]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
bnxt_en: Increment checksum error counter only if NETIF_F_RXCSUM is set.
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 92
73
74 enum board_idx {
75         BCM57302,
76         BCM57304,
77         BCM57404,
78         BCM57406,
79         BCM57304_VF,
80         BCM57404_VF,
81 };
82
83 /* indexed by enum above */
84 static const struct {
85         char *name;
86 } board_info[] = {
87         { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
88         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
89         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
90         { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" },
91         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
92         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
93 };
94
95 static const struct pci_device_id bnxt_pci_tbl[] = {
96         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
97         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
98         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
99         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
100 #ifdef CONFIG_BNXT_SRIOV
101         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
102         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
103 #endif
104         { 0 }
105 };
106
107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
108
109 static const u16 bnxt_vf_req_snif[] = {
110         HWRM_FUNC_CFG,
111         HWRM_PORT_PHY_QCFG,
112         HWRM_CFA_L2_FILTER_ALLOC,
113 };
114
115 static bool bnxt_vf_pciid(enum board_idx idx)
116 {
117         return (idx == BCM57304_VF || idx == BCM57404_VF);
118 }
119
120 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
121 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
122 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
123
124 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
125                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
126
127 #define BNXT_CP_DB(db, raw_cons)                                        \
128                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
129
130 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
131                 writel(DB_CP_IRQ_DIS_FLAGS, db)
132
133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
134 {
135         /* Tell compiler to fetch tx indices from memory. */
136         barrier();
137
138         return bp->tx_ring_size -
139                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
140 }
141
142 static const u16 bnxt_lhint_arr[] = {
143         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
144         TX_BD_FLAGS_LHINT_512_TO_1023,
145         TX_BD_FLAGS_LHINT_1024_TO_2047,
146         TX_BD_FLAGS_LHINT_1024_TO_2047,
147         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
148         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
149         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
150         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
151         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
152         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
153         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 };
163
164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
165 {
166         struct bnxt *bp = netdev_priv(dev);
167         struct tx_bd *txbd;
168         struct tx_bd_ext *txbd1;
169         struct netdev_queue *txq;
170         int i;
171         dma_addr_t mapping;
172         unsigned int length, pad = 0;
173         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
174         u16 prod, last_frag;
175         struct pci_dev *pdev = bp->pdev;
176         struct bnxt_napi *bnapi;
177         struct bnxt_tx_ring_info *txr;
178         struct bnxt_sw_tx_bd *tx_buf;
179
180         i = skb_get_queue_mapping(skb);
181         if (unlikely(i >= bp->tx_nr_rings)) {
182                 dev_kfree_skb_any(skb);
183                 return NETDEV_TX_OK;
184         }
185
186         bnapi = bp->bnapi[i];
187         txr = &bnapi->tx_ring;
188         txq = netdev_get_tx_queue(dev, i);
189         prod = txr->tx_prod;
190
191         free_size = bnxt_tx_avail(bp, txr);
192         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
193                 netif_tx_stop_queue(txq);
194                 return NETDEV_TX_BUSY;
195         }
196
197         length = skb->len;
198         len = skb_headlen(skb);
199         last_frag = skb_shinfo(skb)->nr_frags;
200
201         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
202
203         txbd->tx_bd_opaque = prod;
204
205         tx_buf = &txr->tx_buf_ring[prod];
206         tx_buf->skb = skb;
207         tx_buf->nr_frags = last_frag;
208
209         vlan_tag_flags = 0;
210         cfa_action = 0;
211         if (skb_vlan_tag_present(skb)) {
212                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
213                                  skb_vlan_tag_get(skb);
214                 /* Currently supports 8021Q, 8021AD vlan offloads
215                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
216                  */
217                 if (skb->vlan_proto == htons(ETH_P_8021Q))
218                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
219         }
220
221         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
222                 struct tx_push_bd *push = txr->tx_push;
223                 struct tx_bd *tx_push = &push->txbd1;
224                 struct tx_bd_ext *tx_push1 = &push->txbd2;
225                 void *pdata = tx_push1 + 1;
226                 int j;
227
228                 /* Set COAL_NOW to be ready quickly for the next push */
229                 tx_push->tx_bd_len_flags_type =
230                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
231                                         TX_BD_TYPE_LONG_TX_BD |
232                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
233                                         TX_BD_FLAGS_COAL_NOW |
234                                         TX_BD_FLAGS_PACKET_END |
235                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
236
237                 if (skb->ip_summed == CHECKSUM_PARTIAL)
238                         tx_push1->tx_bd_hsize_lflags =
239                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
240                 else
241                         tx_push1->tx_bd_hsize_lflags = 0;
242
243                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
244                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
245
246                 skb_copy_from_linear_data(skb, pdata, len);
247                 pdata += len;
248                 for (j = 0; j < last_frag; j++) {
249                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
250                         void *fptr;
251
252                         fptr = skb_frag_address_safe(frag);
253                         if (!fptr)
254                                 goto normal_tx;
255
256                         memcpy(pdata, fptr, skb_frag_size(frag));
257                         pdata += skb_frag_size(frag);
258                 }
259
260                 memcpy(txbd, tx_push, sizeof(*txbd));
261                 prod = NEXT_TX(prod);
262                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
263                 memcpy(txbd, tx_push1, sizeof(*txbd));
264                 prod = NEXT_TX(prod);
265                 push->doorbell =
266                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
267                 txr->tx_prod = prod;
268
269                 netdev_tx_sent_queue(txq, skb->len);
270
271                 __iowrite64_copy(txr->tx_doorbell, push,
272                                  (length + sizeof(*push) + 8) / 8);
273
274                 tx_buf->is_push = 1;
275
276                 goto tx_done;
277         }
278
279 normal_tx:
280         if (length < BNXT_MIN_PKT_SIZE) {
281                 pad = BNXT_MIN_PKT_SIZE - length;
282                 if (skb_pad(skb, pad)) {
283                         /* SKB already freed. */
284                         tx_buf->skb = NULL;
285                         return NETDEV_TX_OK;
286                 }
287                 length = BNXT_MIN_PKT_SIZE;
288         }
289
290         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
291
292         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
293                 dev_kfree_skb_any(skb);
294                 tx_buf->skb = NULL;
295                 return NETDEV_TX_OK;
296         }
297
298         dma_unmap_addr_set(tx_buf, mapping, mapping);
299         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
300                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
301
302         txbd->tx_bd_haddr = cpu_to_le64(mapping);
303
304         prod = NEXT_TX(prod);
305         txbd1 = (struct tx_bd_ext *)
306                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
307
308         txbd1->tx_bd_hsize_lflags = 0;
309         if (skb_is_gso(skb)) {
310                 u32 hdr_len;
311
312                 if (skb->encapsulation)
313                         hdr_len = skb_inner_network_offset(skb) +
314                                 skb_inner_network_header_len(skb) +
315                                 inner_tcp_hdrlen(skb);
316                 else
317                         hdr_len = skb_transport_offset(skb) +
318                                 tcp_hdrlen(skb);
319
320                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
321                                         TX_BD_FLAGS_T_IPID |
322                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
323                 length = skb_shinfo(skb)->gso_size;
324                 txbd1->tx_bd_mss = cpu_to_le32(length);
325                 length += hdr_len;
326         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
327                 txbd1->tx_bd_hsize_lflags =
328                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
329                 txbd1->tx_bd_mss = 0;
330         }
331
332         length >>= 9;
333         flags |= bnxt_lhint_arr[length];
334         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
335
336         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
337         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
338         for (i = 0; i < last_frag; i++) {
339                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
340
341                 prod = NEXT_TX(prod);
342                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
343
344                 len = skb_frag_size(frag);
345                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
346                                            DMA_TO_DEVICE);
347
348                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
349                         goto tx_dma_error;
350
351                 tx_buf = &txr->tx_buf_ring[prod];
352                 dma_unmap_addr_set(tx_buf, mapping, mapping);
353
354                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
355
356                 flags = len << TX_BD_LEN_SHIFT;
357                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
358         }
359
360         flags &= ~TX_BD_LEN;
361         txbd->tx_bd_len_flags_type =
362                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
363                             TX_BD_FLAGS_PACKET_END);
364
365         netdev_tx_sent_queue(txq, skb->len);
366
367         /* Sync BD data before updating doorbell */
368         wmb();
369
370         prod = NEXT_TX(prod);
371         txr->tx_prod = prod;
372
373         writel(DB_KEY_TX | prod, txr->tx_doorbell);
374         writel(DB_KEY_TX | prod, txr->tx_doorbell);
375
376 tx_done:
377
378         mmiowb();
379
380         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
381                 netif_tx_stop_queue(txq);
382
383                 /* netif_tx_stop_queue() must be done before checking
384                  * tx index in bnxt_tx_avail() below, because in
385                  * bnxt_tx_int(), we update tx index before checking for
386                  * netif_tx_queue_stopped().
387                  */
388                 smp_mb();
389                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
390                         netif_tx_wake_queue(txq);
391         }
392         return NETDEV_TX_OK;
393
394 tx_dma_error:
395         last_frag = i;
396
397         /* start back at beginning and unmap skb */
398         prod = txr->tx_prod;
399         tx_buf = &txr->tx_buf_ring[prod];
400         tx_buf->skb = NULL;
401         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
402                          skb_headlen(skb), PCI_DMA_TODEVICE);
403         prod = NEXT_TX(prod);
404
405         /* unmap remaining mapped pages */
406         for (i = 0; i < last_frag; i++) {
407                 prod = NEXT_TX(prod);
408                 tx_buf = &txr->tx_buf_ring[prod];
409                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
410                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
411                                PCI_DMA_TODEVICE);
412         }
413
414         dev_kfree_skb_any(skb);
415         return NETDEV_TX_OK;
416 }
417
418 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
419 {
420         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
421         int index = bnapi->index;
422         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
423         u16 cons = txr->tx_cons;
424         struct pci_dev *pdev = bp->pdev;
425         int i;
426         unsigned int tx_bytes = 0;
427
428         for (i = 0; i < nr_pkts; i++) {
429                 struct bnxt_sw_tx_bd *tx_buf;
430                 struct sk_buff *skb;
431                 int j, last;
432
433                 tx_buf = &txr->tx_buf_ring[cons];
434                 cons = NEXT_TX(cons);
435                 skb = tx_buf->skb;
436                 tx_buf->skb = NULL;
437
438                 if (tx_buf->is_push) {
439                         tx_buf->is_push = 0;
440                         goto next_tx_int;
441                 }
442
443                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
444                                  skb_headlen(skb), PCI_DMA_TODEVICE);
445                 last = tx_buf->nr_frags;
446
447                 for (j = 0; j < last; j++) {
448                         cons = NEXT_TX(cons);
449                         tx_buf = &txr->tx_buf_ring[cons];
450                         dma_unmap_page(
451                                 &pdev->dev,
452                                 dma_unmap_addr(tx_buf, mapping),
453                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
454                                 PCI_DMA_TODEVICE);
455                 }
456
457 next_tx_int:
458                 cons = NEXT_TX(cons);
459
460                 tx_bytes += skb->len;
461                 dev_kfree_skb_any(skb);
462         }
463
464         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
465         txr->tx_cons = cons;
466
467         /* Need to make the tx_cons update visible to bnxt_start_xmit()
468          * before checking for netif_tx_queue_stopped().  Without the
469          * memory barrier, there is a small possibility that bnxt_start_xmit()
470          * will miss it and cause the queue to be stopped forever.
471          */
472         smp_mb();
473
474         if (unlikely(netif_tx_queue_stopped(txq)) &&
475             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
476                 __netif_tx_lock(txq, smp_processor_id());
477                 if (netif_tx_queue_stopped(txq) &&
478                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
479                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
480                         netif_tx_wake_queue(txq);
481                 __netif_tx_unlock(txq);
482         }
483 }
484
485 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
486                                        gfp_t gfp)
487 {
488         u8 *data;
489         struct pci_dev *pdev = bp->pdev;
490
491         data = kmalloc(bp->rx_buf_size, gfp);
492         if (!data)
493                 return NULL;
494
495         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
496                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
497
498         if (dma_mapping_error(&pdev->dev, *mapping)) {
499                 kfree(data);
500                 data = NULL;
501         }
502         return data;
503 }
504
505 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
506                                      struct bnxt_rx_ring_info *rxr,
507                                      u16 prod, gfp_t gfp)
508 {
509         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
510         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
511         u8 *data;
512         dma_addr_t mapping;
513
514         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
515         if (!data)
516                 return -ENOMEM;
517
518         rx_buf->data = data;
519         dma_unmap_addr_set(rx_buf, mapping, mapping);
520
521         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
522
523         return 0;
524 }
525
526 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
527                                u8 *data)
528 {
529         u16 prod = rxr->rx_prod;
530         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
531         struct rx_bd *cons_bd, *prod_bd;
532
533         prod_rx_buf = &rxr->rx_buf_ring[prod];
534         cons_rx_buf = &rxr->rx_buf_ring[cons];
535
536         prod_rx_buf->data = data;
537
538         dma_unmap_addr_set(prod_rx_buf, mapping,
539                            dma_unmap_addr(cons_rx_buf, mapping));
540
541         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
542         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
543
544         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
545 }
546
547 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
548 {
549         u16 next, max = rxr->rx_agg_bmap_size;
550
551         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
552         if (next >= max)
553                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
554         return next;
555 }
556
557 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
558                                      struct bnxt_rx_ring_info *rxr,
559                                      u16 prod, gfp_t gfp)
560 {
561         struct rx_bd *rxbd =
562                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
563         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
564         struct pci_dev *pdev = bp->pdev;
565         struct page *page;
566         dma_addr_t mapping;
567         u16 sw_prod = rxr->rx_sw_agg_prod;
568
569         page = alloc_page(gfp);
570         if (!page)
571                 return -ENOMEM;
572
573         mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
574                                PCI_DMA_FROMDEVICE);
575         if (dma_mapping_error(&pdev->dev, mapping)) {
576                 __free_page(page);
577                 return -EIO;
578         }
579
580         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
581                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
582
583         __set_bit(sw_prod, rxr->rx_agg_bmap);
584         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
585         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
586
587         rx_agg_buf->page = page;
588         rx_agg_buf->mapping = mapping;
589         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
590         rxbd->rx_bd_opaque = sw_prod;
591         return 0;
592 }
593
594 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
595                                    u32 agg_bufs)
596 {
597         struct bnxt *bp = bnapi->bp;
598         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
599         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
600         u16 prod = rxr->rx_agg_prod;
601         u16 sw_prod = rxr->rx_sw_agg_prod;
602         u32 i;
603
604         for (i = 0; i < agg_bufs; i++) {
605                 u16 cons;
606                 struct rx_agg_cmp *agg;
607                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
608                 struct rx_bd *prod_bd;
609                 struct page *page;
610
611                 agg = (struct rx_agg_cmp *)
612                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
613                 cons = agg->rx_agg_cmp_opaque;
614                 __clear_bit(cons, rxr->rx_agg_bmap);
615
616                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
617                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
618
619                 __set_bit(sw_prod, rxr->rx_agg_bmap);
620                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
621                 cons_rx_buf = &rxr->rx_agg_ring[cons];
622
623                 /* It is possible for sw_prod to be equal to cons, so
624                  * set cons_rx_buf->page to NULL first.
625                  */
626                 page = cons_rx_buf->page;
627                 cons_rx_buf->page = NULL;
628                 prod_rx_buf->page = page;
629
630                 prod_rx_buf->mapping = cons_rx_buf->mapping;
631
632                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
633
634                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
635                 prod_bd->rx_bd_opaque = sw_prod;
636
637                 prod = NEXT_RX_AGG(prod);
638                 sw_prod = NEXT_RX_AGG(sw_prod);
639                 cp_cons = NEXT_CMP(cp_cons);
640         }
641         rxr->rx_agg_prod = prod;
642         rxr->rx_sw_agg_prod = sw_prod;
643 }
644
645 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
646                                    struct bnxt_rx_ring_info *rxr, u16 cons,
647                                    u16 prod, u8 *data, dma_addr_t dma_addr,
648                                    unsigned int len)
649 {
650         int err;
651         struct sk_buff *skb;
652
653         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
654         if (unlikely(err)) {
655                 bnxt_reuse_rx_data(rxr, cons, data);
656                 return NULL;
657         }
658
659         skb = build_skb(data, 0);
660         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
661                          PCI_DMA_FROMDEVICE);
662         if (!skb) {
663                 kfree(data);
664                 return NULL;
665         }
666
667         skb_reserve(skb, BNXT_RX_OFFSET);
668         skb_put(skb, len);
669         return skb;
670 }
671
672 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
673                                      struct sk_buff *skb, u16 cp_cons,
674                                      u32 agg_bufs)
675 {
676         struct pci_dev *pdev = bp->pdev;
677         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
678         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
679         u16 prod = rxr->rx_agg_prod;
680         u32 i;
681
682         for (i = 0; i < agg_bufs; i++) {
683                 u16 cons, frag_len;
684                 struct rx_agg_cmp *agg;
685                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
686                 struct page *page;
687                 dma_addr_t mapping;
688
689                 agg = (struct rx_agg_cmp *)
690                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
691                 cons = agg->rx_agg_cmp_opaque;
692                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
693                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
694
695                 cons_rx_buf = &rxr->rx_agg_ring[cons];
696                 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
697                 __clear_bit(cons, rxr->rx_agg_bmap);
698
699                 /* It is possible for bnxt_alloc_rx_page() to allocate
700                  * a sw_prod index that equals the cons index, so we
701                  * need to clear the cons entry now.
702                  */
703                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
704                 page = cons_rx_buf->page;
705                 cons_rx_buf->page = NULL;
706
707                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
708                         struct skb_shared_info *shinfo;
709                         unsigned int nr_frags;
710
711                         shinfo = skb_shinfo(skb);
712                         nr_frags = --shinfo->nr_frags;
713                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
714
715                         dev_kfree_skb(skb);
716
717                         cons_rx_buf->page = page;
718
719                         /* Update prod since possibly some pages have been
720                          * allocated already.
721                          */
722                         rxr->rx_agg_prod = prod;
723                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
724                         return NULL;
725                 }
726
727                 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
728                                PCI_DMA_FROMDEVICE);
729
730                 skb->data_len += frag_len;
731                 skb->len += frag_len;
732                 skb->truesize += PAGE_SIZE;
733
734                 prod = NEXT_RX_AGG(prod);
735                 cp_cons = NEXT_CMP(cp_cons);
736         }
737         rxr->rx_agg_prod = prod;
738         return skb;
739 }
740
741 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
742                                u8 agg_bufs, u32 *raw_cons)
743 {
744         u16 last;
745         struct rx_agg_cmp *agg;
746
747         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
748         last = RING_CMP(*raw_cons);
749         agg = (struct rx_agg_cmp *)
750                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
751         return RX_AGG_CMP_VALID(agg, *raw_cons);
752 }
753
754 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
755                                             unsigned int len,
756                                             dma_addr_t mapping)
757 {
758         struct bnxt *bp = bnapi->bp;
759         struct pci_dev *pdev = bp->pdev;
760         struct sk_buff *skb;
761
762         skb = napi_alloc_skb(&bnapi->napi, len);
763         if (!skb)
764                 return NULL;
765
766         dma_sync_single_for_cpu(&pdev->dev, mapping,
767                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
768
769         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
770
771         dma_sync_single_for_device(&pdev->dev, mapping,
772                                    bp->rx_copy_thresh,
773                                    PCI_DMA_FROMDEVICE);
774
775         skb_put(skb, len);
776         return skb;
777 }
778
779 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
780                            struct rx_tpa_start_cmp *tpa_start,
781                            struct rx_tpa_start_cmp_ext *tpa_start1)
782 {
783         u8 agg_id = TPA_START_AGG_ID(tpa_start);
784         u16 cons, prod;
785         struct bnxt_tpa_info *tpa_info;
786         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
787         struct rx_bd *prod_bd;
788         dma_addr_t mapping;
789
790         cons = tpa_start->rx_tpa_start_cmp_opaque;
791         prod = rxr->rx_prod;
792         cons_rx_buf = &rxr->rx_buf_ring[cons];
793         prod_rx_buf = &rxr->rx_buf_ring[prod];
794         tpa_info = &rxr->rx_tpa[agg_id];
795
796         prod_rx_buf->data = tpa_info->data;
797
798         mapping = tpa_info->mapping;
799         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
800
801         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
802
803         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
804
805         tpa_info->data = cons_rx_buf->data;
806         cons_rx_buf->data = NULL;
807         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
808
809         tpa_info->len =
810                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
811                                 RX_TPA_START_CMP_LEN_SHIFT;
812         if (likely(TPA_START_HASH_VALID(tpa_start))) {
813                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
814
815                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
816                 tpa_info->gso_type = SKB_GSO_TCPV4;
817                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
818                 if (hash_type == 3)
819                         tpa_info->gso_type = SKB_GSO_TCPV6;
820                 tpa_info->rss_hash =
821                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
822         } else {
823                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
824                 tpa_info->gso_type = 0;
825                 if (netif_msg_rx_err(bp))
826                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
827         }
828         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
829         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
830
831         rxr->rx_prod = NEXT_RX(prod);
832         cons = NEXT_RX(cons);
833         cons_rx_buf = &rxr->rx_buf_ring[cons];
834
835         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
836         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
837         cons_rx_buf->data = NULL;
838 }
839
840 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
841                            u16 cp_cons, u32 agg_bufs)
842 {
843         if (agg_bufs)
844                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
845 }
846
847 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
848 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
849
850 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
851                                            struct rx_tpa_end_cmp *tpa_end,
852                                            struct rx_tpa_end_cmp_ext *tpa_end1,
853                                            struct sk_buff *skb)
854 {
855 #ifdef CONFIG_INET
856         struct tcphdr *th;
857         int payload_off, tcp_opt_len = 0;
858         int len, nw_off;
859
860         NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end);
861         skb_shinfo(skb)->gso_size =
862                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
863         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
864         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
865                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
866                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
867         if (TPA_END_GRO_TS(tpa_end))
868                 tcp_opt_len = 12;
869
870         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
871                 struct iphdr *iph;
872
873                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
874                          ETH_HLEN;
875                 skb_set_network_header(skb, nw_off);
876                 iph = ip_hdr(skb);
877                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
878                 len = skb->len - skb_transport_offset(skb);
879                 th = tcp_hdr(skb);
880                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
881         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
882                 struct ipv6hdr *iph;
883
884                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
885                          ETH_HLEN;
886                 skb_set_network_header(skb, nw_off);
887                 iph = ipv6_hdr(skb);
888                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
889                 len = skb->len - skb_transport_offset(skb);
890                 th = tcp_hdr(skb);
891                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
892         } else {
893                 dev_kfree_skb_any(skb);
894                 return NULL;
895         }
896         tcp_gro_complete(skb);
897
898         if (nw_off) { /* tunnel */
899                 struct udphdr *uh = NULL;
900
901                 if (skb->protocol == htons(ETH_P_IP)) {
902                         struct iphdr *iph = (struct iphdr *)skb->data;
903
904                         if (iph->protocol == IPPROTO_UDP)
905                                 uh = (struct udphdr *)(iph + 1);
906                 } else {
907                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
908
909                         if (iph->nexthdr == IPPROTO_UDP)
910                                 uh = (struct udphdr *)(iph + 1);
911                 }
912                 if (uh) {
913                         if (uh->check)
914                                 skb_shinfo(skb)->gso_type |=
915                                         SKB_GSO_UDP_TUNNEL_CSUM;
916                         else
917                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
918                 }
919         }
920 #endif
921         return skb;
922 }
923
924 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
925                                            struct bnxt_napi *bnapi,
926                                            u32 *raw_cons,
927                                            struct rx_tpa_end_cmp *tpa_end,
928                                            struct rx_tpa_end_cmp_ext *tpa_end1,
929                                            bool *agg_event)
930 {
931         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
932         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
933         u8 agg_id = TPA_END_AGG_ID(tpa_end);
934         u8 *data, agg_bufs;
935         u16 cp_cons = RING_CMP(*raw_cons);
936         unsigned int len;
937         struct bnxt_tpa_info *tpa_info;
938         dma_addr_t mapping;
939         struct sk_buff *skb;
940
941         tpa_info = &rxr->rx_tpa[agg_id];
942         data = tpa_info->data;
943         prefetch(data);
944         len = tpa_info->len;
945         mapping = tpa_info->mapping;
946
947         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
948                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
949
950         if (agg_bufs) {
951                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
952                         return ERR_PTR(-EBUSY);
953
954                 *agg_event = true;
955                 cp_cons = NEXT_CMP(cp_cons);
956         }
957
958         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
959                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
960                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
961                             agg_bufs, (int)MAX_SKB_FRAGS);
962                 return NULL;
963         }
964
965         if (len <= bp->rx_copy_thresh) {
966                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
967                 if (!skb) {
968                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969                         return NULL;
970                 }
971         } else {
972                 u8 *new_data;
973                 dma_addr_t new_mapping;
974
975                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
976                 if (!new_data) {
977                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978                         return NULL;
979                 }
980
981                 tpa_info->data = new_data;
982                 tpa_info->mapping = new_mapping;
983
984                 skb = build_skb(data, 0);
985                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
986                                  PCI_DMA_FROMDEVICE);
987
988                 if (!skb) {
989                         kfree(data);
990                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
991                         return NULL;
992                 }
993                 skb_reserve(skb, BNXT_RX_OFFSET);
994                 skb_put(skb, len);
995         }
996
997         if (agg_bufs) {
998                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
999                 if (!skb) {
1000                         /* Page reuse already handled by bnxt_rx_pages(). */
1001                         return NULL;
1002                 }
1003         }
1004         skb->protocol = eth_type_trans(skb, bp->dev);
1005
1006         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1007                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1008
1009         if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1010                 netdev_features_t features = skb->dev->features;
1011                 u16 vlan_proto = tpa_info->metadata >>
1012                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1013
1014                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1015                      vlan_proto == ETH_P_8021Q) ||
1016                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1017                      vlan_proto == ETH_P_8021AD)) {
1018                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1019                                                tpa_info->metadata &
1020                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1021                 }
1022         }
1023
1024         skb_checksum_none_assert(skb);
1025         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1026                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1027                 skb->csum_level =
1028                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1029         }
1030
1031         if (TPA_END_GRO(tpa_end))
1032                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1033
1034         return skb;
1035 }
1036
1037 /* returns the following:
1038  * 1       - 1 packet successfully received
1039  * 0       - successful TPA_START, packet not completed yet
1040  * -EBUSY  - completion ring does not have all the agg buffers yet
1041  * -ENOMEM - packet aborted due to out of memory
1042  * -EIO    - packet aborted due to hw error indicated in BD
1043  */
1044 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1045                        bool *agg_event)
1046 {
1047         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1048         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1049         struct net_device *dev = bp->dev;
1050         struct rx_cmp *rxcmp;
1051         struct rx_cmp_ext *rxcmp1;
1052         u32 tmp_raw_cons = *raw_cons;
1053         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1054         struct bnxt_sw_rx_bd *rx_buf;
1055         unsigned int len;
1056         u8 *data, agg_bufs, cmp_type;
1057         dma_addr_t dma_addr;
1058         struct sk_buff *skb;
1059         int rc = 0;
1060
1061         rxcmp = (struct rx_cmp *)
1062                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1063
1064         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1065         cp_cons = RING_CMP(tmp_raw_cons);
1066         rxcmp1 = (struct rx_cmp_ext *)
1067                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1068
1069         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1070                 return -EBUSY;
1071
1072         cmp_type = RX_CMP_TYPE(rxcmp);
1073
1074         prod = rxr->rx_prod;
1075
1076         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1077                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1078                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1079
1080                 goto next_rx_no_prod;
1081
1082         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1083                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1084                                    (struct rx_tpa_end_cmp *)rxcmp,
1085                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1086                                    agg_event);
1087
1088                 if (unlikely(IS_ERR(skb)))
1089                         return -EBUSY;
1090
1091                 rc = -ENOMEM;
1092                 if (likely(skb)) {
1093                         skb_record_rx_queue(skb, bnapi->index);
1094                         skb_mark_napi_id(skb, &bnapi->napi);
1095                         if (bnxt_busy_polling(bnapi))
1096                                 netif_receive_skb(skb);
1097                         else
1098                                 napi_gro_receive(&bnapi->napi, skb);
1099                         rc = 1;
1100                 }
1101                 goto next_rx_no_prod;
1102         }
1103
1104         cons = rxcmp->rx_cmp_opaque;
1105         rx_buf = &rxr->rx_buf_ring[cons];
1106         data = rx_buf->data;
1107         prefetch(data);
1108
1109         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1110                                 RX_CMP_AGG_BUFS_SHIFT;
1111
1112         if (agg_bufs) {
1113                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1114                         return -EBUSY;
1115
1116                 cp_cons = NEXT_CMP(cp_cons);
1117                 *agg_event = true;
1118         }
1119
1120         rx_buf->data = NULL;
1121         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1122                 bnxt_reuse_rx_data(rxr, cons, data);
1123                 if (agg_bufs)
1124                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1125
1126                 rc = -EIO;
1127                 goto next_rx;
1128         }
1129
1130         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1131         dma_addr = dma_unmap_addr(rx_buf, mapping);
1132
1133         if (len <= bp->rx_copy_thresh) {
1134                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1135                 bnxt_reuse_rx_data(rxr, cons, data);
1136                 if (!skb) {
1137                         rc = -ENOMEM;
1138                         goto next_rx;
1139                 }
1140         } else {
1141                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1142                 if (!skb) {
1143                         rc = -ENOMEM;
1144                         goto next_rx;
1145                 }
1146         }
1147
1148         if (agg_bufs) {
1149                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1150                 if (!skb) {
1151                         rc = -ENOMEM;
1152                         goto next_rx;
1153                 }
1154         }
1155
1156         if (RX_CMP_HASH_VALID(rxcmp)) {
1157                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1158                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1159
1160                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1161                 if (hash_type != 1 && hash_type != 3)
1162                         type = PKT_HASH_TYPE_L3;
1163                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1164         }
1165
1166         skb->protocol = eth_type_trans(skb, dev);
1167
1168         if (rxcmp1->rx_cmp_flags2 &
1169             cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1170                 netdev_features_t features = skb->dev->features;
1171                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1172                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1173
1174                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1175                      vlan_proto == ETH_P_8021Q) ||
1176                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1177                      vlan_proto == ETH_P_8021AD))
1178                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1179                                                meta_data &
1180                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1181         }
1182
1183         skb_checksum_none_assert(skb);
1184         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1185                 if (dev->features & NETIF_F_RXCSUM) {
1186                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1187                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1188                 }
1189         } else {
1190                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1191                         if (dev->features & NETIF_F_RXCSUM)
1192                                 cpr->rx_l4_csum_errors++;
1193                 }
1194         }
1195
1196         skb_record_rx_queue(skb, bnapi->index);
1197         skb_mark_napi_id(skb, &bnapi->napi);
1198         if (bnxt_busy_polling(bnapi))
1199                 netif_receive_skb(skb);
1200         else
1201                 napi_gro_receive(&bnapi->napi, skb);
1202         rc = 1;
1203
1204 next_rx:
1205         rxr->rx_prod = NEXT_RX(prod);
1206
1207 next_rx_no_prod:
1208         *raw_cons = tmp_raw_cons;
1209
1210         return rc;
1211 }
1212
1213 static int bnxt_async_event_process(struct bnxt *bp,
1214                                     struct hwrm_async_event_cmpl *cmpl)
1215 {
1216         u16 event_id = le16_to_cpu(cmpl->event_id);
1217
1218         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1219         switch (event_id) {
1220         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1221                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1222                 schedule_work(&bp->sp_task);
1223                 break;
1224         default:
1225                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1226                            event_id);
1227                 break;
1228         }
1229         return 0;
1230 }
1231
1232 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1233 {
1234         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1235         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1236         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1237                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1238
1239         switch (cmpl_type) {
1240         case CMPL_BASE_TYPE_HWRM_DONE:
1241                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1242                 if (seq_id == bp->hwrm_intr_seq_id)
1243                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1244                 else
1245                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1246                 break;
1247
1248         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1249                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1250
1251                 if ((vf_id < bp->pf.first_vf_id) ||
1252                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1253                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1254                                    vf_id);
1255                         return -EINVAL;
1256                 }
1257
1258                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1259                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1260                 schedule_work(&bp->sp_task);
1261                 break;
1262
1263         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1264                 bnxt_async_event_process(bp,
1265                                          (struct hwrm_async_event_cmpl *)txcmp);
1266
1267         default:
1268                 break;
1269         }
1270
1271         return 0;
1272 }
1273
1274 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1275 {
1276         struct bnxt_napi *bnapi = dev_instance;
1277         struct bnxt *bp = bnapi->bp;
1278         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1279         u32 cons = RING_CMP(cpr->cp_raw_cons);
1280
1281         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1282         napi_schedule(&bnapi->napi);
1283         return IRQ_HANDLED;
1284 }
1285
1286 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1287 {
1288         u32 raw_cons = cpr->cp_raw_cons;
1289         u16 cons = RING_CMP(raw_cons);
1290         struct tx_cmp *txcmp;
1291
1292         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1293
1294         return TX_CMP_VALID(txcmp, raw_cons);
1295 }
1296
1297 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1298 {
1299         struct bnxt_napi *bnapi = dev_instance;
1300         struct bnxt *bp = bnapi->bp;
1301         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1302         u32 cons = RING_CMP(cpr->cp_raw_cons);
1303         u32 int_status;
1304
1305         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1306
1307         if (!bnxt_has_work(bp, cpr)) {
1308                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1309                 /* return if erroneous interrupt */
1310                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1311                         return IRQ_NONE;
1312         }
1313
1314         /* disable ring IRQ */
1315         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1316
1317         /* Return here if interrupt is shared and is disabled. */
1318         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1319                 return IRQ_HANDLED;
1320
1321         napi_schedule(&bnapi->napi);
1322         return IRQ_HANDLED;
1323 }
1324
1325 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1326 {
1327         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1328         u32 raw_cons = cpr->cp_raw_cons;
1329         u32 cons;
1330         int tx_pkts = 0;
1331         int rx_pkts = 0;
1332         bool rx_event = false;
1333         bool agg_event = false;
1334         struct tx_cmp *txcmp;
1335
1336         while (1) {
1337                 int rc;
1338
1339                 cons = RING_CMP(raw_cons);
1340                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1341
1342                 if (!TX_CMP_VALID(txcmp, raw_cons))
1343                         break;
1344
1345                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1346                         tx_pkts++;
1347                         /* return full budget so NAPI will complete. */
1348                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1349                                 rx_pkts = budget;
1350                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1351                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1352                         if (likely(rc >= 0))
1353                                 rx_pkts += rc;
1354                         else if (rc == -EBUSY)  /* partial completion */
1355                                 break;
1356                         rx_event = true;
1357                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1358                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1359                                     (TX_CMP_TYPE(txcmp) ==
1360                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1361                                     (TX_CMP_TYPE(txcmp) ==
1362                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1363                         bnxt_hwrm_handler(bp, txcmp);
1364                 }
1365                 raw_cons = NEXT_RAW_CMP(raw_cons);
1366
1367                 if (rx_pkts == budget)
1368                         break;
1369         }
1370
1371         cpr->cp_raw_cons = raw_cons;
1372         /* ACK completion ring before freeing tx ring and producing new
1373          * buffers in rx/agg rings to prevent overflowing the completion
1374          * ring.
1375          */
1376         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1377
1378         if (tx_pkts)
1379                 bnxt_tx_int(bp, bnapi, tx_pkts);
1380
1381         if (rx_event) {
1382                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1383
1384                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1385                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1386                 if (agg_event) {
1387                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1388                                rxr->rx_agg_doorbell);
1389                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1390                                rxr->rx_agg_doorbell);
1391                 }
1392         }
1393         return rx_pkts;
1394 }
1395
1396 static int bnxt_poll(struct napi_struct *napi, int budget)
1397 {
1398         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1399         struct bnxt *bp = bnapi->bp;
1400         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1401         int work_done = 0;
1402
1403         if (!bnxt_lock_napi(bnapi))
1404                 return budget;
1405
1406         while (1) {
1407                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1408
1409                 if (work_done >= budget)
1410                         break;
1411
1412                 if (!bnxt_has_work(bp, cpr)) {
1413                         napi_complete(napi);
1414                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1415                         break;
1416                 }
1417         }
1418         mmiowb();
1419         bnxt_unlock_napi(bnapi);
1420         return work_done;
1421 }
1422
1423 #ifdef CONFIG_NET_RX_BUSY_POLL
1424 static int bnxt_busy_poll(struct napi_struct *napi)
1425 {
1426         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1427         struct bnxt *bp = bnapi->bp;
1428         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1429         int rx_work, budget = 4;
1430
1431         if (atomic_read(&bp->intr_sem) != 0)
1432                 return LL_FLUSH_FAILED;
1433
1434         if (!bnxt_lock_poll(bnapi))
1435                 return LL_FLUSH_BUSY;
1436
1437         rx_work = bnxt_poll_work(bp, bnapi, budget);
1438
1439         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1440
1441         bnxt_unlock_poll(bnapi);
1442         return rx_work;
1443 }
1444 #endif
1445
1446 static void bnxt_free_tx_skbs(struct bnxt *bp)
1447 {
1448         int i, max_idx;
1449         struct pci_dev *pdev = bp->pdev;
1450
1451         if (!bp->bnapi)
1452                 return;
1453
1454         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1455         for (i = 0; i < bp->tx_nr_rings; i++) {
1456                 struct bnxt_napi *bnapi = bp->bnapi[i];
1457                 struct bnxt_tx_ring_info *txr;
1458                 int j;
1459
1460                 if (!bnapi)
1461                         continue;
1462
1463                 txr = &bnapi->tx_ring;
1464                 for (j = 0; j < max_idx;) {
1465                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1466                         struct sk_buff *skb = tx_buf->skb;
1467                         int k, last;
1468
1469                         if (!skb) {
1470                                 j++;
1471                                 continue;
1472                         }
1473
1474                         tx_buf->skb = NULL;
1475
1476                         if (tx_buf->is_push) {
1477                                 dev_kfree_skb(skb);
1478                                 j += 2;
1479                                 continue;
1480                         }
1481
1482                         dma_unmap_single(&pdev->dev,
1483                                          dma_unmap_addr(tx_buf, mapping),
1484                                          skb_headlen(skb),
1485                                          PCI_DMA_TODEVICE);
1486
1487                         last = tx_buf->nr_frags;
1488                         j += 2;
1489                         for (k = 0; k < last; k++, j = NEXT_TX(j)) {
1490                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1491
1492                                 tx_buf = &txr->tx_buf_ring[j];
1493                                 dma_unmap_page(
1494                                         &pdev->dev,
1495                                         dma_unmap_addr(tx_buf, mapping),
1496                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1497                         }
1498                         dev_kfree_skb(skb);
1499                 }
1500                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1501         }
1502 }
1503
1504 static void bnxt_free_rx_skbs(struct bnxt *bp)
1505 {
1506         int i, max_idx, max_agg_idx;
1507         struct pci_dev *pdev = bp->pdev;
1508
1509         if (!bp->bnapi)
1510                 return;
1511
1512         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1513         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1514         for (i = 0; i < bp->rx_nr_rings; i++) {
1515                 struct bnxt_napi *bnapi = bp->bnapi[i];
1516                 struct bnxt_rx_ring_info *rxr;
1517                 int j;
1518
1519                 if (!bnapi)
1520                         continue;
1521
1522                 rxr = &bnapi->rx_ring;
1523
1524                 if (rxr->rx_tpa) {
1525                         for (j = 0; j < MAX_TPA; j++) {
1526                                 struct bnxt_tpa_info *tpa_info =
1527                                                         &rxr->rx_tpa[j];
1528                                 u8 *data = tpa_info->data;
1529
1530                                 if (!data)
1531                                         continue;
1532
1533                                 dma_unmap_single(
1534                                         &pdev->dev,
1535                                         dma_unmap_addr(tpa_info, mapping),
1536                                         bp->rx_buf_use_size,
1537                                         PCI_DMA_FROMDEVICE);
1538
1539                                 tpa_info->data = NULL;
1540
1541                                 kfree(data);
1542                         }
1543                 }
1544
1545                 for (j = 0; j < max_idx; j++) {
1546                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1547                         u8 *data = rx_buf->data;
1548
1549                         if (!data)
1550                                 continue;
1551
1552                         dma_unmap_single(&pdev->dev,
1553                                          dma_unmap_addr(rx_buf, mapping),
1554                                          bp->rx_buf_use_size,
1555                                          PCI_DMA_FROMDEVICE);
1556
1557                         rx_buf->data = NULL;
1558
1559                         kfree(data);
1560                 }
1561
1562                 for (j = 0; j < max_agg_idx; j++) {
1563                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1564                                 &rxr->rx_agg_ring[j];
1565                         struct page *page = rx_agg_buf->page;
1566
1567                         if (!page)
1568                                 continue;
1569
1570                         dma_unmap_page(&pdev->dev,
1571                                        dma_unmap_addr(rx_agg_buf, mapping),
1572                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1573
1574                         rx_agg_buf->page = NULL;
1575                         __clear_bit(j, rxr->rx_agg_bmap);
1576
1577                         __free_page(page);
1578                 }
1579         }
1580 }
1581
1582 static void bnxt_free_skbs(struct bnxt *bp)
1583 {
1584         bnxt_free_tx_skbs(bp);
1585         bnxt_free_rx_skbs(bp);
1586 }
1587
1588 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1589 {
1590         struct pci_dev *pdev = bp->pdev;
1591         int i;
1592
1593         for (i = 0; i < ring->nr_pages; i++) {
1594                 if (!ring->pg_arr[i])
1595                         continue;
1596
1597                 dma_free_coherent(&pdev->dev, ring->page_size,
1598                                   ring->pg_arr[i], ring->dma_arr[i]);
1599
1600                 ring->pg_arr[i] = NULL;
1601         }
1602         if (ring->pg_tbl) {
1603                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1604                                   ring->pg_tbl, ring->pg_tbl_map);
1605                 ring->pg_tbl = NULL;
1606         }
1607         if (ring->vmem_size && *ring->vmem) {
1608                 vfree(*ring->vmem);
1609                 *ring->vmem = NULL;
1610         }
1611 }
1612
1613 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1614 {
1615         int i;
1616         struct pci_dev *pdev = bp->pdev;
1617
1618         if (ring->nr_pages > 1) {
1619                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1620                                                   ring->nr_pages * 8,
1621                                                   &ring->pg_tbl_map,
1622                                                   GFP_KERNEL);
1623                 if (!ring->pg_tbl)
1624                         return -ENOMEM;
1625         }
1626
1627         for (i = 0; i < ring->nr_pages; i++) {
1628                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1629                                                      ring->page_size,
1630                                                      &ring->dma_arr[i],
1631                                                      GFP_KERNEL);
1632                 if (!ring->pg_arr[i])
1633                         return -ENOMEM;
1634
1635                 if (ring->nr_pages > 1)
1636                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1637         }
1638
1639         if (ring->vmem_size) {
1640                 *ring->vmem = vzalloc(ring->vmem_size);
1641                 if (!(*ring->vmem))
1642                         return -ENOMEM;
1643         }
1644         return 0;
1645 }
1646
1647 static void bnxt_free_rx_rings(struct bnxt *bp)
1648 {
1649         int i;
1650
1651         if (!bp->bnapi)
1652                 return;
1653
1654         for (i = 0; i < bp->rx_nr_rings; i++) {
1655                 struct bnxt_napi *bnapi = bp->bnapi[i];
1656                 struct bnxt_rx_ring_info *rxr;
1657                 struct bnxt_ring_struct *ring;
1658
1659                 if (!bnapi)
1660                         continue;
1661
1662                 rxr = &bnapi->rx_ring;
1663
1664                 kfree(rxr->rx_tpa);
1665                 rxr->rx_tpa = NULL;
1666
1667                 kfree(rxr->rx_agg_bmap);
1668                 rxr->rx_agg_bmap = NULL;
1669
1670                 ring = &rxr->rx_ring_struct;
1671                 bnxt_free_ring(bp, ring);
1672
1673                 ring = &rxr->rx_agg_ring_struct;
1674                 bnxt_free_ring(bp, ring);
1675         }
1676 }
1677
1678 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1679 {
1680         int i, rc, agg_rings = 0, tpa_rings = 0;
1681
1682         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1683                 agg_rings = 1;
1684
1685         if (bp->flags & BNXT_FLAG_TPA)
1686                 tpa_rings = 1;
1687
1688         for (i = 0; i < bp->rx_nr_rings; i++) {
1689                 struct bnxt_napi *bnapi = bp->bnapi[i];
1690                 struct bnxt_rx_ring_info *rxr;
1691                 struct bnxt_ring_struct *ring;
1692
1693                 if (!bnapi)
1694                         continue;
1695
1696                 rxr = &bnapi->rx_ring;
1697                 ring = &rxr->rx_ring_struct;
1698
1699                 rc = bnxt_alloc_ring(bp, ring);
1700                 if (rc)
1701                         return rc;
1702
1703                 if (agg_rings) {
1704                         u16 mem_size;
1705
1706                         ring = &rxr->rx_agg_ring_struct;
1707                         rc = bnxt_alloc_ring(bp, ring);
1708                         if (rc)
1709                                 return rc;
1710
1711                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1712                         mem_size = rxr->rx_agg_bmap_size / 8;
1713                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1714                         if (!rxr->rx_agg_bmap)
1715                                 return -ENOMEM;
1716
1717                         if (tpa_rings) {
1718                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1719                                                 sizeof(struct bnxt_tpa_info),
1720                                                 GFP_KERNEL);
1721                                 if (!rxr->rx_tpa)
1722                                         return -ENOMEM;
1723                         }
1724                 }
1725         }
1726         return 0;
1727 }
1728
1729 static void bnxt_free_tx_rings(struct bnxt *bp)
1730 {
1731         int i;
1732         struct pci_dev *pdev = bp->pdev;
1733
1734         if (!bp->bnapi)
1735                 return;
1736
1737         for (i = 0; i < bp->tx_nr_rings; i++) {
1738                 struct bnxt_napi *bnapi = bp->bnapi[i];
1739                 struct bnxt_tx_ring_info *txr;
1740                 struct bnxt_ring_struct *ring;
1741
1742                 if (!bnapi)
1743                         continue;
1744
1745                 txr = &bnapi->tx_ring;
1746
1747                 if (txr->tx_push) {
1748                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1749                                           txr->tx_push, txr->tx_push_mapping);
1750                         txr->tx_push = NULL;
1751                 }
1752
1753                 ring = &txr->tx_ring_struct;
1754
1755                 bnxt_free_ring(bp, ring);
1756         }
1757 }
1758
1759 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1760 {
1761         int i, j, rc;
1762         struct pci_dev *pdev = bp->pdev;
1763
1764         bp->tx_push_size = 0;
1765         if (bp->tx_push_thresh) {
1766                 int push_size;
1767
1768                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1769                                         bp->tx_push_thresh);
1770
1771                 if (push_size > 128) {
1772                         push_size = 0;
1773                         bp->tx_push_thresh = 0;
1774                 }
1775
1776                 bp->tx_push_size = push_size;
1777         }
1778
1779         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1780                 struct bnxt_napi *bnapi = bp->bnapi[i];
1781                 struct bnxt_tx_ring_info *txr;
1782                 struct bnxt_ring_struct *ring;
1783
1784                 if (!bnapi)
1785                         continue;
1786
1787                 txr = &bnapi->tx_ring;
1788                 ring = &txr->tx_ring_struct;
1789
1790                 rc = bnxt_alloc_ring(bp, ring);
1791                 if (rc)
1792                         return rc;
1793
1794                 if (bp->tx_push_size) {
1795                         struct tx_bd *txbd;
1796                         dma_addr_t mapping;
1797
1798                         /* One pre-allocated DMA buffer to backup
1799                          * TX push operation
1800                          */
1801                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1802                                                 bp->tx_push_size,
1803                                                 &txr->tx_push_mapping,
1804                                                 GFP_KERNEL);
1805
1806                         if (!txr->tx_push)
1807                                 return -ENOMEM;
1808
1809                         txbd = &txr->tx_push->txbd1;
1810
1811                         mapping = txr->tx_push_mapping +
1812                                 sizeof(struct tx_push_bd);
1813                         txbd->tx_bd_haddr = cpu_to_le64(mapping);
1814
1815                         memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1816                 }
1817                 ring->queue_id = bp->q_info[j].queue_id;
1818                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1819                         j++;
1820         }
1821         return 0;
1822 }
1823
1824 static void bnxt_free_cp_rings(struct bnxt *bp)
1825 {
1826         int i;
1827
1828         if (!bp->bnapi)
1829                 return;
1830
1831         for (i = 0; i < bp->cp_nr_rings; i++) {
1832                 struct bnxt_napi *bnapi = bp->bnapi[i];
1833                 struct bnxt_cp_ring_info *cpr;
1834                 struct bnxt_ring_struct *ring;
1835
1836                 if (!bnapi)
1837                         continue;
1838
1839                 cpr = &bnapi->cp_ring;
1840                 ring = &cpr->cp_ring_struct;
1841
1842                 bnxt_free_ring(bp, ring);
1843         }
1844 }
1845
1846 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1847 {
1848         int i, rc;
1849
1850         for (i = 0; i < bp->cp_nr_rings; i++) {
1851                 struct bnxt_napi *bnapi = bp->bnapi[i];
1852                 struct bnxt_cp_ring_info *cpr;
1853                 struct bnxt_ring_struct *ring;
1854
1855                 if (!bnapi)
1856                         continue;
1857
1858                 cpr = &bnapi->cp_ring;
1859                 ring = &cpr->cp_ring_struct;
1860
1861                 rc = bnxt_alloc_ring(bp, ring);
1862                 if (rc)
1863                         return rc;
1864         }
1865         return 0;
1866 }
1867
1868 static void bnxt_init_ring_struct(struct bnxt *bp)
1869 {
1870         int i;
1871
1872         for (i = 0; i < bp->cp_nr_rings; i++) {
1873                 struct bnxt_napi *bnapi = bp->bnapi[i];
1874                 struct bnxt_cp_ring_info *cpr;
1875                 struct bnxt_rx_ring_info *rxr;
1876                 struct bnxt_tx_ring_info *txr;
1877                 struct bnxt_ring_struct *ring;
1878
1879                 if (!bnapi)
1880                         continue;
1881
1882                 cpr = &bnapi->cp_ring;
1883                 ring = &cpr->cp_ring_struct;
1884                 ring->nr_pages = bp->cp_nr_pages;
1885                 ring->page_size = HW_CMPD_RING_SIZE;
1886                 ring->pg_arr = (void **)cpr->cp_desc_ring;
1887                 ring->dma_arr = cpr->cp_desc_mapping;
1888                 ring->vmem_size = 0;
1889
1890                 rxr = &bnapi->rx_ring;
1891                 ring = &rxr->rx_ring_struct;
1892                 ring->nr_pages = bp->rx_nr_pages;
1893                 ring->page_size = HW_RXBD_RING_SIZE;
1894                 ring->pg_arr = (void **)rxr->rx_desc_ring;
1895                 ring->dma_arr = rxr->rx_desc_mapping;
1896                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1897                 ring->vmem = (void **)&rxr->rx_buf_ring;
1898
1899                 ring = &rxr->rx_agg_ring_struct;
1900                 ring->nr_pages = bp->rx_agg_nr_pages;
1901                 ring->page_size = HW_RXBD_RING_SIZE;
1902                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1903                 ring->dma_arr = rxr->rx_agg_desc_mapping;
1904                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1905                 ring->vmem = (void **)&rxr->rx_agg_ring;
1906
1907                 txr = &bnapi->tx_ring;
1908                 ring = &txr->tx_ring_struct;
1909                 ring->nr_pages = bp->tx_nr_pages;
1910                 ring->page_size = HW_RXBD_RING_SIZE;
1911                 ring->pg_arr = (void **)txr->tx_desc_ring;
1912                 ring->dma_arr = txr->tx_desc_mapping;
1913                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1914                 ring->vmem = (void **)&txr->tx_buf_ring;
1915         }
1916 }
1917
1918 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1919 {
1920         int i;
1921         u32 prod;
1922         struct rx_bd **rx_buf_ring;
1923
1924         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1925         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1926                 int j;
1927                 struct rx_bd *rxbd;
1928
1929                 rxbd = rx_buf_ring[i];
1930                 if (!rxbd)
1931                         continue;
1932
1933                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1934                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1935                         rxbd->rx_bd_opaque = prod;
1936                 }
1937         }
1938 }
1939
1940 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1941 {
1942         struct net_device *dev = bp->dev;
1943         struct bnxt_napi *bnapi = bp->bnapi[ring_nr];
1944         struct bnxt_rx_ring_info *rxr;
1945         struct bnxt_ring_struct *ring;
1946         u32 prod, type;
1947         int i;
1948
1949         if (!bnapi)
1950                 return -EINVAL;
1951
1952         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1953                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1954
1955         if (NET_IP_ALIGN == 2)
1956                 type |= RX_BD_FLAGS_SOP;
1957
1958         rxr = &bnapi->rx_ring;
1959         ring = &rxr->rx_ring_struct;
1960         bnxt_init_rxbd_pages(ring, type);
1961
1962         prod = rxr->rx_prod;
1963         for (i = 0; i < bp->rx_ring_size; i++) {
1964                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1965                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1966                                     ring_nr, i, bp->rx_ring_size);
1967                         break;
1968                 }
1969                 prod = NEXT_RX(prod);
1970         }
1971         rxr->rx_prod = prod;
1972         ring->fw_ring_id = INVALID_HW_RING_ID;
1973
1974         ring = &rxr->rx_agg_ring_struct;
1975         ring->fw_ring_id = INVALID_HW_RING_ID;
1976
1977         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1978                 return 0;
1979
1980         type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1981                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1982
1983         bnxt_init_rxbd_pages(ring, type);
1984
1985         prod = rxr->rx_agg_prod;
1986         for (i = 0; i < bp->rx_agg_ring_size; i++) {
1987                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1988                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1989                                     ring_nr, i, bp->rx_ring_size);
1990                         break;
1991                 }
1992                 prod = NEXT_RX_AGG(prod);
1993         }
1994         rxr->rx_agg_prod = prod;
1995
1996         if (bp->flags & BNXT_FLAG_TPA) {
1997                 if (rxr->rx_tpa) {
1998                         u8 *data;
1999                         dma_addr_t mapping;
2000
2001                         for (i = 0; i < MAX_TPA; i++) {
2002                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2003                                                             GFP_KERNEL);
2004                                 if (!data)
2005                                         return -ENOMEM;
2006
2007                                 rxr->rx_tpa[i].data = data;
2008                                 rxr->rx_tpa[i].mapping = mapping;
2009                         }
2010                 } else {
2011                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2012                         return -ENOMEM;
2013                 }
2014         }
2015
2016         return 0;
2017 }
2018
2019 static int bnxt_init_rx_rings(struct bnxt *bp)
2020 {
2021         int i, rc = 0;
2022
2023         for (i = 0; i < bp->rx_nr_rings; i++) {
2024                 rc = bnxt_init_one_rx_ring(bp, i);
2025                 if (rc)
2026                         break;
2027         }
2028
2029         return rc;
2030 }
2031
2032 static int bnxt_init_tx_rings(struct bnxt *bp)
2033 {
2034         u16 i;
2035
2036         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2037                                    MAX_SKB_FRAGS + 1);
2038
2039         for (i = 0; i < bp->tx_nr_rings; i++) {
2040                 struct bnxt_napi *bnapi = bp->bnapi[i];
2041                 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
2042                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2043
2044                 ring->fw_ring_id = INVALID_HW_RING_ID;
2045         }
2046
2047         return 0;
2048 }
2049
2050 static void bnxt_free_ring_grps(struct bnxt *bp)
2051 {
2052         kfree(bp->grp_info);
2053         bp->grp_info = NULL;
2054 }
2055
2056 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2057 {
2058         int i;
2059
2060         if (irq_re_init) {
2061                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2062                                        sizeof(struct bnxt_ring_grp_info),
2063                                        GFP_KERNEL);
2064                 if (!bp->grp_info)
2065                         return -ENOMEM;
2066         }
2067         for (i = 0; i < bp->cp_nr_rings; i++) {
2068                 if (irq_re_init)
2069                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2070                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2071                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2072                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2073                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2074         }
2075         return 0;
2076 }
2077
2078 static void bnxt_free_vnics(struct bnxt *bp)
2079 {
2080         kfree(bp->vnic_info);
2081         bp->vnic_info = NULL;
2082         bp->nr_vnics = 0;
2083 }
2084
2085 static int bnxt_alloc_vnics(struct bnxt *bp)
2086 {
2087         int num_vnics = 1;
2088
2089 #ifdef CONFIG_RFS_ACCEL
2090         if (bp->flags & BNXT_FLAG_RFS)
2091                 num_vnics += bp->rx_nr_rings;
2092 #endif
2093
2094         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2095                                 GFP_KERNEL);
2096         if (!bp->vnic_info)
2097                 return -ENOMEM;
2098
2099         bp->nr_vnics = num_vnics;
2100         return 0;
2101 }
2102
2103 static void bnxt_init_vnics(struct bnxt *bp)
2104 {
2105         int i;
2106
2107         for (i = 0; i < bp->nr_vnics; i++) {
2108                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2109
2110                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2111                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2112                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2113
2114                 if (bp->vnic_info[i].rss_hash_key) {
2115                         if (i == 0)
2116                                 prandom_bytes(vnic->rss_hash_key,
2117                                               HW_HASH_KEY_SIZE);
2118                         else
2119                                 memcpy(vnic->rss_hash_key,
2120                                        bp->vnic_info[0].rss_hash_key,
2121                                        HW_HASH_KEY_SIZE);
2122                 }
2123         }
2124 }
2125
2126 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2127 {
2128         int pages;
2129
2130         pages = ring_size / desc_per_pg;
2131
2132         if (!pages)
2133                 return 1;
2134
2135         pages++;
2136
2137         while (pages & (pages - 1))
2138                 pages++;
2139
2140         return pages;
2141 }
2142
2143 static void bnxt_set_tpa_flags(struct bnxt *bp)
2144 {
2145         bp->flags &= ~BNXT_FLAG_TPA;
2146         if (bp->dev->features & NETIF_F_LRO)
2147                 bp->flags |= BNXT_FLAG_LRO;
2148         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2149                 bp->flags |= BNXT_FLAG_GRO;
2150 }
2151
2152 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2153  * be set on entry.
2154  */
2155 void bnxt_set_ring_params(struct bnxt *bp)
2156 {
2157         u32 ring_size, rx_size, rx_space;
2158         u32 agg_factor = 0, agg_ring_size = 0;
2159
2160         /* 8 for CRC and VLAN */
2161         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2162
2163         rx_space = rx_size + NET_SKB_PAD +
2164                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2165
2166         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2167         ring_size = bp->rx_ring_size;
2168         bp->rx_agg_ring_size = 0;
2169         bp->rx_agg_nr_pages = 0;
2170
2171         if (bp->flags & BNXT_FLAG_TPA)
2172                 agg_factor = 4;
2173
2174         bp->flags &= ~BNXT_FLAG_JUMBO;
2175         if (rx_space > PAGE_SIZE) {
2176                 u32 jumbo_factor;
2177
2178                 bp->flags |= BNXT_FLAG_JUMBO;
2179                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2180                 if (jumbo_factor > agg_factor)
2181                         agg_factor = jumbo_factor;
2182         }
2183         agg_ring_size = ring_size * agg_factor;
2184
2185         if (agg_ring_size) {
2186                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2187                                                         RX_DESC_CNT);
2188                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2189                         u32 tmp = agg_ring_size;
2190
2191                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2192                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2193                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2194                                     tmp, agg_ring_size);
2195                 }
2196                 bp->rx_agg_ring_size = agg_ring_size;
2197                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2198                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2199                 rx_space = rx_size + NET_SKB_PAD +
2200                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2201         }
2202
2203         bp->rx_buf_use_size = rx_size;
2204         bp->rx_buf_size = rx_space;
2205
2206         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2207         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2208
2209         ring_size = bp->tx_ring_size;
2210         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2211         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2212
2213         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2214         bp->cp_ring_size = ring_size;
2215
2216         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2217         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2218                 bp->cp_nr_pages = MAX_CP_PAGES;
2219                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2220                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2221                             ring_size, bp->cp_ring_size);
2222         }
2223         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2224         bp->cp_ring_mask = bp->cp_bit - 1;
2225 }
2226
2227 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2228 {
2229         int i;
2230         struct bnxt_vnic_info *vnic;
2231         struct pci_dev *pdev = bp->pdev;
2232
2233         if (!bp->vnic_info)
2234                 return;
2235
2236         for (i = 0; i < bp->nr_vnics; i++) {
2237                 vnic = &bp->vnic_info[i];
2238
2239                 kfree(vnic->fw_grp_ids);
2240                 vnic->fw_grp_ids = NULL;
2241
2242                 kfree(vnic->uc_list);
2243                 vnic->uc_list = NULL;
2244
2245                 if (vnic->mc_list) {
2246                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2247                                           vnic->mc_list, vnic->mc_list_mapping);
2248                         vnic->mc_list = NULL;
2249                 }
2250
2251                 if (vnic->rss_table) {
2252                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2253                                           vnic->rss_table,
2254                                           vnic->rss_table_dma_addr);
2255                         vnic->rss_table = NULL;
2256                 }
2257
2258                 vnic->rss_hash_key = NULL;
2259                 vnic->flags = 0;
2260         }
2261 }
2262
2263 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2264 {
2265         int i, rc = 0, size;
2266         struct bnxt_vnic_info *vnic;
2267         struct pci_dev *pdev = bp->pdev;
2268         int max_rings;
2269
2270         for (i = 0; i < bp->nr_vnics; i++) {
2271                 vnic = &bp->vnic_info[i];
2272
2273                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2274                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2275
2276                         if (mem_size > 0) {
2277                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2278                                 if (!vnic->uc_list) {
2279                                         rc = -ENOMEM;
2280                                         goto out;
2281                                 }
2282                         }
2283                 }
2284
2285                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2286                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2287                         vnic->mc_list =
2288                                 dma_alloc_coherent(&pdev->dev,
2289                                                    vnic->mc_list_size,
2290                                                    &vnic->mc_list_mapping,
2291                                                    GFP_KERNEL);
2292                         if (!vnic->mc_list) {
2293                                 rc = -ENOMEM;
2294                                 goto out;
2295                         }
2296                 }
2297
2298                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2299                         max_rings = bp->rx_nr_rings;
2300                 else
2301                         max_rings = 1;
2302
2303                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2304                 if (!vnic->fw_grp_ids) {
2305                         rc = -ENOMEM;
2306                         goto out;
2307                 }
2308
2309                 /* Allocate rss table and hash key */
2310                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2311                                                      &vnic->rss_table_dma_addr,
2312                                                      GFP_KERNEL);
2313                 if (!vnic->rss_table) {
2314                         rc = -ENOMEM;
2315                         goto out;
2316                 }
2317
2318                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2319
2320                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2321                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2322         }
2323         return 0;
2324
2325 out:
2326         return rc;
2327 }
2328
2329 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2330 {
2331         struct pci_dev *pdev = bp->pdev;
2332
2333         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2334                           bp->hwrm_cmd_resp_dma_addr);
2335
2336         bp->hwrm_cmd_resp_addr = NULL;
2337         if (bp->hwrm_dbg_resp_addr) {
2338                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2339                                   bp->hwrm_dbg_resp_addr,
2340                                   bp->hwrm_dbg_resp_dma_addr);
2341
2342                 bp->hwrm_dbg_resp_addr = NULL;
2343         }
2344 }
2345
2346 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2347 {
2348         struct pci_dev *pdev = bp->pdev;
2349
2350         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2351                                                    &bp->hwrm_cmd_resp_dma_addr,
2352                                                    GFP_KERNEL);
2353         if (!bp->hwrm_cmd_resp_addr)
2354                 return -ENOMEM;
2355         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2356                                                     HWRM_DBG_REG_BUF_SIZE,
2357                                                     &bp->hwrm_dbg_resp_dma_addr,
2358                                                     GFP_KERNEL);
2359         if (!bp->hwrm_dbg_resp_addr)
2360                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2361
2362         return 0;
2363 }
2364
2365 static void bnxt_free_stats(struct bnxt *bp)
2366 {
2367         u32 size, i;
2368         struct pci_dev *pdev = bp->pdev;
2369
2370         if (!bp->bnapi)
2371                 return;
2372
2373         size = sizeof(struct ctx_hw_stats);
2374
2375         for (i = 0; i < bp->cp_nr_rings; i++) {
2376                 struct bnxt_napi *bnapi = bp->bnapi[i];
2377                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2378
2379                 if (cpr->hw_stats) {
2380                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2381                                           cpr->hw_stats_map);
2382                         cpr->hw_stats = NULL;
2383                 }
2384         }
2385 }
2386
2387 static int bnxt_alloc_stats(struct bnxt *bp)
2388 {
2389         u32 size, i;
2390         struct pci_dev *pdev = bp->pdev;
2391
2392         size = sizeof(struct ctx_hw_stats);
2393
2394         for (i = 0; i < bp->cp_nr_rings; i++) {
2395                 struct bnxt_napi *bnapi = bp->bnapi[i];
2396                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2397
2398                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2399                                                    &cpr->hw_stats_map,
2400                                                    GFP_KERNEL);
2401                 if (!cpr->hw_stats)
2402                         return -ENOMEM;
2403
2404                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2405         }
2406         return 0;
2407 }
2408
2409 static void bnxt_clear_ring_indices(struct bnxt *bp)
2410 {
2411         int i;
2412
2413         if (!bp->bnapi)
2414                 return;
2415
2416         for (i = 0; i < bp->cp_nr_rings; i++) {
2417                 struct bnxt_napi *bnapi = bp->bnapi[i];
2418                 struct bnxt_cp_ring_info *cpr;
2419                 struct bnxt_rx_ring_info *rxr;
2420                 struct bnxt_tx_ring_info *txr;
2421
2422                 if (!bnapi)
2423                         continue;
2424
2425                 cpr = &bnapi->cp_ring;
2426                 cpr->cp_raw_cons = 0;
2427
2428                 txr = &bnapi->tx_ring;
2429                 txr->tx_prod = 0;
2430                 txr->tx_cons = 0;
2431
2432                 rxr = &bnapi->rx_ring;
2433                 rxr->rx_prod = 0;
2434                 rxr->rx_agg_prod = 0;
2435                 rxr->rx_sw_agg_prod = 0;
2436         }
2437 }
2438
2439 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2440 {
2441 #ifdef CONFIG_RFS_ACCEL
2442         int i;
2443
2444         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2445          * safe to delete the hash table.
2446          */
2447         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2448                 struct hlist_head *head;
2449                 struct hlist_node *tmp;
2450                 struct bnxt_ntuple_filter *fltr;
2451
2452                 head = &bp->ntp_fltr_hash_tbl[i];
2453                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2454                         hlist_del(&fltr->hash);
2455                         kfree(fltr);
2456                 }
2457         }
2458         if (irq_reinit) {
2459                 kfree(bp->ntp_fltr_bmap);
2460                 bp->ntp_fltr_bmap = NULL;
2461         }
2462         bp->ntp_fltr_count = 0;
2463 #endif
2464 }
2465
2466 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2467 {
2468 #ifdef CONFIG_RFS_ACCEL
2469         int i, rc = 0;
2470
2471         if (!(bp->flags & BNXT_FLAG_RFS))
2472                 return 0;
2473
2474         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2475                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2476
2477         bp->ntp_fltr_count = 0;
2478         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2479                                     GFP_KERNEL);
2480
2481         if (!bp->ntp_fltr_bmap)
2482                 rc = -ENOMEM;
2483
2484         return rc;
2485 #else
2486         return 0;
2487 #endif
2488 }
2489
2490 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2491 {
2492         bnxt_free_vnic_attributes(bp);
2493         bnxt_free_tx_rings(bp);
2494         bnxt_free_rx_rings(bp);
2495         bnxt_free_cp_rings(bp);
2496         bnxt_free_ntp_fltrs(bp, irq_re_init);
2497         if (irq_re_init) {
2498                 bnxt_free_stats(bp);
2499                 bnxt_free_ring_grps(bp);
2500                 bnxt_free_vnics(bp);
2501                 kfree(bp->bnapi);
2502                 bp->bnapi = NULL;
2503         } else {
2504                 bnxt_clear_ring_indices(bp);
2505         }
2506 }
2507
2508 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2509 {
2510         int i, rc, size, arr_size;
2511         void *bnapi;
2512
2513         if (irq_re_init) {
2514                 /* Allocate bnapi mem pointer array and mem block for
2515                  * all queues
2516                  */
2517                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2518                                 bp->cp_nr_rings);
2519                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2520                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2521                 if (!bnapi)
2522                         return -ENOMEM;
2523
2524                 bp->bnapi = bnapi;
2525                 bnapi += arr_size;
2526                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2527                         bp->bnapi[i] = bnapi;
2528                         bp->bnapi[i]->index = i;
2529                         bp->bnapi[i]->bp = bp;
2530                 }
2531
2532                 rc = bnxt_alloc_stats(bp);
2533                 if (rc)
2534                         goto alloc_mem_err;
2535
2536                 rc = bnxt_alloc_ntp_fltrs(bp);
2537                 if (rc)
2538                         goto alloc_mem_err;
2539
2540                 rc = bnxt_alloc_vnics(bp);
2541                 if (rc)
2542                         goto alloc_mem_err;
2543         }
2544
2545         bnxt_init_ring_struct(bp);
2546
2547         rc = bnxt_alloc_rx_rings(bp);
2548         if (rc)
2549                 goto alloc_mem_err;
2550
2551         rc = bnxt_alloc_tx_rings(bp);
2552         if (rc)
2553                 goto alloc_mem_err;
2554
2555         rc = bnxt_alloc_cp_rings(bp);
2556         if (rc)
2557                 goto alloc_mem_err;
2558
2559         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2560                                   BNXT_VNIC_UCAST_FLAG;
2561         rc = bnxt_alloc_vnic_attributes(bp);
2562         if (rc)
2563                 goto alloc_mem_err;
2564         return 0;
2565
2566 alloc_mem_err:
2567         bnxt_free_mem(bp, true);
2568         return rc;
2569 }
2570
2571 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2572                             u16 cmpl_ring, u16 target_id)
2573 {
2574         struct hwrm_cmd_req_hdr *req = request;
2575
2576         req->cmpl_ring_req_type =
2577                 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2578         req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2579         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2580 }
2581
2582 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2583 {
2584         int i, intr_process, rc;
2585         struct hwrm_cmd_req_hdr *req = msg;
2586         u32 *data = msg;
2587         __le32 *resp_len, *valid;
2588         u16 cp_ring_id, len = 0;
2589         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2590
2591         req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2592         memset(resp, 0, PAGE_SIZE);
2593         cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2594                       HWRM_CMPL_RING_MASK) >>
2595                      HWRM_CMPL_RING_SFT;
2596         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2597
2598         /* Write request msg to hwrm channel */
2599         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2600
2601         /* currently supports only one outstanding message */
2602         if (intr_process)
2603                 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2604                                        HWRM_SEQ_ID_MASK;
2605
2606         /* Ring channel doorbell */
2607         writel(1, bp->bar0 + 0x100);
2608
2609         i = 0;
2610         if (intr_process) {
2611                 /* Wait until hwrm response cmpl interrupt is processed */
2612                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2613                        i++ < timeout) {
2614                         usleep_range(600, 800);
2615                 }
2616
2617                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2618                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2619                                    req->cmpl_ring_req_type);
2620                         return -1;
2621                 }
2622         } else {
2623                 /* Check if response len is updated */
2624                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2625                 for (i = 0; i < timeout; i++) {
2626                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2627                               HWRM_RESP_LEN_SFT;
2628                         if (len)
2629                                 break;
2630                         usleep_range(600, 800);
2631                 }
2632
2633                 if (i >= timeout) {
2634                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2635                                    timeout, req->cmpl_ring_req_type,
2636                                    req->target_id_seq_id, *resp_len);
2637                         return -1;
2638                 }
2639
2640                 /* Last word of resp contains valid bit */
2641                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2642                 for (i = 0; i < timeout; i++) {
2643                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2644                                 break;
2645                         usleep_range(600, 800);
2646                 }
2647
2648                 if (i >= timeout) {
2649                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2650                                    timeout, req->cmpl_ring_req_type,
2651                                    req->target_id_seq_id, len, *valid);
2652                         return -1;
2653                 }
2654         }
2655
2656         rc = le16_to_cpu(resp->error_code);
2657         if (rc) {
2658                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2659                            le16_to_cpu(resp->req_type),
2660                            le16_to_cpu(resp->seq_id), rc);
2661                 return rc;
2662         }
2663         return 0;
2664 }
2665
2666 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2667 {
2668         int rc;
2669
2670         mutex_lock(&bp->hwrm_cmd_lock);
2671         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2672         mutex_unlock(&bp->hwrm_cmd_lock);
2673         return rc;
2674 }
2675
2676 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2677 {
2678         struct hwrm_func_drv_rgtr_input req = {0};
2679         int i;
2680
2681         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2682
2683         req.enables =
2684                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2685                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2686                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2687
2688         /* TODO: current async event fwd bits are not defined and the firmware
2689          * only checks if it is non-zero to enable async event forwarding
2690          */
2691         req.async_event_fwd[0] |= cpu_to_le32(1);
2692         req.os_type = cpu_to_le16(1);
2693         req.ver_maj = DRV_VER_MAJ;
2694         req.ver_min = DRV_VER_MIN;
2695         req.ver_upd = DRV_VER_UPD;
2696
2697         if (BNXT_PF(bp)) {
2698                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2699                 u32 *data = (u32 *)vf_req_snif_bmap;
2700
2701                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2702                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2703                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2704
2705                 for (i = 0; i < 8; i++)
2706                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2707
2708                 req.enables |=
2709                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2710         }
2711
2712         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2713 }
2714
2715 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2716 {
2717         struct hwrm_func_drv_unrgtr_input req = {0};
2718
2719         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2720         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2721 }
2722
2723 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2724 {
2725         u32 rc = 0;
2726         struct hwrm_tunnel_dst_port_free_input req = {0};
2727
2728         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2729         req.tunnel_type = tunnel_type;
2730
2731         switch (tunnel_type) {
2732         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2733                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2734                 break;
2735         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2736                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2737                 break;
2738         default:
2739                 break;
2740         }
2741
2742         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2743         if (rc)
2744                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2745                            rc);
2746         return rc;
2747 }
2748
2749 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2750                                            u8 tunnel_type)
2751 {
2752         u32 rc = 0;
2753         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2754         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2755
2756         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2757
2758         req.tunnel_type = tunnel_type;
2759         req.tunnel_dst_port_val = port;
2760
2761         mutex_lock(&bp->hwrm_cmd_lock);
2762         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2763         if (rc) {
2764                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2765                            rc);
2766                 goto err_out;
2767         }
2768
2769         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2770                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2771
2772         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2773                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2774 err_out:
2775         mutex_unlock(&bp->hwrm_cmd_lock);
2776         return rc;
2777 }
2778
2779 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2780 {
2781         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2782         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2783
2784         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2785         req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2786
2787         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2788         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2789         req.mask = cpu_to_le32(vnic->rx_mask);
2790         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2791 }
2792
2793 #ifdef CONFIG_RFS_ACCEL
2794 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2795                                             struct bnxt_ntuple_filter *fltr)
2796 {
2797         struct hwrm_cfa_ntuple_filter_free_input req = {0};
2798
2799         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2800         req.ntuple_filter_id = fltr->filter_id;
2801         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2802 }
2803
2804 #define BNXT_NTP_FLTR_FLAGS                                     \
2805         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
2806          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
2807          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
2808          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
2809          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
2810          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
2811          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
2812          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
2813          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
2814          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
2815          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
2816          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
2817          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
2818          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID)
2819
2820 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2821                                              struct bnxt_ntuple_filter *fltr)
2822 {
2823         int rc = 0;
2824         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2825         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2826                 bp->hwrm_cmd_resp_addr;
2827         struct flow_keys *keys = &fltr->fkeys;
2828         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2829
2830         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2831         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2832
2833         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2834
2835         req.ethertype = htons(ETH_P_IP);
2836         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2837         req.ipaddr_type = 4;
2838         req.ip_protocol = keys->basic.ip_proto;
2839
2840         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2841         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2842         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2843         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2844
2845         req.src_port = keys->ports.src;
2846         req.src_port_mask = cpu_to_be16(0xffff);
2847         req.dst_port = keys->ports.dst;
2848         req.dst_port_mask = cpu_to_be16(0xffff);
2849
2850         req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2851         mutex_lock(&bp->hwrm_cmd_lock);
2852         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2853         if (!rc)
2854                 fltr->filter_id = resp->ntuple_filter_id;
2855         mutex_unlock(&bp->hwrm_cmd_lock);
2856         return rc;
2857 }
2858 #endif
2859
2860 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2861                                      u8 *mac_addr)
2862 {
2863         u32 rc = 0;
2864         struct hwrm_cfa_l2_filter_alloc_input req = {0};
2865         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2866
2867         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2868         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2869                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2870         req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2871         req.enables =
2872                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2873                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID |
2874                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2875         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2876         req.l2_addr_mask[0] = 0xff;
2877         req.l2_addr_mask[1] = 0xff;
2878         req.l2_addr_mask[2] = 0xff;
2879         req.l2_addr_mask[3] = 0xff;
2880         req.l2_addr_mask[4] = 0xff;
2881         req.l2_addr_mask[5] = 0xff;
2882
2883         mutex_lock(&bp->hwrm_cmd_lock);
2884         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2885         if (!rc)
2886                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2887                                                         resp->l2_filter_id;
2888         mutex_unlock(&bp->hwrm_cmd_lock);
2889         return rc;
2890 }
2891
2892 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2893 {
2894         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2895         int rc = 0;
2896
2897         /* Any associated ntuple filters will also be cleared by firmware. */
2898         mutex_lock(&bp->hwrm_cmd_lock);
2899         for (i = 0; i < num_of_vnics; i++) {
2900                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2901
2902                 for (j = 0; j < vnic->uc_filter_count; j++) {
2903                         struct hwrm_cfa_l2_filter_free_input req = {0};
2904
2905                         bnxt_hwrm_cmd_hdr_init(bp, &req,
2906                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
2907
2908                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
2909
2910                         rc = _hwrm_send_message(bp, &req, sizeof(req),
2911                                                 HWRM_CMD_TIMEOUT);
2912                 }
2913                 vnic->uc_filter_count = 0;
2914         }
2915         mutex_unlock(&bp->hwrm_cmd_lock);
2916
2917         return rc;
2918 }
2919
2920 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2921 {
2922         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2923         struct hwrm_vnic_tpa_cfg_input req = {0};
2924
2925         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2926
2927         if (tpa_flags) {
2928                 u16 mss = bp->dev->mtu - 40;
2929                 u32 nsegs, n, segs = 0, flags;
2930
2931                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2932                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2933                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2934                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2935                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2936                 if (tpa_flags & BNXT_FLAG_GRO)
2937                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2938
2939                 req.flags = cpu_to_le32(flags);
2940
2941                 req.enables =
2942                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2943                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS);
2944
2945                 /* Number of segs are log2 units, and first packet is not
2946                  * included as part of this units.
2947                  */
2948                 if (mss <= PAGE_SIZE) {
2949                         n = PAGE_SIZE / mss;
2950                         nsegs = (MAX_SKB_FRAGS - 1) * n;
2951                 } else {
2952                         n = mss / PAGE_SIZE;
2953                         if (mss & (PAGE_SIZE - 1))
2954                                 n++;
2955                         nsegs = (MAX_SKB_FRAGS - n) / n;
2956                 }
2957
2958                 segs = ilog2(nsegs);
2959                 req.max_agg_segs = cpu_to_le16(segs);
2960                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2961         }
2962         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2963
2964         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2965 }
2966
2967 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2968 {
2969         u32 i, j, max_rings;
2970         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2971         struct hwrm_vnic_rss_cfg_input req = {0};
2972
2973         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2974                 return 0;
2975
2976         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
2977         if (set_rss) {
2978                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
2979                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
2980                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
2981                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
2982
2983                 req.hash_type = cpu_to_le32(vnic->hash_type);
2984
2985                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2986                         max_rings = bp->rx_nr_rings;
2987                 else
2988                         max_rings = 1;
2989
2990                 /* Fill the RSS indirection table with ring group ids */
2991                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
2992                         if (j == max_rings)
2993                                 j = 0;
2994                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
2995                 }
2996
2997                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
2998                 req.hash_key_tbl_addr =
2999                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3000         }
3001         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3002         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3003 }
3004
3005 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3006 {
3007         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3008         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3009
3010         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3011         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3012                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3013                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3014         req.enables =
3015                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3016                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3017         /* thresholds not implemented in firmware yet */
3018         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3019         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3020         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3021         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3022 }
3023
3024 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3025 {
3026         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3027
3028         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3029         req.rss_cos_lb_ctx_id =
3030                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3031
3032         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3033         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3034 }
3035
3036 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3037 {
3038         int i;
3039
3040         for (i = 0; i < bp->nr_vnics; i++) {
3041                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3042
3043                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3044                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3045         }
3046         bp->rsscos_nr_ctxs = 0;
3047 }
3048
3049 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3050 {
3051         int rc;
3052         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3053         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3054                                                 bp->hwrm_cmd_resp_addr;
3055
3056         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3057                                -1);
3058
3059         mutex_lock(&bp->hwrm_cmd_lock);
3060         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3061         if (!rc)
3062                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3063                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3064         mutex_unlock(&bp->hwrm_cmd_lock);
3065
3066         return rc;
3067 }
3068
3069 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3070 {
3071         int grp_idx = 0;
3072         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3073         struct hwrm_vnic_cfg_input req = {0};
3074
3075         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3076         /* Only RSS support for now TBD: COS & LB */
3077         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3078                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3079         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3080         req.cos_rule = cpu_to_le16(0xffff);
3081         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3082                 grp_idx = 0;
3083         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3084                 grp_idx = vnic_id - 1;
3085
3086         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3087         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3088
3089         req.lb_rule = cpu_to_le16(0xffff);
3090         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3091                               VLAN_HLEN);
3092
3093         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3094                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3095
3096         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3097 }
3098
3099 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3100 {
3101         u32 rc = 0;
3102
3103         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3104                 struct hwrm_vnic_free_input req = {0};
3105
3106                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3107                 req.vnic_id =
3108                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3109
3110                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3111                 if (rc)
3112                         return rc;
3113                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3114         }
3115         return rc;
3116 }
3117
3118 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3119 {
3120         u16 i;
3121
3122         for (i = 0; i < bp->nr_vnics; i++)
3123                 bnxt_hwrm_vnic_free_one(bp, i);
3124 }
3125
3126 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id,
3127                                 u16 end_grp_id)
3128 {
3129         u32 rc = 0, i, j;
3130         struct hwrm_vnic_alloc_input req = {0};
3131         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3132
3133         /* map ring groups to this vnic */
3134         for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) {
3135                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) {
3136                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3137                                    j, (end_grp_id - start_grp_id));
3138                         break;
3139                 }
3140                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3141                                         bp->grp_info[i].fw_grp_id;
3142         }
3143
3144         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3145         if (vnic_id == 0)
3146                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3147
3148         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3149
3150         mutex_lock(&bp->hwrm_cmd_lock);
3151         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3152         if (!rc)
3153                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3154         mutex_unlock(&bp->hwrm_cmd_lock);
3155         return rc;
3156 }
3157
3158 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3159 {
3160         u16 i;
3161         u32 rc = 0;
3162
3163         mutex_lock(&bp->hwrm_cmd_lock);
3164         for (i = 0; i < bp->rx_nr_rings; i++) {
3165                 struct hwrm_ring_grp_alloc_input req = {0};
3166                 struct hwrm_ring_grp_alloc_output *resp =
3167                                         bp->hwrm_cmd_resp_addr;
3168
3169                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3170
3171                 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3172                 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id);
3173                 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id);
3174                 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx);
3175
3176                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3177                                         HWRM_CMD_TIMEOUT);
3178                 if (rc)
3179                         break;
3180
3181                 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id);
3182         }
3183         mutex_unlock(&bp->hwrm_cmd_lock);
3184         return rc;
3185 }
3186
3187 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3188 {
3189         u16 i;
3190         u32 rc = 0;
3191         struct hwrm_ring_grp_free_input req = {0};
3192
3193         if (!bp->grp_info)
3194                 return 0;
3195
3196         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3197
3198         mutex_lock(&bp->hwrm_cmd_lock);
3199         for (i = 0; i < bp->cp_nr_rings; i++) {
3200                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3201                         continue;
3202                 req.ring_group_id =
3203                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3204
3205                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3206                                         HWRM_CMD_TIMEOUT);
3207                 if (rc)
3208                         break;
3209                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3210         }
3211         mutex_unlock(&bp->hwrm_cmd_lock);
3212         return rc;
3213 }
3214
3215 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3216                                     struct bnxt_ring_struct *ring,
3217                                     u32 ring_type, u32 map_index,
3218                                     u32 stats_ctx_id)
3219 {
3220         int rc = 0, err = 0;
3221         struct hwrm_ring_alloc_input req = {0};
3222         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3223         u16 ring_id;
3224
3225         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3226
3227         req.enables = 0;
3228         if (ring->nr_pages > 1) {
3229                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3230                 /* Page size is in log2 units */
3231                 req.page_size = BNXT_PAGE_SHIFT;
3232                 req.page_tbl_depth = 1;
3233         } else {
3234                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3235         }
3236         req.fbo = 0;
3237         /* Association of ring index with doorbell index and MSIX number */
3238         req.logical_id = cpu_to_le16(map_index);
3239
3240         switch (ring_type) {
3241         case HWRM_RING_ALLOC_TX:
3242                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3243                 /* Association of transmit ring with completion ring */
3244                 req.cmpl_ring_id =
3245                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3246                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3247                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3248                 req.queue_id = cpu_to_le16(ring->queue_id);
3249                 break;
3250         case HWRM_RING_ALLOC_RX:
3251                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3252                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3253                 break;
3254         case HWRM_RING_ALLOC_AGG:
3255                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3256                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3257                 break;
3258         case HWRM_RING_ALLOC_CMPL:
3259                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3260                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3261                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3262                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3263                 break;
3264         default:
3265                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3266                            ring_type);
3267                 return -1;
3268         }
3269
3270         mutex_lock(&bp->hwrm_cmd_lock);
3271         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3272         err = le16_to_cpu(resp->error_code);
3273         ring_id = le16_to_cpu(resp->ring_id);
3274         mutex_unlock(&bp->hwrm_cmd_lock);
3275
3276         if (rc || err) {
3277                 switch (ring_type) {
3278                 case RING_FREE_REQ_RING_TYPE_CMPL:
3279                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3280                                    rc, err);
3281                         return -1;
3282
3283                 case RING_FREE_REQ_RING_TYPE_RX:
3284                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3285                                    rc, err);
3286                         return -1;
3287
3288                 case RING_FREE_REQ_RING_TYPE_TX:
3289                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3290                                    rc, err);
3291                         return -1;
3292
3293                 default:
3294                         netdev_err(bp->dev, "Invalid ring\n");
3295                         return -1;
3296                 }
3297         }
3298         ring->fw_ring_id = ring_id;
3299         return rc;
3300 }
3301
3302 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3303 {
3304         int i, rc = 0;
3305
3306         for (i = 0; i < bp->cp_nr_rings; i++) {
3307                 struct bnxt_napi *bnapi = bp->bnapi[i];
3308                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3309                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3310
3311                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3312                                               INVALID_STATS_CTX_ID);
3313                 if (rc)
3314                         goto err_out;
3315                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3316                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3317                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3318         }
3319
3320         for (i = 0; i < bp->tx_nr_rings; i++) {
3321                 struct bnxt_napi *bnapi = bp->bnapi[i];
3322                 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3323                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3324                 u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx;
3325
3326                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX, i,
3327                                               fw_stats_ctx);
3328                 if (rc)
3329                         goto err_out;
3330                 txr->tx_doorbell = bp->bar1 + i * 0x80;
3331         }
3332
3333         for (i = 0; i < bp->rx_nr_rings; i++) {
3334                 struct bnxt_napi *bnapi = bp->bnapi[i];
3335                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3336                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3337
3338                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX, i,
3339                                               INVALID_STATS_CTX_ID);
3340                 if (rc)
3341                         goto err_out;
3342                 rxr->rx_doorbell = bp->bar1 + i * 0x80;
3343                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3344                 bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id;
3345         }
3346
3347         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3348                 for (i = 0; i < bp->rx_nr_rings; i++) {
3349                         struct bnxt_napi *bnapi = bp->bnapi[i];
3350                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3351                         struct bnxt_ring_struct *ring =
3352                                                 &rxr->rx_agg_ring_struct;
3353
3354                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3355                                                       HWRM_RING_ALLOC_AGG,
3356                                                       bp->rx_nr_rings + i,
3357                                                       INVALID_STATS_CTX_ID);
3358                         if (rc)
3359                                 goto err_out;
3360
3361                         rxr->rx_agg_doorbell =
3362                                 bp->bar1 + (bp->rx_nr_rings + i) * 0x80;
3363                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3364                                rxr->rx_agg_doorbell);
3365                         bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id;
3366                 }
3367         }
3368 err_out:
3369         return rc;
3370 }
3371
3372 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3373                                    struct bnxt_ring_struct *ring,
3374                                    u32 ring_type, int cmpl_ring_id)
3375 {
3376         int rc;
3377         struct hwrm_ring_free_input req = {0};
3378         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3379         u16 error_code;
3380
3381         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1);
3382         req.ring_type = ring_type;
3383         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3384
3385         mutex_lock(&bp->hwrm_cmd_lock);
3386         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3387         error_code = le16_to_cpu(resp->error_code);
3388         mutex_unlock(&bp->hwrm_cmd_lock);
3389
3390         if (rc || error_code) {
3391                 switch (ring_type) {
3392                 case RING_FREE_REQ_RING_TYPE_CMPL:
3393                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3394                                    rc);
3395                         return rc;
3396                 case RING_FREE_REQ_RING_TYPE_RX:
3397                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3398                                    rc);
3399                         return rc;
3400                 case RING_FREE_REQ_RING_TYPE_TX:
3401                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3402                                    rc);
3403                         return rc;
3404                 default:
3405                         netdev_err(bp->dev, "Invalid ring\n");
3406                         return -1;
3407                 }
3408         }
3409         return 0;
3410 }
3411
3412 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3413 {
3414         int i;
3415
3416         if (!bp->bnapi)
3417                 return;
3418
3419         for (i = 0; i < bp->tx_nr_rings; i++) {
3420                 struct bnxt_napi *bnapi = bp->bnapi[i];
3421                 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3422                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3423                 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3424
3425                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3426                         hwrm_ring_free_send_msg(bp, ring,
3427                                                 RING_FREE_REQ_RING_TYPE_TX,
3428                                                 close_path ? cmpl_ring_id :
3429                                                 INVALID_HW_RING_ID);
3430                         ring->fw_ring_id = INVALID_HW_RING_ID;
3431                 }
3432         }
3433
3434         for (i = 0; i < bp->rx_nr_rings; i++) {
3435                 struct bnxt_napi *bnapi = bp->bnapi[i];
3436                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3437                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3438                 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3439
3440                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3441                         hwrm_ring_free_send_msg(bp, ring,
3442                                                 RING_FREE_REQ_RING_TYPE_RX,
3443                                                 close_path ? cmpl_ring_id :
3444                                                 INVALID_HW_RING_ID);
3445                         ring->fw_ring_id = INVALID_HW_RING_ID;
3446                         bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3447                 }
3448         }
3449
3450         for (i = 0; i < bp->rx_nr_rings; i++) {
3451                 struct bnxt_napi *bnapi = bp->bnapi[i];
3452                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3453                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3454                 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3455
3456                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3457                         hwrm_ring_free_send_msg(bp, ring,
3458                                                 RING_FREE_REQ_RING_TYPE_RX,
3459                                                 close_path ? cmpl_ring_id :
3460                                                 INVALID_HW_RING_ID);
3461                         ring->fw_ring_id = INVALID_HW_RING_ID;
3462                         bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3463                 }
3464         }
3465
3466         for (i = 0; i < bp->cp_nr_rings; i++) {
3467                 struct bnxt_napi *bnapi = bp->bnapi[i];
3468                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3469                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3470
3471                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3472                         hwrm_ring_free_send_msg(bp, ring,
3473                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3474                                                 INVALID_HW_RING_ID);
3475                         ring->fw_ring_id = INVALID_HW_RING_ID;
3476                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3477                 }
3478         }
3479 }
3480
3481 int bnxt_hwrm_set_coal(struct bnxt *bp)
3482 {
3483         int i, rc = 0;
3484         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3485         u16 max_buf, max_buf_irq;
3486         u16 buf_tmr, buf_tmr_irq;
3487         u32 flags;
3488
3489         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3490                                -1, -1);
3491
3492         /* Each rx completion (2 records) should be DMAed immediately */
3493         max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3494         /* max_buf must not be zero */
3495         max_buf = clamp_t(u16, max_buf, 1, 63);
3496         max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3497         buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3498         buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3499
3500         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3501
3502         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3503          * if coal_ticks is less than 25 us.
3504          */
3505         if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3506                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3507
3508         req.flags = cpu_to_le16(flags);
3509         req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3510         req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3511         req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3512         req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3513         req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3514         req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3515         req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3516
3517         mutex_lock(&bp->hwrm_cmd_lock);
3518         for (i = 0; i < bp->cp_nr_rings; i++) {
3519                 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3520
3521                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3522                                         HWRM_CMD_TIMEOUT);
3523                 if (rc)
3524                         break;
3525         }
3526         mutex_unlock(&bp->hwrm_cmd_lock);
3527         return rc;
3528 }
3529
3530 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3531 {
3532         int rc = 0, i;
3533         struct hwrm_stat_ctx_free_input req = {0};
3534
3535         if (!bp->bnapi)
3536                 return 0;
3537
3538         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3539
3540         mutex_lock(&bp->hwrm_cmd_lock);
3541         for (i = 0; i < bp->cp_nr_rings; i++) {
3542                 struct bnxt_napi *bnapi = bp->bnapi[i];
3543                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3544
3545                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3546                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3547
3548                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3549                                                 HWRM_CMD_TIMEOUT);
3550                         if (rc)
3551                                 break;
3552
3553                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3554                 }
3555         }
3556         mutex_unlock(&bp->hwrm_cmd_lock);
3557         return rc;
3558 }
3559
3560 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3561 {
3562         int rc = 0, i;
3563         struct hwrm_stat_ctx_alloc_input req = {0};
3564         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3565
3566         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3567
3568         req.update_period_ms = cpu_to_le32(1000);
3569
3570         mutex_lock(&bp->hwrm_cmd_lock);
3571         for (i = 0; i < bp->cp_nr_rings; i++) {
3572                 struct bnxt_napi *bnapi = bp->bnapi[i];
3573                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3574
3575                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3576
3577                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3578                                         HWRM_CMD_TIMEOUT);
3579                 if (rc)
3580                         break;
3581
3582                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3583
3584                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3585         }
3586         mutex_unlock(&bp->hwrm_cmd_lock);
3587         return 0;
3588 }
3589
3590 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3591 {
3592         int rc = 0;
3593         struct hwrm_func_qcaps_input req = {0};
3594         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3595
3596         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3597         req.fid = cpu_to_le16(0xffff);
3598
3599         mutex_lock(&bp->hwrm_cmd_lock);
3600         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3601         if (rc)
3602                 goto hwrm_func_qcaps_exit;
3603
3604         if (BNXT_PF(bp)) {
3605                 struct bnxt_pf_info *pf = &bp->pf;
3606
3607                 pf->fw_fid = le16_to_cpu(resp->fid);
3608                 pf->port_id = le16_to_cpu(resp->port_id);
3609                 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3610                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3611                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3612                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3613                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3614                 pf->max_pf_tx_rings = pf->max_tx_rings;
3615                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3616                 pf->max_pf_rx_rings = pf->max_rx_rings;
3617                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3618                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3619                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3620                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3621                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3622                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3623                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3624                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3625                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3626                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3627                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3628         } else {
3629 #ifdef CONFIG_BNXT_SRIOV
3630                 struct bnxt_vf_info *vf = &bp->vf;
3631
3632                 vf->fw_fid = le16_to_cpu(resp->fid);
3633                 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3634                 if (is_valid_ether_addr(vf->mac_addr))
3635                         /* overwrite netdev dev_adr with admin VF MAC */
3636                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3637                 else
3638                         random_ether_addr(bp->dev->dev_addr);
3639
3640                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3641                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3642                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3643                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3644                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3645                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3646                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3647 #endif
3648         }
3649
3650         bp->tx_push_thresh = 0;
3651         if (resp->flags &
3652             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3653                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3654
3655 hwrm_func_qcaps_exit:
3656         mutex_unlock(&bp->hwrm_cmd_lock);
3657         return rc;
3658 }
3659
3660 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3661 {
3662         struct hwrm_func_reset_input req = {0};
3663
3664         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3665         req.enables = 0;
3666
3667         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3668 }
3669
3670 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3671 {
3672         int rc = 0;
3673         struct hwrm_queue_qportcfg_input req = {0};
3674         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3675         u8 i, *qptr;
3676
3677         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3678
3679         mutex_lock(&bp->hwrm_cmd_lock);
3680         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3681         if (rc)
3682                 goto qportcfg_exit;
3683
3684         if (!resp->max_configurable_queues) {
3685                 rc = -EINVAL;
3686                 goto qportcfg_exit;
3687         }
3688         bp->max_tc = resp->max_configurable_queues;
3689         if (bp->max_tc > BNXT_MAX_QUEUE)
3690                 bp->max_tc = BNXT_MAX_QUEUE;
3691
3692         qptr = &resp->queue_id0;
3693         for (i = 0; i < bp->max_tc; i++) {
3694                 bp->q_info[i].queue_id = *qptr++;
3695                 bp->q_info[i].queue_profile = *qptr++;
3696         }
3697
3698 qportcfg_exit:
3699         mutex_unlock(&bp->hwrm_cmd_lock);
3700         return rc;
3701 }
3702
3703 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3704 {
3705         int rc;
3706         struct hwrm_ver_get_input req = {0};
3707         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3708
3709         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3710         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3711         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3712         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3713         mutex_lock(&bp->hwrm_cmd_lock);
3714         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3715         if (rc)
3716                 goto hwrm_ver_get_exit;
3717
3718         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3719
3720         if (req.hwrm_intf_maj != resp->hwrm_intf_maj ||
3721             req.hwrm_intf_min != resp->hwrm_intf_min ||
3722             req.hwrm_intf_upd != resp->hwrm_intf_upd) {
3723                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n",
3724                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3725                             resp->hwrm_intf_upd, req.hwrm_intf_maj,
3726                             req.hwrm_intf_min, req.hwrm_intf_upd);
3727                 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n");
3728         }
3729         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3730                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3731                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3732
3733 hwrm_ver_get_exit:
3734         mutex_unlock(&bp->hwrm_cmd_lock);
3735         return rc;
3736 }
3737
3738 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3739 {
3740         if (bp->vxlan_port_cnt) {
3741                 bnxt_hwrm_tunnel_dst_port_free(
3742                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3743         }
3744         bp->vxlan_port_cnt = 0;
3745         if (bp->nge_port_cnt) {
3746                 bnxt_hwrm_tunnel_dst_port_free(
3747                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3748         }
3749         bp->nge_port_cnt = 0;
3750 }
3751
3752 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3753 {
3754         int rc, i;
3755         u32 tpa_flags = 0;
3756
3757         if (set_tpa)
3758                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3759         for (i = 0; i < bp->nr_vnics; i++) {
3760                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3761                 if (rc) {
3762                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3763                                    rc, i);
3764                         return rc;
3765                 }
3766         }
3767         return 0;
3768 }
3769
3770 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3771 {
3772         int i;
3773
3774         for (i = 0; i < bp->nr_vnics; i++)
3775                 bnxt_hwrm_vnic_set_rss(bp, i, false);
3776 }
3777
3778 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3779                                     bool irq_re_init)
3780 {
3781         if (bp->vnic_info) {
3782                 bnxt_hwrm_clear_vnic_filter(bp);
3783                 /* clear all RSS setting before free vnic ctx */
3784                 bnxt_hwrm_clear_vnic_rss(bp);
3785                 bnxt_hwrm_vnic_ctx_free(bp);
3786                 /* before free the vnic, undo the vnic tpa settings */
3787                 if (bp->flags & BNXT_FLAG_TPA)
3788                         bnxt_set_tpa(bp, false);
3789                 bnxt_hwrm_vnic_free(bp);
3790         }
3791         bnxt_hwrm_ring_free(bp, close_path);
3792         bnxt_hwrm_ring_grp_free(bp);
3793         if (irq_re_init) {
3794                 bnxt_hwrm_stat_ctx_free(bp);
3795                 bnxt_hwrm_free_tunnel_ports(bp);
3796         }
3797 }
3798
3799 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3800 {
3801         int rc;
3802
3803         /* allocate context for vnic */
3804         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3805         if (rc) {
3806                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3807                            vnic_id, rc);
3808                 goto vnic_setup_err;
3809         }
3810         bp->rsscos_nr_ctxs++;
3811
3812         /* configure default vnic, ring grp */
3813         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3814         if (rc) {
3815                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3816                            vnic_id, rc);
3817                 goto vnic_setup_err;
3818         }
3819
3820         /* Enable RSS hashing on vnic */
3821         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3822         if (rc) {
3823                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3824                            vnic_id, rc);
3825                 goto vnic_setup_err;
3826         }
3827
3828         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3829                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3830                 if (rc) {
3831                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3832                                    vnic_id, rc);
3833                 }
3834         }
3835
3836 vnic_setup_err:
3837         return rc;
3838 }
3839
3840 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3841 {
3842 #ifdef CONFIG_RFS_ACCEL
3843         int i, rc = 0;
3844
3845         for (i = 0; i < bp->rx_nr_rings; i++) {
3846                 u16 vnic_id = i + 1;
3847                 u16 ring_id = i;
3848
3849                 if (vnic_id >= bp->nr_vnics)
3850                         break;
3851
3852                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3853                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1);
3854                 if (rc) {
3855                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3856                                    vnic_id, rc);
3857                         break;
3858                 }
3859                 rc = bnxt_setup_vnic(bp, vnic_id);
3860                 if (rc)
3861                         break;
3862         }
3863         return rc;
3864 #else
3865         return 0;
3866 #endif
3867 }
3868
3869 static int bnxt_cfg_rx_mode(struct bnxt *);
3870
3871 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3872 {
3873         int rc = 0;
3874
3875         if (irq_re_init) {
3876                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3877                 if (rc) {
3878                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3879                                    rc);
3880                         goto err_out;
3881                 }
3882         }
3883
3884         rc = bnxt_hwrm_ring_alloc(bp);
3885         if (rc) {
3886                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3887                 goto err_out;
3888         }
3889
3890         rc = bnxt_hwrm_ring_grp_alloc(bp);
3891         if (rc) {
3892                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3893                 goto err_out;
3894         }
3895
3896         /* default vnic 0 */
3897         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3898         if (rc) {
3899                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3900                 goto err_out;
3901         }
3902
3903         rc = bnxt_setup_vnic(bp, 0);
3904         if (rc)
3905                 goto err_out;
3906
3907         if (bp->flags & BNXT_FLAG_RFS) {
3908                 rc = bnxt_alloc_rfs_vnics(bp);
3909                 if (rc)
3910                         goto err_out;
3911         }
3912
3913         if (bp->flags & BNXT_FLAG_TPA) {
3914                 rc = bnxt_set_tpa(bp, true);
3915                 if (rc)
3916                         goto err_out;
3917         }
3918
3919         if (BNXT_VF(bp))
3920                 bnxt_update_vf_mac(bp);
3921
3922         /* Filter for default vnic 0 */
3923         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3924         if (rc) {
3925                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3926                 goto err_out;
3927         }
3928         bp->vnic_info[0].uc_filter_count = 1;
3929
3930         bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST |
3931                                    CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3932
3933         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3934                 bp->vnic_info[0].rx_mask |=
3935                                 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3936
3937         rc = bnxt_cfg_rx_mode(bp);
3938         if (rc)
3939                 goto err_out;
3940
3941         rc = bnxt_hwrm_set_coal(bp);
3942         if (rc)
3943                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3944                             rc);
3945
3946         return 0;
3947
3948 err_out:
3949         bnxt_hwrm_resource_free(bp, 0, true);
3950
3951         return rc;
3952 }
3953
3954 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3955 {
3956         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3957         return 0;
3958 }
3959
3960 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3961 {
3962         bnxt_init_rx_rings(bp);
3963         bnxt_init_tx_rings(bp);
3964         bnxt_init_ring_grps(bp, irq_re_init);
3965         bnxt_init_vnics(bp);
3966
3967         return bnxt_init_chip(bp, irq_re_init);
3968 }
3969
3970 static void bnxt_disable_int(struct bnxt *bp)
3971 {
3972         int i;
3973
3974         if (!bp->bnapi)
3975                 return;
3976
3977         for (i = 0; i < bp->cp_nr_rings; i++) {
3978                 struct bnxt_napi *bnapi = bp->bnapi[i];
3979                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3980
3981                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3982         }
3983 }
3984
3985 static void bnxt_enable_int(struct bnxt *bp)
3986 {
3987         int i;
3988
3989         atomic_set(&bp->intr_sem, 0);
3990         for (i = 0; i < bp->cp_nr_rings; i++) {
3991                 struct bnxt_napi *bnapi = bp->bnapi[i];
3992                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3993
3994                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3995         }
3996 }
3997
3998 static int bnxt_set_real_num_queues(struct bnxt *bp)
3999 {
4000         int rc;
4001         struct net_device *dev = bp->dev;
4002
4003         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4004         if (rc)
4005                 return rc;
4006
4007         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4008         if (rc)
4009                 return rc;
4010
4011 #ifdef CONFIG_RFS_ACCEL
4012         if (bp->rx_nr_rings)
4013                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4014         if (!dev->rx_cpu_rmap)
4015                 rc = -ENOMEM;
4016 #endif
4017
4018         return rc;
4019 }
4020
4021 static int bnxt_setup_msix(struct bnxt *bp)
4022 {
4023         struct msix_entry *msix_ent;
4024         struct net_device *dev = bp->dev;
4025         int i, total_vecs, rc = 0;
4026         const int len = sizeof(bp->irq_tbl[0].name);
4027
4028         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4029         total_vecs = bp->cp_nr_rings;
4030
4031         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4032         if (!msix_ent)
4033                 return -ENOMEM;
4034
4035         for (i = 0; i < total_vecs; i++) {
4036                 msix_ent[i].entry = i;
4037                 msix_ent[i].vector = 0;
4038         }
4039
4040         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs);
4041         if (total_vecs < 0) {
4042                 rc = -ENODEV;
4043                 goto msix_setup_exit;
4044         }
4045
4046         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4047         if (bp->irq_tbl) {
4048                 int tcs;
4049
4050                 /* Trim rings based upon num of vectors allocated */
4051                 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings);
4052                 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings);
4053                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4054                 tcs = netdev_get_num_tc(dev);
4055                 if (tcs > 1) {
4056                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4057                         if (bp->tx_nr_rings_per_tc == 0) {
4058                                 netdev_reset_tc(dev);
4059                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4060                         } else {
4061                                 int i, off, count;
4062
4063                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4064                                 for (i = 0; i < tcs; i++) {
4065                                         count = bp->tx_nr_rings_per_tc;
4066                                         off = i * count;
4067                                         netdev_set_tc_queue(dev, i, count, off);
4068                                 }
4069                         }
4070                 }
4071                 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
4072
4073                 for (i = 0; i < bp->cp_nr_rings; i++) {
4074                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4075                         snprintf(bp->irq_tbl[i].name, len,
4076                                  "%s-%s-%d", dev->name, "TxRx", i);
4077                         bp->irq_tbl[i].handler = bnxt_msix;
4078                 }
4079                 rc = bnxt_set_real_num_queues(bp);
4080                 if (rc)
4081                         goto msix_setup_exit;
4082         } else {
4083                 rc = -ENOMEM;
4084                 goto msix_setup_exit;
4085         }
4086         bp->flags |= BNXT_FLAG_USING_MSIX;
4087         kfree(msix_ent);
4088         return 0;
4089
4090 msix_setup_exit:
4091         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4092         pci_disable_msix(bp->pdev);
4093         kfree(msix_ent);
4094         return rc;
4095 }
4096
4097 static int bnxt_setup_inta(struct bnxt *bp)
4098 {
4099         int rc;
4100         const int len = sizeof(bp->irq_tbl[0].name);
4101
4102         if (netdev_get_num_tc(bp->dev))
4103                 netdev_reset_tc(bp->dev);
4104
4105         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4106         if (!bp->irq_tbl) {
4107                 rc = -ENOMEM;
4108                 return rc;
4109         }
4110         bp->rx_nr_rings = 1;
4111         bp->tx_nr_rings = 1;
4112         bp->cp_nr_rings = 1;
4113         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4114         bp->irq_tbl[0].vector = bp->pdev->irq;
4115         snprintf(bp->irq_tbl[0].name, len,
4116                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4117         bp->irq_tbl[0].handler = bnxt_inta;
4118         rc = bnxt_set_real_num_queues(bp);
4119         return rc;
4120 }
4121
4122 static int bnxt_setup_int_mode(struct bnxt *bp)
4123 {
4124         int rc = 0;
4125
4126         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4127                 rc = bnxt_setup_msix(bp);
4128
4129         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4130                 /* fallback to INTA */
4131                 rc = bnxt_setup_inta(bp);
4132         }
4133         return rc;
4134 }
4135
4136 static void bnxt_free_irq(struct bnxt *bp)
4137 {
4138         struct bnxt_irq *irq;
4139         int i;
4140
4141 #ifdef CONFIG_RFS_ACCEL
4142         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4143         bp->dev->rx_cpu_rmap = NULL;
4144 #endif
4145         if (!bp->irq_tbl)
4146                 return;
4147
4148         for (i = 0; i < bp->cp_nr_rings; i++) {
4149                 irq = &bp->irq_tbl[i];
4150                 if (irq->requested)
4151                         free_irq(irq->vector, bp->bnapi[i]);
4152                 irq->requested = 0;
4153         }
4154         if (bp->flags & BNXT_FLAG_USING_MSIX)
4155                 pci_disable_msix(bp->pdev);
4156         kfree(bp->irq_tbl);
4157         bp->irq_tbl = NULL;
4158 }
4159
4160 static int bnxt_request_irq(struct bnxt *bp)
4161 {
4162         int i, rc = 0;
4163         unsigned long flags = 0;
4164 #ifdef CONFIG_RFS_ACCEL
4165         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4166 #endif
4167
4168         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4169                 flags = IRQF_SHARED;
4170
4171         for (i = 0; i < bp->cp_nr_rings; i++) {
4172                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4173 #ifdef CONFIG_RFS_ACCEL
4174                 if (rmap && (i < bp->rx_nr_rings)) {
4175                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4176                         if (rc)
4177                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4178                                             i);
4179                 }
4180 #endif
4181                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4182                                  bp->bnapi[i]);
4183                 if (rc)
4184                         break;
4185
4186                 irq->requested = 1;
4187         }
4188         return rc;
4189 }
4190
4191 static void bnxt_del_napi(struct bnxt *bp)
4192 {
4193         int i;
4194
4195         if (!bp->bnapi)
4196                 return;
4197
4198         for (i = 0; i < bp->cp_nr_rings; i++) {
4199                 struct bnxt_napi *bnapi = bp->bnapi[i];
4200
4201                 napi_hash_del(&bnapi->napi);
4202                 netif_napi_del(&bnapi->napi);
4203         }
4204 }
4205
4206 static void bnxt_init_napi(struct bnxt *bp)
4207 {
4208         int i;
4209         struct bnxt_napi *bnapi;
4210
4211         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4212                 for (i = 0; i < bp->cp_nr_rings; i++) {
4213                         bnapi = bp->bnapi[i];
4214                         netif_napi_add(bp->dev, &bnapi->napi,
4215                                        bnxt_poll, 64);
4216                 }
4217         } else {
4218                 bnapi = bp->bnapi[0];
4219                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4220         }
4221 }
4222
4223 static void bnxt_disable_napi(struct bnxt *bp)
4224 {
4225         int i;
4226
4227         if (!bp->bnapi)
4228                 return;
4229
4230         for (i = 0; i < bp->cp_nr_rings; i++) {
4231                 napi_disable(&bp->bnapi[i]->napi);
4232                 bnxt_disable_poll(bp->bnapi[i]);
4233         }
4234 }
4235
4236 static void bnxt_enable_napi(struct bnxt *bp)
4237 {
4238         int i;
4239
4240         for (i = 0; i < bp->cp_nr_rings; i++) {
4241                 bnxt_enable_poll(bp->bnapi[i]);
4242                 napi_enable(&bp->bnapi[i]->napi);
4243         }
4244 }
4245
4246 static void bnxt_tx_disable(struct bnxt *bp)
4247 {
4248         int i;
4249         struct bnxt_napi *bnapi;
4250         struct bnxt_tx_ring_info *txr;
4251         struct netdev_queue *txq;
4252
4253         if (bp->bnapi) {
4254                 for (i = 0; i < bp->tx_nr_rings; i++) {
4255                         bnapi = bp->bnapi[i];
4256                         txr = &bnapi->tx_ring;
4257                         txq = netdev_get_tx_queue(bp->dev, i);
4258                         __netif_tx_lock(txq, smp_processor_id());
4259                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4260                         __netif_tx_unlock(txq);
4261                 }
4262         }
4263         /* Stop all TX queues */
4264         netif_tx_disable(bp->dev);
4265         netif_carrier_off(bp->dev);
4266 }
4267
4268 static void bnxt_tx_enable(struct bnxt *bp)
4269 {
4270         int i;
4271         struct bnxt_napi *bnapi;
4272         struct bnxt_tx_ring_info *txr;
4273         struct netdev_queue *txq;
4274
4275         for (i = 0; i < bp->tx_nr_rings; i++) {
4276                 bnapi = bp->bnapi[i];
4277                 txr = &bnapi->tx_ring;
4278                 txq = netdev_get_tx_queue(bp->dev, i);
4279                 txr->dev_state = 0;
4280         }
4281         netif_tx_wake_all_queues(bp->dev);
4282         if (bp->link_info.link_up)
4283                 netif_carrier_on(bp->dev);
4284 }
4285
4286 static void bnxt_report_link(struct bnxt *bp)
4287 {
4288         if (bp->link_info.link_up) {
4289                 const char *duplex;
4290                 const char *flow_ctrl;
4291                 u16 speed;
4292
4293                 netif_carrier_on(bp->dev);
4294                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4295                         duplex = "full";
4296                 else
4297                         duplex = "half";
4298                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4299                         flow_ctrl = "ON - receive & transmit";
4300                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4301                         flow_ctrl = "ON - transmit";
4302                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4303                         flow_ctrl = "ON - receive";
4304                 else
4305                         flow_ctrl = "none";
4306                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4307                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4308                             speed, duplex, flow_ctrl);
4309         } else {
4310                 netif_carrier_off(bp->dev);
4311                 netdev_err(bp->dev, "NIC Link is Down\n");
4312         }
4313 }
4314
4315 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4316 {
4317         int rc = 0;
4318         struct bnxt_link_info *link_info = &bp->link_info;
4319         struct hwrm_port_phy_qcfg_input req = {0};
4320         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4321         u8 link_up = link_info->link_up;
4322
4323         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4324
4325         mutex_lock(&bp->hwrm_cmd_lock);
4326         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4327         if (rc) {
4328                 mutex_unlock(&bp->hwrm_cmd_lock);
4329                 return rc;
4330         }
4331
4332         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4333         link_info->phy_link_status = resp->link;
4334         link_info->duplex =  resp->duplex;
4335         link_info->pause = resp->pause;
4336         link_info->auto_mode = resp->auto_mode;
4337         link_info->auto_pause_setting = resp->auto_pause;
4338         link_info->force_pause_setting = resp->force_pause;
4339         link_info->duplex_setting = resp->duplex_setting;
4340         if (link_info->phy_link_status == BNXT_LINK_LINK)
4341                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4342         else
4343                 link_info->link_speed = 0;
4344         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4345         link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4346         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4347         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4348         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4349         link_info->phy_ver[0] = resp->phy_maj;
4350         link_info->phy_ver[1] = resp->phy_min;
4351         link_info->phy_ver[2] = resp->phy_bld;
4352         link_info->media_type = resp->media_type;
4353         link_info->transceiver = resp->transceiver_type;
4354         link_info->phy_addr = resp->phy_addr;
4355
4356         /* TODO: need to add more logic to report VF link */
4357         if (chng_link_state) {
4358                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4359                         link_info->link_up = 1;
4360                 else
4361                         link_info->link_up = 0;
4362                 if (link_up != link_info->link_up)
4363                         bnxt_report_link(bp);
4364         } else {
4365                 /* alwasy link down if not require to update link state */
4366                 link_info->link_up = 0;
4367         }
4368         mutex_unlock(&bp->hwrm_cmd_lock);
4369         return 0;
4370 }
4371
4372 static void
4373 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4374 {
4375         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4376                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4377                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4378                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4379                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4380                 req->enables |=
4381                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4382         } else {
4383                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4384                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4385                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4386                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4387                 req->enables |=
4388                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4389         }
4390 }
4391
4392 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4393                                       struct hwrm_port_phy_cfg_input *req)
4394 {
4395         u8 autoneg = bp->link_info.autoneg;
4396         u16 fw_link_speed = bp->link_info.req_link_speed;
4397         u32 advertising = bp->link_info.advertising;
4398
4399         if (autoneg & BNXT_AUTONEG_SPEED) {
4400                 req->auto_mode |=
4401                         PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4402
4403                 req->enables |= cpu_to_le32(
4404                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4405                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4406
4407                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4408                 req->flags |=
4409                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4410         } else {
4411                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4412                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4413         }
4414
4415         /* currently don't support half duplex */
4416         req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4417         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4418         /* tell chimp that the setting takes effect immediately */
4419         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4420 }
4421
4422 int bnxt_hwrm_set_pause(struct bnxt *bp)
4423 {
4424         struct hwrm_port_phy_cfg_input req = {0};
4425         int rc;
4426
4427         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4428         bnxt_hwrm_set_pause_common(bp, &req);
4429
4430         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4431             bp->link_info.force_link_chng)
4432                 bnxt_hwrm_set_link_common(bp, &req);
4433
4434         mutex_lock(&bp->hwrm_cmd_lock);
4435         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4436         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4437                 /* since changing of pause setting doesn't trigger any link
4438                  * change event, the driver needs to update the current pause
4439                  * result upon successfully return of the phy_cfg command
4440                  */
4441                 bp->link_info.pause =
4442                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4443                 bp->link_info.auto_pause_setting = 0;
4444                 if (!bp->link_info.force_link_chng)
4445                         bnxt_report_link(bp);
4446         }
4447         bp->link_info.force_link_chng = false;
4448         mutex_unlock(&bp->hwrm_cmd_lock);
4449         return rc;
4450 }
4451
4452 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4453 {
4454         struct hwrm_port_phy_cfg_input req = {0};
4455
4456         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4457         if (set_pause)
4458                 bnxt_hwrm_set_pause_common(bp, &req);
4459
4460         bnxt_hwrm_set_link_common(bp, &req);
4461         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4462 }
4463
4464 static int bnxt_update_phy_setting(struct bnxt *bp)
4465 {
4466         int rc;
4467         bool update_link = false;
4468         bool update_pause = false;
4469         struct bnxt_link_info *link_info = &bp->link_info;
4470
4471         rc = bnxt_update_link(bp, true);
4472         if (rc) {
4473                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4474                            rc);
4475                 return rc;
4476         }
4477         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4478             link_info->auto_pause_setting != link_info->req_flow_ctrl)
4479                 update_pause = true;
4480         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4481             link_info->force_pause_setting != link_info->req_flow_ctrl)
4482                 update_pause = true;
4483         if (link_info->req_duplex != link_info->duplex_setting)
4484                 update_link = true;
4485         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4486                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4487                         update_link = true;
4488                 if (link_info->req_link_speed != link_info->force_link_speed)
4489                         update_link = true;
4490         } else {
4491                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4492                         update_link = true;
4493                 if (link_info->advertising != link_info->auto_link_speeds)
4494                         update_link = true;
4495                 if (link_info->req_link_speed != link_info->auto_link_speed)
4496                         update_link = true;
4497         }
4498
4499         if (update_link)
4500                 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4501         else if (update_pause)
4502                 rc = bnxt_hwrm_set_pause(bp);
4503         if (rc) {
4504                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4505                            rc);
4506                 return rc;
4507         }
4508
4509         return rc;
4510 }
4511
4512 /* Common routine to pre-map certain register block to different GRC window.
4513  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4514  * in PF and 3 windows in VF that can be customized to map in different
4515  * register blocks.
4516  */
4517 static void bnxt_preset_reg_win(struct bnxt *bp)
4518 {
4519         if (BNXT_PF(bp)) {
4520                 /* CAG registers map to GRC window #4 */
4521                 writel(BNXT_CAG_REG_BASE,
4522                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4523         }
4524 }
4525
4526 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4527 {
4528         int rc = 0;
4529
4530         bnxt_preset_reg_win(bp);
4531         netif_carrier_off(bp->dev);
4532         if (irq_re_init) {
4533                 rc = bnxt_setup_int_mode(bp);
4534                 if (rc) {
4535                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4536                                    rc);
4537                         return rc;
4538                 }
4539         }
4540         if ((bp->flags & BNXT_FLAG_RFS) &&
4541             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4542                 /* disable RFS if falling back to INTA */
4543                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4544                 bp->flags &= ~BNXT_FLAG_RFS;
4545         }
4546
4547         rc = bnxt_alloc_mem(bp, irq_re_init);
4548         if (rc) {
4549                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4550                 goto open_err_free_mem;
4551         }
4552
4553         if (irq_re_init) {
4554                 bnxt_init_napi(bp);
4555                 rc = bnxt_request_irq(bp);
4556                 if (rc) {
4557                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4558                         goto open_err;
4559                 }
4560         }
4561
4562         bnxt_enable_napi(bp);
4563
4564         rc = bnxt_init_nic(bp, irq_re_init);
4565         if (rc) {
4566                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4567                 goto open_err;
4568         }
4569
4570         if (link_re_init) {
4571                 rc = bnxt_update_phy_setting(bp);
4572                 if (rc)
4573                         goto open_err;
4574         }
4575
4576         if (irq_re_init) {
4577 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4578                 vxlan_get_rx_port(bp->dev);
4579 #endif
4580                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4581                                 bp, htons(0x17c1),
4582                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4583                         bp->nge_port_cnt = 1;
4584         }
4585
4586         set_bit(BNXT_STATE_OPEN, &bp->state);
4587         bnxt_enable_int(bp);
4588         /* Enable TX queues */
4589         bnxt_tx_enable(bp);
4590         mod_timer(&bp->timer, jiffies + bp->current_interval);
4591
4592         return 0;
4593
4594 open_err:
4595         bnxt_disable_napi(bp);
4596         bnxt_del_napi(bp);
4597
4598 open_err_free_mem:
4599         bnxt_free_skbs(bp);
4600         bnxt_free_irq(bp);
4601         bnxt_free_mem(bp, true);
4602         return rc;
4603 }
4604
4605 /* rtnl_lock held */
4606 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4607 {
4608         int rc = 0;
4609
4610         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4611         if (rc) {
4612                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4613                 dev_close(bp->dev);
4614         }
4615         return rc;
4616 }
4617
4618 static int bnxt_open(struct net_device *dev)
4619 {
4620         struct bnxt *bp = netdev_priv(dev);
4621         int rc = 0;
4622
4623         rc = bnxt_hwrm_func_reset(bp);
4624         if (rc) {
4625                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4626                            rc);
4627                 rc = -1;
4628                 return rc;
4629         }
4630         return __bnxt_open_nic(bp, true, true);
4631 }
4632
4633 static void bnxt_disable_int_sync(struct bnxt *bp)
4634 {
4635         int i;
4636
4637         atomic_inc(&bp->intr_sem);
4638         if (!netif_running(bp->dev))
4639                 return;
4640
4641         bnxt_disable_int(bp);
4642         for (i = 0; i < bp->cp_nr_rings; i++)
4643                 synchronize_irq(bp->irq_tbl[i].vector);
4644 }
4645
4646 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4647 {
4648         int rc = 0;
4649
4650 #ifdef CONFIG_BNXT_SRIOV
4651         if (bp->sriov_cfg) {
4652                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4653                                                       !bp->sriov_cfg,
4654                                                       BNXT_SRIOV_CFG_WAIT_TMO);
4655                 if (rc)
4656                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4657         }
4658 #endif
4659         /* Change device state to avoid TX queue wake up's */
4660         bnxt_tx_disable(bp);
4661
4662         clear_bit(BNXT_STATE_OPEN, &bp->state);
4663         smp_mb__after_atomic();
4664         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4665                 msleep(20);
4666
4667         /* Flush rings before disabling interrupts */
4668         bnxt_shutdown_nic(bp, irq_re_init);
4669
4670         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4671
4672         bnxt_disable_napi(bp);
4673         bnxt_disable_int_sync(bp);
4674         del_timer_sync(&bp->timer);
4675         bnxt_free_skbs(bp);
4676
4677         if (irq_re_init) {
4678                 bnxt_free_irq(bp);
4679                 bnxt_del_napi(bp);
4680         }
4681         bnxt_free_mem(bp, irq_re_init);
4682         return rc;
4683 }
4684
4685 static int bnxt_close(struct net_device *dev)
4686 {
4687         struct bnxt *bp = netdev_priv(dev);
4688
4689         bnxt_close_nic(bp, true, true);
4690         return 0;
4691 }
4692
4693 /* rtnl_lock held */
4694 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4695 {
4696         switch (cmd) {
4697         case SIOCGMIIPHY:
4698                 /* fallthru */
4699         case SIOCGMIIREG: {
4700                 if (!netif_running(dev))
4701                         return -EAGAIN;
4702
4703                 return 0;
4704         }
4705
4706         case SIOCSMIIREG:
4707                 if (!netif_running(dev))
4708                         return -EAGAIN;
4709
4710                 return 0;
4711
4712         default:
4713                 /* do nothing */
4714                 break;
4715         }
4716         return -EOPNOTSUPP;
4717 }
4718
4719 static struct rtnl_link_stats64 *
4720 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4721 {
4722         u32 i;
4723         struct bnxt *bp = netdev_priv(dev);
4724
4725         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4726
4727         if (!bp->bnapi)
4728                 return stats;
4729
4730         /* TODO check if we need to synchronize with bnxt_close path */
4731         for (i = 0; i < bp->cp_nr_rings; i++) {
4732                 struct bnxt_napi *bnapi = bp->bnapi[i];
4733                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4734                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4735
4736                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4737                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4738                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4739
4740                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4741                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4742                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4743
4744                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4745                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4746                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4747
4748                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4749                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4750                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4751
4752                 stats->rx_missed_errors +=
4753                         le64_to_cpu(hw_stats->rx_discard_pkts);
4754
4755                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4756
4757                 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts);
4758
4759                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4760         }
4761
4762         return stats;
4763 }
4764
4765 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4766 {
4767         struct net_device *dev = bp->dev;
4768         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4769         struct netdev_hw_addr *ha;
4770         u8 *haddr;
4771         int mc_count = 0;
4772         bool update = false;
4773         int off = 0;
4774
4775         netdev_for_each_mc_addr(ha, dev) {
4776                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4777                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4778                         vnic->mc_list_count = 0;
4779                         return false;
4780                 }
4781                 haddr = ha->addr;
4782                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4783                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4784                         update = true;
4785                 }
4786                 off += ETH_ALEN;
4787                 mc_count++;
4788         }
4789         if (mc_count)
4790                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4791
4792         if (mc_count != vnic->mc_list_count) {
4793                 vnic->mc_list_count = mc_count;
4794                 update = true;
4795         }
4796         return update;
4797 }
4798
4799 static bool bnxt_uc_list_updated(struct bnxt *bp)
4800 {
4801         struct net_device *dev = bp->dev;
4802         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4803         struct netdev_hw_addr *ha;
4804         int off = 0;
4805
4806         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4807                 return true;
4808
4809         netdev_for_each_uc_addr(ha, dev) {
4810                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4811                         return true;
4812
4813                 off += ETH_ALEN;
4814         }
4815         return false;
4816 }
4817
4818 static void bnxt_set_rx_mode(struct net_device *dev)
4819 {
4820         struct bnxt *bp = netdev_priv(dev);
4821         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4822         u32 mask = vnic->rx_mask;
4823         bool mc_update = false;
4824         bool uc_update;
4825
4826         if (!netif_running(dev))
4827                 return;
4828
4829         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4830                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4831                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4832
4833         /* Only allow PF to be in promiscuous mode */
4834         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4835                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4836
4837         uc_update = bnxt_uc_list_updated(bp);
4838
4839         if (dev->flags & IFF_ALLMULTI) {
4840                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4841                 vnic->mc_list_count = 0;
4842         } else {
4843                 mc_update = bnxt_mc_list_updated(bp, &mask);
4844         }
4845
4846         if (mask != vnic->rx_mask || uc_update || mc_update) {
4847                 vnic->rx_mask = mask;
4848
4849                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4850                 schedule_work(&bp->sp_task);
4851         }
4852 }
4853
4854 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4855 {
4856         struct net_device *dev = bp->dev;
4857         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4858         struct netdev_hw_addr *ha;
4859         int i, off = 0, rc;
4860         bool uc_update;
4861
4862         netif_addr_lock_bh(dev);
4863         uc_update = bnxt_uc_list_updated(bp);
4864         netif_addr_unlock_bh(dev);
4865
4866         if (!uc_update)
4867                 goto skip_uc;
4868
4869         mutex_lock(&bp->hwrm_cmd_lock);
4870         for (i = 1; i < vnic->uc_filter_count; i++) {
4871                 struct hwrm_cfa_l2_filter_free_input req = {0};
4872
4873                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4874                                        -1);
4875
4876                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4877
4878                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4879                                         HWRM_CMD_TIMEOUT);
4880         }
4881         mutex_unlock(&bp->hwrm_cmd_lock);
4882
4883         vnic->uc_filter_count = 1;
4884
4885         netif_addr_lock_bh(dev);
4886         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4887                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4888         } else {
4889                 netdev_for_each_uc_addr(ha, dev) {
4890                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4891                         off += ETH_ALEN;
4892                         vnic->uc_filter_count++;
4893                 }
4894         }
4895         netif_addr_unlock_bh(dev);
4896
4897         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4898                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4899                 if (rc) {
4900                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4901                                    rc);
4902                         vnic->uc_filter_count = i;
4903                         return rc;
4904                 }
4905         }
4906
4907 skip_uc:
4908         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4909         if (rc)
4910                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4911                            rc);
4912
4913         return rc;
4914 }
4915
4916 static netdev_features_t bnxt_fix_features(struct net_device *dev,
4917                                            netdev_features_t features)
4918 {
4919         return features;
4920 }
4921
4922 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
4923 {
4924         struct bnxt *bp = netdev_priv(dev);
4925         u32 flags = bp->flags;
4926         u32 changes;
4927         int rc = 0;
4928         bool re_init = false;
4929         bool update_tpa = false;
4930
4931         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
4932         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
4933                 flags |= BNXT_FLAG_GRO;
4934         if (features & NETIF_F_LRO)
4935                 flags |= BNXT_FLAG_LRO;
4936
4937         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4938                 flags |= BNXT_FLAG_STRIP_VLAN;
4939
4940         if (features & NETIF_F_NTUPLE)
4941                 flags |= BNXT_FLAG_RFS;
4942
4943         changes = flags ^ bp->flags;
4944         if (changes & BNXT_FLAG_TPA) {
4945                 update_tpa = true;
4946                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
4947                     (flags & BNXT_FLAG_TPA) == 0)
4948                         re_init = true;
4949         }
4950
4951         if (changes & ~BNXT_FLAG_TPA)
4952                 re_init = true;
4953
4954         if (flags != bp->flags) {
4955                 u32 old_flags = bp->flags;
4956
4957                 bp->flags = flags;
4958
4959                 if (!netif_running(dev)) {
4960                         if (update_tpa)
4961                                 bnxt_set_ring_params(bp);
4962                         return rc;
4963                 }
4964
4965                 if (re_init) {
4966                         bnxt_close_nic(bp, false, false);
4967                         if (update_tpa)
4968                                 bnxt_set_ring_params(bp);
4969
4970                         return bnxt_open_nic(bp, false, false);
4971                 }
4972                 if (update_tpa) {
4973                         rc = bnxt_set_tpa(bp,
4974                                           (flags & BNXT_FLAG_TPA) ?
4975                                           true : false);
4976                         if (rc)
4977                                 bp->flags = old_flags;
4978                 }
4979         }
4980         return rc;
4981 }
4982
4983 static void bnxt_dbg_dump_states(struct bnxt *bp)
4984 {
4985         int i;
4986         struct bnxt_napi *bnapi;
4987         struct bnxt_tx_ring_info *txr;
4988         struct bnxt_rx_ring_info *rxr;
4989         struct bnxt_cp_ring_info *cpr;
4990
4991         for (i = 0; i < bp->cp_nr_rings; i++) {
4992                 bnapi = bp->bnapi[i];
4993                 txr = &bnapi->tx_ring;
4994                 rxr = &bnapi->rx_ring;
4995                 cpr = &bnapi->cp_ring;
4996                 if (netif_msg_drv(bp)) {
4997                         netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
4998                                     i, txr->tx_ring_struct.fw_ring_id,
4999                                     txr->tx_prod, txr->tx_cons);
5000                         netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5001                                     i, rxr->rx_ring_struct.fw_ring_id,
5002                                     rxr->rx_prod,
5003                                     rxr->rx_agg_ring_struct.fw_ring_id,
5004                                     rxr->rx_agg_prod, rxr->rx_sw_agg_prod);
5005                         netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5006                                     i, cpr->cp_ring_struct.fw_ring_id,
5007                                     cpr->cp_raw_cons);
5008                 }
5009         }
5010 }
5011
5012 static void bnxt_reset_task(struct bnxt *bp)
5013 {
5014         bnxt_dbg_dump_states(bp);
5015         if (netif_running(bp->dev)) {
5016                 bnxt_close_nic(bp, false, false);
5017                 bnxt_open_nic(bp, false, false);
5018         }
5019 }
5020
5021 static void bnxt_tx_timeout(struct net_device *dev)
5022 {
5023         struct bnxt *bp = netdev_priv(dev);
5024
5025         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5026         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5027         schedule_work(&bp->sp_task);
5028 }
5029
5030 #ifdef CONFIG_NET_POLL_CONTROLLER
5031 static void bnxt_poll_controller(struct net_device *dev)
5032 {
5033         struct bnxt *bp = netdev_priv(dev);
5034         int i;
5035
5036         for (i = 0; i < bp->cp_nr_rings; i++) {
5037                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5038
5039                 disable_irq(irq->vector);
5040                 irq->handler(irq->vector, bp->bnapi[i]);
5041                 enable_irq(irq->vector);
5042         }
5043 }
5044 #endif
5045
5046 static void bnxt_timer(unsigned long data)
5047 {
5048         struct bnxt *bp = (struct bnxt *)data;
5049         struct net_device *dev = bp->dev;
5050
5051         if (!netif_running(dev))
5052                 return;
5053
5054         if (atomic_read(&bp->intr_sem) != 0)
5055                 goto bnxt_restart_timer;
5056
5057 bnxt_restart_timer:
5058         mod_timer(&bp->timer, jiffies + bp->current_interval);
5059 }
5060
5061 static void bnxt_cfg_ntp_filters(struct bnxt *);
5062
5063 static void bnxt_sp_task(struct work_struct *work)
5064 {
5065         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5066         int rc;
5067
5068         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5069         smp_mb__after_atomic();
5070         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5071                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5072                 return;
5073         }
5074
5075         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5076                 bnxt_cfg_rx_mode(bp);
5077
5078         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5079                 bnxt_cfg_ntp_filters(bp);
5080         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5081                 rc = bnxt_update_link(bp, true);
5082                 if (rc)
5083                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5084                                    rc);
5085         }
5086         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5087                 bnxt_hwrm_exec_fwd_req(bp);
5088         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5089                 bnxt_hwrm_tunnel_dst_port_alloc(
5090                         bp, bp->vxlan_port,
5091                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5092         }
5093         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5094                 bnxt_hwrm_tunnel_dst_port_free(
5095                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5096         }
5097         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5098                 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5099                  * for BNXT_STATE_IN_SP_TASK to clear.
5100                  */
5101                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5102                 rtnl_lock();
5103                 bnxt_reset_task(bp);
5104                 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5105                 rtnl_unlock();
5106         }
5107
5108         smp_mb__before_atomic();
5109         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5110 }
5111
5112 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5113 {
5114         int rc;
5115         struct bnxt *bp = netdev_priv(dev);
5116
5117         SET_NETDEV_DEV(dev, &pdev->dev);
5118
5119         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5120         rc = pci_enable_device(pdev);
5121         if (rc) {
5122                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5123                 goto init_err;
5124         }
5125
5126         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5127                 dev_err(&pdev->dev,
5128                         "Cannot find PCI device base address, aborting\n");
5129                 rc = -ENODEV;
5130                 goto init_err_disable;
5131         }
5132
5133         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5134         if (rc) {
5135                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5136                 goto init_err_disable;
5137         }
5138
5139         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5140             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5141                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5142                 goto init_err_disable;
5143         }
5144
5145         pci_set_master(pdev);
5146
5147         bp->dev = dev;
5148         bp->pdev = pdev;
5149
5150         bp->bar0 = pci_ioremap_bar(pdev, 0);
5151         if (!bp->bar0) {
5152                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5153                 rc = -ENOMEM;
5154                 goto init_err_release;
5155         }
5156
5157         bp->bar1 = pci_ioremap_bar(pdev, 2);
5158         if (!bp->bar1) {
5159                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5160                 rc = -ENOMEM;
5161                 goto init_err_release;
5162         }
5163
5164         bp->bar2 = pci_ioremap_bar(pdev, 4);
5165         if (!bp->bar2) {
5166                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5167                 rc = -ENOMEM;
5168                 goto init_err_release;
5169         }
5170
5171         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5172
5173         spin_lock_init(&bp->ntp_fltr_lock);
5174
5175         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5176         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5177
5178         bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5179         bp->coal_bufs = 20;
5180         bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5181         bp->coal_bufs_irq = 2;
5182
5183         init_timer(&bp->timer);
5184         bp->timer.data = (unsigned long)bp;
5185         bp->timer.function = bnxt_timer;
5186         bp->current_interval = BNXT_TIMER_INTERVAL;
5187
5188         clear_bit(BNXT_STATE_OPEN, &bp->state);
5189
5190         return 0;
5191
5192 init_err_release:
5193         if (bp->bar2) {
5194                 pci_iounmap(pdev, bp->bar2);
5195                 bp->bar2 = NULL;
5196         }
5197
5198         if (bp->bar1) {
5199                 pci_iounmap(pdev, bp->bar1);
5200                 bp->bar1 = NULL;
5201         }
5202
5203         if (bp->bar0) {
5204                 pci_iounmap(pdev, bp->bar0);
5205                 bp->bar0 = NULL;
5206         }
5207
5208         pci_release_regions(pdev);
5209
5210 init_err_disable:
5211         pci_disable_device(pdev);
5212
5213 init_err:
5214         return rc;
5215 }
5216
5217 /* rtnl_lock held */
5218 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5219 {
5220         struct sockaddr *addr = p;
5221         struct bnxt *bp = netdev_priv(dev);
5222         int rc = 0;
5223
5224         if (!is_valid_ether_addr(addr->sa_data))
5225                 return -EADDRNOTAVAIL;
5226
5227 #ifdef CONFIG_BNXT_SRIOV
5228         if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5229                 return -EADDRNOTAVAIL;
5230 #endif
5231
5232         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5233                 return 0;
5234
5235         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5236         if (netif_running(dev)) {
5237                 bnxt_close_nic(bp, false, false);
5238                 rc = bnxt_open_nic(bp, false, false);
5239         }
5240
5241         return rc;
5242 }
5243
5244 /* rtnl_lock held */
5245 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5246 {
5247         struct bnxt *bp = netdev_priv(dev);
5248
5249         if (new_mtu < 60 || new_mtu > 9000)
5250                 return -EINVAL;
5251
5252         if (netif_running(dev))
5253                 bnxt_close_nic(bp, false, false);
5254
5255         dev->mtu = new_mtu;
5256         bnxt_set_ring_params(bp);
5257
5258         if (netif_running(dev))
5259                 return bnxt_open_nic(bp, false, false);
5260
5261         return 0;
5262 }
5263
5264 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5265 {
5266         struct bnxt *bp = netdev_priv(dev);
5267
5268         if (tc > bp->max_tc) {
5269                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5270                            tc, bp->max_tc);
5271                 return -EINVAL;
5272         }
5273
5274         if (netdev_get_num_tc(dev) == tc)
5275                 return 0;
5276
5277         if (tc) {
5278                 int max_rx_rings, max_tx_rings;
5279
5280                 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5281                 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5282                         return -ENOMEM;
5283         }
5284
5285         /* Needs to close the device and do hw resource re-allocations */
5286         if (netif_running(bp->dev))
5287                 bnxt_close_nic(bp, true, false);
5288
5289         if (tc) {
5290                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5291                 netdev_set_num_tc(dev, tc);
5292         } else {
5293                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5294                 netdev_reset_tc(dev);
5295         }
5296         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5297         bp->num_stat_ctxs = bp->cp_nr_rings;
5298
5299         if (netif_running(bp->dev))
5300                 return bnxt_open_nic(bp, true, false);
5301
5302         return 0;
5303 }
5304
5305 #ifdef CONFIG_RFS_ACCEL
5306 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5307                             struct bnxt_ntuple_filter *f2)
5308 {
5309         struct flow_keys *keys1 = &f1->fkeys;
5310         struct flow_keys *keys2 = &f2->fkeys;
5311
5312         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5313             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5314             keys1->ports.ports == keys2->ports.ports &&
5315             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5316             keys1->basic.n_proto == keys2->basic.n_proto &&
5317             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5318                 return true;
5319
5320         return false;
5321 }
5322
5323 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5324                               u16 rxq_index, u32 flow_id)
5325 {
5326         struct bnxt *bp = netdev_priv(dev);
5327         struct bnxt_ntuple_filter *fltr, *new_fltr;
5328         struct flow_keys *fkeys;
5329         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5330         int rc = 0, idx, bit_id;
5331         struct hlist_head *head;
5332
5333         if (skb->encapsulation)
5334                 return -EPROTONOSUPPORT;
5335
5336         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5337         if (!new_fltr)
5338                 return -ENOMEM;
5339
5340         fkeys = &new_fltr->fkeys;
5341         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5342                 rc = -EPROTONOSUPPORT;
5343                 goto err_free;
5344         }
5345
5346         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5347             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5348              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5349                 rc = -EPROTONOSUPPORT;
5350                 goto err_free;
5351         }
5352
5353         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5354
5355         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5356         head = &bp->ntp_fltr_hash_tbl[idx];
5357         rcu_read_lock();
5358         hlist_for_each_entry_rcu(fltr, head, hash) {
5359                 if (bnxt_fltr_match(fltr, new_fltr)) {
5360                         rcu_read_unlock();
5361                         rc = 0;
5362                         goto err_free;
5363                 }
5364         }
5365         rcu_read_unlock();
5366
5367         spin_lock_bh(&bp->ntp_fltr_lock);
5368         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5369                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
5370         if (bit_id < 0) {
5371                 spin_unlock_bh(&bp->ntp_fltr_lock);
5372                 rc = -ENOMEM;
5373                 goto err_free;
5374         }
5375
5376         new_fltr->sw_id = (u16)bit_id;
5377         new_fltr->flow_id = flow_id;
5378         new_fltr->rxq = rxq_index;
5379         hlist_add_head_rcu(&new_fltr->hash, head);
5380         bp->ntp_fltr_count++;
5381         spin_unlock_bh(&bp->ntp_fltr_lock);
5382
5383         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5384         schedule_work(&bp->sp_task);
5385
5386         return new_fltr->sw_id;
5387
5388 err_free:
5389         kfree(new_fltr);
5390         return rc;
5391 }
5392
5393 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5394 {
5395         int i;
5396
5397         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5398                 struct hlist_head *head;
5399                 struct hlist_node *tmp;
5400                 struct bnxt_ntuple_filter *fltr;
5401                 int rc;
5402
5403                 head = &bp->ntp_fltr_hash_tbl[i];
5404                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5405                         bool del = false;
5406
5407                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5408                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5409                                                         fltr->flow_id,
5410                                                         fltr->sw_id)) {
5411                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
5412                                                                          fltr);
5413                                         del = true;
5414                                 }
5415                         } else {
5416                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5417                                                                        fltr);
5418                                 if (rc)
5419                                         del = true;
5420                                 else
5421                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
5422                         }
5423
5424                         if (del) {
5425                                 spin_lock_bh(&bp->ntp_fltr_lock);
5426                                 hlist_del_rcu(&fltr->hash);
5427                                 bp->ntp_fltr_count--;
5428                                 spin_unlock_bh(&bp->ntp_fltr_lock);
5429                                 synchronize_rcu();
5430                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5431                                 kfree(fltr);
5432                         }
5433                 }
5434         }
5435 }
5436
5437 #else
5438
5439 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5440 {
5441 }
5442
5443 #endif /* CONFIG_RFS_ACCEL */
5444
5445 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5446                                 __be16 port)
5447 {
5448         struct bnxt *bp = netdev_priv(dev);
5449
5450         if (!netif_running(dev))
5451                 return;
5452
5453         if (sa_family != AF_INET6 && sa_family != AF_INET)
5454                 return;
5455
5456         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5457                 return;
5458
5459         bp->vxlan_port_cnt++;
5460         if (bp->vxlan_port_cnt == 1) {
5461                 bp->vxlan_port = port;
5462                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5463                 schedule_work(&bp->sp_task);
5464         }
5465 }
5466
5467 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5468                                 __be16 port)
5469 {
5470         struct bnxt *bp = netdev_priv(dev);
5471
5472         if (!netif_running(dev))
5473                 return;
5474
5475         if (sa_family != AF_INET6 && sa_family != AF_INET)
5476                 return;
5477
5478         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5479                 bp->vxlan_port_cnt--;
5480
5481                 if (bp->vxlan_port_cnt == 0) {
5482                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5483                         schedule_work(&bp->sp_task);
5484                 }
5485         }
5486 }
5487
5488 static const struct net_device_ops bnxt_netdev_ops = {
5489         .ndo_open               = bnxt_open,
5490         .ndo_start_xmit         = bnxt_start_xmit,
5491         .ndo_stop               = bnxt_close,
5492         .ndo_get_stats64        = bnxt_get_stats64,
5493         .ndo_set_rx_mode        = bnxt_set_rx_mode,
5494         .ndo_do_ioctl           = bnxt_ioctl,
5495         .ndo_validate_addr      = eth_validate_addr,
5496         .ndo_set_mac_address    = bnxt_change_mac_addr,
5497         .ndo_change_mtu         = bnxt_change_mtu,
5498         .ndo_fix_features       = bnxt_fix_features,
5499         .ndo_set_features       = bnxt_set_features,
5500         .ndo_tx_timeout         = bnxt_tx_timeout,
5501 #ifdef CONFIG_BNXT_SRIOV
5502         .ndo_get_vf_config      = bnxt_get_vf_config,
5503         .ndo_set_vf_mac         = bnxt_set_vf_mac,
5504         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
5505         .ndo_set_vf_rate        = bnxt_set_vf_bw,
5506         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
5507         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
5508 #endif
5509 #ifdef CONFIG_NET_POLL_CONTROLLER
5510         .ndo_poll_controller    = bnxt_poll_controller,
5511 #endif
5512         .ndo_setup_tc           = bnxt_setup_tc,
5513 #ifdef CONFIG_RFS_ACCEL
5514         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
5515 #endif
5516         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
5517         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
5518 #ifdef CONFIG_NET_RX_BUSY_POLL
5519         .ndo_busy_poll          = bnxt_busy_poll,
5520 #endif
5521 };
5522
5523 static void bnxt_remove_one(struct pci_dev *pdev)
5524 {
5525         struct net_device *dev = pci_get_drvdata(pdev);
5526         struct bnxt *bp = netdev_priv(dev);
5527
5528         if (BNXT_PF(bp))
5529                 bnxt_sriov_disable(bp);
5530
5531         unregister_netdev(dev);
5532         cancel_work_sync(&bp->sp_task);
5533         bp->sp_event = 0;
5534
5535         bnxt_hwrm_func_drv_unrgtr(bp);
5536         bnxt_free_hwrm_resources(bp);
5537         pci_iounmap(pdev, bp->bar2);
5538         pci_iounmap(pdev, bp->bar1);
5539         pci_iounmap(pdev, bp->bar0);
5540         free_netdev(dev);
5541
5542         pci_release_regions(pdev);
5543         pci_disable_device(pdev);
5544 }
5545
5546 static int bnxt_probe_phy(struct bnxt *bp)
5547 {
5548         int rc = 0;
5549         struct bnxt_link_info *link_info = &bp->link_info;
5550         char phy_ver[PHY_VER_STR_LEN];
5551
5552         rc = bnxt_update_link(bp, false);
5553         if (rc) {
5554                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5555                            rc);
5556                 return rc;
5557         }
5558
5559         /*initialize the ethool setting copy with NVM settings */
5560         if (BNXT_AUTO_MODE(link_info->auto_mode))
5561                 link_info->autoneg |= BNXT_AUTONEG_SPEED;
5562
5563         if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5564                 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5565                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5566                 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5567         } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5568                 link_info->req_flow_ctrl = link_info->force_pause_setting;
5569         }
5570         link_info->req_duplex = link_info->duplex_setting;
5571         if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5572                 link_info->req_link_speed = link_info->auto_link_speed;
5573         else
5574                 link_info->req_link_speed = link_info->force_link_speed;
5575         link_info->advertising = link_info->auto_link_speeds;
5576         snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5577                  link_info->phy_ver[0],
5578                  link_info->phy_ver[1],
5579                  link_info->phy_ver[2]);
5580         strcat(bp->fw_ver_str, phy_ver);
5581         return rc;
5582 }
5583
5584 static int bnxt_get_max_irq(struct pci_dev *pdev)
5585 {
5586         u16 ctrl;
5587
5588         if (!pdev->msix_cap)
5589                 return 1;
5590
5591         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5592         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5593 }
5594
5595 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx)
5596 {
5597         int max_rings = 0;
5598
5599         if (BNXT_PF(bp)) {
5600                 *max_tx = bp->pf.max_pf_tx_rings;
5601                 *max_rx = bp->pf.max_pf_rx_rings;
5602                 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5603                 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs);
5604         } else {
5605 #ifdef CONFIG_BNXT_SRIOV
5606                 *max_tx = bp->vf.max_tx_rings;
5607                 *max_rx = bp->vf.max_rx_rings;
5608                 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5609                 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs);
5610 #endif
5611         }
5612         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5613                 *max_rx >>= 1;
5614
5615         *max_rx = min_t(int, *max_rx, max_rings);
5616         *max_tx = min_t(int, *max_tx, max_rings);
5617 }
5618
5619 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5620 {
5621         static int version_printed;
5622         struct net_device *dev;
5623         struct bnxt *bp;
5624         int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings;
5625
5626         if (version_printed++ == 0)
5627                 pr_info("%s", version);
5628
5629         max_irqs = bnxt_get_max_irq(pdev);
5630         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5631         if (!dev)
5632                 return -ENOMEM;
5633
5634         bp = netdev_priv(dev);
5635
5636         if (bnxt_vf_pciid(ent->driver_data))
5637                 bp->flags |= BNXT_FLAG_VF;
5638
5639         if (pdev->msix_cap) {
5640                 bp->flags |= BNXT_FLAG_MSIX_CAP;
5641                 if (BNXT_PF(bp))
5642                         bp->flags |= BNXT_FLAG_RFS;
5643         }
5644
5645         rc = bnxt_init_board(pdev, dev);
5646         if (rc < 0)
5647                 goto init_err_free;
5648
5649         dev->netdev_ops = &bnxt_netdev_ops;
5650         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5651         dev->ethtool_ops = &bnxt_ethtool_ops;
5652
5653         pci_set_drvdata(pdev, dev);
5654
5655         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5656                            NETIF_F_TSO | NETIF_F_TSO6 |
5657                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5658                            NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5659                            NETIF_F_RXHASH |
5660                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5661
5662         if (bp->flags & BNXT_FLAG_RFS)
5663                 dev->hw_features |= NETIF_F_NTUPLE;
5664
5665         dev->hw_enc_features =
5666                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5667                         NETIF_F_TSO | NETIF_F_TSO6 |
5668                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5669                         NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5670         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5671         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5672                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5673         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5674         dev->priv_flags |= IFF_UNICAST_FLT;
5675
5676 #ifdef CONFIG_BNXT_SRIOV
5677         init_waitqueue_head(&bp->sriov_cfg_wait);
5678 #endif
5679         rc = bnxt_alloc_hwrm_resources(bp);
5680         if (rc)
5681                 goto init_err;
5682
5683         mutex_init(&bp->hwrm_cmd_lock);
5684         bnxt_hwrm_ver_get(bp);
5685
5686         rc = bnxt_hwrm_func_drv_rgtr(bp);
5687         if (rc)
5688                 goto init_err;
5689
5690         /* Get the MAX capabilities for this function */
5691         rc = bnxt_hwrm_func_qcaps(bp);
5692         if (rc) {
5693                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5694                            rc);
5695                 rc = -1;
5696                 goto init_err;
5697         }
5698
5699         rc = bnxt_hwrm_queue_qportcfg(bp);
5700         if (rc) {
5701                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5702                            rc);
5703                 rc = -1;
5704                 goto init_err;
5705         }
5706
5707         bnxt_set_tpa_flags(bp);
5708         bnxt_set_ring_params(bp);
5709         dflt_rings = netif_get_num_default_rss_queues();
5710         if (BNXT_PF(bp))
5711                 bp->pf.max_irqs = max_irqs;
5712 #if defined(CONFIG_BNXT_SRIOV)
5713         else
5714                 bp->vf.max_irqs = max_irqs;
5715 #endif
5716         bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5717         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5718         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5719         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5720         bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
5721         bp->num_stat_ctxs = bp->cp_nr_rings;
5722
5723         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5724                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5725
5726         rc = bnxt_probe_phy(bp);
5727         if (rc)
5728                 goto init_err;
5729
5730         rc = register_netdev(dev);
5731         if (rc)
5732                 goto init_err;
5733
5734         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5735                     board_info[ent->driver_data].name,
5736                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
5737
5738         return 0;
5739
5740 init_err:
5741         pci_iounmap(pdev, bp->bar0);
5742         pci_release_regions(pdev);
5743         pci_disable_device(pdev);
5744
5745 init_err_free:
5746         free_netdev(dev);
5747         return rc;
5748 }
5749
5750 static struct pci_driver bnxt_pci_driver = {
5751         .name           = DRV_MODULE_NAME,
5752         .id_table       = bnxt_pci_tbl,
5753         .probe          = bnxt_init_one,
5754         .remove         = bnxt_remove_one,
5755 #if defined(CONFIG_BNXT_SRIOV)
5756         .sriov_configure = bnxt_sriov_configure,
5757 #endif
5758 };
5759
5760 module_pci_driver(bnxt_pci_driver);