]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
net: bcmgenet: set hw_params->rx_queues = 0
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_TX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59
60 #define RX_BUF_LENGTH           2048
61 #define SKB_ALIGNMENT           32
62
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
66
67 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
68                                 TOTAL_DESC * DMA_DESC_SIZE)
69
70 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
71                                 TOTAL_DESC * DMA_DESC_SIZE)
72
73 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
74                                              void __iomem *d, u32 value)
75 {
76         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
77 }
78
79 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
80                                             void __iomem *d)
81 {
82         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
83 }
84
85 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
86                                     void __iomem *d,
87                                     dma_addr_t addr)
88 {
89         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
90
91         /* Register writes to GISB bus can take couple hundred nanoseconds
92          * and are done for each packet, save these expensive writes unless
93          * the platform is explicitly configured for 64-bits/LPAE.
94          */
95 #ifdef CONFIG_PHYS_ADDR_T_64BIT
96         if (priv->hw_params->flags & GENET_HAS_40BITS)
97                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
98 #endif
99 }
100
101 /* Combined address + length/status setter */
102 static inline void dmadesc_set(struct bcmgenet_priv *priv,
103                                void __iomem *d, dma_addr_t addr, u32 val)
104 {
105         dmadesc_set_length_status(priv, d, val);
106         dmadesc_set_addr(priv, d, addr);
107 }
108
109 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
110                                           void __iomem *d)
111 {
112         dma_addr_t addr;
113
114         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
115
116         /* Register writes to GISB bus can take couple hundred nanoseconds
117          * and are done for each packet, save these expensive writes unless
118          * the platform is explicitly configured for 64-bits/LPAE.
119          */
120 #ifdef CONFIG_PHYS_ADDR_T_64BIT
121         if (priv->hw_params->flags & GENET_HAS_40BITS)
122                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
123 #endif
124         return addr;
125 }
126
127 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
128
129 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
130                                 NETIF_MSG_LINK)
131
132 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
133 {
134         if (GENET_IS_V1(priv))
135                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
136         else
137                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
138 }
139
140 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
141 {
142         if (GENET_IS_V1(priv))
143                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
144         else
145                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
146 }
147
148 /* These macros are defined to deal with register map change
149  * between GENET1.1 and GENET2. Only those currently being used
150  * by driver are defined.
151  */
152 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
153 {
154         if (GENET_IS_V1(priv))
155                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
156         else
157                 return __raw_readl(priv->base +
158                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
159 }
160
161 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163         if (GENET_IS_V1(priv))
164                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
165         else
166                 __raw_writel(val, priv->base +
167                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
168 }
169
170 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
174         else
175                 return __raw_readl(priv->base +
176                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
177 }
178
179 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
183         else
184                 __raw_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
186 }
187
188 /* RX/TX DMA register accessors */
189 enum dma_reg {
190         DMA_RING_CFG = 0,
191         DMA_CTRL,
192         DMA_STATUS,
193         DMA_SCB_BURST_SIZE,
194         DMA_ARB_CTRL,
195         DMA_PRIORITY_0,
196         DMA_PRIORITY_1,
197         DMA_PRIORITY_2,
198 };
199
200 static const u8 bcmgenet_dma_regs_v3plus[] = {
201         [DMA_RING_CFG]          = 0x00,
202         [DMA_CTRL]              = 0x04,
203         [DMA_STATUS]            = 0x08,
204         [DMA_SCB_BURST_SIZE]    = 0x0C,
205         [DMA_ARB_CTRL]          = 0x2C,
206         [DMA_PRIORITY_0]        = 0x30,
207         [DMA_PRIORITY_1]        = 0x34,
208         [DMA_PRIORITY_2]        = 0x38,
209 };
210
211 static const u8 bcmgenet_dma_regs_v2[] = {
212         [DMA_RING_CFG]          = 0x00,
213         [DMA_CTRL]              = 0x04,
214         [DMA_STATUS]            = 0x08,
215         [DMA_SCB_BURST_SIZE]    = 0x0C,
216         [DMA_ARB_CTRL]          = 0x30,
217         [DMA_PRIORITY_0]        = 0x34,
218         [DMA_PRIORITY_1]        = 0x38,
219         [DMA_PRIORITY_2]        = 0x3C,
220 };
221
222 static const u8 bcmgenet_dma_regs_v1[] = {
223         [DMA_CTRL]              = 0x00,
224         [DMA_STATUS]            = 0x04,
225         [DMA_SCB_BURST_SIZE]    = 0x0C,
226         [DMA_ARB_CTRL]          = 0x30,
227         [DMA_PRIORITY_0]        = 0x34,
228         [DMA_PRIORITY_1]        = 0x38,
229         [DMA_PRIORITY_2]        = 0x3C,
230 };
231
232 /* Set at runtime once bcmgenet version is known */
233 static const u8 *bcmgenet_dma_regs;
234
235 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
236 {
237         return netdev_priv(dev_get_drvdata(dev));
238 }
239
240 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
241                                       enum dma_reg r)
242 {
243         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
244                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
245 }
246
247 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
248                                         u32 val, enum dma_reg r)
249 {
250         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
251                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
252 }
253
254 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
255                                       enum dma_reg r)
256 {
257         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
258                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
259 }
260
261 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
262                                         u32 val, enum dma_reg r)
263 {
264         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
265                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
266 }
267
268 /* RDMA/TDMA ring registers and accessors
269  * we merge the common fields and just prefix with T/D the registers
270  * having different meaning depending on the direction
271  */
272 enum dma_ring_reg {
273         TDMA_READ_PTR = 0,
274         RDMA_WRITE_PTR = TDMA_READ_PTR,
275         TDMA_READ_PTR_HI,
276         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
277         TDMA_CONS_INDEX,
278         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
279         TDMA_PROD_INDEX,
280         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
281         DMA_RING_BUF_SIZE,
282         DMA_START_ADDR,
283         DMA_START_ADDR_HI,
284         DMA_END_ADDR,
285         DMA_END_ADDR_HI,
286         DMA_MBUF_DONE_THRESH,
287         TDMA_FLOW_PERIOD,
288         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
289         TDMA_WRITE_PTR,
290         RDMA_READ_PTR = TDMA_WRITE_PTR,
291         TDMA_WRITE_PTR_HI,
292         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
293 };
294
295 /* GENET v4 supports 40-bits pointer addressing
296  * for obvious reasons the LO and HI word parts
297  * are contiguous, but this offsets the other
298  * registers.
299  */
300 static const u8 genet_dma_ring_regs_v4[] = {
301         [TDMA_READ_PTR]                 = 0x00,
302         [TDMA_READ_PTR_HI]              = 0x04,
303         [TDMA_CONS_INDEX]               = 0x08,
304         [TDMA_PROD_INDEX]               = 0x0C,
305         [DMA_RING_BUF_SIZE]             = 0x10,
306         [DMA_START_ADDR]                = 0x14,
307         [DMA_START_ADDR_HI]             = 0x18,
308         [DMA_END_ADDR]                  = 0x1C,
309         [DMA_END_ADDR_HI]               = 0x20,
310         [DMA_MBUF_DONE_THRESH]          = 0x24,
311         [TDMA_FLOW_PERIOD]              = 0x28,
312         [TDMA_WRITE_PTR]                = 0x2C,
313         [TDMA_WRITE_PTR_HI]             = 0x30,
314 };
315
316 static const u8 genet_dma_ring_regs_v123[] = {
317         [TDMA_READ_PTR]                 = 0x00,
318         [TDMA_CONS_INDEX]               = 0x04,
319         [TDMA_PROD_INDEX]               = 0x08,
320         [DMA_RING_BUF_SIZE]             = 0x0C,
321         [DMA_START_ADDR]                = 0x10,
322         [DMA_END_ADDR]                  = 0x14,
323         [DMA_MBUF_DONE_THRESH]          = 0x18,
324         [TDMA_FLOW_PERIOD]              = 0x1C,
325         [TDMA_WRITE_PTR]                = 0x20,
326 };
327
328 /* Set at runtime once GENET version is known */
329 static const u8 *genet_dma_ring_regs;
330
331 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
332                                            unsigned int ring,
333                                            enum dma_ring_reg r)
334 {
335         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
336                         (DMA_RING_SIZE * ring) +
337                         genet_dma_ring_regs[r]);
338 }
339
340 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
341                                              unsigned int ring, u32 val,
342                                              enum dma_ring_reg r)
343 {
344         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
345                         (DMA_RING_SIZE * ring) +
346                         genet_dma_ring_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
350                                            unsigned int ring,
351                                            enum dma_ring_reg r)
352 {
353         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
354                         (DMA_RING_SIZE * ring) +
355                         genet_dma_ring_regs[r]);
356 }
357
358 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
359                                              unsigned int ring, u32 val,
360                                              enum dma_ring_reg r)
361 {
362         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
363                         (DMA_RING_SIZE * ring) +
364                         genet_dma_ring_regs[r]);
365 }
366
367 static int bcmgenet_get_settings(struct net_device *dev,
368                                  struct ethtool_cmd *cmd)
369 {
370         struct bcmgenet_priv *priv = netdev_priv(dev);
371
372         if (!netif_running(dev))
373                 return -EINVAL;
374
375         if (!priv->phydev)
376                 return -ENODEV;
377
378         return phy_ethtool_gset(priv->phydev, cmd);
379 }
380
381 static int bcmgenet_set_settings(struct net_device *dev,
382                                  struct ethtool_cmd *cmd)
383 {
384         struct bcmgenet_priv *priv = netdev_priv(dev);
385
386         if (!netif_running(dev))
387                 return -EINVAL;
388
389         if (!priv->phydev)
390                 return -ENODEV;
391
392         return phy_ethtool_sset(priv->phydev, cmd);
393 }
394
395 static int bcmgenet_set_rx_csum(struct net_device *dev,
396                                 netdev_features_t wanted)
397 {
398         struct bcmgenet_priv *priv = netdev_priv(dev);
399         u32 rbuf_chk_ctrl;
400         bool rx_csum_en;
401
402         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
403
404         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
405
406         /* enable rx checksumming */
407         if (rx_csum_en)
408                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
409         else
410                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
411         priv->desc_rxchk_en = rx_csum_en;
412
413         /* If UniMAC forwards CRC, we need to skip over it to get
414          * a valid CHK bit to be set in the per-packet status word
415         */
416         if (rx_csum_en && priv->crc_fwd_en)
417                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
418         else
419                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
420
421         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
422
423         return 0;
424 }
425
426 static int bcmgenet_set_tx_csum(struct net_device *dev,
427                                 netdev_features_t wanted)
428 {
429         struct bcmgenet_priv *priv = netdev_priv(dev);
430         bool desc_64b_en;
431         u32 tbuf_ctrl, rbuf_ctrl;
432
433         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
434         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
435
436         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
437
438         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
439         if (desc_64b_en) {
440                 tbuf_ctrl |= RBUF_64B_EN;
441                 rbuf_ctrl |= RBUF_64B_EN;
442         } else {
443                 tbuf_ctrl &= ~RBUF_64B_EN;
444                 rbuf_ctrl &= ~RBUF_64B_EN;
445         }
446         priv->desc_64b_en = desc_64b_en;
447
448         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
449         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
450
451         return 0;
452 }
453
454 static int bcmgenet_set_features(struct net_device *dev,
455                                  netdev_features_t features)
456 {
457         netdev_features_t changed = features ^ dev->features;
458         netdev_features_t wanted = dev->wanted_features;
459         int ret = 0;
460
461         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
462                 ret = bcmgenet_set_tx_csum(dev, wanted);
463         if (changed & (NETIF_F_RXCSUM))
464                 ret = bcmgenet_set_rx_csum(dev, wanted);
465
466         return ret;
467 }
468
469 static u32 bcmgenet_get_msglevel(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472
473         return priv->msg_enable;
474 }
475
476 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
477 {
478         struct bcmgenet_priv *priv = netdev_priv(dev);
479
480         priv->msg_enable = level;
481 }
482
483 /* standard ethtool support functions. */
484 enum bcmgenet_stat_type {
485         BCMGENET_STAT_NETDEV = -1,
486         BCMGENET_STAT_MIB_RX,
487         BCMGENET_STAT_MIB_TX,
488         BCMGENET_STAT_RUNT,
489         BCMGENET_STAT_MISC,
490         BCMGENET_STAT_SOFT,
491 };
492
493 struct bcmgenet_stats {
494         char stat_string[ETH_GSTRING_LEN];
495         int stat_sizeof;
496         int stat_offset;
497         enum bcmgenet_stat_type type;
498         /* reg offset from UMAC base for misc counters */
499         u16 reg_offset;
500 };
501
502 #define STAT_NETDEV(m) { \
503         .stat_string = __stringify(m), \
504         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
505         .stat_offset = offsetof(struct net_device_stats, m), \
506         .type = BCMGENET_STAT_NETDEV, \
507 }
508
509 #define STAT_GENET_MIB(str, m, _type) { \
510         .stat_string = str, \
511         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
512         .stat_offset = offsetof(struct bcmgenet_priv, m), \
513         .type = _type, \
514 }
515
516 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
517 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
518 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
519 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
520
521 #define STAT_GENET_MISC(str, m, offset) { \
522         .stat_string = str, \
523         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
524         .stat_offset = offsetof(struct bcmgenet_priv, m), \
525         .type = BCMGENET_STAT_MISC, \
526         .reg_offset = offset, \
527 }
528
529
530 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
531  * between the end of TX stats and the beginning of the RX RUNT
532  */
533 #define BCMGENET_STAT_OFFSET    0xc
534
535 /* Hardware counters must be kept in sync because the order/offset
536  * is important here (order in structure declaration = order in hardware)
537  */
538 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
539         /* general stats */
540         STAT_NETDEV(rx_packets),
541         STAT_NETDEV(tx_packets),
542         STAT_NETDEV(rx_bytes),
543         STAT_NETDEV(tx_bytes),
544         STAT_NETDEV(rx_errors),
545         STAT_NETDEV(tx_errors),
546         STAT_NETDEV(rx_dropped),
547         STAT_NETDEV(tx_dropped),
548         STAT_NETDEV(multicast),
549         /* UniMAC RSV counters */
550         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
551         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
552         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
553         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
554         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
555         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
556         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
557         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
558         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
559         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
560         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
561         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
562         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
563         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
564         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
565         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
566         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
567         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
568         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
569         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
570         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
571         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
572         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
573         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
574         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
575         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
576         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
577         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
578         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
579         /* UniMAC TSV counters */
580         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
581         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
582         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
583         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
584         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
585         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
586         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
587         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
588         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
589         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
590         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
591         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
592         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
593         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
594         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
595         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
596         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
597         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
598         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
599         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
600         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
601         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
602         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
603         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
604         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
605         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
606         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
607         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
608         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
609         /* UniMAC RUNT counters */
610         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
611         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
612         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
613         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
614         /* Misc UniMAC counters */
615         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
616                         UMAC_RBUF_OVFL_CNT),
617         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
618         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
619         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
620         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
621         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
622 };
623
624 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
625
626 static void bcmgenet_get_drvinfo(struct net_device *dev,
627                                  struct ethtool_drvinfo *info)
628 {
629         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
630         strlcpy(info->version, "v2.0", sizeof(info->version));
631         info->n_stats = BCMGENET_STATS_LEN;
632 }
633
634 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
635 {
636         switch (string_set) {
637         case ETH_SS_STATS:
638                 return BCMGENET_STATS_LEN;
639         default:
640                 return -EOPNOTSUPP;
641         }
642 }
643
644 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
645                                  u8 *data)
646 {
647         int i;
648
649         switch (stringset) {
650         case ETH_SS_STATS:
651                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
652                         memcpy(data + i * ETH_GSTRING_LEN,
653                                bcmgenet_gstrings_stats[i].stat_string,
654                                ETH_GSTRING_LEN);
655                 }
656                 break;
657         }
658 }
659
660 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
661 {
662         int i, j = 0;
663
664         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
665                 const struct bcmgenet_stats *s;
666                 u8 offset = 0;
667                 u32 val = 0;
668                 char *p;
669
670                 s = &bcmgenet_gstrings_stats[i];
671                 switch (s->type) {
672                 case BCMGENET_STAT_NETDEV:
673                 case BCMGENET_STAT_SOFT:
674                         continue;
675                 case BCMGENET_STAT_MIB_RX:
676                 case BCMGENET_STAT_MIB_TX:
677                 case BCMGENET_STAT_RUNT:
678                         if (s->type != BCMGENET_STAT_MIB_RX)
679                                 offset = BCMGENET_STAT_OFFSET;
680                         val = bcmgenet_umac_readl(priv,
681                                                   UMAC_MIB_START + j + offset);
682                         break;
683                 case BCMGENET_STAT_MISC:
684                         val = bcmgenet_umac_readl(priv, s->reg_offset);
685                         /* clear if overflowed */
686                         if (val == ~0)
687                                 bcmgenet_umac_writel(priv, 0, s->reg_offset);
688                         break;
689                 }
690
691                 j += s->stat_sizeof;
692                 p = (char *)priv + s->stat_offset;
693                 *(u32 *)p = val;
694         }
695 }
696
697 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
698                                        struct ethtool_stats *stats,
699                                        u64 *data)
700 {
701         struct bcmgenet_priv *priv = netdev_priv(dev);
702         int i;
703
704         if (netif_running(dev))
705                 bcmgenet_update_mib_counters(priv);
706
707         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
708                 const struct bcmgenet_stats *s;
709                 char *p;
710
711                 s = &bcmgenet_gstrings_stats[i];
712                 if (s->type == BCMGENET_STAT_NETDEV)
713                         p = (char *)&dev->stats;
714                 else
715                         p = (char *)priv;
716                 p += s->stat_offset;
717                 data[i] = *(u32 *)p;
718         }
719 }
720
721 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
722 {
723         struct bcmgenet_priv *priv = netdev_priv(dev);
724         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
725         u32 reg;
726
727         if (enable && !priv->clk_eee_enabled) {
728                 clk_prepare_enable(priv->clk_eee);
729                 priv->clk_eee_enabled = true;
730         }
731
732         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
733         if (enable)
734                 reg |= EEE_EN;
735         else
736                 reg &= ~EEE_EN;
737         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
738
739         /* Enable EEE and switch to a 27Mhz clock automatically */
740         reg = __raw_readl(priv->base + off);
741         if (enable)
742                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
743         else
744                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
745         __raw_writel(reg, priv->base + off);
746
747         /* Do the same for thing for RBUF */
748         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
749         if (enable)
750                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
751         else
752                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
753         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
754
755         if (!enable && priv->clk_eee_enabled) {
756                 clk_disable_unprepare(priv->clk_eee);
757                 priv->clk_eee_enabled = false;
758         }
759
760         priv->eee.eee_enabled = enable;
761         priv->eee.eee_active = enable;
762 }
763
764 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
765 {
766         struct bcmgenet_priv *priv = netdev_priv(dev);
767         struct ethtool_eee *p = &priv->eee;
768
769         if (GENET_IS_V1(priv))
770                 return -EOPNOTSUPP;
771
772         e->eee_enabled = p->eee_enabled;
773         e->eee_active = p->eee_active;
774         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
775
776         return phy_ethtool_get_eee(priv->phydev, e);
777 }
778
779 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
780 {
781         struct bcmgenet_priv *priv = netdev_priv(dev);
782         struct ethtool_eee *p = &priv->eee;
783         int ret = 0;
784
785         if (GENET_IS_V1(priv))
786                 return -EOPNOTSUPP;
787
788         p->eee_enabled = e->eee_enabled;
789
790         if (!p->eee_enabled) {
791                 bcmgenet_eee_enable_set(dev, false);
792         } else {
793                 ret = phy_init_eee(priv->phydev, 0);
794                 if (ret) {
795                         netif_err(priv, hw, dev, "EEE initialization failed\n");
796                         return ret;
797                 }
798
799                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
800                 bcmgenet_eee_enable_set(dev, true);
801         }
802
803         return phy_ethtool_set_eee(priv->phydev, e);
804 }
805
806 static int bcmgenet_nway_reset(struct net_device *dev)
807 {
808         struct bcmgenet_priv *priv = netdev_priv(dev);
809
810         return genphy_restart_aneg(priv->phydev);
811 }
812
813 /* standard ethtool support functions. */
814 static struct ethtool_ops bcmgenet_ethtool_ops = {
815         .get_strings            = bcmgenet_get_strings,
816         .get_sset_count         = bcmgenet_get_sset_count,
817         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
818         .get_settings           = bcmgenet_get_settings,
819         .set_settings           = bcmgenet_set_settings,
820         .get_drvinfo            = bcmgenet_get_drvinfo,
821         .get_link               = ethtool_op_get_link,
822         .get_msglevel           = bcmgenet_get_msglevel,
823         .set_msglevel           = bcmgenet_set_msglevel,
824         .get_wol                = bcmgenet_get_wol,
825         .set_wol                = bcmgenet_set_wol,
826         .get_eee                = bcmgenet_get_eee,
827         .set_eee                = bcmgenet_set_eee,
828         .nway_reset             = bcmgenet_nway_reset,
829 };
830
831 /* Power down the unimac, based on mode. */
832 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
833                                 enum bcmgenet_power_mode mode)
834 {
835         u32 reg;
836
837         switch (mode) {
838         case GENET_POWER_CABLE_SENSE:
839                 phy_detach(priv->phydev);
840                 break;
841
842         case GENET_POWER_WOL_MAGIC:
843                 bcmgenet_wol_power_down_cfg(priv, mode);
844                 break;
845
846         case GENET_POWER_PASSIVE:
847                 /* Power down LED */
848                 if (priv->hw_params->flags & GENET_HAS_EXT) {
849                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
850                         reg |= (EXT_PWR_DOWN_PHY |
851                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
852                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
853                 }
854                 break;
855         default:
856                 break;
857         }
858 }
859
860 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
861                               enum bcmgenet_power_mode mode)
862 {
863         u32 reg;
864
865         if (!(priv->hw_params->flags & GENET_HAS_EXT))
866                 return;
867
868         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869
870         switch (mode) {
871         case GENET_POWER_PASSIVE:
872                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
873                                 EXT_PWR_DOWN_BIAS);
874                 /* fallthrough */
875         case GENET_POWER_CABLE_SENSE:
876                 /* enable APD */
877                 reg |= EXT_PWR_DN_EN_LD;
878                 break;
879         case GENET_POWER_WOL_MAGIC:
880                 bcmgenet_wol_power_up_cfg(priv, mode);
881                 return;
882         default:
883                 break;
884         }
885
886         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
887
888         if (mode == GENET_POWER_PASSIVE)
889                 bcmgenet_mii_reset(priv->dev);
890 }
891
892 /* ioctl handle special commands that are not present in ethtool. */
893 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
894 {
895         struct bcmgenet_priv *priv = netdev_priv(dev);
896         int val = 0;
897
898         if (!netif_running(dev))
899                 return -EINVAL;
900
901         switch (cmd) {
902         case SIOCGMIIPHY:
903         case SIOCGMIIREG:
904         case SIOCSMIIREG:
905                 if (!priv->phydev)
906                         val = -ENODEV;
907                 else
908                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
909                 break;
910
911         default:
912                 val = -EINVAL;
913                 break;
914         }
915
916         return val;
917 }
918
919 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
920                                          struct bcmgenet_tx_ring *ring)
921 {
922         struct enet_cb *tx_cb_ptr;
923
924         tx_cb_ptr = ring->cbs;
925         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
926
927         /* Advancing local write pointer */
928         if (ring->write_ptr == ring->end_ptr)
929                 ring->write_ptr = ring->cb_ptr;
930         else
931                 ring->write_ptr++;
932
933         return tx_cb_ptr;
934 }
935
936 /* Simple helper to free a control block's resources */
937 static void bcmgenet_free_cb(struct enet_cb *cb)
938 {
939         dev_kfree_skb_any(cb->skb);
940         cb->skb = NULL;
941         dma_unmap_addr_set(cb, dma_addr, 0);
942 }
943
944 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
945                                                   struct bcmgenet_tx_ring *ring)
946 {
947         bcmgenet_intrl2_0_writel(priv,
948                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
949                                  INTRL2_CPU_MASK_SET);
950 }
951
952 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
953                                                  struct bcmgenet_tx_ring *ring)
954 {
955         bcmgenet_intrl2_0_writel(priv,
956                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
957                                  INTRL2_CPU_MASK_CLEAR);
958 }
959
960 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
961                                                struct bcmgenet_tx_ring *ring)
962 {
963         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
964                                  INTRL2_CPU_MASK_CLEAR);
965         priv->int1_mask &= ~(1 << ring->index);
966 }
967
968 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
969                                                 struct bcmgenet_tx_ring *ring)
970 {
971         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
972                                  INTRL2_CPU_MASK_SET);
973         priv->int1_mask |= (1 << ring->index);
974 }
975
976 /* Unlocked version of the reclaim routine */
977 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
978                                           struct bcmgenet_tx_ring *ring)
979 {
980         struct bcmgenet_priv *priv = netdev_priv(dev);
981         struct enet_cb *tx_cb_ptr;
982         struct netdev_queue *txq;
983         unsigned int pkts_compl = 0;
984         unsigned int c_index;
985         unsigned int txbds_ready;
986         unsigned int txbds_processed = 0;
987
988         /* Compute how many buffers are transmitted since last xmit call */
989         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
990         c_index &= DMA_C_INDEX_MASK;
991
992         if (likely(c_index >= ring->c_index))
993                 txbds_ready = c_index - ring->c_index;
994         else
995                 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
996
997         netif_dbg(priv, tx_done, dev,
998                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
999                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1000
1001         /* Reclaim transmitted buffers */
1002         while (txbds_processed < txbds_ready) {
1003                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1004                 if (tx_cb_ptr->skb) {
1005                         pkts_compl++;
1006                         dev->stats.tx_packets++;
1007                         dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1008                         dma_unmap_single(&dev->dev,
1009                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1010                                          tx_cb_ptr->skb->len,
1011                                          DMA_TO_DEVICE);
1012                         bcmgenet_free_cb(tx_cb_ptr);
1013                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1014                         dev->stats.tx_bytes +=
1015                                 dma_unmap_len(tx_cb_ptr, dma_len);
1016                         dma_unmap_page(&dev->dev,
1017                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1018                                        dma_unmap_len(tx_cb_ptr, dma_len),
1019                                        DMA_TO_DEVICE);
1020                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1021                 }
1022
1023                 txbds_processed++;
1024                 if (likely(ring->clean_ptr < ring->end_ptr))
1025                         ring->clean_ptr++;
1026                 else
1027                         ring->clean_ptr = ring->cb_ptr;
1028         }
1029
1030         ring->free_bds += txbds_processed;
1031         ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1032
1033         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1034                 txq = netdev_get_tx_queue(dev, ring->queue);
1035                 if (netif_tx_queue_stopped(txq))
1036                         netif_tx_wake_queue(txq);
1037         }
1038
1039         return pkts_compl;
1040 }
1041
1042 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1043                                 struct bcmgenet_tx_ring *ring)
1044 {
1045         unsigned int released;
1046         unsigned long flags;
1047
1048         spin_lock_irqsave(&ring->lock, flags);
1049         released = __bcmgenet_tx_reclaim(dev, ring);
1050         spin_unlock_irqrestore(&ring->lock, flags);
1051
1052         return released;
1053 }
1054
1055 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1056 {
1057         struct bcmgenet_tx_ring *ring =
1058                 container_of(napi, struct bcmgenet_tx_ring, napi);
1059         unsigned int work_done = 0;
1060
1061         work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1062
1063         if (work_done == 0) {
1064                 napi_complete(napi);
1065                 ring->int_enable(ring->priv, ring);
1066
1067                 return 0;
1068         }
1069
1070         return budget;
1071 }
1072
1073 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1074 {
1075         struct bcmgenet_priv *priv = netdev_priv(dev);
1076         int i;
1077
1078         if (netif_is_multiqueue(dev)) {
1079                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1080                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1081         }
1082
1083         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1084 }
1085
1086 /* Transmits a single SKB (either head of a fragment or a single SKB)
1087  * caller must hold priv->lock
1088  */
1089 static int bcmgenet_xmit_single(struct net_device *dev,
1090                                 struct sk_buff *skb,
1091                                 u16 dma_desc_flags,
1092                                 struct bcmgenet_tx_ring *ring)
1093 {
1094         struct bcmgenet_priv *priv = netdev_priv(dev);
1095         struct device *kdev = &priv->pdev->dev;
1096         struct enet_cb *tx_cb_ptr;
1097         unsigned int skb_len;
1098         dma_addr_t mapping;
1099         u32 length_status;
1100         int ret;
1101
1102         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1103
1104         if (unlikely(!tx_cb_ptr))
1105                 BUG();
1106
1107         tx_cb_ptr->skb = skb;
1108
1109         skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1110
1111         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1112         ret = dma_mapping_error(kdev, mapping);
1113         if (ret) {
1114                 priv->mib.tx_dma_failed++;
1115                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1116                 dev_kfree_skb(skb);
1117                 return ret;
1118         }
1119
1120         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1121         dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1122         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1123                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1124                         DMA_TX_APPEND_CRC;
1125
1126         if (skb->ip_summed == CHECKSUM_PARTIAL)
1127                 length_status |= DMA_TX_DO_CSUM;
1128
1129         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1130
1131         /* Decrement total BD count and advance our write pointer */
1132         ring->free_bds -= 1;
1133         ring->prod_index += 1;
1134         ring->prod_index &= DMA_P_INDEX_MASK;
1135
1136         return 0;
1137 }
1138
1139 /* Transmit a SKB fragment */
1140 static int bcmgenet_xmit_frag(struct net_device *dev,
1141                               skb_frag_t *frag,
1142                               u16 dma_desc_flags,
1143                               struct bcmgenet_tx_ring *ring)
1144 {
1145         struct bcmgenet_priv *priv = netdev_priv(dev);
1146         struct device *kdev = &priv->pdev->dev;
1147         struct enet_cb *tx_cb_ptr;
1148         dma_addr_t mapping;
1149         int ret;
1150
1151         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1152
1153         if (unlikely(!tx_cb_ptr))
1154                 BUG();
1155         tx_cb_ptr->skb = NULL;
1156
1157         mapping = skb_frag_dma_map(kdev, frag, 0,
1158                                    skb_frag_size(frag), DMA_TO_DEVICE);
1159         ret = dma_mapping_error(kdev, mapping);
1160         if (ret) {
1161                 priv->mib.tx_dma_failed++;
1162                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1163                           __func__);
1164                 return ret;
1165         }
1166
1167         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1168         dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1169
1170         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1171                     (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1172                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1173
1174
1175         ring->free_bds -= 1;
1176         ring->prod_index += 1;
1177         ring->prod_index &= DMA_P_INDEX_MASK;
1178
1179         return 0;
1180 }
1181
1182 /* Reallocate the SKB to put enough headroom in front of it and insert
1183  * the transmit checksum offsets in the descriptors
1184  */
1185 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1186                                             struct sk_buff *skb)
1187 {
1188         struct status_64 *status = NULL;
1189         struct sk_buff *new_skb;
1190         u16 offset;
1191         u8 ip_proto;
1192         u16 ip_ver;
1193         u32 tx_csum_info;
1194
1195         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1196                 /* If 64 byte status block enabled, must make sure skb has
1197                  * enough headroom for us to insert 64B status block.
1198                  */
1199                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1200                 dev_kfree_skb(skb);
1201                 if (!new_skb) {
1202                         dev->stats.tx_errors++;
1203                         dev->stats.tx_dropped++;
1204                         return NULL;
1205                 }
1206                 skb = new_skb;
1207         }
1208
1209         skb_push(skb, sizeof(*status));
1210         status = (struct status_64 *)skb->data;
1211
1212         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1213                 ip_ver = htons(skb->protocol);
1214                 switch (ip_ver) {
1215                 case ETH_P_IP:
1216                         ip_proto = ip_hdr(skb)->protocol;
1217                         break;
1218                 case ETH_P_IPV6:
1219                         ip_proto = ipv6_hdr(skb)->nexthdr;
1220                         break;
1221                 default:
1222                         return skb;
1223                 }
1224
1225                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1226                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1227                                 (offset + skb->csum_offset);
1228
1229                 /* Set the length valid bit for TCP and UDP and just set
1230                  * the special UDP flag for IPv4, else just set to 0.
1231                  */
1232                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1233                         tx_csum_info |= STATUS_TX_CSUM_LV;
1234                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1235                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1236                 } else {
1237                         tx_csum_info = 0;
1238                 }
1239
1240                 status->tx_csum_info = tx_csum_info;
1241         }
1242
1243         return skb;
1244 }
1245
1246 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1247 {
1248         struct bcmgenet_priv *priv = netdev_priv(dev);
1249         struct bcmgenet_tx_ring *ring = NULL;
1250         struct netdev_queue *txq;
1251         unsigned long flags = 0;
1252         int nr_frags, index;
1253         u16 dma_desc_flags;
1254         int ret;
1255         int i;
1256
1257         index = skb_get_queue_mapping(skb);
1258         /* Mapping strategy:
1259          * queue_mapping = 0, unclassified, packet xmited through ring16
1260          * queue_mapping = 1, goes to ring 0. (highest priority queue
1261          * queue_mapping = 2, goes to ring 1.
1262          * queue_mapping = 3, goes to ring 2.
1263          * queue_mapping = 4, goes to ring 3.
1264          */
1265         if (index == 0)
1266                 index = DESC_INDEX;
1267         else
1268                 index -= 1;
1269
1270         nr_frags = skb_shinfo(skb)->nr_frags;
1271         ring = &priv->tx_rings[index];
1272         txq = netdev_get_tx_queue(dev, ring->queue);
1273
1274         spin_lock_irqsave(&ring->lock, flags);
1275         if (ring->free_bds <= nr_frags + 1) {
1276                 netif_tx_stop_queue(txq);
1277                 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1278                            __func__, index, ring->queue);
1279                 ret = NETDEV_TX_BUSY;
1280                 goto out;
1281         }
1282
1283         if (skb_padto(skb, ETH_ZLEN)) {
1284                 ret = NETDEV_TX_OK;
1285                 goto out;
1286         }
1287
1288         /* set the SKB transmit checksum */
1289         if (priv->desc_64b_en) {
1290                 skb = bcmgenet_put_tx_csum(dev, skb);
1291                 if (!skb) {
1292                         ret = NETDEV_TX_OK;
1293                         goto out;
1294                 }
1295         }
1296
1297         dma_desc_flags = DMA_SOP;
1298         if (nr_frags == 0)
1299                 dma_desc_flags |= DMA_EOP;
1300
1301         /* Transmit single SKB or head of fragment list */
1302         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1303         if (ret) {
1304                 ret = NETDEV_TX_OK;
1305                 goto out;
1306         }
1307
1308         /* xmit fragment */
1309         for (i = 0; i < nr_frags; i++) {
1310                 ret = bcmgenet_xmit_frag(dev,
1311                                          &skb_shinfo(skb)->frags[i],
1312                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1313                                          ring);
1314                 if (ret) {
1315                         ret = NETDEV_TX_OK;
1316                         goto out;
1317                 }
1318         }
1319
1320         skb_tx_timestamp(skb);
1321
1322         /* we kept a software copy of how much we should advance the TDMA
1323          * producer index, now write it down to the hardware
1324          */
1325         bcmgenet_tdma_ring_writel(priv, ring->index,
1326                                   ring->prod_index, TDMA_PROD_INDEX);
1327
1328         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1329                 netif_tx_stop_queue(txq);
1330
1331 out:
1332         spin_unlock_irqrestore(&ring->lock, flags);
1333
1334         return ret;
1335 }
1336
1337
1338 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1339 {
1340         struct device *kdev = &priv->pdev->dev;
1341         struct sk_buff *skb;
1342         dma_addr_t mapping;
1343         int ret;
1344
1345         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1346         if (!skb)
1347                 return -ENOMEM;
1348
1349         /* a caller did not release this control block */
1350         WARN_ON(cb->skb != NULL);
1351         cb->skb = skb;
1352         mapping = dma_map_single(kdev, skb->data,
1353                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1354         ret = dma_mapping_error(kdev, mapping);
1355         if (ret) {
1356                 priv->mib.rx_dma_failed++;
1357                 bcmgenet_free_cb(cb);
1358                 netif_err(priv, rx_err, priv->dev,
1359                           "%s DMA map failed\n", __func__);
1360                 return ret;
1361         }
1362
1363         dma_unmap_addr_set(cb, dma_addr, mapping);
1364         /* assign packet, prepare descriptor, and advance pointer */
1365
1366         dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1367
1368         /* turn on the newly assigned BD for DMA to use */
1369         priv->rx_bd_assign_index++;
1370         priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1371
1372         priv->rx_bd_assign_ptr = priv->rx_bds +
1373                 (priv->rx_bd_assign_index * DMA_DESC_SIZE);
1374
1375         return 0;
1376 }
1377
1378 /* bcmgenet_desc_rx - descriptor based rx process.
1379  * this could be called from bottom half, or from NAPI polling method.
1380  */
1381 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1382                                      unsigned int budget)
1383 {
1384         struct net_device *dev = priv->dev;
1385         struct enet_cb *cb;
1386         struct sk_buff *skb;
1387         u32 dma_length_status;
1388         unsigned long dma_flag;
1389         int len, err;
1390         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1391         unsigned int p_index;
1392         unsigned int chksum_ok = 0;
1393
1394         p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1395         p_index &= DMA_P_INDEX_MASK;
1396
1397         if (p_index < priv->rx_c_index)
1398                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1399                         priv->rx_c_index + p_index;
1400         else
1401                 rxpkttoprocess = p_index - priv->rx_c_index;
1402
1403         netif_dbg(priv, rx_status, dev,
1404                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1405
1406         while ((rxpktprocessed < rxpkttoprocess) &&
1407                (rxpktprocessed < budget)) {
1408                 cb = &priv->rx_cbs[priv->rx_read_ptr];
1409                 skb = cb->skb;
1410
1411                 /* We do not have a backing SKB, so we do not have a
1412                  * corresponding DMA mapping for this incoming packet since
1413                  * bcmgenet_rx_refill always either has both skb and mapping or
1414                  * none.
1415                  */
1416                 if (unlikely(!skb)) {
1417                         dev->stats.rx_dropped++;
1418                         dev->stats.rx_errors++;
1419                         goto refill;
1420                 }
1421
1422                 /* Unmap the packet contents such that we can use the
1423                  * RSV from the 64 bytes descriptor when enabled and save
1424                  * a 32-bits register read
1425                  */
1426                 dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1427                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1428
1429                 if (!priv->desc_64b_en) {
1430                         dma_length_status =
1431                                 dmadesc_get_length_status(priv,
1432                                                           priv->rx_bds +
1433                                                           (priv->rx_read_ptr *
1434                                                            DMA_DESC_SIZE));
1435                 } else {
1436                         struct status_64 *status;
1437
1438                         status = (struct status_64 *)skb->data;
1439                         dma_length_status = status->length_status;
1440                 }
1441
1442                 /* DMA flags and length are still valid no matter how
1443                  * we got the Receive Status Vector (64B RSB or register)
1444                  */
1445                 dma_flag = dma_length_status & 0xffff;
1446                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1447
1448                 netif_dbg(priv, rx_status, dev,
1449                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1450                           __func__, p_index, priv->rx_c_index,
1451                           priv->rx_read_ptr, dma_length_status);
1452
1453                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1454                         netif_err(priv, rx_status, dev,
1455                                   "dropping fragmented packet!\n");
1456                         dev->stats.rx_dropped++;
1457                         dev->stats.rx_errors++;
1458                         dev_kfree_skb_any(cb->skb);
1459                         cb->skb = NULL;
1460                         goto refill;
1461                 }
1462                 /* report errors */
1463                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1464                                                 DMA_RX_OV |
1465                                                 DMA_RX_NO |
1466                                                 DMA_RX_LG |
1467                                                 DMA_RX_RXER))) {
1468                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1469                                   (unsigned int)dma_flag);
1470                         if (dma_flag & DMA_RX_CRC_ERROR)
1471                                 dev->stats.rx_crc_errors++;
1472                         if (dma_flag & DMA_RX_OV)
1473                                 dev->stats.rx_over_errors++;
1474                         if (dma_flag & DMA_RX_NO)
1475                                 dev->stats.rx_frame_errors++;
1476                         if (dma_flag & DMA_RX_LG)
1477                                 dev->stats.rx_length_errors++;
1478                         dev->stats.rx_dropped++;
1479                         dev->stats.rx_errors++;
1480
1481                         /* discard the packet and advance consumer index.*/
1482                         dev_kfree_skb_any(cb->skb);
1483                         cb->skb = NULL;
1484                         goto refill;
1485                 } /* error packet */
1486
1487                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1488                              priv->desc_rxchk_en;
1489
1490                 skb_put(skb, len);
1491                 if (priv->desc_64b_en) {
1492                         skb_pull(skb, 64);
1493                         len -= 64;
1494                 }
1495
1496                 if (likely(chksum_ok))
1497                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1498
1499                 /* remove hardware 2bytes added for IP alignment */
1500                 skb_pull(skb, 2);
1501                 len -= 2;
1502
1503                 if (priv->crc_fwd_en) {
1504                         skb_trim(skb, len - ETH_FCS_LEN);
1505                         len -= ETH_FCS_LEN;
1506                 }
1507
1508                 /*Finish setting up the received SKB and send it to the kernel*/
1509                 skb->protocol = eth_type_trans(skb, priv->dev);
1510                 dev->stats.rx_packets++;
1511                 dev->stats.rx_bytes += len;
1512                 if (dma_flag & DMA_RX_MULT)
1513                         dev->stats.multicast++;
1514
1515                 /* Notify kernel */
1516                 napi_gro_receive(&priv->napi, skb);
1517                 cb->skb = NULL;
1518                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1519
1520                 /* refill RX path on the current control block */
1521 refill:
1522                 err = bcmgenet_rx_refill(priv, cb);
1523                 if (err) {
1524                         priv->mib.alloc_rx_buff_failed++;
1525                         netif_err(priv, rx_err, dev, "Rx refill failed\n");
1526                 }
1527
1528                 rxpktprocessed++;
1529                 priv->rx_read_ptr++;
1530                 priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1531         }
1532
1533         return rxpktprocessed;
1534 }
1535
1536 /* Assign skb to RX DMA descriptor. */
1537 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1538 {
1539         struct enet_cb *cb;
1540         int ret = 0;
1541         int i;
1542
1543         netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1544
1545         /* loop here for each buffer needing assign */
1546         for (i = 0; i < priv->num_rx_bds; i++) {
1547                 cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1548                 if (cb->skb)
1549                         continue;
1550
1551                 ret = bcmgenet_rx_refill(priv, cb);
1552                 if (ret)
1553                         break;
1554         }
1555
1556         return ret;
1557 }
1558
1559 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1560 {
1561         struct enet_cb *cb;
1562         int i;
1563
1564         for (i = 0; i < priv->num_rx_bds; i++) {
1565                 cb = &priv->rx_cbs[i];
1566
1567                 if (dma_unmap_addr(cb, dma_addr)) {
1568                         dma_unmap_single(&priv->dev->dev,
1569                                          dma_unmap_addr(cb, dma_addr),
1570                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1571                         dma_unmap_addr_set(cb, dma_addr, 0);
1572                 }
1573
1574                 if (cb->skb)
1575                         bcmgenet_free_cb(cb);
1576         }
1577 }
1578
1579 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1580 {
1581         u32 reg;
1582
1583         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1584         if (enable)
1585                 reg |= mask;
1586         else
1587                 reg &= ~mask;
1588         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1589
1590         /* UniMAC stops on a packet boundary, wait for a full-size packet
1591          * to be processed
1592          */
1593         if (enable == 0)
1594                 usleep_range(1000, 2000);
1595 }
1596
1597 static int reset_umac(struct bcmgenet_priv *priv)
1598 {
1599         struct device *kdev = &priv->pdev->dev;
1600         unsigned int timeout = 0;
1601         u32 reg;
1602
1603         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1604         bcmgenet_rbuf_ctrl_set(priv, 0);
1605         udelay(10);
1606
1607         /* disable MAC while updating its registers */
1608         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1609
1610         /* issue soft reset, wait for it to complete */
1611         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1612         while (timeout++ < 1000) {
1613                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1614                 if (!(reg & CMD_SW_RESET))
1615                         return 0;
1616
1617                 udelay(1);
1618         }
1619
1620         if (timeout == 1000) {
1621                 dev_err(kdev,
1622                         "timeout waiting for MAC to come out of reset\n");
1623                 return -ETIMEDOUT;
1624         }
1625
1626         return 0;
1627 }
1628
1629 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1630 {
1631         /* Mask all interrupts.*/
1632         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1633         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1634         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1635         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1636         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1637         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1638 }
1639
1640 static int init_umac(struct bcmgenet_priv *priv)
1641 {
1642         struct device *kdev = &priv->pdev->dev;
1643         int ret;
1644         u32 reg, cpu_mask_clear;
1645         int index;
1646
1647         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1648
1649         ret = reset_umac(priv);
1650         if (ret)
1651                 return ret;
1652
1653         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1654         /* clear tx/rx counter */
1655         bcmgenet_umac_writel(priv,
1656                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1657                              UMAC_MIB_CTRL);
1658         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1659
1660         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1661
1662         /* init rx registers, enable ip header optimization */
1663         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1664         reg |= RBUF_ALIGN_2B;
1665         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1666
1667         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1668                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1669
1670         bcmgenet_intr_disable(priv);
1671
1672         cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_TXDMA_BDONE;
1673
1674         dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1675
1676         /* Monitor cable plug/unplugged event for internal PHY */
1677         if (phy_is_internal(priv->phydev)) {
1678                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1679         } else if (priv->ext_phy) {
1680                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1681         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1682                 reg = bcmgenet_bp_mc_get(priv);
1683                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1684
1685                 /* bp_mask: back pressure mask */
1686                 if (netif_is_multiqueue(priv->dev))
1687                         reg |= priv->hw_params->bp_in_mask;
1688                 else
1689                         reg &= ~priv->hw_params->bp_in_mask;
1690                 bcmgenet_bp_mc_set(priv, reg);
1691         }
1692
1693         /* Enable MDIO interrupts on GENET v3+ */
1694         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1695                 cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1696
1697         bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1698
1699         for (index = 0; index < priv->hw_params->tx_queues; index++)
1700                 bcmgenet_intrl2_1_writel(priv, (1 << index),
1701                                          INTRL2_CPU_MASK_CLEAR);
1702
1703         /* Enable rx/tx engine.*/
1704         dev_dbg(kdev, "done init umac\n");
1705
1706         return 0;
1707 }
1708
1709 /* Initialize a Tx ring along with corresponding hardware registers */
1710 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1711                                   unsigned int index, unsigned int size,
1712                                   unsigned int start_ptr, unsigned int end_ptr)
1713 {
1714         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1715         u32 words_per_bd = WORDS_PER_BD(priv);
1716         u32 flow_period_val = 0;
1717
1718         spin_lock_init(&ring->lock);
1719         ring->priv = priv;
1720         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1721         ring->index = index;
1722         if (index == DESC_INDEX) {
1723                 ring->queue = 0;
1724                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1725                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1726         } else {
1727                 ring->queue = index + 1;
1728                 ring->int_enable = bcmgenet_tx_ring_int_enable;
1729                 ring->int_disable = bcmgenet_tx_ring_int_disable;
1730         }
1731         ring->cbs = priv->tx_cbs + start_ptr;
1732         ring->size = size;
1733         ring->clean_ptr = start_ptr;
1734         ring->c_index = 0;
1735         ring->free_bds = size;
1736         ring->write_ptr = start_ptr;
1737         ring->cb_ptr = start_ptr;
1738         ring->end_ptr = end_ptr - 1;
1739         ring->prod_index = 0;
1740
1741         /* Set flow period for ring != 16 */
1742         if (index != DESC_INDEX)
1743                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1744
1745         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1746         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1747         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1748         /* Disable rate control for now */
1749         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1750                                   TDMA_FLOW_PERIOD);
1751         bcmgenet_tdma_ring_writel(priv, index,
1752                                   ((size << DMA_RING_SIZE_SHIFT) |
1753                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1754
1755         /* Set start and end address, read and write pointers */
1756         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1757                                   DMA_START_ADDR);
1758         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1759                                   TDMA_READ_PTR);
1760         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1761                                   TDMA_WRITE_PTR);
1762         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1763                                   DMA_END_ADDR);
1764
1765         napi_enable(&ring->napi);
1766 }
1767
1768 static void bcmgenet_fini_tx_ring(struct bcmgenet_priv *priv,
1769                                   unsigned int index)
1770 {
1771         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1772
1773         napi_disable(&ring->napi);
1774         netif_napi_del(&ring->napi);
1775 }
1776
1777 /* Initialize a RDMA ring */
1778 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1779                                  unsigned int index, unsigned int size)
1780 {
1781         u32 words_per_bd = WORDS_PER_BD(priv);
1782         int ret;
1783
1784         priv->num_rx_bds = TOTAL_DESC;
1785         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1786         priv->rx_bd_assign_ptr = priv->rx_bds;
1787         priv->rx_bd_assign_index = 0;
1788         priv->rx_c_index = 0;
1789         priv->rx_read_ptr = 0;
1790         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1791                                GFP_KERNEL);
1792         if (!priv->rx_cbs)
1793                 return -ENOMEM;
1794
1795         ret = bcmgenet_alloc_rx_buffers(priv);
1796         if (ret) {
1797                 kfree(priv->rx_cbs);
1798                 return ret;
1799         }
1800
1801         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1802         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1803         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1804         bcmgenet_rdma_ring_writel(priv, index,
1805                                   ((size << DMA_RING_SIZE_SHIFT) |
1806                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1807         bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1808         bcmgenet_rdma_ring_writel(priv, index,
1809                                   words_per_bd * size - 1, DMA_END_ADDR);
1810         bcmgenet_rdma_ring_writel(priv, index,
1811                                   (DMA_FC_THRESH_LO <<
1812                                    DMA_XOFF_THRESHOLD_SHIFT) |
1813                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1814         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1815
1816         return ret;
1817 }
1818
1819 /* Initialize Tx queues
1820  *
1821  * Queues 0-3 are priority-based, each one has 32 descriptors,
1822  * with queue 0 being the highest priority queue.
1823  *
1824  * Queue 16 is the default Tx queue with
1825  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1826  *
1827  * The transmit control block pool is then partitioned as follows:
1828  * - Tx queue 0 uses tx_cbs[0..31]
1829  * - Tx queue 1 uses tx_cbs[32..63]
1830  * - Tx queue 2 uses tx_cbs[64..95]
1831  * - Tx queue 3 uses tx_cbs[96..127]
1832  * - Tx queue 16 uses tx_cbs[128..255]
1833  */
1834 static void bcmgenet_init_tx_queues(struct net_device *dev)
1835 {
1836         struct bcmgenet_priv *priv = netdev_priv(dev);
1837         u32 i, dma_enable;
1838         u32 dma_ctrl, ring_cfg;
1839         u32 dma_priority[3] = {0, 0, 0};
1840
1841         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1842         dma_enable = dma_ctrl & DMA_EN;
1843         dma_ctrl &= ~DMA_EN;
1844         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1845
1846         dma_ctrl = 0;
1847         ring_cfg = 0;
1848
1849         /* Enable strict priority arbiter mode */
1850         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1851
1852         /* Initialize Tx priority queues */
1853         for (i = 0; i < priv->hw_params->tx_queues; i++) {
1854                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1855                                       i * priv->hw_params->tx_bds_per_q,
1856                                       (i + 1) * priv->hw_params->tx_bds_per_q);
1857                 ring_cfg |= (1 << i);
1858                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1859                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1860                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1861         }
1862
1863         /* Initialize Tx default queue 16 */
1864         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1865                               priv->hw_params->tx_queues *
1866                               priv->hw_params->tx_bds_per_q,
1867                               TOTAL_DESC);
1868         ring_cfg |= (1 << DESC_INDEX);
1869         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1870         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1871                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1872                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
1873
1874         /* Set Tx queue priorities */
1875         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1876         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1877         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1878
1879         /* Enable Tx queues */
1880         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
1881
1882         /* Enable Tx DMA */
1883         if (dma_enable)
1884                 dma_ctrl |= DMA_EN;
1885         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1886 }
1887
1888 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1889 {
1890         int ret = 0;
1891         int timeout = 0;
1892         u32 reg;
1893
1894         /* Disable TDMA to stop add more frames in TX DMA */
1895         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1896         reg &= ~DMA_EN;
1897         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1898
1899         /* Check TDMA status register to confirm TDMA is disabled */
1900         while (timeout++ < DMA_TIMEOUT_VAL) {
1901                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1902                 if (reg & DMA_DISABLED)
1903                         break;
1904
1905                 udelay(1);
1906         }
1907
1908         if (timeout == DMA_TIMEOUT_VAL) {
1909                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1910                 ret = -ETIMEDOUT;
1911         }
1912
1913         /* Wait 10ms for packet drain in both tx and rx dma */
1914         usleep_range(10000, 20000);
1915
1916         /* Disable RDMA */
1917         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1918         reg &= ~DMA_EN;
1919         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1920
1921         timeout = 0;
1922         /* Check RDMA status register to confirm RDMA is disabled */
1923         while (timeout++ < DMA_TIMEOUT_VAL) {
1924                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1925                 if (reg & DMA_DISABLED)
1926                         break;
1927
1928                 udelay(1);
1929         }
1930
1931         if (timeout == DMA_TIMEOUT_VAL) {
1932                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1933                 ret = -ETIMEDOUT;
1934         }
1935
1936         return ret;
1937 }
1938
1939 static void __bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1940 {
1941         int i;
1942
1943         /* disable DMA */
1944         bcmgenet_dma_teardown(priv);
1945
1946         for (i = 0; i < priv->num_tx_bds; i++) {
1947                 if (priv->tx_cbs[i].skb != NULL) {
1948                         dev_kfree_skb(priv->tx_cbs[i].skb);
1949                         priv->tx_cbs[i].skb = NULL;
1950                 }
1951         }
1952
1953         bcmgenet_free_rx_buffers(priv);
1954         kfree(priv->rx_cbs);
1955         kfree(priv->tx_cbs);
1956 }
1957
1958 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1959 {
1960         int i;
1961
1962         bcmgenet_fini_tx_ring(priv, DESC_INDEX);
1963
1964         for (i = 0; i < priv->hw_params->tx_queues; i++)
1965                 bcmgenet_fini_tx_ring(priv, i);
1966
1967         __bcmgenet_fini_dma(priv);
1968 }
1969
1970 /* init_edma: Initialize DMA control register */
1971 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1972 {
1973         int ret;
1974         unsigned int i;
1975         struct enet_cb *cb;
1976
1977         netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1978
1979         /* by default, enable ring 16 (descriptor based) */
1980         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1981         if (ret) {
1982                 netdev_err(priv->dev, "failed to initialize RX ring\n");
1983                 return ret;
1984         }
1985
1986         /* init rDma */
1987         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1988
1989         /* Init tDma */
1990         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1991
1992         /* Initialize common TX ring structures */
1993         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
1994         priv->num_tx_bds = TOTAL_DESC;
1995         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
1996                                GFP_KERNEL);
1997         if (!priv->tx_cbs) {
1998                 __bcmgenet_fini_dma(priv);
1999                 return -ENOMEM;
2000         }
2001
2002         for (i = 0; i < priv->num_tx_bds; i++) {
2003                 cb = priv->tx_cbs + i;
2004                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2005         }
2006
2007         /* Initialize Tx queues */
2008         bcmgenet_init_tx_queues(priv->dev);
2009
2010         return 0;
2011 }
2012
2013 /* NAPI polling method*/
2014 static int bcmgenet_poll(struct napi_struct *napi, int budget)
2015 {
2016         struct bcmgenet_priv *priv = container_of(napi,
2017                         struct bcmgenet_priv, napi);
2018         unsigned int work_done;
2019
2020         work_done = bcmgenet_desc_rx(priv, budget);
2021
2022         /* Advancing our consumer index*/
2023         priv->rx_c_index += work_done;
2024         priv->rx_c_index &= DMA_C_INDEX_MASK;
2025         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
2026                                   priv->rx_c_index, RDMA_CONS_INDEX);
2027         if (work_done < budget) {
2028                 napi_complete(napi);
2029                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2030                                          INTRL2_CPU_MASK_CLEAR);
2031         }
2032
2033         return work_done;
2034 }
2035
2036 /* Interrupt bottom half */
2037 static void bcmgenet_irq_task(struct work_struct *work)
2038 {
2039         struct bcmgenet_priv *priv = container_of(
2040                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2041
2042         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2043
2044         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2045                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2046                 netif_dbg(priv, wol, priv->dev,
2047                           "magic packet detected, waking up\n");
2048                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2049         }
2050
2051         /* Link UP/DOWN event */
2052         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2053             (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2054                 phy_mac_interrupt(priv->phydev,
2055                                   priv->irq0_stat & UMAC_IRQ_LINK_UP);
2056                 priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2057         }
2058 }
2059
2060 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2061 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2062 {
2063         struct bcmgenet_priv *priv = dev_id;
2064         struct bcmgenet_tx_ring *ring;
2065         unsigned int index;
2066
2067         /* Save irq status for bottom-half processing. */
2068         priv->irq1_stat =
2069                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2070                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2071         /* clear interrupts */
2072         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2073
2074         netif_dbg(priv, intr, priv->dev,
2075                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2076
2077         /* Check the MBDONE interrupts.
2078          * packet is done, reclaim descriptors
2079          */
2080         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2081                 if (!(priv->irq1_stat & BIT(index)))
2082                         continue;
2083
2084                 ring = &priv->tx_rings[index];
2085
2086                 if (likely(napi_schedule_prep(&ring->napi))) {
2087                         ring->int_disable(priv, ring);
2088                         __napi_schedule(&ring->napi);
2089                 }
2090         }
2091
2092         return IRQ_HANDLED;
2093 }
2094
2095 /* bcmgenet_isr0: Handle various interrupts. */
2096 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2097 {
2098         struct bcmgenet_priv *priv = dev_id;
2099
2100         /* Save irq status for bottom-half processing. */
2101         priv->irq0_stat =
2102                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2103                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2104         /* clear interrupts */
2105         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2106
2107         netif_dbg(priv, intr, priv->dev,
2108                   "IRQ=0x%x\n", priv->irq0_stat);
2109
2110         if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2111                 /* We use NAPI(software interrupt throttling, if
2112                  * Rx Descriptor throttling is not used.
2113                  * Disable interrupt, will be enabled in the poll method.
2114                  */
2115                 if (likely(napi_schedule_prep(&priv->napi))) {
2116                         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2117                                                  INTRL2_CPU_MASK_SET);
2118                         __napi_schedule(&priv->napi);
2119                 }
2120         }
2121         if (priv->irq0_stat &
2122                         (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2123                 struct bcmgenet_tx_ring *ring = &priv->tx_rings[DESC_INDEX];
2124
2125                 if (likely(napi_schedule_prep(&ring->napi))) {
2126                         ring->int_disable(priv, ring);
2127                         __napi_schedule(&ring->napi);
2128                 }
2129         }
2130         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2131                                 UMAC_IRQ_PHY_DET_F |
2132                                 UMAC_IRQ_LINK_UP |
2133                                 UMAC_IRQ_LINK_DOWN |
2134                                 UMAC_IRQ_HFB_SM |
2135                                 UMAC_IRQ_HFB_MM |
2136                                 UMAC_IRQ_MPD_R)) {
2137                 /* all other interested interrupts handled in bottom half */
2138                 schedule_work(&priv->bcmgenet_irq_work);
2139         }
2140
2141         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2142             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2143                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2144                 wake_up(&priv->wq);
2145         }
2146
2147         return IRQ_HANDLED;
2148 }
2149
2150 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2151 {
2152         struct bcmgenet_priv *priv = dev_id;
2153
2154         pm_wakeup_event(&priv->pdev->dev, 0);
2155
2156         return IRQ_HANDLED;
2157 }
2158
2159 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2160 {
2161         u32 reg;
2162
2163         reg = bcmgenet_rbuf_ctrl_get(priv);
2164         reg |= BIT(1);
2165         bcmgenet_rbuf_ctrl_set(priv, reg);
2166         udelay(10);
2167
2168         reg &= ~BIT(1);
2169         bcmgenet_rbuf_ctrl_set(priv, reg);
2170         udelay(10);
2171 }
2172
2173 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2174                                  unsigned char *addr)
2175 {
2176         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2177                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2178         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2179 }
2180
2181 /* Returns a reusable dma control register value */
2182 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2183 {
2184         u32 reg;
2185         u32 dma_ctrl;
2186
2187         /* disable DMA */
2188         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2189         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2190         reg &= ~dma_ctrl;
2191         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2192
2193         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2194         reg &= ~dma_ctrl;
2195         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2196
2197         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2198         udelay(10);
2199         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2200
2201         return dma_ctrl;
2202 }
2203
2204 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2205 {
2206         u32 reg;
2207
2208         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2209         reg |= dma_ctrl;
2210         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2211
2212         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2213         reg |= dma_ctrl;
2214         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2215 }
2216
2217 static void bcmgenet_netif_start(struct net_device *dev)
2218 {
2219         struct bcmgenet_priv *priv = netdev_priv(dev);
2220
2221         /* Start the network engine */
2222         napi_enable(&priv->napi);
2223
2224         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2225
2226         if (phy_is_internal(priv->phydev))
2227                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2228
2229         netif_tx_start_all_queues(dev);
2230
2231         phy_start(priv->phydev);
2232 }
2233
2234 static int bcmgenet_open(struct net_device *dev)
2235 {
2236         struct bcmgenet_priv *priv = netdev_priv(dev);
2237         unsigned long dma_ctrl;
2238         u32 reg;
2239         int ret;
2240
2241         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2242
2243         /* Turn on the clock */
2244         if (!IS_ERR(priv->clk))
2245                 clk_prepare_enable(priv->clk);
2246
2247         /* take MAC out of reset */
2248         bcmgenet_umac_reset(priv);
2249
2250         ret = init_umac(priv);
2251         if (ret)
2252                 goto err_clk_disable;
2253
2254         /* disable ethernet MAC while updating its registers */
2255         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2256
2257         /* Make sure we reflect the value of CRC_CMD_FWD */
2258         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2259         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2260
2261         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2262
2263         if (phy_is_internal(priv->phydev)) {
2264                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2265                 reg |= EXT_ENERGY_DET_MASK;
2266                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2267         }
2268
2269         /* Disable RX/TX DMA and flush TX queues */
2270         dma_ctrl = bcmgenet_dma_disable(priv);
2271
2272         /* Reinitialize TDMA and RDMA and SW housekeeping */
2273         ret = bcmgenet_init_dma(priv);
2274         if (ret) {
2275                 netdev_err(dev, "failed to initialize DMA\n");
2276                 goto err_fini_dma;
2277         }
2278
2279         /* Always enable ring 16 - descriptor ring */
2280         bcmgenet_enable_dma(priv, dma_ctrl);
2281
2282         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2283                           dev->name, priv);
2284         if (ret < 0) {
2285                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2286                 goto err_fini_dma;
2287         }
2288
2289         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2290                           dev->name, priv);
2291         if (ret < 0) {
2292                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2293                 goto err_irq0;
2294         }
2295
2296         /* Re-configure the port multiplexer towards the PHY device */
2297         bcmgenet_mii_config(priv->dev, false);
2298
2299         phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2300                            priv->phy_interface);
2301
2302         bcmgenet_netif_start(dev);
2303
2304         return 0;
2305
2306 err_irq0:
2307         free_irq(priv->irq0, dev);
2308 err_fini_dma:
2309         bcmgenet_fini_dma(priv);
2310 err_clk_disable:
2311         if (!IS_ERR(priv->clk))
2312                 clk_disable_unprepare(priv->clk);
2313         return ret;
2314 }
2315
2316 static void bcmgenet_netif_stop(struct net_device *dev)
2317 {
2318         struct bcmgenet_priv *priv = netdev_priv(dev);
2319
2320         netif_tx_stop_all_queues(dev);
2321         napi_disable(&priv->napi);
2322         phy_stop(priv->phydev);
2323
2324         bcmgenet_intr_disable(priv);
2325
2326         /* Wait for pending work items to complete. Since interrupts are
2327          * disabled no new work will be scheduled.
2328          */
2329         cancel_work_sync(&priv->bcmgenet_irq_work);
2330
2331         priv->old_link = -1;
2332         priv->old_speed = -1;
2333         priv->old_duplex = -1;
2334         priv->old_pause = -1;
2335 }
2336
2337 static int bcmgenet_close(struct net_device *dev)
2338 {
2339         struct bcmgenet_priv *priv = netdev_priv(dev);
2340         int ret;
2341
2342         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2343
2344         bcmgenet_netif_stop(dev);
2345
2346         /* Really kill the PHY state machine and disconnect from it */
2347         phy_disconnect(priv->phydev);
2348
2349         /* Disable MAC receive */
2350         umac_enable_set(priv, CMD_RX_EN, false);
2351
2352         ret = bcmgenet_dma_teardown(priv);
2353         if (ret)
2354                 return ret;
2355
2356         /* Disable MAC transmit. TX DMA disabled have to done before this */
2357         umac_enable_set(priv, CMD_TX_EN, false);
2358
2359         /* tx reclaim */
2360         bcmgenet_tx_reclaim_all(dev);
2361         bcmgenet_fini_dma(priv);
2362
2363         free_irq(priv->irq0, priv);
2364         free_irq(priv->irq1, priv);
2365
2366         if (phy_is_internal(priv->phydev))
2367                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2368
2369         if (!IS_ERR(priv->clk))
2370                 clk_disable_unprepare(priv->clk);
2371
2372         return 0;
2373 }
2374
2375 static void bcmgenet_timeout(struct net_device *dev)
2376 {
2377         struct bcmgenet_priv *priv = netdev_priv(dev);
2378
2379         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2380
2381         dev->trans_start = jiffies;
2382
2383         dev->stats.tx_errors++;
2384
2385         netif_tx_wake_all_queues(dev);
2386 }
2387
2388 #define MAX_MC_COUNT    16
2389
2390 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2391                                          unsigned char *addr,
2392                                          int *i,
2393                                          int *mc)
2394 {
2395         u32 reg;
2396
2397         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2398                              UMAC_MDF_ADDR + (*i * 4));
2399         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2400                              addr[4] << 8 | addr[5],
2401                              UMAC_MDF_ADDR + ((*i + 1) * 4));
2402         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2403         reg |= (1 << (MAX_MC_COUNT - *mc));
2404         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2405         *i += 2;
2406         (*mc)++;
2407 }
2408
2409 static void bcmgenet_set_rx_mode(struct net_device *dev)
2410 {
2411         struct bcmgenet_priv *priv = netdev_priv(dev);
2412         struct netdev_hw_addr *ha;
2413         int i, mc;
2414         u32 reg;
2415
2416         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2417
2418         /* Promiscuous mode */
2419         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2420         if (dev->flags & IFF_PROMISC) {
2421                 reg |= CMD_PROMISC;
2422                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2423                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2424                 return;
2425         } else {
2426                 reg &= ~CMD_PROMISC;
2427                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2428         }
2429
2430         /* UniMac doesn't support ALLMULTI */
2431         if (dev->flags & IFF_ALLMULTI) {
2432                 netdev_warn(dev, "ALLMULTI is not supported\n");
2433                 return;
2434         }
2435
2436         /* update MDF filter */
2437         i = 0;
2438         mc = 0;
2439         /* Broadcast */
2440         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2441         /* my own address.*/
2442         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2443         /* Unicast list*/
2444         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2445                 return;
2446
2447         if (!netdev_uc_empty(dev))
2448                 netdev_for_each_uc_addr(ha, dev)
2449                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2450         /* Multicast */
2451         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2452                 return;
2453
2454         netdev_for_each_mc_addr(ha, dev)
2455                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2456 }
2457
2458 /* Set the hardware MAC address. */
2459 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2460 {
2461         struct sockaddr *addr = p;
2462
2463         /* Setting the MAC address at the hardware level is not possible
2464          * without disabling the UniMAC RX/TX enable bits.
2465          */
2466         if (netif_running(dev))
2467                 return -EBUSY;
2468
2469         ether_addr_copy(dev->dev_addr, addr->sa_data);
2470
2471         return 0;
2472 }
2473
2474 static const struct net_device_ops bcmgenet_netdev_ops = {
2475         .ndo_open               = bcmgenet_open,
2476         .ndo_stop               = bcmgenet_close,
2477         .ndo_start_xmit         = bcmgenet_xmit,
2478         .ndo_tx_timeout         = bcmgenet_timeout,
2479         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
2480         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
2481         .ndo_do_ioctl           = bcmgenet_ioctl,
2482         .ndo_set_features       = bcmgenet_set_features,
2483 };
2484
2485 /* Array of GENET hardware parameters/characteristics */
2486 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2487         [GENET_V1] = {
2488                 .tx_queues = 0,
2489                 .tx_bds_per_q = 0,
2490                 .rx_queues = 0,
2491                 .bp_in_en_shift = 16,
2492                 .bp_in_mask = 0xffff,
2493                 .hfb_filter_cnt = 16,
2494                 .qtag_mask = 0x1F,
2495                 .hfb_offset = 0x1000,
2496                 .rdma_offset = 0x2000,
2497                 .tdma_offset = 0x3000,
2498                 .words_per_bd = 2,
2499         },
2500         [GENET_V2] = {
2501                 .tx_queues = 4,
2502                 .tx_bds_per_q = 32,
2503                 .rx_queues = 0,
2504                 .bp_in_en_shift = 16,
2505                 .bp_in_mask = 0xffff,
2506                 .hfb_filter_cnt = 16,
2507                 .qtag_mask = 0x1F,
2508                 .tbuf_offset = 0x0600,
2509                 .hfb_offset = 0x1000,
2510                 .hfb_reg_offset = 0x2000,
2511                 .rdma_offset = 0x3000,
2512                 .tdma_offset = 0x4000,
2513                 .words_per_bd = 2,
2514                 .flags = GENET_HAS_EXT,
2515         },
2516         [GENET_V3] = {
2517                 .tx_queues = 4,
2518                 .tx_bds_per_q = 32,
2519                 .rx_queues = 0,
2520                 .bp_in_en_shift = 17,
2521                 .bp_in_mask = 0x1ffff,
2522                 .hfb_filter_cnt = 48,
2523                 .qtag_mask = 0x3F,
2524                 .tbuf_offset = 0x0600,
2525                 .hfb_offset = 0x8000,
2526                 .hfb_reg_offset = 0xfc00,
2527                 .rdma_offset = 0x10000,
2528                 .tdma_offset = 0x11000,
2529                 .words_per_bd = 2,
2530                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2531         },
2532         [GENET_V4] = {
2533                 .tx_queues = 4,
2534                 .tx_bds_per_q = 32,
2535                 .rx_queues = 0,
2536                 .bp_in_en_shift = 17,
2537                 .bp_in_mask = 0x1ffff,
2538                 .hfb_filter_cnt = 48,
2539                 .qtag_mask = 0x3F,
2540                 .tbuf_offset = 0x0600,
2541                 .hfb_offset = 0x8000,
2542                 .hfb_reg_offset = 0xfc00,
2543                 .rdma_offset = 0x2000,
2544                 .tdma_offset = 0x4000,
2545                 .words_per_bd = 3,
2546                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2547         },
2548 };
2549
2550 /* Infer hardware parameters from the detected GENET version */
2551 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2552 {
2553         struct bcmgenet_hw_params *params;
2554         u32 reg;
2555         u8 major;
2556         u16 gphy_rev;
2557
2558         if (GENET_IS_V4(priv)) {
2559                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2560                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
2561                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2562                 priv->version = GENET_V4;
2563         } else if (GENET_IS_V3(priv)) {
2564                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2565                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2566                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2567                 priv->version = GENET_V3;
2568         } else if (GENET_IS_V2(priv)) {
2569                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2570                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2571                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2572                 priv->version = GENET_V2;
2573         } else if (GENET_IS_V1(priv)) {
2574                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2575                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2576                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2577                 priv->version = GENET_V1;
2578         }
2579
2580         /* enum genet_version starts at 1 */
2581         priv->hw_params = &bcmgenet_hw_params[priv->version];
2582         params = priv->hw_params;
2583
2584         /* Read GENET HW version */
2585         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2586         major = (reg >> 24 & 0x0f);
2587         if (major == 5)
2588                 major = 4;
2589         else if (major == 0)
2590                 major = 1;
2591         if (major != priv->version) {
2592                 dev_err(&priv->pdev->dev,
2593                         "GENET version mismatch, got: %d, configured for: %d\n",
2594                         major, priv->version);
2595         }
2596
2597         /* Print the GENET core version */
2598         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2599                  major, (reg >> 16) & 0x0f, reg & 0xffff);
2600
2601         /* Store the integrated PHY revision for the MDIO probing function
2602          * to pass this information to the PHY driver. The PHY driver expects
2603          * to find the PHY major revision in bits 15:8 while the GENET register
2604          * stores that information in bits 7:0, account for that.
2605          *
2606          * On newer chips, starting with PHY revision G0, a new scheme is
2607          * deployed similar to the Starfighter 2 switch with GPHY major
2608          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2609          * is reserved as well as special value 0x01ff, we have a small
2610          * heuristic to check for the new GPHY revision and re-arrange things
2611          * so the GPHY driver is happy.
2612          */
2613         gphy_rev = reg & 0xffff;
2614
2615         /* This is the good old scheme, just GPHY major, no minor nor patch */
2616         if ((gphy_rev & 0xf0) != 0)
2617                 priv->gphy_rev = gphy_rev << 8;
2618
2619         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2620         else if ((gphy_rev & 0xff00) != 0)
2621                 priv->gphy_rev = gphy_rev;
2622
2623         /* This is reserved so should require special treatment */
2624         else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2625                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2626                 return;
2627         }
2628
2629 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2630         if (!(params->flags & GENET_HAS_40BITS))
2631                 pr_warn("GENET does not support 40-bits PA\n");
2632 #endif
2633
2634         pr_debug("Configuration for version: %d\n"
2635                 "TXq: %1d, TXqBDs: %1d, RXq: %1d\n"
2636                 "BP << en: %2d, BP msk: 0x%05x\n"
2637                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
2638                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2639                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
2640                 "Words/BD: %d\n",
2641                 priv->version,
2642                 params->tx_queues, params->tx_bds_per_q,
2643                 params->rx_queues,
2644                 params->bp_in_en_shift, params->bp_in_mask,
2645                 params->hfb_filter_cnt, params->qtag_mask,
2646                 params->tbuf_offset, params->hfb_offset,
2647                 params->hfb_reg_offset,
2648                 params->rdma_offset, params->tdma_offset,
2649                 params->words_per_bd);
2650 }
2651
2652 static const struct of_device_id bcmgenet_match[] = {
2653         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2654         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2655         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2656         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2657         { },
2658 };
2659
2660 static int bcmgenet_probe(struct platform_device *pdev)
2661 {
2662         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2663         struct device_node *dn = pdev->dev.of_node;
2664         const struct of_device_id *of_id = NULL;
2665         struct bcmgenet_priv *priv;
2666         struct net_device *dev;
2667         const void *macaddr;
2668         struct resource *r;
2669         int err = -EIO;
2670
2671         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2672         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2673         if (!dev) {
2674                 dev_err(&pdev->dev, "can't allocate net device\n");
2675                 return -ENOMEM;
2676         }
2677
2678         if (dn) {
2679                 of_id = of_match_node(bcmgenet_match, dn);
2680                 if (!of_id)
2681                         return -EINVAL;
2682         }
2683
2684         priv = netdev_priv(dev);
2685         priv->irq0 = platform_get_irq(pdev, 0);
2686         priv->irq1 = platform_get_irq(pdev, 1);
2687         priv->wol_irq = platform_get_irq(pdev, 2);
2688         if (!priv->irq0 || !priv->irq1) {
2689                 dev_err(&pdev->dev, "can't find IRQs\n");
2690                 err = -EINVAL;
2691                 goto err;
2692         }
2693
2694         if (dn) {
2695                 macaddr = of_get_mac_address(dn);
2696                 if (!macaddr) {
2697                         dev_err(&pdev->dev, "can't find MAC address\n");
2698                         err = -EINVAL;
2699                         goto err;
2700                 }
2701         } else {
2702                 macaddr = pd->mac_address;
2703         }
2704
2705         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2706         priv->base = devm_ioremap_resource(&pdev->dev, r);
2707         if (IS_ERR(priv->base)) {
2708                 err = PTR_ERR(priv->base);
2709                 goto err;
2710         }
2711
2712         SET_NETDEV_DEV(dev, &pdev->dev);
2713         dev_set_drvdata(&pdev->dev, dev);
2714         ether_addr_copy(dev->dev_addr, macaddr);
2715         dev->watchdog_timeo = 2 * HZ;
2716         dev->ethtool_ops = &bcmgenet_ethtool_ops;
2717         dev->netdev_ops = &bcmgenet_netdev_ops;
2718         netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2719
2720         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2721
2722         /* Set hardware features */
2723         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2724                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2725
2726         /* Request the WOL interrupt and advertise suspend if available */
2727         priv->wol_irq_disabled = true;
2728         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2729                                dev->name, priv);
2730         if (!err)
2731                 device_set_wakeup_capable(&pdev->dev, 1);
2732
2733         /* Set the needed headroom to account for any possible
2734          * features enabling/disabling at runtime
2735          */
2736         dev->needed_headroom += 64;
2737
2738         netdev_boot_setup_check(dev);
2739
2740         priv->dev = dev;
2741         priv->pdev = pdev;
2742         if (of_id)
2743                 priv->version = (enum bcmgenet_version)of_id->data;
2744         else
2745                 priv->version = pd->genet_version;
2746
2747         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2748         if (IS_ERR(priv->clk))
2749                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2750
2751         if (!IS_ERR(priv->clk))
2752                 clk_prepare_enable(priv->clk);
2753
2754         bcmgenet_set_hw_params(priv);
2755
2756         /* Mii wait queue */
2757         init_waitqueue_head(&priv->wq);
2758         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2759         priv->rx_buf_len = RX_BUF_LENGTH;
2760         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2761
2762         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2763         if (IS_ERR(priv->clk_wol))
2764                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2765
2766         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2767         if (IS_ERR(priv->clk_eee)) {
2768                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2769                 priv->clk_eee = NULL;
2770         }
2771
2772         err = reset_umac(priv);
2773         if (err)
2774                 goto err_clk_disable;
2775
2776         err = bcmgenet_mii_init(dev);
2777         if (err)
2778                 goto err_clk_disable;
2779
2780         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2781          * just the ring 16 descriptor based TX
2782          */
2783         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2784         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2785
2786         /* libphy will determine the link state */
2787         netif_carrier_off(dev);
2788
2789         /* Turn off the main clock, WOL clock is handled separately */
2790         if (!IS_ERR(priv->clk))
2791                 clk_disable_unprepare(priv->clk);
2792
2793         err = register_netdev(dev);
2794         if (err)
2795                 goto err;
2796
2797         return err;
2798
2799 err_clk_disable:
2800         if (!IS_ERR(priv->clk))
2801                 clk_disable_unprepare(priv->clk);
2802 err:
2803         free_netdev(dev);
2804         return err;
2805 }
2806
2807 static int bcmgenet_remove(struct platform_device *pdev)
2808 {
2809         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2810
2811         dev_set_drvdata(&pdev->dev, NULL);
2812         unregister_netdev(priv->dev);
2813         bcmgenet_mii_exit(priv->dev);
2814         free_netdev(priv->dev);
2815
2816         return 0;
2817 }
2818
2819 #ifdef CONFIG_PM_SLEEP
2820 static int bcmgenet_suspend(struct device *d)
2821 {
2822         struct net_device *dev = dev_get_drvdata(d);
2823         struct bcmgenet_priv *priv = netdev_priv(dev);
2824         int ret;
2825
2826         if (!netif_running(dev))
2827                 return 0;
2828
2829         bcmgenet_netif_stop(dev);
2830
2831         phy_suspend(priv->phydev);
2832
2833         netif_device_detach(dev);
2834
2835         /* Disable MAC receive */
2836         umac_enable_set(priv, CMD_RX_EN, false);
2837
2838         ret = bcmgenet_dma_teardown(priv);
2839         if (ret)
2840                 return ret;
2841
2842         /* Disable MAC transmit. TX DMA disabled have to done before this */
2843         umac_enable_set(priv, CMD_TX_EN, false);
2844
2845         /* tx reclaim */
2846         bcmgenet_tx_reclaim_all(dev);
2847         bcmgenet_fini_dma(priv);
2848
2849         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
2850         if (device_may_wakeup(d) && priv->wolopts) {
2851                 bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2852                 clk_prepare_enable(priv->clk_wol);
2853         }
2854
2855         /* Turn off the clocks */
2856         clk_disable_unprepare(priv->clk);
2857
2858         return 0;
2859 }
2860
2861 static int bcmgenet_resume(struct device *d)
2862 {
2863         struct net_device *dev = dev_get_drvdata(d);
2864         struct bcmgenet_priv *priv = netdev_priv(dev);
2865         unsigned long dma_ctrl;
2866         int ret;
2867         u32 reg;
2868
2869         if (!netif_running(dev))
2870                 return 0;
2871
2872         /* Turn on the clock */
2873         ret = clk_prepare_enable(priv->clk);
2874         if (ret)
2875                 return ret;
2876
2877         bcmgenet_umac_reset(priv);
2878
2879         ret = init_umac(priv);
2880         if (ret)
2881                 goto out_clk_disable;
2882
2883         /* From WOL-enabled suspend, switch to regular clock */
2884         if (priv->wolopts)
2885                 clk_disable_unprepare(priv->clk_wol);
2886
2887         phy_init_hw(priv->phydev);
2888         /* Speed settings must be restored */
2889         bcmgenet_mii_config(priv->dev, false);
2890
2891         /* disable ethernet MAC while updating its registers */
2892         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2893
2894         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2895
2896         if (phy_is_internal(priv->phydev)) {
2897                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2898                 reg |= EXT_ENERGY_DET_MASK;
2899                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2900         }
2901
2902         if (priv->wolopts)
2903                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2904
2905         /* Disable RX/TX DMA and flush TX queues */
2906         dma_ctrl = bcmgenet_dma_disable(priv);
2907
2908         /* Reinitialize TDMA and RDMA and SW housekeeping */
2909         ret = bcmgenet_init_dma(priv);
2910         if (ret) {
2911                 netdev_err(dev, "failed to initialize DMA\n");
2912                 goto out_clk_disable;
2913         }
2914
2915         /* Always enable ring 16 - descriptor ring */
2916         bcmgenet_enable_dma(priv, dma_ctrl);
2917
2918         netif_device_attach(dev);
2919
2920         phy_resume(priv->phydev);
2921
2922         if (priv->eee.eee_enabled)
2923                 bcmgenet_eee_enable_set(dev, true);
2924
2925         bcmgenet_netif_start(dev);
2926
2927         return 0;
2928
2929 out_clk_disable:
2930         clk_disable_unprepare(priv->clk);
2931         return ret;
2932 }
2933 #endif /* CONFIG_PM_SLEEP */
2934
2935 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2936
2937 static struct platform_driver bcmgenet_driver = {
2938         .probe  = bcmgenet_probe,
2939         .remove = bcmgenet_remove,
2940         .driver = {
2941                 .name   = "bcmgenet",
2942                 .of_match_table = bcmgenet_match,
2943                 .pm     = &bcmgenet_pm_ops,
2944         },
2945 };
2946 module_platform_driver(bcmgenet_driver);
2947
2948 MODULE_AUTHOR("Broadcom Corporation");
2949 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2950 MODULE_ALIAS("platform:bcmgenet");
2951 MODULE_LICENSE("GPL");