_COMMAND_SERR;
3452                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3453         }
3454
3455         /* success ! */
3456         if (!err)
3457                 return 0;
3458
3459         /* EIO means MSI test failed */
3460         if (err != -EIO)
3461                 return err;
3462
3463         /* back to INTx mode */
3464         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3465
3466         e1000_free_irq(adapter);
3467
3468         err = e1000_request_irq(adapter);
3469
3470         return err;
3471 }
3472
3473 /**
3474  * e1000_open - Called when a network interface is made active
3475  * @netdev: network interface device structure
3476  *
3477  * Returns 0 on success, negative value on failure
3478  *
3479  * The open entry point is called when a network interface is made
3480  * active by the system (IFF_UP).  At this point all resources needed
3481  * for transmit and receive operations are allocated, the interrupt
3482  * handler is registered with the OS, the watchdog timer is started,
3483  * and the stack is notified that the interface is ready.
3484  **/
3485 static int e1000_open(struct net_device *netdev)
3486 {
3487         struct e1000_adapter *adapter = netdev_priv(netdev);
3488         struct e1000_hw *hw = &adapter->hw;
3489         struct pci_dev *pdev = adapter->pdev;
3490         int err;
3491
3492         /* disallow open during test */
3493         if (test_bit(__E1000_TESTING, &adapter->state))
3494                 return -EBUSY;
3495
3496         pm_runtime_get_sync(&pdev->dev);
3497
3498         netif_carrier_off(netdev);
3499
3500         /* allocate transmit descriptors */
3501         err = e1000e_setup_tx_resources(adapter);
3502         if (err)
3503                 goto err_setup_tx;
3504
3505         /* allocate receive descriptors */
3506         err = e1000e_setup_rx_resources(adapter);
3507         if (err)
3508                 goto err_setup_rx;
3509
3510         /*
3511          * If AMT is enabled, let the firmware know that the network
3512          * interface is now open and reset the part to a known state.
3513          */
3514         if (adapter->flags & FLAG_HAS_AMT) {
3515                 e1000_get_hw_control(adapter);
3516                 e1000e_reset(adapter);
3517         }
3518
3519         e1000e_power_up_phy(adapter);
3520
3521         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3522         if ((adapter->hw.mng_cookie.status &
3523              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3524                 e1000_update_mng_vlan(adapter);
3525
3526         /*
3527          * before we allocate an interrupt, we must be ready to handle it.
3528          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3529          * as soon as we call pci_request_irq, so we have to setup our
3530          * clean_rx handler before we do so.
3531          */
3532         e1000_configure(adapter);
3533
3534         err = e1000_request_irq(adapter);
3535         if (err)
3536                 goto err_req_irq;
3537
3538         /*
3539          * Work around PCIe errata with MSI interrupts causing some chipsets to
3540          * ignore e1000e MSI messages, which means we need to test our MSI
3541          * interrupt now
3542          */
3543         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3544                 err = e1000_test_msi(adapter);
3545                 if (err) {
3546                         e_err("Interrupt allocation failed\n");
3547                         goto err_req_irq;
3548                 }
3549         }
3550
3551         /* From here on the code is the same as e1000e_up() */
3552         clear_bit(__E1000_DOWN, &adapter->state);
3553
3554         napi_enable(&adapter->napi);
3555
3556         e1000_irq_enable(adapter);
3557
3558         netif_start_queue(netdev);
3559
3560         adapter->idle_check = true;
3561         pm_runtime_put(&pdev->dev);
3562
3563         /* fire a link status change interrupt to start the watchdog */
3564         if (adapter->msix_entries)
3565                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3566         else
3567                 ew32(ICS, E1000_ICS_LSC);
3568
3569         return 0;
3570
3571 err_req_irq:
3572         e1000_release_hw_control(adapter);
3573         e1000_power_down_phy(adapter);
3574         e1000e_free_rx_resources(adapter);
3575 err_setup_rx:
3576         e1000e_free_tx_resources(adapter);
3577 err_setup_tx:
3578         e1000e_reset(adapter);
3579         pm_runtime_put_sync(&pdev->dev);
3580
3581         return err;
3582 }
3583
3584 /**
3585  * e1000_close - Disables a network interface
3586  * @netdev: network interface device structure
3587  *
3588  * Returns 0, this is not allowed to fail
3589  *
3590  * The close entry point is called when an interface is de-activated
3591  * by the OS.  The hardware is still under the drivers control, but
3592  * needs to be disabled.  A global MAC reset is issued to stop the
3593  * hardware, and all transmit and receive resources are freed.
3594  **/
3595 static int e1000_close(struct net_device *netdev)
3596 {
3597         struct e1000_adapter *adapter = netdev_priv(netdev);
3598         struct pci_dev *pdev = adapter->pdev;
3599
3600         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3601
3602         pm_runtime_get_sync(&pdev->dev);
3603
3604         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3605                 e1000e_down(adapter);
3606                 e1000_free_irq(adapter);
3607         }
3608         e1000_power_down_phy(adapter);
3609
3610         e1000e_free_tx_resources(adapter);
3611         e1000e_free_rx_resources(adapter);
3612
3613         /*
3614          * kill manageability vlan ID if supported, but not if a vlan with
3615          * the same ID is registered on the host OS (let 8021q kill it)
3616          */
3617         if ((adapter->hw.mng_cookie.status &
3618                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3619              !(adapter->vlgrp &&
3620                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3621                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3622
3623         /*
3624          * If AMT is enabled, let the firmware know that the network
3625          * interface is now closed
3626          */
3627         if (adapter->flags & FLAG_HAS_AMT)
3628                 e1000_release_hw_control(adapter);
3629
3630         pm_runtime_put_sync(&pdev->dev);
3631
3632         return 0;
3633 }
3634 /**
3635  * e1000_set_mac - Change the Ethernet Address of the NIC
3636  * @netdev: network interface device structure
3637  * @p: pointer to an address structure
3638  *
3639  * Returns 0 on success, negative on failure
3640  **/
3641 static int e1000_set_mac(struct net_device *netdev, void *p)
3642 {
3643         struct e1000_adapter *adapter = netdev_priv(netdev);
3644         struct sockaddr *addr = p;
3645
3646         if (!is_valid_ether_addr(addr->sa_data))
3647                 return -EADDRNOTAVAIL;
3648
3649         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3650         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3651
3652         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3653
3654         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3655                 /* activate the work around */
3656                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3657
3658                 /*
3659                  * Hold a copy of the LAA in RAR[14] This is done so that
3660                  * between the time RAR[0] gets clobbered  and the time it
3661                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3662                  * of the RARs and no incoming packets directed to this port
3663                  * are dropped. Eventually the LAA will be in RAR[0] and
3664                  * RAR[14]
3665                  */
3666                 e1000e_rar_set(&adapter->hw,
3667                               adapter->hw.mac.addr,
3668                               adapter->hw.mac.rar_entry_count - 1);
3669         }
3670
3671         return 0;
3672 }
3673
3674 /**
3675  * e1000e_update_phy_task - work thread to update phy
3676  * @work: pointer to our work struct
3677  *
3678  * this worker thread exists because we must acquire a
3679  * semaphore to read the phy, which we could msleep while
3680  * waiting for it, and we can't msleep in a timer.
3681  **/
3682 static void e1000e_update_phy_task(struct work_struct *work)
3683 {
3684         struct e1000_adapter *adapter = container_of(work,
3685                                         struct e1000_adapter, update_phy_task);
3686         e1000_get_phy_info(&adapter->hw);
3687 }
3688
3689 /*
3690  * Need to wait a few seconds after link up to get diagnostic information from
3691  * the phy
3692  */
3693 static void e1000_update_phy_info(unsigned long data)
3694 {
3695         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3696         schedule_work(&adapter->update_phy_task);
3697 }
3698
3699 /**
3700  * e1000e_update_phy_stats - Update the PHY statistics counters
3701  * @adapter: board private structure
3702  **/
3703 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3704 {
3705         struct e1000_hw *hw = &adapter->hw;
3706         s32 ret_val;
3707         u16 phy_data;
3708
3709         ret_val = hw->phy.ops.acquire(hw);
3710         if (ret_val)
3711                 return;
3712
3713         hw->phy.addr = 1;
3714
3715 #define HV_PHY_STATS_PAGE       778
3716         /*
3717          * A page set is expensive so check if already on desired page.
3718          * If not, set to the page with the PHY status registers.
3719          */
3720         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3721                                            &phy_data);
3722         if (ret_val)
3723                 goto release;
3724         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3725                 ret_val = e1000e_write_phy_reg_mdic(hw,
3726                                                     IGP01E1000_PHY_PAGE_SELECT,
3727                                                     (HV_PHY_STATS_PAGE <<
3728                                                      IGP_PAGE_SHIFT));
3729                 if (ret_val)
3730                         goto release;
3731         }
3732
3733         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3734
3735         /* Single Collision Count */
3736         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3737                                  &phy_data);
3738         ret_val = e1000e_read_phy_reg_mdic(hw,
3739                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3740                                            &phy_data);
3741         if (!ret_val)
3742                 adapter->stats.scc += phy_data;
3743
3744         /* Excessive Collision Count */
3745         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3746                                  &phy_data);
3747         ret_val = e1000e_read_phy_reg_mdic(hw,
3748                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3749                                            &phy_data);
3750         if (!ret_val)
3751                 adapter->stats.ecol += phy_data;
3752
3753         /* Multiple Collision Count */
3754         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3755                                  &phy_data);
3756         ret_val = e1000e_read_phy_reg_mdic(hw,
3757                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3758                                            &phy_data);
3759         if (!ret_val)
3760                 adapter->stats.mcc += phy_data;
3761
3762         /* Late Collision Count */
3763         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3764                                  &phy_data);
3765         ret_val = e1000e_read_phy_reg_mdic(hw,
3766                                            HV_LATECOL_LOWER &
3767                                            MAX_PHY_REG_ADDRESS,
3768                                            &phy_data);
3769         if (!ret_val)
3770                 adapter->stats.latecol += phy_data;
3771
3772         /* Collision Count - also used for adaptive IFS */
3773         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3774                                  &phy_data);
3775         ret_val = e1000e_read_phy_reg_mdic(hw,
3776                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3777                                            &phy_data);
3778         if (!ret_val)
3779                 hw->mac.collision_delta = phy_data;
3780
3781         /* Defer Count */
3782         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3783                                  &phy_data);
3784         ret_val = e1000e_read_phy_reg_mdic(hw,
3785                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3786                                            &phy_data);
3787         if (!ret_val)
3788                 adapter->stats.dc += phy_data;
3789
3790         /* Transmit with no CRS */
3791         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3792                                  &phy_data);
3793         ret_val = e1000e_read_phy_reg_mdic(hw,
3794                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3795                                            &phy_data);
3796         if (!ret_val)
3797                 adapter->stats.tncrs += phy_data;
3798
3799 release:
3800         hw->phy.ops.release(hw);
3801 }
3802
3803 /**
3804  * e1000e_update_stats - Update the board statistics counters
3805  * @adapter: board private structure
3806  **/
3807 void e1000e_update_stats(struct e1000_adapter *adapter)
3808 {
3809         struct net_device *netdev = adapter->netdev;
3810         struct e1000_hw *hw = &adapter->hw;
3811         struct pci_dev *pdev = adapter->pdev;
3812
3813         /*
3814          * Prevent stats update while adapter is being reset, or if the pci
3815          * connection is down.
3816          */
3817         if (adapter->link_speed == 0)
3818                 return;
3819         if (pci_channel_offline(pdev))
3820                 return;
3821
3822         adapter->stats.crcerrs += er32(CRCERRS);
3823         adapter->stats.gprc += er32(GPRC);
3824         adapter->stats.gorc += er32(GORCL);
3825         er32(GORCH); /* Clear gorc */
3826         adapter->stats.bprc += er32(BPRC);
3827         adapter->stats.mprc += er32(MPRC);
3828         adapter->stats.roc += er32(ROC);
3829
3830         adapter->stats.mpc += er32(MPC);
3831
3832         /* Half-duplex statistics */
3833         if (adapter->link_duplex == HALF_DUPLEX) {
3834                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3835                         e1000e_update_phy_stats(adapter);
3836                 } else {
3837                         adapter->stats.scc += er32(SCC);
3838                         adapter->stats.ecol += er32(ECOL);
3839                         adapter->stats.mcc += er32(MCC);
3840                         adapter->stats.latecol += er32(LATECOL);
3841                         adapter->stats.dc += er32(DC);
3842
3843                         hw->mac.collision_delta = er32(COLC);
3844
3845                         if ((hw->mac.type != e1000_82574) &&
3846                             (hw->mac.type != e1000_82583))
3847                                 adapter->stats.tncrs += er32(TNCRS);
3848                 }
3849                 adapter->stats.colc += hw->mac.collision_delta;
3850         }
3851
3852         adapter->stats.xonrxc += er32(XONRXC);
3853         adapter->stats.xontxc += er32(XONTXC);
3854         adapter->stats.xoffrxc += er32(XOFFRXC);
3855         adapter->stats.xofftxc += er32(XOFFTXC);
3856         adapter->stats.gptc += er32(GPTC);
3857         adapter->stats.gotc += er32(GOTCL);
3858         er32(GOTCH); /* Clear gotc */
3859         adapter->stats.rnbc += er32(RNBC);
3860         adapter->stats.ruc += er32(RUC);
3861
3862         adapter->stats.mptc += er32(MPTC);
3863         adapter->stats.bptc += er32(BPTC);
3864
3865         /* used for adaptive IFS */
3866
3867         hw->mac.tx_packet_delta = er32(TPT);
3868         adapter->stats.tpt += hw->mac.tx_packet_delta;
3869
3870         adapter->stats.algnerrc += er32(ALGNERRC);
3871         adapter->stats.rxerrc += er32(RXERRC);
3872         adapter->stats.cexterr += er32(CEXTERR);
3873         adapter->stats.tsctc += er32(TSCTC);
3874         adapter->stats.tsctfc += er32(TSCTFC);
3875
3876         /* Fill out the OS statistics structure */
3877         netdev->stats.multicast = adapter->stats.mprc;
3878         netdev->stats.collisions = adapter->stats.colc;
3879
3880         /* Rx Errors */
3881
3882         /*
3883          * RLEC on some newer hardware can be incorrect so build
3884          * our own version based on RUC and ROC
3885          */
3886         netdev->stats.rx_errors = adapter->stats.rxerrc +
3887                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3888                 adapter->stats.ruc + adapter->stats.roc +
3889                 adapter->stats.cexterr;
3890         netdev->stats.rx_length_errors = adapter->stats.ruc +
3891                                               adapter->stats.roc;
3892         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3893         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3894         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3895
3896         /* Tx Errors */
3897         netdev->stats.tx_errors = adapter->stats.ecol +
3898                                        adapter->stats.latecol;
3899         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3900         netdev->stats.tx_window_errors = adapter->stats.latecol;
3901         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3902
3903         /* Tx Dropped needs to be maintained elsewhere */
3904
3905         /* Management Stats */
3906         adapter->stats.mgptc += er32(MGTPTC);
3907         adapter->stats.mgprc += er32(MGTPRC);
3908         adapter->stats.mgpdc += er32(MGTPDC);
3909 }
3910
3911 /**
3912  * e1000_phy_read_status - Update the PHY register status snapshot
3913  * @adapter: board private structure
3914  **/
3915 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3916 {
3917         struct e1000_hw *hw = &adapter->hw;
3918         struct e1000_phy_regs *phy = &adapter->phy_regs;
3919         int ret_val;
3920
3921         if ((er32(STATUS) & E1000_STATUS_LU) &&
3922             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3923                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3924                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3925                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3926                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3927                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3928                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3929                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3930                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3931                 if (ret_val)
3932                         e_warn("Error reading PHY register\n");
3933         } else {
3934                 /*
3935                  * Do not read PHY registers if link is not up
3936                  * Set values to typical power-on defaults
3937                  */
3938                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3939                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3940                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3941                              BMSR_ERCAP);
3942                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3943                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3944                 phy->lpa = 0;
3945                 phy->expansion = EXPANSION_ENABLENPAGE;
3946                 phy->ctrl1000 = ADVERTISE_1000FULL;
3947                 phy->stat1000 = 0;
3948                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3949         }
3950 }
3951
3952 static void e1000_print_link_info(struct e1000_adapter *adapter)
3953 {
3954         struct e1000_hw *hw = &adapter->hw;
3955         u32 ctrl = er32(CTRL);
3956
3957         /* Link status message must follow this format for user tools */
3958         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3959                "Flow Control: %s\n",
3960                adapter->netdev->name,
3961                adapter->link_speed,
3962                (adapter->link_duplex == FULL_DUPLEX) ?
3963                                 "Full Duplex" : "Half Duplex",
3964                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3965                                 "RX/TX" :
3966                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3967                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3968 }
3969
3970 static bool e1000e_has_link(struct e1000_adapter *adapter)
3971 {
3972         struct e1000_hw *hw = &adapter->hw;
3973         bool link_active = 0;
3974         s32 ret_val = 0;
3975
3976         /*
3977          * get_link_status is set on LSC (link status) interrupt or
3978          * Rx sequence error interrupt.  get_link_status will stay
3979          * false until the check_for_link establishes link
3980          * for copper adapters ONLY
3981          */
3982         switch (hw->phy.media_type) {
3983         case e1000_media_type_copper:
3984                 if (hw->mac.get_link_status) {
3985                         ret_val = hw->mac.ops.check_for_link(hw);
3986                         link_active = !hw->mac.get_link_status;
3987                 } else {
3988                         link_active = 1;
3989                 }
3990                 break;
3991         case e1000_media_type_fiber:
3992                 ret_val = hw->mac.ops.check_for_link(hw);
3993                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3994                 break;
3995         case e1000_media_type_internal_serdes:
3996                 ret_val = hw->mac.ops.check_for_link(hw);
3997                 link_active = adapter->hw.mac.serdes_has_link;
3998                 break;
3999         default:
4000         case e1000_media_type_unknown:
4001                 break;
4002         }
4003
4004         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4005             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4006                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4007                 e_info("Gigabit has been disabled, downgrading speed\n");
4008         }
4009
4010         return link_active;
4011 }
4012
4013 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4014 {
4015         /* make sure the receive unit is started */
4016         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4017             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4018                 struct e1000_hw *hw = &adapter->hw;
4019                 u32 rctl = er32(RCTL);
4020                 ew32(RCTL, rctl | E1000_RCTL_EN);
4021                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4022         }
4023 }
4024
4025 /**
4026  * e1000_watchdog - Timer Call-back
4027  * @data: pointer to adapter cast into an unsigned long
4028  **/
4029 static void e1000_watchdog(unsigned long data)
4030 {
4031         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4032
4033         /* Do the rest outside of interrupt context */
4034         schedule_work(&adapter->watchdog_task);
4035
4036         /* TODO: make this use queue_delayed_work() */
4037 }
4038
4039 static void e1000_watchdog_task(struct work_struct *work)
4040 {
4041         struct e1000_adapter *adapter = container_of(work,
4042                                         struct e1000_adapter, watchdog_task);
4043         struct net_device *netdev = adapter->netdev;
4044         struct e1000_mac_info *mac = &adapter->hw.mac;
4045         struct e1000_phy_info *phy = &adapter->hw.phy;
4046         struct e1000_ring *tx_ring = adapter->tx_ring;
4047         struct e1000_hw *hw = &adapter->hw;
4048         u32 link, tctl;
4049         int tx_pending = 0;
4050
4051         link = e1000e_has_link(adapter);
4052         if ((netif_carrier_ok(netdev)) && link) {
4053                 /* Cancel scheduled suspend requests. */
4054                 pm_runtime_resume(netdev->dev.parent);
4055
4056                 e1000e_enable_receives(adapter);
4057                 goto link_up;
4058         }
4059
4060         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4061             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4062                 e1000_update_mng_vlan(adapter);
4063
4064         if (link) {
4065                 if (!netif_carrier_ok(netdev)) {
4066                         bool txb2b = 1;
4067
4068                         /* Cancel scheduled suspend requests. */
4069                         pm_runtime_resume(netdev->dev.parent);
4070
4071                         /* update snapshot of PHY registers on LSC */
4072                         e1000_phy_read_status(adapter);
4073                         mac->ops.get_link_up_info(&adapter->hw,
4074                                                    &adapter->link_speed,
4075                                                    &adapter->link_duplex);
4076                         e1000_print_link_info(adapter);
4077                         /*
4078                          * On supported PHYs, check for duplex mismatch only
4079                          * if link has autonegotiated at 10/100 half
4080                          */
4081                         if ((hw->phy.type == e1000_phy_igp_3 ||
4082                              hw->phy.type == e1000_phy_bm) &&
4083                             (hw->mac.autoneg == true) &&
4084                             (adapter->link_speed == SPEED_10 ||
4085                              adapter->link_speed == SPEED_100) &&
4086                             (adapter->link_duplex == HALF_DUPLEX)) {
4087                                 u16 autoneg_exp;
4088
4089                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4090
4091                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4092                                         e_info("Autonegotiated half duplex but"
4093                                                " link partner cannot autoneg. "
4094                                                " Try forcing full duplex if "
4095                                                "link gets many collisions.\n");
4096                         }
4097
4098                         /* adjust timeout factor according to speed/duplex */
4099                         adapter->tx_timeout_factor = 1;
4100                         switch (adapter->link_speed) {
4101                         case SPEED_10:
4102                                 txb2b = 0;
4103                                 adapter->tx_timeout_factor = 16;
4104                                 break;
4105                         case SPEED_100:
4106                                 txb2b = 0;
4107                                 adapter->tx_timeout_factor = 10;
4108                                 break;
4109                         }
4110
4111                         /*
4112                          * workaround: re-program speed mode bit after
4113                          * link-up event
4114                          */
4115                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4116                             !txb2b) {
4117                                 u32 tarc0;
4118                                 tarc0 = er32(TARC(0));
4119                                 tarc0 &= ~SPEED_MODE_BIT;
4120                                 ew32(TARC(0), tarc0);
4121                         }
4122
4123                         /*
4124                          * disable TSO for pcie and 10/100 speeds, to avoid
4125                          * some hardware issues
4126                          */
4127                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4128                                 switch (adapter->link_speed) {
4129                                 case SPEED_10:
4130                                 case SPEED_100:
4131                                         e_info("10/100 speed: disabling TSO\n");
4132                                         netdev->features &= ~NETIF_F_TSO;
4133                                         netdev->features &= ~NETIF_F_TSO6;
4134                                         break;
4135                                 case SPEED_1000:
4136                                         netdev->features |= NETIF_F_TSO;
4137                                         netdev->features |= NETIF_F_TSO6;
4138                                         break;
4139                                 default:
4140                                         /* oops */
4141                                         break;
4142                                 }
4143                         }
4144
4145                         /*
4146                          * enable transmits in the hardware, need to do this
4147                          * after setting TARC(0)
4148                          */
4149                         tctl = er32(TCTL);
4150                         tctl |= E1000_TCTL_EN;
4151                         ew32(TCTL, tctl);
4152
4153                         /*
4154                          * Perform any post-link-up configuration before
4155                          * reporting link up.
4156                          */
4157                         if (phy->ops.cfg_on_link_up)
4158                                 phy->ops.cfg_on_link_up(hw);
4159
4160                         netif_carrier_on(netdev);
4161
4162                         if (!test_bit(__E1000_DOWN, &adapter->state))
4163                                 mod_timer(&adapter->phy_info_timer,
4164                                           round_jiffies(jiffies + 2 * HZ));
4165                 }
4166         } else {
4167                 if (netif_carrier_ok(netdev)) {
4168                         adapter->link_speed = 0;
4169                         adapter->link_duplex = 0;
4170                         /* Link status message must follow this format */
4171                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4172                                adapter->netdev->name);
4173                         netif_carrier_off(netdev);
4174                         if (!test_bit(__E1000_DOWN, &adapter->state))
4175                                 mod_timer(&adapter->phy_info_timer,
4176                                           round_jiffies(jiffies + 2 * HZ));
4177
4178                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4179                                 schedule_work(&adapter->reset_task);
4180                         else
4181                                 pm_schedule_suspend(netdev->dev.parent,
4182                                                         LINK_TIMEOUT);
4183                 }
4184         }
4185
4186 link_up:
4187         e1000e_update_stats(adapter);
4188
4189         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4190         adapter->tpt_old = adapter->stats.tpt;
4191         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4192         adapter->colc_old = adapter->stats.colc;
4193
4194         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4195         adapter->gorc_old = adapter->stats.gorc;
4196         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4197         adapter->gotc_old = adapter->stats.gotc;
4198
4199         e1000e_update_adaptive(&adapter->hw);
4200
4201         if (!netif_carrier_ok(netdev)) {
4202                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4203                                tx_ring->count);
4204                 if (tx_pending) {
4205                         /*
4206                          * We've lost link, so the controller stops DMA,
4207                          * but we've got queued Tx work that's never going
4208                          * to get done, so reset controller to flush Tx.
4209                          * (Do the reset outside of interrupt context).
4210                          */
4211                         adapter->tx_timeout_count++;
4212                         schedule_work(&adapter->reset_task);
4213                         /* return immediately since reset is imminent */
4214                         return;
4215                 }
4216         }
4217
4218         /* Simple mode for Interrupt Throttle Rate (ITR) */
4219         if (adapter->itr_setting == 4) {
4220                 /*
4221                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4222                  * Total asymmetrical Tx or Rx gets ITR=8000;
4223                  * everyone else is between 2000-8000.
4224                  */
4225                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4226                 u32 dif = (adapter->gotc > adapter->gorc ?
4227                             adapter->gotc - adapter->gorc :
4228                             adapter->gorc - adapter->gotc) / 10000;
4229                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4230
4231                 ew32(ITR, 1000000000 / (itr * 256));
4232         }
4233
4234         /* Cause software interrupt to ensure Rx ring is cleaned */
4235         if (adapter->msix_entries)
4236                 ew32(ICS, adapter->rx_ring->ims_val);
4237         else
4238                 ew32(ICS, E1000_ICS_RXDMT0);
4239
4240         /* Force detection of hung controller every watchdog period */
4241         adapter->detect_tx_hung = 1;
4242
4243         /*
4244          * With 82571 controllers, LAA may be overwritten due to controller
4245          * reset from the other port. Set the appropriate LAA in RAR[0]
4246          */
4247         if (e1000e_get_laa_state_82571(hw))
4248                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4249
4250         /* Reset the timer */
4251         if (!test_bit(__E1000_DOWN, &adapter->state))
4252                 mod_timer(&adapter->watchdog_timer,
4253                           round_jiffies(jiffies + 2 * HZ));
4254 }
4255
4256 #define E1000_TX_FLAGS_CSUM             0x00000001
4257 #define E1000_TX_FLAGS_VLAN             0x00000002
4258 #define E1000_TX_FLAGS_TSO              0x00000004
4259 #define E1000_TX_FLAGS_IPV4             0x00000008
4260 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4261 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4262
4263 static int e1000_tso(struct e1000_adapter *adapter,
4264                      struct sk_buff *skb)
4265 {
4266         struct e1000_ring *tx_ring = adapter->tx_ring;
4267         struct e1000_context_desc *context_desc;
4268         struct e1000_buffer *buffer_info;
4269         unsigned int i;
4270         u32 cmd_length = 0;
4271         u16 ipcse = 0, tucse, mss;
4272         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4273         int err;
4274
4275         if (!skb_is_gso(skb))
4276                 return 0;
4277
4278         if (skb_header_cloned(skb)) {
4279                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4280                 if (err)
4281                         return err;
4282         }
4283
4284         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4285         mss = skb_shinfo(skb)->gso_size;
4286         if (skb->protocol == htons(ETH_P_IP)) {
4287                 struct iphdr *iph = ip_hdr(skb);
4288                 iph->tot_len = 0;
4289                 iph->check = 0;
4290                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4291                                                          0, IPPROTO_TCP, 0);
4292                 cmd_length = E1000_TXD_CMD_IP;
4293                 ipcse = skb_transport_offset(skb) - 1;
4294         } else if (skb_is_gso_v6(skb)) {
4295                 ipv6_hdr(skb)->payload_len = 0;
4296                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4297                                                        &ipv6_hdr(skb)->daddr,
4298                                                        0, IPPROTO_TCP, 0);
4299                 ipcse = 0;
4300         }
4301         ipcss = skb_network_offset(skb);
4302         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4303         tucss = skb_transport_offset(skb);
4304         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4305         tucse = 0;
4306
4307         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4308                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4309
4310         i = tx_ring->next_to_use;
4311         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4312         buffer_info = &tx_ring->buffer_info[i];
4313
4314         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4315         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4316         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4317         context_desc->upper_setup.tcp_fields.tucss = tucss;
4318         context_desc->upper_setup.tcp_fields.tucso = tucso;
4319         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4320         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4321         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4322         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4323
4324         buffer_info->time_stamp = jiffies;
4325         buffer_info->next_to_watch = i;
4326
4327         i++;
4328         if (i == tx_ring->count)
4329                 i = 0;
4330         tx_ring->next_to_use = i;
4331
4332         return 1;
4333 }
4334
4335 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4336 {
4337         struct e1000_ring *tx_ring = adapter->tx_ring;
4338         struct e1000_context_desc *context_desc;
4339         struct e1000_buffer *buffer_info;
4340         unsigned int i;
4341         u8 css;
4342         u32 cmd_len = E1000_TXD_CMD_DEXT;
4343         __be16 protocol;
4344
4345         if (skb->ip_summed != CHECKSUM_PARTIAL)
4346                 return 0;
4347
4348         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4349                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4350         else
4351                 protocol = skb->protocol;
4352
4353         switch (protocol) {
4354         case cpu_to_be16(ETH_P_IP):
4355                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4356                         cmd_len |= E1000_TXD_CMD_TCP;
4357                 break;
4358         case cpu_to_be16(ETH_P_IPV6):
4359                 /* XXX not handling all IPV6 headers */
4360                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4361                         cmd_len |= E1000_TXD_CMD_TCP;
4362                 break;
4363         default:
4364                 if (unlikely(net_ratelimit()))
4365                         e_warn("checksum_partial proto=%x!\n",
4366                                be16_to_cpu(protocol));
4367                 break;
4368         }
4369
4370         css = skb_transport_offset(skb);
4371
4372         i = tx_ring->next_to_use;
4373         buffer_info = &tx_ring->buffer_info[i];
4374         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4375
4376         context_desc->lower_setup.ip_config = 0;
4377         context_desc->upper_setup.tcp_fields.tucss = css;
4378         context_desc->upper_setup.tcp_fields.tucso =
4379                                 css + skb->csum_offset;
4380         context_desc->upper_setup.tcp_fields.tucse = 0;
4381         context_desc->tcp_seg_setup.data = 0;
4382         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4383
4384         buffer_info->time_stamp = jiffies;
4385         buffer_info->next_to_watch = i;
4386
4387         i++;
4388         if (i == tx_ring->count)
4389                 i = 0;
4390         tx_ring->next_to_use = i;
4391
4392         return 1;
4393 }
4394
4395 #define E1000_MAX_PER_TXD       8192
4396 #define E1000_MAX_TXD_PWR       12
4397
4398 static int e1000_tx_map(struct e1000_adapter *adapter,
4399                         struct sk_buff *skb, unsigned int first,
4400                         unsigned int max_per_txd, unsigned int nr_frags,
4401                         unsigned int mss)
4402 {
4403         struct e1000_ring *tx_ring = adapter->tx_ring;
4404         struct pci_dev *pdev = adapter->pdev;
4405         struct e1000_buffer *buffer_info;
4406         unsigned int len = skb_headlen(skb);
4407         unsigned int offset = 0, size, count = 0, i;
4408         unsigned int f, bytecount, segs;
4409
4410         i = tx_ring->next_to_use;
4411
4412         while (len) {
4413                 buffer_info = &tx_ring->buffer_info[i];
4414                 size = min(len, max_per_txd);
4415
4416                 buffer_info->length = size;
4417                 buffer_info->time_stamp = jiffies;
4418                 buffer_info->next_to_watch = i;
4419                 buffer_info->dma = dma_map_single(&pdev->dev,
4420                                                   skb->data + offset,
4421                                                   size, DMA_TO_DEVICE);
4422                 buffer_info->mapped_as_page = false;
4423                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4424                         goto dma_error;
4425
4426                 len -= size;
4427                 offset += size;
4428                 count++;
4429
4430                 if (len) {
4431                         i++;
4432                         if (i == tx_ring->count)
4433                                 i = 0;
4434                 }
4435         }
4436
4437         for (f = 0; f < nr_frags; f++) {
4438                 struct skb_frag_struct *frag;
4439
4440                 frag = &skb_shinfo(skb)->frags[f];
4441                 len = frag->size;
4442                 offset = frag->page_offset;
4443
4444                 while (len) {
4445                         i++;
4446                         if (i == tx_ring->count)
4447                                 i = 0;
4448
4449                         buffer_info = &tx_ring->buffer_info[i];
4450                         size = min(len, max_per_txd);
4451
4452                         buffer_info->length = size;
4453                         buffer_info->time_stamp = jiffies;
4454                         buffer_info->next_to_watch = i;
4455                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4456                                                         offset, size,
4457                                                         DMA_TO_DEVICE);
4458                         buffer_info->mapped_as_page = true;
4459                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4460                                 goto dma_error;
4461
4462                         len -= size;
4463                         offset += size;
4464                         count++;
4465                 }
4466         }
4467
4468         segs = skb_shinfo(skb)->gso_segs ?: 1;
4469         /* multiply data chunks by size of headers */
4470         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4471
4472         tx_ring->buffer_info[i].skb = skb;
4473         tx_ring->buffer_info[i].segs = segs;
4474         tx_ring->buffer_info[i].bytecount = bytecount;
4475         tx_ring->buffer_info[first].next_to_watch = i;
4476
4477         return count;
4478
4479 dma_error:
4480         dev_err(&pdev->dev, "TX DMA map failed\n");
4481         buffer_info->dma = 0;
4482         if (count)
4483                 count--;
4484
4485         while (count--) {
4486                 if (i==0)
4487                         i += tx_ring->count;
4488                 i--;
4489                 buffer_info = &tx_ring->buffer_info[i];
4490                 e1000_put_txbuf(adapter, buffer_info);;
4491         }
4492
4493         return 0;
4494 }
4495
4496 static void e1000_tx_queue(struct e1000_adapter *adapter,
4497                            int tx_flags, int count)
4498 {
4499         struct e1000_ring *tx_ring = adapter->tx_ring;
4500         struct e1000_tx_desc *tx_desc = NULL;
4501         struct e1000_buffer *buffer_info;
4502         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4503         unsigned int i;
4504
4505         if (tx_flags & E1000_TX_FLAGS_TSO) {
4506                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4507                              E1000_TXD_CMD_TSE;
4508                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4509
4510                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4511                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4512         }
4513
4514         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4515                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4516                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4517         }
4518
4519         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4520                 txd_lower |= E1000_TXD_CMD_VLE;
4521                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4522         }
4523
4524         i = tx_ring->next_to_use;
4525
4526         while (count--) {
4527                 buffer_info = &tx_ring->buffer_info[i];
4528                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4529                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4530                 tx_desc->lower.data =
4531                         cpu_to_le32(txd_lower | buffer_info->length);
4532                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4533
4534                 i++;
4535                 if (i == tx_ring->count)
4536                         i = 0;
4537         }
4538
4539         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4540
4541         /*
4542          * Force memory writes to complete before letting h/w
4543          * know there are new descriptors to fetch.  (Only
4544          * applicable for weak-ordered memory model archs,
4545          * such as IA-64).
4546          */
4547         wmb();
4548
4549         tx_ring->next_to_use = i;
4550         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4551         /*
4552          * we need this if more than one processor can write to our tail
4553          * at a time, it synchronizes IO on IA64/Altix systems
4554          */
4555         mmiowb();
4556 }
4557
4558 #define MINIMUM_DHCP_PACKET_SIZE 282
4559 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4560                                     struct sk_buff *skb)
4561 {
4562         struct e1000_hw *hw =  &adapter->hw;
4563         u16 length, offset;
4564
4565         if (vlan_tx_tag_present(skb)) {
4566                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4567                     (adapter->hw.mng_cookie.status &
4568                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4569                         return 0;
4570         }
4571
4572         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4573                 return 0;
4574
4575         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4576                 return 0;
4577
4578         {
4579                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4580                 struct udphdr *udp;
4581
4582                 if (ip->protocol != IPPROTO_UDP)
4583                         return 0;
4584
4585                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4586                 if (ntohs(udp->dest) != 67)
4587                         return 0;
4588
4589                 offset = (u8 *)udp + 8 - skb->data;
4590                 length = skb->len - offset;
4591                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4592         }
4593
4594         return 0;
4595 }
4596
4597 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4598 {
4599         struct e1000_adapter *adapter = netdev_priv(netdev);
4600
4601         netif_stop_queue(netdev);
4602         /*
4603          * Herbert's original patch had:
4604          *  smp_mb__after_netif_stop_queue();
4605          * but since that doesn't exist yet, just open code it.
4606          */
4607         smp_mb();
4608
4609         /*
4610          * We need to check again in a case another CPU has just
4611          * made room available.
4612          */
4613         if (e1000_desc_unused(adapter->tx_ring) < size)
4614                 return -EBUSY;
4615
4616         /* A reprieve! */
4617         netif_start_queue(netdev);
4618         ++adapter->restart_queue;
4619         return 0;
4620 }
4621
4622 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4623 {
4624         struct e1000_adapter *adapter = netdev_priv(netdev);
4625
4626         if (e1000_desc_unused(adapter->tx_ring) >= size)
4627                 return 0;
4628         return __e1000_maybe_stop_tx(netdev, size);
4629 }
4630
4631 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4632 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4633                                     struct net_device *netdev)
4634 {
4635         struct e1000_adapter *adapter = netdev_priv(netdev);
4636         struct e1000_ring *tx_ring = adapter->tx_ring;
4637         unsigned int first;
4638         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4639         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4640         unsigned int tx_flags = 0;
4641         unsigned int len = skb_headlen(skb);
4642         unsigned int nr_frags;
4643         unsigned int mss;
4644         int count = 0;
4645         int tso;
4646         unsigned int f;
4647
4648         if (test_bit(__E1000_DOWN, &adapter->state)) {
4649                 dev_kfree_skb_any(skb);
4650                 return NETDEV_TX_OK;
4651         }
4652
4653         if (skb->len <= 0) {
4654                 dev_kfree_skb_any(skb);
4655                 return NETDEV_TX_OK;
4656         }
4657
4658         mss = skb_shinfo(skb)->gso_size;
4659         /*
4660          * The controller does a simple calculation to
4661          * make sure there is enough room in the FIFO before
4662          * initiating the DMA for each buffer.  The calc is:
4663          * 4 = ceil(buffer len/mss).  To make sure we don't
4664          * overrun the FIFO, adjust the max buffer len if mss
4665          * drops.
4666          */
4667         if (mss) {
4668                 u8 hdr_len;
4669                 max_per_txd = min(mss << 2, max_per_txd);
4670                 max_txd_pwr = fls(max_per_txd) - 1;
4671
4672                 /*
4673                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4674                  * points to just header, pull a few bytes of payload from
4675                  * frags into skb->data
4676                  */
4677                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4678                 /*
4679                  * we do this workaround for ES2LAN, but it is un-necessary,
4680                  * avoiding it could save a lot of cycles
4681                  */
4682                 if (skb->data_len && (hdr_len == len)) {
4683                         unsigned int pull_size;
4684
4685                         pull_size = min((unsigned int)4, skb->data_len);
4686                         if (!__pskb_pull_tail(skb, pull_size)) {
4687                                 e_err("__pskb_pull_tail failed.\n");
4688                                 dev_kfree_skb_any(skb);
4689                                 return NETDEV_TX_OK;
4690                         }
4691                         len = skb_headlen(skb);
4692                 }
4693         }
4694
4695         /* reserve a descriptor for the offload context */
4696         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4697                 count++;
4698         count++;
4699
4700         count += TXD_USE_COUNT(len, max_txd_pwr);
4701
4702         nr_frags = skb_shinfo(skb)->nr_frags;
4703         for (f = 0; f < nr_frags; f++)
4704                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4705                                        max_txd_pwr);
4706
4707         if (adapter->hw.mac.tx_pkt_filtering)
4708                 e1000_transfer_dhcp_info(adapter, skb);
4709
4710         /*
4711          * need: count + 2 desc gap to keep tail from touching
4712          * head, otherwise try next time
4713          */
4714         if (e1000_maybe_stop_tx(netdev, count + 2))
4715                 return NETDEV_TX_BUSY;
4716
4717         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4718                 tx_flags |= E1000_TX_FLAGS_VLAN;
4719                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4720         }
4721
4722         first = tx_ring->next_to_use;
4723
4724         tso = e1000_tso(adapter, skb);
4725         if (tso < 0) {
4726                 dev_kfree_skb_any(skb);
4727                 return NETDEV_TX_OK;
4728         }
4729
4730         if (tso)
4731                 tx_flags |= E1000_TX_FLAGS_TSO;
4732         else if (e1000_tx_csum(adapter, skb))
4733                 tx_flags |= E1000_TX_FLAGS_CSUM;
4734
4735         /*
4736          * Old method was to assume IPv4 packet by default if TSO was enabled.
4737          * 82571 hardware supports TSO capabilities for IPv6 as well...
4738          * no longer assume, we must.
4739          */
4740         if (skb->protocol == htons(ETH_P_IP))
4741                 tx_flags |= E1000_TX_FLAGS_IPV4;
4742
4743         /* if count is 0 then mapping error has occured */
4744         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4745         if (count) {
4746                 e1000_tx_queue(adapter, tx_flags, count);
4747                 /* Make sure there is space in the ring for the next send. */
4748                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4749
4750         } else {
4751                 dev_kfree_skb_any(skb);
4752                 tx_ring->buffer_info[first].time_stamp = 0;
4753                 tx_ring->next_to_use = first;
4754         }
4755
4756         return NETDEV_TX_OK;
4757 }
4758
4759 /**
4760  * e1000_tx_timeout - Respond to a Tx Hang
4761  * @netdev: network interface device structure
4762  **/
4763 static void e1000_tx_timeout(struct net_device *netdev)
4764 {
4765         struct e1000_adapter *adapter = netdev_priv(netdev);
4766
4767         /* Do the reset outside of interrupt context */
4768         adapter->tx_timeout_count++;
4769         schedule_work(&adapter->reset_task);
4770 }
4771
4772 static void e1000_reset_task(struct work_struct *work)
4773 {
4774         struct e1000_adapter *adapter;
4775         adapter = container_of(work, struct e1000_adapter, reset_task);
4776
4777         e1000e_dump(adapter);
4778         e_err("Reset adapter\n");
4779         e1000e_reinit_locked(adapter);
4780 }
4781
4782 /**
4783  * e1000_get_stats - Get System Network Statistics
4784  * @netdev: network interface device structure
4785  *
4786  * Returns the address of the device statistics structure.
4787  * The statistics are actually updated from the timer callback.
4788  **/
4789 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4790 {
4791         /* only return the current stats */
4792         return &netdev->stats;
4793 }
4794
4795 /**
4796  * e1000_change_mtu - Change the Maximum Transfer Unit
4797  * @netdev: network interface device structure
4798  * @new_mtu: new value for maximum frame size
4799  *
4800  * Returns 0 on success, negative on failure
4801  **/
4802 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4803 {
4804         struct e1000_adapter *adapter = netdev_priv(netdev);
4805         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4806
4807         /* Jumbo frame support */
4808         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4809             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4810                 e_err("Jumbo Frames not supported.\n");
4811                 return -EINVAL;
4812         }
4813
4814         /* Supported frame sizes */
4815         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4816             (max_frame > adapter->max_hw_frame_size)) {
4817                 e_err("Unsupported MTU setting\n");
4818                 return -EINVAL;
4819         }
4820
4821         /* 82573 Errata 17 */
4822         if (((adapter->hw.mac.type == e1000_82573) ||
4823              (adapter->hw.mac.type == e1000_82574)) &&
4824             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4825                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4826                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4827         }
4828
4829         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4830                 msleep(1);
4831         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4832         adapter->max_frame_size = max_frame;
4833         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4834         netdev->mtu = new_mtu;
4835         if (netif_running(netdev))
4836                 e1000e_down(adapter);
4837
4838         /*
4839          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4840          * means we reserve 2 more, this pushes us to allocate from the next
4841          * larger slab size.
4842          * i.e. RXBUFFER_2048 --> size-4096 slab
4843          * However with the new *_jumbo_rx* routines, jumbo receives will use
4844          * fragmented skbs
4845          */
4846
4847         if (max_frame <= 2048)
4848                 adapter->rx_buffer_len = 2048;
4849         else
4850                 adapter->rx_buffer_len = 4096;
4851
4852         /* adjust allocation if LPE protects us, and we aren't using SBP */
4853         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4854              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4855                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4856                                          + ETH_FCS_LEN;
4857
4858         if (netif_running(netdev))
4859                 e1000e_up(adapter);
4860         else
4861                 e1000e_reset(adapter);
4862
4863         clear_bit(__E1000_RESETTING, &adapter->state);
4864
4865         return 0;
4866 }
4867
4868 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4869                            int cmd)
4870 {
4871         struct e1000_adapter *adapter = netdev_priv(netdev);
4872         struct mii_ioctl_data *data = if_mii(ifr);
4873
4874         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4875                 return -EOPNOTSUPP;
4876
4877         switch (cmd) {
4878         case SIOCGMIIPHY:
4879                 data->phy_id = adapter->hw.phy.addr;
4880                 break;
4881         case SIOCGMIIREG:
4882                 e1000_phy_read_status(adapter);
4883
4884                 switch (data->reg_num & 0x1F) {
4885                 case MII_BMCR:
4886                         data->val_out = adapter->phy_regs.bmcr;
4887                         break;
4888                 case MII_BMSR:
4889                         data->val_out = adapter->phy_regs.bmsr;
4890                         break;
4891                 case MII_PHYSID1:
4892                         data->val_out = (adapter->hw.phy.id >> 16);
4893                         break;
4894                 case MII_PHYSID2:
4895                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4896                         break;
4897                 case MII_ADVERTISE:
4898                         data->val_out = adapter->phy_regs.advertise;
4899                         break;
4900                 case MII_LPA:
4901                         data->val_out = adapter->phy_regs.lpa;
4902                         break;
4903                 case MII_EXPANSION:
4904                         data->val_out = adapter->phy_regs.expansion;
4905                         break;
4906                 case MII_CTRL1000:
4907                         data->val_out = adapter->phy_regs.ctrl1000;
4908                         break;
4909                 case MII_STAT1000:
4910                         data->val_out = adapter->phy_regs.stat1000;
4911                         break;
4912                 case MII_ESTATUS:
4913                         data->val_out = adapter->phy_regs.estatus;
4914                         break;
4915                 default:
4916                         return -EIO;
4917                 }
4918                 break;
4919         case SIOCSMIIREG:
4920         default:
4921                 return -EOPNOTSUPP;
4922         }
4923         return 0;
4924 }
4925
4926 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4927 {
4928         switch (cmd) {
4929         case SIOCGMIIPHY:
4930         case SIOCGMIIREG:
4931         case SIOCSMIIREG:
4932                 return e1000_mii_ioctl(netdev, ifr, cmd);
4933         default:
4934                 return -EOPNOTSUPP;
4935         }
4936 }
4937
4938 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4939 {
4940         struct e1000_hw *hw = &adapter->hw;
4941         u32 i, mac_reg;
4942         u16 phy_reg;
4943         int retval = 0;
4944
4945         /* copy MAC RARs to PHY RARs */
4946         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4947
4948         /* copy MAC MTA to PHY MTA */
4949         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4950                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4951                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4952                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4953         }
4954
4955         /* configure PHY Rx Control register */
4956         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4957         mac_reg = er32(RCTL);
4958         if (mac_reg & E1000_RCTL_UPE)
4959                 phy_reg |= BM_RCTL_UPE;
4960         if (mac_reg & E1000_RCTL_MPE)
4961                 phy_reg |= BM_RCTL_MPE;
4962         phy_reg &= ~(BM_RCTL_MO_MASK);
4963         if (mac_reg & E1000_RCTL_MO_3)
4964                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4965                                 << BM_RCTL_MO_SHIFT);
4966         if (mac_reg & E1000_RCTL_BAM)
4967                 phy_reg |= BM_RCTL_BAM;
4968         if (mac_reg & E1000_RCTL_PMCF)
4969                 phy_reg |= BM_RCTL_PMCF;
4970         mac_reg = er32(CTRL);
4971         if (mac_reg & E1000_CTRL_RFCE)
4972                 phy_reg |= BM_RCTL_RFCE;
4973         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4974
4975         /* enable PHY wakeup in MAC register */
4976         ew32(WUFC, wufc);
4977         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4978
4979         /* configure and enable PHY wakeup in PHY registers */
4980         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4981         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4982
4983         /* activate PHY wakeup */
4984         retval = hw->phy.ops.acquire(hw);
4985         if (retval) {
4986                 e_err("Could not acquire PHY\n");
4987                 return retval;
4988         }
4989         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4990                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4991         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4992         if (retval) {
4993                 e_err("Could not read PHY page 769\n");
4994                 goto out;
4995         }
4996         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4997         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4998         if (retval)
4999                 e_err("Could not set PHY Host Wakeup bit\n");
5000 out:
5001         hw->phy.ops.release(hw);
5002
5003         return retval;
5004 }
5005
5006 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5007                             bool runtime)
5008 {
5009         struct net_device *netdev = pci_get_drvdata(pdev);
5010         struct e1000_adapter *adapter = netdev_priv(netdev);
5011         struct e1000_hw *hw = &adapter->hw;
5012         u32 ctrl, ctrl_ext, rctl, status;
5013         /* Runtime suspend should only enable wakeup for link changes */
5014         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5015         int retval = 0;
5016
5017         netif_device_detach(netdev);
5018
5019         if (netif_running(netdev)) {
5020                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5021                 e1000e_down(adapter);
5022                 e1000_free_irq(adapter);
5023         }
5024         e1000e_reset_interrupt_capability(adapter);
5025
5026         retval = pci_save_state(pdev);
5027         if (retval)
5028                 return retval;
5029
5030         status = er32(STATUS);
5031         if (status & E1000_STATUS_LU)
5032                 wufc &= ~E1000_WUFC_LNKC;
5033
5034         if (wufc) {
5035                 e1000_setup_rctl(adapter);
5036                 e1000_set_multi(netdev);
5037
5038                 /* turn on all-multi mode if wake on multicast is enabled */
5039                 if (wufc & E1000_WUFC_MC) {
5040                         rctl = er32(RCTL);
5041                         rctl |= E1000_RCTL_MPE;
5042                         ew32(RCTL, rctl);
5043                 }
5044
5045                 ctrl = er32(CTRL);
5046                 /* advertise wake from D3Cold */
5047                 #define E1000_CTRL_ADVD3WUC 0x00100000
5048                 /* phy power management enable */
5049                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5050                 ctrl |= E1000_CTRL_ADVD3WUC;
5051                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5052                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5053                 ew32(CTRL, ctrl);
5054
5055                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5056                     adapter->hw.phy.media_type ==
5057                     e1000_media_type_internal_serdes) {
5058                         /* keep the laser running in D3 */
5059                         ctrl_ext = er32(CTRL_EXT);
5060                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5061                         ew32(CTRL_EXT, ctrl_ext);
5062                 }
5063
5064                 if (adapter->flags & FLAG_IS_ICH)
5065                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5066
5067                 /* Allow time for pending master requests to run */
5068                 e1000e_disable_pcie_master(&adapter->hw);
5069
5070                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5071                         /* enable wakeup by the PHY */
5072                         retval = e1000_init_phy_wakeup(adapter, wufc);
5073                         if (retval)
5074                                 return retval;
5075                 } else {
5076                         /* enable wakeup by the MAC */
5077                         ew32(WUFC, wufc);
5078                         ew32(WUC, E1000_WUC_PME_EN);
5079                 }
5080         } else {
5081                 ew32(WUC, 0);
5082                 ew32(WUFC, 0);
5083         }
5084
5085         *enable_wake = !!wufc;
5086
5087         /* make sure adapter isn't asleep if manageability is enabled */
5088         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5089             (hw->mac.ops.check_mng_mode(hw)))
5090                 *enable_wake = true;
5091
5092         if (adapter->hw.phy.type == e1000_phy_igp_3)
5093                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5094
5095         /*
5096          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5097          * would have already happened in close and is redundant.
5098          */
5099         e1000_release_hw_control(adapter);
5100
5101         pci_disable_device(pdev);
5102
5103         return 0;
5104 }
5105
5106 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5107 {
5108         if (sleep && wake) {
5109                 pci_prepare_to_sleep(pdev);
5110                 return;
5111         }
5112
5113         pci_wake_from_d3(pdev, wake);
5114         pci_set_power_state(pdev, PCI_D3hot);
5115 }
5116
5117 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5118                                     bool wake)
5119 {
5120         struct net_device *netdev = pci_get_drvdata(pdev);
5121         struct e1000_adapter *adapter = netdev_priv(netdev);
5122
5123         /*
5124          * The pci-e switch on some quad port adapters will report a
5125          * correctable error when the MAC transitions from D0 to D3.  To
5126          * prevent this we need to mask off the correctable errors on the
5127          * downstream port of the pci-e switch.
5128          */
5129         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5130                 struct pci_dev *us_dev = pdev->bus->self;
5131                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5132                 u16 devctl;
5133
5134                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5135                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5136                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5137
5138                 e1000_power_off(pdev, sleep, wake);
5139
5140                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5141         } else {
5142                 e1000_power_off(pdev, sleep, wake);
5143         }
5144 }
5145
5146 #ifdef CONFIG_PCIEASPM
5147 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5148 {
5149         pci_disable_link_state(pdev, state);
5150 }
5151 #else
5152 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5153 {
5154         int pos;
5155         u16 reg16;
5156
5157         /*
5158          * Both device and parent should have the same ASPM setting.
5159          * Disable ASPM in downstream component first and then upstream.
5160          */
5161         pos = pci_pcie_cap(pdev);
5162         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5163         reg16 &= ~state;
5164         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5165
5166         if (!pdev->bus->self)
5167                 return;
5168
5169         pos = pci_pcie_cap(pdev->bus->self);
5170         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5171         reg16 &= ~state;
5172         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5173 }
5174 #endif
5175 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5176 {
5177         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5178                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5179                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5180
5181         __e1000e_disable_aspm(pdev, state);
5182 }
5183
5184 #ifdef CONFIG_PM_OPS
5185 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5186 {
5187         return !!adapter->tx_ring->buffer_info;
5188 }
5189
5190 static int __e1000_resume(struct pci_dev *pdev)
5191 {
5192         struct net_device *netdev = pci_get_drvdata(pdev);
5193         struct e1000_adapter *adapter = netdev_priv(netdev);
5194         struct e1000_hw *hw = &adapter->hw;
5195         u32 err;
5196
5197         pci_set_power_state(pdev, PCI_D0);
5198         pci_restore_state(pdev);
5199         pci_save_state(pdev);
5200         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5201                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5202
5203         e1000e_set_interrupt_capability(adapter);
5204         if (netif_running(netdev)) {
5205                 err = e1000_request_irq(adapter);
5206                 if (err)
5207                         return err;
5208         }
5209
5210         e1000e_power_up_phy(adapter);
5211
5212         /* report the system wakeup cause from S3/S4 */
5213         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5214                 u16 phy_data;
5215
5216                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5217                 if (phy_data) {
5218                         e_info("PHY Wakeup cause - %s\n",
5219                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5220                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5221                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5222                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5223                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5224                                 " Change" : "other");
5225                 }
5226                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5227         } else {
5228                 u32 wus = er32(WUS);
5229                 if (wus) {
5230                         e_info("MAC Wakeup cause - %s\n",
5231                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5232                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5233                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5234                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5235                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5236                                 "other");
5237                 }
5238                 ew32(WUS, ~0);
5239         }
5240
5241         e1000e_reset(adapter);
5242
5243         e1000_init_manageability_pt(adapter);
5244
5245         if (netif_running(netdev))
5246                 e1000e_up(adapter);
5247
5248         netif_device_attach(netdev);
5249
5250         /*
5251          * If the controller has AMT, do not set DRV_LOAD until the interface
5252          * is up.  For all other cases, let the f/w know that the h/w is now
5253          * under the control of the driver.
5254          */
5255         if (!(adapter->flags & FLAG_HAS_AMT))
5256                 e1000_get_hw_control(adapter);
5257
5258         return 0;
5259 }
5260
5261 #ifdef CONFIG_PM_SLEEP
5262 static int e1000_suspend(struct device *dev)
5263 {
5264         struct pci_dev *pdev = to_pci_dev(dev);
5265         int retval;
5266         bool wake;
5267
5268         retval = __e1000_shutdown(pdev, &wake, false);
5269         if (!retval)
5270                 e1000_complete_shutdown(pdev, true, wake);
5271
5272         return retval;
5273 }
5274
5275 static int e1000_resume(struct device *dev)
5276 {
5277         struct pci_dev *pdev = to_pci_dev(dev);
5278         struct net_device *netdev = pci_get_drvdata(pdev);
5279         struct e1000_adapter *adapter = netdev_priv(netdev);
5280
5281         if (e1000e_pm_ready(adapter))
5282                 adapter->idle_check = true;
5283
5284         return __e1000_resume(pdev);
5285 }
5286 #endif /* CONFIG_PM_SLEEP */
5287
5288 #ifdef CONFIG_PM_RUNTIME
5289 static int e1000_runtime_suspend(struct device *dev)
5290 {
5291         struct pci_dev *pdev = to_pci_dev(dev);
5292         struct net_device *netdev = pci_get_drvdata(pdev);
5293         struct e1000_adapter *adapter = netdev_priv(netdev);
5294
5295         if (e1000e_pm_ready(adapter)) {
5296                 bool wake;
5297
5298                 __e1000_shutdown(pdev, &wake, true);
5299         }
5300
5301         return 0;
5302 }
5303
5304 static int e1000_idle(struct device *dev)
5305 {
5306         struct pci_dev *pdev = to_pci_dev(dev);
5307         struct net_device *netdev = pci_get_drvdata(pdev);
5308         struct e1000_adapter *adapter = netdev_priv(netdev);
5309
5310         if (!e1000e_pm_ready(adapter))
5311                 return 0;
5312
5313         if (adapter->idle_check) {
5314                 adapter->idle_check = false;
5315                 if (!e1000e_has_link(adapter))
5316                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5317         }
5318
5319         return -EBUSY;
5320 }
5321
5322 static int e1000_runtime_resume(struct device *dev)
5323 {
5324         struct pci_dev *pdev = to_pci_dev(dev);
5325         struct net_device *netdev = pci_get_drvdata(pdev);
5326         struct e1000_adapter *adapter = netdev_priv(netdev);
5327
5328         if (!e1000e_pm_ready(adapter))
5329                 return 0;
5330
5331         adapter->idle_check = !dev->power.runtime_auto;
5332         return __e1000_resume(pdev);
5333 }
5334 #endif /* CONFIG_PM_RUNTIME */
5335 #endif /* CONFIG_PM_OPS */
5336
5337 static void e1000_shutdown(struct pci_dev *pdev)
5338 {
5339         bool wake = false;
5340
5341         __e1000_shutdown(pdev, &wake, false);
5342
5343         if (system_state == SYSTEM_POWER_OFF)
5344                 e1000_complete_shutdown(pdev, false, wake);
5345 }
5346
5347 #ifdef CONFIG_NET_POLL_CONTROLLER
5348 /*
5349  * Polling 'interrupt' - used by things like netconsole to send skbs
5350  * without having to re-enable interrupts. It's not called while
5351  * the interrupt routine is executing.
5352  */
5353 static void e1000_netpoll(struct net_device *netdev)
5354 {
5355         struct e1000_adapter *adapter = netdev_priv(netdev);
5356
5357         disable_irq(adapter->pdev->irq);
5358         e1000_intr(adapter->pdev->irq, netdev);
5359
5360         enable_irq(adapter->pdev->irq);
5361 }
5362 #endif
5363
5364 /**
5365  * e1000_io_error_detected - called when PCI error is detected
5366  * @pdev: Pointer to PCI device
5367  * @state: The current pci connection state
5368  *
5369  * This function is called after a PCI bus error affecting
5370  * this device has been detected.
5371  */
5372 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5373                                                 pci_channel_state_t state)
5374 {
5375         struct net_device *netdev = pci_get_drvdata(pdev);
5376         struct e1000_adapter *adapter = netdev_priv(netdev);
5377
5378         netif_device_detach(netdev);
5379
5380         if (state == pci_channel_io_perm_failure)
5381                 return PCI_ERS_RESULT_DISCONNECT;
5382
5383         if (netif_running(netdev))
5384                 e1000e_down(adapter);
5385         pci_disable_device(pdev);
5386
5387         /* Request a slot slot reset. */
5388         return PCI_ERS_RESULT_NEED_RESET;
5389 }
5390
5391 /**
5392  * e1000_io_slot_reset - called after the pci bus has been reset.
5393  * @pdev: Pointer to PCI device
5394  *
5395  * Restart the card from scratch, as if from a cold-boot. Implementation
5396  * resembles the first-half of the e1000_resume routine.
5397  */
5398 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5399 {
5400         struct net_device *netdev = pci_get_drvdata(pdev);
5401         struct e1000_adapter *adapter = netdev_priv(netdev);
5402         struct e1000_hw *hw = &adapter->hw;
5403         int err;
5404         pci_ers_result_t result;
5405
5406         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5407                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5408         err = pci_enable_device_mem(pdev);
5409         if (err) {
5410                 dev_err(&pdev->dev,
5411                         "Cannot re-enable PCI device after reset.\n");
5412                 result = PCI_ERS_RESULT_DISCONNECT;
5413         } else {
5414                 pci_set_master(pdev);
5415                 pdev->state_saved = true;
5416                 pci_restore_state(pdev);
5417
5418                 pci_enable_wake(pdev, PCI_D3hot, 0);
5419                 pci_enable_wake(pdev, PCI_D3cold, 0);
5420
5421                 e1000e_reset(adapter);
5422                 ew32(WUS, ~0);
5423                 result = PCI_ERS_RESULT_RECOVERED;
5424         }
5425
5426         pci_cleanup_aer_uncorrect_error_status(pdev);
5427
5428         return result;
5429 }
5430
5431 /**
5432  * e1000_io_resume - called when traffic can start flowing again.
5433  * @pdev: Pointer to PCI device
5434  *
5435  * This callback is called when the error recovery driver tells us that
5436  * its OK to resume normal operation. Implementation resembles the
5437  * second-half of the e1000_resume routine.
5438  */
5439 static void e1000_io_resume(struct pci_dev *pdev)
5440 {
5441         struct net_device *netdev = pci_get_drvdata(pdev);
5442         struct e1000_adapter *adapter = netdev_priv(netdev);
5443
5444         e1000_init_manageability_pt(adapter);
5445
5446         if (netif_running(netdev)) {
5447                 if (e1000e_up(adapter)) {
5448                         dev_err(&pdev->dev,
5449                                 "can't bring device back up after reset\n");
5450                         return;
5451                 }
5452         }
5453
5454         netif_device_attach(netdev);
5455
5456         /*
5457          * If the controller has AMT, do not set DRV_LOAD until the interface
5458          * is up.  For all other cases, let the f/w know that the h/w is now
5459          * under the control of the driver.
5460          */
5461         if (!(adapter->flags & FLAG_HAS_AMT))
5462                 e1000_get_hw_control(adapter);
5463
5464 }
5465
5466 static void e1000_print_device_info(struct e1000_adapter *adapter)
5467 {
5468         struct e1000_hw *hw = &adapter->hw;
5469         struct net_device *netdev = adapter->netdev;
5470         u32 pba_num;
5471
5472         /* print bus type/speed/width info */
5473         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5474                /* bus width */
5475                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5476                 "Width x1"),
5477                /* MAC address */
5478                netdev->dev_addr);
5479         e_info("Intel(R) PRO/%s Network Connection\n",
5480                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5481         e1000e_read_pba_num(hw, &pba_num);
5482         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5483                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5484 }
5485
5486 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5487 {
5488         struct e1000_hw *hw = &adapter->hw;
5489         int ret_val;
5490         u16 buf = 0;
5491
5492         if (hw->mac.type != e1000_82573)
5493                 return;
5494
5495         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5496         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5497                 /* Deep Smart Power Down (DSPD) */
5498                 dev_warn(&adapter->pdev->dev,
5499                          "Warning: detected DSPD enabled in EEPROM\n");
5500         }
5501 }
5502
5503 static const struct net_device_ops e1000e_netdev_ops = {
5504         .ndo_open               = e1000_open,
5505         .ndo_stop               = e1000_close,
5506         .ndo_start_xmit         = e1000_xmit_frame,
5507         .ndo_get_stats          = e1000_get_stats,
5508         .ndo_set_multicast_list = e1000_set_multi,
5509         .ndo_set_mac_address    = e1000_set_mac,
5510         .ndo_change_mtu         = e1000_change_mtu,
5511         .ndo_do_ioctl           = e1000_ioctl,
5512         .ndo_tx_timeout         = e1000_tx_timeout,
5513         .ndo_validate_addr      = eth_validate_addr,
5514
5515         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5516         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5517         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5518 #ifdef CONFIG_NET_POLL_CONTROLLER
5519         .ndo_poll_controller    = e1000_netpoll,
5520 #endif
5521 };
5522
5523 /**
5524  * e1000_probe - Device Initialization Routine
5525  * @pdev: PCI device information struct
5526  * @ent: entry in e1000_pci_tbl
5527  *
5528  * Returns 0 on success, negative on failure
5529  *
5530  * e1000_probe initializes an adapter identified by a pci_dev structure.
5531  * The OS initialization, configuring of the adapter private structure,
5532  * and a hardware reset occur.
5533  **/
5534 static int __devinit e1000_probe(struct pci_dev *pdev,
5535                                  const struct pci_device_id *ent)
5536 {
5537         struct net_device *netdev;
5538         struct e1000_adapter *adapter;
5539         struct e1000_hw *hw;
5540         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5541         resource_size_t mmio_start, mmio_len;
5542         resource_size_t flash_start, flash_len;
5543
5544         static int cards_found;
5545         int i, err, pci_using_dac;
5546         u16 eeprom_data = 0;
5547         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5548
5549         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5550                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5551
5552         err = pci_enable_device_mem(pdev);
5553         if (err)
5554                 return err;
5555
5556         pci_using_dac = 0;
5557         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5558         if (!err) {
5559                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5560                 if (!err)
5561                         pci_using_dac = 1;
5562         } else {
5563                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5564                 if (err) {
5565                         err = dma_set_coherent_mask(&pdev->dev,
5566                                                     DMA_BIT_MASK(32));
5567                         if (err) {
5568                                 dev_err(&pdev->dev, "No usable DMA "
5569                                         "configuration, aborting\n");
5570                                 goto err_dma;
5571                         }
5572                 }
5573         }
5574
5575         err = pci_request_selected_regions_exclusive(pdev,
5576                                           pci_select_bars(pdev, IORESOURCE_MEM),
5577                                           e1000e_driver_name);
5578         if (err)
5579                 goto err_pci_reg;
5580
5581         /* AER (Advanced Error Reporting) hooks */
5582         pci_enable_pcie_error_reporting(pdev);
5583
5584         pci_set_master(pdev);
5585         /* PCI config space info */
5586         err = pci_save_state(pdev);
5587         if (err)
5588                 goto err_alloc_etherdev;
5589
5590         err = -ENOMEM;
5591         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5592         if (!netdev)
5593                 goto err_alloc_etherdev;
5594
5595         SET_NETDEV_DEV(netdev, &pdev->dev);
5596
5597         netdev->irq = pdev->irq;
5598
5599         pci_set_drvdata(pdev, netdev);
5600         adapter = netdev_priv(netdev);
5601         hw = &adapter->hw;
5602         adapter->netdev = netdev;
5603         adapter->pdev = pdev;
5604         adapter->ei = ei;
5605         adapter->pba = ei->pba;
5606         adapter->flags = ei->flags;
5607         adapter->flags2 = ei->flags2;
5608         adapter->hw.adapter = adapter;
5609         adapter->hw.mac.type = ei->mac;
5610         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5611         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5612
5613         mmio_start = pci_resource_start(pdev, 0);
5614         mmio_len = pci_resource_len(pdev, 0);
5615
5616         err = -EIO;
5617         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5618         if (!adapter->hw.hw_addr)
5619                 goto err_ioremap;
5620
5621         if ((adapter->flags & FLAG_HAS_FLASH) &&
5622             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5623                 flash_start = pci_resource_start(pdev, 1);
5624                 flash_len = pci_resource_len(pdev, 1);
5625                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5626                 if (!adapter->hw.flash_address)
5627                         goto err_flashmap;
5628         }
5629
5630         /* construct the net_device struct */
5631         netdev->netdev_ops              = &e1000e_netdev_ops;
5632         e1000e_set_ethtool_ops(netdev);
5633         netdev->watchdog_timeo          = 5 * HZ;
5634         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5635         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5636
5637         netdev->mem_start = mmio_start;
5638         netdev->mem_end = mmio_start + mmio_len;
5639
5640         adapter->bd_number = cards_found++;
5641
5642         e1000e_check_options(adapter);
5643
5644         /* setup adapter struct */
5645         err = e1000_sw_init(adapter);
5646         if (err)
5647                 goto err_sw_init;
5648
5649         err = -EIO;
5650
5651         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5652         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5653         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5654
5655         err = ei->get_variants(adapter);
5656         if (err)
5657                 goto err_hw_init;
5658
5659         if ((adapter->flags & FLAG_IS_ICH) &&
5660             (adapter->flags & FLAG_READ_ONLY_NVM))
5661                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5662
5663         hw->mac.ops.get_bus_info(&adapter->hw);
5664
5665         adapter->hw.phy.autoneg_wait_to_complete = 0;
5666
5667         /* Copper options */
5668         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5669                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5670                 adapter->hw.phy.disable_polarity_correction = 0;
5671                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5672         }
5673
5674         if (e1000_check_reset_block(&adapter->hw))
5675                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5676
5677         netdev->features = NETIF_F_SG |
5678                            NETIF_F_HW_CSUM |
5679                            NETIF_F_HW_VLAN_TX |
5680                            NETIF_F_HW_VLAN_RX;
5681
5682         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5683                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5684
5685         netdev->features |= NETIF_F_TSO;
5686         netdev->features |= NETIF_F_TSO6;
5687
5688         netdev->vlan_features |= NETIF_F_TSO;
5689         netdev->vlan_features |= NETIF_F_TSO6;
5690         netdev->vlan_features |= NETIF_F_HW_CSUM;
5691         netdev->vlan_features |= NETIF_F_SG;
5692
5693         if (pci_using_dac)
5694                 netdev->features |= NETIF_F_HIGHDMA;
5695
5696         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5697                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5698
5699         /*
5700          * before reading the NVM, reset the controller to
5701          * put the device in a known good starting state
5702          */
5703         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5704
5705         /*
5706          * systems with ASPM and others may see the checksum fail on the first
5707          * attempt. Let's give it a few tries
5708          */
5709         for (i = 0;; i++) {
5710                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5711                         break;
5712                 if (i == 2) {
5713                         e_err("The NVM Checksum Is Not Valid\n");
5714                         err = -EIO;
5715                         goto err_eeprom;
5716                 }
5717         }
5718
5719         e1000_eeprom_checks(adapter);
5720
5721         /* copy the MAC address */
5722         if (e1000e_read_mac_addr(&adapter->hw))
5723                 e_err("NVM Read Error while reading MAC address\n");
5724
5725         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5726         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5727
5728         if (!is_valid_ether_addr(netdev->perm_addr)) {
5729                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5730                 err = -EIO;
5731                 goto err_eeprom;
5732         }
5733
5734         init_timer(&adapter->watchdog_timer);
5735         adapter->watchdog_timer.function = &e1000_watchdog;
5736         adapter->watchdog_timer.data = (unsigned long) adapter;
5737
5738         init_timer(&adapter->phy_info_timer);
5739         adapter->phy_info_timer.function = &e1000_update_phy_info;
5740         adapter->phy_info_timer.data = (unsigned long) adapter;
5741
5742         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5743         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5744         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5745         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5746         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5747
5748         /* Initialize link parameters. User can change them with ethtool */
5749         adapter->hw.mac.autoneg = 1;
5750         adapter->fc_autoneg = 1;
5751         adapter->hw.fc.requested_mode = e1000_fc_default;
5752         adapter->hw.fc.current_mode = e1000_fc_default;
5753         adapter->hw.phy.autoneg_advertised = 0x2f;
5754
5755         /* ring size defaults */
5756         adapter->rx_ring->count = 256;
5757         adapter->tx_ring->count = 256;
5758
5759         /*
5760          * Initial Wake on LAN setting - If APM wake is enabled in
5761          * the EEPROM, enable the ACPI Magic Packet filter
5762          */
5763         if (adapter->flags & FLAG_APME_IN_WUC) {
5764                 /* APME bit in EEPROM is mapped to WUC.APME */
5765                 eeprom_data = er32(WUC);
5766                 eeprom_apme_mask = E1000_WUC_APME;
5767                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5768                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5769         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5770                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5771                     (adapter->hw.bus.func == 1))
5772                         e1000_read_nvm(&adapter->hw,
5773                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5774                 else
5775                         e1000_read_nvm(&adapter->hw,
5776                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5777         }
5778
5779         /* fetch WoL from EEPROM */
5780         if (eeprom_data & eeprom_apme_mask)
5781                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5782
5783         /*
5784          * now that we have the eeprom settings, apply the special cases
5785          * where the eeprom may be wrong or the board simply won't support
5786          * wake on lan on a particular port
5787          */
5788         if (!(adapter->flags & FLAG_HAS_WOL))
5789                 adapter->eeprom_wol = 0;
5790
5791         /* initialize the wol settings based on the eeprom settings */
5792         adapter->wol = adapter->eeprom_wol;
5793         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5794
5795         /* save off EEPROM version number */
5796         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5797
5798         /* reset the hardware with the new settings */
5799         e1000e_reset(adapter);
5800
5801         /*
5802          * If the controller has AMT, do not set DRV_LOAD until the interface
5803          * is up.  For all other cases, let the f/w know that the h/w is now
5804          * under the control of the driver.
5805          */
5806         if (!(adapter->flags & FLAG_HAS_AMT))
5807                 e1000_get_hw_control(adapter);
5808
5809         strcpy(netdev->name, "eth%d");
5810         err = register_netdev(netdev);
5811         if (err)
5812                 goto err_register;
5813
5814         /* carrier off reporting is important to ethtool even BEFORE open */
5815         netif_carrier_off(netdev);
5816
5817         e1000_print_device_info(adapter);
5818
5819         if (pci_dev_run_wake(pdev)) {
5820                 pm_runtime_set_active(&pdev->dev);
5821                 pm_runtime_enable(&pdev->dev);
5822         }
5823         pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
5824
5825         return 0;
5826
5827 err_register:
5828         if (!(adapter->flags & FLAG_HAS_AMT))
5829                 e1000_release_hw_control(adapter);
5830 err_eeprom:
5831         if (!e1000_check_reset_block(&adapter->hw))
5832                 e1000_phy_hw_reset(&adapter->hw);
5833 err_hw_init:
5834
5835         kfree(adapter->tx_ring);
5836         kfree(adapter->rx_ring);
5837 err_sw_init:
5838         if (adapter->hw.flash_address)
5839                 iounmap(adapter->hw.flash_address);
5840         e1000e_reset_interrupt_capability(adapter);
5841 err_flashmap:
5842         iounmap(adapter->hw.hw_addr);
5843 err_ioremap:
5844         free_netdev(netdev);
5845 err_alloc_etherdev:
5846         pci_release_selected_regions(pdev,
5847                                      pci_select_bars(pdev, IORESOURCE_MEM));
5848 err_pci_reg:
5849 err_dma:
5850         pci_disable_device(pdev);
5851         return err;
5852 }
5853
5854 /**
5855  * e1000_remove - Device Removal Routine
5856  * @pdev: PCI device information struct
5857  *
5858  * e1000_remove is called by the PCI subsystem to alert the driver
5859  * that it should release a PCI device.  The could be caused by a
5860  * Hot-Plug event, or because the driver is going to be removed from
5861  * memory.
5862  **/
5863 static void __devexit e1000_remove(struct pci_dev *pdev)
5864 {
5865         struct net_device *netdev = pci_get_drvdata(pdev);
5866         struct e1000_adapter *adapter = netdev_priv(netdev);
5867         bool down = test_bit(__E1000_DOWN, &adapter->state);
5868
5869         pm_runtime_get_sync(&pdev->dev);
5870
5871         /*
5872          * flush_scheduled work may reschedule our watchdog task, so
5873          * explicitly disable watchdog tasks from being rescheduled
5874          */
5875         if (!down)
5876                 set_bit(__E1000_DOWN, &adapter->state);
5877         del_timer_sync(&adapter->watchdog_timer);
5878         del_timer_sync(&adapter->phy_info_timer);
5879
5880         cancel_work_sync(&adapter->reset_task);
5881         cancel_work_sync(&adapter->watchdog_task);
5882         cancel_work_sync(&adapter->downshift_task);
5883         cancel_work_sync(&adapter->update_phy_task);
5884         cancel_work_sync(&adapter->print_hang_task);
5885         flush_scheduled_work();
5886
5887         if (!(netdev->flags & IFF_UP))
5888                 e1000_power_down_phy(adapter);
5889
5890         /* Don't lie to e1000_close() down the road. */
5891         if (!down)
5892                 clear_bit(__E1000_DOWN, &adapter->state);
5893         unregister_netdev(netdev);
5894
5895         if (pci_dev_run_wake(pdev)) {
5896                 pm_runtime_disable(&pdev->dev);
5897                 pm_runtime_set_suspended(&pdev->dev);
5898         }
5899         pm_runtime_put_noidle(&pdev->dev);
5900
5901         /*
5902          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5903          * would have already happened in close and is redundant.
5904          */
5905         e1000_release_hw_control(adapter);
5906
5907         e1000e_reset_interrupt_capability(adapter);
5908         kfree(adapter->tx_ring);
5909         kfree(adapter->rx_ring);
5910
5911         iounmap(adapter->hw.hw_addr);
5912         if (adapter->hw.flash_address)
5913                 iounmap(adapter->hw.flash_address);
5914         pci_release_selected_regions(pdev,
5915                                      pci_select_bars(pdev, IORESOURCE_MEM));
5916
5917         free_netdev(netdev);
5918
5919         /* AER disable */
5920         pci_disable_pcie_error_reporting(pdev);
5921
5922         pci_disable_device(pdev);
5923 }
5924
5925 /* PCI Error Recovery (ERS) */
5926 static struct pci_error_handlers e1000_err_handler = {
5927         .error_detected = e1000_io_error_detected,
5928         .slot_reset = e1000_io_slot_reset,
5929         .resume = e1000_io_resume,
5930 };
5931
5932 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5935         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5936         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5940         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5941         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5942
5943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5944         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5945         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5947
5948         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5949         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5950         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5951
5952         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5954         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5955
5956         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5957           board_80003es2lan },
5958         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5959           board_80003es2lan },
5960         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5961           board_80003es2lan },
5962         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5963           board_80003es2lan },
5964
5965         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5966         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5967         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5968         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5969         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5970         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5971         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5972         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5973
5974         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5975         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5976         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5977         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5978         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5979         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5980         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5981         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5982         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5983
5984         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5985         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5986         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5987
5988         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5989         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5990         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
5991
5992         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5993         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5994         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5995         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5996
5997         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
5998         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
5999
6000         { }     /* terminate list */
6001 };
6002 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6003
6004 #ifdef CONFIG_PM_OPS
6005 static const struct dev_pm_ops e1000_pm_ops = {
6006         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6007         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6008                                 e1000_runtime_resume, e1000_idle)
6009 };
6010 #endif
6011
6012 /* PCI Device API Driver */
6013 static struct pci_driver e1000_driver = {
6014         .name     = e1000e_driver_name,
6015         .id_table = e1000_pci_tbl,
6016         .probe    = e1000_probe,
6017         .remove   = __devexit_p(e1000_remove),
6018 #ifdef CONFIG_PM_OPS
6019         .driver.pm = &e1000_pm_ops,
6020 #endif
6021         .shutdown = e1000_shutdown,
6022         .err_handler = &e1000_err_handler
6023 };
6024
6025 /**
6026  * e1000_init_module - Driver Registration Routine
6027  *
6028  * e1000_init_module is the first routine called when the driver is
6029  * loaded. All it does is register with the PCI subsystem.
6030  **/
6031 static int __init e1000_init_module(void)
6032 {
6033         int ret;
6034         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6035                 e1000e_driver_version);
6036         pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6037         ret = pci_register_driver(&e1000_driver);
6038
6039         return ret;
6040 }
6041 module_init(e1000_init_module);
6042
6043 /**
6044  * e1000_exit_module - Driver Exit Cleanup Routine
6045  *
6046  * e1000_exit_module is called just before the driver is removed
6047  * from memory.
6048  **/
6049 static void __exit e1000_exit_module(void)
6050 {
6051         pci_unregister_driver(&e1000_driver);
6052 }
6053 module_exit(e1000_exit_module);
6054
6055
6056 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6057 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6058 MODULE_LICENSE("GPL");
6059 MODULE_VERSION(DRV_VERSION);
6060
6061 /* e1000_main.c */