]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/sb1250-mac.c
Merge remote-tracking branch 'regmap/for-next'
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18  *
19  *
20  * This driver is designed for the Broadcom SiByte SOC built-in
21  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22  *
23  * Updated to the driver model and the PHY abstraction layer
24  * by Maciej W. Rozycki.
25  */
26
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 #include <linux/prefetch.h>
47
48 #include <asm/cache.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>      /* Processor type for cache alignment. */
51
52 /* Operational parameters that usually are not changed. */
53
54 #define CONFIG_SBMAC_COALESCE
55
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT  (2*HZ)
58
59
60 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
62
63 /* A few user-configurable values which may be modified when a driver
64    module is loaded. */
65
66 /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int debug = 1;
68 module_param(debug, int, S_IRUGO);
69 MODULE_PARM_DESC(debug, "Debug messages");
70
71 #ifdef CONFIG_SBMAC_COALESCE
72 static int int_pktcnt_tx = 255;
73 module_param(int_pktcnt_tx, int, S_IRUGO);
74 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
75
76 static int int_timeout_tx = 255;
77 module_param(int_timeout_tx, int, S_IRUGO);
78 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
79
80 static int int_pktcnt_rx = 64;
81 module_param(int_pktcnt_rx, int, S_IRUGO);
82 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
83
84 static int int_timeout_rx = 64;
85 module_param(int_timeout_rx, int, S_IRUGO);
86 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87 #endif
88
89 #include <asm/sibyte/board.h>
90 #include <asm/sibyte/sb1250.h>
91 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
92 #include <asm/sibyte/bcm1480_regs.h>
93 #include <asm/sibyte/bcm1480_int.h>
94 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
95 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96 #include <asm/sibyte/sb1250_regs.h>
97 #include <asm/sibyte/sb1250_int.h>
98 #else
99 #error invalid SiByte MAC configuration
100 #endif
101 #include <asm/sibyte/sb1250_scd.h>
102 #include <asm/sibyte/sb1250_mac.h>
103 #include <asm/sibyte/sb1250_dma.h>
104
105 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
107 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
109 #else
110 #error invalid SiByte MAC configuration
111 #endif
112
113 #ifdef K_INT_PHY
114 #define SBMAC_PHY_INT                   K_INT_PHY
115 #else
116 #define SBMAC_PHY_INT                   PHY_POLL
117 #endif
118
119 /**********************************************************************
120  *  Simple types
121  ********************************************************************* */
122
123 enum sbmac_speed {
124         sbmac_speed_none = 0,
125         sbmac_speed_10 = SPEED_10,
126         sbmac_speed_100 = SPEED_100,
127         sbmac_speed_1000 = SPEED_1000,
128 };
129
130 enum sbmac_duplex {
131         sbmac_duplex_none = -1,
132         sbmac_duplex_half = DUPLEX_HALF,
133         sbmac_duplex_full = DUPLEX_FULL,
134 };
135
136 enum sbmac_fc {
137         sbmac_fc_none,
138         sbmac_fc_disabled,
139         sbmac_fc_frame,
140         sbmac_fc_collision,
141         sbmac_fc_carrier,
142 };
143
144 enum sbmac_state {
145         sbmac_state_uninit,
146         sbmac_state_off,
147         sbmac_state_on,
148         sbmac_state_broken,
149 };
150
151
152 /**********************************************************************
153  *  Macros
154  ********************************************************************* */
155
156
157 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158                           (d)->sbdma_dscrtable : (d)->f+1)
159
160
161 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
162
163 #define SBMAC_MAX_TXDESCR       256
164 #define SBMAC_MAX_RXDESCR       256
165
166 #define ENET_PACKET_SIZE        1518
167 /*#define ENET_PACKET_SIZE      9216 */
168
169 /**********************************************************************
170  *  DMA Descriptor structure
171  ********************************************************************* */
172
173 struct sbdmadscr {
174         uint64_t  dscr_a;
175         uint64_t  dscr_b;
176 };
177
178 /**********************************************************************
179  *  DMA Controller structure
180  ********************************************************************* */
181
182 struct sbmacdma {
183
184         /*
185          * This stuff is used to identify the channel and the registers
186          * associated with it.
187          */
188         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
189                                                    MAC */
190         int                     sbdma_channel;  /* channel number */
191         int                     sbdma_txdir;    /* direction (1=transmit) */
192         int                     sbdma_maxdescr; /* total # of descriptors
193                                                    in ring */
194 #ifdef CONFIG_SBMAC_COALESCE
195         int                     sbdma_int_pktcnt;
196                                                 /* # descriptors rx/tx
197                                                    before interrupt */
198         int                     sbdma_int_timeout;
199                                                 /* # usec rx/tx interrupt */
200 #endif
201         void __iomem            *sbdma_config0; /* DMA config register 0 */
202         void __iomem            *sbdma_config1; /* DMA config register 1 */
203         void __iomem            *sbdma_dscrbase;
204                                                 /* descriptor base address */
205         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
206         void __iomem            *sbdma_curdscr; /* current descriptor
207                                                    address */
208         void __iomem            *sbdma_oodpktlost;
209                                                 /* pkt drop (rx only) */
210
211         /*
212          * This stuff is for maintenance of the ring
213          */
214         void                    *sbdma_dscrtable_unaligned;
215         struct sbdmadscr        *sbdma_dscrtable;
216                                                 /* base of descriptor table */
217         struct sbdmadscr        *sbdma_dscrtable_end;
218                                                 /* end of descriptor table */
219         struct sk_buff          **sbdma_ctxtable;
220                                                 /* context table, one
221                                                    per descr */
222         dma_addr_t              sbdma_dscrtable_phys;
223                                                 /* and also the phys addr */
224         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
225         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
226                                                    to remove */
227 };
228
229
230 /**********************************************************************
231  *  Ethernet softc structure
232  ********************************************************************* */
233
234 struct sbmac_softc {
235
236         /*
237          * Linux-specific things
238          */
239         struct net_device       *sbm_dev;       /* pointer to linux device */
240         struct napi_struct      napi;
241         struct phy_device       *phy_dev;       /* the associated PHY device */
242         struct mii_bus          *mii_bus;       /* the MII bus */
243         int                     phy_irq[PHY_MAX_ADDR];
244         spinlock_t              sbm_lock;       /* spin lock */
245         int                     sbm_devflags;   /* current device flags */
246
247         /*
248          * Controller-specific things
249          */
250         void __iomem            *sbm_base;      /* MAC's base address */
251         enum sbmac_state        sbm_state;      /* current state */
252
253         void __iomem            *sbm_macenable; /* MAC Enable Register */
254         void __iomem            *sbm_maccfg;    /* MAC Config Register */
255         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
256         void __iomem            *sbm_framecfg;  /* Frame Config Register */
257         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
258         void __iomem            *sbm_isr;       /* Interrupt Status Register */
259         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
260         void __iomem            *sbm_mdio;      /* MDIO Register */
261
262         enum sbmac_speed        sbm_speed;      /* current speed */
263         enum sbmac_duplex       sbm_duplex;     /* current duplex */
264         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
265         int                     sbm_pause;      /* current pause setting */
266         int                     sbm_link;       /* current link state */
267
268         unsigned char           sbm_hwaddr[ETH_ALEN];
269
270         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
271         struct sbmacdma         sbm_rxdma;
272         int                     rx_hw_checksum;
273         int                     sbe_idx;
274 };
275
276
277 /**********************************************************************
278  *  Externs
279  ********************************************************************* */
280
281 /**********************************************************************
282  *  Prototypes
283  ********************************************************************* */
284
285 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286                           int txrx, int maxdescr);
287 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289                                struct sk_buff *m);
290 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291 static void sbdma_emptyring(struct sbmacdma *d);
292 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294                             int work_to_do, int poll);
295 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296                              int poll);
297 static int sbmac_initctx(struct sbmac_softc *s);
298 static void sbmac_channel_start(struct sbmac_softc *s);
299 static void sbmac_channel_stop(struct sbmac_softc *s);
300 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301                                                 enum sbmac_state);
302 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303 static uint64_t sbmac_addr2reg(unsigned char *ptr);
304 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306 static void sbmac_setmulti(struct sbmac_softc *sc);
307 static int sbmac_init(struct platform_device *pldev, long long base);
308 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310                             enum sbmac_fc fc);
311
312 static int sbmac_open(struct net_device *dev);
313 static void sbmac_tx_timeout (struct net_device *dev);
314 static void sbmac_set_rx_mode(struct net_device *dev);
315 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316 static int sbmac_close(struct net_device *dev);
317 static int sbmac_poll(struct napi_struct *napi, int budget);
318
319 static void sbmac_mii_poll(struct net_device *dev);
320 static int sbmac_mii_probe(struct net_device *dev);
321
322 static void sbmac_mii_sync(void __iomem *sbm_mdio);
323 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324                                int bitcnt);
325 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327                            u16 val);
328
329
330 /**********************************************************************
331  *  Globals
332  ********************************************************************* */
333
334 static char sbmac_string[] = "sb1250-mac";
335
336 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
337
338
339 /**********************************************************************
340  *  MDIO constants
341  ********************************************************************* */
342
343 #define MII_COMMAND_START       0x01
344 #define MII_COMMAND_READ        0x02
345 #define MII_COMMAND_WRITE       0x01
346 #define MII_COMMAND_ACK         0x02
347
348 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
349
350 #define ENABLE          1
351 #define DISABLE         0
352
353 /**********************************************************************
354  *  SBMAC_MII_SYNC(sbm_mdio)
355  *
356  *  Synchronize with the MII - send a pattern of bits to the MII
357  *  that will guarantee that it is ready to accept a command.
358  *
359  *  Input parameters:
360  *         sbm_mdio - address of the MAC's MDIO register
361  *
362  *  Return value:
363  *         nothing
364  ********************************************************************* */
365
366 static void sbmac_mii_sync(void __iomem *sbm_mdio)
367 {
368         int cnt;
369         uint64_t bits;
370         int mac_mdio_genc;
371
372         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
373
374         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
375
376         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
377
378         for (cnt = 0; cnt < 32; cnt++) {
379                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
381         }
382 }
383
384 /**********************************************************************
385  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
386  *
387  *  Send some bits to the MII.  The bits to be sent are right-
388  *  justified in the 'data' parameter.
389  *
390  *  Input parameters:
391  *         sbm_mdio - address of the MAC's MDIO register
392  *         data     - data to send
393  *         bitcnt   - number of bits to send
394  ********************************************************************* */
395
396 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397                                int bitcnt)
398 {
399         int i;
400         uint64_t bits;
401         unsigned int curmask;
402         int mac_mdio_genc;
403
404         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
405
406         bits = M_MAC_MDIO_DIR_OUTPUT;
407         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
408
409         curmask = 1 << (bitcnt - 1);
410
411         for (i = 0; i < bitcnt; i++) {
412                 if (data & curmask)
413                         bits |= M_MAC_MDIO_OUT;
414                 else bits &= ~M_MAC_MDIO_OUT;
415                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418                 curmask >>= 1;
419         }
420 }
421
422
423
424 /**********************************************************************
425  *  SBMAC_MII_READ(bus, phyaddr, regidx)
426  *  Read a PHY register.
427  *
428  *  Input parameters:
429  *         bus     - MDIO bus handle
430  *         phyaddr - PHY's address
431  *         regnum  - index of register to read
432  *
433  *  Return value:
434  *         value read, or 0xffff if an error occurred.
435  ********************************************************************* */
436
437 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
438 {
439         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440         void __iomem *sbm_mdio = sc->sbm_mdio;
441         int idx;
442         int error;
443         int regval;
444         int mac_mdio_genc;
445
446         /*
447          * Synchronize ourselves so that the PHY knows the next
448          * thing coming down is a command
449          */
450         sbmac_mii_sync(sbm_mdio);
451
452         /*
453          * Send the data to the PHY.  The sequence is
454          * a "start" command (2 bits)
455          * a "read" command (2 bits)
456          * the PHY addr (5 bits)
457          * the register index (5 bits)
458          */
459         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462         sbmac_mii_senddata(sbm_mdio, regidx, 5);
463
464         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
465
466         /*
467          * Switch the port around without a clock transition.
468          */
469         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
470
471         /*
472          * Send out a clock pulse to signal we want the status
473          */
474         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475                      sbm_mdio);
476         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
477
478         /*
479          * If an error occurred, the PHY will signal '1' back
480          */
481         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
482
483         /*
484          * Issue an 'idle' clock pulse, but keep the direction
485          * the same.
486          */
487         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488                      sbm_mdio);
489         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
490
491         regval = 0;
492
493         for (idx = 0; idx < 16; idx++) {
494                 regval <<= 1;
495
496                 if (error == 0) {
497                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498                                 regval |= 1;
499                 }
500
501                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502                              sbm_mdio);
503                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
504         }
505
506         /* Switch back to output */
507         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
508
509         if (error == 0)
510                 return regval;
511         return 0xffff;
512 }
513
514
515 /**********************************************************************
516  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
517  *
518  *  Write a value to a PHY register.
519  *
520  *  Input parameters:
521  *         bus     - MDIO bus handle
522  *         phyaddr - PHY to use
523  *         regidx  - register within the PHY
524  *         regval  - data to write to register
525  *
526  *  Return value:
527  *         0 for success
528  ********************************************************************* */
529
530 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531                            u16 regval)
532 {
533         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534         void __iomem *sbm_mdio = sc->sbm_mdio;
535         int mac_mdio_genc;
536
537         sbmac_mii_sync(sbm_mdio);
538
539         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542         sbmac_mii_senddata(sbm_mdio, regidx, 5);
543         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544         sbmac_mii_senddata(sbm_mdio, regval, 16);
545
546         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
547
548         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
549
550         return 0;
551 }
552
553
554
555 /**********************************************************************
556  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
557  *
558  *  Initialize a DMA channel context.  Since there are potentially
559  *  eight DMA channels per MAC, it's nice to do this in a standard
560  *  way.
561  *
562  *  Input parameters:
563  *         d - struct sbmacdma (DMA channel context)
564  *         s - struct sbmac_softc (pointer to a MAC)
565  *         chan - channel number (0..1 right now)
566  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
567  *      maxdescr - number of descriptors
568  *
569  *  Return value:
570  *         nothing
571  ********************************************************************* */
572
573 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574                           int txrx, int maxdescr)
575 {
576 #ifdef CONFIG_SBMAC_COALESCE
577         int int_pktcnt, int_timeout;
578 #endif
579
580         /*
581          * Save away interesting stuff in the structure
582          */
583
584         d->sbdma_eth       = s;
585         d->sbdma_channel   = chan;
586         d->sbdma_txdir     = txrx;
587
588 #if 0
589         /* RMON clearing */
590         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
591 #endif
592
593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
598         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
599         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
600         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
601         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
602         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
603         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
604         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
605         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
606         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
607         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
608         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
609         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
610         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
611         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
612         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
613         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
614
615         /*
616          * initialize register pointers
617          */
618
619         d->sbdma_config0 =
620                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
621         d->sbdma_config1 =
622                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
623         d->sbdma_dscrbase =
624                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
625         d->sbdma_dscrcnt =
626                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
627         d->sbdma_curdscr =
628                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
629         if (d->sbdma_txdir)
630                 d->sbdma_oodpktlost = NULL;
631         else
632                 d->sbdma_oodpktlost =
633                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
634
635         /*
636          * Allocate memory for the ring
637          */
638
639         d->sbdma_maxdescr = maxdescr;
640
641         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
642                                                sizeof(*d->sbdma_dscrtable),
643                                                GFP_KERNEL);
644
645         /*
646          * The descriptor table must be aligned to at least 16 bytes or the
647          * MAC will corrupt it.
648          */
649         d->sbdma_dscrtable = (struct sbdmadscr *)
650                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
651                                    sizeof(*d->sbdma_dscrtable));
652
653         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
654
655         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
656
657         /*
658          * And context table
659          */
660
661         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
662                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
663
664 #ifdef CONFIG_SBMAC_COALESCE
665         /*
666          * Setup Rx/Tx DMA coalescing defaults
667          */
668
669         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
670         if ( int_pktcnt ) {
671                 d->sbdma_int_pktcnt = int_pktcnt;
672         } else {
673                 d->sbdma_int_pktcnt = 1;
674         }
675
676         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
677         if ( int_timeout ) {
678                 d->sbdma_int_timeout = int_timeout;
679         } else {
680                 d->sbdma_int_timeout = 0;
681         }
682 #endif
683
684 }
685
686 /**********************************************************************
687  *  SBDMA_CHANNEL_START(d)
688  *
689  *  Initialize the hardware registers for a DMA channel.
690  *
691  *  Input parameters:
692  *         d - DMA channel to init (context must be previously init'd
693  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
694  *
695  *  Return value:
696  *         nothing
697  ********************************************************************* */
698
699 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
700 {
701         /*
702          * Turn on the DMA channel
703          */
704
705 #ifdef CONFIG_SBMAC_COALESCE
706         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
707                        0, d->sbdma_config1);
708         __raw_writeq(M_DMA_EOP_INT_EN |
709                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
710                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
711                        0, d->sbdma_config0);
712 #else
713         __raw_writeq(0, d->sbdma_config1);
714         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
715                        0, d->sbdma_config0);
716 #endif
717
718         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
719
720         /*
721          * Initialize ring pointers
722          */
723
724         d->sbdma_addptr = d->sbdma_dscrtable;
725         d->sbdma_remptr = d->sbdma_dscrtable;
726 }
727
728 /**********************************************************************
729  *  SBDMA_CHANNEL_STOP(d)
730  *
731  *  Initialize the hardware registers for a DMA channel.
732  *
733  *  Input parameters:
734  *         d - DMA channel to init (context must be previously init'd
735  *
736  *  Return value:
737  *         nothing
738  ********************************************************************* */
739
740 static void sbdma_channel_stop(struct sbmacdma *d)
741 {
742         /*
743          * Turn off the DMA channel
744          */
745
746         __raw_writeq(0, d->sbdma_config1);
747
748         __raw_writeq(0, d->sbdma_dscrbase);
749
750         __raw_writeq(0, d->sbdma_config0);
751
752         /*
753          * Zero ring pointers
754          */
755
756         d->sbdma_addptr = NULL;
757         d->sbdma_remptr = NULL;
758 }
759
760 static inline void sbdma_align_skb(struct sk_buff *skb,
761                                    unsigned int power2, unsigned int offset)
762 {
763         unsigned char *addr = skb->data;
764         unsigned char *newaddr = PTR_ALIGN(addr, power2);
765
766         skb_reserve(skb, newaddr - addr + offset);
767 }
768
769
770 /**********************************************************************
771  *  SBDMA_ADD_RCVBUFFER(d,sb)
772  *
773  *  Add a buffer to the specified DMA channel.   For receive channels,
774  *  this queues a buffer for inbound packets.
775  *
776  *  Input parameters:
777  *         sc - softc structure
778  *          d - DMA channel descriptor
779  *         sb - sk_buff to add, or NULL if we should allocate one
780  *
781  *  Return value:
782  *         0 if buffer could not be added (ring is full)
783  *         1 if buffer added successfully
784  ********************************************************************* */
785
786
787 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
788                                struct sk_buff *sb)
789 {
790         struct net_device *dev = sc->sbm_dev;
791         struct sbdmadscr *dsc;
792         struct sbdmadscr *nextdsc;
793         struct sk_buff *sb_new = NULL;
794         int pktsize = ENET_PACKET_SIZE;
795
796         /* get pointer to our current place in the ring */
797
798         dsc = d->sbdma_addptr;
799         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
800
801         /*
802          * figure out if the ring is full - if the next descriptor
803          * is the same as the one that we're going to remove from
804          * the ring, the ring is full
805          */
806
807         if (nextdsc == d->sbdma_remptr) {
808                 return -ENOSPC;
809         }
810
811         /*
812          * Allocate a sk_buff if we don't already have one.
813          * If we do have an sk_buff, reset it so that it's empty.
814          *
815          * Note: sk_buffs don't seem to be guaranteed to have any sort
816          * of alignment when they are allocated.  Therefore, allocate enough
817          * extra space to make sure that:
818          *
819          *    1. the data does not start in the middle of a cache line.
820          *    2. The data does not end in the middle of a cache line
821          *    3. The buffer can be aligned such that the IP addresses are
822          *       naturally aligned.
823          *
824          *  Remember, the SOCs MAC writes whole cache lines at a time,
825          *  without reading the old contents first.  So, if the sk_buff's
826          *  data portion starts in the middle of a cache line, the SOC
827          *  DMA will trash the beginning (and ending) portions.
828          */
829
830         if (sb == NULL) {
831                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
832                                                SMP_CACHE_BYTES * 2 +
833                                                NET_IP_ALIGN);
834                 if (sb_new == NULL)
835                         return -ENOBUFS;
836
837                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
838         }
839         else {
840                 sb_new = sb;
841                 /*
842                  * nothing special to reinit buffer, it's already aligned
843                  * and sb->data already points to a good place.
844                  */
845         }
846
847         /*
848          * fill in the descriptor
849          */
850
851 #ifdef CONFIG_SBMAC_COALESCE
852         /*
853          * Do not interrupt per DMA transfer.
854          */
855         dsc->dscr_a = virt_to_phys(sb_new->data) |
856                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
857 #else
858         dsc->dscr_a = virt_to_phys(sb_new->data) |
859                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
860                 M_DMA_DSCRA_INTERRUPT;
861 #endif
862
863         /* receiving: no options */
864         dsc->dscr_b = 0;
865
866         /*
867          * fill in the context
868          */
869
870         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
871
872         /*
873          * point at next packet
874          */
875
876         d->sbdma_addptr = nextdsc;
877
878         /*
879          * Give the buffer to the DMA engine.
880          */
881
882         __raw_writeq(1, d->sbdma_dscrcnt);
883
884         return 0;                                       /* we did it */
885 }
886
887 /**********************************************************************
888  *  SBDMA_ADD_TXBUFFER(d,sb)
889  *
890  *  Add a transmit buffer to the specified DMA channel, causing a
891  *  transmit to start.
892  *
893  *  Input parameters:
894  *         d - DMA channel descriptor
895  *         sb - sk_buff to add
896  *
897  *  Return value:
898  *         0 transmit queued successfully
899  *         otherwise error code
900  ********************************************************************* */
901
902
903 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
904 {
905         struct sbdmadscr *dsc;
906         struct sbdmadscr *nextdsc;
907         uint64_t phys;
908         uint64_t ncb;
909         int length;
910
911         /* get pointer to our current place in the ring */
912
913         dsc = d->sbdma_addptr;
914         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
915
916         /*
917          * figure out if the ring is full - if the next descriptor
918          * is the same as the one that we're going to remove from
919          * the ring, the ring is full
920          */
921
922         if (nextdsc == d->sbdma_remptr) {
923                 return -ENOSPC;
924         }
925
926         /*
927          * Under Linux, it's not necessary to copy/coalesce buffers
928          * like it is on NetBSD.  We think they're all contiguous,
929          * but that may not be true for GBE.
930          */
931
932         length = sb->len;
933
934         /*
935          * fill in the descriptor.  Note that the number of cache
936          * blocks in the descriptor is the number of blocks
937          * *spanned*, so we need to add in the offset (if any)
938          * while doing the calculation.
939          */
940
941         phys = virt_to_phys(sb->data);
942         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
943
944         dsc->dscr_a = phys |
945                 V_DMA_DSCRA_A_SIZE(ncb) |
946 #ifndef CONFIG_SBMAC_COALESCE
947                 M_DMA_DSCRA_INTERRUPT |
948 #endif
949                 M_DMA_ETHTX_SOP;
950
951         /* transmitting: set outbound options and length */
952
953         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
954                 V_DMA_DSCRB_PKT_SIZE(length);
955
956         /*
957          * fill in the context
958          */
959
960         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
961
962         /*
963          * point at next packet
964          */
965
966         d->sbdma_addptr = nextdsc;
967
968         /*
969          * Give the buffer to the DMA engine.
970          */
971
972         __raw_writeq(1, d->sbdma_dscrcnt);
973
974         return 0;                                       /* we did it */
975 }
976
977
978
979
980 /**********************************************************************
981  *  SBDMA_EMPTYRING(d)
982  *
983  *  Free all allocated sk_buffs on the specified DMA channel;
984  *
985  *  Input parameters:
986  *         d  - DMA channel
987  *
988  *  Return value:
989  *         nothing
990  ********************************************************************* */
991
992 static void sbdma_emptyring(struct sbmacdma *d)
993 {
994         int idx;
995         struct sk_buff *sb;
996
997         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
998                 sb = d->sbdma_ctxtable[idx];
999                 if (sb) {
1000                         dev_kfree_skb(sb);
1001                         d->sbdma_ctxtable[idx] = NULL;
1002                 }
1003         }
1004 }
1005
1006
1007 /**********************************************************************
1008  *  SBDMA_FILLRING(d)
1009  *
1010  *  Fill the specified DMA channel (must be receive channel)
1011  *  with sk_buffs
1012  *
1013  *  Input parameters:
1014  *         sc - softc structure
1015  *          d - DMA channel
1016  *
1017  *  Return value:
1018  *         nothing
1019  ********************************************************************* */
1020
1021 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1022 {
1023         int idx;
1024
1025         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1026                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1027                         break;
1028         }
1029 }
1030
1031 #ifdef CONFIG_NET_POLL_CONTROLLER
1032 static void sbmac_netpoll(struct net_device *netdev)
1033 {
1034         struct sbmac_softc *sc = netdev_priv(netdev);
1035         int irq = sc->sbm_dev->irq;
1036
1037         __raw_writeq(0, sc->sbm_imr);
1038
1039         sbmac_intr(irq, netdev);
1040
1041 #ifdef CONFIG_SBMAC_COALESCE
1042         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1043         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1044         sc->sbm_imr);
1045 #else
1046         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1047         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1048 #endif
1049 }
1050 #endif
1051
1052 /**********************************************************************
1053  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1054  *
1055  *  Process "completed" receive buffers on the specified DMA channel.
1056  *
1057  *  Input parameters:
1058  *            sc - softc structure
1059  *             d - DMA channel context
1060  *    work_to_do - no. of packets to process before enabling interrupt
1061  *                 again (for NAPI)
1062  *          poll - 1: using polling (for NAPI)
1063  *
1064  *  Return value:
1065  *         nothing
1066  ********************************************************************* */
1067
1068 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1069                             int work_to_do, int poll)
1070 {
1071         struct net_device *dev = sc->sbm_dev;
1072         int curidx;
1073         int hwidx;
1074         struct sbdmadscr *dsc;
1075         struct sk_buff *sb;
1076         int len;
1077         int work_done = 0;
1078         int dropped = 0;
1079
1080         prefetch(d);
1081
1082 again:
1083         /* Check if the HW dropped any frames */
1084         dev->stats.rx_fifo_errors
1085             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1086         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1087
1088         while (work_to_do-- > 0) {
1089                 /*
1090                  * figure out where we are (as an index) and where
1091                  * the hardware is (also as an index)
1092                  *
1093                  * This could be done faster if (for example) the
1094                  * descriptor table was page-aligned and contiguous in
1095                  * both virtual and physical memory -- you could then
1096                  * just compare the low-order bits of the virtual address
1097                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1098                  */
1099
1100                 dsc = d->sbdma_remptr;
1101                 curidx = dsc - d->sbdma_dscrtable;
1102
1103                 prefetch(dsc);
1104                 prefetch(&d->sbdma_ctxtable[curidx]);
1105
1106                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1107                          d->sbdma_dscrtable_phys) /
1108                         sizeof(*d->sbdma_dscrtable);
1109
1110                 /*
1111                  * If they're the same, that means we've processed all
1112                  * of the descriptors up to (but not including) the one that
1113                  * the hardware is working on right now.
1114                  */
1115
1116                 if (curidx == hwidx)
1117                         goto done;
1118
1119                 /*
1120                  * Otherwise, get the packet's sk_buff ptr back
1121                  */
1122
1123                 sb = d->sbdma_ctxtable[curidx];
1124                 d->sbdma_ctxtable[curidx] = NULL;
1125
1126                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1127
1128                 /*
1129                  * Check packet status.  If good, process it.
1130                  * If not, silently drop it and put it back on the
1131                  * receive ring.
1132                  */
1133
1134                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1135
1136                         /*
1137                          * Add a new buffer to replace the old one.  If we fail
1138                          * to allocate a buffer, we're going to drop this
1139                          * packet and put it right back on the receive ring.
1140                          */
1141
1142                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1143                                      -ENOBUFS)) {
1144                                 dev->stats.rx_dropped++;
1145                                 /* Re-add old buffer */
1146                                 sbdma_add_rcvbuffer(sc, d, sb);
1147                                 /* No point in continuing at the moment */
1148                                 printk(KERN_ERR "dropped packet (1)\n");
1149                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1150                                 goto done;
1151                         } else {
1152                                 /*
1153                                  * Set length into the packet
1154                                  */
1155                                 skb_put(sb,len);
1156
1157                                 /*
1158                                  * Buffer has been replaced on the
1159                                  * receive ring.  Pass the buffer to
1160                                  * the kernel
1161                                  */
1162                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1163                                 /* Check hw IPv4/TCP checksum if supported */
1164                                 if (sc->rx_hw_checksum == ENABLE) {
1165                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1166                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1167                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1168                                                 /* don't need to set sb->csum */
1169                                         } else {
1170                                                 skb_checksum_none_assert(sb);
1171                                         }
1172                                 }
1173                                 prefetch(sb->data);
1174                                 prefetch((const void *)(((char *)sb->data)+32));
1175                                 if (poll)
1176                                         dropped = netif_receive_skb(sb);
1177                                 else
1178                                         dropped = netif_rx(sb);
1179
1180                                 if (dropped == NET_RX_DROP) {
1181                                         dev->stats.rx_dropped++;
1182                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1183                                         goto done;
1184                                 }
1185                                 else {
1186                                         dev->stats.rx_bytes += len;
1187                                         dev->stats.rx_packets++;
1188                                 }
1189                         }
1190                 } else {
1191                         /*
1192                          * Packet was mangled somehow.  Just drop it and
1193                          * put it back on the receive ring.
1194                          */
1195                         dev->stats.rx_errors++;
1196                         sbdma_add_rcvbuffer(sc, d, sb);
1197                 }
1198
1199
1200                 /*
1201                  * .. and advance to the next buffer.
1202                  */
1203
1204                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1205                 work_done++;
1206         }
1207         if (!poll) {
1208                 work_to_do = 32;
1209                 goto again; /* collect fifo drop statistics again */
1210         }
1211 done:
1212         return work_done;
1213 }
1214
1215 /**********************************************************************
1216  *  SBDMA_TX_PROCESS(sc,d)
1217  *
1218  *  Process "completed" transmit buffers on the specified DMA channel.
1219  *  This is normally called within the interrupt service routine.
1220  *  Note that this isn't really ideal for priority channels, since
1221  *  it processes all of the packets on a given channel before
1222  *  returning.
1223  *
1224  *  Input parameters:
1225  *      sc - softc structure
1226  *       d - DMA channel context
1227  *    poll - 1: using polling (for NAPI)
1228  *
1229  *  Return value:
1230  *         nothing
1231  ********************************************************************* */
1232
1233 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1234                              int poll)
1235 {
1236         struct net_device *dev = sc->sbm_dev;
1237         int curidx;
1238         int hwidx;
1239         struct sbdmadscr *dsc;
1240         struct sk_buff *sb;
1241         unsigned long flags;
1242         int packets_handled = 0;
1243
1244         spin_lock_irqsave(&(sc->sbm_lock), flags);
1245
1246         if (d->sbdma_remptr == d->sbdma_addptr)
1247           goto end_unlock;
1248
1249         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1250                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1251
1252         for (;;) {
1253                 /*
1254                  * figure out where we are (as an index) and where
1255                  * the hardware is (also as an index)
1256                  *
1257                  * This could be done faster if (for example) the
1258                  * descriptor table was page-aligned and contiguous in
1259                  * both virtual and physical memory -- you could then
1260                  * just compare the low-order bits of the virtual address
1261                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1262                  */
1263
1264                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1265
1266                 /*
1267                  * If they're the same, that means we've processed all
1268                  * of the descriptors up to (but not including) the one that
1269                  * the hardware is working on right now.
1270                  */
1271
1272                 if (curidx == hwidx)
1273                         break;
1274
1275                 /*
1276                  * Otherwise, get the packet's sk_buff ptr back
1277                  */
1278
1279                 dsc = &(d->sbdma_dscrtable[curidx]);
1280                 sb = d->sbdma_ctxtable[curidx];
1281                 d->sbdma_ctxtable[curidx] = NULL;
1282
1283                 /*
1284                  * Stats
1285                  */
1286
1287                 dev->stats.tx_bytes += sb->len;
1288                 dev->stats.tx_packets++;
1289
1290                 /*
1291                  * for transmits, we just free buffers.
1292                  */
1293
1294                 dev_kfree_skb_irq(sb);
1295
1296                 /*
1297                  * .. and advance to the next buffer.
1298                  */
1299
1300                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1301
1302                 packets_handled++;
1303
1304         }
1305
1306         /*
1307          * Decide if we should wake up the protocol or not.
1308          * Other drivers seem to do this when we reach a low
1309          * watermark on the transmit queue.
1310          */
1311
1312         if (packets_handled)
1313                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1314
1315 end_unlock:
1316         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1317
1318 }
1319
1320
1321
1322 /**********************************************************************
1323  *  SBMAC_INITCTX(s)
1324  *
1325  *  Initialize an Ethernet context structure - this is called
1326  *  once per MAC on the 1250.  Memory is allocated here, so don't
1327  *  call it again from inside the ioctl routines that bring the
1328  *  interface up/down
1329  *
1330  *  Input parameters:
1331  *         s - sbmac context structure
1332  *
1333  *  Return value:
1334  *         0
1335  ********************************************************************* */
1336
1337 static int sbmac_initctx(struct sbmac_softc *s)
1338 {
1339
1340         /*
1341          * figure out the addresses of some ports
1342          */
1343
1344         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1345         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1346         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1347         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1348         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1349         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1350         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1351         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1352
1353         /*
1354          * Initialize the DMA channels.  Right now, only one per MAC is used
1355          * Note: Only do this _once_, as it allocates memory from the kernel!
1356          */
1357
1358         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1359         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1360
1361         /*
1362          * initial state is OFF
1363          */
1364
1365         s->sbm_state = sbmac_state_off;
1366
1367         return 0;
1368 }
1369
1370
1371 static void sbdma_uninitctx(struct sbmacdma *d)
1372 {
1373         if (d->sbdma_dscrtable_unaligned) {
1374                 kfree(d->sbdma_dscrtable_unaligned);
1375                 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1376         }
1377
1378         if (d->sbdma_ctxtable) {
1379                 kfree(d->sbdma_ctxtable);
1380                 d->sbdma_ctxtable = NULL;
1381         }
1382 }
1383
1384
1385 static void sbmac_uninitctx(struct sbmac_softc *sc)
1386 {
1387         sbdma_uninitctx(&(sc->sbm_txdma));
1388         sbdma_uninitctx(&(sc->sbm_rxdma));
1389 }
1390
1391
1392 /**********************************************************************
1393  *  SBMAC_CHANNEL_START(s)
1394  *
1395  *  Start packet processing on this MAC.
1396  *
1397  *  Input parameters:
1398  *         s - sbmac structure
1399  *
1400  *  Return value:
1401  *         nothing
1402  ********************************************************************* */
1403
1404 static void sbmac_channel_start(struct sbmac_softc *s)
1405 {
1406         uint64_t reg;
1407         void __iomem *port;
1408         uint64_t cfg,fifo,framecfg;
1409         int idx, th_value;
1410
1411         /*
1412          * Don't do this if running
1413          */
1414
1415         if (s->sbm_state == sbmac_state_on)
1416                 return;
1417
1418         /*
1419          * Bring the controller out of reset, but leave it off.
1420          */
1421
1422         __raw_writeq(0, s->sbm_macenable);
1423
1424         /*
1425          * Ignore all received packets
1426          */
1427
1428         __raw_writeq(0, s->sbm_rxfilter);
1429
1430         /*
1431          * Calculate values for various control registers.
1432          */
1433
1434         cfg = M_MAC_RETRY_EN |
1435                 M_MAC_TX_HOLD_SOP_EN |
1436                 V_MAC_TX_PAUSE_CNT_16K |
1437                 M_MAC_AP_STAT_EN |
1438                 M_MAC_FAST_SYNC |
1439                 M_MAC_SS_EN |
1440                 0;
1441
1442         /*
1443          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1444          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1445          * Use a larger RD_THRSH for gigabit
1446          */
1447         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1448                 th_value = 28;
1449         else
1450                 th_value = 64;
1451
1452         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1453                 ((s->sbm_speed == sbmac_speed_1000)
1454                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1455                 V_MAC_TX_RL_THRSH(4) |
1456                 V_MAC_RX_PL_THRSH(4) |
1457                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1458                 V_MAC_RX_RL_THRSH(8) |
1459                 0;
1460
1461         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1462                 V_MAC_MAX_FRAMESZ_DEFAULT |
1463                 V_MAC_BACKOFF_SEL(1);
1464
1465         /*
1466          * Clear out the hash address map
1467          */
1468
1469         port = s->sbm_base + R_MAC_HASH_BASE;
1470         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1471                 __raw_writeq(0, port);
1472                 port += sizeof(uint64_t);
1473         }
1474
1475         /*
1476          * Clear out the exact-match table
1477          */
1478
1479         port = s->sbm_base + R_MAC_ADDR_BASE;
1480         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1481                 __raw_writeq(0, port);
1482                 port += sizeof(uint64_t);
1483         }
1484
1485         /*
1486          * Clear out the DMA Channel mapping table registers
1487          */
1488
1489         port = s->sbm_base + R_MAC_CHUP0_BASE;
1490         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1491                 __raw_writeq(0, port);
1492                 port += sizeof(uint64_t);
1493         }
1494
1495
1496         port = s->sbm_base + R_MAC_CHLO0_BASE;
1497         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1498                 __raw_writeq(0, port);
1499                 port += sizeof(uint64_t);
1500         }
1501
1502         /*
1503          * Program the hardware address.  It goes into the hardware-address
1504          * register as well as the first filter register.
1505          */
1506
1507         reg = sbmac_addr2reg(s->sbm_hwaddr);
1508
1509         port = s->sbm_base + R_MAC_ADDR_BASE;
1510         __raw_writeq(reg, port);
1511         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1512
1513 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1514         /*
1515          * Pass1 SOCs do not receive packets addressed to the
1516          * destination address in the R_MAC_ETHERNET_ADDR register.
1517          * Set the value to zero.
1518          */
1519         __raw_writeq(0, port);
1520 #else
1521         __raw_writeq(reg, port);
1522 #endif
1523
1524         /*
1525          * Set the receive filter for no packets, and write values
1526          * to the various config registers
1527          */
1528
1529         __raw_writeq(0, s->sbm_rxfilter);
1530         __raw_writeq(0, s->sbm_imr);
1531         __raw_writeq(framecfg, s->sbm_framecfg);
1532         __raw_writeq(fifo, s->sbm_fifocfg);
1533         __raw_writeq(cfg, s->sbm_maccfg);
1534
1535         /*
1536          * Initialize DMA channels (rings should be ok now)
1537          */
1538
1539         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1540         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1541
1542         /*
1543          * Configure the speed, duplex, and flow control
1544          */
1545
1546         sbmac_set_speed(s,s->sbm_speed);
1547         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1548
1549         /*
1550          * Fill the receive ring
1551          */
1552
1553         sbdma_fillring(s, &(s->sbm_rxdma));
1554
1555         /*
1556          * Turn on the rest of the bits in the enable register
1557          */
1558
1559 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1560         __raw_writeq(M_MAC_RXDMA_EN0 |
1561                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1562 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1563         __raw_writeq(M_MAC_RXDMA_EN0 |
1564                        M_MAC_TXDMA_EN0 |
1565                        M_MAC_RX_ENABLE |
1566                        M_MAC_TX_ENABLE, s->sbm_macenable);
1567 #else
1568 #error invalid SiByte MAC configuration
1569 #endif
1570
1571 #ifdef CONFIG_SBMAC_COALESCE
1572         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1573                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1574 #else
1575         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1576                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1577 #endif
1578
1579         /*
1580          * Enable receiving unicasts and broadcasts
1581          */
1582
1583         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1584
1585         /*
1586          * we're running now.
1587          */
1588
1589         s->sbm_state = sbmac_state_on;
1590
1591         /*
1592          * Program multicast addresses
1593          */
1594
1595         sbmac_setmulti(s);
1596
1597         /*
1598          * If channel was in promiscuous mode before, turn that on
1599          */
1600
1601         if (s->sbm_devflags & IFF_PROMISC) {
1602                 sbmac_promiscuous_mode(s,1);
1603         }
1604
1605 }
1606
1607
1608 /**********************************************************************
1609  *  SBMAC_CHANNEL_STOP(s)
1610  *
1611  *  Stop packet processing on this MAC.
1612  *
1613  *  Input parameters:
1614  *         s - sbmac structure
1615  *
1616  *  Return value:
1617  *         nothing
1618  ********************************************************************* */
1619
1620 static void sbmac_channel_stop(struct sbmac_softc *s)
1621 {
1622         /* don't do this if already stopped */
1623
1624         if (s->sbm_state == sbmac_state_off)
1625                 return;
1626
1627         /* don't accept any packets, disable all interrupts */
1628
1629         __raw_writeq(0, s->sbm_rxfilter);
1630         __raw_writeq(0, s->sbm_imr);
1631
1632         /* Turn off ticker */
1633
1634         /* XXX */
1635
1636         /* turn off receiver and transmitter */
1637
1638         __raw_writeq(0, s->sbm_macenable);
1639
1640         /* We're stopped now. */
1641
1642         s->sbm_state = sbmac_state_off;
1643
1644         /*
1645          * Stop DMA channels (rings should be ok now)
1646          */
1647
1648         sbdma_channel_stop(&(s->sbm_rxdma));
1649         sbdma_channel_stop(&(s->sbm_txdma));
1650
1651         /* Empty the receive and transmit rings */
1652
1653         sbdma_emptyring(&(s->sbm_rxdma));
1654         sbdma_emptyring(&(s->sbm_txdma));
1655
1656 }
1657
1658 /**********************************************************************
1659  *  SBMAC_SET_CHANNEL_STATE(state)
1660  *
1661  *  Set the channel's state ON or OFF
1662  *
1663  *  Input parameters:
1664  *         state - new state
1665  *
1666  *  Return value:
1667  *         old state
1668  ********************************************************************* */
1669 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1670                                                 enum sbmac_state state)
1671 {
1672         enum sbmac_state oldstate = sc->sbm_state;
1673
1674         /*
1675          * If same as previous state, return
1676          */
1677
1678         if (state == oldstate) {
1679                 return oldstate;
1680         }
1681
1682         /*
1683          * If new state is ON, turn channel on
1684          */
1685
1686         if (state == sbmac_state_on) {
1687                 sbmac_channel_start(sc);
1688         }
1689         else {
1690                 sbmac_channel_stop(sc);
1691         }
1692
1693         /*
1694          * Return previous state
1695          */
1696
1697         return oldstate;
1698 }
1699
1700
1701 /**********************************************************************
1702  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1703  *
1704  *  Turn on or off promiscuous mode
1705  *
1706  *  Input parameters:
1707  *         sc - softc
1708  *      onoff - 1 to turn on, 0 to turn off
1709  *
1710  *  Return value:
1711  *         nothing
1712  ********************************************************************* */
1713
1714 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1715 {
1716         uint64_t reg;
1717
1718         if (sc->sbm_state != sbmac_state_on)
1719                 return;
1720
1721         if (onoff) {
1722                 reg = __raw_readq(sc->sbm_rxfilter);
1723                 reg |= M_MAC_ALLPKT_EN;
1724                 __raw_writeq(reg, sc->sbm_rxfilter);
1725         }
1726         else {
1727                 reg = __raw_readq(sc->sbm_rxfilter);
1728                 reg &= ~M_MAC_ALLPKT_EN;
1729                 __raw_writeq(reg, sc->sbm_rxfilter);
1730         }
1731 }
1732
1733 /**********************************************************************
1734  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1735  *
1736  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1737  *
1738  *  Input parameters:
1739  *         sc - softc
1740  *
1741  *  Return value:
1742  *         nothing
1743  ********************************************************************* */
1744
1745 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1746 {
1747         uint64_t reg;
1748
1749         /* Hard code the off set to 15 for now */
1750         reg = __raw_readq(sc->sbm_rxfilter);
1751         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1752         __raw_writeq(reg, sc->sbm_rxfilter);
1753
1754         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1755            later does.  */
1756         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1757                 sc->rx_hw_checksum = DISABLE;
1758         } else {
1759                 sc->rx_hw_checksum = ENABLE;
1760         }
1761 }
1762
1763
1764 /**********************************************************************
1765  *  SBMAC_ADDR2REG(ptr)
1766  *
1767  *  Convert six bytes into the 64-bit register value that
1768  *  we typically write into the SBMAC's address/mcast registers
1769  *
1770  *  Input parameters:
1771  *         ptr - pointer to 6 bytes
1772  *
1773  *  Return value:
1774  *         register value
1775  ********************************************************************* */
1776
1777 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1778 {
1779         uint64_t reg = 0;
1780
1781         ptr += 6;
1782
1783         reg |= (uint64_t) *(--ptr);
1784         reg <<= 8;
1785         reg |= (uint64_t) *(--ptr);
1786         reg <<= 8;
1787         reg |= (uint64_t) *(--ptr);
1788         reg <<= 8;
1789         reg |= (uint64_t) *(--ptr);
1790         reg <<= 8;
1791         reg |= (uint64_t) *(--ptr);
1792         reg <<= 8;
1793         reg |= (uint64_t) *(--ptr);
1794
1795         return reg;
1796 }
1797
1798
1799 /**********************************************************************
1800  *  SBMAC_SET_SPEED(s,speed)
1801  *
1802  *  Configure LAN speed for the specified MAC.
1803  *  Warning: must be called when MAC is off!
1804  *
1805  *  Input parameters:
1806  *         s - sbmac structure
1807  *         speed - speed to set MAC to (see enum sbmac_speed)
1808  *
1809  *  Return value:
1810  *         1 if successful
1811  *      0 indicates invalid parameters
1812  ********************************************************************* */
1813
1814 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1815 {
1816         uint64_t cfg;
1817         uint64_t framecfg;
1818
1819         /*
1820          * Save new current values
1821          */
1822
1823         s->sbm_speed = speed;
1824
1825         if (s->sbm_state == sbmac_state_on)
1826                 return 0;       /* save for next restart */
1827
1828         /*
1829          * Read current register values
1830          */
1831
1832         cfg = __raw_readq(s->sbm_maccfg);
1833         framecfg = __raw_readq(s->sbm_framecfg);
1834
1835         /*
1836          * Mask out the stuff we want to change
1837          */
1838
1839         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1840         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1841                       M_MAC_SLOT_SIZE);
1842
1843         /*
1844          * Now add in the new bits
1845          */
1846
1847         switch (speed) {
1848         case sbmac_speed_10:
1849                 framecfg |= V_MAC_IFG_RX_10 |
1850                         V_MAC_IFG_TX_10 |
1851                         K_MAC_IFG_THRSH_10 |
1852                         V_MAC_SLOT_SIZE_10;
1853                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1854                 break;
1855
1856         case sbmac_speed_100:
1857                 framecfg |= V_MAC_IFG_RX_100 |
1858                         V_MAC_IFG_TX_100 |
1859                         V_MAC_IFG_THRSH_100 |
1860                         V_MAC_SLOT_SIZE_100;
1861                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1862                 break;
1863
1864         case sbmac_speed_1000:
1865                 framecfg |= V_MAC_IFG_RX_1000 |
1866                         V_MAC_IFG_TX_1000 |
1867                         V_MAC_IFG_THRSH_1000 |
1868                         V_MAC_SLOT_SIZE_1000;
1869                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1870                 break;
1871
1872         default:
1873                 return 0;
1874         }
1875
1876         /*
1877          * Send the bits back to the hardware
1878          */
1879
1880         __raw_writeq(framecfg, s->sbm_framecfg);
1881         __raw_writeq(cfg, s->sbm_maccfg);
1882
1883         return 1;
1884 }
1885
1886 /**********************************************************************
1887  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1888  *
1889  *  Set Ethernet duplex and flow control options for this MAC
1890  *  Warning: must be called when MAC is off!
1891  *
1892  *  Input parameters:
1893  *         s - sbmac structure
1894  *         duplex - duplex setting (see enum sbmac_duplex)
1895  *         fc - flow control setting (see enum sbmac_fc)
1896  *
1897  *  Return value:
1898  *         1 if ok
1899  *         0 if an invalid parameter combination was specified
1900  ********************************************************************* */
1901
1902 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1903                             enum sbmac_fc fc)
1904 {
1905         uint64_t cfg;
1906
1907         /*
1908          * Save new current values
1909          */
1910
1911         s->sbm_duplex = duplex;
1912         s->sbm_fc = fc;
1913
1914         if (s->sbm_state == sbmac_state_on)
1915                 return 0;       /* save for next restart */
1916
1917         /*
1918          * Read current register values
1919          */
1920
1921         cfg = __raw_readq(s->sbm_maccfg);
1922
1923         /*
1924          * Mask off the stuff we're about to change
1925          */
1926
1927         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1928
1929
1930         switch (duplex) {
1931         case sbmac_duplex_half:
1932                 switch (fc) {
1933                 case sbmac_fc_disabled:
1934                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1935                         break;
1936
1937                 case sbmac_fc_collision:
1938                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1939                         break;
1940
1941                 case sbmac_fc_carrier:
1942                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1943                         break;
1944
1945                 case sbmac_fc_frame:            /* not valid in half duplex */
1946                 default:                        /* invalid selection */
1947                         return 0;
1948                 }
1949                 break;
1950
1951         case sbmac_duplex_full:
1952                 switch (fc) {
1953                 case sbmac_fc_disabled:
1954                         cfg |= V_MAC_FC_CMD_DISABLED;
1955                         break;
1956
1957                 case sbmac_fc_frame:
1958                         cfg |= V_MAC_FC_CMD_ENABLED;
1959                         break;
1960
1961                 case sbmac_fc_collision:        /* not valid in full duplex */
1962                 case sbmac_fc_carrier:          /* not valid in full duplex */
1963                 default:
1964                         return 0;
1965                 }
1966                 break;
1967         default:
1968                 return 0;
1969         }
1970
1971         /*
1972          * Send the bits back to the hardware
1973          */
1974
1975         __raw_writeq(cfg, s->sbm_maccfg);
1976
1977         return 1;
1978 }
1979
1980
1981
1982
1983 /**********************************************************************
1984  *  SBMAC_INTR()
1985  *
1986  *  Interrupt handler for MAC interrupts
1987  *
1988  *  Input parameters:
1989  *         MAC structure
1990  *
1991  *  Return value:
1992  *         nothing
1993  ********************************************************************* */
1994 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1995 {
1996         struct net_device *dev = (struct net_device *) dev_instance;
1997         struct sbmac_softc *sc = netdev_priv(dev);
1998         uint64_t isr;
1999         int handled = 0;
2000
2001         /*
2002          * Read the ISR (this clears the bits in the real
2003          * register, except for counter addr)
2004          */
2005
2006         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2007
2008         if (isr == 0)
2009                 return IRQ_RETVAL(0);
2010         handled = 1;
2011
2012         /*
2013          * Transmits on channel 0
2014          */
2015
2016         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2017                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2018
2019         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2020                 if (napi_schedule_prep(&sc->napi)) {
2021                         __raw_writeq(0, sc->sbm_imr);
2022                         __napi_schedule(&sc->napi);
2023                         /* Depend on the exit from poll to reenable intr */
2024                 }
2025                 else {
2026                         /* may leave some packets behind */
2027                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
2028                                          SBMAC_MAX_RXDESCR * 2, 0);
2029                 }
2030         }
2031         return IRQ_RETVAL(handled);
2032 }
2033
2034 /**********************************************************************
2035  *  SBMAC_START_TX(skb,dev)
2036  *
2037  *  Start output on the specified interface.  Basically, we
2038  *  queue as many buffers as we can until the ring fills up, or
2039  *  we run off the end of the queue, whichever comes first.
2040  *
2041  *  Input parameters:
2042  *
2043  *
2044  *  Return value:
2045  *         nothing
2046  ********************************************************************* */
2047 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2048 {
2049         struct sbmac_softc *sc = netdev_priv(dev);
2050         unsigned long flags;
2051
2052         /* lock eth irq */
2053         spin_lock_irqsave(&sc->sbm_lock, flags);
2054
2055         /*
2056          * Put the buffer on the transmit ring.  If we
2057          * don't have room, stop the queue.
2058          */
2059
2060         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2061                 /* XXX save skb that we could not send */
2062                 netif_stop_queue(dev);
2063                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2064
2065                 return NETDEV_TX_BUSY;
2066         }
2067
2068         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2069
2070         return NETDEV_TX_OK;
2071 }
2072
2073 /**********************************************************************
2074  *  SBMAC_SETMULTI(sc)
2075  *
2076  *  Reprogram the multicast table into the hardware, given
2077  *  the list of multicasts associated with the interface
2078  *  structure.
2079  *
2080  *  Input parameters:
2081  *         sc - softc
2082  *
2083  *  Return value:
2084  *         nothing
2085  ********************************************************************* */
2086
2087 static void sbmac_setmulti(struct sbmac_softc *sc)
2088 {
2089         uint64_t reg;
2090         void __iomem *port;
2091         int idx;
2092         struct netdev_hw_addr *ha;
2093         struct net_device *dev = sc->sbm_dev;
2094
2095         /*
2096          * Clear out entire multicast table.  We do this by nuking
2097          * the entire hash table and all the direct matches except
2098          * the first one, which is used for our station address
2099          */
2100
2101         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2102                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2103                 __raw_writeq(0, port);
2104         }
2105
2106         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2107                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2108                 __raw_writeq(0, port);
2109         }
2110
2111         /*
2112          * Clear the filter to say we don't want any multicasts.
2113          */
2114
2115         reg = __raw_readq(sc->sbm_rxfilter);
2116         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2117         __raw_writeq(reg, sc->sbm_rxfilter);
2118
2119         if (dev->flags & IFF_ALLMULTI) {
2120                 /*
2121                  * Enable ALL multicasts.  Do this by inverting the
2122                  * multicast enable bit.
2123                  */
2124                 reg = __raw_readq(sc->sbm_rxfilter);
2125                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2126                 __raw_writeq(reg, sc->sbm_rxfilter);
2127                 return;
2128         }
2129
2130
2131         /*
2132          * Progam new multicast entries.  For now, only use the
2133          * perfect filter.  In the future we'll need to use the
2134          * hash filter if the perfect filter overflows
2135          */
2136
2137         /* XXX only using perfect filter for now, need to use hash
2138          * XXX if the table overflows */
2139
2140         idx = 1;                /* skip station address */
2141         netdev_for_each_mc_addr(ha, dev) {
2142                 if (idx == MAC_ADDR_COUNT)
2143                         break;
2144                 reg = sbmac_addr2reg(ha->addr);
2145                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2146                 __raw_writeq(reg, port);
2147                 idx++;
2148         }
2149
2150         /*
2151          * Enable the "accept multicast bits" if we programmed at least one
2152          * multicast.
2153          */
2154
2155         if (idx > 1) {
2156                 reg = __raw_readq(sc->sbm_rxfilter);
2157                 reg |= M_MAC_MCAST_EN;
2158                 __raw_writeq(reg, sc->sbm_rxfilter);
2159         }
2160 }
2161
2162 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2163 {
2164         if (new_mtu >  ENET_PACKET_SIZE)
2165                 return -EINVAL;
2166         _dev->mtu = new_mtu;
2167         pr_info("changing the mtu to %d\n", new_mtu);
2168         return 0;
2169 }
2170
2171 static const struct net_device_ops sbmac_netdev_ops = {
2172         .ndo_open               = sbmac_open,
2173         .ndo_stop               = sbmac_close,
2174         .ndo_start_xmit         = sbmac_start_tx,
2175         .ndo_set_rx_mode        = sbmac_set_rx_mode,
2176         .ndo_tx_timeout         = sbmac_tx_timeout,
2177         .ndo_do_ioctl           = sbmac_mii_ioctl,
2178         .ndo_change_mtu         = sb1250_change_mtu,
2179         .ndo_validate_addr      = eth_validate_addr,
2180         .ndo_set_mac_address    = eth_mac_addr,
2181 #ifdef CONFIG_NET_POLL_CONTROLLER
2182         .ndo_poll_controller    = sbmac_netpoll,
2183 #endif
2184 };
2185
2186 /**********************************************************************
2187  *  SBMAC_INIT(dev)
2188  *
2189  *  Attach routine - init hardware and hook ourselves into linux
2190  *
2191  *  Input parameters:
2192  *         dev - net_device structure
2193  *
2194  *  Return value:
2195  *         status
2196  ********************************************************************* */
2197
2198 static int sbmac_init(struct platform_device *pldev, long long base)
2199 {
2200         struct net_device *dev = platform_get_drvdata(pldev);
2201         int idx = pldev->id;
2202         struct sbmac_softc *sc = netdev_priv(dev);
2203         unsigned char *eaddr;
2204         uint64_t ea_reg;
2205         int i;
2206         int err;
2207
2208         sc->sbm_dev = dev;
2209         sc->sbe_idx = idx;
2210
2211         eaddr = sc->sbm_hwaddr;
2212
2213         /*
2214          * Read the ethernet address.  The firmware left this programmed
2215          * for us in the ethernet address register for each mac.
2216          */
2217
2218         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2219         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2220         for (i = 0; i < 6; i++) {
2221                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2222                 ea_reg >>= 8;
2223         }
2224
2225         for (i = 0; i < 6; i++) {
2226                 dev->dev_addr[i] = eaddr[i];
2227         }
2228
2229         /*
2230          * Initialize context (get pointers to registers and stuff), then
2231          * allocate the memory for the descriptor tables.
2232          */
2233
2234         sbmac_initctx(sc);
2235
2236         /*
2237          * Set up Linux device callins
2238          */
2239
2240         spin_lock_init(&(sc->sbm_lock));
2241
2242         dev->netdev_ops = &sbmac_netdev_ops;
2243         dev->watchdog_timeo = TX_TIMEOUT;
2244
2245         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2246
2247         dev->irq                = UNIT_INT(idx);
2248
2249         /* This is needed for PASS2 for Rx H/W checksum feature */
2250         sbmac_set_iphdr_offset(sc);
2251
2252         sc->mii_bus = mdiobus_alloc();
2253         if (sc->mii_bus == NULL) {
2254                 err = -ENOMEM;
2255                 goto uninit_ctx;
2256         }
2257
2258         sc->mii_bus->name = sbmac_mdio_string;
2259         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2260                 pldev->name, idx);
2261         sc->mii_bus->priv = sc;
2262         sc->mii_bus->read = sbmac_mii_read;
2263         sc->mii_bus->write = sbmac_mii_write;
2264         sc->mii_bus->irq = sc->phy_irq;
2265         for (i = 0; i < PHY_MAX_ADDR; ++i)
2266                 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2267
2268         sc->mii_bus->parent = &pldev->dev;
2269         /*
2270          * Probe PHY address
2271          */
2272         err = mdiobus_register(sc->mii_bus);
2273         if (err) {
2274                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2275                        dev->name);
2276                 goto free_mdio;
2277         }
2278         platform_set_drvdata(pldev, sc->mii_bus);
2279
2280         err = register_netdev(dev);
2281         if (err) {
2282                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2283                        sbmac_string, idx);
2284                 goto unreg_mdio;
2285         }
2286
2287         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2288
2289         if (sc->rx_hw_checksum == ENABLE)
2290                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2291
2292         /*
2293          * Display Ethernet address (this is called during the config
2294          * process so we need to finish off the config message that
2295          * was being displayed)
2296          */
2297         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2298                dev->name, base, eaddr);
2299
2300         return 0;
2301 unreg_mdio:
2302         mdiobus_unregister(sc->mii_bus);
2303 free_mdio:
2304         mdiobus_free(sc->mii_bus);
2305 uninit_ctx:
2306         sbmac_uninitctx(sc);
2307         return err;
2308 }
2309
2310
2311 static int sbmac_open(struct net_device *dev)
2312 {
2313         struct sbmac_softc *sc = netdev_priv(dev);
2314         int err;
2315
2316         if (debug > 1)
2317                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2318
2319         /*
2320          * map/route interrupt (clear status first, in case something
2321          * weird is pending; we haven't initialized the mac registers
2322          * yet)
2323          */
2324
2325         __raw_readq(sc->sbm_isr);
2326         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2327         if (err) {
2328                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2329                        dev->irq);
2330                 goto out_err;
2331         }
2332
2333         sc->sbm_speed = sbmac_speed_none;
2334         sc->sbm_duplex = sbmac_duplex_none;
2335         sc->sbm_fc = sbmac_fc_none;
2336         sc->sbm_pause = -1;
2337         sc->sbm_link = 0;
2338
2339         /*
2340          * Attach to the PHY
2341          */
2342         err = sbmac_mii_probe(dev);
2343         if (err)
2344                 goto out_unregister;
2345
2346         /*
2347          * Turn on the channel
2348          */
2349
2350         sbmac_set_channel_state(sc,sbmac_state_on);
2351
2352         netif_start_queue(dev);
2353
2354         sbmac_set_rx_mode(dev);
2355
2356         phy_start(sc->phy_dev);
2357
2358         napi_enable(&sc->napi);
2359
2360         return 0;
2361
2362 out_unregister:
2363         free_irq(dev->irq, dev);
2364 out_err:
2365         return err;
2366 }
2367
2368 static int sbmac_mii_probe(struct net_device *dev)
2369 {
2370         struct sbmac_softc *sc = netdev_priv(dev);
2371         struct phy_device *phy_dev;
2372         int i;
2373
2374         for (i = 0; i < PHY_MAX_ADDR; i++) {
2375                 phy_dev = sc->mii_bus->phy_map[i];
2376                 if (phy_dev)
2377                         break;
2378         }
2379         if (!phy_dev) {
2380                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2381                 return -ENXIO;
2382         }
2383
2384         phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2385                               PHY_INTERFACE_MODE_GMII);
2386         if (IS_ERR(phy_dev)) {
2387                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2388                 return PTR_ERR(phy_dev);
2389         }
2390
2391         /* Remove any features not supported by the controller */
2392         phy_dev->supported &= SUPPORTED_10baseT_Half |
2393                               SUPPORTED_10baseT_Full |
2394                               SUPPORTED_100baseT_Half |
2395                               SUPPORTED_100baseT_Full |
2396                               SUPPORTED_1000baseT_Half |
2397                               SUPPORTED_1000baseT_Full |
2398                               SUPPORTED_Autoneg |
2399                               SUPPORTED_MII |
2400                               SUPPORTED_Pause |
2401                               SUPPORTED_Asym_Pause;
2402         phy_dev->advertising = phy_dev->supported;
2403
2404         pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2405                 dev->name, phy_dev->drv->name,
2406                 dev_name(&phy_dev->dev), phy_dev->irq);
2407
2408         sc->phy_dev = phy_dev;
2409
2410         return 0;
2411 }
2412
2413
2414 static void sbmac_mii_poll(struct net_device *dev)
2415 {
2416         struct sbmac_softc *sc = netdev_priv(dev);
2417         struct phy_device *phy_dev = sc->phy_dev;
2418         unsigned long flags;
2419         enum sbmac_fc fc;
2420         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2421
2422         link_chg = (sc->sbm_link != phy_dev->link);
2423         speed_chg = (sc->sbm_speed != phy_dev->speed);
2424         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2425         pause_chg = (sc->sbm_pause != phy_dev->pause);
2426
2427         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2428                 return;                                 /* Hmmm... */
2429
2430         if (!phy_dev->link) {
2431                 if (link_chg) {
2432                         sc->sbm_link = phy_dev->link;
2433                         sc->sbm_speed = sbmac_speed_none;
2434                         sc->sbm_duplex = sbmac_duplex_none;
2435                         sc->sbm_fc = sbmac_fc_disabled;
2436                         sc->sbm_pause = -1;
2437                         pr_info("%s: link unavailable\n", dev->name);
2438                 }
2439                 return;
2440         }
2441
2442         if (phy_dev->duplex == DUPLEX_FULL) {
2443                 if (phy_dev->pause)
2444                         fc = sbmac_fc_frame;
2445                 else
2446                         fc = sbmac_fc_disabled;
2447         } else
2448                 fc = sbmac_fc_collision;
2449         fc_chg = (sc->sbm_fc != fc);
2450
2451         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2452                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2453
2454         spin_lock_irqsave(&sc->sbm_lock, flags);
2455
2456         sc->sbm_speed = phy_dev->speed;
2457         sc->sbm_duplex = phy_dev->duplex;
2458         sc->sbm_fc = fc;
2459         sc->sbm_pause = phy_dev->pause;
2460         sc->sbm_link = phy_dev->link;
2461
2462         if ((speed_chg || duplex_chg || fc_chg) &&
2463             sc->sbm_state != sbmac_state_off) {
2464                 /*
2465                  * something changed, restart the channel
2466                  */
2467                 if (debug > 1)
2468                         pr_debug("%s: restarting channel "
2469                                  "because PHY state changed\n", dev->name);
2470                 sbmac_channel_stop(sc);
2471                 sbmac_channel_start(sc);
2472         }
2473
2474         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2475 }
2476
2477
2478 static void sbmac_tx_timeout (struct net_device *dev)
2479 {
2480         struct sbmac_softc *sc = netdev_priv(dev);
2481         unsigned long flags;
2482
2483         spin_lock_irqsave(&sc->sbm_lock, flags);
2484
2485
2486         dev->trans_start = jiffies; /* prevent tx timeout */
2487         dev->stats.tx_errors++;
2488
2489         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2490
2491         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2492 }
2493
2494
2495
2496
2497 static void sbmac_set_rx_mode(struct net_device *dev)
2498 {
2499         unsigned long flags;
2500         struct sbmac_softc *sc = netdev_priv(dev);
2501
2502         spin_lock_irqsave(&sc->sbm_lock, flags);
2503         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2504                 /*
2505                  * Promiscuous changed.
2506                  */
2507
2508                 if (dev->flags & IFF_PROMISC) {
2509                         sbmac_promiscuous_mode(sc,1);
2510                 }
2511                 else {
2512                         sbmac_promiscuous_mode(sc,0);
2513                 }
2514         }
2515         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2516
2517         /*
2518          * Program the multicasts.  Do this every time.
2519          */
2520
2521         sbmac_setmulti(sc);
2522
2523 }
2524
2525 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2526 {
2527         struct sbmac_softc *sc = netdev_priv(dev);
2528
2529         if (!netif_running(dev) || !sc->phy_dev)
2530                 return -EINVAL;
2531
2532         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2533 }
2534
2535 static int sbmac_close(struct net_device *dev)
2536 {
2537         struct sbmac_softc *sc = netdev_priv(dev);
2538
2539         napi_disable(&sc->napi);
2540
2541         phy_stop(sc->phy_dev);
2542
2543         sbmac_set_channel_state(sc, sbmac_state_off);
2544
2545         netif_stop_queue(dev);
2546
2547         if (debug > 1)
2548                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2549
2550         phy_disconnect(sc->phy_dev);
2551         sc->phy_dev = NULL;
2552         free_irq(dev->irq, dev);
2553
2554         sbdma_emptyring(&(sc->sbm_txdma));
2555         sbdma_emptyring(&(sc->sbm_rxdma));
2556
2557         return 0;
2558 }
2559
2560 static int sbmac_poll(struct napi_struct *napi, int budget)
2561 {
2562         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2563         int work_done;
2564
2565         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2566         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2567
2568         if (work_done < budget) {
2569                 napi_complete(napi);
2570
2571 #ifdef CONFIG_SBMAC_COALESCE
2572                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2573                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2574                              sc->sbm_imr);
2575 #else
2576                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2577                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2578 #endif
2579         }
2580
2581         return work_done;
2582 }
2583
2584
2585 static int sbmac_probe(struct platform_device *pldev)
2586 {
2587         struct net_device *dev;
2588         struct sbmac_softc *sc;
2589         void __iomem *sbm_base;
2590         struct resource *res;
2591         u64 sbmac_orig_hwaddr;
2592         int err;
2593
2594         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2595         BUG_ON(!res);
2596         sbm_base = ioremap_nocache(res->start, resource_size(res));
2597         if (!sbm_base) {
2598                 printk(KERN_ERR "%s: unable to map device registers\n",
2599                        dev_name(&pldev->dev));
2600                 err = -ENOMEM;
2601                 goto out_out;
2602         }
2603
2604         /*
2605          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2606          * value for us by the firmware if we're going to use this MAC.
2607          * If we find a zero, skip this MAC.
2608          */
2609         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2610         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2611                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2612         if (sbmac_orig_hwaddr == 0) {
2613                 err = 0;
2614                 goto out_unmap;
2615         }
2616
2617         /*
2618          * Okay, cool.  Initialize this MAC.
2619          */
2620         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2621         if (!dev) {
2622                 err = -ENOMEM;
2623                 goto out_unmap;
2624         }
2625
2626         platform_set_drvdata(pldev, dev);
2627         SET_NETDEV_DEV(dev, &pldev->dev);
2628
2629         sc = netdev_priv(dev);
2630         sc->sbm_base = sbm_base;
2631
2632         err = sbmac_init(pldev, res->start);
2633         if (err)
2634                 goto out_kfree;
2635
2636         return 0;
2637
2638 out_kfree:
2639         free_netdev(dev);
2640         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2641
2642 out_unmap:
2643         iounmap(sbm_base);
2644
2645 out_out:
2646         return err;
2647 }
2648
2649 static int __exit sbmac_remove(struct platform_device *pldev)
2650 {
2651         struct net_device *dev = platform_get_drvdata(pldev);
2652         struct sbmac_softc *sc = netdev_priv(dev);
2653
2654         unregister_netdev(dev);
2655         sbmac_uninitctx(sc);
2656         mdiobus_unregister(sc->mii_bus);
2657         mdiobus_free(sc->mii_bus);
2658         iounmap(sc->sbm_base);
2659         free_netdev(dev);
2660
2661         return 0;
2662 }
2663
2664 static struct platform_driver sbmac_driver = {
2665         .probe = sbmac_probe,
2666         .remove = __exit_p(sbmac_remove),
2667         .driver = {
2668                 .name = sbmac_string,
2669                 .owner  = THIS_MODULE,
2670         },
2671 };
2672
2673 module_platform_driver(sbmac_driver);