]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/atheros/atlx/atl1.c
Merge remote-tracking branch 'asoc/fix/wm8993' into asoc-linus
[karo-tx-linux.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong.huang@atheros.com>
28  * Jie Yang <jie.yang@atheros.com>
29  * Chris Snook <csnook@redhat.com>
30  * Jay Cliburn <jcliburn@gmail.com>
31  *
32  * This version is adapted from the Attansic reference driver.
33  *
34  * TODO:
35  * Add more ethtool functions.
36  * Fix abstruse irq enable/disable condition described here:
37  *      http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38  *
39  * NEEDS TESTING:
40  * VLAN
41  * multicast
42  * promiscuous mode
43  * interrupt coalescing
44  * SMP torture testing
45  */
46
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87               "Chris Snook <csnook@redhat.com>, "
88               "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94
95 static const struct ethtool_ops atl1_ethtool_ops;
96
97 /*
98  * This is the only thing that needs to be changed to adjust the
99  * maximum number of ports that the driver can manage.
100  */
101 #define ATL1_MAX_NIC 4
102
103 #define OPTION_UNSET    -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED  1
106
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109 /*
110  * Interrupt Moderate Timer in units of 2 us
111  *
112  * Valid Range: 10-65535
113  *
114  * Default Value: 100 (200us)
115  */
116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119         &num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122 #define DEFAULT_INT_MOD_CNT     100     /* 200us */
123 #define MAX_INT_MOD_CNT         65000
124 #define MIN_INT_MOD_CNT         50
125
126 struct atl1_option {
127         enum { enable_option, range_option, list_option } type;
128         char *name;
129         char *err;
130         int def;
131         union {
132                 struct {        /* range_option info */
133                         int min;
134                         int max;
135                 } r;
136                 struct {        /* list_option info */
137                         int nr;
138                         struct atl1_opt_list {
139                                 int i;
140                                 char *str;
141                         } *p;
142                 } l;
143         } arg;
144 };
145
146 static int atl1_validate_option(int *value, struct atl1_option *opt,
147                                 struct pci_dev *pdev)
148 {
149         if (*value == OPTION_UNSET) {
150                 *value = opt->def;
151                 return 0;
152         }
153
154         switch (opt->type) {
155         case enable_option:
156                 switch (*value) {
157                 case OPTION_ENABLED:
158                         dev_info(&pdev->dev, "%s enabled\n", opt->name);
159                         return 0;
160                 case OPTION_DISABLED:
161                         dev_info(&pdev->dev, "%s disabled\n", opt->name);
162                         return 0;
163                 }
164                 break;
165         case range_option:
166                 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167                         dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168                                 *value);
169                         return 0;
170                 }
171                 break;
172         case list_option:{
173                         int i;
174                         struct atl1_opt_list *ent;
175
176                         for (i = 0; i < opt->arg.l.nr; i++) {
177                                 ent = &opt->arg.l.p[i];
178                                 if (*value == ent->i) {
179                                         if (ent->str[0] != '\0')
180                                                 dev_info(&pdev->dev, "%s\n",
181                                                         ent->str);
182                                         return 0;
183                                 }
184                         }
185                 }
186                 break;
187
188         default:
189                 break;
190         }
191
192         dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193                 opt->name, *value, opt->err);
194         *value = opt->def;
195         return -1;
196 }
197
198 /**
199  * atl1_check_options - Range Checking for Command Line Parameters
200  * @adapter: board private structure
201  *
202  * This routine checks all command line parameters for valid user
203  * input.  If an invalid value is given, or if no user specified
204  * value exists, a default value is used.  The final value is stored
205  * in a variable in the adapter structure.
206  */
207 static void atl1_check_options(struct atl1_adapter *adapter)
208 {
209         struct pci_dev *pdev = adapter->pdev;
210         int bd = adapter->bd_number;
211         if (bd >= ATL1_MAX_NIC) {
212                 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213                 dev_notice(&pdev->dev, "using defaults for all values\n");
214         }
215         {                       /* Interrupt Moderate Timer */
216                 struct atl1_option opt = {
217                         .type = range_option,
218                         .name = "Interrupt Moderator Timer",
219                         .err = "using default of "
220                                 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
221                         .def = DEFAULT_INT_MOD_CNT,
222                         .arg = {.r = {.min = MIN_INT_MOD_CNT,
223                                         .max = MAX_INT_MOD_CNT} }
224                 };
225                 int val;
226                 if (num_int_mod_timer > bd) {
227                         val = int_mod_timer[bd];
228                         atl1_validate_option(&val, &opt, pdev);
229                         adapter->imt = (u16) val;
230                 } else
231                         adapter->imt = (u16) (opt.def);
232         }
233 }
234
235 /*
236  * atl1_pci_tbl - PCI Device ID Table
237  */
238 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
239         {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240         /* required last entry */
241         {0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246         NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252 /*
253  * Reset the transmit and receive units; mask and clear all interrupts.
254  * hw - Struct containing variables accessed by shared code
255  * return : 0  or  idle status (if error)
256  */
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259         struct pci_dev *pdev = hw->back->pdev;
260         struct atl1_adapter *adapter = hw->back;
261         u32 icr;
262         int i;
263
264         /*
265          * Clear Interrupt mask to stop board from generating
266          * interrupts & Clear any pending interrupt events
267          */
268         /*
269          * atlx_irq_disable(adapter);
270          * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271          */
272
273         /*
274          * Issue Soft Reset to the MAC.  This will reset the chip's
275          * transmit, receive, DMA.  It will not effect
276          * the current PCI configuration.  The global reset bit is self-
277          * clearing, and should clear within a microsecond.
278          */
279         iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280         ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282         iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283         ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285         /* delay about 1ms */
286         msleep(1);
287
288         /* Wait at least 10ms for All module to be Idle */
289         for (i = 0; i < 10; i++) {
290                 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291                 if (!icr)
292                         break;
293                 /* delay 1 ms */
294                 msleep(1);
295                 /* FIXME: still the right way to do this? */
296                 cpu_relax();
297         }
298
299         if (icr) {
300                 if (netif_msg_hw(adapter))
301                         dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302                 return icr;
303         }
304
305         return 0;
306 }
307
308 /* function about EEPROM
309  *
310  * check_eeprom_exist
311  * return 0 if eeprom exist
312  */
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315         u32 value;
316         value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317         if (value & SPI_FLASH_CTRL_EN_VPD) {
318                 value &= ~SPI_FLASH_CTRL_EN_VPD;
319                 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320         }
321
322         value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323         return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328         int i;
329         u32 control;
330
331         if (offset & 3)
332                 /* address do not align */
333                 return false;
334
335         iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336         control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337         iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338         ioread32(hw->hw_addr + REG_VPD_CAP);
339
340         for (i = 0; i < 10; i++) {
341                 msleep(2);
342                 control = ioread32(hw->hw_addr + REG_VPD_CAP);
343                 if (control & VPD_CAP_VPD_FLAG)
344                         break;
345         }
346         if (control & VPD_CAP_VPD_FLAG) {
347                 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348                 return true;
349         }
350         /* timeout */
351         return false;
352 }
353
354 /*
355  * Reads the value from a PHY register
356  * hw - Struct containing variables accessed by shared code
357  * reg_addr - address of the PHY register to read
358  */
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361         u32 val;
362         int i;
363
364         val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365                 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366                 MDIO_CLK_SEL_SHIFT;
367         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368         ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371                 udelay(2);
372                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373                 if (!(val & (MDIO_START | MDIO_BUSY)))
374                         break;
375         }
376         if (!(val & (MDIO_START | MDIO_BUSY))) {
377                 *phy_data = (u16) val;
378                 return 0;
379         }
380         return ATLX_ERR_PHY;
381 }
382
383 #define CUSTOM_SPI_CS_SETUP     2
384 #define CUSTOM_SPI_CLK_HI       2
385 #define CUSTOM_SPI_CLK_LO       2
386 #define CUSTOM_SPI_CS_HOLD      2
387 #define CUSTOM_SPI_CS_HI        3
388
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391         int i;
392         u32 value;
393
394         iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395         iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397         value = SPI_FLASH_CTRL_WAIT_READY |
398             (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399             SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400                                              SPI_FLASH_CTRL_CLK_HI_MASK) <<
401             SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402                                            SPI_FLASH_CTRL_CLK_LO_MASK) <<
403             SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404                                            SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405             SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406                                             SPI_FLASH_CTRL_CS_HI_MASK) <<
407             SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408             SPI_FLASH_CTRL_INS_SHIFT;
409
410         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412         value |= SPI_FLASH_CTRL_START;
413         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414         ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416         for (i = 0; i < 10; i++) {
417                 msleep(1);
418                 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419                 if (!(value & SPI_FLASH_CTRL_START))
420                         break;
421         }
422
423         if (value & SPI_FLASH_CTRL_START)
424                 return false;
425
426         *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428         return true;
429 }
430
431 /*
432  * get_permanent_address
433  * return 0 if get valid mac address,
434  */
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437         u32 addr[2];
438         u32 i, control;
439         u16 reg;
440         u8 eth_addr[ETH_ALEN];
441         bool key_valid;
442
443         if (is_valid_ether_addr(hw->perm_mac_addr))
444                 return 0;
445
446         /* init */
447         addr[0] = addr[1] = 0;
448
449         if (!atl1_check_eeprom_exist(hw)) {
450                 reg = 0;
451                 key_valid = false;
452                 /* Read out all EEPROM content */
453                 i = 0;
454                 while (1) {
455                         if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456                                 if (key_valid) {
457                                         if (reg == REG_MAC_STA_ADDR)
458                                                 addr[0] = control;
459                                         else if (reg == (REG_MAC_STA_ADDR + 4))
460                                                 addr[1] = control;
461                                         key_valid = false;
462                                 } else if ((control & 0xff) == 0x5A) {
463                                         key_valid = true;
464                                         reg = (u16) (control >> 16);
465                                 } else
466                                         break;
467                         } else
468                                 /* read error */
469                                 break;
470                         i += 4;
471                 }
472
473                 *(u32 *) &eth_addr[2] = swab32(addr[0]);
474                 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475                 if (is_valid_ether_addr(eth_addr)) {
476                         memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477                         return 0;
478                 }
479         }
480
481         /* see if SPI FLAGS exist ? */
482         addr[0] = addr[1] = 0;
483         reg = 0;
484         key_valid = false;
485         i = 0;
486         while (1) {
487                 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488                         if (key_valid) {
489                                 if (reg == REG_MAC_STA_ADDR)
490                                         addr[0] = control;
491                                 else if (reg == (REG_MAC_STA_ADDR + 4))
492                                         addr[1] = control;
493                                 key_valid = false;
494                         } else if ((control & 0xff) == 0x5A) {
495                                 key_valid = true;
496                                 reg = (u16) (control >> 16);
497                         } else
498                                 /* data end */
499                                 break;
500                 } else
501                         /* read error */
502                         break;
503                 i += 4;
504         }
505
506         *(u32 *) &eth_addr[2] = swab32(addr[0]);
507         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508         if (is_valid_ether_addr(eth_addr)) {
509                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510                 return 0;
511         }
512
513         /*
514          * On some motherboards, the MAC address is written by the
515          * BIOS directly to the MAC register during POST, and is
516          * not stored in eeprom.  If all else thus far has failed
517          * to fetch the permanent MAC address, try reading it directly.
518          */
519         addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520         addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521         *(u32 *) &eth_addr[2] = swab32(addr[0]);
522         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523         if (is_valid_ether_addr(eth_addr)) {
524                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525                 return 0;
526         }
527
528         return 1;
529 }
530
531 /*
532  * Reads the adapter's MAC address from the EEPROM
533  * hw - Struct containing variables accessed by shared code
534  */
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537         s32 ret = 0;
538         u16 i;
539
540         if (atl1_get_permanent_address(hw)) {
541                 eth_random_addr(hw->perm_mac_addr);
542                 ret = 1;
543         }
544
545         for (i = 0; i < ETH_ALEN; i++)
546                 hw->mac_addr[i] = hw->perm_mac_addr[i];
547         return ret;
548 }
549
550 /*
551  * Hashes an address to determine its location in the multicast table
552  * hw - Struct containing variables accessed by shared code
553  * mc_addr - the multicast address to hash
554  *
555  * atl1_hash_mc_addr
556  *  purpose
557  *      set hash value for a multicast address
558  *      hash calcu processing :
559  *          1. calcu 32bit CRC for multicast address
560  *          2. reverse crc with MSB to LSB
561  */
562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563 {
564         u32 crc32, value = 0;
565         int i;
566
567         crc32 = ether_crc_le(6, mc_addr);
568         for (i = 0; i < 32; i++)
569                 value |= (((crc32 >> i) & 1) << (31 - i));
570
571         return value;
572 }
573
574 /*
575  * Sets the bit in the multicast table corresponding to the hash value.
576  * hw - Struct containing variables accessed by shared code
577  * hash_value - Multicast address hash value
578  */
579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580 {
581         u32 hash_bit, hash_reg;
582         u32 mta;
583
584         /*
585          * The HASH Table  is a register array of 2 32-bit registers.
586          * It is treated like an array of 64 bits.  We want to set
587          * bit BitArray[hash_value]. So we figure out what register
588          * the bit is in, read it, OR in the new bit, then write
589          * back the new value.  The register is determined by the
590          * upper 7 bits of the hash value and the bit within that
591          * register are determined by the lower 5 bits of the value.
592          */
593         hash_reg = (hash_value >> 31) & 0x1;
594         hash_bit = (hash_value >> 26) & 0x1F;
595         mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596         mta |= (1 << hash_bit);
597         iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598 }
599
600 /*
601  * Writes a value to a PHY register
602  * hw - Struct containing variables accessed by shared code
603  * reg_addr - address of the PHY register to write
604  * data - data to write to the PHY
605  */
606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607 {
608         int i;
609         u32 val;
610
611         val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612             (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613             MDIO_SUP_PREAMBLE |
614             MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616         ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619                 udelay(2);
620                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621                 if (!(val & (MDIO_START | MDIO_BUSY)))
622                         break;
623         }
624
625         if (!(val & (MDIO_START | MDIO_BUSY)))
626                 return 0;
627
628         return ATLX_ERR_PHY;
629 }
630
631 /*
632  * Make L001's PHY out of Power Saving State (bug)
633  * hw - Struct containing variables accessed by shared code
634  * when power on, L001's PHY always on Power saving State
635  * (Gigabit Link forbidden)
636  */
637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638 {
639         s32 ret;
640         ret = atl1_write_phy_reg(hw, 29, 0x0029);
641         if (ret)
642                 return ret;
643         return atl1_write_phy_reg(hw, 30, 0);
644 }
645
646 /*
647  * Resets the PHY and make all config validate
648  * hw - Struct containing variables accessed by shared code
649  *
650  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651  */
652 static s32 atl1_phy_reset(struct atl1_hw *hw)
653 {
654         struct pci_dev *pdev = hw->back->pdev;
655         struct atl1_adapter *adapter = hw->back;
656         s32 ret_val;
657         u16 phy_data;
658
659         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660             hw->media_type == MEDIA_TYPE_1000M_FULL)
661                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662         else {
663                 switch (hw->media_type) {
664                 case MEDIA_TYPE_100M_FULL:
665                         phy_data =
666                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667                             MII_CR_RESET;
668                         break;
669                 case MEDIA_TYPE_100M_HALF:
670                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671                         break;
672                 case MEDIA_TYPE_10M_FULL:
673                         phy_data =
674                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675                         break;
676                 default:
677                         /* MEDIA_TYPE_10M_HALF: */
678                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679                         break;
680                 }
681         }
682
683         ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684         if (ret_val) {
685                 u32 val;
686                 int i;
687                 /* pcie serdes link may be down! */
688                 if (netif_msg_hw(adapter))
689                         dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691                 for (i = 0; i < 25; i++) {
692                         msleep(1);
693                         val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694                         if (!(val & (MDIO_START | MDIO_BUSY)))
695                                 break;
696                 }
697
698                 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699                         if (netif_msg_hw(adapter))
700                                 dev_warn(&pdev->dev,
701                                         "pcie link down at least 25ms\n");
702                         return ret_val;
703                 }
704         }
705         return 0;
706 }
707
708 /*
709  * Configures PHY autoneg and flow control advertisement settings
710  * hw - Struct containing variables accessed by shared code
711  */
712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713 {
714         s32 ret_val;
715         s16 mii_autoneg_adv_reg;
716         s16 mii_1000t_ctrl_reg;
717
718         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
719         mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721         /* Read the MII 1000Base-T Control Register (Address 9). */
722         mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724         /*
725          * First we clear all the 10/100 mb speed bits in the Auto-Neg
726          * Advertisement Register (Address 4) and the 1000 mb speed bits in
727          * the  1000Base-T Control Register (Address 9).
728          */
729         mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730         mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732         /*
733          * Need to parse media_type  and set up
734          * the appropriate PHY registers.
735          */
736         switch (hw->media_type) {
737         case MEDIA_TYPE_AUTO_SENSOR:
738                 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739                                         MII_AR_10T_FD_CAPS |
740                                         MII_AR_100TX_HD_CAPS |
741                                         MII_AR_100TX_FD_CAPS);
742                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743                 break;
744
745         case MEDIA_TYPE_1000M_FULL:
746                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747                 break;
748
749         case MEDIA_TYPE_100M_FULL:
750                 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751                 break;
752
753         case MEDIA_TYPE_100M_HALF:
754                 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755                 break;
756
757         case MEDIA_TYPE_10M_FULL:
758                 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759                 break;
760
761         default:
762                 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763                 break;
764         }
765
766         /* flow control fixed to enable all */
767         mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769         hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770         hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772         ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773         if (ret_val)
774                 return ret_val;
775
776         ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777         if (ret_val)
778                 return ret_val;
779
780         return 0;
781 }
782
783 /*
784  * Configures link settings.
785  * hw - Struct containing variables accessed by shared code
786  * Assumes the hardware has previously been reset and the
787  * transmitter and receiver are not enabled.
788  */
789 static s32 atl1_setup_link(struct atl1_hw *hw)
790 {
791         struct pci_dev *pdev = hw->back->pdev;
792         struct atl1_adapter *adapter = hw->back;
793         s32 ret_val;
794
795         /*
796          * Options:
797          *  PHY will advertise value(s) parsed from
798          *  autoneg_advertised and fc
799          *  no matter what autoneg is , We will not wait link result.
800          */
801         ret_val = atl1_phy_setup_autoneg_adv(hw);
802         if (ret_val) {
803                 if (netif_msg_link(adapter))
804                         dev_dbg(&pdev->dev,
805                                 "error setting up autonegotiation\n");
806                 return ret_val;
807         }
808         /* SW.Reset , En-Auto-Neg if needed */
809         ret_val = atl1_phy_reset(hw);
810         if (ret_val) {
811                 if (netif_msg_link(adapter))
812                         dev_dbg(&pdev->dev, "error resetting phy\n");
813                 return ret_val;
814         }
815         hw->phy_configured = true;
816         return ret_val;
817 }
818
819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
820 {
821         if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822                 /* Atmel */
823                 hw->flash_vendor = 0;
824
825         /* Init OP table */
826         iowrite8(flash_table[hw->flash_vendor].cmd_program,
827                 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828         iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829                 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830         iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831                 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832         iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833                 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834         iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835                 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836         iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837                 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838         iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839                 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840         iowrite8(flash_table[hw->flash_vendor].cmd_read,
841                 hw->hw_addr + REG_SPI_FLASH_OP_READ);
842 }
843
844 /*
845  * Performs basic configuration of the adapter.
846  * hw - Struct containing variables accessed by shared code
847  * Assumes that the controller has previously been reset and is in a
848  * post-reset uninitialized state. Initializes multicast table,
849  * and  Calls routines to setup link
850  * Leaves the transmit and receive units disabled and uninitialized.
851  */
852 static s32 atl1_init_hw(struct atl1_hw *hw)
853 {
854         u32 ret_val = 0;
855
856         /* Zero out the Multicast HASH table */
857         iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858         /* clear the old settings from the multicast hash table */
859         iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861         atl1_init_flash_opcode(hw);
862
863         if (!hw->phy_configured) {
864                 /* enable GPHY LinkChange Interrupt */
865                 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866                 if (ret_val)
867                         return ret_val;
868                 /* make PHY out of power-saving state */
869                 ret_val = atl1_phy_leave_power_saving(hw);
870                 if (ret_val)
871                         return ret_val;
872                 /* Call a subroutine to configure the link */
873                 ret_val = atl1_setup_link(hw);
874         }
875         return ret_val;
876 }
877
878 /*
879  * Detects the current speed and duplex settings of the hardware.
880  * hw - Struct containing variables accessed by shared code
881  * speed - Speed of the connection
882  * duplex - Duplex setting of the connection
883  */
884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885 {
886         struct pci_dev *pdev = hw->back->pdev;
887         struct atl1_adapter *adapter = hw->back;
888         s32 ret_val;
889         u16 phy_data;
890
891         /* ; --- Read   PHY Specific Status Register (17) */
892         ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893         if (ret_val)
894                 return ret_val;
895
896         if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897                 return ATLX_ERR_PHY_RES;
898
899         switch (phy_data & MII_ATLX_PSSR_SPEED) {
900         case MII_ATLX_PSSR_1000MBS:
901                 *speed = SPEED_1000;
902                 break;
903         case MII_ATLX_PSSR_100MBS:
904                 *speed = SPEED_100;
905                 break;
906         case MII_ATLX_PSSR_10MBS:
907                 *speed = SPEED_10;
908                 break;
909         default:
910                 if (netif_msg_hw(adapter))
911                         dev_dbg(&pdev->dev, "error getting speed\n");
912                 return ATLX_ERR_PHY_SPEED;
913                 break;
914         }
915         if (phy_data & MII_ATLX_PSSR_DPLX)
916                 *duplex = FULL_DUPLEX;
917         else
918                 *duplex = HALF_DUPLEX;
919
920         return 0;
921 }
922
923 static void atl1_set_mac_addr(struct atl1_hw *hw)
924 {
925         u32 value;
926         /*
927          * 00-0B-6A-F6-00-DC
928          * 0:  6AF600DC   1: 000B
929          * low dword
930          */
931         value = (((u32) hw->mac_addr[2]) << 24) |
932             (((u32) hw->mac_addr[3]) << 16) |
933             (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
934         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
935         /* high dword */
936         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
937         iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
938 }
939
940 /**
941  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
942  * @adapter: board private structure to initialize
943  *
944  * atl1_sw_init initializes the Adapter private data structure.
945  * Fields are initialized based on PCI device information and
946  * OS network device settings (MTU size).
947  */
948 static int atl1_sw_init(struct atl1_adapter *adapter)
949 {
950         struct atl1_hw *hw = &adapter->hw;
951         struct net_device *netdev = adapter->netdev;
952
953         hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
954         hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
955
956         adapter->wol = 0;
957         device_set_wakeup_enable(&adapter->pdev->dev, false);
958         adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
959         adapter->ict = 50000;           /* 100ms */
960         adapter->link_speed = SPEED_0;  /* hardware init */
961         adapter->link_duplex = FULL_DUPLEX;
962
963         hw->phy_configured = false;
964         hw->preamble_len = 7;
965         hw->ipgt = 0x60;
966         hw->min_ifg = 0x50;
967         hw->ipgr1 = 0x40;
968         hw->ipgr2 = 0x60;
969         hw->max_retry = 0xf;
970         hw->lcol = 0x37;
971         hw->jam_ipg = 7;
972         hw->rfd_burst = 8;
973         hw->rrd_burst = 8;
974         hw->rfd_fetch_gap = 1;
975         hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
976         hw->rx_jumbo_lkah = 1;
977         hw->rrd_ret_timer = 16;
978         hw->tpd_burst = 4;
979         hw->tpd_fetch_th = 16;
980         hw->txf_burst = 0x100;
981         hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
982         hw->tpd_fetch_gap = 1;
983         hw->rcb_value = atl1_rcb_64;
984         hw->dma_ord = atl1_dma_ord_enh;
985         hw->dmar_block = atl1_dma_req_256;
986         hw->dmaw_block = atl1_dma_req_256;
987         hw->cmb_rrd = 4;
988         hw->cmb_tpd = 4;
989         hw->cmb_rx_timer = 1;   /* about 2us */
990         hw->cmb_tx_timer = 1;   /* about 2us */
991         hw->smb_timer = 100000; /* about 200ms */
992
993         spin_lock_init(&adapter->lock);
994         spin_lock_init(&adapter->mb_lock);
995
996         return 0;
997 }
998
999 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
1000 {
1001         struct atl1_adapter *adapter = netdev_priv(netdev);
1002         u16 result;
1003
1004         atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1005
1006         return result;
1007 }
1008
1009 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1010         int val)
1011 {
1012         struct atl1_adapter *adapter = netdev_priv(netdev);
1013
1014         atl1_write_phy_reg(&adapter->hw, reg_num, val);
1015 }
1016
1017 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1018 {
1019         struct atl1_adapter *adapter = netdev_priv(netdev);
1020         unsigned long flags;
1021         int retval;
1022
1023         if (!netif_running(netdev))
1024                 return -EINVAL;
1025
1026         spin_lock_irqsave(&adapter->lock, flags);
1027         retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1028         spin_unlock_irqrestore(&adapter->lock, flags);
1029
1030         return retval;
1031 }
1032
1033 /**
1034  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1035  * @adapter: board private structure
1036  *
1037  * Return 0 on success, negative on failure
1038  */
1039 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1040 {
1041         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1042         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1043         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1044         struct atl1_ring_header *ring_header = &adapter->ring_header;
1045         struct pci_dev *pdev = adapter->pdev;
1046         int size;
1047         u8 offset = 0;
1048
1049         size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1050         tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1051         if (unlikely(!tpd_ring->buffer_info)) {
1052                 if (netif_msg_drv(adapter))
1053                         dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1054                                 size);
1055                 goto err_nomem;
1056         }
1057         rfd_ring->buffer_info =
1058                 (tpd_ring->buffer_info + tpd_ring->count);
1059
1060         /*
1061          * real ring DMA buffer
1062          * each ring/block may need up to 8 bytes for alignment, hence the
1063          * additional 40 bytes tacked onto the end.
1064          */
1065         ring_header->size = size =
1066                 sizeof(struct tx_packet_desc) * tpd_ring->count
1067                 + sizeof(struct rx_free_desc) * rfd_ring->count
1068                 + sizeof(struct rx_return_desc) * rrd_ring->count
1069                 + sizeof(struct coals_msg_block)
1070                 + sizeof(struct stats_msg_block)
1071                 + 40;
1072
1073         ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1074                 &ring_header->dma);
1075         if (unlikely(!ring_header->desc)) {
1076                 if (netif_msg_drv(adapter))
1077                         dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1078                 goto err_nomem;
1079         }
1080
1081         memset(ring_header->desc, 0, ring_header->size);
1082
1083         /* init TPD ring */
1084         tpd_ring->dma = ring_header->dma;
1085         offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1086         tpd_ring->dma += offset;
1087         tpd_ring->desc = (u8 *) ring_header->desc + offset;
1088         tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1089
1090         /* init RFD ring */
1091         rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1092         offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1093         rfd_ring->dma += offset;
1094         rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1095         rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1096
1097
1098         /* init RRD ring */
1099         rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1100         offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1101         rrd_ring->dma += offset;
1102         rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1103         rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1104
1105
1106         /* init CMB */
1107         adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1108         offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1109         adapter->cmb.dma += offset;
1110         adapter->cmb.cmb = (struct coals_msg_block *)
1111                 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1112
1113         /* init SMB */
1114         adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1115         offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1116         adapter->smb.dma += offset;
1117         adapter->smb.smb = (struct stats_msg_block *)
1118                 ((u8 *) adapter->cmb.cmb +
1119                 (sizeof(struct coals_msg_block) + offset));
1120
1121         return 0;
1122
1123 err_nomem:
1124         kfree(tpd_ring->buffer_info);
1125         return -ENOMEM;
1126 }
1127
1128 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1129 {
1130         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1131         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1132         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1133
1134         atomic_set(&tpd_ring->next_to_use, 0);
1135         atomic_set(&tpd_ring->next_to_clean, 0);
1136
1137         rfd_ring->next_to_clean = 0;
1138         atomic_set(&rfd_ring->next_to_use, 0);
1139
1140         rrd_ring->next_to_use = 0;
1141         atomic_set(&rrd_ring->next_to_clean, 0);
1142 }
1143
1144 /**
1145  * atl1_clean_rx_ring - Free RFD Buffers
1146  * @adapter: board private structure
1147  */
1148 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1149 {
1150         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1151         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1152         struct atl1_buffer *buffer_info;
1153         struct pci_dev *pdev = adapter->pdev;
1154         unsigned long size;
1155         unsigned int i;
1156
1157         /* Free all the Rx ring sk_buffs */
1158         for (i = 0; i < rfd_ring->count; i++) {
1159                 buffer_info = &rfd_ring->buffer_info[i];
1160                 if (buffer_info->dma) {
1161                         pci_unmap_page(pdev, buffer_info->dma,
1162                                 buffer_info->length, PCI_DMA_FROMDEVICE);
1163                         buffer_info->dma = 0;
1164                 }
1165                 if (buffer_info->skb) {
1166                         dev_kfree_skb(buffer_info->skb);
1167                         buffer_info->skb = NULL;
1168                 }
1169         }
1170
1171         size = sizeof(struct atl1_buffer) * rfd_ring->count;
1172         memset(rfd_ring->buffer_info, 0, size);
1173
1174         /* Zero out the descriptor ring */
1175         memset(rfd_ring->desc, 0, rfd_ring->size);
1176
1177         rfd_ring->next_to_clean = 0;
1178         atomic_set(&rfd_ring->next_to_use, 0);
1179
1180         rrd_ring->next_to_use = 0;
1181         atomic_set(&rrd_ring->next_to_clean, 0);
1182 }
1183
1184 /**
1185  * atl1_clean_tx_ring - Free Tx Buffers
1186  * @adapter: board private structure
1187  */
1188 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1189 {
1190         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1191         struct atl1_buffer *buffer_info;
1192         struct pci_dev *pdev = adapter->pdev;
1193         unsigned long size;
1194         unsigned int i;
1195
1196         /* Free all the Tx ring sk_buffs */
1197         for (i = 0; i < tpd_ring->count; i++) {
1198                 buffer_info = &tpd_ring->buffer_info[i];
1199                 if (buffer_info->dma) {
1200                         pci_unmap_page(pdev, buffer_info->dma,
1201                                 buffer_info->length, PCI_DMA_TODEVICE);
1202                         buffer_info->dma = 0;
1203                 }
1204         }
1205
1206         for (i = 0; i < tpd_ring->count; i++) {
1207                 buffer_info = &tpd_ring->buffer_info[i];
1208                 if (buffer_info->skb) {
1209                         dev_kfree_skb_any(buffer_info->skb);
1210                         buffer_info->skb = NULL;
1211                 }
1212         }
1213
1214         size = sizeof(struct atl1_buffer) * tpd_ring->count;
1215         memset(tpd_ring->buffer_info, 0, size);
1216
1217         /* Zero out the descriptor ring */
1218         memset(tpd_ring->desc, 0, tpd_ring->size);
1219
1220         atomic_set(&tpd_ring->next_to_use, 0);
1221         atomic_set(&tpd_ring->next_to_clean, 0);
1222 }
1223
1224 /**
1225  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1226  * @adapter: board private structure
1227  *
1228  * Free all transmit software resources
1229  */
1230 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1231 {
1232         struct pci_dev *pdev = adapter->pdev;
1233         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1234         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1235         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1236         struct atl1_ring_header *ring_header = &adapter->ring_header;
1237
1238         atl1_clean_tx_ring(adapter);
1239         atl1_clean_rx_ring(adapter);
1240
1241         kfree(tpd_ring->buffer_info);
1242         pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1243                 ring_header->dma);
1244
1245         tpd_ring->buffer_info = NULL;
1246         tpd_ring->desc = NULL;
1247         tpd_ring->dma = 0;
1248
1249         rfd_ring->buffer_info = NULL;
1250         rfd_ring->desc = NULL;
1251         rfd_ring->dma = 0;
1252
1253         rrd_ring->desc = NULL;
1254         rrd_ring->dma = 0;
1255
1256         adapter->cmb.dma = 0;
1257         adapter->cmb.cmb = NULL;
1258
1259         adapter->smb.dma = 0;
1260         adapter->smb.smb = NULL;
1261 }
1262
1263 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1264 {
1265         u32 value;
1266         struct atl1_hw *hw = &adapter->hw;
1267         struct net_device *netdev = adapter->netdev;
1268         /* Config MAC CTRL Register */
1269         value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1270         /* duplex */
1271         if (FULL_DUPLEX == adapter->link_duplex)
1272                 value |= MAC_CTRL_DUPLX;
1273         /* speed */
1274         value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1275                          MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1276                   MAC_CTRL_SPEED_SHIFT);
1277         /* flow control */
1278         value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1279         /* PAD & CRC */
1280         value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1281         /* preamble length */
1282         value |= (((u32) adapter->hw.preamble_len
1283                    & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1284         /* vlan */
1285         __atlx_vlan_mode(netdev->features, &value);
1286         /* rx checksum
1287            if (adapter->rx_csum)
1288            value |= MAC_CTRL_RX_CHKSUM_EN;
1289          */
1290         /* filter mode */
1291         value |= MAC_CTRL_BC_EN;
1292         if (netdev->flags & IFF_PROMISC)
1293                 value |= MAC_CTRL_PROMIS_EN;
1294         else if (netdev->flags & IFF_ALLMULTI)
1295                 value |= MAC_CTRL_MC_ALL_EN;
1296         /* value |= MAC_CTRL_LOOPBACK; */
1297         iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1298 }
1299
1300 static u32 atl1_check_link(struct atl1_adapter *adapter)
1301 {
1302         struct atl1_hw *hw = &adapter->hw;
1303         struct net_device *netdev = adapter->netdev;
1304         u32 ret_val;
1305         u16 speed, duplex, phy_data;
1306         int reconfig = 0;
1307
1308         /* MII_BMSR must read twice */
1309         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1311         if (!(phy_data & BMSR_LSTATUS)) {
1312                 /* link down */
1313                 if (netif_carrier_ok(netdev)) {
1314                         /* old link state: Up */
1315                         if (netif_msg_link(adapter))
1316                                 dev_info(&adapter->pdev->dev, "link is down\n");
1317                         adapter->link_speed = SPEED_0;
1318                         netif_carrier_off(netdev);
1319                 }
1320                 return 0;
1321         }
1322
1323         /* Link Up */
1324         ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1325         if (ret_val)
1326                 return ret_val;
1327
1328         switch (hw->media_type) {
1329         case MEDIA_TYPE_1000M_FULL:
1330                 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1331                         reconfig = 1;
1332                 break;
1333         case MEDIA_TYPE_100M_FULL:
1334                 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1335                         reconfig = 1;
1336                 break;
1337         case MEDIA_TYPE_100M_HALF:
1338                 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1339                         reconfig = 1;
1340                 break;
1341         case MEDIA_TYPE_10M_FULL:
1342                 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1343                         reconfig = 1;
1344                 break;
1345         case MEDIA_TYPE_10M_HALF:
1346                 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1347                         reconfig = 1;
1348                 break;
1349         }
1350
1351         /* link result is our setting */
1352         if (!reconfig) {
1353                 if (adapter->link_speed != speed ||
1354                     adapter->link_duplex != duplex) {
1355                         adapter->link_speed = speed;
1356                         adapter->link_duplex = duplex;
1357                         atl1_setup_mac_ctrl(adapter);
1358                         if (netif_msg_link(adapter))
1359                                 dev_info(&adapter->pdev->dev,
1360                                         "%s link is up %d Mbps %s\n",
1361                                         netdev->name, adapter->link_speed,
1362                                         adapter->link_duplex == FULL_DUPLEX ?
1363                                         "full duplex" : "half duplex");
1364                 }
1365                 if (!netif_carrier_ok(netdev)) {
1366                         /* Link down -> Up */
1367                         netif_carrier_on(netdev);
1368                 }
1369                 return 0;
1370         }
1371
1372         /* change original link status */
1373         if (netif_carrier_ok(netdev)) {
1374                 adapter->link_speed = SPEED_0;
1375                 netif_carrier_off(netdev);
1376                 netif_stop_queue(netdev);
1377         }
1378
1379         if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1380             hw->media_type != MEDIA_TYPE_1000M_FULL) {
1381                 switch (hw->media_type) {
1382                 case MEDIA_TYPE_100M_FULL:
1383                         phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1384                                    MII_CR_RESET;
1385                         break;
1386                 case MEDIA_TYPE_100M_HALF:
1387                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1388                         break;
1389                 case MEDIA_TYPE_10M_FULL:
1390                         phy_data =
1391                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1392                         break;
1393                 default:
1394                         /* MEDIA_TYPE_10M_HALF: */
1395                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1396                         break;
1397                 }
1398                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1399                 return 0;
1400         }
1401
1402         /* auto-neg, insert timer to re-config phy */
1403         if (!adapter->phy_timer_pending) {
1404                 adapter->phy_timer_pending = true;
1405                 mod_timer(&adapter->phy_config_timer,
1406                           round_jiffies(jiffies + 3 * HZ));
1407         }
1408
1409         return 0;
1410 }
1411
1412 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1413 {
1414         u32 hi, lo, value;
1415
1416         /* RFD Flow Control */
1417         value = adapter->rfd_ring.count;
1418         hi = value / 16;
1419         if (hi < 2)
1420                 hi = 2;
1421         lo = value * 7 / 8;
1422
1423         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1424                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1425         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1426
1427         /* RRD Flow Control */
1428         value = adapter->rrd_ring.count;
1429         lo = value / 16;
1430         hi = value * 7 / 8;
1431         if (lo < 2)
1432                 lo = 2;
1433         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1434                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1435         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1436 }
1437
1438 static void set_flow_ctrl_new(struct atl1_hw *hw)
1439 {
1440         u32 hi, lo, value;
1441
1442         /* RXF Flow Control */
1443         value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1444         lo = value / 16;
1445         if (lo < 192)
1446                 lo = 192;
1447         hi = value * 7 / 8;
1448         if (hi < lo)
1449                 hi = lo + 16;
1450         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1451                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1452         iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1453
1454         /* RRD Flow Control */
1455         value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1456         lo = value / 8;
1457         hi = value * 7 / 8;
1458         if (lo < 2)
1459                 lo = 2;
1460         if (hi < lo)
1461                 hi = lo + 3;
1462         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1463                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1464         iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1465 }
1466
1467 /**
1468  * atl1_configure - Configure Transmit&Receive Unit after Reset
1469  * @adapter: board private structure
1470  *
1471  * Configure the Tx /Rx unit of the MAC after a reset.
1472  */
1473 static u32 atl1_configure(struct atl1_adapter *adapter)
1474 {
1475         struct atl1_hw *hw = &adapter->hw;
1476         u32 value;
1477
1478         /* clear interrupt status */
1479         iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1480
1481         /* set MAC Address */
1482         value = (((u32) hw->mac_addr[2]) << 24) |
1483                 (((u32) hw->mac_addr[3]) << 16) |
1484                 (((u32) hw->mac_addr[4]) << 8) |
1485                 (((u32) hw->mac_addr[5]));
1486         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1487         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1488         iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1489
1490         /* tx / rx ring */
1491
1492         /* HI base address */
1493         iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1494                 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1495         /* LO base address */
1496         iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1497                 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1498         iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1499                 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1500         iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1501                 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1502         iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1503                 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1504         iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1505                 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1506
1507         /* element count */
1508         value = adapter->rrd_ring.count;
1509         value <<= 16;
1510         value += adapter->rfd_ring.count;
1511         iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1512         iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1513                 REG_DESC_TPD_RING_SIZE);
1514
1515         /* Load Ptr */
1516         iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1517
1518         /* config Mailbox */
1519         value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1520                   & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1521                 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1522                 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1523                 ((atomic_read(&adapter->rfd_ring.next_to_use)
1524                 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1525         iowrite32(value, hw->hw_addr + REG_MAILBOX);
1526
1527         /* config IPG/IFG */
1528         value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1529                  << MAC_IPG_IFG_IPGT_SHIFT) |
1530                 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1531                 << MAC_IPG_IFG_MIFG_SHIFT) |
1532                 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1533                 << MAC_IPG_IFG_IPGR1_SHIFT) |
1534                 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1535                 << MAC_IPG_IFG_IPGR2_SHIFT);
1536         iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1537
1538         /* config  Half-Duplex Control */
1539         value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1540                 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1541                 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1542                 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1543                 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1544                 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1545                 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1546         iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1547
1548         /* set Interrupt Moderator Timer */
1549         iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1550         iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1551
1552         /* set Interrupt Clear Timer */
1553         iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1554
1555         /* set max frame size hw will accept */
1556         iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1557
1558         /* jumbo size & rrd retirement timer */
1559         value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1560                  << RXQ_JMBOSZ_TH_SHIFT) |
1561                 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1562                 << RXQ_JMBO_LKAH_SHIFT) |
1563                 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1564                 << RXQ_RRD_TIMER_SHIFT);
1565         iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1566
1567         /* Flow Control */
1568         switch (hw->dev_rev) {
1569         case 0x8001:
1570         case 0x9001:
1571         case 0x9002:
1572         case 0x9003:
1573                 set_flow_ctrl_old(adapter);
1574                 break;
1575         default:
1576                 set_flow_ctrl_new(hw);
1577                 break;
1578         }
1579
1580         /* config TXQ */
1581         value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1582                  << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1583                 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1584                 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1585                 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1586                 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1587                 TXQ_CTRL_EN;
1588         iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1589
1590         /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1591         value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1592                 << TX_JUMBO_TASK_TH_SHIFT) |
1593                 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1594                 << TX_TPD_MIN_IPG_SHIFT);
1595         iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1596
1597         /* config RXQ */
1598         value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1599                 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1600                 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1601                 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1602                 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1603                 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1604                 RXQ_CTRL_EN;
1605         iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1606
1607         /* config DMA Engine */
1608         value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1609                 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1610                 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1611                 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1612                 DMA_CTRL_DMAW_EN;
1613         value |= (u32) hw->dma_ord;
1614         if (atl1_rcb_128 == hw->rcb_value)
1615                 value |= DMA_CTRL_RCB_VALUE;
1616         iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1617
1618         /* config CMB / SMB */
1619         value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1620                 hw->cmb_tpd : adapter->tpd_ring.count;
1621         value <<= 16;
1622         value |= hw->cmb_rrd;
1623         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1624         value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1625         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1626         iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1627
1628         /* --- enable CMB / SMB */
1629         value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1630         iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1631
1632         value = ioread32(adapter->hw.hw_addr + REG_ISR);
1633         if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1634                 value = 1;      /* config failed */
1635         else
1636                 value = 0;
1637
1638         /* clear all interrupt status */
1639         iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1640         iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1641         return value;
1642 }
1643
1644 /*
1645  * atl1_pcie_patch - Patch for PCIE module
1646  */
1647 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1648 {
1649         u32 value;
1650
1651         /* much vendor magic here */
1652         value = 0x6500;
1653         iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1654         /* pcie flow control mode change */
1655         value = ioread32(adapter->hw.hw_addr + 0x1008);
1656         value |= 0x8000;
1657         iowrite32(value, adapter->hw.hw_addr + 0x1008);
1658 }
1659
1660 /*
1661  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1662  * on PCI Command register is disable.
1663  * The function enable this bit.
1664  * Brackett, 2006/03/15
1665  */
1666 static void atl1_via_workaround(struct atl1_adapter *adapter)
1667 {
1668         unsigned long value;
1669
1670         value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1671         if (value & PCI_COMMAND_INTX_DISABLE)
1672                 value &= ~PCI_COMMAND_INTX_DISABLE;
1673         iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1674 }
1675
1676 static void atl1_inc_smb(struct atl1_adapter *adapter)
1677 {
1678         struct net_device *netdev = adapter->netdev;
1679         struct stats_msg_block *smb = adapter->smb.smb;
1680
1681         u64 new_rx_errors = smb->rx_frag +
1682                             smb->rx_fcs_err +
1683                             smb->rx_len_err +
1684                             smb->rx_sz_ov +
1685                             smb->rx_rxf_ov +
1686                             smb->rx_rrd_ov +
1687                             smb->rx_align_err;
1688         u64 new_tx_errors = smb->tx_late_col +
1689                             smb->tx_abort_col +
1690                             smb->tx_underrun +
1691                             smb->tx_trunc;
1692
1693         /* Fill out the OS statistics structure */
1694         adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1695         adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1696         adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1697         adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1698         adapter->soft_stats.multicast += smb->rx_mcast;
1699         adapter->soft_stats.collisions += smb->tx_1_col +
1700                                           smb->tx_2_col +
1701                                           smb->tx_late_col +
1702                                           smb->tx_abort_col;
1703
1704         /* Rx Errors */
1705         adapter->soft_stats.rx_errors += new_rx_errors;
1706         adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1707         adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1708         adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1709         adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1710
1711         adapter->soft_stats.rx_pause += smb->rx_pause;
1712         adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1713         adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1714
1715         /* Tx Errors */
1716         adapter->soft_stats.tx_errors += new_tx_errors;
1717         adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1718         adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1719         adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1720
1721         adapter->soft_stats.excecol += smb->tx_abort_col;
1722         adapter->soft_stats.deffer += smb->tx_defer;
1723         adapter->soft_stats.scc += smb->tx_1_col;
1724         adapter->soft_stats.mcc += smb->tx_2_col;
1725         adapter->soft_stats.latecol += smb->tx_late_col;
1726         adapter->soft_stats.tx_underun += smb->tx_underrun;
1727         adapter->soft_stats.tx_trunc += smb->tx_trunc;
1728         adapter->soft_stats.tx_pause += smb->tx_pause;
1729
1730         netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1731         netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1732         netdev->stats.multicast = adapter->soft_stats.multicast;
1733         netdev->stats.collisions = adapter->soft_stats.collisions;
1734         netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1735         netdev->stats.rx_length_errors =
1736                 adapter->soft_stats.rx_length_errors;
1737         netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1738         netdev->stats.rx_frame_errors =
1739                 adapter->soft_stats.rx_frame_errors;
1740         netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1741         netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1742         netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1743         netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1744         netdev->stats.tx_aborted_errors =
1745                 adapter->soft_stats.tx_aborted_errors;
1746         netdev->stats.tx_window_errors =
1747                 adapter->soft_stats.tx_window_errors;
1748         netdev->stats.tx_carrier_errors =
1749                 adapter->soft_stats.tx_carrier_errors;
1750
1751         netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1752         netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1753 }
1754
1755 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1756 {
1757         unsigned long flags;
1758         u32 tpd_next_to_use;
1759         u32 rfd_next_to_use;
1760         u32 rrd_next_to_clean;
1761         u32 value;
1762
1763         spin_lock_irqsave(&adapter->mb_lock, flags);
1764
1765         tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1766         rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1767         rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1768
1769         value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1770                 MB_RFD_PROD_INDX_SHIFT) |
1771                 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1772                 MB_RRD_CONS_INDX_SHIFT) |
1773                 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1774                 MB_TPD_PROD_INDX_SHIFT);
1775         iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1776
1777         spin_unlock_irqrestore(&adapter->mb_lock, flags);
1778 }
1779
1780 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1781         struct rx_return_desc *rrd, u16 offset)
1782 {
1783         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1784
1785         while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1786                 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1787                 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1788                         rfd_ring->next_to_clean = 0;
1789                 }
1790         }
1791 }
1792
1793 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1794         struct rx_return_desc *rrd)
1795 {
1796         u16 num_buf;
1797
1798         num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1799                 adapter->rx_buffer_len;
1800         if (rrd->num_buf == num_buf)
1801                 /* clean alloc flag for bad rrd */
1802                 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1803 }
1804
1805 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1806         struct rx_return_desc *rrd, struct sk_buff *skb)
1807 {
1808         struct pci_dev *pdev = adapter->pdev;
1809
1810         /*
1811          * The L1 hardware contains a bug that erroneously sets the
1812          * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1813          * fragmented IP packet is received, even though the packet
1814          * is perfectly valid and its checksum is correct. There's
1815          * no way to distinguish between one of these good packets
1816          * and a packet that actually contains a TCP/UDP checksum
1817          * error, so all we can do is allow it to be handed up to
1818          * the higher layers and let it be sorted out there.
1819          */
1820
1821         skb_checksum_none_assert(skb);
1822
1823         if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1824                 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1825                                         ERR_FLAG_CODE | ERR_FLAG_OV)) {
1826                         adapter->hw_csum_err++;
1827                         if (netif_msg_rx_err(adapter))
1828                                 dev_printk(KERN_DEBUG, &pdev->dev,
1829                                         "rx checksum error\n");
1830                         return;
1831                 }
1832         }
1833
1834         /* not IPv4 */
1835         if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1836                 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1837                 return;
1838
1839         /* IPv4 packet */
1840         if (likely(!(rrd->err_flg &
1841                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1842                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1843                 adapter->hw_csum_good++;
1844                 return;
1845         }
1846 }
1847
1848 /**
1849  * atl1_alloc_rx_buffers - Replace used receive buffers
1850  * @adapter: address of board private structure
1851  */
1852 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1853 {
1854         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1855         struct pci_dev *pdev = adapter->pdev;
1856         struct page *page;
1857         unsigned long offset;
1858         struct atl1_buffer *buffer_info, *next_info;
1859         struct sk_buff *skb;
1860         u16 num_alloc = 0;
1861         u16 rfd_next_to_use, next_next;
1862         struct rx_free_desc *rfd_desc;
1863
1864         next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1865         if (++next_next == rfd_ring->count)
1866                 next_next = 0;
1867         buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1868         next_info = &rfd_ring->buffer_info[next_next];
1869
1870         while (!buffer_info->alloced && !next_info->alloced) {
1871                 if (buffer_info->skb) {
1872                         buffer_info->alloced = 1;
1873                         goto next;
1874                 }
1875
1876                 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1877
1878                 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1879                                                 adapter->rx_buffer_len);
1880                 if (unlikely(!skb)) {
1881                         /* Better luck next round */
1882                         adapter->soft_stats.rx_dropped++;
1883                         break;
1884                 }
1885
1886                 buffer_info->alloced = 1;
1887                 buffer_info->skb = skb;
1888                 buffer_info->length = (u16) adapter->rx_buffer_len;
1889                 page = virt_to_page(skb->data);
1890                 offset = (unsigned long)skb->data & ~PAGE_MASK;
1891                 buffer_info->dma = pci_map_page(pdev, page, offset,
1892                                                 adapter->rx_buffer_len,
1893                                                 PCI_DMA_FROMDEVICE);
1894                 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1895                 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1896                 rfd_desc->coalese = 0;
1897
1898 next:
1899                 rfd_next_to_use = next_next;
1900                 if (unlikely(++next_next == rfd_ring->count))
1901                         next_next = 0;
1902
1903                 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1904                 next_info = &rfd_ring->buffer_info[next_next];
1905                 num_alloc++;
1906         }
1907
1908         if (num_alloc) {
1909                 /*
1910                  * Force memory writes to complete before letting h/w
1911                  * know there are new descriptors to fetch.  (Only
1912                  * applicable for weak-ordered memory model archs,
1913                  * such as IA-64).
1914                  */
1915                 wmb();
1916                 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1917         }
1918         return num_alloc;
1919 }
1920
1921 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1922 {
1923         int i, count;
1924         u16 length;
1925         u16 rrd_next_to_clean;
1926         u32 value;
1927         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1928         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1929         struct atl1_buffer *buffer_info;
1930         struct rx_return_desc *rrd;
1931         struct sk_buff *skb;
1932
1933         count = 0;
1934
1935         rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1936
1937         while (count < budget) {
1938                 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1939                 i = 1;
1940                 if (likely(rrd->xsz.valid)) {   /* packet valid */
1941 chk_rrd:
1942                         /* check rrd status */
1943                         if (likely(rrd->num_buf == 1))
1944                                 goto rrd_ok;
1945                         else if (netif_msg_rx_err(adapter)) {
1946                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1947                                         "unexpected RRD buffer count\n");
1948                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1949                                         "rx_buf_len = %d\n",
1950                                         adapter->rx_buffer_len);
1951                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1952                                         "RRD num_buf = %d\n",
1953                                         rrd->num_buf);
1954                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955                                         "RRD pkt_len = %d\n",
1956                                         rrd->xsz.xsum_sz.pkt_size);
1957                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1958                                         "RRD pkt_flg = 0x%08X\n",
1959                                         rrd->pkt_flg);
1960                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1961                                         "RRD err_flg = 0x%08X\n",
1962                                         rrd->err_flg);
1963                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1964                                         "RRD vlan_tag = 0x%08X\n",
1965                                         rrd->vlan_tag);
1966                         }
1967
1968                         /* rrd seems to be bad */
1969                         if (unlikely(i-- > 0)) {
1970                                 /* rrd may not be DMAed completely */
1971                                 udelay(1);
1972                                 goto chk_rrd;
1973                         }
1974                         /* bad rrd */
1975                         if (netif_msg_rx_err(adapter))
1976                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1977                                         "bad RRD\n");
1978                         /* see if update RFD index */
1979                         if (rrd->num_buf > 1)
1980                                 atl1_update_rfd_index(adapter, rrd);
1981
1982                         /* update rrd */
1983                         rrd->xsz.valid = 0;
1984                         if (++rrd_next_to_clean == rrd_ring->count)
1985                                 rrd_next_to_clean = 0;
1986                         count++;
1987                         continue;
1988                 } else {        /* current rrd still not be updated */
1989
1990                         break;
1991                 }
1992 rrd_ok:
1993                 /* clean alloc flag for bad rrd */
1994                 atl1_clean_alloc_flag(adapter, rrd, 0);
1995
1996                 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1997                 if (++rfd_ring->next_to_clean == rfd_ring->count)
1998                         rfd_ring->next_to_clean = 0;
1999
2000                 /* update rrd next to clean */
2001                 if (++rrd_next_to_clean == rrd_ring->count)
2002                         rrd_next_to_clean = 0;
2003                 count++;
2004
2005                 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2006                         if (!(rrd->err_flg &
2007                                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2008                                 | ERR_FLAG_LEN))) {
2009                                 /* packet error, don't need upstream */
2010                                 buffer_info->alloced = 0;
2011                                 rrd->xsz.valid = 0;
2012                                 continue;
2013                         }
2014                 }
2015
2016                 /* Good Receive */
2017                 pci_unmap_page(adapter->pdev, buffer_info->dma,
2018                                buffer_info->length, PCI_DMA_FROMDEVICE);
2019                 buffer_info->dma = 0;
2020                 skb = buffer_info->skb;
2021                 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2022
2023                 skb_put(skb, length - ETH_FCS_LEN);
2024
2025                 /* Receive Checksum Offload */
2026                 atl1_rx_checksum(adapter, rrd, skb);
2027                 skb->protocol = eth_type_trans(skb, adapter->netdev);
2028
2029                 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2030                         u16 vlan_tag = (rrd->vlan_tag >> 4) |
2031                                         ((rrd->vlan_tag & 7) << 13) |
2032                                         ((rrd->vlan_tag & 8) << 9);
2033
2034                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2035                 }
2036                 netif_receive_skb(skb);
2037
2038                 /* let protocol layer free skb */
2039                 buffer_info->skb = NULL;
2040                 buffer_info->alloced = 0;
2041                 rrd->xsz.valid = 0;
2042         }
2043
2044         atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2045
2046         atl1_alloc_rx_buffers(adapter);
2047
2048         /* update mailbox ? */
2049         if (count) {
2050                 u32 tpd_next_to_use;
2051                 u32 rfd_next_to_use;
2052
2053                 spin_lock(&adapter->mb_lock);
2054
2055                 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2056                 rfd_next_to_use =
2057                     atomic_read(&adapter->rfd_ring.next_to_use);
2058                 rrd_next_to_clean =
2059                     atomic_read(&adapter->rrd_ring.next_to_clean);
2060                 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2061                         MB_RFD_PROD_INDX_SHIFT) |
2062                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2063                         MB_RRD_CONS_INDX_SHIFT) |
2064                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2065                         MB_TPD_PROD_INDX_SHIFT);
2066                 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2067                 spin_unlock(&adapter->mb_lock);
2068         }
2069
2070         return count;
2071 }
2072
2073 static int atl1_intr_tx(struct atl1_adapter *adapter)
2074 {
2075         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2076         struct atl1_buffer *buffer_info;
2077         u16 sw_tpd_next_to_clean;
2078         u16 cmb_tpd_next_to_clean;
2079         int count = 0;
2080
2081         sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2082         cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2083
2084         while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2085                 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2086                 if (buffer_info->dma) {
2087                         pci_unmap_page(adapter->pdev, buffer_info->dma,
2088                                        buffer_info->length, PCI_DMA_TODEVICE);
2089                         buffer_info->dma = 0;
2090                 }
2091
2092                 if (buffer_info->skb) {
2093                         dev_kfree_skb_irq(buffer_info->skb);
2094                         buffer_info->skb = NULL;
2095                 }
2096
2097                 if (++sw_tpd_next_to_clean == tpd_ring->count)
2098                         sw_tpd_next_to_clean = 0;
2099
2100                 count++;
2101         }
2102         atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2103
2104         if (netif_queue_stopped(adapter->netdev) &&
2105             netif_carrier_ok(adapter->netdev))
2106                 netif_wake_queue(adapter->netdev);
2107
2108         return count;
2109 }
2110
2111 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2112 {
2113         u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2114         u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2115         return (next_to_clean > next_to_use) ?
2116                 next_to_clean - next_to_use - 1 :
2117                 tpd_ring->count + next_to_clean - next_to_use - 1;
2118 }
2119
2120 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2121         struct tx_packet_desc *ptpd)
2122 {
2123         u8 hdr_len, ip_off;
2124         u32 real_len;
2125         int err;
2126
2127         if (skb_shinfo(skb)->gso_size) {
2128                 if (skb_header_cloned(skb)) {
2129                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2130                         if (unlikely(err))
2131                                 return -1;
2132                 }
2133
2134                 if (skb->protocol == htons(ETH_P_IP)) {
2135                         struct iphdr *iph = ip_hdr(skb);
2136
2137                         real_len = (((unsigned char *)iph - skb->data) +
2138                                 ntohs(iph->tot_len));
2139                         if (real_len < skb->len)
2140                                 pskb_trim(skb, real_len);
2141                         hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2142                         if (skb->len == hdr_len) {
2143                                 iph->check = 0;
2144                                 tcp_hdr(skb)->check =
2145                                         ~csum_tcpudp_magic(iph->saddr,
2146                                         iph->daddr, tcp_hdrlen(skb),
2147                                         IPPROTO_TCP, 0);
2148                                 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2149                                         TPD_IPHL_SHIFT;
2150                                 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2151                                         TPD_TCPHDRLEN_MASK) <<
2152                                         TPD_TCPHDRLEN_SHIFT;
2153                                 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2154                                 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2155                                 return 1;
2156                         }
2157
2158                         iph->check = 0;
2159                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2160                                         iph->daddr, 0, IPPROTO_TCP, 0);
2161                         ip_off = (unsigned char *)iph -
2162                                 (unsigned char *) skb_network_header(skb);
2163                         if (ip_off == 8) /* 802.3-SNAP frame */
2164                                 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2165                         else if (ip_off != 0)
2166                                 return -2;
2167
2168                         ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2169                                 TPD_IPHL_SHIFT;
2170                         ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2171                                 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2172                         ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2173                                 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2174                         ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2175                         return 3;
2176                 }
2177         }
2178         return false;
2179 }
2180
2181 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2182         struct tx_packet_desc *ptpd)
2183 {
2184         u8 css, cso;
2185
2186         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2187                 css = skb_checksum_start_offset(skb);
2188                 cso = css + (u8) skb->csum_offset;
2189                 if (unlikely(css & 0x1)) {
2190                         /* L1 hardware requires an even number here */
2191                         if (netif_msg_tx_err(adapter))
2192                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2193                                         "payload offset not an even number\n");
2194                         return -1;
2195                 }
2196                 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2197                         TPD_PLOADOFFSET_SHIFT;
2198                 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2199                         TPD_CCSUMOFFSET_SHIFT;
2200                 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2201                 return true;
2202         }
2203         return 0;
2204 }
2205
2206 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2207         struct tx_packet_desc *ptpd)
2208 {
2209         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2210         struct atl1_buffer *buffer_info;
2211         u16 buf_len = skb->len;
2212         struct page *page;
2213         unsigned long offset;
2214         unsigned int nr_frags;
2215         unsigned int f;
2216         int retval;
2217         u16 next_to_use;
2218         u16 data_len;
2219         u8 hdr_len;
2220
2221         buf_len -= skb->data_len;
2222         nr_frags = skb_shinfo(skb)->nr_frags;
2223         next_to_use = atomic_read(&tpd_ring->next_to_use);
2224         buffer_info = &tpd_ring->buffer_info[next_to_use];
2225         BUG_ON(buffer_info->skb);
2226         /* put skb in last TPD */
2227         buffer_info->skb = NULL;
2228
2229         retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2230         if (retval) {
2231                 /* TSO */
2232                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2233                 buffer_info->length = hdr_len;
2234                 page = virt_to_page(skb->data);
2235                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2236                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2237                                                 offset, hdr_len,
2238                                                 PCI_DMA_TODEVICE);
2239
2240                 if (++next_to_use == tpd_ring->count)
2241                         next_to_use = 0;
2242
2243                 if (buf_len > hdr_len) {
2244                         int i, nseg;
2245
2246                         data_len = buf_len - hdr_len;
2247                         nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2248                                 ATL1_MAX_TX_BUF_LEN;
2249                         for (i = 0; i < nseg; i++) {
2250                                 buffer_info =
2251                                     &tpd_ring->buffer_info[next_to_use];
2252                                 buffer_info->skb = NULL;
2253                                 buffer_info->length =
2254                                     (ATL1_MAX_TX_BUF_LEN >=
2255                                      data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2256                                 data_len -= buffer_info->length;
2257                                 page = virt_to_page(skb->data +
2258                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2259                                 offset = (unsigned long)(skb->data +
2260                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2261                                         ~PAGE_MASK;
2262                                 buffer_info->dma = pci_map_page(adapter->pdev,
2263                                         page, offset, buffer_info->length,
2264                                         PCI_DMA_TODEVICE);
2265                                 if (++next_to_use == tpd_ring->count)
2266                                         next_to_use = 0;
2267                         }
2268                 }
2269         } else {
2270                 /* not TSO */
2271                 buffer_info->length = buf_len;
2272                 page = virt_to_page(skb->data);
2273                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2274                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2275                         offset, buf_len, PCI_DMA_TODEVICE);
2276                 if (++next_to_use == tpd_ring->count)
2277                         next_to_use = 0;
2278         }
2279
2280         for (f = 0; f < nr_frags; f++) {
2281                 const struct skb_frag_struct *frag;
2282                 u16 i, nseg;
2283
2284                 frag = &skb_shinfo(skb)->frags[f];
2285                 buf_len = skb_frag_size(frag);
2286
2287                 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2288                         ATL1_MAX_TX_BUF_LEN;
2289                 for (i = 0; i < nseg; i++) {
2290                         buffer_info = &tpd_ring->buffer_info[next_to_use];
2291                         BUG_ON(buffer_info->skb);
2292
2293                         buffer_info->skb = NULL;
2294                         buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2295                                 ATL1_MAX_TX_BUF_LEN : buf_len;
2296                         buf_len -= buffer_info->length;
2297                         buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2298                                 frag, i * ATL1_MAX_TX_BUF_LEN,
2299                                 buffer_info->length, DMA_TO_DEVICE);
2300
2301                         if (++next_to_use == tpd_ring->count)
2302                                 next_to_use = 0;
2303                 }
2304         }
2305
2306         /* last tpd's buffer-info */
2307         buffer_info->skb = skb;
2308 }
2309
2310 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2311        struct tx_packet_desc *ptpd)
2312 {
2313         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2314         struct atl1_buffer *buffer_info;
2315         struct tx_packet_desc *tpd;
2316         u16 j;
2317         u32 val;
2318         u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2319
2320         for (j = 0; j < count; j++) {
2321                 buffer_info = &tpd_ring->buffer_info[next_to_use];
2322                 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2323                 if (tpd != ptpd)
2324                         memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2325                 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2326                 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2327                 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2328                         TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2329
2330                 /*
2331                  * if this is the first packet in a TSO chain, set
2332                  * TPD_HDRFLAG, otherwise, clear it.
2333                  */
2334                 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2335                         TPD_SEGMENT_EN_MASK;
2336                 if (val) {
2337                         if (!j)
2338                                 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2339                         else
2340                                 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2341                 }
2342
2343                 if (j == (count - 1))
2344                         tpd->word3 |= 1 << TPD_EOP_SHIFT;
2345
2346                 if (++next_to_use == tpd_ring->count)
2347                         next_to_use = 0;
2348         }
2349         /*
2350          * Force memory writes to complete before letting h/w
2351          * know there are new descriptors to fetch.  (Only
2352          * applicable for weak-ordered memory model archs,
2353          * such as IA-64).
2354          */
2355         wmb();
2356
2357         atomic_set(&tpd_ring->next_to_use, next_to_use);
2358 }
2359
2360 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2361                                          struct net_device *netdev)
2362 {
2363         struct atl1_adapter *adapter = netdev_priv(netdev);
2364         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2365         int len;
2366         int tso;
2367         int count = 1;
2368         int ret_val;
2369         struct tx_packet_desc *ptpd;
2370         u16 vlan_tag;
2371         unsigned int nr_frags = 0;
2372         unsigned int mss = 0;
2373         unsigned int f;
2374         unsigned int proto_hdr_len;
2375
2376         len = skb_headlen(skb);
2377
2378         if (unlikely(skb->len <= 0)) {
2379                 dev_kfree_skb_any(skb);
2380                 return NETDEV_TX_OK;
2381         }
2382
2383         nr_frags = skb_shinfo(skb)->nr_frags;
2384         for (f = 0; f < nr_frags; f++) {
2385                 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2386                 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2387                          ATL1_MAX_TX_BUF_LEN;
2388         }
2389
2390         mss = skb_shinfo(skb)->gso_size;
2391         if (mss) {
2392                 if (skb->protocol == htons(ETH_P_IP)) {
2393                         proto_hdr_len = (skb_transport_offset(skb) +
2394                                          tcp_hdrlen(skb));
2395                         if (unlikely(proto_hdr_len > len)) {
2396                                 dev_kfree_skb_any(skb);
2397                                 return NETDEV_TX_OK;
2398                         }
2399                         /* need additional TPD ? */
2400                         if (proto_hdr_len != len)
2401                                 count += (len - proto_hdr_len +
2402                                         ATL1_MAX_TX_BUF_LEN - 1) /
2403                                         ATL1_MAX_TX_BUF_LEN;
2404                 }
2405         }
2406
2407         if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2408                 /* not enough descriptors */
2409                 netif_stop_queue(netdev);
2410                 if (netif_msg_tx_queued(adapter))
2411                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2412                                 "tx busy\n");
2413                 return NETDEV_TX_BUSY;
2414         }
2415
2416         ptpd = ATL1_TPD_DESC(tpd_ring,
2417                 (u16) atomic_read(&tpd_ring->next_to_use));
2418         memset(ptpd, 0, sizeof(struct tx_packet_desc));
2419
2420         if (vlan_tx_tag_present(skb)) {
2421                 vlan_tag = vlan_tx_tag_get(skb);
2422                 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2423                         ((vlan_tag >> 9) & 0x8);
2424                 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2425                 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2426                         TPD_VLANTAG_SHIFT;
2427         }
2428
2429         tso = atl1_tso(adapter, skb, ptpd);
2430         if (tso < 0) {
2431                 dev_kfree_skb_any(skb);
2432                 return NETDEV_TX_OK;
2433         }
2434
2435         if (!tso) {
2436                 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2437                 if (ret_val < 0) {
2438                         dev_kfree_skb_any(skb);
2439                         return NETDEV_TX_OK;
2440                 }
2441         }
2442
2443         atl1_tx_map(adapter, skb, ptpd);
2444         atl1_tx_queue(adapter, count, ptpd);
2445         atl1_update_mailbox(adapter);
2446         mmiowb();
2447         return NETDEV_TX_OK;
2448 }
2449
2450 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2451 {
2452         struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2453         int work_done = atl1_intr_rx(adapter, budget);
2454
2455         if (atl1_intr_tx(adapter))
2456                 work_done = budget;
2457
2458         /* Let's come again to process some more packets */
2459         if (work_done >= budget)
2460                 return work_done;
2461
2462         napi_complete(napi);
2463         /* re-enable Interrupt */
2464         if (likely(adapter->int_enabled))
2465                 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2466         return work_done;
2467 }
2468
2469 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2470 {
2471         if (!napi_schedule_prep(&adapter->napi))
2472                 /* It is possible in case even the RX/TX ints are disabled via IMR
2473                  * register the ISR bits are set anyway (but do not produce IRQ).
2474                  * To handle such situation the napi functions used to check is
2475                  * something scheduled or not.
2476                  */
2477                 return 0;
2478
2479         __napi_schedule(&adapter->napi);
2480
2481         /*
2482          * Disable RX/TX ints via IMR register if it is
2483          * allowed. NAPI handler must reenable them in same
2484          * way.
2485          */
2486         if (!adapter->int_enabled)
2487                 return 1;
2488
2489         atlx_imr_set(adapter, IMR_NORXTX_MASK);
2490         return 1;
2491 }
2492
2493 /**
2494  * atl1_intr - Interrupt Handler
2495  * @irq: interrupt number
2496  * @data: pointer to a network interface device structure
2497  */
2498 static irqreturn_t atl1_intr(int irq, void *data)
2499 {
2500         struct atl1_adapter *adapter = netdev_priv(data);
2501         u32 status;
2502
2503         status = adapter->cmb.cmb->int_stats;
2504         if (!status)
2505                 return IRQ_NONE;
2506
2507         /* clear CMB interrupt status at once,
2508          * but leave rx/tx interrupt status in case it should be dropped
2509          * only if rx/tx processing queued. In other case interrupt
2510          * can be lost.
2511          */
2512         adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2513
2514         if (status & ISR_GPHY)  /* clear phy status */
2515                 atlx_clear_phy_int(adapter);
2516
2517         /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2518         iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2519
2520         /* check if SMB intr */
2521         if (status & ISR_SMB)
2522                 atl1_inc_smb(adapter);
2523
2524         /* check if PCIE PHY Link down */
2525         if (status & ISR_PHY_LINKDOWN) {
2526                 if (netif_msg_intr(adapter))
2527                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2528                                 "pcie phy link down %x\n", status);
2529                 if (netif_running(adapter->netdev)) {   /* reset MAC */
2530                         atlx_irq_disable(adapter);
2531                         schedule_work(&adapter->reset_dev_task);
2532                         return IRQ_HANDLED;
2533                 }
2534         }
2535
2536         /* check if DMA read/write error ? */
2537         if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2538                 if (netif_msg_intr(adapter))
2539                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2540                                 "pcie DMA r/w error (status = 0x%x)\n",
2541                                 status);
2542                 atlx_irq_disable(adapter);
2543                 schedule_work(&adapter->reset_dev_task);
2544                 return IRQ_HANDLED;
2545         }
2546
2547         /* link event */
2548         if (status & ISR_GPHY) {
2549                 adapter->soft_stats.tx_carrier_errors++;
2550                 atl1_check_for_link(adapter);
2551         }
2552
2553         /* transmit or receive event */
2554         if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2555             atl1_sched_rings_clean(adapter))
2556                 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2557                                               ~(ISR_CMB_TX | ISR_CMB_RX);
2558
2559         /* rx exception */
2560         if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2561                 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2562                 ISR_HOST_RRD_OV))) {
2563                 if (netif_msg_intr(adapter))
2564                         dev_printk(KERN_DEBUG,
2565                                 &adapter->pdev->dev,
2566                                 "rx exception, ISR = 0x%x\n",
2567                                 status);
2568                 atl1_sched_rings_clean(adapter);
2569         }
2570
2571         /* re-enable Interrupt */
2572         iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2573         return IRQ_HANDLED;
2574 }
2575
2576
2577 /**
2578  * atl1_phy_config - Timer Call-back
2579  * @data: pointer to netdev cast into an unsigned long
2580  */
2581 static void atl1_phy_config(unsigned long data)
2582 {
2583         struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2584         struct atl1_hw *hw = &adapter->hw;
2585         unsigned long flags;
2586
2587         spin_lock_irqsave(&adapter->lock, flags);
2588         adapter->phy_timer_pending = false;
2589         atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2590         atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2591         atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2592         spin_unlock_irqrestore(&adapter->lock, flags);
2593 }
2594
2595 /*
2596  * Orphaned vendor comment left intact here:
2597  * <vendor comment>
2598  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2599  * will assert. We do soft reset <0x1400=1> according
2600  * with the SPEC. BUT, it seemes that PCIE or DMA
2601  * state-machine will not be reset. DMAR_TO_INT will
2602  * assert again and again.
2603  * </vendor comment>
2604  */
2605
2606 static int atl1_reset(struct atl1_adapter *adapter)
2607 {
2608         int ret;
2609         ret = atl1_reset_hw(&adapter->hw);
2610         if (ret)
2611                 return ret;
2612         return atl1_init_hw(&adapter->hw);
2613 }
2614
2615 static s32 atl1_up(struct atl1_adapter *adapter)
2616 {
2617         struct net_device *netdev = adapter->netdev;
2618         int err;
2619         int irq_flags = 0;
2620
2621         /* hardware has been reset, we need to reload some things */
2622         atlx_set_multi(netdev);
2623         atl1_init_ring_ptrs(adapter);
2624         atlx_restore_vlan(adapter);
2625         err = atl1_alloc_rx_buffers(adapter);
2626         if (unlikely(!err))
2627                 /* no RX BUFFER allocated */
2628                 return -ENOMEM;
2629
2630         if (unlikely(atl1_configure(adapter))) {
2631                 err = -EIO;
2632                 goto err_up;
2633         }
2634
2635         err = pci_enable_msi(adapter->pdev);
2636         if (err) {
2637                 if (netif_msg_ifup(adapter))
2638                         dev_info(&adapter->pdev->dev,
2639                                 "Unable to enable MSI: %d\n", err);
2640                 irq_flags |= IRQF_SHARED;
2641         }
2642
2643         err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2644                         netdev->name, netdev);
2645         if (unlikely(err))
2646                 goto err_up;
2647
2648         napi_enable(&adapter->napi);
2649         atlx_irq_enable(adapter);
2650         atl1_check_link(adapter);
2651         netif_start_queue(netdev);
2652         return 0;
2653
2654 err_up:
2655         pci_disable_msi(adapter->pdev);
2656         /* free rx_buffers */
2657         atl1_clean_rx_ring(adapter);
2658         return err;
2659 }
2660
2661 static void atl1_down(struct atl1_adapter *adapter)
2662 {
2663         struct net_device *netdev = adapter->netdev;
2664
2665         napi_disable(&adapter->napi);
2666         netif_stop_queue(netdev);
2667         del_timer_sync(&adapter->phy_config_timer);
2668         adapter->phy_timer_pending = false;
2669
2670         atlx_irq_disable(adapter);
2671         free_irq(adapter->pdev->irq, netdev);
2672         pci_disable_msi(adapter->pdev);
2673         atl1_reset_hw(&adapter->hw);
2674         adapter->cmb.cmb->int_stats = 0;
2675
2676         adapter->link_speed = SPEED_0;
2677         adapter->link_duplex = -1;
2678         netif_carrier_off(netdev);
2679
2680         atl1_clean_tx_ring(adapter);
2681         atl1_clean_rx_ring(adapter);
2682 }
2683
2684 static void atl1_reset_dev_task(struct work_struct *work)
2685 {
2686         struct atl1_adapter *adapter =
2687                 container_of(work, struct atl1_adapter, reset_dev_task);
2688         struct net_device *netdev = adapter->netdev;
2689
2690         netif_device_detach(netdev);
2691         atl1_down(adapter);
2692         atl1_up(adapter);
2693         netif_device_attach(netdev);
2694 }
2695
2696 /**
2697  * atl1_change_mtu - Change the Maximum Transfer Unit
2698  * @netdev: network interface device structure
2699  * @new_mtu: new value for maximum frame size
2700  *
2701  * Returns 0 on success, negative on failure
2702  */
2703 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2704 {
2705         struct atl1_adapter *adapter = netdev_priv(netdev);
2706         int old_mtu = netdev->mtu;
2707         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2708
2709         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2710             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2711                 if (netif_msg_link(adapter))
2712                         dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2713                 return -EINVAL;
2714         }
2715
2716         adapter->hw.max_frame_size = max_frame;
2717         adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2718         adapter->rx_buffer_len = (max_frame + 7) & ~7;
2719         adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2720
2721         netdev->mtu = new_mtu;
2722         if ((old_mtu != new_mtu) && netif_running(netdev)) {
2723                 atl1_down(adapter);
2724                 atl1_up(adapter);
2725         }
2726
2727         return 0;
2728 }
2729
2730 /**
2731  * atl1_open - Called when a network interface is made active
2732  * @netdev: network interface device structure
2733  *
2734  * Returns 0 on success, negative value on failure
2735  *
2736  * The open entry point is called when a network interface is made
2737  * active by the system (IFF_UP).  At this point all resources needed
2738  * for transmit and receive operations are allocated, the interrupt
2739  * handler is registered with the OS, the watchdog timer is started,
2740  * and the stack is notified that the interface is ready.
2741  */
2742 static int atl1_open(struct net_device *netdev)
2743 {
2744         struct atl1_adapter *adapter = netdev_priv(netdev);
2745         int err;
2746
2747         netif_carrier_off(netdev);
2748
2749         /* allocate transmit descriptors */
2750         err = atl1_setup_ring_resources(adapter);
2751         if (err)
2752                 return err;
2753
2754         err = atl1_up(adapter);
2755         if (err)
2756                 goto err_up;
2757
2758         return 0;
2759
2760 err_up:
2761         atl1_reset(adapter);
2762         return err;
2763 }
2764
2765 /**
2766  * atl1_close - Disables a network interface
2767  * @netdev: network interface device structure
2768  *
2769  * Returns 0, this is not allowed to fail
2770  *
2771  * The close entry point is called when an interface is de-activated
2772  * by the OS.  The hardware is still under the drivers control, but
2773  * needs to be disabled.  A global MAC reset is issued to stop the
2774  * hardware, and all transmit and receive resources are freed.
2775  */
2776 static int atl1_close(struct net_device *netdev)
2777 {
2778         struct atl1_adapter *adapter = netdev_priv(netdev);
2779         atl1_down(adapter);
2780         atl1_free_ring_resources(adapter);
2781         return 0;
2782 }
2783
2784 #ifdef CONFIG_PM_SLEEP
2785 static int atl1_suspend(struct device *dev)
2786 {
2787         struct pci_dev *pdev = to_pci_dev(dev);
2788         struct net_device *netdev = pci_get_drvdata(pdev);
2789         struct atl1_adapter *adapter = netdev_priv(netdev);
2790         struct atl1_hw *hw = &adapter->hw;
2791         u32 ctrl = 0;
2792         u32 wufc = adapter->wol;
2793         u32 val;
2794         u16 speed;
2795         u16 duplex;
2796
2797         netif_device_detach(netdev);
2798         if (netif_running(netdev))
2799                 atl1_down(adapter);
2800
2801         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2802         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2803         val = ctrl & BMSR_LSTATUS;
2804         if (val)
2805                 wufc &= ~ATLX_WUFC_LNKC;
2806         if (!wufc)
2807                 goto disable_wol;
2808
2809         if (val) {
2810                 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2811                 if (val) {
2812                         if (netif_msg_ifdown(adapter))
2813                                 dev_printk(KERN_DEBUG, &pdev->dev,
2814                                         "error getting speed/duplex\n");
2815                         goto disable_wol;
2816                 }
2817
2818                 ctrl = 0;
2819
2820                 /* enable magic packet WOL */
2821                 if (wufc & ATLX_WUFC_MAG)
2822                         ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2823                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2824                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2825
2826                 /* configure the mac */
2827                 ctrl = MAC_CTRL_RX_EN;
2828                 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2829                         MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2830                 if (duplex == FULL_DUPLEX)
2831                         ctrl |= MAC_CTRL_DUPLX;
2832                 ctrl |= (((u32)adapter->hw.preamble_len &
2833                         MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2834                 __atlx_vlan_mode(netdev->features, &ctrl);
2835                 if (wufc & ATLX_WUFC_MAG)
2836                         ctrl |= MAC_CTRL_BC_EN;
2837                 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2838                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2839
2840                 /* poke the PHY */
2841                 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2842                 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2843                 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2844                 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2845         } else {
2846                 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2847                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2848                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2849                 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2850                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2851                 hw->phy_configured = false;
2852         }
2853
2854         return 0;
2855
2856  disable_wol:
2857         iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2858         ioread32(hw->hw_addr + REG_WOL_CTRL);
2859         ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2860         ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2861         iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2862         ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2863         hw->phy_configured = false;
2864
2865         return 0;
2866 }
2867
2868 static int atl1_resume(struct device *dev)
2869 {
2870         struct pci_dev *pdev = to_pci_dev(dev);
2871         struct net_device *netdev = pci_get_drvdata(pdev);
2872         struct atl1_adapter *adapter = netdev_priv(netdev);
2873
2874         iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2875
2876         atl1_reset_hw(&adapter->hw);
2877
2878         if (netif_running(netdev)) {
2879                 adapter->cmb.cmb->int_stats = 0;
2880                 atl1_up(adapter);
2881         }
2882         netif_device_attach(netdev);
2883
2884         return 0;
2885 }
2886 #endif
2887
2888 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2889
2890 static void atl1_shutdown(struct pci_dev *pdev)
2891 {
2892         struct net_device *netdev = pci_get_drvdata(pdev);
2893         struct atl1_adapter *adapter = netdev_priv(netdev);
2894
2895 #ifdef CONFIG_PM_SLEEP
2896         atl1_suspend(&pdev->dev);
2897 #endif
2898         pci_wake_from_d3(pdev, adapter->wol);
2899         pci_set_power_state(pdev, PCI_D3hot);
2900 }
2901
2902 #ifdef CONFIG_NET_POLL_CONTROLLER
2903 static void atl1_poll_controller(struct net_device *netdev)
2904 {
2905         disable_irq(netdev->irq);
2906         atl1_intr(netdev->irq, netdev);
2907         enable_irq(netdev->irq);
2908 }
2909 #endif
2910
2911 static const struct net_device_ops atl1_netdev_ops = {
2912         .ndo_open               = atl1_open,
2913         .ndo_stop               = atl1_close,
2914         .ndo_start_xmit         = atl1_xmit_frame,
2915         .ndo_set_rx_mode        = atlx_set_multi,
2916         .ndo_validate_addr      = eth_validate_addr,
2917         .ndo_set_mac_address    = atl1_set_mac,
2918         .ndo_change_mtu         = atl1_change_mtu,
2919         .ndo_fix_features       = atlx_fix_features,
2920         .ndo_set_features       = atlx_set_features,
2921         .ndo_do_ioctl           = atlx_ioctl,
2922         .ndo_tx_timeout         = atlx_tx_timeout,
2923 #ifdef CONFIG_NET_POLL_CONTROLLER
2924         .ndo_poll_controller    = atl1_poll_controller,
2925 #endif
2926 };
2927
2928 /**
2929  * atl1_probe - Device Initialization Routine
2930  * @pdev: PCI device information struct
2931  * @ent: entry in atl1_pci_tbl
2932  *
2933  * Returns 0 on success, negative on failure
2934  *
2935  * atl1_probe initializes an adapter identified by a pci_dev structure.
2936  * The OS initialization, configuring of the adapter private structure,
2937  * and a hardware reset occur.
2938  */
2939 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2940 {
2941         struct net_device *netdev;
2942         struct atl1_adapter *adapter;
2943         static int cards_found = 0;
2944         int err;
2945
2946         err = pci_enable_device(pdev);
2947         if (err)
2948                 return err;
2949
2950         /*
2951          * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2952          * shared register for the high 32 bits, so only a single, aligned,
2953          * 4 GB physical address range can be used at a time.
2954          *
2955          * Supporting 64-bit DMA on this hardware is more trouble than it's
2956          * worth.  It is far easier to limit to 32-bit DMA than update
2957          * various kernel subsystems to support the mechanics required by a
2958          * fixed-high-32-bit system.
2959          */
2960         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2961         if (err) {
2962                 dev_err(&pdev->dev, "no usable DMA configuration\n");
2963                 goto err_dma;
2964         }
2965         /*
2966          * Mark all PCI regions associated with PCI device
2967          * pdev as being reserved by owner atl1_driver_name
2968          */
2969         err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2970         if (err)
2971                 goto err_request_regions;
2972
2973         /*
2974          * Enables bus-mastering on the device and calls
2975          * pcibios_set_master to do the needed arch specific settings
2976          */
2977         pci_set_master(pdev);
2978
2979         netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2980         if (!netdev) {
2981                 err = -ENOMEM;
2982                 goto err_alloc_etherdev;
2983         }
2984         SET_NETDEV_DEV(netdev, &pdev->dev);
2985
2986         pci_set_drvdata(pdev, netdev);
2987         adapter = netdev_priv(netdev);
2988         adapter->netdev = netdev;
2989         adapter->pdev = pdev;
2990         adapter->hw.back = adapter;
2991         adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2992
2993         adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2994         if (!adapter->hw.hw_addr) {
2995                 err = -EIO;
2996                 goto err_pci_iomap;
2997         }
2998         /* get device revision number */
2999         adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
3000                 (REG_MASTER_CTRL + 2));
3001         if (netif_msg_probe(adapter))
3002                 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3003
3004         /* set default ring resource counts */
3005         adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3006         adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3007
3008         adapter->mii.dev = netdev;
3009         adapter->mii.mdio_read = mdio_read;
3010         adapter->mii.mdio_write = mdio_write;
3011         adapter->mii.phy_id_mask = 0x1f;
3012         adapter->mii.reg_num_mask = 0x1f;
3013
3014         netdev->netdev_ops = &atl1_netdev_ops;
3015         netdev->watchdog_timeo = 5 * HZ;
3016         netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3017
3018         netdev->ethtool_ops = &atl1_ethtool_ops;
3019         adapter->bd_number = cards_found;
3020
3021         /* setup the private structure */
3022         err = atl1_sw_init(adapter);
3023         if (err)
3024                 goto err_common;
3025
3026         netdev->features = NETIF_F_HW_CSUM;
3027         netdev->features |= NETIF_F_SG;
3028         netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3029
3030         netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3031                               NETIF_F_HW_VLAN_CTAG_RX;
3032
3033         /* is this valid? see atl1_setup_mac_ctrl() */
3034         netdev->features |= NETIF_F_RXCSUM;
3035
3036         /*
3037          * patch for some L1 of old version,
3038          * the final version of L1 may not need these
3039          * patches
3040          */
3041         /* atl1_pcie_patch(adapter); */
3042
3043         /* really reset GPHY core */
3044         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3045
3046         /*
3047          * reset the controller to
3048          * put the device in a known good starting state
3049          */
3050         if (atl1_reset_hw(&adapter->hw)) {
3051                 err = -EIO;
3052                 goto err_common;
3053         }
3054
3055         /* copy the MAC address out of the EEPROM */
3056         if (atl1_read_mac_addr(&adapter->hw)) {
3057                 /* mark random mac */
3058                 netdev->addr_assign_type = NET_ADDR_RANDOM;
3059         }
3060         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3061
3062         if (!is_valid_ether_addr(netdev->dev_addr)) {
3063                 err = -EIO;
3064                 goto err_common;
3065         }
3066
3067         atl1_check_options(adapter);
3068
3069         /* pre-init the MAC, and setup link */
3070         err = atl1_init_hw(&adapter->hw);
3071         if (err) {
3072                 err = -EIO;
3073                 goto err_common;
3074         }
3075
3076         atl1_pcie_patch(adapter);
3077         /* assume we have no link for now */
3078         netif_carrier_off(netdev);
3079
3080         setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3081                     (unsigned long)adapter);
3082         adapter->phy_timer_pending = false;
3083
3084         INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3085
3086         INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3087
3088         err = register_netdev(netdev);
3089         if (err)
3090                 goto err_common;
3091
3092         cards_found++;
3093         atl1_via_workaround(adapter);
3094         return 0;
3095
3096 err_common:
3097         pci_iounmap(pdev, adapter->hw.hw_addr);
3098 err_pci_iomap:
3099         free_netdev(netdev);
3100 err_alloc_etherdev:
3101         pci_release_regions(pdev);
3102 err_dma:
3103 err_request_regions:
3104         pci_disable_device(pdev);
3105         return err;
3106 }
3107
3108 /**
3109  * atl1_remove - Device Removal Routine
3110  * @pdev: PCI device information struct
3111  *
3112  * atl1_remove is called by the PCI subsystem to alert the driver
3113  * that it should release a PCI device.  The could be caused by a
3114  * Hot-Plug event, or because the driver is going to be removed from
3115  * memory.
3116  */
3117 static void atl1_remove(struct pci_dev *pdev)
3118 {
3119         struct net_device *netdev = pci_get_drvdata(pdev);
3120         struct atl1_adapter *adapter;
3121         /* Device not available. Return. */
3122         if (!netdev)
3123                 return;
3124
3125         adapter = netdev_priv(netdev);
3126
3127         /*
3128          * Some atl1 boards lack persistent storage for their MAC, and get it
3129          * from the BIOS during POST.  If we've been messing with the MAC
3130          * address, we need to save the permanent one.
3131          */
3132         if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3133                                         adapter->hw.perm_mac_addr)) {
3134                 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3135                         ETH_ALEN);
3136                 atl1_set_mac_addr(&adapter->hw);
3137         }
3138
3139         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3140         unregister_netdev(netdev);
3141         pci_iounmap(pdev, adapter->hw.hw_addr);
3142         pci_release_regions(pdev);
3143         free_netdev(netdev);
3144         pci_disable_device(pdev);
3145 }
3146
3147 static struct pci_driver atl1_driver = {
3148         .name = ATLX_DRIVER_NAME,
3149         .id_table = atl1_pci_tbl,
3150         .probe = atl1_probe,
3151         .remove = atl1_remove,
3152         .shutdown = atl1_shutdown,
3153         .driver.pm = &atl1_pm_ops,
3154 };
3155
3156 struct atl1_stats {
3157         char stat_string[ETH_GSTRING_LEN];
3158         int sizeof_stat;
3159         int stat_offset;
3160 };
3161
3162 #define ATL1_STAT(m) \
3163         sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3164
3165 static struct atl1_stats atl1_gstrings_stats[] = {
3166         {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3167         {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3168         {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3169         {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3170         {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3171         {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3172         {"multicast", ATL1_STAT(soft_stats.multicast)},
3173         {"collisions", ATL1_STAT(soft_stats.collisions)},
3174         {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3175         {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3176         {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3177         {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3178         {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3179         {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3180         {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3181         {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3182         {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3183         {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3184         {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3185         {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3186         {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3187         {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3188         {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3189         {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3190         {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3191         {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3192         {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3193         {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3194         {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3195 };
3196
3197 static void atl1_get_ethtool_stats(struct net_device *netdev,
3198         struct ethtool_stats *stats, u64 *data)
3199 {
3200         struct atl1_adapter *adapter = netdev_priv(netdev);
3201         int i;
3202         char *p;
3203
3204         for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3205                 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3206                 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3207                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3208         }
3209
3210 }
3211
3212 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3213 {
3214         switch (sset) {
3215         case ETH_SS_STATS:
3216                 return ARRAY_SIZE(atl1_gstrings_stats);
3217         default:
3218                 return -EOPNOTSUPP;
3219         }
3220 }
3221
3222 static int atl1_get_settings(struct net_device *netdev,
3223         struct ethtool_cmd *ecmd)
3224 {
3225         struct atl1_adapter *adapter = netdev_priv(netdev);
3226         struct atl1_hw *hw = &adapter->hw;
3227
3228         ecmd->supported = (SUPPORTED_10baseT_Half |
3229                            SUPPORTED_10baseT_Full |
3230                            SUPPORTED_100baseT_Half |
3231                            SUPPORTED_100baseT_Full |
3232                            SUPPORTED_1000baseT_Full |
3233                            SUPPORTED_Autoneg | SUPPORTED_TP);
3234         ecmd->advertising = ADVERTISED_TP;
3235         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3236             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3237                 ecmd->advertising |= ADVERTISED_Autoneg;
3238                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3239                         ecmd->advertising |= ADVERTISED_Autoneg;
3240                         ecmd->advertising |=
3241                             (ADVERTISED_10baseT_Half |
3242                              ADVERTISED_10baseT_Full |
3243                              ADVERTISED_100baseT_Half |
3244                              ADVERTISED_100baseT_Full |
3245                              ADVERTISED_1000baseT_Full);
3246                 } else
3247                         ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3248         }
3249         ecmd->port = PORT_TP;
3250         ecmd->phy_address = 0;
3251         ecmd->transceiver = XCVR_INTERNAL;
3252
3253         if (netif_carrier_ok(adapter->netdev)) {
3254                 u16 link_speed, link_duplex;
3255                 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3256                 ethtool_cmd_speed_set(ecmd, link_speed);
3257                 if (link_duplex == FULL_DUPLEX)
3258                         ecmd->duplex = DUPLEX_FULL;
3259                 else
3260                         ecmd->duplex = DUPLEX_HALF;
3261         } else {
3262                 ethtool_cmd_speed_set(ecmd, -1);
3263                 ecmd->duplex = -1;
3264         }
3265         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3266             hw->media_type == MEDIA_TYPE_1000M_FULL)
3267                 ecmd->autoneg = AUTONEG_ENABLE;
3268         else
3269                 ecmd->autoneg = AUTONEG_DISABLE;
3270
3271         return 0;
3272 }
3273
3274 static int atl1_set_settings(struct net_device *netdev,
3275         struct ethtool_cmd *ecmd)
3276 {
3277         struct atl1_adapter *adapter = netdev_priv(netdev);
3278         struct atl1_hw *hw = &adapter->hw;
3279         u16 phy_data;
3280         int ret_val = 0;
3281         u16 old_media_type = hw->media_type;
3282
3283         if (netif_running(adapter->netdev)) {
3284                 if (netif_msg_link(adapter))
3285                         dev_dbg(&adapter->pdev->dev,
3286                                 "ethtool shutting down adapter\n");
3287                 atl1_down(adapter);
3288         }
3289
3290         if (ecmd->autoneg == AUTONEG_ENABLE)
3291                 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3292         else {
3293                 u32 speed = ethtool_cmd_speed(ecmd);
3294                 if (speed == SPEED_1000) {
3295                         if (ecmd->duplex != DUPLEX_FULL) {
3296                                 if (netif_msg_link(adapter))
3297                                         dev_warn(&adapter->pdev->dev,
3298                                                 "1000M half is invalid\n");
3299                                 ret_val = -EINVAL;
3300                                 goto exit_sset;
3301                         }
3302                         hw->media_type = MEDIA_TYPE_1000M_FULL;
3303                 } else if (speed == SPEED_100) {
3304                         if (ecmd->duplex == DUPLEX_FULL)
3305                                 hw->media_type = MEDIA_TYPE_100M_FULL;
3306                         else
3307                                 hw->media_type = MEDIA_TYPE_100M_HALF;
3308                 } else {
3309                         if (ecmd->duplex == DUPLEX_FULL)
3310                                 hw->media_type = MEDIA_TYPE_10M_FULL;
3311                         else
3312                                 hw->media_type = MEDIA_TYPE_10M_HALF;
3313                 }
3314         }
3315         switch (hw->media_type) {
3316         case MEDIA_TYPE_AUTO_SENSOR:
3317                 ecmd->advertising =
3318                     ADVERTISED_10baseT_Half |
3319                     ADVERTISED_10baseT_Full |
3320                     ADVERTISED_100baseT_Half |
3321                     ADVERTISED_100baseT_Full |
3322                     ADVERTISED_1000baseT_Full |
3323                     ADVERTISED_Autoneg | ADVERTISED_TP;
3324                 break;
3325         case MEDIA_TYPE_1000M_FULL:
3326                 ecmd->advertising =
3327                     ADVERTISED_1000baseT_Full |
3328                     ADVERTISED_Autoneg | ADVERTISED_TP;
3329                 break;
3330         default:
3331                 ecmd->advertising = 0;
3332                 break;
3333         }
3334         if (atl1_phy_setup_autoneg_adv(hw)) {
3335                 ret_val = -EINVAL;
3336                 if (netif_msg_link(adapter))
3337                         dev_warn(&adapter->pdev->dev,
3338                                 "invalid ethtool speed/duplex setting\n");
3339                 goto exit_sset;
3340         }
3341         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3342             hw->media_type == MEDIA_TYPE_1000M_FULL)
3343                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3344         else {
3345                 switch (hw->media_type) {
3346                 case MEDIA_TYPE_100M_FULL:
3347                         phy_data =
3348                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3349                             MII_CR_RESET;
3350                         break;
3351                 case MEDIA_TYPE_100M_HALF:
3352                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3353                         break;
3354                 case MEDIA_TYPE_10M_FULL:
3355                         phy_data =
3356                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3357                         break;
3358                 default:
3359                         /* MEDIA_TYPE_10M_HALF: */
3360                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3361                         break;
3362                 }
3363         }
3364         atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3365 exit_sset:
3366         if (ret_val)
3367                 hw->media_type = old_media_type;
3368
3369         if (netif_running(adapter->netdev)) {
3370                 if (netif_msg_link(adapter))
3371                         dev_dbg(&adapter->pdev->dev,
3372                                 "ethtool starting adapter\n");
3373                 atl1_up(adapter);
3374         } else if (!ret_val) {
3375                 if (netif_msg_link(adapter))
3376                         dev_dbg(&adapter->pdev->dev,
3377                                 "ethtool resetting adapter\n");
3378                 atl1_reset(adapter);
3379         }
3380         return ret_val;
3381 }
3382
3383 static void atl1_get_drvinfo(struct net_device *netdev,
3384         struct ethtool_drvinfo *drvinfo)
3385 {
3386         struct atl1_adapter *adapter = netdev_priv(netdev);
3387
3388         strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3389         strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3390                 sizeof(drvinfo->version));
3391         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3392                 sizeof(drvinfo->bus_info));
3393         drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3394 }
3395
3396 static void atl1_get_wol(struct net_device *netdev,
3397         struct ethtool_wolinfo *wol)
3398 {
3399         struct atl1_adapter *adapter = netdev_priv(netdev);
3400
3401         wol->supported = WAKE_MAGIC;
3402         wol->wolopts = 0;
3403         if (adapter->wol & ATLX_WUFC_MAG)
3404                 wol->wolopts |= WAKE_MAGIC;
3405 }
3406
3407 static int atl1_set_wol(struct net_device *netdev,
3408         struct ethtool_wolinfo *wol)
3409 {
3410         struct atl1_adapter *adapter = netdev_priv(netdev);
3411
3412         if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3413                 WAKE_ARP | WAKE_MAGICSECURE))
3414                 return -EOPNOTSUPP;
3415         adapter->wol = 0;
3416         if (wol->wolopts & WAKE_MAGIC)
3417                 adapter->wol |= ATLX_WUFC_MAG;
3418
3419         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3420
3421         return 0;
3422 }
3423
3424 static u32 atl1_get_msglevel(struct net_device *netdev)
3425 {
3426         struct atl1_adapter *adapter = netdev_priv(netdev);
3427         return adapter->msg_enable;
3428 }
3429
3430 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3431 {
3432         struct atl1_adapter *adapter = netdev_priv(netdev);
3433         adapter->msg_enable = value;
3434 }
3435
3436 static int atl1_get_regs_len(struct net_device *netdev)
3437 {
3438         return ATL1_REG_COUNT * sizeof(u32);
3439 }
3440
3441 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3442         void *p)
3443 {
3444         struct atl1_adapter *adapter = netdev_priv(netdev);
3445         struct atl1_hw *hw = &adapter->hw;
3446         unsigned int i;
3447         u32 *regbuf = p;
3448
3449         for (i = 0; i < ATL1_REG_COUNT; i++) {
3450                 /*
3451                  * This switch statement avoids reserved regions
3452                  * of register space.
3453                  */
3454                 switch (i) {
3455                 case 6 ... 9:
3456                 case 14:
3457                 case 29 ... 31:
3458                 case 34 ... 63:
3459                 case 75 ... 127:
3460                 case 136 ... 1023:
3461                 case 1027 ... 1087:
3462                 case 1091 ... 1151:
3463                 case 1194 ... 1195:
3464                 case 1200 ... 1201:
3465                 case 1206 ... 1213:
3466                 case 1216 ... 1279:
3467                 case 1290 ... 1311:
3468                 case 1323 ... 1343:
3469                 case 1358 ... 1359:
3470                 case 1368 ... 1375:
3471                 case 1378 ... 1383:
3472                 case 1388 ... 1391:
3473                 case 1393 ... 1395:
3474                 case 1402 ... 1403:
3475                 case 1410 ... 1471:
3476                 case 1522 ... 1535:
3477                         /* reserved region; don't read it */
3478                         regbuf[i] = 0;
3479                         break;
3480                 default:
3481                         /* unreserved region */
3482                         regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3483                 }
3484         }
3485 }
3486
3487 static void atl1_get_ringparam(struct net_device *netdev,
3488         struct ethtool_ringparam *ring)
3489 {
3490         struct atl1_adapter *adapter = netdev_priv(netdev);
3491         struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3492         struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3493
3494         ring->rx_max_pending = ATL1_MAX_RFD;
3495         ring->tx_max_pending = ATL1_MAX_TPD;
3496         ring->rx_pending = rxdr->count;
3497         ring->tx_pending = txdr->count;
3498 }
3499
3500 static int atl1_set_ringparam(struct net_device *netdev,
3501         struct ethtool_ringparam *ring)
3502 {
3503         struct atl1_adapter *adapter = netdev_priv(netdev);
3504         struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3505         struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3506         struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3507
3508         struct atl1_tpd_ring tpd_old, tpd_new;
3509         struct atl1_rfd_ring rfd_old, rfd_new;
3510         struct atl1_rrd_ring rrd_old, rrd_new;
3511         struct atl1_ring_header rhdr_old, rhdr_new;
3512         struct atl1_smb smb;
3513         struct atl1_cmb cmb;
3514         int err;
3515
3516         tpd_old = adapter->tpd_ring;
3517         rfd_old = adapter->rfd_ring;
3518         rrd_old = adapter->rrd_ring;
3519         rhdr_old = adapter->ring_header;
3520
3521         if (netif_running(adapter->netdev))
3522                 atl1_down(adapter);
3523
3524         rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3525         rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3526                         rfdr->count;
3527         rfdr->count = (rfdr->count + 3) & ~3;
3528         rrdr->count = rfdr->count;
3529
3530         tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3531         tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3532                         tpdr->count;
3533         tpdr->count = (tpdr->count + 3) & ~3;
3534
3535         if (netif_running(adapter->netdev)) {
3536                 /* try to get new resources before deleting old */
3537                 err = atl1_setup_ring_resources(adapter);
3538                 if (err)
3539                         goto err_setup_ring;
3540
3541                 /*
3542                  * save the new, restore the old in order to free it,
3543                  * then restore the new back again
3544                  */
3545
3546                 rfd_new = adapter->rfd_ring;
3547                 rrd_new = adapter->rrd_ring;
3548                 tpd_new = adapter->tpd_ring;
3549                 rhdr_new = adapter->ring_header;
3550                 adapter->rfd_ring = rfd_old;
3551                 adapter->rrd_ring = rrd_old;
3552                 adapter->tpd_ring = tpd_old;
3553                 adapter->ring_header = rhdr_old;
3554                 /*
3555                  * Save SMB and CMB, since atl1_free_ring_resources
3556                  * will clear them.
3557                  */
3558                 smb = adapter->smb;
3559                 cmb = adapter->cmb;
3560                 atl1_free_ring_resources(adapter);
3561                 adapter->rfd_ring = rfd_new;
3562                 adapter->rrd_ring = rrd_new;
3563                 adapter->tpd_ring = tpd_new;
3564                 adapter->ring_header = rhdr_new;
3565                 adapter->smb = smb;
3566                 adapter->cmb = cmb;
3567
3568                 err = atl1_up(adapter);
3569                 if (err)
3570                         return err;
3571         }
3572         return 0;
3573
3574 err_setup_ring:
3575         adapter->rfd_ring = rfd_old;
3576         adapter->rrd_ring = rrd_old;
3577         adapter->tpd_ring = tpd_old;
3578         adapter->ring_header = rhdr_old;
3579         atl1_up(adapter);
3580         return err;
3581 }
3582
3583 static void atl1_get_pauseparam(struct net_device *netdev,
3584         struct ethtool_pauseparam *epause)
3585 {
3586         struct atl1_adapter *adapter = netdev_priv(netdev);
3587         struct atl1_hw *hw = &adapter->hw;
3588
3589         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3590             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3591                 epause->autoneg = AUTONEG_ENABLE;
3592         } else {
3593                 epause->autoneg = AUTONEG_DISABLE;
3594         }
3595         epause->rx_pause = 1;
3596         epause->tx_pause = 1;
3597 }
3598
3599 static int atl1_set_pauseparam(struct net_device *netdev,
3600         struct ethtool_pauseparam *epause)
3601 {
3602         struct atl1_adapter *adapter = netdev_priv(netdev);
3603         struct atl1_hw *hw = &adapter->hw;
3604
3605         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3606             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3607                 epause->autoneg = AUTONEG_ENABLE;
3608         } else {
3609                 epause->autoneg = AUTONEG_DISABLE;
3610         }
3611
3612         epause->rx_pause = 1;
3613         epause->tx_pause = 1;
3614
3615         return 0;
3616 }
3617
3618 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3619         u8 *data)
3620 {
3621         u8 *p = data;
3622         int i;
3623
3624         switch (stringset) {
3625         case ETH_SS_STATS:
3626                 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3627                         memcpy(p, atl1_gstrings_stats[i].stat_string,
3628                                 ETH_GSTRING_LEN);
3629                         p += ETH_GSTRING_LEN;
3630                 }
3631                 break;
3632         }
3633 }
3634
3635 static int atl1_nway_reset(struct net_device *netdev)
3636 {
3637         struct atl1_adapter *adapter = netdev_priv(netdev);
3638         struct atl1_hw *hw = &adapter->hw;
3639
3640         if (netif_running(netdev)) {
3641                 u16 phy_data;
3642                 atl1_down(adapter);
3643
3644                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3645                         hw->media_type == MEDIA_TYPE_1000M_FULL) {
3646                         phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3647                 } else {
3648                         switch (hw->media_type) {
3649                         case MEDIA_TYPE_100M_FULL:
3650                                 phy_data = MII_CR_FULL_DUPLEX |
3651                                         MII_CR_SPEED_100 | MII_CR_RESET;
3652                                 break;
3653                         case MEDIA_TYPE_100M_HALF:
3654                                 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3655                                 break;
3656                         case MEDIA_TYPE_10M_FULL:
3657                                 phy_data = MII_CR_FULL_DUPLEX |
3658                                         MII_CR_SPEED_10 | MII_CR_RESET;
3659                                 break;
3660                         default:
3661                                 /* MEDIA_TYPE_10M_HALF */
3662                                 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3663                         }
3664                 }
3665                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3666                 atl1_up(adapter);
3667         }
3668         return 0;
3669 }
3670
3671 static const struct ethtool_ops atl1_ethtool_ops = {
3672         .get_settings           = atl1_get_settings,
3673         .set_settings           = atl1_set_settings,
3674         .get_drvinfo            = atl1_get_drvinfo,
3675         .get_wol                = atl1_get_wol,
3676         .set_wol                = atl1_set_wol,
3677         .get_msglevel           = atl1_get_msglevel,
3678         .set_msglevel           = atl1_set_msglevel,
3679         .get_regs_len           = atl1_get_regs_len,
3680         .get_regs               = atl1_get_regs,
3681         .get_ringparam          = atl1_get_ringparam,
3682         .set_ringparam          = atl1_set_ringparam,
3683         .get_pauseparam         = atl1_get_pauseparam,
3684         .set_pauseparam         = atl1_set_pauseparam,
3685         .get_link               = ethtool_op_get_link,
3686         .get_strings            = atl1_get_strings,
3687         .nway_reset             = atl1_nway_reset,
3688         .get_ethtool_stats      = atl1_get_ethtool_stats,
3689         .get_sset_count         = atl1_get_sset_count,
3690 };
3691
3692 module_pci_driver(atl1_driver);