]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *wb_comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580                 bnx2x_panic();
581         }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591                 int i;
592
593                 if (CHIP_IS_E1(bp))
594                         for (i = 0; i < len32; i++)
595                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596                 else
597                         for (i = 0; i < len32; i++)
598                                 data[i] = REG_RD(bp, src_addr + i*4);
599
600                 return;
601         }
602
603         /* set opcode and fixed command fields */
604         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606         /* fill in addresses and len */
607         dmae.src_addr_lo = src_addr >> 2;
608         dmae.src_addr_hi = 0;
609         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611         dmae.len = len32;
612
613         /* issue the command and wait for completion */
614         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615         if (rc) {
616                 BNX2X_ERR("DMAE returned failure %d\n", rc);
617                 bnx2x_panic();
618         }
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622                                       u32 addr, u32 len)
623 {
624         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625         int offset = 0;
626
627         while (len > dmae_wr_max) {
628                 bnx2x_write_dmae(bp, phys_addr + offset,
629                                  addr + offset, dmae_wr_max);
630                 offset += dmae_wr_max * 4;
631                 len -= dmae_wr_max;
632         }
633
634         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639         char last_idx;
640         int i, rc = 0;
641         u32 row0, row1, row2, row3;
642
643         /* XSTORM */
644         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
646         if (last_idx)
647                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649         /* print the asserts */
650         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653                               XSTORM_ASSERT_LIST_OFFSET(i));
654                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663                                   i, row3, row2, row1, row0);
664                         rc++;
665                 } else {
666                         break;
667                 }
668         }
669
670         /* TSTORM */
671         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
673         if (last_idx)
674                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676         /* print the asserts */
677         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680                               TSTORM_ASSERT_LIST_OFFSET(i));
681                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690                                   i, row3, row2, row1, row0);
691                         rc++;
692                 } else {
693                         break;
694                 }
695         }
696
697         /* CSTORM */
698         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
700         if (last_idx)
701                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703         /* print the asserts */
704         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707                               CSTORM_ASSERT_LIST_OFFSET(i));
708                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717                                   i, row3, row2, row1, row0);
718                         rc++;
719                 } else {
720                         break;
721                 }
722         }
723
724         /* USTORM */
725         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726                            USTORM_ASSERT_LIST_INDEX_OFFSET);
727         if (last_idx)
728                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730         /* print the asserts */
731         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734                               USTORM_ASSERT_LIST_OFFSET(i));
735                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
737                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
739                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744                                   i, row3, row2, row1, row0);
745                         rc++;
746                 } else {
747                         break;
748                 }
749         }
750
751         return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778         addr = trace_shmem_base - 0x800;
779
780         /* validate TRCB signature */
781         mark = REG_RD(bp, addr);
782         if (mark != MFW_TRACE_SIGNATURE) {
783                 BNX2X_ERR("Trace buffer signature is missing.");
784                 return ;
785         }
786
787         /* read cyclic buffer pointer */
788         addr += 4;
789         mark = REG_RD(bp, addr);
790         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791                         + ((mark + 0x3) & ~0x3) - 0x08000000;
792         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794         printk("%s", lvl);
795
796         /* dump buffer after the mark */
797         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798                 for (word = 0; word < 8; word++)
799                         data[word] = htonl(REG_RD(bp, offset + 4*word));
800                 data[8] = 0x0;
801                 pr_cont("%s", (char *)data);
802         }
803
804         /* dump buffer before the mark */
805         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806                 for (word = 0; word < 8; word++)
807                         data[word] = htonl(REG_RD(bp, offset + 4*word));
808                 data[8] = 0x0;
809                 pr_cont("%s", (char *)data);
810         }
811         printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816         bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821         int port = BP_PORT(bp);
822         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823         u32 val = REG_RD(bp, addr);
824
825         /* in E1 we must use only PCI configuration space to disable
826          * MSI/MSIX capability
827          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828          */
829         if (CHIP_IS_E1(bp)) {
830                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831                  * Use mask register to prevent from HC sending interrupts
832                  * after we exit the function
833                  */
834                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
838                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839         } else
840                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
843                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845         DP(NETIF_MSG_IFDOWN,
846            "write %x to HC %d (addr 0x%x)\n",
847            val, port, addr);
848
849         /* flush all outstanding writes */
850         mmiowb();
851
852         REG_WR(bp, addr, val);
853         if (REG_RD(bp, addr) != val)
854                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862                  IGU_PF_CONF_INT_LINE_EN |
863                  IGU_PF_CONF_ATTN_BIT_EN);
864
865         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877         if (bp->common.int_block == INT_BLOCK_HC)
878                 bnx2x_hc_int_disable(bp);
879         else
880                 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885         int i;
886         u16 j;
887         struct hc_sp_status_block_data sp_sb_data;
888         int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890         u16 start = 0, end = 0;
891         u8 cos;
892 #endif
893         if (disable_int)
894                 bnx2x_int_disable(bp);
895
896         bp->stats_state = STATS_STATE_DISABLED;
897         bp->eth_stats.unrecoverable_error++;
898         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900         BNX2X_ERR("begin crash dump -----------------\n");
901
902         /* Indices */
903         /* Common */
904         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905                   bp->def_idx, bp->def_att_idx, bp->attn_state,
906                   bp->spq_prod_idx, bp->stats_counter);
907         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908                   bp->def_status_blk->atten_status_block.attn_bits,
909                   bp->def_status_blk->atten_status_block.attn_bits_ack,
910                   bp->def_status_blk->atten_status_block.status_block_id,
911                   bp->def_status_blk->atten_status_block.attn_bits_index);
912         BNX2X_ERR("     def (");
913         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914                 pr_cont("0x%x%s",
915                         bp->def_status_blk->sp_sb.index_values[i],
916                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917
918         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921                         i*sizeof(u32));
922
923         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924                sp_sb_data.igu_sb_id,
925                sp_sb_data.igu_seg_id,
926                sp_sb_data.p_func.pf_id,
927                sp_sb_data.p_func.vnic_id,
928                sp_sb_data.p_func.vf_id,
929                sp_sb_data.p_func.vf_valid,
930                sp_sb_data.state);
931
932         for_each_eth_queue(bp, i) {
933                 struct bnx2x_fastpath *fp = &bp->fp[i];
934                 int loop;
935                 struct hc_status_block_data_e2 sb_data_e2;
936                 struct hc_status_block_data_e1x sb_data_e1x;
937                 struct hc_status_block_sm  *hc_sm_p =
938                         CHIP_IS_E1x(bp) ?
939                         sb_data_e1x.common.state_machine :
940                         sb_data_e2.common.state_machine;
941                 struct hc_index_data *hc_index_p =
942                         CHIP_IS_E1x(bp) ?
943                         sb_data_e1x.index_data :
944                         sb_data_e2.index_data;
945                 u8 data_size, cos;
946                 u32 *sb_data_p;
947                 struct bnx2x_fp_txdata txdata;
948
949                 /* Rx */
950                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951                           i, fp->rx_bd_prod, fp->rx_bd_cons,
952                           fp->rx_comp_prod,
953                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955                           fp->rx_sge_prod, fp->last_max_sge,
956                           le16_to_cpu(fp->fp_hc_idx));
957
958                 /* Tx */
959                 for_each_cos_in_tx_queue(fp, cos)
960                 {
961                         txdata = *fp->txdata_ptr[cos];
962                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963                                   i, txdata.tx_pkt_prod,
964                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
965                                   txdata.tx_bd_cons,
966                                   le16_to_cpu(*txdata.tx_cons_sb));
967                 }
968
969                 loop = CHIP_IS_E1x(bp) ?
970                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972                 /* host sb data */
973
974                 if (IS_FCOE_FP(fp))
975                         continue;
976
977                 BNX2X_ERR("     run indexes (");
978                 for (j = 0; j < HC_SB_MAX_SM; j++)
979                         pr_cont("0x%x%s",
980                                fp->sb_running_index[j],
981                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983                 BNX2X_ERR("     indexes (");
984                 for (j = 0; j < loop; j++)
985                         pr_cont("0x%x%s",
986                                fp->sb_index_values[j],
987                                (j == loop - 1) ? ")" : " ");
988                 /* fw sb data */
989                 data_size = CHIP_IS_E1x(bp) ?
990                         sizeof(struct hc_status_block_data_e1x) :
991                         sizeof(struct hc_status_block_data_e2);
992                 data_size /= sizeof(u32);
993                 sb_data_p = CHIP_IS_E1x(bp) ?
994                         (u32 *)&sb_data_e1x :
995                         (u32 *)&sb_data_e2;
996                 /* copy sb data in here */
997                 for (j = 0; j < data_size; j++)
998                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000                                 j * sizeof(u32));
1001
1002                 if (!CHIP_IS_E1x(bp)) {
1003                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004                                 sb_data_e2.common.p_func.pf_id,
1005                                 sb_data_e2.common.p_func.vf_id,
1006                                 sb_data_e2.common.p_func.vf_valid,
1007                                 sb_data_e2.common.p_func.vnic_id,
1008                                 sb_data_e2.common.same_igu_sb_1b,
1009                                 sb_data_e2.common.state);
1010                 } else {
1011                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012                                 sb_data_e1x.common.p_func.pf_id,
1013                                 sb_data_e1x.common.p_func.vf_id,
1014                                 sb_data_e1x.common.p_func.vf_valid,
1015                                 sb_data_e1x.common.p_func.vnic_id,
1016                                 sb_data_e1x.common.same_igu_sb_1b,
1017                                 sb_data_e1x.common.state);
1018                 }
1019
1020                 /* SB_SMs data */
1021                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023                                 j, hc_sm_p[j].__flags,
1024                                 hc_sm_p[j].igu_sb_id,
1025                                 hc_sm_p[j].igu_seg_id,
1026                                 hc_sm_p[j].time_to_expire,
1027                                 hc_sm_p[j].timer_value);
1028                 }
1029
1030                 /* Indices data */
1031                 for (j = 0; j < loop; j++) {
1032                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040         /* event queue */
1041         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042         for (i = 0; i < NUM_EQ_DESC; i++) {
1043                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046                           i, bp->eq_ring[i].message.opcode,
1047                           bp->eq_ring[i].message.error);
1048                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049         }
1050
1051         /* Rings */
1052         /* Rx */
1053         for_each_valid_rx_queue(bp, i) {
1054                 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058                 for (j = start; j != end; j = RX_BD(j + 1)) {
1059                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064                 }
1065
1066                 start = RX_SGE(fp->rx_sge_prod);
1067                 end = RX_SGE(fp->last_max_sge);
1068                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074                 }
1075
1076                 start = RCQ_BD(fp->rx_comp_cons - 10);
1077                 end = RCQ_BD(fp->rx_comp_cons + 503);
1078                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083                 }
1084         }
1085
1086         /* Tx */
1087         for_each_valid_tx_queue(bp, i) {
1088                 struct bnx2x_fastpath *fp = &bp->fp[i];
1089                 for_each_cos_in_tx_queue(fp, cos) {
1090                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094                         for (j = start; j != end; j = TX_BD(j + 1)) {
1095                                 struct sw_tx_bd *sw_bd =
1096                                         &txdata->tx_buf_ring[j];
1097
1098                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099                                           i, cos, j, sw_bd->skb,
1100                                           sw_bd->first_bd);
1101                         }
1102
1103                         start = TX_BD(txdata->tx_bd_cons - 10);
1104                         end = TX_BD(txdata->tx_bd_cons + 254);
1105                         for (j = start; j != end; j = TX_BD(j + 1)) {
1106                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109                                           i, cos, j, tx_bd[0], tx_bd[1],
1110                                           tx_bd[2], tx_bd[3]);
1111                         }
1112                 }
1113         }
1114 #endif
1115         bnx2x_fw_dump(bp);
1116         bnx2x_mc_assert(bp);
1117         BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL       50      /* usec */
1128 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131         int pN;
1132         u32 init_crd;
1133         u32 crd;
1134         u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138         int pN;
1139         u32 lines_occup;
1140         u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144                                      struct pbf_pN_buf_regs *regs,
1145                                      u32 poll_count)
1146 {
1147         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148         u32 cur_cnt = poll_count;
1149
1150         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151         crd = crd_start = REG_RD(bp, regs->crd);
1152         init_crd = REG_RD(bp, regs->init_crd);
1153
1154         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159                (init_crd - crd_start))) {
1160                 if (cur_cnt--) {
1161                         udelay(FLR_WAIT_INTERVAL);
1162                         crd = REG_RD(bp, regs->crd);
1163                         crd_freed = REG_RD(bp, regs->crd_freed);
1164                 } else {
1165                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166                            regs->pN);
1167                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168                            regs->pN, crd);
1169                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170                            regs->pN, crd_freed);
1171                         break;
1172                 }
1173         }
1174         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179                                      struct pbf_pN_cmd_regs *regs,
1180                                      u32 poll_count)
1181 {
1182         u32 occup, to_free, freed, freed_start;
1183         u32 cur_cnt = poll_count;
1184
1185         occup = to_free = REG_RD(bp, regs->lines_occup);
1186         freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192                 if (cur_cnt--) {
1193                         udelay(FLR_WAIT_INTERVAL);
1194                         occup = REG_RD(bp, regs->lines_occup);
1195                         freed = REG_RD(bp, regs->lines_freed);
1196                 } else {
1197                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198                            regs->pN);
1199                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200                            regs->pN, occup);
1201                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202                            regs->pN, freed);
1203                         break;
1204                 }
1205         }
1206         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211                                     u32 expected, u32 poll_count)
1212 {
1213         u32 cur_cnt = poll_count;
1214         u32 val;
1215
1216         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217                 udelay(FLR_WAIT_INTERVAL);
1218
1219         return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223                                     char *msg, u32 poll_cnt)
1224 {
1225         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226         if (val != 0) {
1227                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228                 return 1;
1229         }
1230         return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236         /* adjust polling timeout */
1237         if (CHIP_REV_IS_EMUL(bp))
1238                 return FLR_POLL_CNT * 2000;
1239
1240         if (CHIP_REV_IS_FPGA(bp))
1241                 return FLR_POLL_CNT * 120;
1242
1243         return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248         struct pbf_pN_cmd_regs cmd_regs[] = {
1249                 {0, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_Q0 :
1251                         PBF_REG_P0_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1255                 {1, (CHIP_IS_E3B0(bp)) ?
1256                         PBF_REG_TQ_OCCUPANCY_Q1 :
1257                         PBF_REG_P1_TQ_OCCUPANCY,
1258                     (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1261                 {4, (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1263                         PBF_REG_P4_TQ_OCCUPANCY,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1267         };
1268
1269         struct pbf_pN_buf_regs buf_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_INIT_CRD_Q0 :
1272                         PBF_REG_P0_INIT_CRD ,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_CREDIT_Q0 :
1275                         PBF_REG_P0_CREDIT,
1276                     (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279                 {1, (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_INIT_CRD_Q1 :
1281                         PBF_REG_P1_INIT_CRD,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_CREDIT_Q1 :
1284                         PBF_REG_P1_CREDIT,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288                 {4, (CHIP_IS_E3B0(bp)) ?
1289                         PBF_REG_INIT_CRD_LB_Q :
1290                         PBF_REG_P4_INIT_CRD,
1291                     (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_CREDIT_LB_Q :
1293                         PBF_REG_P4_CREDIT,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297         };
1298
1299         int i;
1300
1301         /* Verify the command queues are flushed P0, P1, P4 */
1302         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305         /* Verify the transmission buffers are flushed P0, P1, P4 */
1306         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321         u32 op_gen_command = 0;
1322         u32 comp_addr = BAR_CSTRORM_INTMEM +
1323                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324         int ret = 0;
1325
1326         if (REG_RD(bp, comp_addr)) {
1327                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328                 return 1;
1329         }
1330
1331         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340                 BNX2X_ERR("FW final cleanup did not succeed\n");
1341                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342                    (REG_RD(bp, comp_addr)));
1343                 bnx2x_panic();
1344                 return 1;
1345         }
1346         /* Zero completion for next FLR */
1347         REG_WR(bp, comp_addr, 0);
1348
1349         return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354         u16 status;
1355
1356         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357         return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1367                         "CFC PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         DORQ_REG_PF_USAGE_CNT,
1374                         "DQ PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381                         "QM PF usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384
1385         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388                         "Timers VNIC usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393                         "Timers NUM_SCANS usage counter timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         /* Wait DMAE PF usage counter to zero */
1398         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1400                         "DMAE command register timed out",
1401                         poll_cnt))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409         u32 val;
1410
1411         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434            val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443         /* Re-enable PF target read access */
1444         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446         /* Poll HW usage counters */
1447         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449                 return -EBUSY;
1450
1451         /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453         /* Send the FW cleanup command */
1454         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455                 return -EBUSY;
1456
1457         /* ATC cleanup */
1458
1459         /* Verify TX hw is flushed */
1460         bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462         /* Wait 100ms (not adjusted according to platform) */
1463         msleep(100);
1464
1465         /* Verify no pending pci transactions */
1466         if (bnx2x_is_pcie_pending(bp->pdev))
1467                 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469         /* Debug */
1470         bnx2x_hw_enable_status(bp);
1471
1472         /*
1473          * Master enable - Due to WB DMAE writes performed before this
1474          * register is re-initialized as part of the regular function init
1475          */
1476         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483         int port = BP_PORT(bp);
1484         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485         u32 val = REG_RD(bp, addr);
1486         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490         if (msix) {
1491                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1493                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495                 if (single_msix)
1496                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497         } else if (msi) {
1498                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502         } else {
1503                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508                 if (!CHIP_IS_E1(bp)) {
1509                         DP(NETIF_MSG_IFUP,
1510                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512                         REG_WR(bp, addr, val);
1513
1514                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515                 }
1516         }
1517
1518         if (CHIP_IS_E1(bp))
1519                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521         DP(NETIF_MSG_IFUP,
1522            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525         REG_WR(bp, addr, val);
1526         /*
1527          * Ensure that HC_CONFIG is written before leading/trailing edge config
1528          */
1529         mmiowb();
1530         barrier();
1531
1532         if (!CHIP_IS_E1(bp)) {
1533                 /* init leading/trailing edge */
1534                 if (IS_MF(bp)) {
1535                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536                         if (bp->port.pmf)
1537                                 /* enable nig and gpio3 attention */
1538                                 val |= 0x1100;
1539                 } else
1540                         val = 0xffff;
1541
1542                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544         }
1545
1546         /* Make sure that interrupts are indeed enabled from here on */
1547         mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552         u32 val;
1553         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559         if (msix) {
1560                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561                          IGU_PF_CONF_SINGLE_ISR_EN);
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN);
1564
1565                 if (single_msix)
1566                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567         } else if (msi) {
1568                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570                         IGU_PF_CONF_ATTN_BIT_EN |
1571                         IGU_PF_CONF_SINGLE_ISR_EN);
1572         } else {
1573                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574                 val |= (IGU_PF_CONF_INT_LINE_EN |
1575                         IGU_PF_CONF_ATTN_BIT_EN |
1576                         IGU_PF_CONF_SINGLE_ISR_EN);
1577         }
1578
1579         /* Clean previous status - need to configure igu prior to ack*/
1580         if ((!msix) || single_msix) {
1581                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582                 bnx2x_ack_int(bp);
1583         }
1584
1585         val |= IGU_PF_CONF_FUNC_EN;
1586
1587         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592         if (val & IGU_PF_CONF_INT_LINE_EN)
1593                 pci_intx(bp->pdev, true);
1594
1595         barrier();
1596
1597         /* init leading/trailing edge */
1598         if (IS_MF(bp)) {
1599                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                 if (bp->port.pmf)
1601                         /* enable nig and gpio3 attention */
1602                         val |= 0x1100;
1603         } else
1604                 val = 0xffff;
1605
1606         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609         /* Make sure that interrupts are indeed enabled from here on */
1610         mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615         if (bp->common.int_block == INT_BLOCK_HC)
1616                 bnx2x_hc_int_enable(bp);
1617         else
1618                 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624         int i, offset;
1625
1626         if (disable_hw)
1627                 /* prevent the HW from sending interrupts */
1628                 bnx2x_int_disable(bp);
1629
1630         /* make sure all ISRs are done */
1631         if (msix) {
1632                 synchronize_irq(bp->msix_table[0].vector);
1633                 offset = 1;
1634                 if (CNIC_SUPPORT(bp))
1635                         offset++;
1636                 for_each_eth_queue(bp, i)
1637                         synchronize_irq(bp->msix_table[offset++].vector);
1638         } else
1639                 synchronize_irq(bp->pdev->irq);
1640
1641         /* make sure sp_task is not running */
1642         cancel_delayed_work(&bp->sp_task);
1643         cancel_delayed_work(&bp->period_task);
1644         flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650  * General service functions
1651  */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656         u32 lock_status;
1657         u32 resource_bit = (1 << resource);
1658         int func = BP_FUNC(bp);
1659         u32 hw_lock_control_reg;
1660
1661         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662            "Trying to take a lock on resource %d\n", resource);
1663
1664         /* Validating that the resource is within range */
1665         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669                 return false;
1670         }
1671
1672         if (func <= 5)
1673                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674         else
1675                 hw_lock_control_reg =
1676                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678         /* Try to acquire the lock */
1679         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680         lock_status = REG_RD(bp, hw_lock_control_reg);
1681         if (lock_status & resource_bit)
1682                 return true;
1683
1684         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685            "Failed to get a lock on resource %d\n", resource);
1686         return false;
1687 }
1688
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp: driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699         if (BP_PATH(bp))
1700                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701         else
1702                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722         /* Set the interrupt occurred bit for the sp-task to recognize it
1723          * must ack the interrupt and transition according to the IGU
1724          * state machine.
1725          */
1726         atomic_set(&bp->interrupt_occurred, 1);
1727
1728         /* The sp_task must execute only after this bit
1729          * is set, otherwise we will get out of sync and miss all
1730          * further interrupts. Hence, the barrier.
1731          */
1732         smp_wmb();
1733
1734         /* schedule sp_task to workqueue */
1735         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740         struct bnx2x *bp = fp->bp;
1741         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746         DP(BNX2X_MSG_SP,
1747            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748            fp->index, cid, command, bp->state,
1749            rr_cqe->ramrod_cqe.ramrod_type);
1750
1751         /* If cid is within VF range, replace the slowpath object with the
1752          * one corresponding to this VF
1753          */
1754         if (cid >= BNX2X_FIRST_VF_CID  &&
1755             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758         switch (command) {
1759         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762                 break;
1763
1764         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766                 drv_cmd = BNX2X_Q_CMD_SETUP;
1767                 break;
1768
1769         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772                 break;
1773
1774         case (RAMROD_CMD_ID_ETH_HALT):
1775                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776                 drv_cmd = BNX2X_Q_CMD_HALT;
1777                 break;
1778
1779         case (RAMROD_CMD_ID_ETH_TERMINATE):
1780                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782                 break;
1783
1784         case (RAMROD_CMD_ID_ETH_EMPTY):
1785                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787                 break;
1788
1789         default:
1790                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791                           command, fp->index);
1792                 return;
1793         }
1794
1795         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797                 /* q_obj->complete_cmd() failure means that this was
1798                  * an unexpected completion.
1799                  *
1800                  * In this case we don't want to increase the bp->spq_left
1801                  * because apparently we haven't sent this command the first
1802                  * place.
1803                  */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805                 bnx2x_panic();
1806 #else
1807                 return;
1808 #endif
1809         /* SRIOV: reschedule any 'in_progress' operations */
1810         bnx2x_iov_sp_event(bp, cid, true);
1811
1812         smp_mb__before_atomic_inc();
1813         atomic_inc(&bp->cq_spq_left);
1814         /* push the change in bp->spq_left and towards the memory */
1815         smp_mb__after_atomic_inc();
1816
1817         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821                 /* if Q update ramrod is completed for last Q in AFEX vif set
1822                  * flow, then ACK MCP at the end
1823                  *
1824                  * mark pending ACK to MCP bit.
1825                  * prevent case that both bits are cleared.
1826                  * At the end of load/unload driver checks that
1827                  * sp_state is cleared, and this order prevents
1828                  * races
1829                  */
1830                 smp_mb__before_clear_bit();
1831                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832                 wmb();
1833                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834                 smp_mb__after_clear_bit();
1835
1836                 /* schedule the sp task as mcp ack is required */
1837                 bnx2x_schedule_sp_task(bp);
1838         }
1839
1840         return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845         struct bnx2x *bp = netdev_priv(dev_instance);
1846         u16 status = bnx2x_ack_int(bp);
1847         u16 mask;
1848         int i;
1849         u8 cos;
1850
1851         /* Return here if interrupt is shared and it's not for us */
1852         if (unlikely(status == 0)) {
1853                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854                 return IRQ_NONE;
1855         }
1856         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859         if (unlikely(bp->panic))
1860                 return IRQ_HANDLED;
1861 #endif
1862
1863         for_each_eth_queue(bp, i) {
1864                 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867                 if (status & mask) {
1868                         /* Handle Rx or Tx according to SB id */
1869                         for_each_cos_in_tx_queue(fp, cos)
1870                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1872                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873                         status &= ~mask;
1874                 }
1875         }
1876
1877         if (CNIC_SUPPORT(bp)) {
1878                 mask = 0x2;
1879                 if (status & (mask | 0x1)) {
1880                         struct cnic_ops *c_ops = NULL;
1881
1882                         rcu_read_lock();
1883                         c_ops = rcu_dereference(bp->cnic_ops);
1884                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1885                                       CNIC_DRV_STATE_HANDLES_IRQ))
1886                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1887                         rcu_read_unlock();
1888
1889                         status &= ~mask;
1890                 }
1891         }
1892
1893         if (unlikely(status & 0x1)) {
1894
1895                 /* schedule sp task to perform default status block work, ack
1896                  * attentions and enable interrupts.
1897                  */
1898                 bnx2x_schedule_sp_task(bp);
1899
1900                 status &= ~0x1;
1901                 if (!status)
1902                         return IRQ_HANDLED;
1903         }
1904
1905         if (unlikely(status))
1906                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907                    status);
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915  * General service functions
1916  */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920         u32 lock_status;
1921         u32 resource_bit = (1 << resource);
1922         int func = BP_FUNC(bp);
1923         u32 hw_lock_control_reg;
1924         int cnt;
1925
1926         /* Validating that the resource is within range */
1927         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930                 return -EINVAL;
1931         }
1932
1933         if (func <= 5) {
1934                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935         } else {
1936                 hw_lock_control_reg =
1937                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938         }
1939
1940         /* Validating that the resource is not already taken */
1941         lock_status = REG_RD(bp, hw_lock_control_reg);
1942         if (lock_status & resource_bit) {
1943                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944                    lock_status, resource_bit);
1945                 return -EEXIST;
1946         }
1947
1948         /* Try for 5 second every 5ms */
1949         for (cnt = 0; cnt < 1000; cnt++) {
1950                 /* Try to acquire the lock */
1951                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952                 lock_status = REG_RD(bp, hw_lock_control_reg);
1953                 if (lock_status & resource_bit)
1954                         return 0;
1955
1956                 usleep_range(5000, 10000);
1957         }
1958         BNX2X_ERR("Timeout\n");
1959         return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973
1974         /* Validating that the resource is within range */
1975         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978                 return -EINVAL;
1979         }
1980
1981         if (func <= 5) {
1982                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983         } else {
1984                 hw_lock_control_reg =
1985                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986         }
1987
1988         /* Validating that the resource is currently taken */
1989         lock_status = REG_RD(bp, hw_lock_control_reg);
1990         if (!(lock_status & resource_bit)) {
1991                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992                           lock_status, resource_bit);
1993                 return -EFAULT;
1994         }
1995
1996         REG_WR(bp, hw_lock_control_reg, resource_bit);
1997         return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002         /* The GPIO should be swapped if swap register is set and active */
2003         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005         int gpio_shift = gpio_num +
2006                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007         u32 gpio_mask = (1 << gpio_shift);
2008         u32 gpio_reg;
2009         int value;
2010
2011         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013                 return -EINVAL;
2014         }
2015
2016         /* read GPIO value */
2017         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019         /* get the requested pin value */
2020         if ((gpio_reg & gpio_mask) == gpio_mask)
2021                 value = 1;
2022         else
2023                 value = 0;
2024
2025         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026
2027         return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032         /* The GPIO should be swapped if swap register is set and active */
2033         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035         int gpio_shift = gpio_num +
2036                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037         u32 gpio_mask = (1 << gpio_shift);
2038         u32 gpio_reg;
2039
2040         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042                 return -EINVAL;
2043         }
2044
2045         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046         /* read GPIO and mask except the float bits */
2047         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049         switch (mode) {
2050         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051                 DP(NETIF_MSG_LINK,
2052                    "Set GPIO %d (shift %d) -> output low\n",
2053                    gpio_num, gpio_shift);
2054                 /* clear FLOAT and set CLR */
2055                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057                 break;
2058
2059         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060                 DP(NETIF_MSG_LINK,
2061                    "Set GPIO %d (shift %d) -> output high\n",
2062                    gpio_num, gpio_shift);
2063                 /* clear FLOAT and set SET */
2064                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066                 break;
2067
2068         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069                 DP(NETIF_MSG_LINK,
2070                    "Set GPIO %d (shift %d) -> input\n",
2071                    gpio_num, gpio_shift);
2072                 /* set FLOAT */
2073                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074                 break;
2075
2076         default:
2077                 break;
2078         }
2079
2080         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083         return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088         u32 gpio_reg = 0;
2089         int rc = 0;
2090
2091         /* Any port swapping should be handled by caller. */
2092
2093         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094         /* read GPIO and mask except the float bits */
2095         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100         switch (mode) {
2101         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103                 /* set CLR */
2104                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105                 break;
2106
2107         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109                 /* set SET */
2110                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111                 break;
2112
2113         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115                 /* set FLOAT */
2116                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                 break;
2118
2119         default:
2120                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121                 rc = -EINVAL;
2122                 break;
2123         }
2124
2125         if (rc == 0)
2126                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130         return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135         /* The GPIO should be swapped if swap register is set and active */
2136         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138         int gpio_shift = gpio_num +
2139                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140         u32 gpio_mask = (1 << gpio_shift);
2141         u32 gpio_reg;
2142
2143         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145                 return -EINVAL;
2146         }
2147
2148         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149         /* read GPIO int */
2150         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152         switch (mode) {
2153         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154                 DP(NETIF_MSG_LINK,
2155                    "Clear GPIO INT %d (shift %d) -> output low\n",
2156                    gpio_num, gpio_shift);
2157                 /* clear SET and set CLR */
2158                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163                 DP(NETIF_MSG_LINK,
2164                    "Set GPIO INT %d (shift %d) -> output high\n",
2165                    gpio_num, gpio_shift);
2166                 /* clear CLR and set SET */
2167                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169                 break;
2170
2171         default:
2172                 break;
2173         }
2174
2175         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178         return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183         u32 spio_reg;
2184
2185         /* Only 2 SPIOs are configurable */
2186         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188                 return -EINVAL;
2189         }
2190
2191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192         /* read SPIO and mask except the float bits */
2193         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195         switch (mode) {
2196         case MISC_SPIO_OUTPUT_LOW:
2197                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198                 /* clear FLOAT and set CLR */
2199                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201                 break;
2202
2203         case MISC_SPIO_OUTPUT_HIGH:
2204                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205                 /* clear FLOAT and set SET */
2206                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208                 break;
2209
2210         case MISC_SPIO_INPUT_HI_Z:
2211                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212                 /* set FLOAT */
2213                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214                 break;
2215
2216         default:
2217                 break;
2218         }
2219
2220         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223         return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229         switch (bp->link_vars.ieee_fc &
2230                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233                                                    ADVERTISED_Pause);
2234                 break;
2235
2236         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238                                                   ADVERTISED_Pause);
2239                 break;
2240
2241         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243                 break;
2244
2245         default:
2246                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247                                                    ADVERTISED_Pause);
2248                 break;
2249         }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254         /* Initialize link parameters structure variables
2255          * It is recommended to turn off RX FC for jumbo frames
2256          *  for better performance
2257          */
2258         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260         else
2261                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266         u32 pause_enabled = 0;
2267
2268         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270                         pause_enabled = 1;
2271
2272                 REG_WR(bp, BAR_USTRORM_INTMEM +
2273                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274                        pause_enabled);
2275         }
2276
2277         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278            pause_enabled ? "enabled" : "disabled");
2279 }
2280
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285
2286         if (!BP_NOMCP(bp)) {
2287                 bnx2x_set_requested_fc(bp);
2288                 bnx2x_acquire_phy_lock(bp);
2289
2290                 if (load_mode == LOAD_DIAG) {
2291                         struct link_params *lp = &bp->link_params;
2292                         lp->loopback_mode = LOOPBACK_XGXS;
2293                         /* do PHY loopback at 10G speed, if possible */
2294                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295                                 if (lp->speed_cap_mask[cfx_idx] &
2296                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297                                         lp->req_line_speed[cfx_idx] =
2298                                         SPEED_10000;
2299                                 else
2300                                         lp->req_line_speed[cfx_idx] =
2301                                         SPEED_1000;
2302                         }
2303                 }
2304
2305                 if (load_mode == LOAD_LOOPBACK_EXT) {
2306                         struct link_params *lp = &bp->link_params;
2307                         lp->loopback_mode = LOOPBACK_EXT;
2308                 }
2309
2310                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311
2312                 bnx2x_release_phy_lock(bp);
2313
2314                 bnx2x_init_dropless_fc(bp);
2315
2316                 bnx2x_calc_fc_adv(bp);
2317
2318                 if (bp->link_vars.link_up) {
2319                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320                         bnx2x_link_report(bp);
2321                 }
2322                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324                 return rc;
2325         }
2326         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327         return -EINVAL;
2328 }
2329
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332         if (!BP_NOMCP(bp)) {
2333                 bnx2x_acquire_phy_lock(bp);
2334                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335                 bnx2x_release_phy_lock(bp);
2336
2337                 bnx2x_init_dropless_fc(bp);
2338
2339                 bnx2x_calc_fc_adv(bp);
2340         } else
2341                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346         if (!BP_NOMCP(bp)) {
2347                 bnx2x_acquire_phy_lock(bp);
2348                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349                 bnx2x_release_phy_lock(bp);
2350         } else
2351                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356         bnx2x_acquire_phy_lock(bp);
2357         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358         bnx2x_release_phy_lock(bp);
2359 }
2360
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363         u8 rc = 0;
2364
2365         if (!BP_NOMCP(bp)) {
2366                 bnx2x_acquire_phy_lock(bp);
2367                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368                                      is_serdes);
2369                 bnx2x_release_phy_lock(bp);
2370         } else
2371                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2372
2373         return rc;
2374 }
2375
2376 /* Calculates the sum of vn_min_rates.
2377    It's needed for further normalizing of the min_rates.
2378    Returns:
2379      sum of vn_min_rates.
2380        or
2381      0 - if all the min_rates are 0.
2382      In the later case fairness algorithm should be deactivated.
2383      If not all min_rates are zero then those that are zeroes will be set to 1.
2384  */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386                                       struct cmng_init_input *input)
2387 {
2388         int all_zero = 1;
2389         int vn;
2390
2391         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392                 u32 vn_cfg = bp->mf_config[vn];
2393                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395
2396                 /* Skip hidden vns */
2397                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398                         vn_min_rate = 0;
2399                 /* If min rate is zero - set it to 1 */
2400                 else if (!vn_min_rate)
2401                         vn_min_rate = DEF_MIN_RATE;
2402                 else
2403                         all_zero = 0;
2404
2405                 input->vnic_min_rate[vn] = vn_min_rate;
2406         }
2407
2408         /* if ETS or all min rates are zeros - disable fairness */
2409         if (BNX2X_IS_ETS_ENABLED(bp)) {
2410                 input->flags.cmng_enables &=
2411                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413         } else if (all_zero) {
2414                 input->flags.cmng_enables &=
2415                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416                 DP(NETIF_MSG_IFUP,
2417                    "All MIN values are zeroes fairness will be disabled\n");
2418         } else
2419                 input->flags.cmng_enables |=
2420                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424                                     struct cmng_init_input *input)
2425 {
2426         u16 vn_max_rate;
2427         u32 vn_cfg = bp->mf_config[vn];
2428
2429         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430                 vn_max_rate = 0;
2431         else {
2432                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433
2434                 if (IS_MF_SI(bp)) {
2435                         /* maxCfg in percents of linkspeed */
2436                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437                 } else /* SD modes */
2438                         /* maxCfg is absolute in 100Mb units */
2439                         vn_max_rate = maxCfg * 100;
2440         }
2441
2442         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443
2444         input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449         if (CHIP_REV_IS_SLOW(bp))
2450                 return CMNG_FNS_NONE;
2451         if (IS_MF(bp))
2452                 return CMNG_FNS_MINMAX;
2453
2454         return CMNG_FNS_NONE;
2455 }
2456
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460
2461         if (BP_NOMCP(bp))
2462                 return; /* what should be the default value in this case */
2463
2464         /* For 2 port configuration the absolute function number formula
2465          * is:
2466          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2467          *
2468          *      and there are 4 functions per port
2469          *
2470          * For 4 port configuration it is
2471          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472          *
2473          *      and there are 2 functions per port
2474          */
2475         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477
2478                 if (func >= E1H_FUNC_MAX)
2479                         break;
2480
2481                 bp->mf_config[vn] =
2482                         MF_CFG_RD(bp, func_mf_config[func].config);
2483         }
2484         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486                 bp->flags |= MF_FUNC_DIS;
2487         } else {
2488                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489                 bp->flags &= ~MF_FUNC_DIS;
2490         }
2491 }
2492
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495         struct cmng_init_input input;
2496         memset(&input, 0, sizeof(struct cmng_init_input));
2497
2498         input.port_rate = bp->link_vars.line_speed;
2499
2500         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501                 int vn;
2502
2503                 /* read mf conf from shmem */
2504                 if (read_cfg)
2505                         bnx2x_read_mf_cfg(bp);
2506
2507                 /* vn_weight_sum and enable fairness if not 0 */
2508                 bnx2x_calc_vn_min(bp, &input);
2509
2510                 /* calculate and set min-max rate for each vn */
2511                 if (bp->port.pmf)
2512                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513                                 bnx2x_calc_vn_max(bp, vn, &input);
2514
2515                 /* always enable rate shaping and fairness */
2516                 input.flags.cmng_enables |=
2517                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518
2519                 bnx2x_init_cmng(&input, &bp->cmng);
2520                 return;
2521         }
2522
2523         /* rate shaping and fairness are disabled */
2524         DP(NETIF_MSG_IFUP,
2525            "rate shaping and fairness are disabled\n");
2526 }
2527
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529                               struct cmng_init *cmng,
2530                               u8 port)
2531 {
2532         int vn;
2533         size_t size = sizeof(struct cmng_struct_per_port);
2534
2535         u32 addr = BAR_XSTRORM_INTMEM +
2536                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537
2538         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539
2540         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541                 int func = func_by_vn(bp, vn);
2542
2543                 addr = BAR_XSTRORM_INTMEM +
2544                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545                 size = sizeof(struct rate_shaping_vars_per_vn);
2546                 __storm_memset_struct(bp, addr, size,
2547                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548
2549                 addr = BAR_XSTRORM_INTMEM +
2550                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551                 size = sizeof(struct fairness_vars_per_vn);
2552                 __storm_memset_struct(bp, addr, size,
2553                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554         }
2555 }
2556
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561
2562         if (cmng_fns != CMNG_FNS_NONE) {
2563                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565         } else {
2566                 /* rate shaping and fairness are disabled */
2567                 DP(NETIF_MSG_IFUP,
2568                    "single function mode without fairness\n");
2569         }
2570 }
2571
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575         /* Make sure that we are synced with the current statistics */
2576         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577
2578         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579
2580         bnx2x_init_dropless_fc(bp);
2581
2582         if (bp->link_vars.link_up) {
2583
2584                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585                         struct host_port_stats *pstats;
2586
2587                         pstats = bnx2x_sp(bp, port_stats);
2588                         /* reset old mac stats */
2589                         memset(&(pstats->mac_stx[0]), 0,
2590                                sizeof(struct mac_stx));
2591                 }
2592                 if (bp->state == BNX2X_STATE_OPEN)
2593                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594         }
2595
2596         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597                 bnx2x_set_local_cmng(bp);
2598
2599         __bnx2x_link_report(bp);
2600
2601         if (IS_MF(bp))
2602                 bnx2x_link_sync_notify(bp);
2603 }
2604
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607         if (bp->state != BNX2X_STATE_OPEN)
2608                 return;
2609
2610         /* read updated dcb configuration */
2611         if (IS_PF(bp)) {
2612                 bnx2x_dcbx_pmf_update(bp);
2613                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614                 if (bp->link_vars.link_up)
2615                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616                 else
2617                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618                         /* indicate link status */
2619                 bnx2x_link_report(bp);
2620
2621         } else { /* VF */
2622                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623                                           SUPPORTED_10baseT_Full |
2624                                           SUPPORTED_100baseT_Half |
2625                                           SUPPORTED_100baseT_Full |
2626                                           SUPPORTED_1000baseT_Full |
2627                                           SUPPORTED_2500baseX_Full |
2628                                           SUPPORTED_10000baseT_Full |
2629                                           SUPPORTED_TP |
2630                                           SUPPORTED_FIBRE |
2631                                           SUPPORTED_Autoneg |
2632                                           SUPPORTED_Pause |
2633                                           SUPPORTED_Asym_Pause);
2634                 bp->port.advertising[0] = bp->port.supported[0];
2635
2636                 bp->link_params.bp = bp;
2637                 bp->link_params.port = BP_PORT(bp);
2638                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640                 bp->link_params.req_line_speed[0] = SPEED_10000;
2641                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644                 bp->link_vars.line_speed = SPEED_10000;
2645                 bp->link_vars.link_status =
2646                         (LINK_STATUS_LINK_UP |
2647                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648                 bp->link_vars.link_up = 1;
2649                 bp->link_vars.duplex = DUPLEX_FULL;
2650                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651                 __bnx2x_link_report(bp);
2652                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653         }
2654 }
2655
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657                                   u16 vlan_val, u8 allowed_prio)
2658 {
2659         struct bnx2x_func_state_params func_params = {NULL};
2660         struct bnx2x_func_afex_update_params *f_update_params =
2661                 &func_params.params.afex_update;
2662
2663         func_params.f_obj = &bp->func_obj;
2664         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665
2666         /* no need to wait for RAMROD completion, so don't
2667          * set RAMROD_COMP_WAIT flag
2668          */
2669
2670         f_update_params->vif_id = vifid;
2671         f_update_params->afex_default_vlan = vlan_val;
2672         f_update_params->allowed_priorities = allowed_prio;
2673
2674         /* if ramrod can not be sent, response to MCP immediately */
2675         if (bnx2x_func_state_change(bp, &func_params) < 0)
2676                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677
2678         return 0;
2679 }
2680
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682                                           u16 vif_index, u8 func_bit_map)
2683 {
2684         struct bnx2x_func_state_params func_params = {NULL};
2685         struct bnx2x_func_afex_viflists_params *update_params =
2686                 &func_params.params.afex_viflists;
2687         int rc;
2688         u32 drv_msg_code;
2689
2690         /* validate only LIST_SET and LIST_GET are received from switch */
2691         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693                           cmd_type);
2694
2695         func_params.f_obj = &bp->func_obj;
2696         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697
2698         /* set parameters according to cmd_type */
2699         update_params->afex_vif_list_command = cmd_type;
2700         update_params->vif_list_index = vif_index;
2701         update_params->func_bit_map =
2702                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703         update_params->func_to_clear = 0;
2704         drv_msg_code =
2705                 (cmd_type == VIF_LIST_RULE_GET) ?
2706                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708
2709         /* if ramrod can not be sent, respond to MCP immediately for
2710          * SET and GET requests (other are not triggered from MCP)
2711          */
2712         rc = bnx2x_func_state_change(bp, &func_params);
2713         if (rc < 0)
2714                 bnx2x_fw_command(bp, drv_msg_code, 0);
2715
2716         return 0;
2717 }
2718
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721         struct afex_stats afex_stats;
2722         u32 func = BP_ABS_FUNC(bp);
2723         u32 mf_config;
2724         u16 vlan_val;
2725         u32 vlan_prio;
2726         u16 vif_id;
2727         u8 allowed_prio;
2728         u8 vlan_mode;
2729         u32 addr_to_write, vifid, addrs, stats_type, i;
2730
2731         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733                 DP(BNX2X_MSG_MCP,
2734                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736         }
2737
2738         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741                 DP(BNX2X_MSG_MCP,
2742                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743                    vifid, addrs);
2744                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745                                                addrs);
2746         }
2747
2748         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749                 addr_to_write = SHMEM2_RD(bp,
2750                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751                 stats_type = SHMEM2_RD(bp,
2752                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753
2754                 DP(BNX2X_MSG_MCP,
2755                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756                    addr_to_write);
2757
2758                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759
2760                 /* write response to scratchpad, for MCP */
2761                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2763                                *(((u32 *)(&afex_stats))+i));
2764
2765                 /* send ack message to MCP */
2766                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767         }
2768
2769         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771                 bp->mf_config[BP_VN(bp)] = mf_config;
2772                 DP(BNX2X_MSG_MCP,
2773                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774                    mf_config);
2775
2776                 /* if VIF_SET is "enabled" */
2777                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778                         /* set rate limit directly to internal RAM */
2779                         struct cmng_init_input cmng_input;
2780                         struct rate_shaping_vars_per_vn m_rs_vn;
2781                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782                         u32 addr = BAR_XSTRORM_INTMEM +
2783                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784
2785                         bp->mf_config[BP_VN(bp)] = mf_config;
2786
2787                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788                         m_rs_vn.vn_counter.rate =
2789                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2790                         m_rs_vn.vn_counter.quota =
2791                                 (m_rs_vn.vn_counter.rate *
2792                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2793
2794                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795
2796                         /* read relevant values from mf_cfg struct in shmem */
2797                         vif_id =
2798                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801                         vlan_val =
2802                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805                         vlan_prio = (mf_config &
2806                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809                         vlan_mode =
2810                                 (MF_CFG_RD(bp,
2811                                            func_mf_config[func].afex_config) &
2812                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814                         allowed_prio =
2815                                 (MF_CFG_RD(bp,
2816                                            func_mf_config[func].afex_config) &
2817                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819
2820                         /* send ramrod to FW, return in case of failure */
2821                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822                                                    allowed_prio))
2823                                 return;
2824
2825                         bp->afex_def_vlan_tag = vlan_val;
2826                         bp->afex_vlan_mode = vlan_mode;
2827                 } else {
2828                         /* notify link down because BP->flags is disabled */
2829                         bnx2x_link_report(bp);
2830
2831                         /* send INVALID VIF ramrod to FW */
2832                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833
2834                         /* Reset the default afex VLAN */
2835                         bp->afex_def_vlan_tag = -1;
2836                 }
2837         }
2838 }
2839
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842         int port = BP_PORT(bp);
2843         u32 val;
2844
2845         bp->port.pmf = 1;
2846         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847
2848         /*
2849          * We need the mb() to ensure the ordering between the writing to
2850          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851          */
2852         smp_mb();
2853
2854         /* queue a periodic task */
2855         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856
2857         bnx2x_dcbx_pmf_update(bp);
2858
2859         /* enable nig attention */
2860         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861         if (bp->common.int_block == INT_BLOCK_HC) {
2862                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864         } else if (!CHIP_IS_E1x(bp)) {
2865                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867         }
2868
2869         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871
2872 /* end of Link */
2873
2874 /* slow path */
2875
2876 /*
2877  * General service functions
2878  */
2879
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883         int mb_idx = BP_FW_MB_IDX(bp);
2884         u32 seq;
2885         u32 rc = 0;
2886         u32 cnt = 1;
2887         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888
2889         mutex_lock(&bp->fw_mb_mutex);
2890         seq = ++bp->fw_seq;
2891         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893
2894         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895                         (command | seq), param);
2896
2897         do {
2898                 /* let the FW do it's magic ... */
2899                 msleep(delay);
2900
2901                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902
2903                 /* Give the FW up to 5 second (500*10ms) */
2904         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905
2906         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907            cnt*delay, rc, seq);
2908
2909         /* is this a reply to our command? */
2910         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911                 rc &= FW_MSG_CODE_MASK;
2912         else {
2913                 /* FW BUG! */
2914                 BNX2X_ERR("FW failed to respond!\n");
2915                 bnx2x_fw_dump(bp);
2916                 rc = 0;
2917         }
2918         mutex_unlock(&bp->fw_mb_mutex);
2919
2920         return rc;
2921 }
2922
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924                                  struct tstorm_eth_function_common_config *tcfg,
2925                                  u16 abs_fid)
2926 {
2927         size_t size = sizeof(struct tstorm_eth_function_common_config);
2928
2929         u32 addr = BAR_TSTRORM_INTMEM +
2930                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931
2932         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937         if (CHIP_IS_E1x(bp)) {
2938                 struct tstorm_eth_function_common_config tcfg = {0};
2939
2940                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941         }
2942
2943         /* Enable the function in the FW */
2944         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945         storm_memset_func_en(bp, p->func_id, 1);
2946
2947         /* spq */
2948         if (p->func_flgs & FUNC_FLG_SPQ) {
2949                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952         }
2953 }
2954
2955 /**
2956  * bnx2x_get_common_flags - Return common flags
2957  *
2958  * @bp          device handle
2959  * @fp          queue handle
2960  * @zero_stats  TRUE if statistics zeroing is needed
2961  *
2962  * Return the flags that are common for the Tx-only and not normal connections.
2963  */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965                                             struct bnx2x_fastpath *fp,
2966                                             bool zero_stats)
2967 {
2968         unsigned long flags = 0;
2969
2970         /* PF driver will always initialize the Queue to an ACTIVE state */
2971         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972
2973         /* tx only connections collect statistics (on the same index as the
2974          * parent connection). The statistics are zeroed when the parent
2975          * connection is initialized.
2976          */
2977
2978         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2979         if (zero_stats)
2980                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981
2982         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984
2985 #ifdef BNX2X_STOP_ON_ERROR
2986         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988
2989         return flags;
2990 }
2991
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993                                        struct bnx2x_fastpath *fp,
2994                                        bool leading)
2995 {
2996         unsigned long flags = 0;
2997
2998         /* calculate other queue flags */
2999         if (IS_MF_SD(bp))
3000                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3001
3002         if (IS_FCOE_FP(fp)) {
3003                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004                 /* For FCoE - force usage of default priority (for afex) */
3005                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006         }
3007
3008         if (!fp->disable_tpa) {
3009                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3010                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011                 if (fp->mode == TPA_MODE_GRO)
3012                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013         }
3014
3015         if (leading) {
3016                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018         }
3019
3020         /* Always set HW VLAN stripping */
3021         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022
3023         /* configure silent vlan removal */
3024         if (IS_MF_AFEX(bp))
3025                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026
3027         return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032         u8 cos)
3033 {
3034         gen_init->stat_id = bnx2x_stats_id(fp);
3035         gen_init->spcl_id = fp->cl_id;
3036
3037         /* Always use mini-jumbo MTU for FCoE L2 ring */
3038         if (IS_FCOE_FP(fp))
3039                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040         else
3041                 gen_init->mtu = bp->dev->mtu;
3042
3043         gen_init->cos = cos;
3044 }
3045
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048         struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050         u8 max_sge = 0;
3051         u16 sge_sz = 0;
3052         u16 tpa_agg_size = 0;
3053
3054         if (!fp->disable_tpa) {
3055                 pause->sge_th_lo = SGE_TH_LO(bp);
3056                 pause->sge_th_hi = SGE_TH_HI(bp);
3057
3058                 /* validate SGE ring has enough to cross high threshold */
3059                 WARN_ON(bp->dropless_fc &&
3060                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3061                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062
3063                 tpa_agg_size = TPA_AGG_SIZE;
3064                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065                         SGE_PAGE_SHIFT;
3066                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069         }
3070
3071         /* pause - not for e1 */
3072         if (!CHIP_IS_E1(bp)) {
3073                 pause->bd_th_lo = BD_TH_LO(bp);
3074                 pause->bd_th_hi = BD_TH_HI(bp);
3075
3076                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3077                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3078                 /*
3079                  * validate that rings have enough entries to cross
3080                  * high thresholds
3081                  */
3082                 WARN_ON(bp->dropless_fc &&
3083                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3084                                 bp->rx_ring_size);
3085                 WARN_ON(bp->dropless_fc &&
3086                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3087                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088
3089                 pause->pri_map = 1;
3090         }
3091
3092         /* rxq setup */
3093         rxq_init->dscr_map = fp->rx_desc_mapping;
3094         rxq_init->sge_map = fp->rx_sge_mapping;
3095         rxq_init->rcq_map = fp->rx_comp_mapping;
3096         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097
3098         /* This should be a maximum number of data bytes that may be
3099          * placed on the BD (not including paddings).
3100          */
3101         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103
3104         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105         rxq_init->tpa_agg_sz = tpa_agg_size;
3106         rxq_init->sge_buf_sz = sge_sz;
3107         rxq_init->max_sges_pkt = max_sge;
3108         rxq_init->rss_engine_id = BP_FUNC(bp);
3109         rxq_init->mcast_engine_id = BP_FUNC(bp);
3110
3111         /* Maximum number or simultaneous TPA aggregation for this Queue.
3112          *
3113          * For PF Clients it should be the maximum available number.
3114          * VF driver(s) may want to define it to a smaller value.
3115          */
3116         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117
3118         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119         rxq_init->fw_sb_id = fp->fw_sb_id;
3120
3121         if (IS_FCOE_FP(fp))
3122                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123         else
3124                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125         /* configure silent vlan removal
3126          * if multi function mode is afex, then mask default vlan
3127          */
3128         if (IS_MF_AFEX(bp)) {
3129                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131         }
3132 }
3133
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136         u8 cos)
3137 {
3138         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141         txq_init->fw_sb_id = fp->fw_sb_id;
3142
3143         /*
3144          * set the tss leading client id for TX classification ==
3145          * leading RSS client id
3146          */
3147         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148
3149         if (IS_FCOE_FP(fp)) {
3150                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152         }
3153 }
3154
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157         struct bnx2x_func_init_params func_init = {0};
3158         struct event_ring_data eq_data = { {0} };
3159         u16 flags;
3160
3161         if (!CHIP_IS_E1x(bp)) {
3162                 /* reset IGU PF statistics: MSIX + ATTN */
3163                 /* PF */
3164                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166                            (CHIP_MODE_IS_4_PORT(bp) ?
3167                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168                 /* ATTN */
3169                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172                            (CHIP_MODE_IS_4_PORT(bp) ?
3173                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174         }
3175
3176         /* function setup flags */
3177         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178
3179         /* This flag is relevant for E1x only.
3180          * E2 doesn't have a TPA configuration in a function level.
3181          */
3182         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183
3184         func_init.func_flgs = flags;
3185         func_init.pf_id = BP_FUNC(bp);
3186         func_init.func_id = BP_FUNC(bp);
3187         func_init.spq_map = bp->spq_mapping;
3188         func_init.spq_prod = bp->spq_prod_idx;
3189
3190         bnx2x_func_init(bp, &func_init);
3191
3192         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193
3194         /*
3195          * Congestion management values depend on the link rate
3196          * There is no active link so initial link rate is set to 10 Gbps.
3197          * When the link comes up The congestion management values are
3198          * re-calculated according to the actual link rate.
3199          */
3200         bp->link_vars.line_speed = SPEED_10000;
3201         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202
3203         /* Only the PMF sets the HW */
3204         if (bp->port.pmf)
3205                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206
3207         /* init Event Queue - PCI bus guarantees correct endianity*/
3208         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210         eq_data.producer = bp->eq_prod;
3211         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212         eq_data.sb_id = DEF_SB_ID;
3213         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218         int port = BP_PORT(bp);
3219
3220         bnx2x_tx_disable(bp);
3221
3222         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227         int port = BP_PORT(bp);
3228
3229         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230
3231         /* Tx queue should be only re-enabled */
3232         netif_tx_wake_all_queues(bp->dev);
3233
3234         /*
3235          * Should not call netif_carrier_on since it will be called if the link
3236          * is up when checking for link state
3237          */
3238 }
3239
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244         struct eth_stats_info *ether_stat =
3245                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3246         struct bnx2x_vlan_mac_obj *mac_obj =
3247                 &bp->sp_objs->mac_obj;
3248         int i;
3249
3250         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251                 ETH_STAT_INFO_VERSION_LEN);
3252
3253         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254          * mac_local field in ether_stat struct. The base address is offset by 2
3255          * bytes to account for the field being 8 bytes but a mac address is
3256          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258          * allocated by the ether_stat struct, so the macs will land in their
3259          * proper positions.
3260          */
3261         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262                 memset(ether_stat->mac_local + i, 0,
3263                        sizeof(ether_stat->mac_local[0]));
3264         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267                                 ETH_ALEN);
3268         ether_stat->mtu_size = bp->dev->mtu;
3269         if (bp->dev->features & NETIF_F_RXCSUM)
3270                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271         if (bp->dev->features & NETIF_F_TSO)
3272                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273         ether_stat->feature_flags |= bp->common.boot_mode;
3274
3275         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276
3277         ether_stat->txq_size = bp->tx_ring_size;
3278         ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284         struct fcoe_stats_info *fcoe_stat =
3285                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286
3287         if (!CNIC_LOADED(bp))
3288                 return;
3289
3290         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291
3292         fcoe_stat->qos_priority =
3293                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294
3295         /* insert FCoE stats from ramrod response */
3296         if (!NO_FCOE(bp)) {
3297                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299                         tstorm_queue_statistics;
3300
3301                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303                         xstorm_queue_statistics;
3304
3305                 struct fcoe_statistics_params *fw_fcoe_stat =
3306                         &bp->fw_stats_data->fcoe;
3307
3308                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309                           fcoe_stat->rx_bytes_lo,
3310                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311
3312                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314                           fcoe_stat->rx_bytes_lo,
3315                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316
3317                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319                           fcoe_stat->rx_bytes_lo,
3320                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321
3322                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324                           fcoe_stat->rx_bytes_lo,
3325                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326
3327                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328                           fcoe_stat->rx_frames_lo,
3329                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330
3331                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332                           fcoe_stat->rx_frames_lo,
3333                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334
3335                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336                           fcoe_stat->rx_frames_lo,
3337                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338
3339                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340                           fcoe_stat->rx_frames_lo,
3341                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342
3343                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344                           fcoe_stat->tx_bytes_lo,
3345                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346
3347                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349                           fcoe_stat->tx_bytes_lo,
3350                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351
3352                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354                           fcoe_stat->tx_bytes_lo,
3355                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356
3357                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359                           fcoe_stat->tx_bytes_lo,
3360                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361
3362                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363                           fcoe_stat->tx_frames_lo,
3364                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365
3366                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367                           fcoe_stat->tx_frames_lo,
3368                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3369
3370                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371                           fcoe_stat->tx_frames_lo,
3372                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3373
3374                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375                           fcoe_stat->tx_frames_lo,
3376                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3377         }
3378
3379         /* ask L5 driver to add data to the struct */
3380         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386         struct iscsi_stats_info *iscsi_stat =
3387                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388
3389         if (!CNIC_LOADED(bp))
3390                 return;
3391
3392         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393                ETH_ALEN);
3394
3395         iscsi_stat->qos_priority =
3396                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397
3398         /* ask L5 driver to add data to the struct */
3399         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401
3402 /* called due to MCP event (on pmf):
3403  *      reread new bandwidth configuration
3404  *      configure FW
3405  *      notify others function about the change
3406  */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409         if (bp->link_vars.link_up) {
3410                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411                 bnx2x_link_sync_notify(bp);
3412         }
3413         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418         bnx2x_config_mf_bw(bp);
3419         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430         enum drv_info_opcode op_code;
3431         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432
3433         /* if drv_info version supported by MFW doesn't match - send NACK */
3434         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436                 return;
3437         }
3438
3439         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441
3442         memset(&bp->slowpath->drv_info_to_mcp, 0,
3443                sizeof(union drv_info_to_mcp));
3444
3445         switch (op_code) {
3446         case ETH_STATS_OPCODE:
3447                 bnx2x_drv_info_ether_stat(bp);
3448                 break;
3449         case FCOE_STATS_OPCODE:
3450                 bnx2x_drv_info_fcoe_stat(bp);
3451                 break;
3452         case ISCSI_STATS_OPCODE:
3453                 bnx2x_drv_info_iscsi_stat(bp);
3454                 break;
3455         default:
3456                 /* if op code isn't supported - send NACK */
3457                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458                 return;
3459         }
3460
3461         /* if we got drv_info attn from MFW then these fields are defined in
3462          * shmem2 for sure
3463          */
3464         SHMEM2_WR(bp, drv_info_host_addr_lo,
3465                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466         SHMEM2_WR(bp, drv_info_host_addr_hi,
3467                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468
3469         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475
3476         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477
3478                 /*
3479                  * This is the only place besides the function initialization
3480                  * where the bp->flags can change so it is done without any
3481                  * locks
3482                  */
3483                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485                         bp->flags |= MF_FUNC_DIS;
3486
3487                         bnx2x_e1h_disable(bp);
3488                 } else {
3489                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490                         bp->flags &= ~MF_FUNC_DIS;
3491
3492                         bnx2x_e1h_enable(bp);
3493                 }
3494                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495         }
3496         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497                 bnx2x_config_mf_bw(bp);
3498                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499         }
3500
3501         /* Report results to MCP */
3502         if (dcc_event)
3503                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504         else
3505                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511         struct eth_spe *next_spe = bp->spq_prod_bd;
3512
3513         if (bp->spq_prod_bd == bp->spq_last_bd) {
3514                 bp->spq_prod_bd = bp->spq;
3515                 bp->spq_prod_idx = 0;
3516                 DP(BNX2X_MSG_SP, "end of spq\n");
3517         } else {
3518                 bp->spq_prod_bd++;
3519                 bp->spq_prod_idx++;
3520         }
3521         return next_spe;
3522 }
3523
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527         int func = BP_FUNC(bp);
3528
3529         /*
3530          * Make sure that BD data is updated before writing the producer:
3531          * BD data is written to the memory, the producer is read from the
3532          * memory, thus we need a full memory barrier to ensure the ordering.
3533          */
3534         mb();
3535
3536         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537                  bp->spq_prod_idx);
3538         mmiowb();
3539 }
3540
3541 /**
3542  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543  *
3544  * @cmd:        command to check
3545  * @cmd_type:   command type
3546  */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556                 return true;
3557         else
3558                 return false;
3559 }
3560
3561 /**
3562  * bnx2x_sp_post - place a single command on an SP ring
3563  *
3564  * @bp:         driver handle
3565  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3566  * @cid:        SW CID the command is related to
3567  * @data_hi:    command private data address (high 32 bits)
3568  * @data_lo:    command private data address (low 32 bits)
3569  * @cmd_type:   command type (e.g. NONE, ETH)
3570  *
3571  * SP data is handled as if it's always an address pair, thus data fields are
3572  * not swapped to little endian in upper functions. Instead this function swaps
3573  * data as if it's two u32 fields.
3574  */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576                   u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578         struct eth_spe *spe;
3579         u16 type;
3580         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581
3582 #ifdef BNX2X_STOP_ON_ERROR
3583         if (unlikely(bp->panic)) {
3584                 BNX2X_ERR("Can't post SP when there is panic\n");
3585                 return -EIO;
3586         }
3587 #endif
3588
3589         spin_lock_bh(&bp->spq_lock);
3590
3591         if (common) {
3592                 if (!atomic_read(&bp->eq_spq_left)) {
3593                         BNX2X_ERR("BUG! EQ ring full!\n");
3594                         spin_unlock_bh(&bp->spq_lock);
3595                         bnx2x_panic();
3596                         return -EBUSY;
3597                 }
3598         } else if (!atomic_read(&bp->cq_spq_left)) {
3599                         BNX2X_ERR("BUG! SPQ ring full!\n");
3600                         spin_unlock_bh(&bp->spq_lock);
3601                         bnx2x_panic();
3602                         return -EBUSY;
3603         }
3604
3605         spe = bnx2x_sp_get_next(bp);
3606
3607         /* CID needs port number to be encoded int it */
3608         spe->hdr.conn_and_cmd_data =
3609                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610                                     HW_CID(bp, cid));
3611
3612         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613
3614         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615                  SPE_HDR_FUNCTION_ID);
3616
3617         spe->hdr.type = cpu_to_le16(type);
3618
3619         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621
3622         /*
3623          * It's ok if the actual decrement is issued towards the memory
3624          * somewhere between the spin_lock and spin_unlock. Thus no
3625          * more explicit memory barrier is needed.
3626          */
3627         if (common)
3628                 atomic_dec(&bp->eq_spq_left);
3629         else
3630                 atomic_dec(&bp->cq_spq_left);
3631
3632         DP(BNX2X_MSG_SP,
3633            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635            (u32)(U64_LO(bp->spq_mapping) +
3636            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637            HW_CID(bp, cid), data_hi, data_lo, type,
3638            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639
3640         bnx2x_sp_prod_update(bp);
3641         spin_unlock_bh(&bp->spq_lock);
3642         return 0;
3643 }
3644
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648         u32 j, val;
3649         int rc = 0;
3650
3651         might_sleep();
3652         for (j = 0; j < 1000; j++) {
3653                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655                 if (val & MCPR_ACCESS_LOCK_LOCK)
3656                         break;
3657
3658                 usleep_range(5000, 10000);
3659         }
3660         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662                 rc = -EBUSY;
3663         }
3664
3665         return rc;
3666 }
3667
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673
3674 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3675 #define BNX2X_DEF_SB_IDX        0x0002
3676
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679         struct host_sp_status_block *def_sb = bp->def_status_blk;
3680         u16 rc = 0;
3681
3682         barrier(); /* status block is written to by the chip */
3683         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685                 rc |= BNX2X_DEF_SB_ATT_IDX;
3686         }
3687
3688         if (bp->def_idx != def_sb->sp_sb.running_index) {
3689                 bp->def_idx = def_sb->sp_sb.running_index;
3690                 rc |= BNX2X_DEF_SB_IDX;
3691         }
3692
3693         /* Do not reorder: indices reading should complete before handling */
3694         barrier();
3695         return rc;
3696 }
3697
3698 /*
3699  * slow path service functions
3700  */
3701
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704         int port = BP_PORT(bp);
3705         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708                                        NIG_REG_MASK_INTERRUPT_PORT0;
3709         u32 aeu_mask;
3710         u32 nig_mask = 0;
3711         u32 reg_addr;
3712
3713         if (bp->attn_state & asserted)
3714                 BNX2X_ERR("IGU ERROR\n");
3715
3716         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717         aeu_mask = REG_RD(bp, aeu_addr);
3718
3719         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3720            aeu_mask, asserted);
3721         aeu_mask &= ~(asserted & 0x3ff);
3722         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723
3724         REG_WR(bp, aeu_addr, aeu_mask);
3725         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726
3727         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728         bp->attn_state |= asserted;
3729         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730
3731         if (asserted & ATTN_HARD_WIRED_MASK) {
3732                 if (asserted & ATTN_NIG_FOR_FUNC) {
3733
3734                         bnx2x_acquire_phy_lock(bp);
3735
3736                         /* save nig interrupt mask */
3737                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3738
3739                         /* If nig_mask is not set, no need to call the update
3740                          * function.
3741                          */
3742                         if (nig_mask) {
3743                                 REG_WR(bp, nig_int_mask_addr, 0);
3744
3745                                 bnx2x_link_attn(bp);
3746                         }
3747
3748                         /* handle unicore attn? */
3749                 }
3750                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3751                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752
3753                 if (asserted & GPIO_2_FUNC)
3754                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755
3756                 if (asserted & GPIO_3_FUNC)
3757                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758
3759                 if (asserted & GPIO_4_FUNC)
3760                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761
3762                 if (port == 0) {
3763                         if (asserted & ATTN_GENERAL_ATTN_1) {
3764                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766                         }
3767                         if (asserted & ATTN_GENERAL_ATTN_2) {
3768                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770                         }
3771                         if (asserted & ATTN_GENERAL_ATTN_3) {
3772                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774                         }
3775                 } else {
3776                         if (asserted & ATTN_GENERAL_ATTN_4) {
3777                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779                         }
3780                         if (asserted & ATTN_GENERAL_ATTN_5) {
3781                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783                         }
3784                         if (asserted & ATTN_GENERAL_ATTN_6) {
3785                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787                         }
3788                 }
3789
3790         } /* if hardwired */
3791
3792         if (bp->common.int_block == INT_BLOCK_HC)
3793                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794                             COMMAND_REG_ATTN_BITS_SET);
3795         else
3796                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797
3798         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800         REG_WR(bp, reg_addr, asserted);
3801
3802         /* now set back the mask */
3803         if (asserted & ATTN_NIG_FOR_FUNC) {
3804                 /* Verify that IGU ack through BAR was written before restoring
3805                  * NIG mask. This loop should exit after 2-3 iterations max.
3806                  */
3807                 if (bp->common.int_block != INT_BLOCK_HC) {
3808                         u32 cnt = 0, igu_acked;
3809                         do {
3810                                 igu_acked = REG_RD(bp,
3811                                                    IGU_REG_ATTENTION_ACK_BITS);
3812                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3814                         if (!igu_acked)
3815                                 DP(NETIF_MSG_HW,
3816                                    "Failed to verify IGU ack on time\n");
3817                         barrier();
3818                 }
3819                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3820                 bnx2x_release_phy_lock(bp);
3821         }
3822 }
3823
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826         int port = BP_PORT(bp);
3827         u32 ext_phy_config;
3828         /* mark the failure */
3829         ext_phy_config =
3830                 SHMEM_RD(bp,
3831                          dev_info.port_hw_config[port].external_phy_config);
3832
3833         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836                  ext_phy_config);
3837
3838         /* log the failure */
3839         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840                             "Please contact OEM Support for assistance\n");
3841
3842         /* Schedule device reset (unload)
3843          * This is due to some boards consuming sufficient power when driver is
3844          * up to overheat if fan fails.
3845          */
3846         smp_mb__before_clear_bit();
3847         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848         smp_mb__after_clear_bit();
3849         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854         int port = BP_PORT(bp);
3855         int reg_offset;
3856         u32 val;
3857
3858         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860
3861         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862
3863                 val = REG_RD(bp, reg_offset);
3864                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865                 REG_WR(bp, reg_offset, val);
3866
3867                 BNX2X_ERR("SPIO5 hw attention\n");
3868
3869                 /* Fan failure attention */
3870                 bnx2x_hw_reset_phy(&bp->link_params);
3871                 bnx2x_fan_failure(bp);
3872         }
3873
3874         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875                 bnx2x_acquire_phy_lock(bp);
3876                 bnx2x_handle_module_detect_int(&bp->link_params);
3877                 bnx2x_release_phy_lock(bp);
3878         }
3879
3880         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881
3882                 val = REG_RD(bp, reg_offset);
3883                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884                 REG_WR(bp, reg_offset, val);
3885
3886                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888                 bnx2x_panic();
3889         }
3890 }
3891
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894         u32 val;
3895
3896         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897
3898                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3900                 /* DORQ discard attention */
3901                 if (val & 0x2)
3902                         BNX2X_ERR("FATAL error from DORQ\n");
3903         }
3904
3905         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906
3907                 int port = BP_PORT(bp);
3908                 int reg_offset;
3909
3910                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912
3913                 val = REG_RD(bp, reg_offset);
3914                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915                 REG_WR(bp, reg_offset, val);
3916
3917                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919                 bnx2x_panic();
3920         }
3921 }
3922
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925         u32 val;
3926
3927         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928
3929                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931                 /* CFC error attention */
3932                 if (val & 0x2)
3933                         BNX2X_ERR("FATAL error from CFC\n");
3934         }
3935
3936         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939                 /* RQ_USDMDP_FIFO_OVERFLOW */
3940                 if (val & 0x18000)
3941                         BNX2X_ERR("FATAL error from PXP\n");
3942
3943                 if (!CHIP_IS_E1x(bp)) {
3944                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946                 }
3947         }
3948
3949         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950
3951                 int port = BP_PORT(bp);
3952                 int reg_offset;
3953
3954                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956
3957                 val = REG_RD(bp, reg_offset);
3958                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959                 REG_WR(bp, reg_offset, val);
3960
3961                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963                 bnx2x_panic();
3964         }
3965 }
3966
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969         u32 val;
3970
3971         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972
3973                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3974                         int func = BP_FUNC(bp);
3975
3976                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977                         bnx2x_read_mf_cfg(bp);
3978                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3980                         val = SHMEM_RD(bp,
3981                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3983                                 bnx2x_dcc_event(bp,
3984                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3985
3986                         if (val & DRV_STATUS_SET_MF_BW)
3987                                 bnx2x_set_mf_bw(bp);
3988
3989                         if (val & DRV_STATUS_DRV_INFO_REQ)
3990                                 bnx2x_handle_drv_info_req(bp);
3991
3992                         if (val & DRV_STATUS_VF_DISABLED)
3993                                 bnx2x_vf_handle_flr_event(bp);
3994
3995                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996                                 bnx2x_pmf_update(bp);
3997
3998                         if (bp->port.pmf &&
3999                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000                                 bp->dcbx_enabled > 0)
4001                                 /* start dcbx state machine */
4002                                 bnx2x_dcbx_set_params(bp,
4003                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4004                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005                                 bnx2x_handle_afex_cmd(bp,
4006                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4007                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008                                 bnx2x_handle_eee_event(bp);
4009                         if (bp->link_vars.periodic_flags &
4010                             PERIODIC_FLAGS_LINK_EVENT) {
4011                                 /*  sync with link */
4012                                 bnx2x_acquire_phy_lock(bp);
4013                                 bp->link_vars.periodic_flags &=
4014                                         ~PERIODIC_FLAGS_LINK_EVENT;
4015                                 bnx2x_release_phy_lock(bp);
4016                                 if (IS_MF(bp))
4017                                         bnx2x_link_sync_notify(bp);
4018                                 bnx2x_link_report(bp);
4019                         }
4020                         /* Always call it here: bnx2x_link_report() will
4021                          * prevent the link indication duplication.
4022                          */
4023                         bnx2x__link_status_update(bp);
4024                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4025
4026                         BNX2X_ERR("MC assert!\n");
4027                         bnx2x_mc_assert(bp);
4028                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032                         bnx2x_panic();
4033
4034                 } else if (attn & BNX2X_MCP_ASSERT) {
4035
4036                         BNX2X_ERR("MCP assert!\n");
4037                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038                         bnx2x_fw_dump(bp);
4039
4040                 } else
4041                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042         }
4043
4044         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046                 if (attn & BNX2X_GRC_TIMEOUT) {
4047                         val = CHIP_IS_E1(bp) ? 0 :
4048                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050                 }
4051                 if (attn & BNX2X_GRC_RSV) {
4052                         val = CHIP_IS_E1(bp) ? 0 :
4053                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055                 }
4056                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057         }
4058 }
4059
4060 /*
4061  * Bits map:
4062  * 0-7   - Engine0 load counter.
4063  * 8-15  - Engine1 load counter.
4064  * 16    - Engine0 RESET_IN_PROGRESS bit.
4065  * 17    - Engine1 RESET_IN_PROGRESS bit.
4066  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067  *         on the engine
4068  * 19    - Engine1 ONE_IS_LOADED.
4069  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4070  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071  *         just the one belonging to its engine).
4072  *
4073  */
4074 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4075
4076 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4083
4084 /*
4085  * Set the GLOBAL_RESET bit.
4086  *
4087  * Should be run under rtnl lock
4088  */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091         u32 val;
4092         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097
4098 /*
4099  * Clear the GLOBAL_RESET bit.
4100  *
4101  * Should be run under rtnl lock
4102  */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105         u32 val;
4106         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111
4112 /*
4113  * Checks the GLOBAL_RESET bit.
4114  *
4115  * should be run under rtnl lock
4116  */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120
4121         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124
4125 /*
4126  * Clear RESET_IN_PROGRESS bit for the current engine.
4127  *
4128  * Should be run under rtnl lock
4129  */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132         u32 val;
4133         u32 bit = BP_PATH(bp) ?
4134                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137
4138         /* Clear the bit */
4139         val &= ~bit;
4140         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141
4142         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144
4145 /*
4146  * Set RESET_IN_PROGRESS for the current engine.
4147  *
4148  * should be run under rtnl lock
4149  */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152         u32 val;
4153         u32 bit = BP_PATH(bp) ?
4154                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157
4158         /* Set the bit */
4159         val |= bit;
4160         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163
4164 /*
4165  * Checks the RESET_IN_PROGRESS bit for the given engine.
4166  * should be run under rtnl lock
4167  */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171         u32 bit = engine ?
4172                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173
4174         /* return false if bit is set */
4175         return (val & bit) ? false : true;
4176 }
4177
4178 /*
4179  * set pf load for the current pf.
4180  *
4181  * should be run under rtnl lock
4182  */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185         u32 val1, val;
4186         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187                              BNX2X_PATH0_LOAD_CNT_MASK;
4188         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4190
4191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193
4194         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195
4196         /* get the current counter value */
4197         val1 = (val & mask) >> shift;
4198
4199         /* set bit of that PF */
4200         val1 |= (1 << bp->pf_num);
4201
4202         /* clear the old value */
4203         val &= ~mask;
4204
4205         /* set the new one */
4206         val |= ((val1 << shift) & mask);
4207
4208         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211
4212 /**
4213  * bnx2x_clear_pf_load - clear pf load mark
4214  *
4215  * @bp:         driver handle
4216  *
4217  * Should be run under rtnl lock.
4218  * Decrements the load counter for the current engine. Returns
4219  * whether other functions are still loaded
4220  */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223         u32 val1, val;
4224         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225                              BNX2X_PATH0_LOAD_CNT_MASK;
4226         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4228
4229         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232
4233         /* get the current counter value */
4234         val1 = (val & mask) >> shift;
4235
4236         /* clear bit of that PF */
4237         val1 &= ~(1 << bp->pf_num);
4238
4239         /* clear the old value */
4240         val &= ~mask;
4241
4242         /* set the new one */
4243         val |= ((val1 << shift) & mask);
4244
4245         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247         return val1 != 0;
4248 }
4249
4250 /*
4251  * Read the load status for the current engine.
4252  *
4253  * should be run under rtnl lock
4254  */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258                              BNX2X_PATH0_LOAD_CNT_MASK);
4259         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4261         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262
4263         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264
4265         val = (val & mask) >> shift;
4266
4267         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268            engine, val);
4269
4270         return val != 0;
4271 }
4272
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280         pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284                                             int par_num, bool print)
4285 {
4286         int i = 0;
4287         u32 cur_bit = 0;
4288         for (i = 0; sig; i++) {
4289                 cur_bit = ((u32)0x1 << i);
4290                 if (sig & cur_bit) {
4291                         switch (cur_bit) {
4292                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293                                 if (print) {
4294                                         _print_next_block(par_num++, "BRB");
4295                                         _print_parity(bp,
4296                                                       BRB1_REG_BRB1_PRTY_STS);
4297                                 }
4298                                 break;
4299                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300                                 if (print) {
4301                                         _print_next_block(par_num++, "PARSER");
4302                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303                                 }
4304                                 break;
4305                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306                                 if (print) {
4307                                         _print_next_block(par_num++, "TSDM");
4308                                         _print_parity(bp,
4309                                                       TSDM_REG_TSDM_PRTY_STS);
4310                                 }
4311                                 break;
4312                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313                                 if (print) {
4314                                         _print_next_block(par_num++,
4315                                                           "SEARCHER");
4316                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317                                 }
4318                                 break;
4319                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320                                 if (print) {
4321                                         _print_next_block(par_num++, "TCM");
4322                                         _print_parity(bp,
4323                                                       TCM_REG_TCM_PRTY_STS);
4324                                 }
4325                                 break;
4326                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327                                 if (print) {
4328                                         _print_next_block(par_num++, "TSEMI");
4329                                         _print_parity(bp,
4330                                                       TSEM_REG_TSEM_PRTY_STS_0);
4331                                         _print_parity(bp,
4332                                                       TSEM_REG_TSEM_PRTY_STS_1);
4333                                 }
4334                                 break;
4335                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336                                 if (print) {
4337                                         _print_next_block(par_num++, "XPB");
4338                                         _print_parity(bp, GRCBASE_XPB +
4339                                                           PB_REG_PB_PRTY_STS);
4340                                 }
4341                                 break;
4342                         }
4343
4344                         /* Clear the bit */
4345                         sig &= ~cur_bit;
4346                 }
4347         }
4348
4349         return par_num;
4350 }
4351
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353                                             int par_num, bool *global,
4354                                             bool print)
4355 {
4356         int i = 0;
4357         u32 cur_bit = 0;
4358         for (i = 0; sig; i++) {
4359                 cur_bit = ((u32)0x1 << i);
4360                 if (sig & cur_bit) {
4361                         switch (cur_bit) {
4362                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363                                 if (print) {
4364                                         _print_next_block(par_num++, "PBF");
4365                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366                                 }
4367                                 break;
4368                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369                                 if (print) {
4370                                         _print_next_block(par_num++, "QM");
4371                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4372                                 }
4373                                 break;
4374                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375                                 if (print) {
4376                                         _print_next_block(par_num++, "TM");
4377                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4378                                 }
4379                                 break;
4380                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381                                 if (print) {
4382                                         _print_next_block(par_num++, "XSDM");
4383                                         _print_parity(bp,
4384                                                       XSDM_REG_XSDM_PRTY_STS);
4385                                 }
4386                                 break;
4387                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388                                 if (print) {
4389                                         _print_next_block(par_num++, "XCM");
4390                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391                                 }
4392                                 break;
4393                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394                                 if (print) {
4395                                         _print_next_block(par_num++, "XSEMI");
4396                                         _print_parity(bp,
4397                                                       XSEM_REG_XSEM_PRTY_STS_0);
4398                                         _print_parity(bp,
4399                                                       XSEM_REG_XSEM_PRTY_STS_1);
4400                                 }
4401                                 break;
4402                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403                                 if (print) {
4404                                         _print_next_block(par_num++,
4405                                                           "DOORBELLQ");
4406                                         _print_parity(bp,
4407                                                       DORQ_REG_DORQ_PRTY_STS);
4408                                 }
4409                                 break;
4410                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411                                 if (print) {
4412                                         _print_next_block(par_num++, "NIG");
4413                                         if (CHIP_IS_E1x(bp)) {
4414                                                 _print_parity(bp,
4415                                                         NIG_REG_NIG_PRTY_STS);
4416                                         } else {
4417                                                 _print_parity(bp,
4418                                                         NIG_REG_NIG_PRTY_STS_0);
4419                                                 _print_parity(bp,
4420                                                         NIG_REG_NIG_PRTY_STS_1);
4421                                         }
4422                                 }
4423                                 break;
4424                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425                                 if (print)
4426                                         _print_next_block(par_num++,
4427                                                           "VAUX PCI CORE");
4428                                 *global = true;
4429                                 break;
4430                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431                                 if (print) {
4432                                         _print_next_block(par_num++, "DEBUG");
4433                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434                                 }
4435                                 break;
4436                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437                                 if (print) {
4438                                         _print_next_block(par_num++, "USDM");
4439                                         _print_parity(bp,
4440                                                       USDM_REG_USDM_PRTY_STS);
4441                                 }
4442                                 break;
4443                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444                                 if (print) {
4445                                         _print_next_block(par_num++, "UCM");
4446                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447                                 }
4448                                 break;
4449                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450                                 if (print) {
4451                                         _print_next_block(par_num++, "USEMI");
4452                                         _print_parity(bp,
4453                                                       USEM_REG_USEM_PRTY_STS_0);
4454                                         _print_parity(bp,
4455                                                       USEM_REG_USEM_PRTY_STS_1);
4456                                 }
4457                                 break;
4458                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459                                 if (print) {
4460                                         _print_next_block(par_num++, "UPB");
4461                                         _print_parity(bp, GRCBASE_UPB +
4462                                                           PB_REG_PB_PRTY_STS);
4463                                 }
4464                                 break;
4465                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466                                 if (print) {
4467                                         _print_next_block(par_num++, "CSDM");
4468                                         _print_parity(bp,
4469                                                       CSDM_REG_CSDM_PRTY_STS);
4470                                 }
4471                                 break;
4472                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473                                 if (print) {
4474                                         _print_next_block(par_num++, "CCM");
4475                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476                                 }
4477                                 break;
4478                         }
4479
4480                         /* Clear the bit */
4481                         sig &= ~cur_bit;
4482                 }
4483         }
4484
4485         return par_num;
4486 }
4487
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489                                             int par_num, bool print)
4490 {
4491         int i = 0;
4492         u32 cur_bit = 0;
4493         for (i = 0; sig; i++) {
4494                 cur_bit = ((u32)0x1 << i);
4495                 if (sig & cur_bit) {
4496                         switch (cur_bit) {
4497                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498                                 if (print) {
4499                                         _print_next_block(par_num++, "CSEMI");
4500                                         _print_parity(bp,
4501                                                       CSEM_REG_CSEM_PRTY_STS_0);
4502                                         _print_parity(bp,
4503                                                       CSEM_REG_CSEM_PRTY_STS_1);
4504                                 }
4505                                 break;
4506                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507                                 if (print) {
4508                                         _print_next_block(par_num++, "PXP");
4509                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510                                         _print_parity(bp,
4511                                                       PXP2_REG_PXP2_PRTY_STS_0);
4512                                         _print_parity(bp,
4513                                                       PXP2_REG_PXP2_PRTY_STS_1);
4514                                 }
4515                                 break;
4516                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517                                 if (print)
4518                                         _print_next_block(par_num++,
4519                                         "PXPPCICLOCKCLIENT");
4520                                 break;
4521                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522                                 if (print) {
4523                                         _print_next_block(par_num++, "CFC");
4524                                         _print_parity(bp,
4525                                                       CFC_REG_CFC_PRTY_STS);
4526                                 }
4527                                 break;
4528                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529                                 if (print) {
4530                                         _print_next_block(par_num++, "CDU");
4531                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532                                 }
4533                                 break;
4534                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535                                 if (print) {
4536                                         _print_next_block(par_num++, "DMAE");
4537                                         _print_parity(bp,
4538                                                       DMAE_REG_DMAE_PRTY_STS);
4539                                 }
4540                                 break;
4541                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542                                 if (print) {
4543                                         _print_next_block(par_num++, "IGU");
4544                                         if (CHIP_IS_E1x(bp))
4545                                                 _print_parity(bp,
4546                                                         HC_REG_HC_PRTY_STS);
4547                                         else
4548                                                 _print_parity(bp,
4549                                                         IGU_REG_IGU_PRTY_STS);
4550                                 }
4551                                 break;
4552                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553                                 if (print) {
4554                                         _print_next_block(par_num++, "MISC");
4555                                         _print_parity(bp,
4556                                                       MISC_REG_MISC_PRTY_STS);
4557                                 }
4558                                 break;
4559                         }
4560
4561                         /* Clear the bit */
4562                         sig &= ~cur_bit;
4563                 }
4564         }
4565
4566         return par_num;
4567 }
4568
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570                                            bool *global, bool print)
4571 {
4572         int i = 0;
4573         u32 cur_bit = 0;
4574         for (i = 0; sig; i++) {
4575                 cur_bit = ((u32)0x1 << i);
4576                 if (sig & cur_bit) {
4577                         switch (cur_bit) {
4578                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579                                 if (print)
4580                                         _print_next_block(par_num++, "MCP ROM");
4581                                 *global = true;
4582                                 break;
4583                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584                                 if (print)
4585                                         _print_next_block(par_num++,
4586                                                           "MCP UMP RX");
4587                                 *global = true;
4588                                 break;
4589                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590                                 if (print)
4591                                         _print_next_block(par_num++,
4592                                                           "MCP UMP TX");
4593                                 *global = true;
4594                                 break;
4595                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596                                 if (print)
4597                                         _print_next_block(par_num++,
4598                                                           "MCP SCPAD");
4599                                 *global = true;
4600                                 break;
4601                         }
4602
4603                         /* Clear the bit */
4604                         sig &= ~cur_bit;
4605                 }
4606         }
4607
4608         return par_num;
4609 }
4610
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612                                             int par_num, bool print)
4613 {
4614         int i = 0;
4615         u32 cur_bit = 0;
4616         for (i = 0; sig; i++) {
4617                 cur_bit = ((u32)0x1 << i);
4618                 if (sig & cur_bit) {
4619                         switch (cur_bit) {
4620                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621                                 if (print) {
4622                                         _print_next_block(par_num++, "PGLUE_B");
4623                                         _print_parity(bp,
4624                                                 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625                                 }
4626                                 break;
4627                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628                                 if (print) {
4629                                         _print_next_block(par_num++, "ATC");
4630                                         _print_parity(bp,
4631                                                       ATC_REG_ATC_PRTY_STS);
4632                                 }
4633                                 break;
4634                         }
4635
4636                         /* Clear the bit */
4637                         sig &= ~cur_bit;
4638                 }
4639         }
4640
4641         return par_num;
4642 }
4643
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645                               u32 *sig)
4646 {
4647         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652                 int par_num = 0;
4653                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655                           sig[0] & HW_PRTY_ASSERT_SET_0,
4656                           sig[1] & HW_PRTY_ASSERT_SET_1,
4657                           sig[2] & HW_PRTY_ASSERT_SET_2,
4658                           sig[3] & HW_PRTY_ASSERT_SET_3,
4659                           sig[4] & HW_PRTY_ASSERT_SET_4);
4660                 if (print)
4661                         netdev_err(bp->dev,
4662                                    "Parity errors detected in blocks: ");
4663                 par_num = bnx2x_check_blocks_with_parity0(bp,
4664                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665                 par_num = bnx2x_check_blocks_with_parity1(bp,
4666                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667                 par_num = bnx2x_check_blocks_with_parity2(bp,
4668                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669                 par_num = bnx2x_check_blocks_with_parity3(
4670                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671                 par_num = bnx2x_check_blocks_with_parity4(bp,
4672                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673
4674                 if (print)
4675                         pr_cont("\n");
4676
4677                 return true;
4678         } else
4679                 return false;
4680 }
4681
4682 /**
4683  * bnx2x_chk_parity_attn - checks for parity attentions.
4684  *
4685  * @bp:         driver handle
4686  * @global:     true if there was a global attention
4687  * @print:      show parity attention in syslog
4688  */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691         struct attn_route attn = { {0} };
4692         int port = BP_PORT(bp);
4693
4694         attn.sig[0] = REG_RD(bp,
4695                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696                              port*4);
4697         attn.sig[1] = REG_RD(bp,
4698                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699                              port*4);
4700         attn.sig[2] = REG_RD(bp,
4701                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702                              port*4);
4703         attn.sig[3] = REG_RD(bp,
4704                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705                              port*4);
4706
4707         if (!CHIP_IS_E1x(bp))
4708                 attn.sig[4] = REG_RD(bp,
4709                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710                                      port*4);
4711
4712         return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717         u32 val;
4718         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719
4720                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730                 if (val &
4731                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733                 if (val &
4734                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742         }
4743         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758         }
4759
4760         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765         }
4766 }
4767
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770         struct attn_route attn, *group_mask;
4771         int port = BP_PORT(bp);
4772         int index;
4773         u32 reg_addr;
4774         u32 val;
4775         u32 aeu_mask;
4776         bool global = false;
4777
4778         /* need to take HW lock because MCP or other port might also
4779            try to handle this event */
4780         bnx2x_acquire_alr(bp);
4781
4782         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4785                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786                 /* Disable HW interrupts */
4787                 bnx2x_int_disable(bp);
4788                 /* In case of parity errors don't handle attentions so that
4789                  * other function would "see" parity errors.
4790                  */
4791 #else
4792                 bnx2x_panic();
4793 #endif
4794                 bnx2x_release_alr(bp);
4795                 return;
4796         }
4797
4798         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802         if (!CHIP_IS_E1x(bp))
4803                 attn.sig[4] =
4804                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805         else
4806                 attn.sig[4] = 0;
4807
4808         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810
4811         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812                 if (deasserted & (1 << index)) {
4813                         group_mask = &bp->attn_group[index];
4814
4815                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816                            index,
4817                            group_mask->sig[0], group_mask->sig[1],
4818                            group_mask->sig[2], group_mask->sig[3],
4819                            group_mask->sig[4]);
4820
4821                         bnx2x_attn_int_deasserted4(bp,
4822                                         attn.sig[4] & group_mask->sig[4]);
4823                         bnx2x_attn_int_deasserted3(bp,
4824                                         attn.sig[3] & group_mask->sig[3]);
4825                         bnx2x_attn_int_deasserted1(bp,
4826                                         attn.sig[1] & group_mask->sig[1]);
4827                         bnx2x_attn_int_deasserted2(bp,
4828                                         attn.sig[2] & group_mask->sig[2]);
4829                         bnx2x_attn_int_deasserted0(bp,
4830                                         attn.sig[0] & group_mask->sig[0]);
4831                 }
4832         }
4833
4834         bnx2x_release_alr(bp);
4835
4836         if (bp->common.int_block == INT_BLOCK_HC)
4837                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838                             COMMAND_REG_ATTN_BITS_CLR);
4839         else
4840                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841
4842         val = ~deasserted;
4843         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845         REG_WR(bp, reg_addr, val);
4846
4847         if (~bp->attn_state & deasserted)
4848                 BNX2X_ERR("IGU ERROR\n");
4849
4850         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852
4853         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854         aeu_mask = REG_RD(bp, reg_addr);
4855
4856         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4857            aeu_mask, deasserted);
4858         aeu_mask |= (deasserted & 0x3ff);
4859         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860
4861         REG_WR(bp, reg_addr, aeu_mask);
4862         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863
4864         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865         bp->attn_state &= ~deasserted;
4866         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871         /* read local copy of bits */
4872         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873                                                                 attn_bits);
4874         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875                                                                 attn_bits_ack);
4876         u32 attn_state = bp->attn_state;
4877
4878         /* look for changed bits */
4879         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4880         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4881
4882         DP(NETIF_MSG_HW,
4883            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4884            attn_bits, attn_ack, asserted, deasserted);
4885
4886         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887                 BNX2X_ERR("BAD attention state\n");
4888
4889         /* handle bits that were raised */
4890         if (asserted)
4891                 bnx2x_attn_int_asserted(bp, asserted);
4892
4893         if (deasserted)
4894                 bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898                       u16 index, u8 op, u8 update)
4899 {
4900         u32 igu_addr = bp->igu_base_addr;
4901         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903                              igu_addr);
4904 }
4905
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908         /* No memory barriers */
4909         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910         mmiowb(); /* keep prod updates ordered */
4911 }
4912
4913 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914                                       union event_ring_elem *elem)
4915 {
4916         u8 err = elem->message.error;
4917
4918         if (!bp->cnic_eth_dev.starting_cid  ||
4919             (cid < bp->cnic_eth_dev.starting_cid &&
4920             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921                 return 1;
4922
4923         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924
4925         if (unlikely(err)) {
4926
4927                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928                           cid);
4929                 bnx2x_panic_dump(bp, false);
4930         }
4931         bnx2x_cnic_cfc_comp(bp, cid, err);
4932         return 0;
4933 }
4934
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937         struct bnx2x_mcast_ramrod_params rparam;
4938         int rc;
4939
4940         memset(&rparam, 0, sizeof(rparam));
4941
4942         rparam.mcast_obj = &bp->mcast_obj;
4943
4944         netif_addr_lock_bh(bp->dev);
4945
4946         /* Clear pending state for the last command */
4947         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948
4949         /* If there are pending mcast commands - send them */
4950         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952                 if (rc < 0)
4953                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954                                   rc);
4955         }
4956
4957         netif_addr_unlock_bh(bp->dev);
4958 }
4959
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961                                             union event_ring_elem *elem)
4962 {
4963         unsigned long ramrod_flags = 0;
4964         int rc = 0;
4965         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967
4968         /* Always push next commands out, don't wait here */
4969         __set_bit(RAMROD_CONT, &ramrod_flags);
4970
4971         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972                             >> BNX2X_SWCID_SHIFT) {
4973         case BNX2X_FILTER_MAC_PENDING:
4974                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977                 else
4978                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979
4980                 break;
4981         case BNX2X_FILTER_MCAST_PENDING:
4982                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983                 /* This is only relevant for 57710 where multicast MACs are
4984                  * configured as unicast MACs using the same ramrod.
4985                  */
4986                 bnx2x_handle_mcast_eqe(bp);
4987                 return;
4988         default:
4989                 BNX2X_ERR("Unsupported classification command: %d\n",
4990                           elem->message.data.eth_event.echo);
4991                 return;
4992         }
4993
4994         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995
4996         if (rc < 0)
4997                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998         else if (rc > 0)
4999                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006         netif_addr_lock_bh(bp->dev);
5007
5008         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009
5010         /* Send rx_mode command again if was requested */
5011         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012                 bnx2x_set_storm_rx_mode(bp);
5013         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014                                     &bp->sp_state))
5015                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017                                     &bp->sp_state))
5018                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019
5020         netif_addr_unlock_bh(bp->dev);
5021 }
5022
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024                                               union event_ring_elem *elem)
5025 {
5026         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027                 DP(BNX2X_MSG_SP,
5028                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029                    elem->message.data.vif_list_event.func_bit_map);
5030                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031                         elem->message.data.vif_list_event.func_bit_map);
5032         } else if (elem->message.data.vif_list_event.echo ==
5033                    VIF_LIST_RULE_SET) {
5034                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036         }
5037 }
5038
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042         int q, rc;
5043         struct bnx2x_fastpath *fp;
5044         struct bnx2x_queue_state_params queue_params = {NULL};
5045         struct bnx2x_queue_update_params *q_update_params =
5046                 &queue_params.params.update;
5047
5048         /* Send Q update command with afex vlan removal values for all Qs */
5049         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050
5051         /* set silent vlan removal values according to vlan mode */
5052         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053                   &q_update_params->update_flags);
5054         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055                   &q_update_params->update_flags);
5056         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057
5058         /* in access mode mark mask and value are 0 to strip all vlans */
5059         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060                 q_update_params->silent_removal_value = 0;
5061                 q_update_params->silent_removal_mask = 0;
5062         } else {
5063                 q_update_params->silent_removal_value =
5064                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066         }
5067
5068         for_each_eth_queue(bp, q) {
5069                 /* Set the appropriate Queue object */
5070                 fp = &bp->fp[q];
5071                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072
5073                 /* send the ramrod */
5074                 rc = bnx2x_queue_state_change(bp, &queue_params);
5075                 if (rc < 0)
5076                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077                                   q);
5078         }
5079
5080         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081                 fp = &bp->fp[FCOE_IDX(bp)];
5082                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083
5084                 /* clear pending completion bit */
5085                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086
5087                 /* mark latest Q bit */
5088                 smp_mb__before_clear_bit();
5089                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090                 smp_mb__after_clear_bit();
5091
5092                 /* send Q update ramrod for FCoE Q */
5093                 rc = bnx2x_queue_state_change(bp, &queue_params);
5094                 if (rc < 0)
5095                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096                                   q);
5097         } else {
5098                 /* If no FCoE ring - ACK MCP now */
5099                 bnx2x_link_report(bp);
5100                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101         }
5102 }
5103
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105         struct bnx2x *bp, u32 cid)
5106 {
5107         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108
5109         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111         else
5112                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117         u16 hw_cons, sw_cons, sw_prod;
5118         union event_ring_elem *elem;
5119         u8 echo;
5120         u32 cid;
5121         u8 opcode;
5122         int rc, spqe_cnt = 0;
5123         struct bnx2x_queue_sp_obj *q_obj;
5124         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126
5127         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128
5129         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130          * when we get the next-page we need to adjust so the loop
5131          * condition below will be met. The next element is the size of a
5132          * regular element and hence incrementing by 1
5133          */
5134         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135                 hw_cons++;
5136
5137         /* This function may never run in parallel with itself for a
5138          * specific bp, thus there is no need in "paired" read memory
5139          * barrier here.
5140          */
5141         sw_cons = bp->eq_cons;
5142         sw_prod = bp->eq_prod;
5143
5144         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5145                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146
5147         for (; sw_cons != hw_cons;
5148               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149
5150                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151
5152                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5153                 if (!rc) {
5154                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155                            rc);
5156                         goto next_spqe;
5157                 }
5158
5159                 /* elem CID originates from FW; actually LE */
5160                 cid = SW_CID((__force __le32)
5161                              elem->message.data.cfc_del_event.cid);
5162                 opcode = elem->message.opcode;
5163
5164                 /* handle eq element */
5165                 switch (opcode) {
5166                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169                         continue;
5170
5171                 case EVENT_RING_OPCODE_STAT_QUERY:
5172                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173                            "got statistics comp event %d\n",
5174                            bp->stats_comp++);
5175                         /* nothing to do with stats comp */
5176                         goto next_spqe;
5177
5178                 case EVENT_RING_OPCODE_CFC_DEL:
5179                         /* handle according to cid range */
5180                         /*
5181                          * we may want to verify here that the bp state is
5182                          * HALTING
5183                          */
5184                         DP(BNX2X_MSG_SP,
5185                            "got delete ramrod for MULTI[%d]\n", cid);
5186
5187                         if (CNIC_LOADED(bp) &&
5188                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189                                 goto next_spqe;
5190
5191                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192
5193                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194                                 break;
5195
5196                         goto next_spqe;
5197
5198                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200                         if (f_obj->complete_cmd(bp, f_obj,
5201                                                 BNX2X_F_CMD_TX_STOP))
5202                                 break;
5203                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204                         goto next_spqe;
5205
5206                 case EVENT_RING_OPCODE_START_TRAFFIC:
5207                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208                         if (f_obj->complete_cmd(bp, f_obj,
5209                                                 BNX2X_F_CMD_TX_START))
5210                                 break;
5211                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212                         goto next_spqe;
5213
5214                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215                         echo = elem->message.data.function_update_event.echo;
5216                         if (echo == SWITCH_UPDATE) {
5217                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5219                                 if (f_obj->complete_cmd(
5220                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221                                         break;
5222
5223                         } else {
5224                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226                                 f_obj->complete_cmd(bp, f_obj,
5227                                                     BNX2X_F_CMD_AFEX_UPDATE);
5228
5229                                 /* We will perform the Queues update from
5230                                  * sp_rtnl task as all Queue SP operations
5231                                  * should run under rtnl_lock.
5232                                  */
5233                                 smp_mb__before_clear_bit();
5234                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235                                         &bp->sp_rtnl_state);
5236                                 smp_mb__after_clear_bit();
5237
5238                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239                         }
5240
5241                         goto next_spqe;
5242
5243                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244                         f_obj->complete_cmd(bp, f_obj,
5245                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5246                         bnx2x_after_afex_vif_lists(bp, elem);
5247                         goto next_spqe;
5248                 case EVENT_RING_OPCODE_FUNCTION_START:
5249                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250                            "got FUNC_START ramrod\n");
5251                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252                                 break;
5253
5254                         goto next_spqe;
5255
5256                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5257                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258                            "got FUNC_STOP ramrod\n");
5259                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260                                 break;
5261
5262                         goto next_spqe;
5263                 }
5264
5265                 switch (opcode | bp->state) {
5266                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267                       BNX2X_STATE_OPEN):
5268                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269                       BNX2X_STATE_OPENING_WAIT4_PORT):
5270                         cid = elem->message.data.eth_event.echo &
5271                                 BNX2X_SWCID_MASK;
5272                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273                            cid);
5274                         rss_raw->clear_pending(rss_raw);
5275                         break;
5276
5277                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279                 case (EVENT_RING_OPCODE_SET_MAC |
5280                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5281                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282                       BNX2X_STATE_OPEN):
5283                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284                       BNX2X_STATE_DIAG):
5285                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5287                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288                         bnx2x_handle_classification_eqe(bp, elem);
5289                         break;
5290
5291                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292                       BNX2X_STATE_OPEN):
5293                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294                       BNX2X_STATE_DIAG):
5295                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5297                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298                         bnx2x_handle_mcast_eqe(bp);
5299                         break;
5300
5301                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5302                       BNX2X_STATE_OPEN):
5303                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5304                       BNX2X_STATE_DIAG):
5305                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5306                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5307                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308                         bnx2x_handle_rx_mode_eqe(bp);
5309                         break;
5310                 default:
5311                         /* unknown event log error and continue */
5312                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313                                   elem->message.opcode, bp->state);
5314                 }
5315 next_spqe:
5316                 spqe_cnt++;
5317         } /* for */
5318
5319         smp_mb__before_atomic_inc();
5320         atomic_add(spqe_cnt, &bp->eq_spq_left);
5321
5322         bp->eq_cons = sw_cons;
5323         bp->eq_prod = sw_prod;
5324         /* Make sure that above mem writes were issued towards the memory */
5325         smp_wmb();
5326
5327         /* update producer */
5328         bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334
5335         DP(BNX2X_MSG_SP, "sp task invoked\n");
5336
5337         /* make sure the atomic interrupt_occurred has been written */
5338         smp_rmb();
5339         if (atomic_read(&bp->interrupt_occurred)) {
5340
5341                 /* what work needs to be performed? */
5342                 u16 status = bnx2x_update_dsb_idx(bp);
5343
5344                 DP(BNX2X_MSG_SP, "status %x\n", status);
5345                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346                 atomic_set(&bp->interrupt_occurred, 0);
5347
5348                 /* HW attentions */
5349                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5350                         bnx2x_attn_int(bp);
5351                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5352                 }
5353
5354                 /* SP events: STAT_QUERY and others */
5355                 if (status & BNX2X_DEF_SB_IDX) {
5356                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357
5358                 if (FCOE_INIT(bp) &&
5359                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360                                 /* Prevent local bottom-halves from running as
5361                                  * we are going to change the local NAPI list.
5362                                  */
5363                                 local_bh_disable();
5364                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5365                                 local_bh_enable();
5366                         }
5367
5368                         /* Handle EQ completions */
5369                         bnx2x_eq_int(bp);
5370                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372
5373                         status &= ~BNX2X_DEF_SB_IDX;
5374                 }
5375
5376                 /* if status is non zero then perhaps something went wrong */
5377                 if (unlikely(status))
5378                         DP(BNX2X_MSG_SP,
5379                            "got an unknown interrupt! (status 0x%x)\n", status);
5380
5381                 /* ack status block only if something was actually handled */
5382                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384         }
5385
5386         /* must be called after the EQ processing (since eq leads to sriov
5387          * ramrod completion flows).
5388          * This flow may have been scheduled by the arrival of a ramrod
5389          * completion, or by the sriov code rescheduling itself.
5390          */
5391         bnx2x_iov_sp_task(bp);
5392
5393         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395                                &bp->sp_state)) {
5396                 bnx2x_link_report(bp);
5397                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398         }
5399 }
5400
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403         struct net_device *dev = dev_instance;
5404         struct bnx2x *bp = netdev_priv(dev);
5405
5406         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407                      IGU_INT_DISABLE, 0);
5408
5409 #ifdef BNX2X_STOP_ON_ERROR
5410         if (unlikely(bp->panic))
5411                 return IRQ_HANDLED;
5412 #endif
5413
5414         if (CNIC_LOADED(bp)) {
5415                 struct cnic_ops *c_ops;
5416
5417                 rcu_read_lock();
5418                 c_ops = rcu_dereference(bp->cnic_ops);
5419                 if (c_ops)
5420                         c_ops->cnic_handler(bp->cnic_data, NULL);
5421                 rcu_read_unlock();
5422         }
5423
5424         /* schedule sp task to perform default status block work, ack
5425          * attentions and enable interrupts.
5426          */
5427         bnx2x_schedule_sp_task(bp);
5428
5429         return IRQ_HANDLED;
5430 }
5431
5432 /* end of slow path */
5433
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437                  bp->fw_drv_pulse_wr_seq);
5438 }
5439
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442         struct bnx2x *bp = (struct bnx2x *) data;
5443
5444         if (!netif_running(bp->dev))
5445                 return;
5446
5447         if (IS_PF(bp) &&
5448             !BP_NOMCP(bp)) {
5449                 int mb_idx = BP_FW_MB_IDX(bp);
5450                 u32 drv_pulse;
5451                 u32 mcp_pulse;
5452
5453                 ++bp->fw_drv_pulse_wr_seq;
5454                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455                 /* TBD - add SYSTEM_TIME */
5456                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5457                 bnx2x_drv_pulse(bp);
5458
5459                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5460                              MCP_PULSE_SEQ_MASK);
5461                 /* The delta between driver pulse and mcp response
5462                  * should be 1 (before mcp response) or 0 (after mcp response)
5463                  */
5464                 if ((drv_pulse != mcp_pulse) &&
5465                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5466                         /* someone lost a heartbeat... */
5467                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5468                                   drv_pulse, mcp_pulse);
5469                 }
5470         }
5471
5472         if (bp->state == BNX2X_STATE_OPEN)
5473                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5474
5475         /* sample pf vf bulletin board for new posts from pf */
5476         if (IS_VF(bp))
5477                 bnx2x_timer_sriov(bp);
5478
5479         mod_timer(&bp->timer, jiffies + bp->current_interval);
5480 }
5481
5482 /* end of Statistics */
5483
5484 /* nic init */
5485
5486 /*
5487  * nic init service functions
5488  */
5489
5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5491 {
5492         u32 i;
5493         if (!(len%4) && !(addr%4))
5494                 for (i = 0; i < len; i += 4)
5495                         REG_WR(bp, addr + i, fill);
5496         else
5497                 for (i = 0; i < len; i++)
5498                         REG_WR8(bp, addr + i, fill);
5499 }
5500
5501 /* helper: writes FP SP data to FW - data_size in dwords */
5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5503                                 int fw_sb_id,
5504                                 u32 *sb_data_p,
5505                                 u32 data_size)
5506 {
5507         int index;
5508         for (index = 0; index < data_size; index++)
5509                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5510                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5511                         sizeof(u32)*index,
5512                         *(sb_data_p + index));
5513 }
5514
5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5516 {
5517         u32 *sb_data_p;
5518         u32 data_size = 0;
5519         struct hc_status_block_data_e2 sb_data_e2;
5520         struct hc_status_block_data_e1x sb_data_e1x;
5521
5522         /* disable the function first */
5523         if (!CHIP_IS_E1x(bp)) {
5524                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5525                 sb_data_e2.common.state = SB_DISABLED;
5526                 sb_data_e2.common.p_func.vf_valid = false;
5527                 sb_data_p = (u32 *)&sb_data_e2;
5528                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5529         } else {
5530                 memset(&sb_data_e1x, 0,
5531                        sizeof(struct hc_status_block_data_e1x));
5532                 sb_data_e1x.common.state = SB_DISABLED;
5533                 sb_data_e1x.common.p_func.vf_valid = false;
5534                 sb_data_p = (u32 *)&sb_data_e1x;
5535                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5536         }
5537         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5538
5539         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5540                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5541                         CSTORM_STATUS_BLOCK_SIZE);
5542         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5543                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5544                         CSTORM_SYNC_BLOCK_SIZE);
5545 }
5546
5547 /* helper:  writes SP SB data to FW */
5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5549                 struct hc_sp_status_block_data *sp_sb_data)
5550 {
5551         int func = BP_FUNC(bp);
5552         int i;
5553         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5554                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5555                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5556                         i*sizeof(u32),
5557                         *((u32 *)sp_sb_data + i));
5558 }
5559
5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5561 {
5562         int func = BP_FUNC(bp);
5563         struct hc_sp_status_block_data sp_sb_data;
5564         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5565
5566         sp_sb_data.state = SB_DISABLED;
5567         sp_sb_data.p_func.vf_valid = false;
5568
5569         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5570
5571         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5573                         CSTORM_SP_STATUS_BLOCK_SIZE);
5574         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5576                         CSTORM_SP_SYNC_BLOCK_SIZE);
5577 }
5578
5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5580                                            int igu_sb_id, int igu_seg_id)
5581 {
5582         hc_sm->igu_sb_id = igu_sb_id;
5583         hc_sm->igu_seg_id = igu_seg_id;
5584         hc_sm->timer_value = 0xFF;
5585         hc_sm->time_to_expire = 0xFFFFFFFF;
5586 }
5587
5588 /* allocates state machine ids. */
5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5590 {
5591         /* zero out state machine indices */
5592         /* rx indices */
5593         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5594
5595         /* tx indices */
5596         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5597         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5598         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5599         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5600
5601         /* map indices */
5602         /* rx indices */
5603         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5604                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605
5606         /* tx indices */
5607         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5608                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5610                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5612                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5614                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5615 }
5616
5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5618                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5619 {
5620         int igu_seg_id;
5621
5622         struct hc_status_block_data_e2 sb_data_e2;
5623         struct hc_status_block_data_e1x sb_data_e1x;
5624         struct hc_status_block_sm  *hc_sm_p;
5625         int data_size;
5626         u32 *sb_data_p;
5627
5628         if (CHIP_INT_MODE_IS_BC(bp))
5629                 igu_seg_id = HC_SEG_ACCESS_NORM;
5630         else
5631                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5632
5633         bnx2x_zero_fp_sb(bp, fw_sb_id);
5634
5635         if (!CHIP_IS_E1x(bp)) {
5636                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5637                 sb_data_e2.common.state = SB_ENABLED;
5638                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5639                 sb_data_e2.common.p_func.vf_id = vfid;
5640                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5641                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5642                 sb_data_e2.common.same_igu_sb_1b = true;
5643                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5644                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5645                 hc_sm_p = sb_data_e2.common.state_machine;
5646                 sb_data_p = (u32 *)&sb_data_e2;
5647                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5648                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5649         } else {
5650                 memset(&sb_data_e1x, 0,
5651                        sizeof(struct hc_status_block_data_e1x));
5652                 sb_data_e1x.common.state = SB_ENABLED;
5653                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5654                 sb_data_e1x.common.p_func.vf_id = 0xff;
5655                 sb_data_e1x.common.p_func.vf_valid = false;
5656                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5657                 sb_data_e1x.common.same_igu_sb_1b = true;
5658                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5659                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5660                 hc_sm_p = sb_data_e1x.common.state_machine;
5661                 sb_data_p = (u32 *)&sb_data_e1x;
5662                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5663                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5664         }
5665
5666         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5667                                        igu_sb_id, igu_seg_id);
5668         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5669                                        igu_sb_id, igu_seg_id);
5670
5671         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5672
5673         /* write indices to HW - PCI guarantees endianity of regpairs */
5674         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5675 }
5676
5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5678                                      u16 tx_usec, u16 rx_usec)
5679 {
5680         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5681                                     false, rx_usec);
5682         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5684                                        tx_usec);
5685         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5686                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5687                                        tx_usec);
5688         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5689                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5690                                        tx_usec);
5691 }
5692
5693 static void bnx2x_init_def_sb(struct bnx2x *bp)
5694 {
5695         struct host_sp_status_block *def_sb = bp->def_status_blk;
5696         dma_addr_t mapping = bp->def_status_blk_mapping;
5697         int igu_sp_sb_index;
5698         int igu_seg_id;
5699         int port = BP_PORT(bp);
5700         int func = BP_FUNC(bp);
5701         int reg_offset, reg_offset_en5;
5702         u64 section;
5703         int index;
5704         struct hc_sp_status_block_data sp_sb_data;
5705         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5706
5707         if (CHIP_INT_MODE_IS_BC(bp)) {
5708                 igu_sp_sb_index = DEF_SB_IGU_ID;
5709                 igu_seg_id = HC_SEG_ACCESS_DEF;
5710         } else {
5711                 igu_sp_sb_index = bp->igu_dsb_id;
5712                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5713         }
5714
5715         /* ATTN */
5716         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5717                                             atten_status_block);
5718         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5719
5720         bp->attn_state = 0;
5721
5722         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5723                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5724         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5725                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5726         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5727                 int sindex;
5728                 /* take care of sig[0]..sig[4] */
5729                 for (sindex = 0; sindex < 4; sindex++)
5730                         bp->attn_group[index].sig[sindex] =
5731                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5732
5733                 if (!CHIP_IS_E1x(bp))
5734                         /*
5735                          * enable5 is separate from the rest of the registers,
5736                          * and therefore the address skip is 4
5737                          * and not 16 between the different groups
5738                          */
5739                         bp->attn_group[index].sig[4] = REG_RD(bp,
5740                                         reg_offset_en5 + 0x4*index);
5741                 else
5742                         bp->attn_group[index].sig[4] = 0;
5743         }
5744
5745         if (bp->common.int_block == INT_BLOCK_HC) {
5746                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5747                                      HC_REG_ATTN_MSG0_ADDR_L);
5748
5749                 REG_WR(bp, reg_offset, U64_LO(section));
5750                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5751         } else if (!CHIP_IS_E1x(bp)) {
5752                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5753                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5754         }
5755
5756         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5757                                             sp_sb);
5758
5759         bnx2x_zero_sp_sb(bp);
5760
5761         /* PCI guarantees endianity of regpairs */
5762         sp_sb_data.state                = SB_ENABLED;
5763         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5764         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5765         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5766         sp_sb_data.igu_seg_id           = igu_seg_id;
5767         sp_sb_data.p_func.pf_id         = func;
5768         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5769         sp_sb_data.p_func.vf_id         = 0xff;
5770
5771         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5772
5773         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5774 }
5775
5776 void bnx2x_update_coalesce(struct bnx2x *bp)
5777 {
5778         int i;
5779
5780         for_each_eth_queue(bp, i)
5781                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5782                                          bp->tx_ticks, bp->rx_ticks);
5783 }
5784
5785 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5786 {
5787         spin_lock_init(&bp->spq_lock);
5788         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5789
5790         bp->spq_prod_idx = 0;
5791         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5792         bp->spq_prod_bd = bp->spq;
5793         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5794 }
5795
5796 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5797 {
5798         int i;
5799         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5800                 union event_ring_elem *elem =
5801                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5802
5803                 elem->next_page.addr.hi =
5804                         cpu_to_le32(U64_HI(bp->eq_mapping +
5805                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5806                 elem->next_page.addr.lo =
5807                         cpu_to_le32(U64_LO(bp->eq_mapping +
5808                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5809         }
5810         bp->eq_cons = 0;
5811         bp->eq_prod = NUM_EQ_DESC;
5812         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5813         /* we want a warning message before it gets wrought... */
5814         atomic_set(&bp->eq_spq_left,
5815                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5816 }
5817
5818 /* called with netif_addr_lock_bh() */
5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5820                         unsigned long rx_mode_flags,
5821                         unsigned long rx_accept_flags,
5822                         unsigned long tx_accept_flags,
5823                         unsigned long ramrod_flags)
5824 {
5825         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5826         int rc;
5827
5828         memset(&ramrod_param, 0, sizeof(ramrod_param));
5829
5830         /* Prepare ramrod parameters */
5831         ramrod_param.cid = 0;
5832         ramrod_param.cl_id = cl_id;
5833         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5834         ramrod_param.func_id = BP_FUNC(bp);
5835
5836         ramrod_param.pstate = &bp->sp_state;
5837         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5838
5839         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5840         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5841
5842         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5843
5844         ramrod_param.ramrod_flags = ramrod_flags;
5845         ramrod_param.rx_mode_flags = rx_mode_flags;
5846
5847         ramrod_param.rx_accept_flags = rx_accept_flags;
5848         ramrod_param.tx_accept_flags = tx_accept_flags;
5849
5850         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5851         if (rc < 0) {
5852                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5853                 return rc;
5854         }
5855
5856         return 0;
5857 }
5858
5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5860                                    unsigned long *rx_accept_flags,
5861                                    unsigned long *tx_accept_flags)
5862 {
5863         /* Clear the flags first */
5864         *rx_accept_flags = 0;
5865         *tx_accept_flags = 0;
5866
5867         switch (rx_mode) {
5868         case BNX2X_RX_MODE_NONE:
5869                 /*
5870                  * 'drop all' supersedes any accept flags that may have been
5871                  * passed to the function.
5872                  */
5873                 break;
5874         case BNX2X_RX_MODE_NORMAL:
5875                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5876                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5877                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5878
5879                 /* internal switching mode */
5880                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5881                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5882                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5883
5884                 break;
5885         case BNX2X_RX_MODE_ALLMULTI:
5886                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889
5890                 /* internal switching mode */
5891                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5892                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894
5895                 break;
5896         case BNX2X_RX_MODE_PROMISC:
5897                 /* According to definition of SI mode, iface in promisc mode
5898                  * should receive matched and unmatched (in resolution of port)
5899                  * unicast packets.
5900                  */
5901                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5902                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5903                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5904                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5905
5906                 /* internal switching mode */
5907                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5908                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5909
5910                 if (IS_MF_SI(bp))
5911                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5912                 else
5913                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5914
5915                 break;
5916         default:
5917                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5918                 return -EINVAL;
5919         }
5920
5921         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5922         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5923                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5924                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5925         }
5926
5927         return 0;
5928 }
5929
5930 /* called with netif_addr_lock_bh() */
5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5932 {
5933         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5934         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5935         int rc;
5936
5937         if (!NO_FCOE(bp))
5938                 /* Configure rx_mode of FCoE Queue */
5939                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5940
5941         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5942                                      &tx_accept_flags);
5943         if (rc)
5944                 return rc;
5945
5946         __set_bit(RAMROD_RX, &ramrod_flags);
5947         __set_bit(RAMROD_TX, &ramrod_flags);
5948
5949         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5950                                    rx_accept_flags, tx_accept_flags,
5951                                    ramrod_flags);
5952 }
5953
5954 static void bnx2x_init_internal_common(struct bnx2x *bp)
5955 {
5956         int i;
5957
5958         if (IS_MF_SI(bp))
5959                 /*
5960                  * In switch independent mode, the TSTORM needs to accept
5961                  * packets that failed classification, since approximate match
5962                  * mac addresses aren't written to NIG LLH
5963                  */
5964                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5965                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5966         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5967                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5968                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5969
5970         /* Zero this manually as its initialization is
5971            currently missing in the initTool */
5972         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5973                 REG_WR(bp, BAR_USTRORM_INTMEM +
5974                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5975         if (!CHIP_IS_E1x(bp)) {
5976                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5977                         CHIP_INT_MODE_IS_BC(bp) ?
5978                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5979         }
5980 }
5981
5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5983 {
5984         switch (load_code) {
5985         case FW_MSG_CODE_DRV_LOAD_COMMON:
5986         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5987                 bnx2x_init_internal_common(bp);
5988                 /* no break */
5989
5990         case FW_MSG_CODE_DRV_LOAD_PORT:
5991                 /* nothing to do */
5992                 /* no break */
5993
5994         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5995                 /* internal memory per function is
5996                    initialized inside bnx2x_pf_init */
5997                 break;
5998
5999         default:
6000                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6001                 break;
6002         }
6003 }
6004
6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6006 {
6007         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6008 }
6009
6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6011 {
6012         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6013 }
6014
6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6016 {
6017         if (CHIP_IS_E1x(fp->bp))
6018                 return BP_L_ID(fp->bp) + fp->index;
6019         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6020                 return bnx2x_fp_igu_sb_id(fp);
6021 }
6022
6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6024 {
6025         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6026         u8 cos;
6027         unsigned long q_type = 0;
6028         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6029         fp->rx_queue = fp_idx;
6030         fp->cid = fp_idx;
6031         fp->cl_id = bnx2x_fp_cl_id(fp);
6032         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6033         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6034         /* qZone id equals to FW (per path) client id */
6035         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6036
6037         /* init shortcut */
6038         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6039
6040         /* Setup SB indices */
6041         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6042
6043         /* Configure Queue State object */
6044         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6045         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6046
6047         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6048
6049         /* init tx data */
6050         for_each_cos_in_tx_queue(fp, cos) {
6051                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6052                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6053                                   FP_COS_TO_TXQ(fp, cos, bp),
6054                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6055                 cids[cos] = fp->txdata_ptr[cos]->cid;
6056         }
6057
6058         /* nothing more for vf to do here */
6059         if (IS_VF(bp))
6060                 return;
6061
6062         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6063                       fp->fw_sb_id, fp->igu_sb_id);
6064         bnx2x_update_fpsb_idx(fp);
6065         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6066                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6067                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6068
6069         /**
6070          * Configure classification DBs: Always enable Tx switching
6071          */
6072         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6073
6074         DP(NETIF_MSG_IFUP,
6075            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6076            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6077            fp->igu_sb_id);
6078 }
6079
6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6081 {
6082         int i;
6083
6084         for (i = 1; i <= NUM_TX_RINGS; i++) {
6085                 struct eth_tx_next_bd *tx_next_bd =
6086                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6087
6088                 tx_next_bd->addr_hi =
6089                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6090                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6091                 tx_next_bd->addr_lo =
6092                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6093                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6094         }
6095
6096         *txdata->tx_cons_sb = cpu_to_le16(0);
6097
6098         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6099         txdata->tx_db.data.zero_fill1 = 0;
6100         txdata->tx_db.data.prod = 0;
6101
6102         txdata->tx_pkt_prod = 0;
6103         txdata->tx_pkt_cons = 0;
6104         txdata->tx_bd_prod = 0;
6105         txdata->tx_bd_cons = 0;
6106         txdata->tx_pkt = 0;
6107 }
6108
6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6110 {
6111         int i;
6112
6113         for_each_tx_queue_cnic(bp, i)
6114                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6115 }
6116
6117 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6118 {
6119         int i;
6120         u8 cos;
6121
6122         for_each_eth_queue(bp, i)
6123                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6124                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6125 }
6126
6127 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6128 {
6129         if (!NO_FCOE(bp))
6130                 bnx2x_init_fcoe_fp(bp);
6131
6132         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6133                       BNX2X_VF_ID_INVALID, false,
6134                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6135
6136         /* ensure status block indices were read */
6137         rmb();
6138         bnx2x_init_rx_rings_cnic(bp);
6139         bnx2x_init_tx_rings_cnic(bp);
6140
6141         /* flush all */
6142         mb();
6143         mmiowb();
6144 }
6145
6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6147 {
6148         int i;
6149
6150         /* Setup NIC internals and enable interrupts */
6151         for_each_eth_queue(bp, i)
6152                 bnx2x_init_eth_fp(bp, i);
6153
6154         /* ensure status block indices were read */
6155         rmb();
6156         bnx2x_init_rx_rings(bp);
6157         bnx2x_init_tx_rings(bp);
6158
6159         if (IS_PF(bp)) {
6160                 /* Initialize MOD_ABS interrupts */
6161                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6162                                        bp->common.shmem_base,
6163                                        bp->common.shmem2_base, BP_PORT(bp));
6164
6165                 /* initialize the default status block and sp ring */
6166                 bnx2x_init_def_sb(bp);
6167                 bnx2x_update_dsb_idx(bp);
6168                 bnx2x_init_sp_ring(bp);
6169         } else {
6170                 bnx2x_memset_stats(bp);
6171         }
6172 }
6173
6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6175 {
6176         bnx2x_init_eq_ring(bp);
6177         bnx2x_init_internal(bp, load_code);
6178         bnx2x_pf_init(bp);
6179         bnx2x_stats_init(bp);
6180
6181         /* flush all before enabling interrupts */
6182         mb();
6183         mmiowb();
6184
6185         bnx2x_int_enable(bp);
6186
6187         /* Check for SPIO5 */
6188         bnx2x_attn_int_deasserted0(bp,
6189                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6190                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6191 }
6192
6193 /* gzip service functions */
6194 static int bnx2x_gunzip_init(struct bnx2x *bp)
6195 {
6196         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6197                                             &bp->gunzip_mapping, GFP_KERNEL);
6198         if (bp->gunzip_buf  == NULL)
6199                 goto gunzip_nomem1;
6200
6201         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6202         if (bp->strm  == NULL)
6203                 goto gunzip_nomem2;
6204
6205         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6206         if (bp->strm->workspace == NULL)
6207                 goto gunzip_nomem3;
6208
6209         return 0;
6210
6211 gunzip_nomem3:
6212         kfree(bp->strm);
6213         bp->strm = NULL;
6214
6215 gunzip_nomem2:
6216         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6217                           bp->gunzip_mapping);
6218         bp->gunzip_buf = NULL;
6219
6220 gunzip_nomem1:
6221         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6222         return -ENOMEM;
6223 }
6224
6225 static void bnx2x_gunzip_end(struct bnx2x *bp)
6226 {
6227         if (bp->strm) {
6228                 vfree(bp->strm->workspace);
6229                 kfree(bp->strm);
6230                 bp->strm = NULL;
6231         }
6232
6233         if (bp->gunzip_buf) {
6234                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6235                                   bp->gunzip_mapping);
6236                 bp->gunzip_buf = NULL;
6237         }
6238 }
6239
6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6241 {
6242         int n, rc;
6243
6244         /* check gzip header */
6245         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6246                 BNX2X_ERR("Bad gzip header\n");
6247                 return -EINVAL;
6248         }
6249
6250         n = 10;
6251
6252 #define FNAME                           0x8
6253
6254         if (zbuf[3] & FNAME)
6255                 while ((zbuf[n++] != 0) && (n < len));
6256
6257         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6258         bp->strm->avail_in = len - n;
6259         bp->strm->next_out = bp->gunzip_buf;
6260         bp->strm->avail_out = FW_BUF_SIZE;
6261
6262         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6263         if (rc != Z_OK)
6264                 return rc;
6265
6266         rc = zlib_inflate(bp->strm, Z_FINISH);
6267         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6268                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6269                            bp->strm->msg);
6270
6271         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6272         if (bp->gunzip_outlen & 0x3)
6273                 netdev_err(bp->dev,
6274                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6275                                 bp->gunzip_outlen);
6276         bp->gunzip_outlen >>= 2;
6277
6278         zlib_inflateEnd(bp->strm);
6279
6280         if (rc == Z_STREAM_END)
6281                 return 0;
6282
6283         return rc;
6284 }
6285
6286 /* nic load/unload */
6287
6288 /*
6289  * General service functions
6290  */
6291
6292 /* send a NIG loopback debug packet */
6293 static void bnx2x_lb_pckt(struct bnx2x *bp)
6294 {
6295         u32 wb_write[3];
6296
6297         /* Ethernet source and destination addresses */
6298         wb_write[0] = 0x55555555;
6299         wb_write[1] = 0x55555555;
6300         wb_write[2] = 0x20;             /* SOP */
6301         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302
6303         /* NON-IP protocol */
6304         wb_write[0] = 0x09000000;
6305         wb_write[1] = 0x55555555;
6306         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6307         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6308 }
6309
6310 /* some of the internal memories
6311  * are not directly readable from the driver
6312  * to test them we send debug packets
6313  */
6314 static int bnx2x_int_mem_test(struct bnx2x *bp)
6315 {
6316         int factor;
6317         int count, i;
6318         u32 val = 0;
6319
6320         if (CHIP_REV_IS_FPGA(bp))
6321                 factor = 120;
6322         else if (CHIP_REV_IS_EMUL(bp))
6323                 factor = 200;
6324         else
6325                 factor = 1;
6326
6327         /* Disable inputs of parser neighbor blocks */
6328         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6329         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6330         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6331         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6332
6333         /*  Write 0 to parser credits for CFC search request */
6334         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6335
6336         /* send Ethernet packet */
6337         bnx2x_lb_pckt(bp);
6338
6339         /* TODO do i reset NIG statistic? */
6340         /* Wait until NIG register shows 1 packet of size 0x10 */
6341         count = 1000 * factor;
6342         while (count) {
6343
6344                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6345                 val = *bnx2x_sp(bp, wb_data[0]);
6346                 if (val == 0x10)
6347                         break;
6348
6349                 usleep_range(10000, 20000);
6350                 count--;
6351         }
6352         if (val != 0x10) {
6353                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6354                 return -1;
6355         }
6356
6357         /* Wait until PRS register shows 1 packet */
6358         count = 1000 * factor;
6359         while (count) {
6360                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6361                 if (val == 1)
6362                         break;
6363
6364                 usleep_range(10000, 20000);
6365                 count--;
6366         }
6367         if (val != 0x1) {
6368                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6369                 return -2;
6370         }
6371
6372         /* Reset and init BRB, PRS */
6373         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6374         msleep(50);
6375         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6376         msleep(50);
6377         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6378         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6379
6380         DP(NETIF_MSG_HW, "part2\n");
6381
6382         /* Disable inputs of parser neighbor blocks */
6383         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6384         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6385         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6386         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6387
6388         /* Write 0 to parser credits for CFC search request */
6389         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6390
6391         /* send 10 Ethernet packets */
6392         for (i = 0; i < 10; i++)
6393                 bnx2x_lb_pckt(bp);
6394
6395         /* Wait until NIG register shows 10 + 1
6396            packets of size 11*0x10 = 0xb0 */
6397         count = 1000 * factor;
6398         while (count) {
6399
6400                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6401                 val = *bnx2x_sp(bp, wb_data[0]);
6402                 if (val == 0xb0)
6403                         break;
6404
6405                 usleep_range(10000, 20000);
6406                 count--;
6407         }
6408         if (val != 0xb0) {
6409                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6410                 return -3;
6411         }
6412
6413         /* Wait until PRS register shows 2 packets */
6414         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415         if (val != 2)
6416                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417
6418         /* Write 1 to parser credits for CFC search request */
6419         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6420
6421         /* Wait until PRS register shows 3 packets */
6422         msleep(10 * factor);
6423         /* Wait until NIG register shows 1 packet of size 0x10 */
6424         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6425         if (val != 3)
6426                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6427
6428         /* clear NIG EOP FIFO */
6429         for (i = 0; i < 11; i++)
6430                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6431         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6432         if (val != 1) {
6433                 BNX2X_ERR("clear of NIG failed\n");
6434                 return -4;
6435         }
6436
6437         /* Reset and init BRB, PRS, NIG */
6438         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6439         msleep(50);
6440         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6441         msleep(50);
6442         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6443         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6444         if (!CNIC_SUPPORT(bp))
6445                 /* set NIC mode */
6446                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6447
6448         /* Enable inputs of parser neighbor blocks */
6449         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6450         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6451         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6452         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6453
6454         DP(NETIF_MSG_HW, "done\n");
6455
6456         return 0; /* OK */
6457 }
6458
6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6460 {
6461         u32 val;
6462
6463         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6464         if (!CHIP_IS_E1x(bp))
6465                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6466         else
6467                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6468         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6469         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6470         /*
6471          * mask read length error interrupts in brb for parser
6472          * (parsing unit and 'checksum and crc' unit)
6473          * these errors are legal (PU reads fixed length and CAC can cause
6474          * read length error on truncated packets)
6475          */
6476         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6477         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6478         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6479         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6480         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6481         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6482 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6483 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6484         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6485         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6486         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6487 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6488 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6489         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6490         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6491         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6492         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6493 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6494 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6495
6496         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6497                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6498                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6499         if (!CHIP_IS_E1x(bp))
6500                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6501                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6502         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6503
6504         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6505         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6506         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6507 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6508
6509         if (!CHIP_IS_E1x(bp))
6510                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6511                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6512
6513         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6514         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6515 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6516         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6517 }
6518
6519 static void bnx2x_reset_common(struct bnx2x *bp)
6520 {
6521         u32 val = 0x1400;
6522
6523         /* reset_common */
6524         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6525                0xd3ffff7f);
6526
6527         if (CHIP_IS_E3(bp)) {
6528                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6529                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6530         }
6531
6532         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6533 }
6534
6535 static void bnx2x_setup_dmae(struct bnx2x *bp)
6536 {
6537         bp->dmae_ready = 0;
6538         spin_lock_init(&bp->dmae_lock);
6539 }
6540
6541 static void bnx2x_init_pxp(struct bnx2x *bp)
6542 {
6543         u16 devctl;
6544         int r_order, w_order;
6545
6546         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6547         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6548         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6549         if (bp->mrrs == -1)
6550                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6551         else {
6552                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6553                 r_order = bp->mrrs;
6554         }
6555
6556         bnx2x_init_pxp_arb(bp, r_order, w_order);
6557 }
6558
6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6560 {
6561         int is_required;
6562         u32 val;
6563         int port;
6564
6565         if (BP_NOMCP(bp))
6566                 return;
6567
6568         is_required = 0;
6569         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6570               SHARED_HW_CFG_FAN_FAILURE_MASK;
6571
6572         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6573                 is_required = 1;
6574
6575         /*
6576          * The fan failure mechanism is usually related to the PHY type since
6577          * the power consumption of the board is affected by the PHY. Currently,
6578          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6579          */
6580         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6581                 for (port = PORT_0; port < PORT_MAX; port++) {
6582                         is_required |=
6583                                 bnx2x_fan_failure_det_req(
6584                                         bp,
6585                                         bp->common.shmem_base,
6586                                         bp->common.shmem2_base,
6587                                         port);
6588                 }
6589
6590         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6591
6592         if (is_required == 0)
6593                 return;
6594
6595         /* Fan failure is indicated by SPIO 5 */
6596         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6597
6598         /* set to active low mode */
6599         val = REG_RD(bp, MISC_REG_SPIO_INT);
6600         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6601         REG_WR(bp, MISC_REG_SPIO_INT, val);
6602
6603         /* enable interrupt to signal the IGU */
6604         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6605         val |= MISC_SPIO_SPIO5;
6606         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6607 }
6608
6609 void bnx2x_pf_disable(struct bnx2x *bp)
6610 {
6611         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6612         val &= ~IGU_PF_CONF_FUNC_EN;
6613
6614         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6615         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6616         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6617 }
6618
6619 static void bnx2x__common_init_phy(struct bnx2x *bp)
6620 {
6621         u32 shmem_base[2], shmem2_base[2];
6622         /* Avoid common init in case MFW supports LFA */
6623         if (SHMEM2_RD(bp, size) >
6624             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6625                 return;
6626         shmem_base[0] =  bp->common.shmem_base;
6627         shmem2_base[0] = bp->common.shmem2_base;
6628         if (!CHIP_IS_E1x(bp)) {
6629                 shmem_base[1] =
6630                         SHMEM2_RD(bp, other_shmem_base_addr);
6631                 shmem2_base[1] =
6632                         SHMEM2_RD(bp, other_shmem2_base_addr);
6633         }
6634         bnx2x_acquire_phy_lock(bp);
6635         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6636                               bp->common.chip_id);
6637         bnx2x_release_phy_lock(bp);
6638 }
6639
6640 /**
6641  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6642  *
6643  * @bp:         driver handle
6644  */
6645 static int bnx2x_init_hw_common(struct bnx2x *bp)
6646 {
6647         u32 val;
6648
6649         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6650
6651         /*
6652          * take the RESET lock to protect undi_unload flow from accessing
6653          * registers while we're resetting the chip
6654          */
6655         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6656
6657         bnx2x_reset_common(bp);
6658         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6659
6660         val = 0xfffc;
6661         if (CHIP_IS_E3(bp)) {
6662                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6663                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6664         }
6665         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6666
6667         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6668
6669         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6670
6671         if (!CHIP_IS_E1x(bp)) {
6672                 u8 abs_func_id;
6673
6674                 /**
6675                  * 4-port mode or 2-port mode we need to turn of master-enable
6676                  * for everyone, after that, turn it back on for self.
6677                  * so, we disregard multi-function or not, and always disable
6678                  * for all functions on the given path, this means 0,2,4,6 for
6679                  * path 0 and 1,3,5,7 for path 1
6680                  */
6681                 for (abs_func_id = BP_PATH(bp);
6682                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6683                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6684                                 REG_WR(bp,
6685                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6686                                     1);
6687                                 continue;
6688                         }
6689
6690                         bnx2x_pretend_func(bp, abs_func_id);
6691                         /* clear pf enable */
6692                         bnx2x_pf_disable(bp);
6693                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6694                 }
6695         }
6696
6697         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6698         if (CHIP_IS_E1(bp)) {
6699                 /* enable HW interrupt from PXP on USDM overflow
6700                    bit 16 on INT_MASK_0 */
6701                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6702         }
6703
6704         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6705         bnx2x_init_pxp(bp);
6706
6707 #ifdef __BIG_ENDIAN
6708         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6709         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6710         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6711         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6712         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6713         /* make sure this value is 0 */
6714         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6715
6716 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6717         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6718         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6719         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6720         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6721 #endif
6722
6723         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6724
6725         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6726                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6727
6728         /* let the HW do it's magic ... */
6729         msleep(100);
6730         /* finish PXP init */
6731         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6732         if (val != 1) {
6733                 BNX2X_ERR("PXP2 CFG failed\n");
6734                 return -EBUSY;
6735         }
6736         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6737         if (val != 1) {
6738                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6739                 return -EBUSY;
6740         }
6741
6742         /* Timers bug workaround E2 only. We need to set the entire ILT to
6743          * have entries with value "0" and valid bit on.
6744          * This needs to be done by the first PF that is loaded in a path
6745          * (i.e. common phase)
6746          */
6747         if (!CHIP_IS_E1x(bp)) {
6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6749  * (i.e. vnic3) to start even if it is marked as "scan-off".
6750  * This occurs when a different function (func2,3) is being marked
6751  * as "scan-off". Real-life scenario for example: if a driver is being
6752  * load-unloaded while func6,7 are down. This will cause the timer to access
6753  * the ilt, translate to a logical address and send a request to read/write.
6754  * Since the ilt for the function that is down is not valid, this will cause
6755  * a translation error which is unrecoverable.
6756  * The Workaround is intended to make sure that when this happens nothing fatal
6757  * will occur. The workaround:
6758  *      1.  First PF driver which loads on a path will:
6759  *              a.  After taking the chip out of reset, by using pretend,
6760  *                  it will write "0" to the following registers of
6761  *                  the other vnics.
6762  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6763  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6764  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6765  *                  And for itself it will write '1' to
6766  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6767  *                  dmae-operations (writing to pram for example.)
6768  *                  note: can be done for only function 6,7 but cleaner this
6769  *                        way.
6770  *              b.  Write zero+valid to the entire ILT.
6771  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6772  *                  VNIC3 (of that port). The range allocated will be the
6773  *                  entire ILT. This is needed to prevent  ILT range error.
6774  *      2.  Any PF driver load flow:
6775  *              a.  ILT update with the physical addresses of the allocated
6776  *                  logical pages.
6777  *              b.  Wait 20msec. - note that this timeout is needed to make
6778  *                  sure there are no requests in one of the PXP internal
6779  *                  queues with "old" ILT addresses.
6780  *              c.  PF enable in the PGLC.
6781  *              d.  Clear the was_error of the PF in the PGLC. (could have
6782  *                  occurred while driver was down)
6783  *              e.  PF enable in the CFC (WEAK + STRONG)
6784  *              f.  Timers scan enable
6785  *      3.  PF driver unload flow:
6786  *              a.  Clear the Timers scan_en.
6787  *              b.  Polling for scan_on=0 for that PF.
6788  *              c.  Clear the PF enable bit in the PXP.
6789  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6790  *              e.  Write zero+valid to all ILT entries (The valid bit must
6791  *                  stay set)
6792  *              f.  If this is VNIC 3 of a port then also init
6793  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6794  *                  to the last entry in the ILT.
6795  *
6796  *      Notes:
6797  *      Currently the PF error in the PGLC is non recoverable.
6798  *      In the future the there will be a recovery routine for this error.
6799  *      Currently attention is masked.
6800  *      Having an MCP lock on the load/unload process does not guarantee that
6801  *      there is no Timer disable during Func6/7 enable. This is because the
6802  *      Timers scan is currently being cleared by the MCP on FLR.
6803  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6804  *      there is error before clearing it. But the flow above is simpler and
6805  *      more general.
6806  *      All ILT entries are written by zero+valid and not just PF6/7
6807  *      ILT entries since in the future the ILT entries allocation for
6808  *      PF-s might be dynamic.
6809  */
6810                 struct ilt_client_info ilt_cli;
6811                 struct bnx2x_ilt ilt;
6812                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6813                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6814
6815                 /* initialize dummy TM client */
6816                 ilt_cli.start = 0;
6817                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6818                 ilt_cli.client_num = ILT_CLIENT_TM;
6819
6820                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6821                  * Step 2: set the timers first/last ilt entry to point
6822                  * to the entire range to prevent ILT range error for 3rd/4th
6823                  * vnic (this code assumes existence of the vnic)
6824                  *
6825                  * both steps performed by call to bnx2x_ilt_client_init_op()
6826                  * with dummy TM client
6827                  *
6828                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6829                  * and his brother are split registers
6830                  */
6831                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6832                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6833                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6834
6835                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6836                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6837                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6838         }
6839
6840         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6841         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6842
6843         if (!CHIP_IS_E1x(bp)) {
6844                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6845                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6846                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6847
6848                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6849
6850                 /* let the HW do it's magic ... */
6851                 do {
6852                         msleep(200);
6853                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6854                 } while (factor-- && (val != 1));
6855
6856                 if (val != 1) {
6857                         BNX2X_ERR("ATC_INIT failed\n");
6858                         return -EBUSY;
6859                 }
6860         }
6861
6862         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6863
6864         bnx2x_iov_init_dmae(bp);
6865
6866         /* clean the DMAE memory */
6867         bp->dmae_ready = 1;
6868         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6869
6870         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6871
6872         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6873
6874         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6875
6876         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6877
6878         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6879         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6880         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6881         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6882
6883         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6884
6885         /* QM queues pointers table */
6886         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6887
6888         /* soft reset pulse */
6889         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6890         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6891
6892         if (CNIC_SUPPORT(bp))
6893                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6894
6895         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6896
6897         if (!CHIP_REV_IS_SLOW(bp))
6898                 /* enable hw interrupt from doorbell Q */
6899                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6900
6901         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6902
6903         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6904         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6905
6906         if (!CHIP_IS_E1(bp))
6907                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6908
6909         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6910                 if (IS_MF_AFEX(bp)) {
6911                         /* configure that VNTag and VLAN headers must be
6912                          * received in afex mode
6913                          */
6914                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6915                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6916                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6917                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6918                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6919                 } else {
6920                         /* Bit-map indicating which L2 hdrs may appear
6921                          * after the basic Ethernet header
6922                          */
6923                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6924                                bp->path_has_ovlan ? 7 : 6);
6925                 }
6926         }
6927
6928         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6929         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6930         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6931         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6932
6933         if (!CHIP_IS_E1x(bp)) {
6934                 /* reset VFC memories */
6935                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6936                            VFC_MEMORIES_RST_REG_CAM_RST |
6937                            VFC_MEMORIES_RST_REG_RAM_RST);
6938                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6939                            VFC_MEMORIES_RST_REG_CAM_RST |
6940                            VFC_MEMORIES_RST_REG_RAM_RST);
6941
6942                 msleep(20);
6943         }
6944
6945         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6946         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6947         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6948         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6949
6950         /* sync semi rtc */
6951         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6952                0x80000000);
6953         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6954                0x80000000);
6955
6956         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6957         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6958         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6959
6960         if (!CHIP_IS_E1x(bp)) {
6961                 if (IS_MF_AFEX(bp)) {
6962                         /* configure that VNTag and VLAN headers must be
6963                          * sent in afex mode
6964                          */
6965                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6966                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6967                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6968                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6969                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6970                 } else {
6971                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6972                                bp->path_has_ovlan ? 7 : 6);
6973                 }
6974         }
6975
6976         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6977
6978         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6979
6980         if (CNIC_SUPPORT(bp)) {
6981                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6982                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6983                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6984                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6985                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6986                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6987                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6988                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6989                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6990                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6991         }
6992         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6993
6994         if (sizeof(union cdu_context) != 1024)
6995                 /* we currently assume that a context is 1024 bytes */
6996                 dev_alert(&bp->pdev->dev,
6997                           "please adjust the size of cdu_context(%ld)\n",
6998                           (long)sizeof(union cdu_context));
6999
7000         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7001         val = (4 << 24) + (0 << 12) + 1024;
7002         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7003
7004         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7005         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7006         /* enable context validation interrupt from CFC */
7007         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7008
7009         /* set the thresholds to prevent CFC/CDU race */
7010         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7011
7012         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7013
7014         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7015                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7016
7017         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7018         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7019
7020         /* Reset PCIE errors for debug */
7021         REG_WR(bp, 0x2814, 0xffffffff);
7022         REG_WR(bp, 0x3820, 0xffffffff);
7023
7024         if (!CHIP_IS_E1x(bp)) {
7025                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7026                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7027                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7028                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7029                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7030                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7031                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7032                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7033                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7034                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7035                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7036         }
7037
7038         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7039         if (!CHIP_IS_E1(bp)) {
7040                 /* in E3 this done in per-port section */
7041                 if (!CHIP_IS_E3(bp))
7042                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7043         }
7044         if (CHIP_IS_E1H(bp))
7045                 /* not applicable for E2 (and above ...) */
7046                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7047
7048         if (CHIP_REV_IS_SLOW(bp))
7049                 msleep(200);
7050
7051         /* finish CFC init */
7052         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7053         if (val != 1) {
7054                 BNX2X_ERR("CFC LL_INIT failed\n");
7055                 return -EBUSY;
7056         }
7057         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7058         if (val != 1) {
7059                 BNX2X_ERR("CFC AC_INIT failed\n");
7060                 return -EBUSY;
7061         }
7062         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7063         if (val != 1) {
7064                 BNX2X_ERR("CFC CAM_INIT failed\n");
7065                 return -EBUSY;
7066         }
7067         REG_WR(bp, CFC_REG_DEBUG0, 0);
7068
7069         if (CHIP_IS_E1(bp)) {
7070                 /* read NIG statistic
7071                    to see if this is our first up since powerup */
7072                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7073                 val = *bnx2x_sp(bp, wb_data[0]);
7074
7075                 /* do internal memory self test */
7076                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7077                         BNX2X_ERR("internal mem self test failed\n");
7078                         return -EBUSY;
7079                 }
7080         }
7081
7082         bnx2x_setup_fan_failure_detection(bp);
7083
7084         /* clear PXP2 attentions */
7085         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7086
7087         bnx2x_enable_blocks_attention(bp);
7088         bnx2x_enable_blocks_parity(bp);
7089
7090         if (!BP_NOMCP(bp)) {
7091                 if (CHIP_IS_E1x(bp))
7092                         bnx2x__common_init_phy(bp);
7093         } else
7094                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7095
7096         return 0;
7097 }
7098
7099 /**
7100  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7101  *
7102  * @bp:         driver handle
7103  */
7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7105 {
7106         int rc = bnx2x_init_hw_common(bp);
7107
7108         if (rc)
7109                 return rc;
7110
7111         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7112         if (!BP_NOMCP(bp))
7113                 bnx2x__common_init_phy(bp);
7114
7115         return 0;
7116 }
7117
7118 static int bnx2x_init_hw_port(struct bnx2x *bp)
7119 {
7120         int port = BP_PORT(bp);
7121         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7122         u32 low, high;
7123         u32 val;
7124
7125         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7126
7127         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7128
7129         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7130         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7131         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7132
7133         /* Timers bug workaround: disables the pf_master bit in pglue at
7134          * common phase, we need to enable it here before any dmae access are
7135          * attempted. Therefore we manually added the enable-master to the
7136          * port phase (it also happens in the function phase)
7137          */
7138         if (!CHIP_IS_E1x(bp))
7139                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7140
7141         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7142         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7143         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7144         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7145
7146         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7147         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7148         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7149         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7150
7151         /* QM cid (connection) count */
7152         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7153
7154         if (CNIC_SUPPORT(bp)) {
7155                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7156                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7157                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7158         }
7159
7160         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7161
7162         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7163
7164         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7165
7166                 if (IS_MF(bp))
7167                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7168                 else if (bp->dev->mtu > 4096) {
7169                         if (bp->flags & ONE_PORT_FLAG)
7170                                 low = 160;
7171                         else {
7172                                 val = bp->dev->mtu;
7173                                 /* (24*1024 + val*4)/256 */
7174                                 low = 96 + (val/64) +
7175                                                 ((val % 64) ? 1 : 0);
7176                         }
7177                 } else
7178                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7179                 high = low + 56;        /* 14*1024/256 */
7180                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7181                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7182         }
7183
7184         if (CHIP_MODE_IS_4_PORT(bp))
7185                 REG_WR(bp, (BP_PORT(bp) ?
7186                             BRB1_REG_MAC_GUARANTIED_1 :
7187                             BRB1_REG_MAC_GUARANTIED_0), 40);
7188
7189         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7190         if (CHIP_IS_E3B0(bp)) {
7191                 if (IS_MF_AFEX(bp)) {
7192                         /* configure headers for AFEX mode */
7193                         REG_WR(bp, BP_PORT(bp) ?
7194                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7195                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7196                         REG_WR(bp, BP_PORT(bp) ?
7197                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7198                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7199                         REG_WR(bp, BP_PORT(bp) ?
7200                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7201                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7202                 } else {
7203                         /* Ovlan exists only if we are in multi-function +
7204                          * switch-dependent mode, in switch-independent there
7205                          * is no ovlan headers
7206                          */
7207                         REG_WR(bp, BP_PORT(bp) ?
7208                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7209                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7210                                (bp->path_has_ovlan ? 7 : 6));
7211                 }
7212         }
7213
7214         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7215         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7216         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7217         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7218
7219         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7220         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7221         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7222         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7223
7224         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7225         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7226
7227         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7228
7229         if (CHIP_IS_E1x(bp)) {
7230                 /* configure PBF to work without PAUSE mtu 9000 */
7231                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7232
7233                 /* update threshold */
7234                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7235                 /* update init credit */
7236                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7237
7238                 /* probe changes */
7239                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7240                 udelay(50);
7241                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7242         }
7243
7244         if (CNIC_SUPPORT(bp))
7245                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7246
7247         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7248         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7249
7250         if (CHIP_IS_E1(bp)) {
7251                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7252                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7253         }
7254         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7255
7256         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7257
7258         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7259         /* init aeu_mask_attn_func_0/1:
7260          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7261          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7262          *             bits 4-7 are used for "per vn group attention" */
7263         val = IS_MF(bp) ? 0xF7 : 0x7;
7264         /* Enable DCBX attention for all but E1 */
7265         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7266         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7267
7268         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7269
7270         if (!CHIP_IS_E1x(bp)) {
7271                 /* Bit-map indicating which L2 hdrs may appear after the
7272                  * basic Ethernet header
7273                  */
7274                 if (IS_MF_AFEX(bp))
7275                         REG_WR(bp, BP_PORT(bp) ?
7276                                NIG_REG_P1_HDRS_AFTER_BASIC :
7277                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7278                 else
7279                         REG_WR(bp, BP_PORT(bp) ?
7280                                NIG_REG_P1_HDRS_AFTER_BASIC :
7281                                NIG_REG_P0_HDRS_AFTER_BASIC,
7282                                IS_MF_SD(bp) ? 7 : 6);
7283
7284                 if (CHIP_IS_E3(bp))
7285                         REG_WR(bp, BP_PORT(bp) ?
7286                                    NIG_REG_LLH1_MF_MODE :
7287                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7288         }
7289         if (!CHIP_IS_E3(bp))
7290                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7291
7292         if (!CHIP_IS_E1(bp)) {
7293                 /* 0x2 disable mf_ov, 0x1 enable */
7294                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7295                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7296
7297                 if (!CHIP_IS_E1x(bp)) {
7298                         val = 0;
7299                         switch (bp->mf_mode) {
7300                         case MULTI_FUNCTION_SD:
7301                                 val = 1;
7302                                 break;
7303                         case MULTI_FUNCTION_SI:
7304                         case MULTI_FUNCTION_AFEX:
7305                                 val = 2;
7306                                 break;
7307                         }
7308
7309                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7310                                                   NIG_REG_LLH0_CLS_TYPE), val);
7311                 }
7312                 {
7313                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7314                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7315                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7316                 }
7317         }
7318
7319         /* If SPIO5 is set to generate interrupts, enable it for this port */
7320         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7321         if (val & MISC_SPIO_SPIO5) {
7322                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7323                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7324                 val = REG_RD(bp, reg_addr);
7325                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7326                 REG_WR(bp, reg_addr, val);
7327         }
7328
7329         return 0;
7330 }
7331
7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7333 {
7334         int reg;
7335         u32 wb_write[2];
7336
7337         if (CHIP_IS_E1(bp))
7338                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7339         else
7340                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7341
7342         wb_write[0] = ONCHIP_ADDR1(addr);
7343         wb_write[1] = ONCHIP_ADDR2(addr);
7344         REG_WR_DMAE(bp, reg, wb_write, 2);
7345 }
7346
7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7348 {
7349         u32 data, ctl, cnt = 100;
7350         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7351         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7352         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7353         u32 sb_bit =  1 << (idu_sb_id%32);
7354         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7355         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7356
7357         /* Not supported in BC mode */
7358         if (CHIP_INT_MODE_IS_BC(bp))
7359                 return;
7360
7361         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7362                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7363                 IGU_REGULAR_CLEANUP_SET                         |
7364                 IGU_REGULAR_BCLEANUP;
7365
7366         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7367               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7368               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7369
7370         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7371                          data, igu_addr_data);
7372         REG_WR(bp, igu_addr_data, data);
7373         mmiowb();
7374         barrier();
7375         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7376                           ctl, igu_addr_ctl);
7377         REG_WR(bp, igu_addr_ctl, ctl);
7378         mmiowb();
7379         barrier();
7380
7381         /* wait for clean up to finish */
7382         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7383                 msleep(20);
7384
7385         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7386                 DP(NETIF_MSG_HW,
7387                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7388                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7389         }
7390 }
7391
7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7393 {
7394         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7395 }
7396
7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7398 {
7399         u32 i, base = FUNC_ILT_BASE(func);
7400         for (i = base; i < base + ILT_PER_FUNC; i++)
7401                 bnx2x_ilt_wr(bp, i, 0);
7402 }
7403
7404 static void bnx2x_init_searcher(struct bnx2x *bp)
7405 {
7406         int port = BP_PORT(bp);
7407         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7408         /* T1 hash bits value determines the T1 number of entries */
7409         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7410 }
7411
7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7413 {
7414         int rc;
7415         struct bnx2x_func_state_params func_params = {NULL};
7416         struct bnx2x_func_switch_update_params *switch_update_params =
7417                 &func_params.params.switch_update;
7418
7419         /* Prepare parameters for function state transitions */
7420         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7421         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7422
7423         func_params.f_obj = &bp->func_obj;
7424         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7425
7426         /* Function parameters */
7427         switch_update_params->suspend = suspend;
7428
7429         rc = bnx2x_func_state_change(bp, &func_params);
7430
7431         return rc;
7432 }
7433
7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7435 {
7436         int rc, i, port = BP_PORT(bp);
7437         int vlan_en = 0, mac_en[NUM_MACS];
7438
7439         /* Close input from network */
7440         if (bp->mf_mode == SINGLE_FUNCTION) {
7441                 bnx2x_set_rx_filter(&bp->link_params, 0);
7442         } else {
7443                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444                                    NIG_REG_LLH0_FUNC_EN);
7445                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7446                           NIG_REG_LLH0_FUNC_EN, 0);
7447                 for (i = 0; i < NUM_MACS; i++) {
7448                         mac_en[i] = REG_RD(bp, port ?
7449                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7450                                               4 * i) :
7451                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7452                                               4 * i));
7453                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7454                                               4 * i) :
7455                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7456                 }
7457         }
7458
7459         /* Close BMC to host */
7460         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7461                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7462
7463         /* Suspend Tx switching to the PF. Completion of this ramrod
7464          * further guarantees that all the packets of that PF / child
7465          * VFs in BRB were processed by the Parser, so it is safe to
7466          * change the NIC_MODE register.
7467          */
7468         rc = bnx2x_func_switch_update(bp, 1);
7469         if (rc) {
7470                 BNX2X_ERR("Can't suspend tx-switching!\n");
7471                 return rc;
7472         }
7473
7474         /* Change NIC_MODE register */
7475         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7476
7477         /* Open input from network */
7478         if (bp->mf_mode == SINGLE_FUNCTION) {
7479                 bnx2x_set_rx_filter(&bp->link_params, 1);
7480         } else {
7481                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7482                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7483                 for (i = 0; i < NUM_MACS; i++) {
7484                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7485                                               4 * i) :
7486                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7487                                   mac_en[i]);
7488                 }
7489         }
7490
7491         /* Enable BMC to host */
7492         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7493                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7494
7495         /* Resume Tx switching to the PF */
7496         rc = bnx2x_func_switch_update(bp, 0);
7497         if (rc) {
7498                 BNX2X_ERR("Can't resume tx-switching!\n");
7499                 return rc;
7500         }
7501
7502         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7503         return 0;
7504 }
7505
7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7507 {
7508         int rc;
7509
7510         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7511
7512         if (CONFIGURE_NIC_MODE(bp)) {
7513                 /* Configure searcher as part of function hw init */
7514                 bnx2x_init_searcher(bp);
7515
7516                 /* Reset NIC mode */
7517                 rc = bnx2x_reset_nic_mode(bp);
7518                 if (rc)
7519                         BNX2X_ERR("Can't change NIC mode!\n");
7520                 return rc;
7521         }
7522
7523         return 0;
7524 }
7525
7526 static int bnx2x_init_hw_func(struct bnx2x *bp)
7527 {
7528         int port = BP_PORT(bp);
7529         int func = BP_FUNC(bp);
7530         int init_phase = PHASE_PF0 + func;
7531         struct bnx2x_ilt *ilt = BP_ILT(bp);
7532         u16 cdu_ilt_start;
7533         u32 addr, val;
7534         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7535         int i, main_mem_width, rc;
7536
7537         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7538
7539         /* FLR cleanup - hmmm */
7540         if (!CHIP_IS_E1x(bp)) {
7541                 rc = bnx2x_pf_flr_clnup(bp);
7542                 if (rc) {
7543                         bnx2x_fw_dump(bp);
7544                         return rc;
7545                 }
7546         }
7547
7548         /* set MSI reconfigure capability */
7549         if (bp->common.int_block == INT_BLOCK_HC) {
7550                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7551                 val = REG_RD(bp, addr);
7552                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7553                 REG_WR(bp, addr, val);
7554         }
7555
7556         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7557         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7558
7559         ilt = BP_ILT(bp);
7560         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7561
7562         if (IS_SRIOV(bp))
7563                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7564         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7565
7566         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7567          * those of the VFs, so start line should be reset
7568          */
7569         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7570         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7571                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7572                 ilt->lines[cdu_ilt_start + i].page_mapping =
7573                         bp->context[i].cxt_mapping;
7574                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7575         }
7576
7577         bnx2x_ilt_init_op(bp, INITOP_SET);
7578
7579         if (!CONFIGURE_NIC_MODE(bp)) {
7580                 bnx2x_init_searcher(bp);
7581                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7582                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7583         } else {
7584                 /* Set NIC mode */
7585                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7586                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7587         }
7588
7589         if (!CHIP_IS_E1x(bp)) {
7590                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7591
7592                 /* Turn on a single ISR mode in IGU if driver is going to use
7593                  * INT#x or MSI
7594                  */
7595                 if (!(bp->flags & USING_MSIX_FLAG))
7596                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7597                 /*
7598                  * Timers workaround bug: function init part.
7599                  * Need to wait 20msec after initializing ILT,
7600                  * needed to make sure there are no requests in
7601                  * one of the PXP internal queues with "old" ILT addresses
7602                  */
7603                 msleep(20);
7604                 /*
7605                  * Master enable - Due to WB DMAE writes performed before this
7606                  * register is re-initialized as part of the regular function
7607                  * init
7608                  */
7609                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7610                 /* Enable the function in IGU */
7611                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7612         }
7613
7614         bp->dmae_ready = 1;
7615
7616         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7617
7618         if (!CHIP_IS_E1x(bp))
7619                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7620
7621         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7622         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7623         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7624         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7625         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7626         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7627         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7628         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7629         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7630         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7631         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7632         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7633         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7634
7635         if (!CHIP_IS_E1x(bp))
7636                 REG_WR(bp, QM_REG_PF_EN, 1);
7637
7638         if (!CHIP_IS_E1x(bp)) {
7639                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7642                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7643         }
7644         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7645
7646         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7647         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7648
7649         bnx2x_iov_init_dq(bp);
7650
7651         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7652         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7653         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7654         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7655         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7656         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7657         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7658         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7659         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7660         if (!CHIP_IS_E1x(bp))
7661                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7662
7663         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7664
7665         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7666
7667         if (!CHIP_IS_E1x(bp))
7668                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7669
7670         if (IS_MF(bp)) {
7671                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7672                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7673         }
7674
7675         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7676
7677         /* HC init per function */
7678         if (bp->common.int_block == INT_BLOCK_HC) {
7679                 if (CHIP_IS_E1H(bp)) {
7680                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7681
7682                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7683                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7684                 }
7685                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7686
7687         } else {
7688                 int num_segs, sb_idx, prod_offset;
7689
7690                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7691
7692                 if (!CHIP_IS_E1x(bp)) {
7693                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7694                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7695                 }
7696
7697                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7698
7699                 if (!CHIP_IS_E1x(bp)) {
7700                         int dsb_idx = 0;
7701                         /**
7702                          * Producer memory:
7703                          * E2 mode: address 0-135 match to the mapping memory;
7704                          * 136 - PF0 default prod; 137 - PF1 default prod;
7705                          * 138 - PF2 default prod; 139 - PF3 default prod;
7706                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7707                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7708                          * 144-147 reserved.
7709                          *
7710                          * E1.5 mode - In backward compatible mode;
7711                          * for non default SB; each even line in the memory
7712                          * holds the U producer and each odd line hold
7713                          * the C producer. The first 128 producers are for
7714                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7715                          * producers are for the DSB for each PF.
7716                          * Each PF has five segments: (the order inside each
7717                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7718                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7719                          * 144-147 attn prods;
7720                          */
7721                         /* non-default-status-blocks */
7722                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7723                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7724                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7725                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7726                                         num_segs;
7727
7728                                 for (i = 0; i < num_segs; i++) {
7729                                         addr = IGU_REG_PROD_CONS_MEMORY +
7730                                                         (prod_offset + i) * 4;
7731                                         REG_WR(bp, addr, 0);
7732                                 }
7733                                 /* send consumer update with value 0 */
7734                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7735                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7736                                 bnx2x_igu_clear_sb(bp,
7737                                                    bp->igu_base_sb + sb_idx);
7738                         }
7739
7740                         /* default-status-blocks */
7741                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7742                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7743
7744                         if (CHIP_MODE_IS_4_PORT(bp))
7745                                 dsb_idx = BP_FUNC(bp);
7746                         else
7747                                 dsb_idx = BP_VN(bp);
7748
7749                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7750                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7751                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7752
7753                         /*
7754                          * igu prods come in chunks of E1HVN_MAX (4) -
7755                          * does not matters what is the current chip mode
7756                          */
7757                         for (i = 0; i < (num_segs * E1HVN_MAX);
7758                              i += E1HVN_MAX) {
7759                                 addr = IGU_REG_PROD_CONS_MEMORY +
7760                                                         (prod_offset + i)*4;
7761                                 REG_WR(bp, addr, 0);
7762                         }
7763                         /* send consumer update with 0 */
7764                         if (CHIP_INT_MODE_IS_BC(bp)) {
7765                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7766                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7767                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7768                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7769                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7770                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7771                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7772                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7773                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7774                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7775                         } else {
7776                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7777                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7778                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7779                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7780                         }
7781                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7782
7783                         /* !!! These should become driver const once
7784                            rf-tool supports split-68 const */
7785                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7786                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7787                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7788                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7789                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7790                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7791                 }
7792         }
7793
7794         /* Reset PCIE errors for debug */
7795         REG_WR(bp, 0x2114, 0xffffffff);
7796         REG_WR(bp, 0x2120, 0xffffffff);
7797
7798         if (CHIP_IS_E1x(bp)) {
7799                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7800                 main_mem_base = HC_REG_MAIN_MEMORY +
7801                                 BP_PORT(bp) * (main_mem_size * 4);
7802                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7803                 main_mem_width = 8;
7804
7805                 val = REG_RD(bp, main_mem_prty_clr);
7806                 if (val)
7807                         DP(NETIF_MSG_HW,
7808                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7809                            val);
7810
7811                 /* Clear "false" parity errors in MSI-X table */
7812                 for (i = main_mem_base;
7813                      i < main_mem_base + main_mem_size * 4;
7814                      i += main_mem_width) {
7815                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7816                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7817                                          i, main_mem_width / 4);
7818                 }
7819                 /* Clear HC parity attention */
7820                 REG_RD(bp, main_mem_prty_clr);
7821         }
7822
7823 #ifdef BNX2X_STOP_ON_ERROR
7824         /* Enable STORMs SP logging */
7825         REG_WR8(bp, BAR_USTRORM_INTMEM +
7826                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7827         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7828                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7829         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7830                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7831         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7832                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7833 #endif
7834
7835         bnx2x_phy_probe(&bp->link_params);
7836
7837         return 0;
7838 }
7839
7840 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7841 {
7842         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7843
7844         if (!CHIP_IS_E1x(bp))
7845                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7846                                sizeof(struct host_hc_status_block_e2));
7847         else
7848                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7849                                sizeof(struct host_hc_status_block_e1x));
7850
7851         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7852 }
7853
7854 void bnx2x_free_mem(struct bnx2x *bp)
7855 {
7856         int i;
7857
7858         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7859                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7860
7861         if (IS_VF(bp))
7862                 return;
7863
7864         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7865                        sizeof(struct host_sp_status_block));
7866
7867         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7868                        sizeof(struct bnx2x_slowpath));
7869
7870         for (i = 0; i < L2_ILT_LINES(bp); i++)
7871                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7872                                bp->context[i].size);
7873         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7874
7875         BNX2X_FREE(bp->ilt->lines);
7876
7877         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7878
7879         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7880                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7881
7882         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7883
7884         bnx2x_iov_free_mem(bp);
7885 }
7886
7887 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7888 {
7889         if (!CHIP_IS_E1x(bp))
7890                 /* size = the status block + ramrod buffers */
7891                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7892                                 sizeof(struct host_hc_status_block_e2));
7893         else
7894                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7895                                 &bp->cnic_sb_mapping,
7896                                 sizeof(struct
7897                                        host_hc_status_block_e1x));
7898
7899         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7900                 /* allocate searcher T2 table, as it wasn't allocated before */
7901                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7902
7903         /* write address to which L5 should insert its values */
7904         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7905                 &bp->slowpath->drv_info_to_mcp;
7906
7907         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7908                 goto alloc_mem_err;
7909
7910         return 0;
7911
7912 alloc_mem_err:
7913         bnx2x_free_mem_cnic(bp);
7914         BNX2X_ERR("Can't allocate memory\n");
7915         return -ENOMEM;
7916 }
7917
7918 int bnx2x_alloc_mem(struct bnx2x *bp)
7919 {
7920         int i, allocated, context_size;
7921
7922         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7923                 /* allocate searcher T2 table */
7924                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7925
7926         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7927                         sizeof(struct host_sp_status_block));
7928
7929         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7930                         sizeof(struct bnx2x_slowpath));
7931
7932         /* Allocate memory for CDU context:
7933          * This memory is allocated separately and not in the generic ILT
7934          * functions because CDU differs in few aspects:
7935          * 1. There are multiple entities allocating memory for context -
7936          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7937          * its own ILT lines.
7938          * 2. Since CDU page-size is not a single 4KB page (which is the case
7939          * for the other ILT clients), to be efficient we want to support
7940          * allocation of sub-page-size in the last entry.
7941          * 3. Context pointers are used by the driver to pass to FW / update
7942          * the context (for the other ILT clients the pointers are used just to
7943          * free the memory during unload).
7944          */
7945         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7946
7947         for (i = 0, allocated = 0; allocated < context_size; i++) {
7948                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7949                                           (context_size - allocated));
7950                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7951                                 &bp->context[i].cxt_mapping,
7952                                 bp->context[i].size);
7953                 allocated += bp->context[i].size;
7954         }
7955         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7956
7957         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7958                 goto alloc_mem_err;
7959
7960         if (bnx2x_iov_alloc_mem(bp))
7961                 goto alloc_mem_err;
7962
7963         /* Slow path ring */
7964         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7965
7966         /* EQ */
7967         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7968                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7969
7970         return 0;
7971
7972 alloc_mem_err:
7973         bnx2x_free_mem(bp);
7974         BNX2X_ERR("Can't allocate memory\n");
7975         return -ENOMEM;
7976 }
7977
7978 /*
7979  * Init service functions
7980  */
7981
7982 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7983                       struct bnx2x_vlan_mac_obj *obj, bool set,
7984                       int mac_type, unsigned long *ramrod_flags)
7985 {
7986         int rc;
7987         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7988
7989         memset(&ramrod_param, 0, sizeof(ramrod_param));
7990
7991         /* Fill general parameters */
7992         ramrod_param.vlan_mac_obj = obj;
7993         ramrod_param.ramrod_flags = *ramrod_flags;
7994
7995         /* Fill a user request section if needed */
7996         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7997                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7998
7999                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8000
8001                 /* Set the command: ADD or DEL */
8002                 if (set)
8003                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8004                 else
8005                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8006         }
8007
8008         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8009
8010         if (rc == -EEXIST) {
8011                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8012                 /* do not treat adding same MAC as error */
8013                 rc = 0;
8014         } else if (rc < 0)
8015                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8016
8017         return rc;
8018 }
8019
8020 int bnx2x_del_all_macs(struct bnx2x *bp,
8021                        struct bnx2x_vlan_mac_obj *mac_obj,
8022                        int mac_type, bool wait_for_comp)
8023 {
8024         int rc;
8025         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8026
8027         /* Wait for completion of requested */
8028         if (wait_for_comp)
8029                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8030
8031         /* Set the mac type of addresses we want to clear */
8032         __set_bit(mac_type, &vlan_mac_flags);
8033
8034         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8035         if (rc < 0)
8036                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8037
8038         return rc;
8039 }
8040
8041 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8042 {
8043         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8044             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8045                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8046                    "Ignoring Zero MAC for STORAGE SD mode\n");
8047                 return 0;
8048         }
8049
8050         if (IS_PF(bp)) {
8051                 unsigned long ramrod_flags = 0;
8052
8053                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8054                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8055                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8056                                          &bp->sp_objs->mac_obj, set,
8057                                          BNX2X_ETH_MAC, &ramrod_flags);
8058         } else { /* vf */
8059                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8060                                              bp->fp->index, true);
8061         }
8062 }
8063
8064 int bnx2x_setup_leading(struct bnx2x *bp)
8065 {
8066         if (IS_PF(bp))
8067                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8068         else /* VF */
8069                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8070 }
8071
8072 /**
8073  * bnx2x_set_int_mode - configure interrupt mode
8074  *
8075  * @bp:         driver handle
8076  *
8077  * In case of MSI-X it will also try to enable MSI-X.
8078  */
8079 int bnx2x_set_int_mode(struct bnx2x *bp)
8080 {
8081         int rc = 0;
8082
8083         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8084                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8085                 return -EINVAL;
8086         }
8087
8088         switch (int_mode) {
8089         case BNX2X_INT_MODE_MSIX:
8090                 /* attempt to enable msix */
8091                 rc = bnx2x_enable_msix(bp);
8092
8093                 /* msix attained */
8094                 if (!rc)
8095                         return 0;
8096
8097                 /* vfs use only msix */
8098                 if (rc && IS_VF(bp))
8099                         return rc;
8100
8101                 /* failed to enable multiple MSI-X */
8102                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8103                                bp->num_queues,
8104                                1 + bp->num_cnic_queues);
8105
8106                 /* falling through... */
8107         case BNX2X_INT_MODE_MSI:
8108                 bnx2x_enable_msi(bp);
8109
8110                 /* falling through... */
8111         case BNX2X_INT_MODE_INTX:
8112                 bp->num_ethernet_queues = 1;
8113                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8114                 BNX2X_DEV_INFO("set number of queues to 1\n");
8115                 break;
8116         default:
8117                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8118                 return -EINVAL;
8119         }
8120         return 0;
8121 }
8122
8123 /* must be called prior to any HW initializations */
8124 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8125 {
8126         if (IS_SRIOV(bp))
8127                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8128         return L2_ILT_LINES(bp);
8129 }
8130
8131 void bnx2x_ilt_set_info(struct bnx2x *bp)
8132 {
8133         struct ilt_client_info *ilt_client;
8134         struct bnx2x_ilt *ilt = BP_ILT(bp);
8135         u16 line = 0;
8136
8137         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8138         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8139
8140         /* CDU */
8141         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8142         ilt_client->client_num = ILT_CLIENT_CDU;
8143         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8144         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8145         ilt_client->start = line;
8146         line += bnx2x_cid_ilt_lines(bp);
8147
8148         if (CNIC_SUPPORT(bp))
8149                 line += CNIC_ILT_LINES;
8150         ilt_client->end = line - 1;
8151
8152         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8153            ilt_client->start,
8154            ilt_client->end,
8155            ilt_client->page_size,
8156            ilt_client->flags,
8157            ilog2(ilt_client->page_size >> 12));
8158
8159         /* QM */
8160         if (QM_INIT(bp->qm_cid_count)) {
8161                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8162                 ilt_client->client_num = ILT_CLIENT_QM;
8163                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8164                 ilt_client->flags = 0;
8165                 ilt_client->start = line;
8166
8167                 /* 4 bytes for each cid */
8168                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8169                                                          QM_ILT_PAGE_SZ);
8170
8171                 ilt_client->end = line - 1;
8172
8173                 DP(NETIF_MSG_IFUP,
8174                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8175                    ilt_client->start,
8176                    ilt_client->end,
8177                    ilt_client->page_size,
8178                    ilt_client->flags,
8179                    ilog2(ilt_client->page_size >> 12));
8180         }
8181
8182         if (CNIC_SUPPORT(bp)) {
8183                 /* SRC */
8184                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8185                 ilt_client->client_num = ILT_CLIENT_SRC;
8186                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8187                 ilt_client->flags = 0;
8188                 ilt_client->start = line;
8189                 line += SRC_ILT_LINES;
8190                 ilt_client->end = line - 1;
8191
8192                 DP(NETIF_MSG_IFUP,
8193                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8194                    ilt_client->start,
8195                    ilt_client->end,
8196                    ilt_client->page_size,
8197                    ilt_client->flags,
8198                    ilog2(ilt_client->page_size >> 12));
8199
8200                 /* TM */
8201                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8202                 ilt_client->client_num = ILT_CLIENT_TM;
8203                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8204                 ilt_client->flags = 0;
8205                 ilt_client->start = line;
8206                 line += TM_ILT_LINES;
8207                 ilt_client->end = line - 1;
8208
8209                 DP(NETIF_MSG_IFUP,
8210                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8211                    ilt_client->start,
8212                    ilt_client->end,
8213                    ilt_client->page_size,
8214                    ilt_client->flags,
8215                    ilog2(ilt_client->page_size >> 12));
8216         }
8217
8218         BUG_ON(line > ILT_MAX_LINES);
8219 }
8220
8221 /**
8222  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8223  *
8224  * @bp:                 driver handle
8225  * @fp:                 pointer to fastpath
8226  * @init_params:        pointer to parameters structure
8227  *
8228  * parameters configured:
8229  *      - HC configuration
8230  *      - Queue's CDU context
8231  */
8232 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8233         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8234 {
8235         u8 cos;
8236         int cxt_index, cxt_offset;
8237
8238         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8239         if (!IS_FCOE_FP(fp)) {
8240                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8241                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8242
8243                 /* If HC is supported, enable host coalescing in the transition
8244                  * to INIT state.
8245                  */
8246                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8247                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8248
8249                 /* HC rate */
8250                 init_params->rx.hc_rate = bp->rx_ticks ?
8251                         (1000000 / bp->rx_ticks) : 0;
8252                 init_params->tx.hc_rate = bp->tx_ticks ?
8253                         (1000000 / bp->tx_ticks) : 0;
8254
8255                 /* FW SB ID */
8256                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8257                         fp->fw_sb_id;
8258
8259                 /*
8260                  * CQ index among the SB indices: FCoE clients uses the default
8261                  * SB, therefore it's different.
8262                  */
8263                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8264                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8265         }
8266
8267         /* set maximum number of COSs supported by this queue */
8268         init_params->max_cos = fp->max_cos;
8269
8270         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8271             fp->index, init_params->max_cos);
8272
8273         /* set the context pointers queue object */
8274         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8275                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8276                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8277                                 ILT_PAGE_CIDS);
8278                 init_params->cxts[cos] =
8279                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8280         }
8281 }
8282
8283 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8284                         struct bnx2x_queue_state_params *q_params,
8285                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8286                         int tx_index, bool leading)
8287 {
8288         memset(tx_only_params, 0, sizeof(*tx_only_params));
8289
8290         /* Set the command */
8291         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8292
8293         /* Set tx-only QUEUE flags: don't zero statistics */
8294         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8295
8296         /* choose the index of the cid to send the slow path on */
8297         tx_only_params->cid_index = tx_index;
8298
8299         /* Set general TX_ONLY_SETUP parameters */
8300         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8301
8302         /* Set Tx TX_ONLY_SETUP parameters */
8303         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8304
8305         DP(NETIF_MSG_IFUP,
8306            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8307            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8308            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8309            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8310
8311         /* send the ramrod */
8312         return bnx2x_queue_state_change(bp, q_params);
8313 }
8314
8315 /**
8316  * bnx2x_setup_queue - setup queue
8317  *
8318  * @bp:         driver handle
8319  * @fp:         pointer to fastpath
8320  * @leading:    is leading
8321  *
8322  * This function performs 2 steps in a Queue state machine
8323  *      actually: 1) RESET->INIT 2) INIT->SETUP
8324  */
8325
8326 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8327                        bool leading)
8328 {
8329         struct bnx2x_queue_state_params q_params = {NULL};
8330         struct bnx2x_queue_setup_params *setup_params =
8331                                                 &q_params.params.setup;
8332         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8333                                                 &q_params.params.tx_only;
8334         int rc;
8335         u8 tx_index;
8336
8337         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8338
8339         /* reset IGU state skip FCoE L2 queue */
8340         if (!IS_FCOE_FP(fp))
8341                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8342                              IGU_INT_ENABLE, 0);
8343
8344         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8345         /* We want to wait for completion in this context */
8346         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8347
8348         /* Prepare the INIT parameters */
8349         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8350
8351         /* Set the command */
8352         q_params.cmd = BNX2X_Q_CMD_INIT;
8353
8354         /* Change the state to INIT */
8355         rc = bnx2x_queue_state_change(bp, &q_params);
8356         if (rc) {
8357                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8358                 return rc;
8359         }
8360
8361         DP(NETIF_MSG_IFUP, "init complete\n");
8362
8363         /* Now move the Queue to the SETUP state... */
8364         memset(setup_params, 0, sizeof(*setup_params));
8365
8366         /* Set QUEUE flags */
8367         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8368
8369         /* Set general SETUP parameters */
8370         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8371                                 FIRST_TX_COS_INDEX);
8372
8373         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8374                             &setup_params->rxq_params);
8375
8376         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8377                            FIRST_TX_COS_INDEX);
8378
8379         /* Set the command */
8380         q_params.cmd = BNX2X_Q_CMD_SETUP;
8381
8382         if (IS_FCOE_FP(fp))
8383                 bp->fcoe_init = true;
8384
8385         /* Change the state to SETUP */
8386         rc = bnx2x_queue_state_change(bp, &q_params);
8387         if (rc) {
8388                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8389                 return rc;
8390         }
8391
8392         /* loop through the relevant tx-only indices */
8393         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8394               tx_index < fp->max_cos;
8395               tx_index++) {
8396
8397                 /* prepare and send tx-only ramrod*/
8398                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8399                                           tx_only_params, tx_index, leading);
8400                 if (rc) {
8401                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8402                                   fp->index, tx_index);
8403                         return rc;
8404                 }
8405         }
8406
8407         return rc;
8408 }
8409
8410 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8411 {
8412         struct bnx2x_fastpath *fp = &bp->fp[index];
8413         struct bnx2x_fp_txdata *txdata;
8414         struct bnx2x_queue_state_params q_params = {NULL};
8415         int rc, tx_index;
8416
8417         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8418
8419         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8420         /* We want to wait for completion in this context */
8421         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8422
8423         /* close tx-only connections */
8424         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8425              tx_index < fp->max_cos;
8426              tx_index++){
8427
8428                 /* ascertain this is a normal queue*/
8429                 txdata = fp->txdata_ptr[tx_index];
8430
8431                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8432                                                         txdata->txq_index);
8433
8434                 /* send halt terminate on tx-only connection */
8435                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8436                 memset(&q_params.params.terminate, 0,
8437                        sizeof(q_params.params.terminate));
8438                 q_params.params.terminate.cid_index = tx_index;
8439
8440                 rc = bnx2x_queue_state_change(bp, &q_params);
8441                 if (rc)
8442                         return rc;
8443
8444                 /* send halt terminate on tx-only connection */
8445                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8446                 memset(&q_params.params.cfc_del, 0,
8447                        sizeof(q_params.params.cfc_del));
8448                 q_params.params.cfc_del.cid_index = tx_index;
8449                 rc = bnx2x_queue_state_change(bp, &q_params);
8450                 if (rc)
8451                         return rc;
8452         }
8453         /* Stop the primary connection: */
8454         /* ...halt the connection */
8455         q_params.cmd = BNX2X_Q_CMD_HALT;
8456         rc = bnx2x_queue_state_change(bp, &q_params);
8457         if (rc)
8458                 return rc;
8459
8460         /* ...terminate the connection */
8461         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8462         memset(&q_params.params.terminate, 0,
8463                sizeof(q_params.params.terminate));
8464         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8465         rc = bnx2x_queue_state_change(bp, &q_params);
8466         if (rc)
8467                 return rc;
8468         /* ...delete cfc entry */
8469         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8470         memset(&q_params.params.cfc_del, 0,
8471                sizeof(q_params.params.cfc_del));
8472         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8473         return bnx2x_queue_state_change(bp, &q_params);
8474 }
8475
8476 static void bnx2x_reset_func(struct bnx2x *bp)
8477 {
8478         int port = BP_PORT(bp);
8479         int func = BP_FUNC(bp);
8480         int i;
8481
8482         /* Disable the function in the FW */
8483         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8484         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8485         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8486         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8487
8488         /* FP SBs */
8489         for_each_eth_queue(bp, i) {
8490                 struct bnx2x_fastpath *fp = &bp->fp[i];
8491                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8492                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8493                            SB_DISABLED);
8494         }
8495
8496         if (CNIC_LOADED(bp))
8497                 /* CNIC SB */
8498                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8499                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8500                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8501
8502         /* SP SB */
8503         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8504                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8505                 SB_DISABLED);
8506
8507         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8508                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8509                        0);
8510
8511         /* Configure IGU */
8512         if (bp->common.int_block == INT_BLOCK_HC) {
8513                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8514                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8515         } else {
8516                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8517                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8518         }
8519
8520         if (CNIC_LOADED(bp)) {
8521                 /* Disable Timer scan */
8522                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8523                 /*
8524                  * Wait for at least 10ms and up to 2 second for the timers
8525                  * scan to complete
8526                  */
8527                 for (i = 0; i < 200; i++) {
8528                         usleep_range(10000, 20000);
8529                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8530                                 break;
8531                 }
8532         }
8533         /* Clear ILT */
8534         bnx2x_clear_func_ilt(bp, func);
8535
8536         /* Timers workaround bug for E2: if this is vnic-3,
8537          * we need to set the entire ilt range for this timers.
8538          */
8539         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8540                 struct ilt_client_info ilt_cli;
8541                 /* use dummy TM client */
8542                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8543                 ilt_cli.start = 0;
8544                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8545                 ilt_cli.client_num = ILT_CLIENT_TM;
8546
8547                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8548         }
8549
8550         /* this assumes that reset_port() called before reset_func()*/
8551         if (!CHIP_IS_E1x(bp))
8552                 bnx2x_pf_disable(bp);
8553
8554         bp->dmae_ready = 0;
8555 }
8556
8557 static void bnx2x_reset_port(struct bnx2x *bp)
8558 {
8559         int port = BP_PORT(bp);
8560         u32 val;
8561
8562         /* Reset physical Link */
8563         bnx2x__link_reset(bp);
8564
8565         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8566
8567         /* Do not rcv packets to BRB */
8568         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8569         /* Do not direct rcv packets that are not for MCP to the BRB */
8570         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8571                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8572
8573         /* Configure AEU */
8574         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8575
8576         msleep(100);
8577         /* Check for BRB port occupancy */
8578         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8579         if (val)
8580                 DP(NETIF_MSG_IFDOWN,
8581                    "BRB1 is not empty  %d blocks are occupied\n", val);
8582
8583         /* TODO: Close Doorbell port? */
8584 }
8585
8586 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8587 {
8588         struct bnx2x_func_state_params func_params = {NULL};
8589
8590         /* Prepare parameters for function state transitions */
8591         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8592
8593         func_params.f_obj = &bp->func_obj;
8594         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8595
8596         func_params.params.hw_init.load_phase = load_code;
8597
8598         return bnx2x_func_state_change(bp, &func_params);
8599 }
8600
8601 static int bnx2x_func_stop(struct bnx2x *bp)
8602 {
8603         struct bnx2x_func_state_params func_params = {NULL};
8604         int rc;
8605
8606         /* Prepare parameters for function state transitions */
8607         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8608         func_params.f_obj = &bp->func_obj;
8609         func_params.cmd = BNX2X_F_CMD_STOP;
8610
8611         /*
8612          * Try to stop the function the 'good way'. If fails (in case
8613          * of a parity error during bnx2x_chip_cleanup()) and we are
8614          * not in a debug mode, perform a state transaction in order to
8615          * enable further HW_RESET transaction.
8616          */
8617         rc = bnx2x_func_state_change(bp, &func_params);
8618         if (rc) {
8619 #ifdef BNX2X_STOP_ON_ERROR
8620                 return rc;
8621 #else
8622                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8623                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8624                 return bnx2x_func_state_change(bp, &func_params);
8625 #endif
8626         }
8627
8628         return 0;
8629 }
8630
8631 /**
8632  * bnx2x_send_unload_req - request unload mode from the MCP.
8633  *
8634  * @bp:                 driver handle
8635  * @unload_mode:        requested function's unload mode
8636  *
8637  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8638  */
8639 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8640 {
8641         u32 reset_code = 0;
8642         int port = BP_PORT(bp);
8643
8644         /* Select the UNLOAD request mode */
8645         if (unload_mode == UNLOAD_NORMAL)
8646                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8647
8648         else if (bp->flags & NO_WOL_FLAG)
8649                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8650
8651         else if (bp->wol) {
8652                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8653                 u8 *mac_addr = bp->dev->dev_addr;
8654                 u32 val;
8655                 u16 pmc;
8656
8657                 /* The mac address is written to entries 1-4 to
8658                  * preserve entry 0 which is used by the PMF
8659                  */
8660                 u8 entry = (BP_VN(bp) + 1)*8;
8661
8662                 val = (mac_addr[0] << 8) | mac_addr[1];
8663                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8664
8665                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8666                       (mac_addr[4] << 8) | mac_addr[5];
8667                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8668
8669                 /* Enable the PME and clear the status */
8670                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8671                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8672                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8673
8674                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8675
8676         } else
8677                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8678
8679         /* Send the request to the MCP */
8680         if (!BP_NOMCP(bp))
8681                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8682         else {
8683                 int path = BP_PATH(bp);
8684
8685                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8686                    path, load_count[path][0], load_count[path][1],
8687                    load_count[path][2]);
8688                 load_count[path][0]--;
8689                 load_count[path][1 + port]--;
8690                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8691                    path, load_count[path][0], load_count[path][1],
8692                    load_count[path][2]);
8693                 if (load_count[path][0] == 0)
8694                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8695                 else if (load_count[path][1 + port] == 0)
8696                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8697                 else
8698                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8699         }
8700
8701         return reset_code;
8702 }
8703
8704 /**
8705  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8706  *
8707  * @bp:         driver handle
8708  * @keep_link:          true iff link should be kept up
8709  */
8710 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8711 {
8712         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8713
8714         /* Report UNLOAD_DONE to MCP */
8715         if (!BP_NOMCP(bp))
8716                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8717 }
8718
8719 static int bnx2x_func_wait_started(struct bnx2x *bp)
8720 {
8721         int tout = 50;
8722         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8723
8724         if (!bp->port.pmf)
8725                 return 0;
8726
8727         /*
8728          * (assumption: No Attention from MCP at this stage)
8729          * PMF probably in the middle of TX disable/enable transaction
8730          * 1. Sync IRS for default SB
8731          * 2. Sync SP queue - this guarantees us that attention handling started
8732          * 3. Wait, that TX disable/enable transaction completes
8733          *
8734          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8735          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8736          * received completion for the transaction the state is TX_STOPPED.
8737          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8738          * transaction.
8739          */
8740
8741         /* make sure default SB ISR is done */
8742         if (msix)
8743                 synchronize_irq(bp->msix_table[0].vector);
8744         else
8745                 synchronize_irq(bp->pdev->irq);
8746
8747         flush_workqueue(bnx2x_wq);
8748
8749         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8750                                 BNX2X_F_STATE_STARTED && tout--)
8751                 msleep(20);
8752
8753         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8754                                                 BNX2X_F_STATE_STARTED) {
8755 #ifdef BNX2X_STOP_ON_ERROR
8756                 BNX2X_ERR("Wrong function state\n");
8757                 return -EBUSY;
8758 #else
8759                 /*
8760                  * Failed to complete the transaction in a "good way"
8761                  * Force both transactions with CLR bit
8762                  */
8763                 struct bnx2x_func_state_params func_params = {NULL};
8764
8765                 DP(NETIF_MSG_IFDOWN,
8766                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8767
8768                 func_params.f_obj = &bp->func_obj;
8769                 __set_bit(RAMROD_DRV_CLR_ONLY,
8770                                         &func_params.ramrod_flags);
8771
8772                 /* STARTED-->TX_ST0PPED */
8773                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8774                 bnx2x_func_state_change(bp, &func_params);
8775
8776                 /* TX_ST0PPED-->STARTED */
8777                 func_params.cmd = BNX2X_F_CMD_TX_START;
8778                 return bnx2x_func_state_change(bp, &func_params);
8779 #endif
8780         }
8781
8782         return 0;
8783 }
8784
8785 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8786 {
8787         int port = BP_PORT(bp);
8788         int i, rc = 0;
8789         u8 cos;
8790         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8791         u32 reset_code;
8792
8793         /* Wait until tx fastpath tasks complete */
8794         for_each_tx_queue(bp, i) {
8795                 struct bnx2x_fastpath *fp = &bp->fp[i];
8796
8797                 for_each_cos_in_tx_queue(fp, cos)
8798                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8799 #ifdef BNX2X_STOP_ON_ERROR
8800                 if (rc)
8801                         return;
8802 #endif
8803         }
8804
8805         /* Give HW time to discard old tx messages */
8806         usleep_range(1000, 2000);
8807
8808         /* Clean all ETH MACs */
8809         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8810                                 false);
8811         if (rc < 0)
8812                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8813
8814         /* Clean up UC list  */
8815         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8816                                 true);
8817         if (rc < 0)
8818                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8819                           rc);
8820
8821         /* Disable LLH */
8822         if (!CHIP_IS_E1(bp))
8823                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8824
8825         /* Set "drop all" (stop Rx).
8826          * We need to take a netif_addr_lock() here in order to prevent
8827          * a race between the completion code and this code.
8828          */
8829         netif_addr_lock_bh(bp->dev);
8830         /* Schedule the rx_mode command */
8831         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8832                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8833         else
8834                 bnx2x_set_storm_rx_mode(bp);
8835
8836         /* Cleanup multicast configuration */
8837         rparam.mcast_obj = &bp->mcast_obj;
8838         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8839         if (rc < 0)
8840                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8841
8842         netif_addr_unlock_bh(bp->dev);
8843
8844         bnx2x_iov_chip_cleanup(bp);
8845
8846         /*
8847          * Send the UNLOAD_REQUEST to the MCP. This will return if
8848          * this function should perform FUNC, PORT or COMMON HW
8849          * reset.
8850          */
8851         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8852
8853         /*
8854          * (assumption: No Attention from MCP at this stage)
8855          * PMF probably in the middle of TX disable/enable transaction
8856          */
8857         rc = bnx2x_func_wait_started(bp);
8858         if (rc) {
8859                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8860 #ifdef BNX2X_STOP_ON_ERROR
8861                 return;
8862 #endif
8863         }
8864
8865         /* Close multi and leading connections
8866          * Completions for ramrods are collected in a synchronous way
8867          */
8868         for_each_eth_queue(bp, i)
8869                 if (bnx2x_stop_queue(bp, i))
8870 #ifdef BNX2X_STOP_ON_ERROR
8871                         return;
8872 #else
8873                         goto unload_error;
8874 #endif
8875
8876         if (CNIC_LOADED(bp)) {
8877                 for_each_cnic_queue(bp, i)
8878                         if (bnx2x_stop_queue(bp, i))
8879 #ifdef BNX2X_STOP_ON_ERROR
8880                                 return;
8881 #else
8882                                 goto unload_error;
8883 #endif
8884         }
8885
8886         /* If SP settings didn't get completed so far - something
8887          * very wrong has happen.
8888          */
8889         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8890                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8891
8892 #ifndef BNX2X_STOP_ON_ERROR
8893 unload_error:
8894 #endif
8895         rc = bnx2x_func_stop(bp);
8896         if (rc) {
8897                 BNX2X_ERR("Function stop failed!\n");
8898 #ifdef BNX2X_STOP_ON_ERROR
8899                 return;
8900 #endif
8901         }
8902
8903         /* Disable HW interrupts, NAPI */
8904         bnx2x_netif_stop(bp, 1);
8905         /* Delete all NAPI objects */
8906         bnx2x_del_all_napi(bp);
8907         if (CNIC_LOADED(bp))
8908                 bnx2x_del_all_napi_cnic(bp);
8909
8910         /* Release IRQs */
8911         bnx2x_free_irq(bp);
8912
8913         /* Reset the chip */
8914         rc = bnx2x_reset_hw(bp, reset_code);
8915         if (rc)
8916                 BNX2X_ERR("HW_RESET failed\n");
8917
8918         /* Report UNLOAD_DONE to MCP */
8919         bnx2x_send_unload_done(bp, keep_link);
8920 }
8921
8922 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8923 {
8924         u32 val;
8925
8926         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8927
8928         if (CHIP_IS_E1(bp)) {
8929                 int port = BP_PORT(bp);
8930                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8931                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8932
8933                 val = REG_RD(bp, addr);
8934                 val &= ~(0x300);
8935                 REG_WR(bp, addr, val);
8936         } else {
8937                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8938                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8939                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8940                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8941         }
8942 }
8943
8944 /* Close gates #2, #3 and #4: */
8945 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8946 {
8947         u32 val;
8948
8949         /* Gates #2 and #4a are closed/opened for "not E1" only */
8950         if (!CHIP_IS_E1(bp)) {
8951                 /* #4 */
8952                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8953                 /* #2 */
8954                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8955         }
8956
8957         /* #3 */
8958         if (CHIP_IS_E1x(bp)) {
8959                 /* Prevent interrupts from HC on both ports */
8960                 val = REG_RD(bp, HC_REG_CONFIG_1);
8961                 REG_WR(bp, HC_REG_CONFIG_1,
8962                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8963                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8964
8965                 val = REG_RD(bp, HC_REG_CONFIG_0);
8966                 REG_WR(bp, HC_REG_CONFIG_0,
8967                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8968                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8969         } else {
8970                 /* Prevent incoming interrupts in IGU */
8971                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8972
8973                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8974                        (!close) ?
8975                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8976                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8977         }
8978
8979         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8980                 close ? "closing" : "opening");
8981         mmiowb();
8982 }
8983
8984 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8985
8986 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8987 {
8988         /* Do some magic... */
8989         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8990         *magic_val = val & SHARED_MF_CLP_MAGIC;
8991         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8992 }
8993
8994 /**
8995  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8996  *
8997  * @bp:         driver handle
8998  * @magic_val:  old value of the `magic' bit.
8999  */
9000 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9001 {
9002         /* Restore the `magic' bit value... */
9003         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9004         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9005                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9006 }
9007
9008 /**
9009  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9010  *
9011  * @bp:         driver handle
9012  * @magic_val:  old value of 'magic' bit.
9013  *
9014  * Takes care of CLP configurations.
9015  */
9016 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9017 {
9018         u32 shmem;
9019         u32 validity_offset;
9020
9021         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9022
9023         /* Set `magic' bit in order to save MF config */
9024         if (!CHIP_IS_E1(bp))
9025                 bnx2x_clp_reset_prep(bp, magic_val);
9026
9027         /* Get shmem offset */
9028         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9029         validity_offset =
9030                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9031
9032         /* Clear validity map flags */
9033         if (shmem > 0)
9034                 REG_WR(bp, shmem + validity_offset, 0);
9035 }
9036
9037 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9038 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9039
9040 /**
9041  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9042  *
9043  * @bp: driver handle
9044  */
9045 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9046 {
9047         /* special handling for emulation and FPGA,
9048            wait 10 times longer */
9049         if (CHIP_REV_IS_SLOW(bp))
9050                 msleep(MCP_ONE_TIMEOUT*10);
9051         else
9052                 msleep(MCP_ONE_TIMEOUT);
9053 }
9054
9055 /*
9056  * initializes bp->common.shmem_base and waits for validity signature to appear
9057  */
9058 static int bnx2x_init_shmem(struct bnx2x *bp)
9059 {
9060         int cnt = 0;
9061         u32 val = 0;
9062
9063         do {
9064                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9065                 if (bp->common.shmem_base) {
9066                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9067                         if (val & SHR_MEM_VALIDITY_MB)
9068                                 return 0;
9069                 }
9070
9071                 bnx2x_mcp_wait_one(bp);
9072
9073         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9074
9075         BNX2X_ERR("BAD MCP validity signature\n");
9076
9077         return -ENODEV;
9078 }
9079
9080 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9081 {
9082         int rc = bnx2x_init_shmem(bp);
9083
9084         /* Restore the `magic' bit value */
9085         if (!CHIP_IS_E1(bp))
9086                 bnx2x_clp_reset_done(bp, magic_val);
9087
9088         return rc;
9089 }
9090
9091 static void bnx2x_pxp_prep(struct bnx2x *bp)
9092 {
9093         if (!CHIP_IS_E1(bp)) {
9094                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9095                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9096                 mmiowb();
9097         }
9098 }
9099
9100 /*
9101  * Reset the whole chip except for:
9102  *      - PCIE core
9103  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9104  *              one reset bit)
9105  *      - IGU
9106  *      - MISC (including AEU)
9107  *      - GRC
9108  *      - RBCN, RBCP
9109  */
9110 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9111 {
9112         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9113         u32 global_bits2, stay_reset2;
9114
9115         /*
9116          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9117          * (per chip) blocks.
9118          */
9119         global_bits2 =
9120                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9121                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9122
9123         /* Don't reset the following blocks.
9124          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9125          *            reset, as in 4 port device they might still be owned
9126          *            by the MCP (there is only one leader per path).
9127          */
9128         not_reset_mask1 =
9129                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9130                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9131                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9132
9133         not_reset_mask2 =
9134                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9135                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9136                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9137                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9138                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9139                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9140                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9141                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9142                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9143                 MISC_REGISTERS_RESET_REG_2_PGLC |
9144                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9145                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9146                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9147                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9148                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9149                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9150
9151         /*
9152          * Keep the following blocks in reset:
9153          *  - all xxMACs are handled by the bnx2x_link code.
9154          */
9155         stay_reset2 =
9156                 MISC_REGISTERS_RESET_REG_2_XMAC |
9157                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9158
9159         /* Full reset masks according to the chip */
9160         reset_mask1 = 0xffffffff;
9161
9162         if (CHIP_IS_E1(bp))
9163                 reset_mask2 = 0xffff;
9164         else if (CHIP_IS_E1H(bp))
9165                 reset_mask2 = 0x1ffff;
9166         else if (CHIP_IS_E2(bp))
9167                 reset_mask2 = 0xfffff;
9168         else /* CHIP_IS_E3 */
9169                 reset_mask2 = 0x3ffffff;
9170
9171         /* Don't reset global blocks unless we need to */
9172         if (!global)
9173                 reset_mask2 &= ~global_bits2;
9174
9175         /*
9176          * In case of attention in the QM, we need to reset PXP
9177          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9178          * because otherwise QM reset would release 'close the gates' shortly
9179          * before resetting the PXP, then the PSWRQ would send a write
9180          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9181          * read the payload data from PSWWR, but PSWWR would not
9182          * respond. The write queue in PGLUE would stuck, dmae commands
9183          * would not return. Therefore it's important to reset the second
9184          * reset register (containing the
9185          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9186          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9187          * bit).
9188          */
9189         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9190                reset_mask2 & (~not_reset_mask2));
9191
9192         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9193                reset_mask1 & (~not_reset_mask1));
9194
9195         barrier();
9196         mmiowb();
9197
9198         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9199                reset_mask2 & (~stay_reset2));
9200
9201         barrier();
9202         mmiowb();
9203
9204         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9205         mmiowb();
9206 }
9207
9208 /**
9209  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9210  * It should get cleared in no more than 1s.
9211  *
9212  * @bp: driver handle
9213  *
9214  * It should get cleared in no more than 1s. Returns 0 if
9215  * pending writes bit gets cleared.
9216  */
9217 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9218 {
9219         u32 cnt = 1000;
9220         u32 pend_bits = 0;
9221
9222         do {
9223                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9224
9225                 if (pend_bits == 0)
9226                         break;
9227
9228                 usleep_range(1000, 2000);
9229         } while (cnt-- > 0);
9230
9231         if (cnt <= 0) {
9232                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9233                           pend_bits);
9234                 return -EBUSY;
9235         }
9236
9237         return 0;
9238 }
9239
9240 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9241 {
9242         int cnt = 1000;
9243         u32 val = 0;
9244         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9245         u32 tags_63_32 = 0;
9246
9247         /* Empty the Tetris buffer, wait for 1s */
9248         do {
9249                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9250                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9251                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9252                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9253                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9254                 if (CHIP_IS_E3(bp))
9255                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9256
9257                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9258                     ((port_is_idle_0 & 0x1) == 0x1) &&
9259                     ((port_is_idle_1 & 0x1) == 0x1) &&
9260                     (pgl_exp_rom2 == 0xffffffff) &&
9261                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9262                         break;
9263                 usleep_range(1000, 2000);
9264         } while (cnt-- > 0);
9265
9266         if (cnt <= 0) {
9267                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9268                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9269                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9270                           pgl_exp_rom2);
9271                 return -EAGAIN;
9272         }
9273
9274         barrier();
9275
9276         /* Close gates #2, #3 and #4 */
9277         bnx2x_set_234_gates(bp, true);
9278
9279         /* Poll for IGU VQs for 57712 and newer chips */
9280         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9281                 return -EAGAIN;
9282
9283         /* TBD: Indicate that "process kill" is in progress to MCP */
9284
9285         /* Clear "unprepared" bit */
9286         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9287         barrier();
9288
9289         /* Make sure all is written to the chip before the reset */
9290         mmiowb();
9291
9292         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9293          * PSWHST, GRC and PSWRD Tetris buffer.
9294          */
9295         usleep_range(1000, 2000);
9296
9297         /* Prepare to chip reset: */
9298         /* MCP */
9299         if (global)
9300                 bnx2x_reset_mcp_prep(bp, &val);
9301
9302         /* PXP */
9303         bnx2x_pxp_prep(bp);
9304         barrier();
9305
9306         /* reset the chip */
9307         bnx2x_process_kill_chip_reset(bp, global);
9308         barrier();
9309
9310         /* Recover after reset: */
9311         /* MCP */
9312         if (global && bnx2x_reset_mcp_comp(bp, val))
9313                 return -EAGAIN;
9314
9315         /* TBD: Add resetting the NO_MCP mode DB here */
9316
9317         /* Open the gates #2, #3 and #4 */
9318         bnx2x_set_234_gates(bp, false);
9319
9320         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9321          * reset state, re-enable attentions. */
9322
9323         return 0;
9324 }
9325
9326 static int bnx2x_leader_reset(struct bnx2x *bp)
9327 {
9328         int rc = 0;
9329         bool global = bnx2x_reset_is_global(bp);
9330         u32 load_code;
9331
9332         /* if not going to reset MCP - load "fake" driver to reset HW while
9333          * driver is owner of the HW
9334          */
9335         if (!global && !BP_NOMCP(bp)) {
9336                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9337                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9338                 if (!load_code) {
9339                         BNX2X_ERR("MCP response failure, aborting\n");
9340                         rc = -EAGAIN;
9341                         goto exit_leader_reset;
9342                 }
9343                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9344                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9345                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9346                         rc = -EAGAIN;
9347                         goto exit_leader_reset2;
9348                 }
9349                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9350                 if (!load_code) {
9351                         BNX2X_ERR("MCP response failure, aborting\n");
9352                         rc = -EAGAIN;
9353                         goto exit_leader_reset2;
9354                 }
9355         }
9356
9357         /* Try to recover after the failure */
9358         if (bnx2x_process_kill(bp, global)) {
9359                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9360                           BP_PATH(bp));
9361                 rc = -EAGAIN;
9362                 goto exit_leader_reset2;
9363         }
9364
9365         /*
9366          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9367          * state.
9368          */
9369         bnx2x_set_reset_done(bp);
9370         if (global)
9371                 bnx2x_clear_reset_global(bp);
9372
9373 exit_leader_reset2:
9374         /* unload "fake driver" if it was loaded */
9375         if (!global && !BP_NOMCP(bp)) {
9376                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9377                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9378         }
9379 exit_leader_reset:
9380         bp->is_leader = 0;
9381         bnx2x_release_leader_lock(bp);
9382         smp_mb();
9383         return rc;
9384 }
9385
9386 static void bnx2x_recovery_failed(struct bnx2x *bp)
9387 {
9388         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9389
9390         /* Disconnect this device */
9391         netif_device_detach(bp->dev);
9392
9393         /*
9394          * Block ifup for all function on this engine until "process kill"
9395          * or power cycle.
9396          */
9397         bnx2x_set_reset_in_progress(bp);
9398
9399         /* Shut down the power */
9400         bnx2x_set_power_state(bp, PCI_D3hot);
9401
9402         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9403
9404         smp_mb();
9405 }
9406
9407 /*
9408  * Assumption: runs under rtnl lock. This together with the fact
9409  * that it's called only from bnx2x_sp_rtnl() ensure that it
9410  * will never be called when netif_running(bp->dev) is false.
9411  */
9412 static void bnx2x_parity_recover(struct bnx2x *bp)
9413 {
9414         bool global = false;
9415         u32 error_recovered, error_unrecovered;
9416         bool is_parity;
9417
9418         DP(NETIF_MSG_HW, "Handling parity\n");
9419         while (1) {
9420                 switch (bp->recovery_state) {
9421                 case BNX2X_RECOVERY_INIT:
9422                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9423                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9424                         WARN_ON(!is_parity);
9425
9426                         /* Try to get a LEADER_LOCK HW lock */
9427                         if (bnx2x_trylock_leader_lock(bp)) {
9428                                 bnx2x_set_reset_in_progress(bp);
9429                                 /*
9430                                  * Check if there is a global attention and if
9431                                  * there was a global attention, set the global
9432                                  * reset bit.
9433                                  */
9434
9435                                 if (global)
9436                                         bnx2x_set_reset_global(bp);
9437
9438                                 bp->is_leader = 1;
9439                         }
9440
9441                         /* Stop the driver */
9442                         /* If interface has been removed - break */
9443                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9444                                 return;
9445
9446                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9447
9448                         /* Ensure "is_leader", MCP command sequence and
9449                          * "recovery_state" update values are seen on other
9450                          * CPUs.
9451                          */
9452                         smp_mb();
9453                         break;
9454
9455                 case BNX2X_RECOVERY_WAIT:
9456                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9457                         if (bp->is_leader) {
9458                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9459                                 bool other_load_status =
9460                                         bnx2x_get_load_status(bp, other_engine);
9461                                 bool load_status =
9462                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9463                                 global = bnx2x_reset_is_global(bp);
9464
9465                                 /*
9466                                  * In case of a parity in a global block, let
9467                                  * the first leader that performs a
9468                                  * leader_reset() reset the global blocks in
9469                                  * order to clear global attentions. Otherwise
9470                                  * the gates will remain closed for that
9471                                  * engine.
9472                                  */
9473                                 if (load_status ||
9474                                     (global && other_load_status)) {
9475                                         /* Wait until all other functions get
9476                                          * down.
9477                                          */
9478                                         schedule_delayed_work(&bp->sp_rtnl_task,
9479                                                                 HZ/10);
9480                                         return;
9481                                 } else {
9482                                         /* If all other functions got down -
9483                                          * try to bring the chip back to
9484                                          * normal. In any case it's an exit
9485                                          * point for a leader.
9486                                          */
9487                                         if (bnx2x_leader_reset(bp)) {
9488                                                 bnx2x_recovery_failed(bp);
9489                                                 return;
9490                                         }
9491
9492                                         /* If we are here, means that the
9493                                          * leader has succeeded and doesn't
9494                                          * want to be a leader any more. Try
9495                                          * to continue as a none-leader.
9496                                          */
9497                                         break;
9498                                 }
9499                         } else { /* non-leader */
9500                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9501                                         /* Try to get a LEADER_LOCK HW lock as
9502                                          * long as a former leader may have
9503                                          * been unloaded by the user or
9504                                          * released a leadership by another
9505                                          * reason.
9506                                          */
9507                                         if (bnx2x_trylock_leader_lock(bp)) {
9508                                                 /* I'm a leader now! Restart a
9509                                                  * switch case.
9510                                                  */
9511                                                 bp->is_leader = 1;
9512                                                 break;
9513                                         }
9514
9515                                         schedule_delayed_work(&bp->sp_rtnl_task,
9516                                                                 HZ/10);
9517                                         return;
9518
9519                                 } else {
9520                                         /*
9521                                          * If there was a global attention, wait
9522                                          * for it to be cleared.
9523                                          */
9524                                         if (bnx2x_reset_is_global(bp)) {
9525                                                 schedule_delayed_work(
9526                                                         &bp->sp_rtnl_task,
9527                                                         HZ/10);
9528                                                 return;
9529                                         }
9530
9531                                         error_recovered =
9532                                           bp->eth_stats.recoverable_error;
9533                                         error_unrecovered =
9534                                           bp->eth_stats.unrecoverable_error;
9535                                         bp->recovery_state =
9536                                                 BNX2X_RECOVERY_NIC_LOADING;
9537                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9538                                                 error_unrecovered++;
9539                                                 netdev_err(bp->dev,
9540                                                            "Recovery failed. Power cycle needed\n");
9541                                                 /* Disconnect this device */
9542                                                 netif_device_detach(bp->dev);
9543                                                 /* Shut down the power */
9544                                                 bnx2x_set_power_state(
9545                                                         bp, PCI_D3hot);
9546                                                 smp_mb();
9547                                         } else {
9548                                                 bp->recovery_state =
9549                                                         BNX2X_RECOVERY_DONE;
9550                                                 error_recovered++;
9551                                                 smp_mb();
9552                                         }
9553                                         bp->eth_stats.recoverable_error =
9554                                                 error_recovered;
9555                                         bp->eth_stats.unrecoverable_error =
9556                                                 error_unrecovered;
9557
9558                                         return;
9559                                 }
9560                         }
9561                 default:
9562                         return;
9563                 }
9564         }
9565 }
9566
9567 static int bnx2x_close(struct net_device *dev);
9568
9569 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9570  * scheduled on a general queue in order to prevent a dead lock.
9571  */
9572 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9573 {
9574         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9575
9576         rtnl_lock();
9577
9578         if (!netif_running(bp->dev)) {
9579                 rtnl_unlock();
9580                 return;
9581         }
9582
9583         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9584 #ifdef BNX2X_STOP_ON_ERROR
9585                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9586                           "you will need to reboot when done\n");
9587                 goto sp_rtnl_not_reset;
9588 #endif
9589                 /*
9590                  * Clear all pending SP commands as we are going to reset the
9591                  * function anyway.
9592                  */
9593                 bp->sp_rtnl_state = 0;
9594                 smp_mb();
9595
9596                 bnx2x_parity_recover(bp);
9597
9598                 rtnl_unlock();
9599                 return;
9600         }
9601
9602         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9603 #ifdef BNX2X_STOP_ON_ERROR
9604                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9605                           "you will need to reboot when done\n");
9606                 goto sp_rtnl_not_reset;
9607 #endif
9608
9609                 /*
9610                  * Clear all pending SP commands as we are going to reset the
9611                  * function anyway.
9612                  */
9613                 bp->sp_rtnl_state = 0;
9614                 smp_mb();
9615
9616                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9617                 bnx2x_nic_load(bp, LOAD_NORMAL);
9618
9619                 rtnl_unlock();
9620                 return;
9621         }
9622 #ifdef BNX2X_STOP_ON_ERROR
9623 sp_rtnl_not_reset:
9624 #endif
9625         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9626                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9627         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9628                 bnx2x_after_function_update(bp);
9629         /*
9630          * in case of fan failure we need to reset id if the "stop on error"
9631          * debug flag is set, since we trying to prevent permanent overheating
9632          * damage
9633          */
9634         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9635                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9636                 netif_device_detach(bp->dev);
9637                 bnx2x_close(bp->dev);
9638                 rtnl_unlock();
9639                 return;
9640         }
9641
9642         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9643                 DP(BNX2X_MSG_SP,
9644                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9645                 bnx2x_vfpf_set_mcast(bp->dev);
9646         }
9647         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9648                                &bp->sp_rtnl_state)){
9649                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9650                         bnx2x_tx_disable(bp);
9651                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9652                 }
9653         }
9654
9655         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9656                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9657                 bnx2x_set_rx_mode_inner(bp);
9658         }
9659
9660         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9661                                &bp->sp_rtnl_state))
9662                 bnx2x_pf_set_vfs_vlan(bp);
9663
9664         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9665                 bnx2x_dcbx_stop_hw_tx(bp);
9666
9667         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9668                 bnx2x_dcbx_resume_hw_tx(bp);
9669
9670         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9671          * can be called from other contexts as well)
9672          */
9673         rtnl_unlock();
9674
9675         /* enable SR-IOV if applicable */
9676         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9677                                                &bp->sp_rtnl_state)) {
9678                 bnx2x_disable_sriov(bp);
9679                 bnx2x_enable_sriov(bp);
9680         }
9681 }
9682
9683 static void bnx2x_period_task(struct work_struct *work)
9684 {
9685         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9686
9687         if (!netif_running(bp->dev))
9688                 goto period_task_exit;
9689
9690         if (CHIP_REV_IS_SLOW(bp)) {
9691                 BNX2X_ERR("period task called on emulation, ignoring\n");
9692                 goto period_task_exit;
9693         }
9694
9695         bnx2x_acquire_phy_lock(bp);
9696         /*
9697          * The barrier is needed to ensure the ordering between the writing to
9698          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9699          * the reading here.
9700          */
9701         smp_mb();
9702         if (bp->port.pmf) {
9703                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9704
9705                 /* Re-queue task in 1 sec */
9706                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9707         }
9708
9709         bnx2x_release_phy_lock(bp);
9710 period_task_exit:
9711         return;
9712 }
9713
9714 /*
9715  * Init service functions
9716  */
9717
9718 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9719 {
9720         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9721         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9722         return base + (BP_ABS_FUNC(bp)) * stride;
9723 }
9724
9725 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9726                                         struct bnx2x_mac_vals *vals)
9727 {
9728         u32 val, base_addr, offset, mask, reset_reg;
9729         bool mac_stopped = false;
9730         u8 port = BP_PORT(bp);
9731
9732         /* reset addresses as they also mark which values were changed */
9733         vals->bmac_addr = 0;
9734         vals->umac_addr = 0;
9735         vals->xmac_addr = 0;
9736         vals->emac_addr = 0;
9737
9738         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9739
9740         if (!CHIP_IS_E3(bp)) {
9741                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9742                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9743                 if ((mask & reset_reg) && val) {
9744                         u32 wb_data[2];
9745                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9746                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9747                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9748                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9749                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9750
9751                         /*
9752                          * use rd/wr since we cannot use dmae. This is safe
9753                          * since MCP won't access the bus due to the request
9754                          * to unload, and no function on the path can be
9755                          * loaded at this time.
9756                          */
9757                         wb_data[0] = REG_RD(bp, base_addr + offset);
9758                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9759                         vals->bmac_addr = base_addr + offset;
9760                         vals->bmac_val[0] = wb_data[0];
9761                         vals->bmac_val[1] = wb_data[1];
9762                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9763                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9764                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9765                 }
9766                 BNX2X_DEV_INFO("Disable emac Rx\n");
9767                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9768                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9769                 REG_WR(bp, vals->emac_addr, 0);
9770                 mac_stopped = true;
9771         } else {
9772                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9773                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9774                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9775                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9776                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9777                                val & ~(1 << 1));
9778                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9779                                val | (1 << 1));
9780                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9781                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9782                         REG_WR(bp, vals->xmac_addr, 0);
9783                         mac_stopped = true;
9784                 }
9785                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9786                 if (mask & reset_reg) {
9787                         BNX2X_DEV_INFO("Disable umac Rx\n");
9788                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9789                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9790                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9791                         REG_WR(bp, vals->umac_addr, 0);
9792                         mac_stopped = true;
9793                 }
9794         }
9795
9796         if (mac_stopped)
9797                 msleep(20);
9798 }
9799
9800 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9801 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9802 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9803 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9804
9805 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9806 {
9807         u16 rcq, bd;
9808         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9809
9810         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9811         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9812
9813         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9814         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9815
9816         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9817                        port, bd, rcq);
9818 }
9819
9820 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9821 {
9822         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9823                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9824         if (!rc) {
9825                 BNX2X_ERR("MCP response failure, aborting\n");
9826                 return -EBUSY;
9827         }
9828
9829         return 0;
9830 }
9831
9832 static struct bnx2x_prev_path_list *
9833                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9834 {
9835         struct bnx2x_prev_path_list *tmp_list;
9836
9837         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9838                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9839                     bp->pdev->bus->number == tmp_list->bus &&
9840                     BP_PATH(bp) == tmp_list->path)
9841                         return tmp_list;
9842
9843         return NULL;
9844 }
9845
9846 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9847 {
9848         struct bnx2x_prev_path_list *tmp_list;
9849         int rc;
9850
9851         rc = down_interruptible(&bnx2x_prev_sem);
9852         if (rc) {
9853                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9854                 return rc;
9855         }
9856
9857         tmp_list = bnx2x_prev_path_get_entry(bp);
9858         if (tmp_list) {
9859                 tmp_list->aer = 1;
9860                 rc = 0;
9861         } else {
9862                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9863                           BP_PATH(bp));
9864         }
9865
9866         up(&bnx2x_prev_sem);
9867
9868         return rc;
9869 }
9870
9871 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9872 {
9873         struct bnx2x_prev_path_list *tmp_list;
9874         int rc = false;
9875
9876         if (down_trylock(&bnx2x_prev_sem))
9877                 return false;
9878
9879         tmp_list = bnx2x_prev_path_get_entry(bp);
9880         if (tmp_list) {
9881                 if (tmp_list->aer) {
9882                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9883                            BP_PATH(bp));
9884                 } else {
9885                         rc = true;
9886                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9887                                        BP_PATH(bp));
9888                 }
9889         }
9890
9891         up(&bnx2x_prev_sem);
9892
9893         return rc;
9894 }
9895
9896 bool bnx2x_port_after_undi(struct bnx2x *bp)
9897 {
9898         struct bnx2x_prev_path_list *entry;
9899         bool val;
9900
9901         down(&bnx2x_prev_sem);
9902
9903         entry = bnx2x_prev_path_get_entry(bp);
9904         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9905
9906         up(&bnx2x_prev_sem);
9907
9908         return val;
9909 }
9910
9911 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9912 {
9913         struct bnx2x_prev_path_list *tmp_list;
9914         int rc;
9915
9916         rc = down_interruptible(&bnx2x_prev_sem);
9917         if (rc) {
9918                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919                 return rc;
9920         }
9921
9922         /* Check whether the entry for this path already exists */
9923         tmp_list = bnx2x_prev_path_get_entry(bp);
9924         if (tmp_list) {
9925                 if (!tmp_list->aer) {
9926                         BNX2X_ERR("Re-Marking the path.\n");
9927                 } else {
9928                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9929                            BP_PATH(bp));
9930                         tmp_list->aer = 0;
9931                 }
9932                 up(&bnx2x_prev_sem);
9933                 return 0;
9934         }
9935         up(&bnx2x_prev_sem);
9936
9937         /* Create an entry for this path and add it */
9938         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9939         if (!tmp_list) {
9940                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9941                 return -ENOMEM;
9942         }
9943
9944         tmp_list->bus = bp->pdev->bus->number;
9945         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9946         tmp_list->path = BP_PATH(bp);
9947         tmp_list->aer = 0;
9948         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9949
9950         rc = down_interruptible(&bnx2x_prev_sem);
9951         if (rc) {
9952                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9953                 kfree(tmp_list);
9954         } else {
9955                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9956                    BP_PATH(bp));
9957                 list_add(&tmp_list->list, &bnx2x_prev_list);
9958                 up(&bnx2x_prev_sem);
9959         }
9960
9961         return rc;
9962 }
9963
9964 static int bnx2x_do_flr(struct bnx2x *bp)
9965 {
9966         int i;
9967         u16 status;
9968         struct pci_dev *dev = bp->pdev;
9969
9970         if (CHIP_IS_E1x(bp)) {
9971                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9972                 return -EINVAL;
9973         }
9974
9975         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9976         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9977                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9978                           bp->common.bc_ver);
9979                 return -EINVAL;
9980         }
9981
9982         /* Wait for Transaction Pending bit clean */
9983         for (i = 0; i < 4; i++) {
9984                 if (i)
9985                         msleep((1 << (i - 1)) * 100);
9986
9987                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9988                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9989                         goto clear;
9990         }
9991
9992         dev_err(&dev->dev,
9993                 "transaction is not cleared; proceeding with reset anyway\n");
9994
9995 clear:
9996
9997         BNX2X_DEV_INFO("Initiating FLR\n");
9998         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9999
10000         return 0;
10001 }
10002
10003 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10004 {
10005         int rc;
10006
10007         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10008
10009         /* Test if previous unload process was already finished for this path */
10010         if (bnx2x_prev_is_path_marked(bp))
10011                 return bnx2x_prev_mcp_done(bp);
10012
10013         BNX2X_DEV_INFO("Path is unmarked\n");
10014
10015         /* If function has FLR capabilities, and existing FW version matches
10016          * the one required, then FLR will be sufficient to clean any residue
10017          * left by previous driver
10018          */
10019         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10020
10021         if (!rc) {
10022                 /* fw version is good */
10023                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10024                 rc = bnx2x_do_flr(bp);
10025         }
10026
10027         if (!rc) {
10028                 /* FLR was performed */
10029                 BNX2X_DEV_INFO("FLR successful\n");
10030                 return 0;
10031         }
10032
10033         BNX2X_DEV_INFO("Could not FLR\n");
10034
10035         /* Close the MCP request, return failure*/
10036         rc = bnx2x_prev_mcp_done(bp);
10037         if (!rc)
10038                 rc = BNX2X_PREV_WAIT_NEEDED;
10039
10040         return rc;
10041 }
10042
10043 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10044 {
10045         u32 reset_reg, tmp_reg = 0, rc;
10046         bool prev_undi = false;
10047         struct bnx2x_mac_vals mac_vals;
10048
10049         /* It is possible a previous function received 'common' answer,
10050          * but hasn't loaded yet, therefore creating a scenario of
10051          * multiple functions receiving 'common' on the same path.
10052          */
10053         BNX2X_DEV_INFO("Common unload Flow\n");
10054
10055         memset(&mac_vals, 0, sizeof(mac_vals));
10056
10057         if (bnx2x_prev_is_path_marked(bp))
10058                 return bnx2x_prev_mcp_done(bp);
10059
10060         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10061
10062         /* Reset should be performed after BRB is emptied */
10063         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10064                 u32 timer_count = 1000;
10065
10066                 /* Close the MAC Rx to prevent BRB from filling up */
10067                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10068
10069                 /* close LLH filters towards the BRB */
10070                 bnx2x_set_rx_filter(&bp->link_params, 0);
10071
10072                 /* Check if the UNDI driver was previously loaded
10073                  * UNDI driver initializes CID offset for normal bell to 0x7
10074                  */
10075                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10076                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10077                         if (tmp_reg == 0x7) {
10078                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10079                                 prev_undi = true;
10080                                 /* clear the UNDI indication */
10081                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10082                                 /* clear possible idle check errors */
10083                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10084                         }
10085                 }
10086                 if (!CHIP_IS_E1x(bp))
10087                         /* block FW from writing to host */
10088                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10089
10090                 /* wait until BRB is empty */
10091                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10092                 while (timer_count) {
10093                         u32 prev_brb = tmp_reg;
10094
10095                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10096                         if (!tmp_reg)
10097                                 break;
10098
10099                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10100
10101                         /* reset timer as long as BRB actually gets emptied */
10102                         if (prev_brb > tmp_reg)
10103                                 timer_count = 1000;
10104                         else
10105                                 timer_count--;
10106
10107                         /* If UNDI resides in memory, manually increment it */
10108                         if (prev_undi)
10109                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10110
10111                         udelay(10);
10112                 }
10113
10114                 if (!timer_count)
10115                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10116         }
10117
10118         /* No packets are in the pipeline, path is ready for reset */
10119         bnx2x_reset_common(bp);
10120
10121         if (mac_vals.xmac_addr)
10122                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10123         if (mac_vals.umac_addr)
10124                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10125         if (mac_vals.emac_addr)
10126                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10127         if (mac_vals.bmac_addr) {
10128                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10129                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10130         }
10131
10132         rc = bnx2x_prev_mark_path(bp, prev_undi);
10133         if (rc) {
10134                 bnx2x_prev_mcp_done(bp);
10135                 return rc;
10136         }
10137
10138         return bnx2x_prev_mcp_done(bp);
10139 }
10140
10141 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10142  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10143  * the addresses of the transaction, resulting in was-error bit set in the pci
10144  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10145  * to clear the interrupt which detected this from the pglueb and the was done
10146  * bit
10147  */
10148 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10149 {
10150         if (!CHIP_IS_E1x(bp)) {
10151                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10152                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10153                         DP(BNX2X_MSG_SP,
10154                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10155                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10156                                1 << BP_FUNC(bp));
10157                 }
10158         }
10159 }
10160
10161 static int bnx2x_prev_unload(struct bnx2x *bp)
10162 {
10163         int time_counter = 10;
10164         u32 rc, fw, hw_lock_reg, hw_lock_val;
10165         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10166
10167         /* clear hw from errors which may have resulted from an interrupted
10168          * dmae transaction.
10169          */
10170         bnx2x_prev_interrupted_dmae(bp);
10171
10172         /* Release previously held locks */
10173         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10174                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10175                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10176
10177         hw_lock_val = REG_RD(bp, hw_lock_reg);
10178         if (hw_lock_val) {
10179                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10180                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10181                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10182                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10183                 }
10184
10185                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10186                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10187         } else
10188                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10189
10190         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10191                 BNX2X_DEV_INFO("Release previously held alr\n");
10192                 bnx2x_release_alr(bp);
10193         }
10194
10195         do {
10196                 int aer = 0;
10197                 /* Lock MCP using an unload request */
10198                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10199                 if (!fw) {
10200                         BNX2X_ERR("MCP response failure, aborting\n");
10201                         rc = -EBUSY;
10202                         break;
10203                 }
10204
10205                 rc = down_interruptible(&bnx2x_prev_sem);
10206                 if (rc) {
10207                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10208                                   rc);
10209                 } else {
10210                         /* If Path is marked by EEH, ignore unload status */
10211                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10212                                  bnx2x_prev_path_get_entry(bp)->aer);
10213                         up(&bnx2x_prev_sem);
10214                 }
10215
10216                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10217                         rc = bnx2x_prev_unload_common(bp);
10218                         break;
10219                 }
10220
10221                 /* non-common reply from MCP might require looping */
10222                 rc = bnx2x_prev_unload_uncommon(bp);
10223                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10224                         break;
10225
10226                 msleep(20);
10227         } while (--time_counter);
10228
10229         if (!time_counter || rc) {
10230                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10231                 rc = -EBUSY;
10232         }
10233
10234         /* Mark function if its port was used to boot from SAN */
10235         if (bnx2x_port_after_undi(bp))
10236                 bp->link_params.feature_config_flags |=
10237                         FEATURE_CONFIG_BOOT_FROM_SAN;
10238
10239         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10240
10241         return rc;
10242 }
10243
10244 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10245 {
10246         u32 val, val2, val3, val4, id, boot_mode;
10247         u16 pmc;
10248
10249         /* Get the chip revision id and number. */
10250         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10251         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10252         id = ((val & 0xffff) << 16);
10253         val = REG_RD(bp, MISC_REG_CHIP_REV);
10254         id |= ((val & 0xf) << 12);
10255
10256         /* Metal is read from PCI regs, but we can't access >=0x400 from
10257          * the configuration space (so we need to reg_rd)
10258          */
10259         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10260         id |= (((val >> 24) & 0xf) << 4);
10261         val = REG_RD(bp, MISC_REG_BOND_ID);
10262         id |= (val & 0xf);
10263         bp->common.chip_id = id;
10264
10265         /* force 57811 according to MISC register */
10266         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10267                 if (CHIP_IS_57810(bp))
10268                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10269                                 (bp->common.chip_id & 0x0000FFFF);
10270                 else if (CHIP_IS_57810_MF(bp))
10271                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10272                                 (bp->common.chip_id & 0x0000FFFF);
10273                 bp->common.chip_id |= 0x1;
10274         }
10275
10276         /* Set doorbell size */
10277         bp->db_size = (1 << BNX2X_DB_SHIFT);
10278
10279         if (!CHIP_IS_E1x(bp)) {
10280                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10281                 if ((val & 1) == 0)
10282                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10283                 else
10284                         val = (val >> 1) & 1;
10285                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10286                                                        "2_PORT_MODE");
10287                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10288                                                  CHIP_2_PORT_MODE;
10289
10290                 if (CHIP_MODE_IS_4_PORT(bp))
10291                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10292                 else
10293                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10294         } else {
10295                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10296                 bp->pfid = bp->pf_num;                  /* 0..7 */
10297         }
10298
10299         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10300
10301         bp->link_params.chip_id = bp->common.chip_id;
10302         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10303
10304         val = (REG_RD(bp, 0x2874) & 0x55);
10305         if ((bp->common.chip_id & 0x1) ||
10306             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10307                 bp->flags |= ONE_PORT_FLAG;
10308                 BNX2X_DEV_INFO("single port device\n");
10309         }
10310
10311         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10312         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10313                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10314         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10315                        bp->common.flash_size, bp->common.flash_size);
10316
10317         bnx2x_init_shmem(bp);
10318
10319         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10320                                         MISC_REG_GENERIC_CR_1 :
10321                                         MISC_REG_GENERIC_CR_0));
10322
10323         bp->link_params.shmem_base = bp->common.shmem_base;
10324         bp->link_params.shmem2_base = bp->common.shmem2_base;
10325         if (SHMEM2_RD(bp, size) >
10326             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10327                 bp->link_params.lfa_base =
10328                 REG_RD(bp, bp->common.shmem2_base +
10329                        (u32)offsetof(struct shmem2_region,
10330                                      lfa_host_addr[BP_PORT(bp)]));
10331         else
10332                 bp->link_params.lfa_base = 0;
10333         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10334                        bp->common.shmem_base, bp->common.shmem2_base);
10335
10336         if (!bp->common.shmem_base) {
10337                 BNX2X_DEV_INFO("MCP not active\n");
10338                 bp->flags |= NO_MCP_FLAG;
10339                 return;
10340         }
10341
10342         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10343         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10344
10345         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10346                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10347                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10348
10349         bp->link_params.feature_config_flags = 0;
10350         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10351         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10352                 bp->link_params.feature_config_flags |=
10353                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10354         else
10355                 bp->link_params.feature_config_flags &=
10356                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10357
10358         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10359         bp->common.bc_ver = val;
10360         BNX2X_DEV_INFO("bc_ver %X\n", val);
10361         if (val < BNX2X_BC_VER) {
10362                 /* for now only warn
10363                  * later we might need to enforce this */
10364                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10365                           BNX2X_BC_VER, val);
10366         }
10367         bp->link_params.feature_config_flags |=
10368                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10369                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10370
10371         bp->link_params.feature_config_flags |=
10372                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10373                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10374         bp->link_params.feature_config_flags |=
10375                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10376                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10377         bp->link_params.feature_config_flags |=
10378                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10379                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10380
10381         bp->link_params.feature_config_flags |=
10382                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10383                 FEATURE_CONFIG_MT_SUPPORT : 0;
10384
10385         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10386                         BC_SUPPORTS_PFC_STATS : 0;
10387
10388         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10389                         BC_SUPPORTS_FCOE_FEATURES : 0;
10390
10391         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10392                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10393
10394         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10395                         BC_SUPPORTS_RMMOD_CMD : 0;
10396
10397         boot_mode = SHMEM_RD(bp,
10398                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10399                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10400         switch (boot_mode) {
10401         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10402                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10403                 break;
10404         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10405                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10406                 break;
10407         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10408                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10409                 break;
10410         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10411                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10412                 break;
10413         }
10414
10415         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10416         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10417
10418         BNX2X_DEV_INFO("%sWoL capable\n",
10419                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10420
10421         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10422         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10423         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10424         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10425
10426         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10427                  val, val2, val3, val4);
10428 }
10429
10430 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10431 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10432
10433 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10434 {
10435         int pfid = BP_FUNC(bp);
10436         int igu_sb_id;
10437         u32 val;
10438         u8 fid, igu_sb_cnt = 0;
10439
10440         bp->igu_base_sb = 0xff;
10441         if (CHIP_INT_MODE_IS_BC(bp)) {
10442                 int vn = BP_VN(bp);
10443                 igu_sb_cnt = bp->igu_sb_cnt;
10444                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10445                         FP_SB_MAX_E1x;
10446
10447                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10448                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10449
10450                 return 0;
10451         }
10452
10453         /* IGU in normal mode - read CAM */
10454         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10455              igu_sb_id++) {
10456                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10457                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10458                         continue;
10459                 fid = IGU_FID(val);
10460                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10461                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10462                                 continue;
10463                         if (IGU_VEC(val) == 0)
10464                                 /* default status block */
10465                                 bp->igu_dsb_id = igu_sb_id;
10466                         else {
10467                                 if (bp->igu_base_sb == 0xff)
10468                                         bp->igu_base_sb = igu_sb_id;
10469                                 igu_sb_cnt++;
10470                         }
10471                 }
10472         }
10473
10474 #ifdef CONFIG_PCI_MSI
10475         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10476          * optional that number of CAM entries will not be equal to the value
10477          * advertised in PCI.
10478          * Driver should use the minimal value of both as the actual status
10479          * block count
10480          */
10481         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10482 #endif
10483
10484         if (igu_sb_cnt == 0) {
10485                 BNX2X_ERR("CAM configuration error\n");
10486                 return -EINVAL;
10487         }
10488
10489         return 0;
10490 }
10491
10492 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10493 {
10494         int cfg_size = 0, idx, port = BP_PORT(bp);
10495
10496         /* Aggregation of supported attributes of all external phys */
10497         bp->port.supported[0] = 0;
10498         bp->port.supported[1] = 0;
10499         switch (bp->link_params.num_phys) {
10500         case 1:
10501                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10502                 cfg_size = 1;
10503                 break;
10504         case 2:
10505                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10506                 cfg_size = 1;
10507                 break;
10508         case 3:
10509                 if (bp->link_params.multi_phy_config &
10510                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10511                         bp->port.supported[1] =
10512                                 bp->link_params.phy[EXT_PHY1].supported;
10513                         bp->port.supported[0] =
10514                                 bp->link_params.phy[EXT_PHY2].supported;
10515                 } else {
10516                         bp->port.supported[0] =
10517                                 bp->link_params.phy[EXT_PHY1].supported;
10518                         bp->port.supported[1] =
10519                                 bp->link_params.phy[EXT_PHY2].supported;
10520                 }
10521                 cfg_size = 2;
10522                 break;
10523         }
10524
10525         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10526                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10527                            SHMEM_RD(bp,
10528                            dev_info.port_hw_config[port].external_phy_config),
10529                            SHMEM_RD(bp,
10530                            dev_info.port_hw_config[port].external_phy_config2));
10531                         return;
10532         }
10533
10534         if (CHIP_IS_E3(bp))
10535                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10536         else {
10537                 switch (switch_cfg) {
10538                 case SWITCH_CFG_1G:
10539                         bp->port.phy_addr = REG_RD(
10540                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10541                         break;
10542                 case SWITCH_CFG_10G:
10543                         bp->port.phy_addr = REG_RD(
10544                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10545                         break;
10546                 default:
10547                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10548                                   bp->port.link_config[0]);
10549                         return;
10550                 }
10551         }
10552         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10553         /* mask what we support according to speed_cap_mask per configuration */
10554         for (idx = 0; idx < cfg_size; idx++) {
10555                 if (!(bp->link_params.speed_cap_mask[idx] &
10556                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10557                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10558
10559                 if (!(bp->link_params.speed_cap_mask[idx] &
10560                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10561                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10562
10563                 if (!(bp->link_params.speed_cap_mask[idx] &
10564                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10565                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10566
10567                 if (!(bp->link_params.speed_cap_mask[idx] &
10568                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10569                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10570
10571                 if (!(bp->link_params.speed_cap_mask[idx] &
10572                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10573                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10574                                                      SUPPORTED_1000baseT_Full);
10575
10576                 if (!(bp->link_params.speed_cap_mask[idx] &
10577                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10578                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10579
10580                 if (!(bp->link_params.speed_cap_mask[idx] &
10581                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10582                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10583
10584                 if (!(bp->link_params.speed_cap_mask[idx] &
10585                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10586                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10587         }
10588
10589         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10590                        bp->port.supported[1]);
10591 }
10592
10593 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10594 {
10595         u32 link_config, idx, cfg_size = 0;
10596         bp->port.advertising[0] = 0;
10597         bp->port.advertising[1] = 0;
10598         switch (bp->link_params.num_phys) {
10599         case 1:
10600         case 2:
10601                 cfg_size = 1;
10602                 break;
10603         case 3:
10604                 cfg_size = 2;
10605                 break;
10606         }
10607         for (idx = 0; idx < cfg_size; idx++) {
10608                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10609                 link_config = bp->port.link_config[idx];
10610                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10611                 case PORT_FEATURE_LINK_SPEED_AUTO:
10612                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10613                                 bp->link_params.req_line_speed[idx] =
10614                                         SPEED_AUTO_NEG;
10615                                 bp->port.advertising[idx] |=
10616                                         bp->port.supported[idx];
10617                                 if (bp->link_params.phy[EXT_PHY1].type ==
10618                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10619                                         bp->port.advertising[idx] |=
10620                                         (SUPPORTED_100baseT_Half |
10621                                          SUPPORTED_100baseT_Full);
10622                         } else {
10623                                 /* force 10G, no AN */
10624                                 bp->link_params.req_line_speed[idx] =
10625                                         SPEED_10000;
10626                                 bp->port.advertising[idx] |=
10627                                         (ADVERTISED_10000baseT_Full |
10628                                          ADVERTISED_FIBRE);
10629                                 continue;
10630                         }
10631                         break;
10632
10633                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10634                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10635                                 bp->link_params.req_line_speed[idx] =
10636                                         SPEED_10;
10637                                 bp->port.advertising[idx] |=
10638                                         (ADVERTISED_10baseT_Full |
10639                                          ADVERTISED_TP);
10640                         } else {
10641                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10642                                             link_config,
10643                                     bp->link_params.speed_cap_mask[idx]);
10644                                 return;
10645                         }
10646                         break;
10647
10648                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10649                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10650                                 bp->link_params.req_line_speed[idx] =
10651                                         SPEED_10;
10652                                 bp->link_params.req_duplex[idx] =
10653                                         DUPLEX_HALF;
10654                                 bp->port.advertising[idx] |=
10655                                         (ADVERTISED_10baseT_Half |
10656                                          ADVERTISED_TP);
10657                         } else {
10658                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10659                                             link_config,
10660                                           bp->link_params.speed_cap_mask[idx]);
10661                                 return;
10662                         }
10663                         break;
10664
10665                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10666                         if (bp->port.supported[idx] &
10667                             SUPPORTED_100baseT_Full) {
10668                                 bp->link_params.req_line_speed[idx] =
10669                                         SPEED_100;
10670                                 bp->port.advertising[idx] |=
10671                                         (ADVERTISED_100baseT_Full |
10672                                          ADVERTISED_TP);
10673                         } else {
10674                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10675                                             link_config,
10676                                           bp->link_params.speed_cap_mask[idx]);
10677                                 return;
10678                         }
10679                         break;
10680
10681                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10682                         if (bp->port.supported[idx] &
10683                             SUPPORTED_100baseT_Half) {
10684                                 bp->link_params.req_line_speed[idx] =
10685                                                                 SPEED_100;
10686                                 bp->link_params.req_duplex[idx] =
10687                                                                 DUPLEX_HALF;
10688                                 bp->port.advertising[idx] |=
10689                                         (ADVERTISED_100baseT_Half |
10690                                          ADVERTISED_TP);
10691                         } else {
10692                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10693                                     link_config,
10694                                     bp->link_params.speed_cap_mask[idx]);
10695                                 return;
10696                         }
10697                         break;
10698
10699                 case PORT_FEATURE_LINK_SPEED_1G:
10700                         if (bp->port.supported[idx] &
10701                             SUPPORTED_1000baseT_Full) {
10702                                 bp->link_params.req_line_speed[idx] =
10703                                         SPEED_1000;
10704                                 bp->port.advertising[idx] |=
10705                                         (ADVERTISED_1000baseT_Full |
10706                                          ADVERTISED_TP);
10707                         } else {
10708                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10709                                     link_config,
10710                                     bp->link_params.speed_cap_mask[idx]);
10711                                 return;
10712                         }
10713                         break;
10714
10715                 case PORT_FEATURE_LINK_SPEED_2_5G:
10716                         if (bp->port.supported[idx] &
10717                             SUPPORTED_2500baseX_Full) {
10718                                 bp->link_params.req_line_speed[idx] =
10719                                         SPEED_2500;
10720                                 bp->port.advertising[idx] |=
10721                                         (ADVERTISED_2500baseX_Full |
10722                                                 ADVERTISED_TP);
10723                         } else {
10724                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10725                                     link_config,
10726                                     bp->link_params.speed_cap_mask[idx]);
10727                                 return;
10728                         }
10729                         break;
10730
10731                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10732                         if (bp->port.supported[idx] &
10733                             SUPPORTED_10000baseT_Full) {
10734                                 bp->link_params.req_line_speed[idx] =
10735                                         SPEED_10000;
10736                                 bp->port.advertising[idx] |=
10737                                         (ADVERTISED_10000baseT_Full |
10738                                                 ADVERTISED_FIBRE);
10739                         } else {
10740                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10741                                     link_config,
10742                                     bp->link_params.speed_cap_mask[idx]);
10743                                 return;
10744                         }
10745                         break;
10746                 case PORT_FEATURE_LINK_SPEED_20G:
10747                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10748
10749                         break;
10750                 default:
10751                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10752                                   link_config);
10753                                 bp->link_params.req_line_speed[idx] =
10754                                                         SPEED_AUTO_NEG;
10755                                 bp->port.advertising[idx] =
10756                                                 bp->port.supported[idx];
10757                         break;
10758                 }
10759
10760                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10761                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10762                 if (bp->link_params.req_flow_ctrl[idx] ==
10763                     BNX2X_FLOW_CTRL_AUTO) {
10764                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10765                                 bp->link_params.req_flow_ctrl[idx] =
10766                                                         BNX2X_FLOW_CTRL_NONE;
10767                         else
10768                                 bnx2x_set_requested_fc(bp);
10769                 }
10770
10771                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10772                                bp->link_params.req_line_speed[idx],
10773                                bp->link_params.req_duplex[idx],
10774                                bp->link_params.req_flow_ctrl[idx],
10775                                bp->port.advertising[idx]);
10776         }
10777 }
10778
10779 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10780 {
10781         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10782         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10783         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10784         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10785 }
10786
10787 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10788 {
10789         int port = BP_PORT(bp);
10790         u32 config;
10791         u32 ext_phy_type, ext_phy_config, eee_mode;
10792
10793         bp->link_params.bp = bp;
10794         bp->link_params.port = port;
10795
10796         bp->link_params.lane_config =
10797                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10798
10799         bp->link_params.speed_cap_mask[0] =
10800                 SHMEM_RD(bp,
10801                          dev_info.port_hw_config[port].speed_capability_mask) &
10802                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10803         bp->link_params.speed_cap_mask[1] =
10804                 SHMEM_RD(bp,
10805                          dev_info.port_hw_config[port].speed_capability_mask2) &
10806                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10807         bp->port.link_config[0] =
10808                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10809
10810         bp->port.link_config[1] =
10811                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10812
10813         bp->link_params.multi_phy_config =
10814                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10815         /* If the device is capable of WoL, set the default state according
10816          * to the HW
10817          */
10818         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10819         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10820                    (config & PORT_FEATURE_WOL_ENABLED));
10821
10822         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10823             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10824                 bp->flags |= NO_ISCSI_FLAG;
10825         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10826             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10827                 bp->flags |= NO_FCOE_FLAG;
10828
10829         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10830                        bp->link_params.lane_config,
10831                        bp->link_params.speed_cap_mask[0],
10832                        bp->port.link_config[0]);
10833
10834         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10835                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10836         bnx2x_phy_probe(&bp->link_params);
10837         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10838
10839         bnx2x_link_settings_requested(bp);
10840
10841         /*
10842          * If connected directly, work with the internal PHY, otherwise, work
10843          * with the external PHY
10844          */
10845         ext_phy_config =
10846                 SHMEM_RD(bp,
10847                          dev_info.port_hw_config[port].external_phy_config);
10848         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10849         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10850                 bp->mdio.prtad = bp->port.phy_addr;
10851
10852         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10853                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10854                 bp->mdio.prtad =
10855                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10856
10857         /* Configure link feature according to nvram value */
10858         eee_mode = (((SHMEM_RD(bp, dev_info.
10859                       port_feature_config[port].eee_power_mode)) &
10860                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10861                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10862         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10863                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10864                                            EEE_MODE_ENABLE_LPI |
10865                                            EEE_MODE_OUTPUT_TIME;
10866         } else {
10867                 bp->link_params.eee_mode = 0;
10868         }
10869 }
10870
10871 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10872 {
10873         u32 no_flags = NO_ISCSI_FLAG;
10874         int port = BP_PORT(bp);
10875         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10876                                 drv_lic_key[port].max_iscsi_conn);
10877
10878         if (!CNIC_SUPPORT(bp)) {
10879                 bp->flags |= no_flags;
10880                 return;
10881         }
10882
10883         /* Get the number of maximum allowed iSCSI connections */
10884         bp->cnic_eth_dev.max_iscsi_conn =
10885                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10886                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10887
10888         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10889                        bp->cnic_eth_dev.max_iscsi_conn);
10890
10891         /*
10892          * If maximum allowed number of connections is zero -
10893          * disable the feature.
10894          */
10895         if (!bp->cnic_eth_dev.max_iscsi_conn)
10896                 bp->flags |= no_flags;
10897 }
10898
10899 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10900 {
10901         /* Port info */
10902         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10903                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10904         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10905                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10906
10907         /* Node info */
10908         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10909                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10910         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10911                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10912 }
10913
10914 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10915 {
10916         u8 count = 0;
10917
10918         if (IS_MF(bp)) {
10919                 u8 fid;
10920
10921                 /* iterate over absolute function ids for this path: */
10922                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10923                         if (IS_MF_SD(bp)) {
10924                                 u32 cfg = MF_CFG_RD(bp,
10925                                                     func_mf_config[fid].config);
10926
10927                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10928                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10929                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10930                                         count++;
10931                         } else {
10932                                 u32 cfg = MF_CFG_RD(bp,
10933                                                     func_ext_config[fid].
10934                                                                       func_cfg);
10935
10936                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10937                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10938                                         count++;
10939                         }
10940                 }
10941         } else { /* SF */
10942                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10943
10944                 for (port = 0; port < port_cnt; port++) {
10945                         u32 lic = SHMEM_RD(bp,
10946                                            drv_lic_key[port].max_fcoe_conn) ^
10947                                   FW_ENCODE_32BIT_PATTERN;
10948                         if (lic)
10949                                 count++;
10950                 }
10951         }
10952
10953         return count;
10954 }
10955
10956 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10957 {
10958         int port = BP_PORT(bp);
10959         int func = BP_ABS_FUNC(bp);
10960         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10961                                 drv_lic_key[port].max_fcoe_conn);
10962         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10963
10964         if (!CNIC_SUPPORT(bp)) {
10965                 bp->flags |= NO_FCOE_FLAG;
10966                 return;
10967         }
10968
10969         /* Get the number of maximum allowed FCoE connections */
10970         bp->cnic_eth_dev.max_fcoe_conn =
10971                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10972                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10973
10974         /* Calculate the number of maximum allowed FCoE tasks */
10975         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10976
10977         /* check if FCoE resources must be shared between different functions */
10978         if (num_fcoe_func)
10979                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10980
10981         /* Read the WWN: */
10982         if (!IS_MF(bp)) {
10983                 /* Port info */
10984                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10985                         SHMEM_RD(bp,
10986                                  dev_info.port_hw_config[port].
10987                                  fcoe_wwn_port_name_upper);
10988                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10989                         SHMEM_RD(bp,
10990                                  dev_info.port_hw_config[port].
10991                                  fcoe_wwn_port_name_lower);
10992
10993                 /* Node info */
10994                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10995                         SHMEM_RD(bp,
10996                                  dev_info.port_hw_config[port].
10997                                  fcoe_wwn_node_name_upper);
10998                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10999                         SHMEM_RD(bp,
11000                                  dev_info.port_hw_config[port].
11001                                  fcoe_wwn_node_name_lower);
11002         } else if (!IS_MF_SD(bp)) {
11003                 /*
11004                  * Read the WWN info only if the FCoE feature is enabled for
11005                  * this function.
11006                  */
11007                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11008                         bnx2x_get_ext_wwn_info(bp, func);
11009
11010         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11011                 bnx2x_get_ext_wwn_info(bp, func);
11012         }
11013
11014         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11015
11016         /*
11017          * If maximum allowed number of connections is zero -
11018          * disable the feature.
11019          */
11020         if (!bp->cnic_eth_dev.max_fcoe_conn)
11021                 bp->flags |= NO_FCOE_FLAG;
11022 }
11023
11024 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11025 {
11026         /*
11027          * iSCSI may be dynamically disabled but reading
11028          * info here we will decrease memory usage by driver
11029          * if the feature is disabled for good
11030          */
11031         bnx2x_get_iscsi_info(bp);
11032         bnx2x_get_fcoe_info(bp);
11033 }
11034
11035 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11036 {
11037         u32 val, val2;
11038         int func = BP_ABS_FUNC(bp);
11039         int port = BP_PORT(bp);
11040         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11041         u8 *fip_mac = bp->fip_mac;
11042
11043         if (IS_MF(bp)) {
11044                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11045                  * FCoE MAC then the appropriate feature should be disabled.
11046                  * In non SD mode features configuration comes from struct
11047                  * func_ext_config.
11048                  */
11049                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11050                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11051                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11052                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11053                                                  iscsi_mac_addr_upper);
11054                                 val = MF_CFG_RD(bp, func_ext_config[func].
11055                                                 iscsi_mac_addr_lower);
11056                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11057                                 BNX2X_DEV_INFO
11058                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11059                         } else {
11060                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11061                         }
11062
11063                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11064                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11065                                                  fcoe_mac_addr_upper);
11066                                 val = MF_CFG_RD(bp, func_ext_config[func].
11067                                                 fcoe_mac_addr_lower);
11068                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11069                                 BNX2X_DEV_INFO
11070                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11071                         } else {
11072                                 bp->flags |= NO_FCOE_FLAG;
11073                         }
11074
11075                         bp->mf_ext_config = cfg;
11076
11077                 } else { /* SD MODE */
11078                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11079                                 /* use primary mac as iscsi mac */
11080                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11081
11082                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11083                                 BNX2X_DEV_INFO
11084                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11085                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11086                                 /* use primary mac as fip mac */
11087                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11088                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11089                                 BNX2X_DEV_INFO
11090                                         ("Read FIP MAC: %pM\n", fip_mac);
11091                         }
11092                 }
11093
11094                 /* If this is a storage-only interface, use SAN mac as
11095                  * primary MAC. Notice that for SD this is already the case,
11096                  * as the SAN mac was copied from the primary MAC.
11097                  */
11098                 if (IS_MF_FCOE_AFEX(bp))
11099                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11100         } else {
11101                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11102                                 iscsi_mac_upper);
11103                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11104                                iscsi_mac_lower);
11105                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11106
11107                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11108                                 fcoe_fip_mac_upper);
11109                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11110                                fcoe_fip_mac_lower);
11111                 bnx2x_set_mac_buf(fip_mac, val, val2);
11112         }
11113
11114         /* Disable iSCSI OOO if MAC configuration is invalid. */
11115         if (!is_valid_ether_addr(iscsi_mac)) {
11116                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11117                 memset(iscsi_mac, 0, ETH_ALEN);
11118         }
11119
11120         /* Disable FCoE if MAC configuration is invalid. */
11121         if (!is_valid_ether_addr(fip_mac)) {
11122                 bp->flags |= NO_FCOE_FLAG;
11123                 memset(bp->fip_mac, 0, ETH_ALEN);
11124         }
11125 }
11126
11127 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11128 {
11129         u32 val, val2;
11130         int func = BP_ABS_FUNC(bp);
11131         int port = BP_PORT(bp);
11132
11133         /* Zero primary MAC configuration */
11134         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11135
11136         if (BP_NOMCP(bp)) {
11137                 BNX2X_ERROR("warning: random MAC workaround active\n");
11138                 eth_hw_addr_random(bp->dev);
11139         } else if (IS_MF(bp)) {
11140                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11141                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11142                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11143                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11144                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11145
11146                 if (CNIC_SUPPORT(bp))
11147                         bnx2x_get_cnic_mac_hwinfo(bp);
11148         } else {
11149                 /* in SF read MACs from port configuration */
11150                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11151                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11152                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11153
11154                 if (CNIC_SUPPORT(bp))
11155                         bnx2x_get_cnic_mac_hwinfo(bp);
11156         }
11157
11158         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11159
11160         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11161                 dev_err(&bp->pdev->dev,
11162                         "bad Ethernet MAC address configuration: %pM\n"
11163                         "change it manually before bringing up the appropriate network interface\n",
11164                         bp->dev->dev_addr);
11165 }
11166
11167 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11168 {
11169         int tmp;
11170         u32 cfg;
11171
11172         if (IS_VF(bp))
11173                 return 0;
11174
11175         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11176                 /* Take function: tmp = func */
11177                 tmp = BP_ABS_FUNC(bp);
11178                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11179                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11180         } else {
11181                 /* Take port: tmp = port */
11182                 tmp = BP_PORT(bp);
11183                 cfg = SHMEM_RD(bp,
11184                                dev_info.port_hw_config[tmp].generic_features);
11185                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11186         }
11187         return cfg;
11188 }
11189
11190 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11191 {
11192         int /*abs*/func = BP_ABS_FUNC(bp);
11193         int vn;
11194         u32 val = 0;
11195         int rc = 0;
11196
11197         bnx2x_get_common_hwinfo(bp);
11198
11199         /*
11200          * initialize IGU parameters
11201          */
11202         if (CHIP_IS_E1x(bp)) {
11203                 bp->common.int_block = INT_BLOCK_HC;
11204
11205                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11206                 bp->igu_base_sb = 0;
11207         } else {
11208                 bp->common.int_block = INT_BLOCK_IGU;
11209
11210                 /* do not allow device reset during IGU info processing */
11211                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11212
11213                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11214
11215                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11216                         int tout = 5000;
11217
11218                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11219
11220                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11221                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11222                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11223
11224                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11225                                 tout--;
11226                                 usleep_range(1000, 2000);
11227                         }
11228
11229                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11230                                 dev_err(&bp->pdev->dev,
11231                                         "FORCING Normal Mode failed!!!\n");
11232                                 bnx2x_release_hw_lock(bp,
11233                                                       HW_LOCK_RESOURCE_RESET);
11234                                 return -EPERM;
11235                         }
11236                 }
11237
11238                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11239                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11240                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11241                 } else
11242                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11243
11244                 rc = bnx2x_get_igu_cam_info(bp);
11245                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11246                 if (rc)
11247                         return rc;
11248         }
11249
11250         /*
11251          * set base FW non-default (fast path) status block id, this value is
11252          * used to initialize the fw_sb_id saved on the fp/queue structure to
11253          * determine the id used by the FW.
11254          */
11255         if (CHIP_IS_E1x(bp))
11256                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11257         else /*
11258               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11259               * the same queue are indicated on the same IGU SB). So we prefer
11260               * FW and IGU SBs to be the same value.
11261               */
11262                 bp->base_fw_ndsb = bp->igu_base_sb;
11263
11264         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11265                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11266                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11267
11268         /*
11269          * Initialize MF configuration
11270          */
11271
11272         bp->mf_ov = 0;
11273         bp->mf_mode = 0;
11274         vn = BP_VN(bp);
11275
11276         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11277                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11278                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11279                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11280
11281                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11282                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11283                 else
11284                         bp->common.mf_cfg_base = bp->common.shmem_base +
11285                                 offsetof(struct shmem_region, func_mb) +
11286                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11287                 /*
11288                  * get mf configuration:
11289                  * 1. Existence of MF configuration
11290                  * 2. MAC address must be legal (check only upper bytes)
11291                  *    for  Switch-Independent mode;
11292                  *    OVLAN must be legal for Switch-Dependent mode
11293                  * 3. SF_MODE configures specific MF mode
11294                  */
11295                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11296                         /* get mf configuration */
11297                         val = SHMEM_RD(bp,
11298                                        dev_info.shared_feature_config.config);
11299                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11300
11301                         switch (val) {
11302                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11303                                 val = MF_CFG_RD(bp, func_mf_config[func].
11304                                                 mac_upper);
11305                                 /* check for legal mac (upper bytes)*/
11306                                 if (val != 0xffff) {
11307                                         bp->mf_mode = MULTI_FUNCTION_SI;
11308                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11309                                                    func_mf_config[func].config);
11310                                 } else
11311                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11312                                 break;
11313                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11314                                 if ((!CHIP_IS_E1x(bp)) &&
11315                                     (MF_CFG_RD(bp, func_mf_config[func].
11316                                                mac_upper) != 0xffff) &&
11317                                     (SHMEM2_HAS(bp,
11318                                                 afex_driver_support))) {
11319                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11320                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11321                                                 func_mf_config[func].config);
11322                                 } else {
11323                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11324                                 }
11325                                 break;
11326                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11327                                 /* get OV configuration */
11328                                 val = MF_CFG_RD(bp,
11329                                         func_mf_config[FUNC_0].e1hov_tag);
11330                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11331
11332                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11333                                         bp->mf_mode = MULTI_FUNCTION_SD;
11334                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11335                                                 func_mf_config[func].config);
11336                                 } else
11337                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11338                                 break;
11339                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11340                                 bp->mf_config[vn] = 0;
11341                                 break;
11342                         default:
11343                                 /* Unknown configuration: reset mf_config */
11344                                 bp->mf_config[vn] = 0;
11345                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11346                         }
11347                 }
11348
11349                 BNX2X_DEV_INFO("%s function mode\n",
11350                                IS_MF(bp) ? "multi" : "single");
11351
11352                 switch (bp->mf_mode) {
11353                 case MULTI_FUNCTION_SD:
11354                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11355                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11356                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11357                                 bp->mf_ov = val;
11358                                 bp->path_has_ovlan = true;
11359
11360                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11361                                                func, bp->mf_ov, bp->mf_ov);
11362                         } else {
11363                                 dev_err(&bp->pdev->dev,
11364                                         "No valid MF OV for func %d, aborting\n",
11365                                         func);
11366                                 return -EPERM;
11367                         }
11368                         break;
11369                 case MULTI_FUNCTION_AFEX:
11370                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11371                         break;
11372                 case MULTI_FUNCTION_SI:
11373                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11374                                        func);
11375                         break;
11376                 default:
11377                         if (vn) {
11378                                 dev_err(&bp->pdev->dev,
11379                                         "VN %d is in a single function mode, aborting\n",
11380                                         vn);
11381                                 return -EPERM;
11382                         }
11383                         break;
11384                 }
11385
11386                 /* check if other port on the path needs ovlan:
11387                  * Since MF configuration is shared between ports
11388                  * Possible mixed modes are only
11389                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11390                  */
11391                 if (CHIP_MODE_IS_4_PORT(bp) &&
11392                     !bp->path_has_ovlan &&
11393                     !IS_MF(bp) &&
11394                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11395                         u8 other_port = !BP_PORT(bp);
11396                         u8 other_func = BP_PATH(bp) + 2*other_port;
11397                         val = MF_CFG_RD(bp,
11398                                         func_mf_config[other_func].e1hov_tag);
11399                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11400                                 bp->path_has_ovlan = true;
11401                 }
11402         }
11403
11404         /* adjust igu_sb_cnt to MF for E1x */
11405         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11406                 bp->igu_sb_cnt /= E1HVN_MAX;
11407
11408         /* port info */
11409         bnx2x_get_port_hwinfo(bp);
11410
11411         /* Get MAC addresses */
11412         bnx2x_get_mac_hwinfo(bp);
11413
11414         bnx2x_get_cnic_info(bp);
11415
11416         return rc;
11417 }
11418
11419 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11420 {
11421         int cnt, i, block_end, rodi;
11422         char vpd_start[BNX2X_VPD_LEN+1];
11423         char str_id_reg[VENDOR_ID_LEN+1];
11424         char str_id_cap[VENDOR_ID_LEN+1];
11425         char *vpd_data;
11426         char *vpd_extended_data = NULL;
11427         u8 len;
11428
11429         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11430         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11431
11432         if (cnt < BNX2X_VPD_LEN)
11433                 goto out_not_found;
11434
11435         /* VPD RO tag should be first tag after identifier string, hence
11436          * we should be able to find it in first BNX2X_VPD_LEN chars
11437          */
11438         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11439                              PCI_VPD_LRDT_RO_DATA);
11440         if (i < 0)
11441                 goto out_not_found;
11442
11443         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11444                     pci_vpd_lrdt_size(&vpd_start[i]);
11445
11446         i += PCI_VPD_LRDT_TAG_SIZE;
11447
11448         if (block_end > BNX2X_VPD_LEN) {
11449                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11450                 if (vpd_extended_data  == NULL)
11451                         goto out_not_found;
11452
11453                 /* read rest of vpd image into vpd_extended_data */
11454                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11455                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11456                                    block_end - BNX2X_VPD_LEN,
11457                                    vpd_extended_data + BNX2X_VPD_LEN);
11458                 if (cnt < (block_end - BNX2X_VPD_LEN))
11459                         goto out_not_found;
11460                 vpd_data = vpd_extended_data;
11461         } else
11462                 vpd_data = vpd_start;
11463
11464         /* now vpd_data holds full vpd content in both cases */
11465
11466         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11467                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11468         if (rodi < 0)
11469                 goto out_not_found;
11470
11471         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11472
11473         if (len != VENDOR_ID_LEN)
11474                 goto out_not_found;
11475
11476         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11477
11478         /* vendor specific info */
11479         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11480         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11481         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11482             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11483
11484                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11485                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11486                 if (rodi >= 0) {
11487                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11488
11489                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11490
11491                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11492                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11493                                 bp->fw_ver[len] = ' ';
11494                         }
11495                 }
11496                 kfree(vpd_extended_data);
11497                 return;
11498         }
11499 out_not_found:
11500         kfree(vpd_extended_data);
11501         return;
11502 }
11503
11504 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11505 {
11506         u32 flags = 0;
11507
11508         if (CHIP_REV_IS_FPGA(bp))
11509                 SET_FLAGS(flags, MODE_FPGA);
11510         else if (CHIP_REV_IS_EMUL(bp))
11511                 SET_FLAGS(flags, MODE_EMUL);
11512         else
11513                 SET_FLAGS(flags, MODE_ASIC);
11514
11515         if (CHIP_MODE_IS_4_PORT(bp))
11516                 SET_FLAGS(flags, MODE_PORT4);
11517         else
11518                 SET_FLAGS(flags, MODE_PORT2);
11519
11520         if (CHIP_IS_E2(bp))
11521                 SET_FLAGS(flags, MODE_E2);
11522         else if (CHIP_IS_E3(bp)) {
11523                 SET_FLAGS(flags, MODE_E3);
11524                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11525                         SET_FLAGS(flags, MODE_E3_A0);
11526                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11527                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11528         }
11529
11530         if (IS_MF(bp)) {
11531                 SET_FLAGS(flags, MODE_MF);
11532                 switch (bp->mf_mode) {
11533                 case MULTI_FUNCTION_SD:
11534                         SET_FLAGS(flags, MODE_MF_SD);
11535                         break;
11536                 case MULTI_FUNCTION_SI:
11537                         SET_FLAGS(flags, MODE_MF_SI);
11538                         break;
11539                 case MULTI_FUNCTION_AFEX:
11540                         SET_FLAGS(flags, MODE_MF_AFEX);
11541                         break;
11542                 }
11543         } else
11544                 SET_FLAGS(flags, MODE_SF);
11545
11546 #if defined(__LITTLE_ENDIAN)
11547         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11548 #else /*(__BIG_ENDIAN)*/
11549         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11550 #endif
11551         INIT_MODE_FLAGS(bp) = flags;
11552 }
11553
11554 static int bnx2x_init_bp(struct bnx2x *bp)
11555 {
11556         int func;
11557         int rc;
11558
11559         mutex_init(&bp->port.phy_mutex);
11560         mutex_init(&bp->fw_mb_mutex);
11561         spin_lock_init(&bp->stats_lock);
11562         sema_init(&bp->stats_sema, 1);
11563
11564         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11565         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11566         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11567         if (IS_PF(bp)) {
11568                 rc = bnx2x_get_hwinfo(bp);
11569                 if (rc)
11570                         return rc;
11571         } else {
11572                 eth_zero_addr(bp->dev->dev_addr);
11573         }
11574
11575         bnx2x_set_modes_bitmap(bp);
11576
11577         rc = bnx2x_alloc_mem_bp(bp);
11578         if (rc)
11579                 return rc;
11580
11581         bnx2x_read_fwinfo(bp);
11582
11583         func = BP_FUNC(bp);
11584
11585         /* need to reset chip if undi was active */
11586         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11587                 /* init fw_seq */
11588                 bp->fw_seq =
11589                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11590                                                         DRV_MSG_SEQ_NUMBER_MASK;
11591                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11592
11593                 bnx2x_prev_unload(bp);
11594         }
11595
11596         if (CHIP_REV_IS_FPGA(bp))
11597                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11598
11599         if (BP_NOMCP(bp) && (func == 0))
11600                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11601
11602         bp->disable_tpa = disable_tpa;
11603         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11604
11605         /* Set TPA flags */
11606         if (bp->disable_tpa) {
11607                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11608                 bp->dev->features &= ~NETIF_F_LRO;
11609         } else {
11610                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11611                 bp->dev->features |= NETIF_F_LRO;
11612         }
11613
11614         if (CHIP_IS_E1(bp))
11615                 bp->dropless_fc = 0;
11616         else
11617                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11618
11619         bp->mrrs = mrrs;
11620
11621         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11622         if (IS_VF(bp))
11623                 bp->rx_ring_size = MAX_RX_AVAIL;
11624
11625         /* make sure that the numbers are in the right granularity */
11626         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11627         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11628
11629         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11630
11631         init_timer(&bp->timer);
11632         bp->timer.expires = jiffies + bp->current_interval;
11633         bp->timer.data = (unsigned long) bp;
11634         bp->timer.function = bnx2x_timer;
11635
11636         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11637             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11638             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11639             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11640                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11641                 bnx2x_dcbx_init_params(bp);
11642         } else {
11643                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11644         }
11645
11646         if (CHIP_IS_E1x(bp))
11647                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11648         else
11649                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11650
11651         /* multiple tx priority */
11652         if (IS_VF(bp))
11653                 bp->max_cos = 1;
11654         else if (CHIP_IS_E1x(bp))
11655                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11656         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11657                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11658         else if (CHIP_IS_E3B0(bp))
11659                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11660         else
11661                 BNX2X_ERR("unknown chip %x revision %x\n",
11662                           CHIP_NUM(bp), CHIP_REV(bp));
11663         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11664
11665         /* We need at least one default status block for slow-path events,
11666          * second status block for the L2 queue, and a third status block for
11667          * CNIC if supported.
11668          */
11669         if (IS_VF(bp))
11670                 bp->min_msix_vec_cnt = 1;
11671         else if (CNIC_SUPPORT(bp))
11672                 bp->min_msix_vec_cnt = 3;
11673         else /* PF w/o cnic */
11674                 bp->min_msix_vec_cnt = 2;
11675         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11676
11677         bp->dump_preset_idx = 1;
11678
11679         return rc;
11680 }
11681
11682 /****************************************************************************
11683 * General service functions
11684 ****************************************************************************/
11685
11686 /*
11687  * net_device service functions
11688  */
11689
11690 /* called with rtnl_lock */
11691 static int bnx2x_open(struct net_device *dev)
11692 {
11693         struct bnx2x *bp = netdev_priv(dev);
11694         bool global = false;
11695         int other_engine = BP_PATH(bp) ? 0 : 1;
11696         bool other_load_status, load_status;
11697         int rc;
11698
11699         bp->stats_init = true;
11700
11701         netif_carrier_off(dev);
11702
11703         bnx2x_set_power_state(bp, PCI_D0);
11704
11705         /* If parity had happen during the unload, then attentions
11706          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11707          * want the first function loaded on the current engine to
11708          * complete the recovery.
11709          * Parity recovery is only relevant for PF driver.
11710          */
11711         if (IS_PF(bp)) {
11712                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11713                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11714                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11715                     bnx2x_chk_parity_attn(bp, &global, true)) {
11716                         do {
11717                                 /* If there are attentions and they are in a
11718                                  * global blocks, set the GLOBAL_RESET bit
11719                                  * regardless whether it will be this function
11720                                  * that will complete the recovery or not.
11721                                  */
11722                                 if (global)
11723                                         bnx2x_set_reset_global(bp);
11724
11725                                 /* Only the first function on the current
11726                                  * engine should try to recover in open. In case
11727                                  * of attentions in global blocks only the first
11728                                  * in the chip should try to recover.
11729                                  */
11730                                 if ((!load_status &&
11731                                      (!global || !other_load_status)) &&
11732                                       bnx2x_trylock_leader_lock(bp) &&
11733                                       !bnx2x_leader_reset(bp)) {
11734                                         netdev_info(bp->dev,
11735                                                     "Recovered in open\n");
11736                                         break;
11737                                 }
11738
11739                                 /* recovery has failed... */
11740                                 bnx2x_set_power_state(bp, PCI_D3hot);
11741                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11742
11743                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11744                                           "If you still see this message after a few retries then power cycle is required.\n");
11745
11746                                 return -EAGAIN;
11747                         } while (0);
11748                 }
11749         }
11750
11751         bp->recovery_state = BNX2X_RECOVERY_DONE;
11752         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11753         if (rc)
11754                 return rc;
11755         return bnx2x_open_epilog(bp);
11756 }
11757
11758 /* called with rtnl_lock */
11759 static int bnx2x_close(struct net_device *dev)
11760 {
11761         struct bnx2x *bp = netdev_priv(dev);
11762
11763         /* Unload the driver, release IRQs */
11764         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11765
11766         return 0;
11767 }
11768
11769 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11770                                       struct bnx2x_mcast_ramrod_params *p)
11771 {
11772         int mc_count = netdev_mc_count(bp->dev);
11773         struct bnx2x_mcast_list_elem *mc_mac =
11774                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11775         struct netdev_hw_addr *ha;
11776
11777         if (!mc_mac)
11778                 return -ENOMEM;
11779
11780         INIT_LIST_HEAD(&p->mcast_list);
11781
11782         netdev_for_each_mc_addr(ha, bp->dev) {
11783                 mc_mac->mac = bnx2x_mc_addr(ha);
11784                 list_add_tail(&mc_mac->link, &p->mcast_list);
11785                 mc_mac++;
11786         }
11787
11788         p->mcast_list_len = mc_count;
11789
11790         return 0;
11791 }
11792
11793 static void bnx2x_free_mcast_macs_list(
11794         struct bnx2x_mcast_ramrod_params *p)
11795 {
11796         struct bnx2x_mcast_list_elem *mc_mac =
11797                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11798                                  link);
11799
11800         WARN_ON(!mc_mac);
11801         kfree(mc_mac);
11802 }
11803
11804 /**
11805  * bnx2x_set_uc_list - configure a new unicast MACs list.
11806  *
11807  * @bp: driver handle
11808  *
11809  * We will use zero (0) as a MAC type for these MACs.
11810  */
11811 static int bnx2x_set_uc_list(struct bnx2x *bp)
11812 {
11813         int rc;
11814         struct net_device *dev = bp->dev;
11815         struct netdev_hw_addr *ha;
11816         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11817         unsigned long ramrod_flags = 0;
11818
11819         /* First schedule a cleanup up of old configuration */
11820         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11821         if (rc < 0) {
11822                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11823                 return rc;
11824         }
11825
11826         netdev_for_each_uc_addr(ha, dev) {
11827                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11828                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11829                 if (rc == -EEXIST) {
11830                         DP(BNX2X_MSG_SP,
11831                            "Failed to schedule ADD operations: %d\n", rc);
11832                         /* do not treat adding same MAC as error */
11833                         rc = 0;
11834
11835                 } else if (rc < 0) {
11836
11837                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11838                                   rc);
11839                         return rc;
11840                 }
11841         }
11842
11843         /* Execute the pending commands */
11844         __set_bit(RAMROD_CONT, &ramrod_flags);
11845         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11846                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11847 }
11848
11849 static int bnx2x_set_mc_list(struct bnx2x *bp)
11850 {
11851         struct net_device *dev = bp->dev;
11852         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11853         int rc = 0;
11854
11855         rparam.mcast_obj = &bp->mcast_obj;
11856
11857         /* first, clear all configured multicast MACs */
11858         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11859         if (rc < 0) {
11860                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11861                 return rc;
11862         }
11863
11864         /* then, configure a new MACs list */
11865         if (netdev_mc_count(dev)) {
11866                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11867                 if (rc) {
11868                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11869                                   rc);
11870                         return rc;
11871                 }
11872
11873                 /* Now add the new MACs */
11874                 rc = bnx2x_config_mcast(bp, &rparam,
11875                                         BNX2X_MCAST_CMD_ADD);
11876                 if (rc < 0)
11877                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11878                                   rc);
11879
11880                 bnx2x_free_mcast_macs_list(&rparam);
11881         }
11882
11883         return rc;
11884 }
11885
11886 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11887 void bnx2x_set_rx_mode(struct net_device *dev)
11888 {
11889         struct bnx2x *bp = netdev_priv(dev);
11890
11891         if (bp->state != BNX2X_STATE_OPEN) {
11892                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11893                 return;
11894         } else {
11895                 /* Schedule an SP task to handle rest of change */
11896                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11897                 smp_mb__before_clear_bit();
11898                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11899                 smp_mb__after_clear_bit();
11900                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11901         }
11902 }
11903
11904 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11905 {
11906         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11907
11908         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11909
11910         netif_addr_lock_bh(bp->dev);
11911
11912         if (bp->dev->flags & IFF_PROMISC) {
11913                 rx_mode = BNX2X_RX_MODE_PROMISC;
11914         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
11915                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11916                     CHIP_IS_E1(bp))) {
11917                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11918         } else {
11919                 if (IS_PF(bp)) {
11920                         /* some multicasts */
11921                         if (bnx2x_set_mc_list(bp) < 0)
11922                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11923
11924                         /* release bh lock, as bnx2x_set_uc_list might sleep */
11925                         netif_addr_unlock_bh(bp->dev);
11926                         if (bnx2x_set_uc_list(bp) < 0)
11927                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11928                         netif_addr_lock_bh(bp->dev);
11929                 } else {
11930                         /* configuring mcast to a vf involves sleeping (when we
11931                          * wait for the pf's response).
11932                          */
11933                         smp_mb__before_clear_bit();
11934                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11935                                 &bp->sp_rtnl_state);
11936                         smp_mb__after_clear_bit();
11937                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11938                 }
11939         }
11940
11941         bp->rx_mode = rx_mode;
11942         /* handle ISCSI SD mode */
11943         if (IS_MF_ISCSI_SD(bp))
11944                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11945
11946         /* Schedule the rx_mode command */
11947         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11948                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11949                 netif_addr_unlock_bh(bp->dev);
11950                 return;
11951         }
11952
11953         if (IS_PF(bp)) {
11954                 bnx2x_set_storm_rx_mode(bp);
11955                 netif_addr_unlock_bh(bp->dev);
11956         } else {
11957                 /* VF will need to request the PF to make this change, and so
11958                  * the VF needs to release the bottom-half lock prior to the
11959                  * request (as it will likely require sleep on the VF side)
11960                  */
11961                 netif_addr_unlock_bh(bp->dev);
11962                 bnx2x_vfpf_storm_rx_mode(bp);
11963         }
11964 }
11965
11966 /* called with rtnl_lock */
11967 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11968                            int devad, u16 addr)
11969 {
11970         struct bnx2x *bp = netdev_priv(netdev);
11971         u16 value;
11972         int rc;
11973
11974         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11975            prtad, devad, addr);
11976
11977         /* The HW expects different devad if CL22 is used */
11978         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11979
11980         bnx2x_acquire_phy_lock(bp);
11981         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11982         bnx2x_release_phy_lock(bp);
11983         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11984
11985         if (!rc)
11986                 rc = value;
11987         return rc;
11988 }
11989
11990 /* called with rtnl_lock */
11991 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11992                             u16 addr, u16 value)
11993 {
11994         struct bnx2x *bp = netdev_priv(netdev);
11995         int rc;
11996
11997         DP(NETIF_MSG_LINK,
11998            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11999            prtad, devad, addr, value);
12000
12001         /* The HW expects different devad if CL22 is used */
12002         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12003
12004         bnx2x_acquire_phy_lock(bp);
12005         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12006         bnx2x_release_phy_lock(bp);
12007         return rc;
12008 }
12009
12010 /* called with rtnl_lock */
12011 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12012 {
12013         struct bnx2x *bp = netdev_priv(dev);
12014         struct mii_ioctl_data *mdio = if_mii(ifr);
12015
12016         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12017            mdio->phy_id, mdio->reg_num, mdio->val_in);
12018
12019         if (!netif_running(dev))
12020                 return -EAGAIN;
12021
12022         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12023 }
12024
12025 #ifdef CONFIG_NET_POLL_CONTROLLER
12026 static void poll_bnx2x(struct net_device *dev)
12027 {
12028         struct bnx2x *bp = netdev_priv(dev);
12029         int i;
12030
12031         for_each_eth_queue(bp, i) {
12032                 struct bnx2x_fastpath *fp = &bp->fp[i];
12033                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12034         }
12035 }
12036 #endif
12037
12038 static int bnx2x_validate_addr(struct net_device *dev)
12039 {
12040         struct bnx2x *bp = netdev_priv(dev);
12041
12042         /* query the bulletin board for mac address configured by the PF */
12043         if (IS_VF(bp))
12044                 bnx2x_sample_bulletin(bp);
12045
12046         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12047                 BNX2X_ERR("Non-valid Ethernet address\n");
12048                 return -EADDRNOTAVAIL;
12049         }
12050         return 0;
12051 }
12052
12053 static const struct net_device_ops bnx2x_netdev_ops = {
12054         .ndo_open               = bnx2x_open,
12055         .ndo_stop               = bnx2x_close,
12056         .ndo_start_xmit         = bnx2x_start_xmit,
12057         .ndo_select_queue       = bnx2x_select_queue,
12058         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12059         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12060         .ndo_validate_addr      = bnx2x_validate_addr,
12061         .ndo_do_ioctl           = bnx2x_ioctl,
12062         .ndo_change_mtu         = bnx2x_change_mtu,
12063         .ndo_fix_features       = bnx2x_fix_features,
12064         .ndo_set_features       = bnx2x_set_features,
12065         .ndo_tx_timeout         = bnx2x_tx_timeout,
12066 #ifdef CONFIG_NET_POLL_CONTROLLER
12067         .ndo_poll_controller    = poll_bnx2x,
12068 #endif
12069         .ndo_setup_tc           = bnx2x_setup_tc,
12070 #ifdef CONFIG_BNX2X_SRIOV
12071         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12072         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12073         .ndo_get_vf_config      = bnx2x_get_vf_config,
12074 #endif
12075 #ifdef NETDEV_FCOE_WWNN
12076         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12077 #endif
12078
12079 #ifdef CONFIG_NET_RX_BUSY_POLL
12080         .ndo_busy_poll          = bnx2x_low_latency_recv,
12081 #endif
12082 };
12083
12084 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12085 {
12086         struct device *dev = &bp->pdev->dev;
12087
12088         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12089                 bp->flags |= USING_DAC_FLAG;
12090                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12091                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12092                         return -EIO;
12093                 }
12094         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12095                 dev_err(dev, "System does not support DMA, aborting\n");
12096                 return -EIO;
12097         }
12098
12099         return 0;
12100 }
12101
12102 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12103                           struct net_device *dev, unsigned long board_type)
12104 {
12105         int rc;
12106         u32 pci_cfg_dword;
12107         bool chip_is_e1x = (board_type == BCM57710 ||
12108                             board_type == BCM57711 ||
12109                             board_type == BCM57711E);
12110
12111         SET_NETDEV_DEV(dev, &pdev->dev);
12112
12113         bp->dev = dev;
12114         bp->pdev = pdev;
12115
12116         rc = pci_enable_device(pdev);
12117         if (rc) {
12118                 dev_err(&bp->pdev->dev,
12119                         "Cannot enable PCI device, aborting\n");
12120                 goto err_out;
12121         }
12122
12123         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12124                 dev_err(&bp->pdev->dev,
12125                         "Cannot find PCI device base address, aborting\n");
12126                 rc = -ENODEV;
12127                 goto err_out_disable;
12128         }
12129
12130         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12131                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12132                 rc = -ENODEV;
12133                 goto err_out_disable;
12134         }
12135
12136         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12137         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12138             PCICFG_REVESION_ID_ERROR_VAL) {
12139                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12140                 rc = -ENODEV;
12141                 goto err_out_disable;
12142         }
12143
12144         if (atomic_read(&pdev->enable_cnt) == 1) {
12145                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12146                 if (rc) {
12147                         dev_err(&bp->pdev->dev,
12148                                 "Cannot obtain PCI resources, aborting\n");
12149                         goto err_out_disable;
12150                 }
12151
12152                 pci_set_master(pdev);
12153                 pci_save_state(pdev);
12154         }
12155
12156         if (IS_PF(bp)) {
12157                 bp->pm_cap = pdev->pm_cap;
12158                 if (bp->pm_cap == 0) {
12159                         dev_err(&bp->pdev->dev,
12160                                 "Cannot find power management capability, aborting\n");
12161                         rc = -EIO;
12162                         goto err_out_release;
12163                 }
12164         }
12165
12166         if (!pci_is_pcie(pdev)) {
12167                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12168                 rc = -EIO;
12169                 goto err_out_release;
12170         }
12171
12172         rc = bnx2x_set_coherency_mask(bp);
12173         if (rc)
12174                 goto err_out_release;
12175
12176         dev->mem_start = pci_resource_start(pdev, 0);
12177         dev->base_addr = dev->mem_start;
12178         dev->mem_end = pci_resource_end(pdev, 0);
12179
12180         dev->irq = pdev->irq;
12181
12182         bp->regview = pci_ioremap_bar(pdev, 0);
12183         if (!bp->regview) {
12184                 dev_err(&bp->pdev->dev,
12185                         "Cannot map register space, aborting\n");
12186                 rc = -ENOMEM;
12187                 goto err_out_release;
12188         }
12189
12190         /* In E1/E1H use pci device function given by kernel.
12191          * In E2/E3 read physical function from ME register since these chips
12192          * support Physical Device Assignment where kernel BDF maybe arbitrary
12193          * (depending on hypervisor).
12194          */
12195         if (chip_is_e1x) {
12196                 bp->pf_num = PCI_FUNC(pdev->devfn);
12197         } else {
12198                 /* chip is E2/3*/
12199                 pci_read_config_dword(bp->pdev,
12200                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12201                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12202                                   ME_REG_ABS_PF_NUM_SHIFT);
12203         }
12204         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12205
12206         /* clean indirect addresses */
12207         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12208                                PCICFG_VENDOR_ID_OFFSET);
12209         /*
12210          * Clean the following indirect addresses for all functions since it
12211          * is not used by the driver.
12212          */
12213         if (IS_PF(bp)) {
12214                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12215                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12216                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12217                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12218
12219                 if (chip_is_e1x) {
12220                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12221                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12222                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12223                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12224                 }
12225
12226                 /* Enable internal target-read (in case we are probed after PF
12227                  * FLR). Must be done prior to any BAR read access. Only for
12228                  * 57712 and up
12229                  */
12230                 if (!chip_is_e1x)
12231                         REG_WR(bp,
12232                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12233         }
12234
12235         dev->watchdog_timeo = TX_TIMEOUT;
12236
12237         dev->netdev_ops = &bnx2x_netdev_ops;
12238         bnx2x_set_ethtool_ops(bp, dev);
12239
12240         dev->priv_flags |= IFF_UNICAST_FLT;
12241
12242         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12243                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12244                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12245                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12246         if (!CHIP_IS_E1x(bp)) {
12247                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12248                 dev->hw_enc_features =
12249                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12250                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12251                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12252         }
12253
12254         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12255                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12256
12257         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12258         if (bp->flags & USING_DAC_FLAG)
12259                 dev->features |= NETIF_F_HIGHDMA;
12260
12261         /* Add Loopback capability to the device */
12262         dev->hw_features |= NETIF_F_LOOPBACK;
12263
12264 #ifdef BCM_DCBNL
12265         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12266 #endif
12267
12268         /* get_port_hwinfo() will set prtad and mmds properly */
12269         bp->mdio.prtad = MDIO_PRTAD_NONE;
12270         bp->mdio.mmds = 0;
12271         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12272         bp->mdio.dev = dev;
12273         bp->mdio.mdio_read = bnx2x_mdio_read;
12274         bp->mdio.mdio_write = bnx2x_mdio_write;
12275
12276         return 0;
12277
12278 err_out_release:
12279         if (atomic_read(&pdev->enable_cnt) == 1)
12280                 pci_release_regions(pdev);
12281
12282 err_out_disable:
12283         pci_disable_device(pdev);
12284         pci_set_drvdata(pdev, NULL);
12285
12286 err_out:
12287         return rc;
12288 }
12289
12290 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12291                                        enum bnx2x_pci_bus_speed *speed)
12292 {
12293         u32 link_speed, val = 0;
12294
12295         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12296         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12297
12298         link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12299
12300         switch (link_speed) {
12301         case 3:
12302                 *speed = BNX2X_PCI_LINK_SPEED_8000;
12303                 break;
12304         case 2:
12305                 *speed = BNX2X_PCI_LINK_SPEED_5000;
12306                 break;
12307         default:
12308                 *speed = BNX2X_PCI_LINK_SPEED_2500;
12309         }
12310 }
12311
12312 static int bnx2x_check_firmware(struct bnx2x *bp)
12313 {
12314         const struct firmware *firmware = bp->firmware;
12315         struct bnx2x_fw_file_hdr *fw_hdr;
12316         struct bnx2x_fw_file_section *sections;
12317         u32 offset, len, num_ops;
12318         __be16 *ops_offsets;
12319         int i;
12320         const u8 *fw_ver;
12321
12322         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12323                 BNX2X_ERR("Wrong FW size\n");
12324                 return -EINVAL;
12325         }
12326
12327         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12328         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12329
12330         /* Make sure none of the offsets and sizes make us read beyond
12331          * the end of the firmware data */
12332         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12333                 offset = be32_to_cpu(sections[i].offset);
12334                 len = be32_to_cpu(sections[i].len);
12335                 if (offset + len > firmware->size) {
12336                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12337                         return -EINVAL;
12338                 }
12339         }
12340
12341         /* Likewise for the init_ops offsets */
12342         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12343         ops_offsets = (__force __be16 *)(firmware->data + offset);
12344         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12345
12346         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12347                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12348                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12349                         return -EINVAL;
12350                 }
12351         }
12352
12353         /* Check FW version */
12354         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12355         fw_ver = firmware->data + offset;
12356         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12357             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12358             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12359             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12360                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12361                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12362                        BCM_5710_FW_MAJOR_VERSION,
12363                        BCM_5710_FW_MINOR_VERSION,
12364                        BCM_5710_FW_REVISION_VERSION,
12365                        BCM_5710_FW_ENGINEERING_VERSION);
12366                 return -EINVAL;
12367         }
12368
12369         return 0;
12370 }
12371
12372 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12373 {
12374         const __be32 *source = (const __be32 *)_source;
12375         u32 *target = (u32 *)_target;
12376         u32 i;
12377
12378         for (i = 0; i < n/4; i++)
12379                 target[i] = be32_to_cpu(source[i]);
12380 }
12381
12382 /*
12383    Ops array is stored in the following format:
12384    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12385  */
12386 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12387 {
12388         const __be32 *source = (const __be32 *)_source;
12389         struct raw_op *target = (struct raw_op *)_target;
12390         u32 i, j, tmp;
12391
12392         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12393                 tmp = be32_to_cpu(source[j]);
12394                 target[i].op = (tmp >> 24) & 0xff;
12395                 target[i].offset = tmp & 0xffffff;
12396                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12397         }
12398 }
12399
12400 /* IRO array is stored in the following format:
12401  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12402  */
12403 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12404 {
12405         const __be32 *source = (const __be32 *)_source;
12406         struct iro *target = (struct iro *)_target;
12407         u32 i, j, tmp;
12408
12409         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12410                 target[i].base = be32_to_cpu(source[j]);
12411                 j++;
12412                 tmp = be32_to_cpu(source[j]);
12413                 target[i].m1 = (tmp >> 16) & 0xffff;
12414                 target[i].m2 = tmp & 0xffff;
12415                 j++;
12416                 tmp = be32_to_cpu(source[j]);
12417                 target[i].m3 = (tmp >> 16) & 0xffff;
12418                 target[i].size = tmp & 0xffff;
12419                 j++;
12420         }
12421 }
12422
12423 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12424 {
12425         const __be16 *source = (const __be16 *)_source;
12426         u16 *target = (u16 *)_target;
12427         u32 i;
12428
12429         for (i = 0; i < n/2; i++)
12430                 target[i] = be16_to_cpu(source[i]);
12431 }
12432
12433 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12434 do {                                                                    \
12435         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12436         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12437         if (!bp->arr)                                                   \
12438                 goto lbl;                                               \
12439         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12440              (u8 *)bp->arr, len);                                       \
12441 } while (0)
12442
12443 static int bnx2x_init_firmware(struct bnx2x *bp)
12444 {
12445         const char *fw_file_name;
12446         struct bnx2x_fw_file_hdr *fw_hdr;
12447         int rc;
12448
12449         if (bp->firmware)
12450                 return 0;
12451
12452         if (CHIP_IS_E1(bp))
12453                 fw_file_name = FW_FILE_NAME_E1;
12454         else if (CHIP_IS_E1H(bp))
12455                 fw_file_name = FW_FILE_NAME_E1H;
12456         else if (!CHIP_IS_E1x(bp))
12457                 fw_file_name = FW_FILE_NAME_E2;
12458         else {
12459                 BNX2X_ERR("Unsupported chip revision\n");
12460                 return -EINVAL;
12461         }
12462         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12463
12464         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12465         if (rc) {
12466                 BNX2X_ERR("Can't load firmware file %s\n",
12467                           fw_file_name);
12468                 goto request_firmware_exit;
12469         }
12470
12471         rc = bnx2x_check_firmware(bp);
12472         if (rc) {
12473                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12474                 goto request_firmware_exit;
12475         }
12476
12477         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12478
12479         /* Initialize the pointers to the init arrays */
12480         /* Blob */
12481         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12482
12483         /* Opcodes */
12484         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12485
12486         /* Offsets */
12487         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12488                             be16_to_cpu_n);
12489
12490         /* STORMs firmware */
12491         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12492                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12493         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12494                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12495         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12496                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12497         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12498                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12499         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12500                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12501         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12502                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12503         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12504                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12505         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12506                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12507         /* IRO */
12508         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12509
12510         return 0;
12511
12512 iro_alloc_err:
12513         kfree(bp->init_ops_offsets);
12514 init_offsets_alloc_err:
12515         kfree(bp->init_ops);
12516 init_ops_alloc_err:
12517         kfree(bp->init_data);
12518 request_firmware_exit:
12519         release_firmware(bp->firmware);
12520         bp->firmware = NULL;
12521
12522         return rc;
12523 }
12524
12525 static void bnx2x_release_firmware(struct bnx2x *bp)
12526 {
12527         kfree(bp->init_ops_offsets);
12528         kfree(bp->init_ops);
12529         kfree(bp->init_data);
12530         release_firmware(bp->firmware);
12531         bp->firmware = NULL;
12532 }
12533
12534 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12535         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12536         .init_hw_cmn      = bnx2x_init_hw_common,
12537         .init_hw_port     = bnx2x_init_hw_port,
12538         .init_hw_func     = bnx2x_init_hw_func,
12539
12540         .reset_hw_cmn     = bnx2x_reset_common,
12541         .reset_hw_port    = bnx2x_reset_port,
12542         .reset_hw_func    = bnx2x_reset_func,
12543
12544         .gunzip_init      = bnx2x_gunzip_init,
12545         .gunzip_end       = bnx2x_gunzip_end,
12546
12547         .init_fw          = bnx2x_init_firmware,
12548         .release_fw       = bnx2x_release_firmware,
12549 };
12550
12551 void bnx2x__init_func_obj(struct bnx2x *bp)
12552 {
12553         /* Prepare DMAE related driver resources */
12554         bnx2x_setup_dmae(bp);
12555
12556         bnx2x_init_func_obj(bp, &bp->func_obj,
12557                             bnx2x_sp(bp, func_rdata),
12558                             bnx2x_sp_mapping(bp, func_rdata),
12559                             bnx2x_sp(bp, func_afex_rdata),
12560                             bnx2x_sp_mapping(bp, func_afex_rdata),
12561                             &bnx2x_func_sp_drv);
12562 }
12563
12564 /* must be called after sriov-enable */
12565 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12566 {
12567         int cid_count = BNX2X_L2_MAX_CID(bp);
12568
12569         if (IS_SRIOV(bp))
12570                 cid_count += BNX2X_VF_CIDS;
12571
12572         if (CNIC_SUPPORT(bp))
12573                 cid_count += CNIC_CID_MAX;
12574
12575         return roundup(cid_count, QM_CID_ROUND);
12576 }
12577
12578 /**
12579  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12580  *
12581  * @dev:        pci device
12582  *
12583  */
12584 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12585 {
12586         int index;
12587         u16 control = 0;
12588
12589         /*
12590          * If MSI-X is not supported - return number of SBs needed to support
12591          * one fast path queue: one FP queue + SB for CNIC
12592          */
12593         if (!pdev->msix_cap) {
12594                 dev_info(&pdev->dev, "no msix capability found\n");
12595                 return 1 + cnic_cnt;
12596         }
12597         dev_info(&pdev->dev, "msix capability found\n");
12598
12599         /*
12600          * The value in the PCI configuration space is the index of the last
12601          * entry, namely one less than the actual size of the table, which is
12602          * exactly what we want to return from this function: number of all SBs
12603          * without the default SB.
12604          * For VFs there is no default SB, then we return (index+1).
12605          */
12606         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12607
12608         index = control & PCI_MSIX_FLAGS_QSIZE;
12609
12610         return index;
12611 }
12612
12613 static int set_max_cos_est(int chip_id)
12614 {
12615         switch (chip_id) {
12616         case BCM57710:
12617         case BCM57711:
12618         case BCM57711E:
12619                 return BNX2X_MULTI_TX_COS_E1X;
12620         case BCM57712:
12621         case BCM57712_MF:
12622         case BCM57712_VF:
12623                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12624         case BCM57800:
12625         case BCM57800_MF:
12626         case BCM57800_VF:
12627         case BCM57810:
12628         case BCM57810_MF:
12629         case BCM57840_4_10:
12630         case BCM57840_2_20:
12631         case BCM57840_O:
12632         case BCM57840_MFO:
12633         case BCM57810_VF:
12634         case BCM57840_MF:
12635         case BCM57840_VF:
12636         case BCM57811:
12637         case BCM57811_MF:
12638         case BCM57811_VF:
12639                 return BNX2X_MULTI_TX_COS_E3B0;
12640                 return 1;
12641         default:
12642                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12643                 return -ENODEV;
12644         }
12645 }
12646
12647 static int set_is_vf(int chip_id)
12648 {
12649         switch (chip_id) {
12650         case BCM57712_VF:
12651         case BCM57800_VF:
12652         case BCM57810_VF:
12653         case BCM57840_VF:
12654         case BCM57811_VF:
12655                 return true;
12656         default:
12657                 return false;
12658         }
12659 }
12660
12661 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12662
12663 static int bnx2x_init_one(struct pci_dev *pdev,
12664                                     const struct pci_device_id *ent)
12665 {
12666         struct net_device *dev = NULL;
12667         struct bnx2x *bp;
12668         int pcie_width;
12669         enum bnx2x_pci_bus_speed pcie_speed;
12670         int rc, max_non_def_sbs;
12671         int rx_count, tx_count, rss_count, doorbell_size;
12672         int max_cos_est;
12673         bool is_vf;
12674         int cnic_cnt;
12675
12676         /* An estimated maximum supported CoS number according to the chip
12677          * version.
12678          * We will try to roughly estimate the maximum number of CoSes this chip
12679          * may support in order to minimize the memory allocated for Tx
12680          * netdev_queue's. This number will be accurately calculated during the
12681          * initialization of bp->max_cos based on the chip versions AND chip
12682          * revision in the bnx2x_init_bp().
12683          */
12684         max_cos_est = set_max_cos_est(ent->driver_data);
12685         if (max_cos_est < 0)
12686                 return max_cos_est;
12687         is_vf = set_is_vf(ent->driver_data);
12688         cnic_cnt = is_vf ? 0 : 1;
12689
12690         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12691
12692         /* add another SB for VF as it has no default SB */
12693         max_non_def_sbs += is_vf ? 1 : 0;
12694
12695         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12696         rss_count = max_non_def_sbs - cnic_cnt;
12697
12698         if (rss_count < 1)
12699                 return -EINVAL;
12700
12701         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12702         rx_count = rss_count + cnic_cnt;
12703
12704         /* Maximum number of netdev Tx queues:
12705          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12706          */
12707         tx_count = rss_count * max_cos_est + cnic_cnt;
12708
12709         /* dev zeroed in init_etherdev */
12710         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12711         if (!dev)
12712                 return -ENOMEM;
12713
12714         bp = netdev_priv(dev);
12715
12716         bp->flags = 0;
12717         if (is_vf)
12718                 bp->flags |= IS_VF_FLAG;
12719
12720         bp->igu_sb_cnt = max_non_def_sbs;
12721         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12722         bp->msg_enable = debug;
12723         bp->cnic_support = cnic_cnt;
12724         bp->cnic_probe = bnx2x_cnic_probe;
12725
12726         pci_set_drvdata(pdev, dev);
12727
12728         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12729         if (rc < 0) {
12730                 free_netdev(dev);
12731                 return rc;
12732         }
12733
12734         BNX2X_DEV_INFO("This is a %s function\n",
12735                        IS_PF(bp) ? "physical" : "virtual");
12736         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12737         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12738         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12739                        tx_count, rx_count);
12740
12741         rc = bnx2x_init_bp(bp);
12742         if (rc)
12743                 goto init_one_exit;
12744
12745         /* Map doorbells here as we need the real value of bp->max_cos which
12746          * is initialized in bnx2x_init_bp() to determine the number of
12747          * l2 connections.
12748          */
12749         if (IS_VF(bp)) {
12750                 bp->doorbells = bnx2x_vf_doorbells(bp);
12751                 rc = bnx2x_vf_pci_alloc(bp);
12752                 if (rc)
12753                         goto init_one_exit;
12754         } else {
12755                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12756                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12757                         dev_err(&bp->pdev->dev,
12758                                 "Cannot map doorbells, bar size too small, aborting\n");
12759                         rc = -ENOMEM;
12760                         goto init_one_exit;
12761                 }
12762                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12763                                                 doorbell_size);
12764         }
12765         if (!bp->doorbells) {
12766                 dev_err(&bp->pdev->dev,
12767                         "Cannot map doorbell space, aborting\n");
12768                 rc = -ENOMEM;
12769                 goto init_one_exit;
12770         }
12771
12772         if (IS_VF(bp)) {
12773                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12774                 if (rc)
12775                         goto init_one_exit;
12776         }
12777
12778         /* Enable SRIOV if capability found in configuration space */
12779         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12780         if (rc)
12781                 goto init_one_exit;
12782
12783         /* calc qm_cid_count */
12784         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12785         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12786
12787         /* disable FCOE L2 queue for E1x*/
12788         if (CHIP_IS_E1x(bp))
12789                 bp->flags |= NO_FCOE_FLAG;
12790
12791         /* Set bp->num_queues for MSI-X mode*/
12792         bnx2x_set_num_queues(bp);
12793
12794         /* Configure interrupt mode: try to enable MSI-X/MSI if
12795          * needed.
12796          */
12797         rc = bnx2x_set_int_mode(bp);
12798         if (rc) {
12799                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12800                 goto init_one_exit;
12801         }
12802         BNX2X_DEV_INFO("set interrupts successfully\n");
12803
12804         /* register the net device */
12805         rc = register_netdev(dev);
12806         if (rc) {
12807                 dev_err(&pdev->dev, "Cannot register net device\n");
12808                 goto init_one_exit;
12809         }
12810         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12811
12812         if (!NO_FCOE(bp)) {
12813                 /* Add storage MAC address */
12814                 rtnl_lock();
12815                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12816                 rtnl_unlock();
12817         }
12818
12819         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12820         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12821                        pcie_width, pcie_speed);
12822
12823         BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12824                        board_info[ent->driver_data].name,
12825                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12826                        pcie_width,
12827                        pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12828                        pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12829                        pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12830                        "Unknown",
12831                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12832
12833         return 0;
12834
12835 init_one_exit:
12836         if (bp->regview)
12837                 iounmap(bp->regview);
12838
12839         if (IS_PF(bp) && bp->doorbells)
12840                 iounmap(bp->doorbells);
12841
12842         free_netdev(dev);
12843
12844         if (atomic_read(&pdev->enable_cnt) == 1)
12845                 pci_release_regions(pdev);
12846
12847         pci_disable_device(pdev);
12848         pci_set_drvdata(pdev, NULL);
12849
12850         return rc;
12851 }
12852
12853 static void __bnx2x_remove(struct pci_dev *pdev,
12854                            struct net_device *dev,
12855                            struct bnx2x *bp,
12856                            bool remove_netdev)
12857 {
12858         /* Delete storage MAC address */
12859         if (!NO_FCOE(bp)) {
12860                 rtnl_lock();
12861                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12862                 rtnl_unlock();
12863         }
12864
12865 #ifdef BCM_DCBNL
12866         /* Delete app tlvs from dcbnl */
12867         bnx2x_dcbnl_update_applist(bp, true);
12868 #endif
12869
12870         if (IS_PF(bp) &&
12871             !BP_NOMCP(bp) &&
12872             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12873                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12874
12875         /* Close the interface - either directly or implicitly */
12876         if (remove_netdev) {
12877                 unregister_netdev(dev);
12878         } else {
12879                 rtnl_lock();
12880                 dev_close(dev);
12881                 rtnl_unlock();
12882         }
12883
12884         bnx2x_iov_remove_one(bp);
12885
12886         /* Power on: we can't let PCI layer write to us while we are in D3 */
12887         if (IS_PF(bp))
12888                 bnx2x_set_power_state(bp, PCI_D0);
12889
12890         /* Disable MSI/MSI-X */
12891         bnx2x_disable_msi(bp);
12892
12893         /* Power off */
12894         if (IS_PF(bp))
12895                 bnx2x_set_power_state(bp, PCI_D3hot);
12896
12897         /* Make sure RESET task is not scheduled before continuing */
12898         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12899
12900         /* send message via vfpf channel to release the resources of this vf */
12901         if (IS_VF(bp))
12902                 bnx2x_vfpf_release(bp);
12903
12904         /* Assumes no further PCIe PM changes will occur */
12905         if (system_state == SYSTEM_POWER_OFF) {
12906                 pci_wake_from_d3(pdev, bp->wol);
12907                 pci_set_power_state(pdev, PCI_D3hot);
12908         }
12909
12910         if (bp->regview)
12911                 iounmap(bp->regview);
12912
12913         /* for vf doorbells are part of the regview and were unmapped along with
12914          * it. FW is only loaded by PF.
12915          */
12916         if (IS_PF(bp)) {
12917                 if (bp->doorbells)
12918                         iounmap(bp->doorbells);
12919
12920                 bnx2x_release_firmware(bp);
12921         }
12922         bnx2x_free_mem_bp(bp);
12923
12924         if (remove_netdev)
12925                 free_netdev(dev);
12926
12927         if (atomic_read(&pdev->enable_cnt) == 1)
12928                 pci_release_regions(pdev);
12929
12930         pci_disable_device(pdev);
12931         pci_set_drvdata(pdev, NULL);
12932 }
12933
12934 static void bnx2x_remove_one(struct pci_dev *pdev)
12935 {
12936         struct net_device *dev = pci_get_drvdata(pdev);
12937         struct bnx2x *bp;
12938
12939         if (!dev) {
12940                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12941                 return;
12942         }
12943         bp = netdev_priv(dev);
12944
12945         __bnx2x_remove(pdev, dev, bp, true);
12946 }
12947
12948 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12949 {
12950         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12951
12952         bp->rx_mode = BNX2X_RX_MODE_NONE;
12953
12954         if (CNIC_LOADED(bp))
12955                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12956
12957         /* Stop Tx */
12958         bnx2x_tx_disable(bp);
12959         /* Delete all NAPI objects */
12960         bnx2x_del_all_napi(bp);
12961         if (CNIC_LOADED(bp))
12962                 bnx2x_del_all_napi_cnic(bp);
12963         netdev_reset_tc(bp->dev);
12964
12965         del_timer_sync(&bp->timer);
12966         cancel_delayed_work(&bp->sp_task);
12967         cancel_delayed_work(&bp->period_task);
12968
12969         spin_lock_bh(&bp->stats_lock);
12970         bp->stats_state = STATS_STATE_DISABLED;
12971         spin_unlock_bh(&bp->stats_lock);
12972
12973         bnx2x_save_statistics(bp);
12974
12975         netif_carrier_off(bp->dev);
12976
12977         return 0;
12978 }
12979
12980 /**
12981  * bnx2x_io_error_detected - called when PCI error is detected
12982  * @pdev: Pointer to PCI device
12983  * @state: The current pci connection state
12984  *
12985  * This function is called after a PCI bus error affecting
12986  * this device has been detected.
12987  */
12988 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12989                                                 pci_channel_state_t state)
12990 {
12991         struct net_device *dev = pci_get_drvdata(pdev);
12992         struct bnx2x *bp = netdev_priv(dev);
12993
12994         rtnl_lock();
12995
12996         BNX2X_ERR("IO error detected\n");
12997
12998         netif_device_detach(dev);
12999
13000         if (state == pci_channel_io_perm_failure) {
13001                 rtnl_unlock();
13002                 return PCI_ERS_RESULT_DISCONNECT;
13003         }
13004
13005         if (netif_running(dev))
13006                 bnx2x_eeh_nic_unload(bp);
13007
13008         bnx2x_prev_path_mark_eeh(bp);
13009
13010         pci_disable_device(pdev);
13011
13012         rtnl_unlock();
13013
13014         /* Request a slot reset */
13015         return PCI_ERS_RESULT_NEED_RESET;
13016 }
13017
13018 /**
13019  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13020  * @pdev: Pointer to PCI device
13021  *
13022  * Restart the card from scratch, as if from a cold-boot.
13023  */
13024 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13025 {
13026         struct net_device *dev = pci_get_drvdata(pdev);
13027         struct bnx2x *bp = netdev_priv(dev);
13028         int i;
13029
13030         rtnl_lock();
13031         BNX2X_ERR("IO slot reset initializing...\n");
13032         if (pci_enable_device(pdev)) {
13033                 dev_err(&pdev->dev,
13034                         "Cannot re-enable PCI device after reset\n");
13035                 rtnl_unlock();
13036                 return PCI_ERS_RESULT_DISCONNECT;
13037         }
13038
13039         pci_set_master(pdev);
13040         pci_restore_state(pdev);
13041         pci_save_state(pdev);
13042
13043         if (netif_running(dev))
13044                 bnx2x_set_power_state(bp, PCI_D0);
13045
13046         if (netif_running(dev)) {
13047                 BNX2X_ERR("IO slot reset --> driver unload\n");
13048
13049                 /* MCP should have been reset; Need to wait for validity */
13050                 bnx2x_init_shmem(bp);
13051
13052                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13053                         u32 v;
13054
13055                         v = SHMEM2_RD(bp,
13056                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13057                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13058                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13059                 }
13060                 bnx2x_drain_tx_queues(bp);
13061                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13062                 bnx2x_netif_stop(bp, 1);
13063                 bnx2x_free_irq(bp);
13064
13065                 /* Report UNLOAD_DONE to MCP */
13066                 bnx2x_send_unload_done(bp, true);
13067
13068                 bp->sp_state = 0;
13069                 bp->port.pmf = 0;
13070
13071                 bnx2x_prev_unload(bp);
13072
13073                 /* We should have reseted the engine, so It's fair to
13074                  * assume the FW will no longer write to the bnx2x driver.
13075                  */
13076                 bnx2x_squeeze_objects(bp);
13077                 bnx2x_free_skbs(bp);
13078                 for_each_rx_queue(bp, i)
13079                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13080                 bnx2x_free_fp_mem(bp);
13081                 bnx2x_free_mem(bp);
13082
13083                 bp->state = BNX2X_STATE_CLOSED;
13084         }
13085
13086         rtnl_unlock();
13087
13088         return PCI_ERS_RESULT_RECOVERED;
13089 }
13090
13091 /**
13092  * bnx2x_io_resume - called when traffic can start flowing again
13093  * @pdev: Pointer to PCI device
13094  *
13095  * This callback is called when the error recovery driver tells us that
13096  * its OK to resume normal operation.
13097  */
13098 static void bnx2x_io_resume(struct pci_dev *pdev)
13099 {
13100         struct net_device *dev = pci_get_drvdata(pdev);
13101         struct bnx2x *bp = netdev_priv(dev);
13102
13103         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13104                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13105                 return;
13106         }
13107
13108         rtnl_lock();
13109
13110         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13111                                                         DRV_MSG_SEQ_NUMBER_MASK;
13112
13113         if (netif_running(dev))
13114                 bnx2x_nic_load(bp, LOAD_NORMAL);
13115
13116         netif_device_attach(dev);
13117
13118         rtnl_unlock();
13119 }
13120
13121 static const struct pci_error_handlers bnx2x_err_handler = {
13122         .error_detected = bnx2x_io_error_detected,
13123         .slot_reset     = bnx2x_io_slot_reset,
13124         .resume         = bnx2x_io_resume,
13125 };
13126
13127 static void bnx2x_shutdown(struct pci_dev *pdev)
13128 {
13129         struct net_device *dev = pci_get_drvdata(pdev);
13130         struct bnx2x *bp;
13131
13132         if (!dev)
13133                 return;
13134
13135         bp = netdev_priv(dev);
13136         if (!bp)
13137                 return;
13138
13139         rtnl_lock();
13140         netif_device_detach(dev);
13141         rtnl_unlock();
13142
13143         /* Don't remove the netdevice, as there are scenarios which will cause
13144          * the kernel to hang, e.g., when trying to remove bnx2i while the
13145          * rootfs is mounted from SAN.
13146          */
13147         __bnx2x_remove(pdev, dev, bp, false);
13148 }
13149
13150 static struct pci_driver bnx2x_pci_driver = {
13151         .name        = DRV_MODULE_NAME,
13152         .id_table    = bnx2x_pci_tbl,
13153         .probe       = bnx2x_init_one,
13154         .remove      = bnx2x_remove_one,
13155         .suspend     = bnx2x_suspend,
13156         .resume      = bnx2x_resume,
13157         .err_handler = &bnx2x_err_handler,
13158 #ifdef CONFIG_BNX2X_SRIOV
13159         .sriov_configure = bnx2x_sriov_configure,
13160 #endif
13161         .shutdown    = bnx2x_shutdown,
13162 };
13163
13164 static int __init bnx2x_init(void)
13165 {
13166         int ret;
13167
13168         pr_info("%s", version);
13169
13170         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13171         if (bnx2x_wq == NULL) {
13172                 pr_err("Cannot create workqueue\n");
13173                 return -ENOMEM;
13174         }
13175
13176         ret = pci_register_driver(&bnx2x_pci_driver);
13177         if (ret) {
13178                 pr_err("Cannot register driver\n");
13179                 destroy_workqueue(bnx2x_wq);
13180         }
13181         return ret;
13182 }
13183
13184 static void __exit bnx2x_cleanup(void)
13185 {
13186         struct list_head *pos, *q;
13187
13188         pci_unregister_driver(&bnx2x_pci_driver);
13189
13190         destroy_workqueue(bnx2x_wq);
13191
13192         /* Free globally allocated resources */
13193         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13194                 struct bnx2x_prev_path_list *tmp =
13195                         list_entry(pos, struct bnx2x_prev_path_list, list);
13196                 list_del(pos);
13197                 kfree(tmp);
13198         }
13199 }
13200
13201 void bnx2x_notify_link_changed(struct bnx2x *bp)
13202 {
13203         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13204 }
13205
13206 module_init(bnx2x_init);
13207 module_exit(bnx2x_cleanup);
13208
13209 /**
13210  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13211  *
13212  * @bp:         driver handle
13213  * @set:        set or clear the CAM entry
13214  *
13215  * This function will wait until the ramrod completion returns.
13216  * Return 0 if success, -ENODEV if ramrod doesn't return.
13217  */
13218 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13219 {
13220         unsigned long ramrod_flags = 0;
13221
13222         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13223         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13224                                  &bp->iscsi_l2_mac_obj, true,
13225                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13226 }
13227
13228 /* count denotes the number of new completions we have seen */
13229 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13230 {
13231         struct eth_spe *spe;
13232         int cxt_index, cxt_offset;
13233
13234 #ifdef BNX2X_STOP_ON_ERROR
13235         if (unlikely(bp->panic))
13236                 return;
13237 #endif
13238
13239         spin_lock_bh(&bp->spq_lock);
13240         BUG_ON(bp->cnic_spq_pending < count);
13241         bp->cnic_spq_pending -= count;
13242
13243         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13244                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13245                                 & SPE_HDR_CONN_TYPE) >>
13246                                 SPE_HDR_CONN_TYPE_SHIFT;
13247                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13248                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13249
13250                 /* Set validation for iSCSI L2 client before sending SETUP
13251                  *  ramrod
13252                  */
13253                 if (type == ETH_CONNECTION_TYPE) {
13254                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13255                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13256                                         ILT_PAGE_CIDS;
13257                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13258                                         (cxt_index * ILT_PAGE_CIDS);
13259                                 bnx2x_set_ctx_validation(bp,
13260                                         &bp->context[cxt_index].
13261                                                          vcxt[cxt_offset].eth,
13262                                         BNX2X_ISCSI_ETH_CID(bp));
13263                         }
13264                 }
13265
13266                 /*
13267                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13268                  * and in the air. We also check that number of outstanding
13269                  * COMMON ramrods is not more than the EQ and SPQ can
13270                  * accommodate.
13271                  */
13272                 if (type == ETH_CONNECTION_TYPE) {
13273                         if (!atomic_read(&bp->cq_spq_left))
13274                                 break;
13275                         else
13276                                 atomic_dec(&bp->cq_spq_left);
13277                 } else if (type == NONE_CONNECTION_TYPE) {
13278                         if (!atomic_read(&bp->eq_spq_left))
13279                                 break;
13280                         else
13281                                 atomic_dec(&bp->eq_spq_left);
13282                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13283                            (type == FCOE_CONNECTION_TYPE)) {
13284                         if (bp->cnic_spq_pending >=
13285                             bp->cnic_eth_dev.max_kwqe_pending)
13286                                 break;
13287                         else
13288                                 bp->cnic_spq_pending++;
13289                 } else {
13290                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13291                         bnx2x_panic();
13292                         break;
13293                 }
13294
13295                 spe = bnx2x_sp_get_next(bp);
13296                 *spe = *bp->cnic_kwq_cons;
13297
13298                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13299                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13300
13301                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13302                         bp->cnic_kwq_cons = bp->cnic_kwq;
13303                 else
13304                         bp->cnic_kwq_cons++;
13305         }
13306         bnx2x_sp_prod_update(bp);
13307         spin_unlock_bh(&bp->spq_lock);
13308 }
13309
13310 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13311                                struct kwqe_16 *kwqes[], u32 count)
13312 {
13313         struct bnx2x *bp = netdev_priv(dev);
13314         int i;
13315
13316 #ifdef BNX2X_STOP_ON_ERROR
13317         if (unlikely(bp->panic)) {
13318                 BNX2X_ERR("Can't post to SP queue while panic\n");
13319                 return -EIO;
13320         }
13321 #endif
13322
13323         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13324             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13325                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13326                 return -EAGAIN;
13327         }
13328
13329         spin_lock_bh(&bp->spq_lock);
13330
13331         for (i = 0; i < count; i++) {
13332                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13333
13334                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13335                         break;
13336
13337                 *bp->cnic_kwq_prod = *spe;
13338
13339                 bp->cnic_kwq_pending++;
13340
13341                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13342                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13343                    spe->data.update_data_addr.hi,
13344                    spe->data.update_data_addr.lo,
13345                    bp->cnic_kwq_pending);
13346
13347                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13348                         bp->cnic_kwq_prod = bp->cnic_kwq;
13349                 else
13350                         bp->cnic_kwq_prod++;
13351         }
13352
13353         spin_unlock_bh(&bp->spq_lock);
13354
13355         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13356                 bnx2x_cnic_sp_post(bp, 0);
13357
13358         return i;
13359 }
13360
13361 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13362 {
13363         struct cnic_ops *c_ops;
13364         int rc = 0;
13365
13366         mutex_lock(&bp->cnic_mutex);
13367         c_ops = rcu_dereference_protected(bp->cnic_ops,
13368                                           lockdep_is_held(&bp->cnic_mutex));
13369         if (c_ops)
13370                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13371         mutex_unlock(&bp->cnic_mutex);
13372
13373         return rc;
13374 }
13375
13376 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13377 {
13378         struct cnic_ops *c_ops;
13379         int rc = 0;
13380
13381         rcu_read_lock();
13382         c_ops = rcu_dereference(bp->cnic_ops);
13383         if (c_ops)
13384                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13385         rcu_read_unlock();
13386
13387         return rc;
13388 }
13389
13390 /*
13391  * for commands that have no data
13392  */
13393 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13394 {
13395         struct cnic_ctl_info ctl = {0};
13396
13397         ctl.cmd = cmd;
13398
13399         return bnx2x_cnic_ctl_send(bp, &ctl);
13400 }
13401
13402 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13403 {
13404         struct cnic_ctl_info ctl = {0};
13405
13406         /* first we tell CNIC and only then we count this as a completion */
13407         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13408         ctl.data.comp.cid = cid;
13409         ctl.data.comp.error = err;
13410
13411         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13412         bnx2x_cnic_sp_post(bp, 0);
13413 }
13414
13415 /* Called with netif_addr_lock_bh() taken.
13416  * Sets an rx_mode config for an iSCSI ETH client.
13417  * Doesn't block.
13418  * Completion should be checked outside.
13419  */
13420 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13421 {
13422         unsigned long accept_flags = 0, ramrod_flags = 0;
13423         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13424         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13425
13426         if (start) {
13427                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13428                  * because it's the only way for UIO Queue to accept
13429                  * multicasts (in non-promiscuous mode only one Queue per
13430                  * function will receive multicast packets (leading in our
13431                  * case).
13432                  */
13433                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13434                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13435                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13436                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13437
13438                 /* Clear STOP_PENDING bit if START is requested */
13439                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13440
13441                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13442         } else
13443                 /* Clear START_PENDING bit if STOP is requested */
13444                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13445
13446         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13447                 set_bit(sched_state, &bp->sp_state);
13448         else {
13449                 __set_bit(RAMROD_RX, &ramrod_flags);
13450                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13451                                     ramrod_flags);
13452         }
13453 }
13454
13455 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13456 {
13457         struct bnx2x *bp = netdev_priv(dev);
13458         int rc = 0;
13459
13460         switch (ctl->cmd) {
13461         case DRV_CTL_CTXTBL_WR_CMD: {
13462                 u32 index = ctl->data.io.offset;
13463                 dma_addr_t addr = ctl->data.io.dma_addr;
13464
13465                 bnx2x_ilt_wr(bp, index, addr);
13466                 break;
13467         }
13468
13469         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13470                 int count = ctl->data.credit.credit_count;
13471
13472                 bnx2x_cnic_sp_post(bp, count);
13473                 break;
13474         }
13475
13476         /* rtnl_lock is held.  */
13477         case DRV_CTL_START_L2_CMD: {
13478                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13479                 unsigned long sp_bits = 0;
13480
13481                 /* Configure the iSCSI classification object */
13482                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13483                                    cp->iscsi_l2_client_id,
13484                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13485                                    bnx2x_sp(bp, mac_rdata),
13486                                    bnx2x_sp_mapping(bp, mac_rdata),
13487                                    BNX2X_FILTER_MAC_PENDING,
13488                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13489                                    &bp->macs_pool);
13490
13491                 /* Set iSCSI MAC address */
13492                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13493                 if (rc)
13494                         break;
13495
13496                 mmiowb();
13497                 barrier();
13498
13499                 /* Start accepting on iSCSI L2 ring */
13500
13501                 netif_addr_lock_bh(dev);
13502                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13503                 netif_addr_unlock_bh(dev);
13504
13505                 /* bits to wait on */
13506                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13507                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13508
13509                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13510                         BNX2X_ERR("rx_mode completion timed out!\n");
13511
13512                 break;
13513         }
13514
13515         /* rtnl_lock is held.  */
13516         case DRV_CTL_STOP_L2_CMD: {
13517                 unsigned long sp_bits = 0;
13518
13519                 /* Stop accepting on iSCSI L2 ring */
13520                 netif_addr_lock_bh(dev);
13521                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13522                 netif_addr_unlock_bh(dev);
13523
13524                 /* bits to wait on */
13525                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13526                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13527
13528                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13529                         BNX2X_ERR("rx_mode completion timed out!\n");
13530
13531                 mmiowb();
13532                 barrier();
13533
13534                 /* Unset iSCSI L2 MAC */
13535                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13536                                         BNX2X_ISCSI_ETH_MAC, true);
13537                 break;
13538         }
13539         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13540                 int count = ctl->data.credit.credit_count;
13541
13542                 smp_mb__before_atomic_inc();
13543                 atomic_add(count, &bp->cq_spq_left);
13544                 smp_mb__after_atomic_inc();
13545                 break;
13546         }
13547         case DRV_CTL_ULP_REGISTER_CMD: {
13548                 int ulp_type = ctl->data.register_data.ulp_type;
13549
13550                 if (CHIP_IS_E3(bp)) {
13551                         int idx = BP_FW_MB_IDX(bp);
13552                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13553                         int path = BP_PATH(bp);
13554                         int port = BP_PORT(bp);
13555                         int i;
13556                         u32 scratch_offset;
13557                         u32 *host_addr;
13558
13559                         /* first write capability to shmem2 */
13560                         if (ulp_type == CNIC_ULP_ISCSI)
13561                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13562                         else if (ulp_type == CNIC_ULP_FCOE)
13563                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13564                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13565
13566                         if ((ulp_type != CNIC_ULP_FCOE) ||
13567                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13568                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13569                                 break;
13570
13571                         /* if reached here - should write fcoe capabilities */
13572                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13573                         if (!scratch_offset)
13574                                 break;
13575                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13576                                                    fcoe_features[path][port]);
13577                         host_addr = (u32 *) &(ctl->data.register_data.
13578                                               fcoe_features);
13579                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13580                              i += 4)
13581                                 REG_WR(bp, scratch_offset + i,
13582                                        *(host_addr + i/4));
13583                 }
13584                 break;
13585         }
13586
13587         case DRV_CTL_ULP_UNREGISTER_CMD: {
13588                 int ulp_type = ctl->data.ulp_type;
13589
13590                 if (CHIP_IS_E3(bp)) {
13591                         int idx = BP_FW_MB_IDX(bp);
13592                         u32 cap;
13593
13594                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13595                         if (ulp_type == CNIC_ULP_ISCSI)
13596                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13597                         else if (ulp_type == CNIC_ULP_FCOE)
13598                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13599                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13600                 }
13601                 break;
13602         }
13603
13604         default:
13605                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13606                 rc = -EINVAL;
13607         }
13608
13609         return rc;
13610 }
13611
13612 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13613 {
13614         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13615
13616         if (bp->flags & USING_MSIX_FLAG) {
13617                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13618                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13619                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13620         } else {
13621                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13622                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13623         }
13624         if (!CHIP_IS_E1x(bp))
13625                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13626         else
13627                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13628
13629         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13630         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13631         cp->irq_arr[1].status_blk = bp->def_status_blk;
13632         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13633         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13634
13635         cp->num_irq = 2;
13636 }
13637
13638 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13639 {
13640         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13641
13642         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13643                              bnx2x_cid_ilt_lines(bp);
13644         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13645         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13646         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13647
13648         if (NO_ISCSI_OOO(bp))
13649                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13650 }
13651
13652 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13653                                void *data)
13654 {
13655         struct bnx2x *bp = netdev_priv(dev);
13656         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13657         int rc;
13658
13659         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13660
13661         if (ops == NULL) {
13662                 BNX2X_ERR("NULL ops received\n");
13663                 return -EINVAL;
13664         }
13665
13666         if (!CNIC_SUPPORT(bp)) {
13667                 BNX2X_ERR("Can't register CNIC when not supported\n");
13668                 return -EOPNOTSUPP;
13669         }
13670
13671         if (!CNIC_LOADED(bp)) {
13672                 rc = bnx2x_load_cnic(bp);
13673                 if (rc) {
13674                         BNX2X_ERR("CNIC-related load failed\n");
13675                         return rc;
13676                 }
13677         }
13678
13679         bp->cnic_enabled = true;
13680
13681         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13682         if (!bp->cnic_kwq)
13683                 return -ENOMEM;
13684
13685         bp->cnic_kwq_cons = bp->cnic_kwq;
13686         bp->cnic_kwq_prod = bp->cnic_kwq;
13687         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13688
13689         bp->cnic_spq_pending = 0;
13690         bp->cnic_kwq_pending = 0;
13691
13692         bp->cnic_data = data;
13693
13694         cp->num_irq = 0;
13695         cp->drv_state |= CNIC_DRV_STATE_REGD;
13696         cp->iro_arr = bp->iro_arr;
13697
13698         bnx2x_setup_cnic_irq_info(bp);
13699
13700         rcu_assign_pointer(bp->cnic_ops, ops);
13701
13702         return 0;
13703 }
13704
13705 static int bnx2x_unregister_cnic(struct net_device *dev)
13706 {
13707         struct bnx2x *bp = netdev_priv(dev);
13708         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13709
13710         mutex_lock(&bp->cnic_mutex);
13711         cp->drv_state = 0;
13712         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13713         mutex_unlock(&bp->cnic_mutex);
13714         synchronize_rcu();
13715         bp->cnic_enabled = false;
13716         kfree(bp->cnic_kwq);
13717         bp->cnic_kwq = NULL;
13718
13719         return 0;
13720 }
13721
13722 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13723 {
13724         struct bnx2x *bp = netdev_priv(dev);
13725         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13726
13727         /* If both iSCSI and FCoE are disabled - return NULL in
13728          * order to indicate CNIC that it should not try to work
13729          * with this device.
13730          */
13731         if (NO_ISCSI(bp) && NO_FCOE(bp))
13732                 return NULL;
13733
13734         cp->drv_owner = THIS_MODULE;
13735         cp->chip_id = CHIP_ID(bp);
13736         cp->pdev = bp->pdev;
13737         cp->io_base = bp->regview;
13738         cp->io_base2 = bp->doorbells;
13739         cp->max_kwqe_pending = 8;
13740         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13741         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13742                              bnx2x_cid_ilt_lines(bp);
13743         cp->ctx_tbl_len = CNIC_ILT_LINES;
13744         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13745         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13746         cp->drv_ctl = bnx2x_drv_ctl;
13747         cp->drv_register_cnic = bnx2x_register_cnic;
13748         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13749         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13750         cp->iscsi_l2_client_id =
13751                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13752         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13753
13754         if (NO_ISCSI_OOO(bp))
13755                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13756
13757         if (NO_ISCSI(bp))
13758                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13759
13760         if (NO_FCOE(bp))
13761                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13762
13763         BNX2X_DEV_INFO(
13764                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13765            cp->ctx_blk_size,
13766            cp->ctx_tbl_offset,
13767            cp->ctx_tbl_len,
13768            cp->starting_cid);
13769         return cp;
13770 }
13771
13772 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13773 {
13774         struct bnx2x *bp = fp->bp;
13775         u32 offset = BAR_USTRORM_INTMEM;
13776
13777         if (IS_VF(bp))
13778                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13779         else if (!CHIP_IS_E1x(bp))
13780                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13781         else
13782                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13783
13784         return offset;
13785 }
13786
13787 /* called only on E1H or E2.
13788  * When pretending to be PF, the pretend value is the function number 0...7
13789  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13790  * combination
13791  */
13792 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13793 {
13794         u32 pretend_reg;
13795
13796         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13797                 return -1;
13798
13799         /* get my own pretend register */
13800         pretend_reg = bnx2x_get_pretend_reg(bp);
13801         REG_WR(bp, pretend_reg, pretend_func_val);
13802         REG_RD(bp, pretend_reg);
13803         return 0;
13804 }