]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/cavium/liquidio/lio_vf_main.c
uprobes: Default UPROBES_EVENTS to Y
[karo-tx-linux.git] / drivers / net / ethernet / cavium / liquidio / lio_vf_main.c
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/module.h>
19 #include <linux/pci.h>
20 #include <net/vxlan.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "octeon_nic.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn23xx_vf_device.h"
30
31 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
32 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Virtual Function Driver");
33 MODULE_LICENSE("GPL");
34 MODULE_VERSION(LIQUIDIO_VERSION);
35
36 static int debug = -1;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
39
40 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
41
42 /* Bit mask values for lio->ifstate */
43 #define   LIO_IFSTATE_DROQ_OPS             0x01
44 #define   LIO_IFSTATE_REGISTERED           0x02
45 #define   LIO_IFSTATE_RUNNING              0x04
46 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
47
48 struct liquidio_if_cfg_context {
49         int octeon_id;
50
51         wait_queue_head_t wc;
52
53         int cond;
54 };
55
56 struct liquidio_if_cfg_resp {
57         u64 rh;
58         struct liquidio_if_cfg_info cfg_info;
59         u64 status;
60 };
61
62 struct liquidio_rx_ctl_context {
63         int octeon_id;
64
65         wait_queue_head_t wc;
66
67         int cond;
68 };
69
70 struct oct_timestamp_resp {
71         u64 rh;
72         u64 timestamp;
73         u64 status;
74 };
75
76 union tx_info {
77         u64 u64;
78         struct {
79 #ifdef __BIG_ENDIAN_BITFIELD
80                 u16 gso_size;
81                 u16 gso_segs;
82                 u32 reserved;
83 #else
84                 u32 reserved;
85                 u16 gso_segs;
86                 u16 gso_size;
87 #endif
88         } s;
89 };
90
91 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
92
93 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
94 #define OCTNIC_GSO_MAX_SIZE \
95                 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
96
97 struct octnic_gather {
98         /* List manipulation. Next and prev pointers. */
99         struct list_head list;
100
101         /* Size of the gather component at sg in bytes. */
102         int sg_size;
103
104         /* Number of bytes that sg was adjusted to make it 8B-aligned. */
105         int adjust;
106
107         /* Gather component that can accommodate max sized fragment list
108          * received from the IP layer.
109          */
110         struct octeon_sg_entry *sg;
111 };
112
113 struct octeon_device_priv {
114         /* Tasklet structures for this device. */
115         struct tasklet_struct droq_tasklet;
116         unsigned long napi_mask;
117 };
118
119 static int
120 liquidio_vf_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
121 static void liquidio_vf_remove(struct pci_dev *pdev);
122 static int octeon_device_init(struct octeon_device *oct);
123 static int liquidio_stop(struct net_device *netdev);
124
125 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
126 {
127         struct octeon_device_priv *oct_priv =
128             (struct octeon_device_priv *)oct->priv;
129         int retry = MAX_VF_IP_OP_PENDING_PKT_COUNT;
130         int pkt_cnt = 0, pending_pkts;
131         int i;
132
133         do {
134                 pending_pkts = 0;
135
136                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
137                         if (!(oct->io_qmask.oq & BIT_ULL(i)))
138                                 continue;
139                         pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
140                 }
141                 if (pkt_cnt > 0) {
142                         pending_pkts += pkt_cnt;
143                         tasklet_schedule(&oct_priv->droq_tasklet);
144                 }
145                 pkt_cnt = 0;
146                 schedule_timeout_uninterruptible(1);
147
148         } while (retry-- && pending_pkts);
149
150         return pkt_cnt;
151 }
152
153 /**
154  * \brief wait for all pending requests to complete
155  * @param oct Pointer to Octeon device
156  *
157  * Called during shutdown sequence
158  */
159 static int wait_for_pending_requests(struct octeon_device *oct)
160 {
161         int i, pcount = 0;
162
163         for (i = 0; i < MAX_VF_IP_OP_PENDING_PKT_COUNT; i++) {
164                 pcount = atomic_read(
165                     &oct->response_list[OCTEON_ORDERED_SC_LIST]
166                          .pending_req_count);
167                 if (pcount)
168                         schedule_timeout_uninterruptible(HZ / 10);
169                 else
170                         break;
171         }
172
173         if (pcount)
174                 return 1;
175
176         return 0;
177 }
178
179 /**
180  * \brief Cause device to go quiet so it can be safely removed/reset/etc
181  * @param oct Pointer to Octeon device
182  */
183 static void pcierror_quiesce_device(struct octeon_device *oct)
184 {
185         int i;
186
187         /* Disable the input and output queues now. No more packets will
188          * arrive from Octeon, but we should wait for all packet processing
189          * to finish.
190          */
191
192         /* To allow for in-flight requests */
193         schedule_timeout_uninterruptible(100);
194
195         if (wait_for_pending_requests(oct))
196                 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
197
198         /* Force all requests waiting to be fetched by OCTEON to complete. */
199         for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
200                 struct octeon_instr_queue *iq;
201
202                 if (!(oct->io_qmask.iq & BIT_ULL(i)))
203                         continue;
204                 iq = oct->instr_queue[i];
205
206                 if (atomic_read(&iq->instr_pending)) {
207                         spin_lock_bh(&iq->lock);
208                         iq->fill_cnt = 0;
209                         iq->octeon_read_index = iq->host_write_index;
210                         iq->stats.instr_processed +=
211                             atomic_read(&iq->instr_pending);
212                         lio_process_iq_request_list(oct, iq, 0);
213                         spin_unlock_bh(&iq->lock);
214                 }
215         }
216
217         /* Force all pending ordered list requests to time out. */
218         lio_process_ordered_list(oct, 1);
219
220         /* We do not need to wait for output queue packets to be processed. */
221 }
222
223 /**
224  * \brief Cleanup PCI AER uncorrectable error status
225  * @param dev Pointer to PCI device
226  */
227 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
228 {
229         u32 status, mask;
230         int pos = 0x100;
231
232         pr_info("%s :\n", __func__);
233
234         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
235         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
236         if (dev->error_state == pci_channel_io_normal)
237                 status &= ~mask; /* Clear corresponding nonfatal bits */
238         else
239                 status &= mask; /* Clear corresponding fatal bits */
240         pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
241 }
242
243 /**
244  * \brief Stop all PCI IO to a given device
245  * @param dev Pointer to Octeon device
246  */
247 static void stop_pci_io(struct octeon_device *oct)
248 {
249         struct msix_entry *msix_entries;
250         int i;
251
252         /* No more instructions will be forwarded. */
253         atomic_set(&oct->status, OCT_DEV_IN_RESET);
254
255         for (i = 0; i < oct->ifcount; i++)
256                 netif_device_detach(oct->props[i].netdev);
257
258         /* Disable interrupts  */
259         oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
260
261         pcierror_quiesce_device(oct);
262         if (oct->msix_on) {
263                 msix_entries = (struct msix_entry *)oct->msix_entries;
264                 for (i = 0; i < oct->num_msix_irqs; i++) {
265                         /* clear the affinity_cpumask */
266                         irq_set_affinity_hint(msix_entries[i].vector,
267                                               NULL);
268                         free_irq(msix_entries[i].vector,
269                                  &oct->ioq_vector[i]);
270                 }
271                 pci_disable_msix(oct->pci_dev);
272                 kfree(oct->msix_entries);
273                 oct->msix_entries = NULL;
274                 octeon_free_ioq_vector(oct);
275         }
276         dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
277                 lio_get_state_string(&oct->status));
278
279         /* making it a common function for all OCTEON models */
280         cleanup_aer_uncorrect_error_status(oct->pci_dev);
281
282         pci_disable_device(oct->pci_dev);
283 }
284
285 /**
286  * \brief called when PCI error is detected
287  * @param pdev Pointer to PCI device
288  * @param state The current pci connection state
289  *
290  * This function is called after a PCI bus error affecting
291  * this device has been detected.
292  */
293 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
294                                                      pci_channel_state_t state)
295 {
296         struct octeon_device *oct = pci_get_drvdata(pdev);
297
298         /* Non-correctable Non-fatal errors */
299         if (state == pci_channel_io_normal) {
300                 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
301                 cleanup_aer_uncorrect_error_status(oct->pci_dev);
302                 return PCI_ERS_RESULT_CAN_RECOVER;
303         }
304
305         /* Non-correctable Fatal errors */
306         dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
307         stop_pci_io(oct);
308
309         return PCI_ERS_RESULT_DISCONNECT;
310 }
311
312 /* For PCI-E Advanced Error Recovery (AER) Interface */
313 static const struct pci_error_handlers liquidio_vf_err_handler = {
314         .error_detected = liquidio_pcie_error_detected,
315 };
316
317 static const struct pci_device_id liquidio_vf_pci_tbl[] = {
318         {
319                 PCI_VENDOR_ID_CAVIUM, OCTEON_CN23XX_VF_VID,
320                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
321         },
322         {
323                 0, 0, 0, 0, 0, 0, 0
324         }
325 };
326 MODULE_DEVICE_TABLE(pci, liquidio_vf_pci_tbl);
327
328 static struct pci_driver liquidio_vf_pci_driver = {
329         .name           = "LiquidIO_VF",
330         .id_table       = liquidio_vf_pci_tbl,
331         .probe          = liquidio_vf_probe,
332         .remove         = liquidio_vf_remove,
333         .err_handler    = &liquidio_vf_err_handler,    /* For AER */
334 };
335
336 /**
337  * \brief check interface state
338  * @param lio per-network private data
339  * @param state_flag flag state to check
340  */
341 static int ifstate_check(struct lio *lio, int state_flag)
342 {
343         return atomic_read(&lio->ifstate) & state_flag;
344 }
345
346 /**
347  * \brief set interface state
348  * @param lio per-network private data
349  * @param state_flag flag state to set
350  */
351 static void ifstate_set(struct lio *lio, int state_flag)
352 {
353         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
354 }
355
356 /**
357  * \brief clear interface state
358  * @param lio per-network private data
359  * @param state_flag flag state to clear
360  */
361 static void ifstate_reset(struct lio *lio, int state_flag)
362 {
363         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
364 }
365
366 /**
367  * \brief Stop Tx queues
368  * @param netdev network device
369  */
370 static void txqs_stop(struct net_device *netdev)
371 {
372         if (netif_is_multiqueue(netdev)) {
373                 int i;
374
375                 for (i = 0; i < netdev->num_tx_queues; i++)
376                         netif_stop_subqueue(netdev, i);
377         } else {
378                 netif_stop_queue(netdev);
379         }
380 }
381
382 /**
383  * \brief Start Tx queues
384  * @param netdev network device
385  */
386 static void txqs_start(struct net_device *netdev)
387 {
388         if (netif_is_multiqueue(netdev)) {
389                 int i;
390
391                 for (i = 0; i < netdev->num_tx_queues; i++)
392                         netif_start_subqueue(netdev, i);
393         } else {
394                 netif_start_queue(netdev);
395         }
396 }
397
398 /**
399  * \brief Wake Tx queues
400  * @param netdev network device
401  */
402 static void txqs_wake(struct net_device *netdev)
403 {
404         struct lio *lio = GET_LIO(netdev);
405
406         if (netif_is_multiqueue(netdev)) {
407                 int i;
408
409                 for (i = 0; i < netdev->num_tx_queues; i++) {
410                         int qno = lio->linfo.txpciq[i % (lio->linfo.num_txpciq)]
411                                       .s.q_no;
412                         if (__netif_subqueue_stopped(netdev, i)) {
413                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
414                                                           tx_restart, 1);
415                                 netif_wake_subqueue(netdev, i);
416                         }
417                 }
418         } else {
419                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
420                                           tx_restart, 1);
421                 netif_wake_queue(netdev);
422         }
423 }
424
425 /**
426  * \brief Start Tx queue
427  * @param netdev network device
428  */
429 static void start_txq(struct net_device *netdev)
430 {
431         struct lio *lio = GET_LIO(netdev);
432
433         if (lio->linfo.link.s.link_up) {
434                 txqs_start(netdev);
435                 return;
436         }
437 }
438
439 /**
440  * \brief Wake a queue
441  * @param netdev network device
442  * @param q which queue to wake
443  */
444 static void wake_q(struct net_device *netdev, int q)
445 {
446         if (netif_is_multiqueue(netdev))
447                 netif_wake_subqueue(netdev, q);
448         else
449                 netif_wake_queue(netdev);
450 }
451
452 /**
453  * \brief Stop a queue
454  * @param netdev network device
455  * @param q which queue to stop
456  */
457 static void stop_q(struct net_device *netdev, int q)
458 {
459         if (netif_is_multiqueue(netdev))
460                 netif_stop_subqueue(netdev, q);
461         else
462                 netif_stop_queue(netdev);
463 }
464
465 /**
466  * Remove the node at the head of the list. The list would be empty at
467  * the end of this call if there are no more nodes in the list.
468  */
469 static struct list_head *list_delete_head(struct list_head *root)
470 {
471         struct list_head *node;
472
473         if ((root->prev == root) && (root->next == root))
474                 node = NULL;
475         else
476                 node = root->next;
477
478         if (node)
479                 list_del(node);
480
481         return node;
482 }
483
484 /**
485  * \brief Delete gather lists
486  * @param lio per-network private data
487  */
488 static void delete_glists(struct lio *lio)
489 {
490         struct octnic_gather *g;
491         int i;
492
493         if (!lio->glist)
494                 return;
495
496         for (i = 0; i < lio->linfo.num_txpciq; i++) {
497                 do {
498                         g = (struct octnic_gather *)
499                             list_delete_head(&lio->glist[i]);
500                         if (g) {
501                                 if (g->sg)
502                                         kfree((void *)((unsigned long)g->sg -
503                                                         g->adjust));
504                                 kfree(g);
505                         }
506                 } while (g);
507         }
508
509         kfree(lio->glist);
510         kfree(lio->glist_lock);
511 }
512
513 /**
514  * \brief Setup gather lists
515  * @param lio per-network private data
516  */
517 static int setup_glists(struct lio *lio, int num_iqs)
518 {
519         struct octnic_gather *g;
520         int i, j;
521
522         lio->glist_lock =
523             kzalloc(sizeof(*lio->glist_lock) * num_iqs, GFP_KERNEL);
524         if (!lio->glist_lock)
525                 return 1;
526
527         lio->glist =
528             kzalloc(sizeof(*lio->glist) * num_iqs, GFP_KERNEL);
529         if (!lio->glist) {
530                 kfree(lio->glist_lock);
531                 return 1;
532         }
533
534         for (i = 0; i < num_iqs; i++) {
535                 spin_lock_init(&lio->glist_lock[i]);
536
537                 INIT_LIST_HEAD(&lio->glist[i]);
538
539                 for (j = 0; j < lio->tx_qsize; j++) {
540                         g = kzalloc(sizeof(*g), GFP_KERNEL);
541                         if (!g)
542                                 break;
543
544                         g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
545                                       OCT_SG_ENTRY_SIZE);
546
547                         g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
548                         if (!g->sg) {
549                                 kfree(g);
550                                 break;
551                         }
552
553                         /* The gather component should be aligned on 64-bit
554                          * boundary
555                          */
556                         if (((unsigned long)g->sg) & 7) {
557                                 g->adjust = 8 - (((unsigned long)g->sg) & 7);
558                                 g->sg = (struct octeon_sg_entry *)
559                                         ((unsigned long)g->sg + g->adjust);
560                         }
561                         list_add_tail(&g->list, &lio->glist[i]);
562                 }
563
564                 if (j != lio->tx_qsize) {
565                         delete_glists(lio);
566                         return 1;
567                 }
568         }
569
570         return 0;
571 }
572
573 /**
574  * \brief Print link information
575  * @param netdev network device
576  */
577 static void print_link_info(struct net_device *netdev)
578 {
579         struct lio *lio = GET_LIO(netdev);
580
581         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
582                 struct oct_link_info *linfo = &lio->linfo;
583
584                 if (linfo->link.s.link_up) {
585                         netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
586                                    linfo->link.s.speed,
587                                    (linfo->link.s.duplex) ? "Full" : "Half");
588                 } else {
589                         netif_info(lio, link, lio->netdev, "Link Down\n");
590                 }
591         }
592 }
593
594 /**
595  * \brief Routine to notify MTU change
596  * @param work work_struct data structure
597  */
598 static void octnet_link_status_change(struct work_struct *work)
599 {
600         struct cavium_wk *wk = (struct cavium_wk *)work;
601         struct lio *lio = (struct lio *)wk->ctxptr;
602
603         rtnl_lock();
604         call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
605         rtnl_unlock();
606 }
607
608 /**
609  * \brief Sets up the mtu status change work
610  * @param netdev network device
611  */
612 static int setup_link_status_change_wq(struct net_device *netdev)
613 {
614         struct lio *lio = GET_LIO(netdev);
615         struct octeon_device *oct = lio->oct_dev;
616
617         lio->link_status_wq.wq = alloc_workqueue("link-status",
618                                                  WQ_MEM_RECLAIM, 0);
619         if (!lio->link_status_wq.wq) {
620                 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
621                 return -1;
622         }
623         INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
624                           octnet_link_status_change);
625         lio->link_status_wq.wk.ctxptr = lio;
626
627         return 0;
628 }
629
630 static void cleanup_link_status_change_wq(struct net_device *netdev)
631 {
632         struct lio *lio = GET_LIO(netdev);
633
634         if (lio->link_status_wq.wq) {
635                 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
636                 destroy_workqueue(lio->link_status_wq.wq);
637         }
638 }
639
640 /**
641  * \brief Update link status
642  * @param netdev network device
643  * @param ls link status structure
644  *
645  * Called on receipt of a link status response from the core application to
646  * update each interface's link status.
647  */
648 static void update_link_status(struct net_device *netdev,
649                                union oct_link_status *ls)
650 {
651         struct lio *lio = GET_LIO(netdev);
652         struct octeon_device *oct = lio->oct_dev;
653
654         if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
655                 lio->linfo.link.u64 = ls->u64;
656
657                 print_link_info(netdev);
658                 lio->link_changes++;
659
660                 if (lio->linfo.link.s.link_up) {
661                         netif_carrier_on(netdev);
662                         txqs_wake(netdev);
663                 } else {
664                         netif_carrier_off(netdev);
665                         txqs_stop(netdev);
666                 }
667
668                 if (lio->linfo.link.s.mtu < netdev->mtu) {
669                         dev_warn(&oct->pci_dev->dev,
670                                  "PF has changed the MTU for gmx port. Reducing the mtu from %d to %d\n",
671                                  netdev->mtu, lio->linfo.link.s.mtu);
672                         lio->mtu = lio->linfo.link.s.mtu;
673                         netdev->mtu = lio->linfo.link.s.mtu;
674                         queue_delayed_work(lio->link_status_wq.wq,
675                                            &lio->link_status_wq.wk.work, 0);
676                 }
677         }
678 }
679
680 static void update_txq_status(struct octeon_device *oct, int iq_num)
681 {
682         struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
683         struct net_device *netdev;
684         struct lio *lio;
685
686         netdev = oct->props[iq->ifidx].netdev;
687         lio = GET_LIO(netdev);
688         if (netif_is_multiqueue(netdev)) {
689                 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
690                     lio->linfo.link.s.link_up &&
691                     (!octnet_iq_is_full(oct, iq_num))) {
692                         netif_wake_subqueue(netdev, iq->q_index);
693                         INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
694                                                   tx_restart, 1);
695                 } else {
696                         if (!octnet_iq_is_full(oct, lio->txq)) {
697                                 INCR_INSTRQUEUE_PKT_COUNT(
698                                     lio->oct_dev, lio->txq, tx_restart, 1);
699                                 wake_q(netdev, lio->txq);
700                         }
701                 }
702         }
703 }
704
705 static
706 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
707 {
708         struct octeon_device *oct = droq->oct_dev;
709         struct octeon_device_priv *oct_priv =
710             (struct octeon_device_priv *)oct->priv;
711
712         if (droq->ops.poll_mode) {
713                 droq->ops.napi_fn(droq);
714         } else {
715                 if (ret & MSIX_PO_INT) {
716                         dev_err(&oct->pci_dev->dev,
717                                 "should not come here should not get rx when poll mode = 0 for vf\n");
718                         tasklet_schedule(&oct_priv->droq_tasklet);
719                         return 1;
720                 }
721                 /* this will be flushed periodically by check iq db */
722                 if (ret & MSIX_PI_INT)
723                         return 0;
724         }
725         return 0;
726 }
727
728 static irqreturn_t
729 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
730 {
731         struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
732         struct octeon_device *oct = ioq_vector->oct_dev;
733         struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
734         u64 ret;
735
736         ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
737
738         if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
739                 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
740
741         return IRQ_HANDLED;
742 }
743
744 /**
745  * \brief Setup interrupt for octeon device
746  * @param oct octeon device
747  *
748  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
749  */
750 static int octeon_setup_interrupt(struct octeon_device *oct)
751 {
752         struct msix_entry *msix_entries;
753         int num_alloc_ioq_vectors;
754         int num_ioq_vectors;
755         int irqret;
756         int i;
757
758         if (oct->msix_on) {
759                 oct->num_msix_irqs = oct->sriov_info.rings_per_vf;
760
761                 oct->msix_entries = kcalloc(
762                     oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
763                 if (!oct->msix_entries)
764                         return 1;
765
766                 msix_entries = (struct msix_entry *)oct->msix_entries;
767
768                 for (i = 0; i < oct->num_msix_irqs; i++)
769                         msix_entries[i].entry = i;
770                 num_alloc_ioq_vectors = pci_enable_msix_range(
771                                                 oct->pci_dev, msix_entries,
772                                                 oct->num_msix_irqs,
773                                                 oct->num_msix_irqs);
774                 if (num_alloc_ioq_vectors < 0) {
775                         dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
776                         kfree(oct->msix_entries);
777                         oct->msix_entries = NULL;
778                         return 1;
779                 }
780                 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
781
782                 num_ioq_vectors = oct->num_msix_irqs;
783
784                 for (i = 0; i < num_ioq_vectors; i++) {
785                         irqret = request_irq(msix_entries[i].vector,
786                                              liquidio_msix_intr_handler, 0,
787                                              "octeon", &oct->ioq_vector[i]);
788                         if (irqret) {
789                                 dev_err(&oct->pci_dev->dev,
790                                         "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
791                                         irqret);
792
793                                 while (i) {
794                                         i--;
795                                         irq_set_affinity_hint(
796                                             msix_entries[i].vector, NULL);
797                                         free_irq(msix_entries[i].vector,
798                                                  &oct->ioq_vector[i]);
799                                 }
800                                 pci_disable_msix(oct->pci_dev);
801                                 kfree(oct->msix_entries);
802                                 oct->msix_entries = NULL;
803                                 return 1;
804                         }
805                         oct->ioq_vector[i].vector = msix_entries[i].vector;
806                         /* assign the cpu mask for this msix interrupt vector */
807                         irq_set_affinity_hint(
808                             msix_entries[i].vector,
809                             (&oct->ioq_vector[i].affinity_mask));
810                 }
811                 dev_dbg(&oct->pci_dev->dev,
812                         "OCTEON[%d]: MSI-X enabled\n", oct->octeon_id);
813         }
814         return 0;
815 }
816
817 /**
818  * \brief PCI probe handler
819  * @param pdev PCI device structure
820  * @param ent unused
821  */
822 static int
823 liquidio_vf_probe(struct pci_dev *pdev,
824                   const struct pci_device_id *ent __attribute__((unused)))
825 {
826         struct octeon_device *oct_dev = NULL;
827
828         oct_dev = octeon_allocate_device(pdev->device,
829                                          sizeof(struct octeon_device_priv));
830
831         if (!oct_dev) {
832                 dev_err(&pdev->dev, "Unable to allocate device\n");
833                 return -ENOMEM;
834         }
835         oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
836
837         dev_info(&pdev->dev, "Initializing device %x:%x.\n",
838                  (u32)pdev->vendor, (u32)pdev->device);
839
840         /* Assign octeon_device for this device to the private data area. */
841         pci_set_drvdata(pdev, oct_dev);
842
843         /* set linux specific device pointer */
844         oct_dev->pci_dev = pdev;
845
846         if (octeon_device_init(oct_dev)) {
847                 liquidio_vf_remove(pdev);
848                 return -ENOMEM;
849         }
850
851         dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
852
853         return 0;
854 }
855
856 /**
857  * \brief PCI FLR for each Octeon device.
858  * @param oct octeon device
859  */
860 static void octeon_pci_flr(struct octeon_device *oct)
861 {
862         u16 status;
863
864         pci_save_state(oct->pci_dev);
865
866         pci_cfg_access_lock(oct->pci_dev);
867
868         /* Quiesce the device completely */
869         pci_write_config_word(oct->pci_dev, PCI_COMMAND,
870                               PCI_COMMAND_INTX_DISABLE);
871
872         /* Wait for Transaction Pending bit clean */
873         msleep(100);
874         pcie_capability_read_word(oct->pci_dev, PCI_EXP_DEVSTA, &status);
875         if (status & PCI_EXP_DEVSTA_TRPND) {
876                 dev_info(&oct->pci_dev->dev, "Function reset incomplete after 100ms, sleeping for 5 seconds\n");
877                 ssleep(5);
878                 pcie_capability_read_word(oct->pci_dev, PCI_EXP_DEVSTA,
879                                           &status);
880                 if (status & PCI_EXP_DEVSTA_TRPND)
881                         dev_info(&oct->pci_dev->dev, "Function reset still incomplete after 5s, reset anyway\n");
882         }
883         pcie_capability_set_word(oct->pci_dev, PCI_EXP_DEVCTL,
884                                  PCI_EXP_DEVCTL_BCR_FLR);
885         mdelay(100);
886
887         pci_cfg_access_unlock(oct->pci_dev);
888
889         pci_restore_state(oct->pci_dev);
890 }
891
892 /**
893  *\brief Destroy resources associated with octeon device
894  * @param pdev PCI device structure
895  * @param ent unused
896  */
897 static void octeon_destroy_resources(struct octeon_device *oct)
898 {
899         struct msix_entry *msix_entries;
900         int i;
901
902         switch (atomic_read(&oct->status)) {
903         case OCT_DEV_RUNNING:
904         case OCT_DEV_CORE_OK:
905                 /* No more instructions will be forwarded. */
906                 atomic_set(&oct->status, OCT_DEV_IN_RESET);
907
908                 oct->app_mode = CVM_DRV_INVALID_APP;
909                 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
910                         lio_get_state_string(&oct->status));
911
912                 schedule_timeout_uninterruptible(HZ / 10);
913
914                 /* fallthrough */
915         case OCT_DEV_HOST_OK:
916                 /* fallthrough */
917         case OCT_DEV_IO_QUEUES_DONE:
918                 if (wait_for_pending_requests(oct))
919                         dev_err(&oct->pci_dev->dev, "There were pending requests\n");
920
921                 if (lio_wait_for_instr_fetch(oct))
922                         dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
923
924                 /* Disable the input and output queues now. No more packets will
925                  * arrive from Octeon, but we should wait for all packet
926                  * processing to finish.
927                  */
928                 oct->fn_list.disable_io_queues(oct);
929
930                 if (lio_wait_for_oq_pkts(oct))
931                         dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
932
933         case OCT_DEV_INTR_SET_DONE:
934                 /* Disable interrupts  */
935                 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
936
937                 if (oct->msix_on) {
938                         msix_entries = (struct msix_entry *)oct->msix_entries;
939                         for (i = 0; i < oct->num_msix_irqs; i++) {
940                                 irq_set_affinity_hint(msix_entries[i].vector,
941                                                       NULL);
942                                 free_irq(msix_entries[i].vector,
943                                          &oct->ioq_vector[i]);
944                         }
945                         pci_disable_msix(oct->pci_dev);
946                         kfree(oct->msix_entries);
947                         oct->msix_entries = NULL;
948                 }
949                 /* Soft reset the octeon device before exiting */
950                 if (oct->pci_dev->reset_fn)
951                         octeon_pci_flr(oct);
952                 else
953                         cn23xx_vf_ask_pf_to_do_flr(oct);
954
955                 /* fallthrough */
956         case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
957                 octeon_free_ioq_vector(oct);
958
959                 /* fallthrough */
960         case OCT_DEV_MBOX_SETUP_DONE:
961                 oct->fn_list.free_mbox(oct);
962
963                 /* fallthrough */
964         case OCT_DEV_IN_RESET:
965         case OCT_DEV_DROQ_INIT_DONE:
966                 mdelay(100);
967                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
968                         if (!(oct->io_qmask.oq & BIT_ULL(i)))
969                                 continue;
970                         octeon_delete_droq(oct, i);
971                 }
972
973                 /* fallthrough */
974         case OCT_DEV_RESP_LIST_INIT_DONE:
975                 octeon_delete_response_list(oct);
976
977                 /* fallthrough */
978         case OCT_DEV_INSTR_QUEUE_INIT_DONE:
979                 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
980                         if (!(oct->io_qmask.iq & BIT_ULL(i)))
981                                 continue;
982                         octeon_delete_instr_queue(oct, i);
983                 }
984
985                 /* fallthrough */
986         case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
987                 octeon_free_sc_buffer_pool(oct);
988
989                 /* fallthrough */
990         case OCT_DEV_DISPATCH_INIT_DONE:
991                 octeon_delete_dispatch_list(oct);
992                 cancel_delayed_work_sync(&oct->nic_poll_work.work);
993
994                 /* fallthrough */
995         case OCT_DEV_PCI_MAP_DONE:
996                 octeon_unmap_pci_barx(oct, 0);
997                 octeon_unmap_pci_barx(oct, 1);
998
999                 /* fallthrough */
1000         case OCT_DEV_PCI_ENABLE_DONE:
1001                 pci_clear_master(oct->pci_dev);
1002                 /* Disable the device, releasing the PCI INT */
1003                 pci_disable_device(oct->pci_dev);
1004
1005                 /* fallthrough */
1006         case OCT_DEV_BEGIN_STATE:
1007                 /* Nothing to be done here either */
1008                 break;
1009         }
1010 }
1011
1012 /**
1013  * \brief Callback for rx ctrl
1014  * @param status status of request
1015  * @param buf pointer to resp structure
1016  */
1017 static void rx_ctl_callback(struct octeon_device *oct,
1018                             u32 status, void *buf)
1019 {
1020         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1021         struct liquidio_rx_ctl_context *ctx;
1022
1023         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1024
1025         oct = lio_get_device(ctx->octeon_id);
1026         if (status)
1027                 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1028                         CVM_CAST64(status));
1029         WRITE_ONCE(ctx->cond, 1);
1030
1031         /* This barrier is required to be sure that the response has been
1032          * written fully before waking up the handler
1033          */
1034         wmb();
1035
1036         wake_up_interruptible(&ctx->wc);
1037 }
1038
1039 /**
1040  * \brief Send Rx control command
1041  * @param lio per-network private data
1042  * @param start_stop whether to start or stop
1043  */
1044 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1045 {
1046         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1047         int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1048         struct liquidio_rx_ctl_context *ctx;
1049         struct octeon_soft_command *sc;
1050         union octnet_cmd *ncmd;
1051         int retval;
1052
1053         if (oct->props[lio->ifidx].rx_on == start_stop)
1054                 return;
1055
1056         sc = (struct octeon_soft_command *)
1057                 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1058                                           16, ctx_size);
1059
1060         ncmd = (union octnet_cmd *)sc->virtdptr;
1061         ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1062
1063         WRITE_ONCE(ctx->cond, 0);
1064         ctx->octeon_id = lio_get_device_id(oct);
1065         init_waitqueue_head(&ctx->wc);
1066
1067         ncmd->u64 = 0;
1068         ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1069         ncmd->s.param1 = start_stop;
1070
1071         octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1072
1073         sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1074
1075         octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1076                                     OPCODE_NIC_CMD, 0, 0, 0);
1077
1078         sc->callback = rx_ctl_callback;
1079         sc->callback_arg = sc;
1080         sc->wait_time = 5000;
1081
1082         retval = octeon_send_soft_command(oct, sc);
1083         if (retval == IQ_SEND_FAILED) {
1084                 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1085         } else {
1086                 /* Sleep on a wait queue till the cond flag indicates that the
1087                  * response arrived or timed-out.
1088                  */
1089                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1090                         return;
1091                 oct->props[lio->ifidx].rx_on = start_stop;
1092         }
1093
1094         octeon_free_soft_command(oct, sc);
1095 }
1096
1097 /**
1098  * \brief Destroy NIC device interface
1099  * @param oct octeon device
1100  * @param ifidx which interface to destroy
1101  *
1102  * Cleanup associated with each interface for an Octeon device  when NIC
1103  * module is being unloaded or if initialization fails during load.
1104  */
1105 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1106 {
1107         struct net_device *netdev = oct->props[ifidx].netdev;
1108         struct napi_struct *napi, *n;
1109         struct lio *lio;
1110
1111         if (!netdev) {
1112                 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1113                         __func__, ifidx);
1114                 return;
1115         }
1116
1117         lio = GET_LIO(netdev);
1118
1119         dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1120
1121         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1122                 liquidio_stop(netdev);
1123
1124         if (oct->props[lio->ifidx].napi_enabled == 1) {
1125                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1126                         napi_disable(napi);
1127
1128                 oct->props[lio->ifidx].napi_enabled = 0;
1129
1130                 oct->droq[0]->ops.poll_mode = 0;
1131         }
1132
1133         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1134                 unregister_netdev(netdev);
1135
1136         cleanup_link_status_change_wq(netdev);
1137
1138         delete_glists(lio);
1139
1140         free_netdev(netdev);
1141
1142         oct->props[ifidx].gmxport = -1;
1143
1144         oct->props[ifidx].netdev = NULL;
1145 }
1146
1147 /**
1148  * \brief Stop complete NIC functionality
1149  * @param oct octeon device
1150  */
1151 static int liquidio_stop_nic_module(struct octeon_device *oct)
1152 {
1153         struct lio *lio;
1154         int i, j;
1155
1156         dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1157         if (!oct->ifcount) {
1158                 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1159                 return 1;
1160         }
1161
1162         spin_lock_bh(&oct->cmd_resp_wqlock);
1163         oct->cmd_resp_state = OCT_DRV_OFFLINE;
1164         spin_unlock_bh(&oct->cmd_resp_wqlock);
1165
1166         for (i = 0; i < oct->ifcount; i++) {
1167                 lio = GET_LIO(oct->props[i].netdev);
1168                 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1169                         octeon_unregister_droq_ops(oct,
1170                                                    lio->linfo.rxpciq[j].s.q_no);
1171         }
1172
1173         for (i = 0; i < oct->ifcount; i++)
1174                 liquidio_destroy_nic_device(oct, i);
1175
1176         dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1177         return 0;
1178 }
1179
1180 /**
1181  * \brief Cleans up resources at unload time
1182  * @param pdev PCI device structure
1183  */
1184 static void liquidio_vf_remove(struct pci_dev *pdev)
1185 {
1186         struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1187
1188         dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1189
1190         if (oct_dev->app_mode == CVM_DRV_NIC_APP)
1191                 liquidio_stop_nic_module(oct_dev);
1192
1193         /* Reset the octeon device and cleanup all memory allocated for
1194          * the octeon device by driver.
1195          */
1196         octeon_destroy_resources(oct_dev);
1197
1198         dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1199
1200         /* This octeon device has been removed. Update the global
1201          * data structure to reflect this. Free the device structure.
1202          */
1203         octeon_free_device_mem(oct_dev);
1204 }
1205
1206 /**
1207  * \brief PCI initialization for each Octeon device.
1208  * @param oct octeon device
1209  */
1210 static int octeon_pci_os_setup(struct octeon_device *oct)
1211 {
1212 #ifdef CONFIG_PCI_IOV
1213         /* setup PCI stuff first */
1214         if (!oct->pci_dev->physfn)
1215                 octeon_pci_flr(oct);
1216 #endif
1217
1218         if (pci_enable_device(oct->pci_dev)) {
1219                 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1220                 return 1;
1221         }
1222
1223         if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1224                 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1225                 pci_disable_device(oct->pci_dev);
1226                 return 1;
1227         }
1228
1229         /* Enable PCI DMA Master. */
1230         pci_set_master(oct->pci_dev);
1231
1232         return 0;
1233 }
1234
1235 static int skb_iq(struct lio *lio, struct sk_buff *skb)
1236 {
1237         int q = 0;
1238
1239         if (netif_is_multiqueue(lio->netdev))
1240                 q = skb->queue_mapping % lio->linfo.num_txpciq;
1241
1242         return q;
1243 }
1244
1245 /**
1246  * \brief Check Tx queue state for a given network buffer
1247  * @param lio per-network private data
1248  * @param skb network buffer
1249  */
1250 static int check_txq_state(struct lio *lio, struct sk_buff *skb)
1251 {
1252         int q = 0, iq = 0;
1253
1254         if (netif_is_multiqueue(lio->netdev)) {
1255                 q = skb->queue_mapping;
1256                 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1257         } else {
1258                 iq = lio->txq;
1259                 q = iq;
1260         }
1261
1262         if (octnet_iq_is_full(lio->oct_dev, iq))
1263                 return 0;
1264
1265         if (__netif_subqueue_stopped(lio->netdev, q)) {
1266                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1267                 wake_q(lio->netdev, q);
1268         }
1269
1270         return 1;
1271 }
1272
1273 /**
1274  * \brief Unmap and free network buffer
1275  * @param buf buffer
1276  */
1277 static void free_netbuf(void *buf)
1278 {
1279         struct octnet_buf_free_info *finfo;
1280         struct sk_buff *skb;
1281         struct lio *lio;
1282
1283         finfo = (struct octnet_buf_free_info *)buf;
1284         skb = finfo->skb;
1285         lio = finfo->lio;
1286
1287         dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1288                          DMA_TO_DEVICE);
1289
1290         check_txq_state(lio, skb);
1291
1292         tx_buffer_free(skb);
1293 }
1294
1295 /**
1296  * \brief Unmap and free gather buffer
1297  * @param buf buffer
1298  */
1299 static void free_netsgbuf(void *buf)
1300 {
1301         struct octnet_buf_free_info *finfo;
1302         struct octnic_gather *g;
1303         struct sk_buff *skb;
1304         int i, frags, iq;
1305         struct lio *lio;
1306
1307         finfo = (struct octnet_buf_free_info *)buf;
1308         skb = finfo->skb;
1309         lio = finfo->lio;
1310         g = finfo->g;
1311         frags = skb_shinfo(skb)->nr_frags;
1312
1313         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1314                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1315                          DMA_TO_DEVICE);
1316
1317         i = 1;
1318         while (frags--) {
1319                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1320
1321                 pci_unmap_page((lio->oct_dev)->pci_dev,
1322                                g->sg[(i >> 2)].ptr[(i & 3)],
1323                                frag->size, DMA_TO_DEVICE);
1324                 i++;
1325         }
1326
1327         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1328                          finfo->dptr, g->sg_size,
1329                          DMA_TO_DEVICE);
1330
1331         iq = skb_iq(lio, skb);
1332
1333         spin_lock(&lio->glist_lock[iq]);
1334         list_add_tail(&g->list, &lio->glist[iq]);
1335         spin_unlock(&lio->glist_lock[iq]);
1336
1337         check_txq_state(lio, skb); /* mq support: sub-queue state check */
1338
1339         tx_buffer_free(skb);
1340 }
1341
1342 /**
1343  * \brief Unmap and free gather buffer with response
1344  * @param buf buffer
1345  */
1346 static void free_netsgbuf_with_resp(void *buf)
1347 {
1348         struct octnet_buf_free_info *finfo;
1349         struct octeon_soft_command *sc;
1350         struct octnic_gather *g;
1351         struct sk_buff *skb;
1352         int i, frags, iq;
1353         struct lio *lio;
1354
1355         sc = (struct octeon_soft_command *)buf;
1356         skb = (struct sk_buff *)sc->callback_arg;
1357         finfo = (struct octnet_buf_free_info *)&skb->cb;
1358
1359         lio = finfo->lio;
1360         g = finfo->g;
1361         frags = skb_shinfo(skb)->nr_frags;
1362
1363         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1364                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1365                          DMA_TO_DEVICE);
1366
1367         i = 1;
1368         while (frags--) {
1369                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1370
1371                 pci_unmap_page((lio->oct_dev)->pci_dev,
1372                                g->sg[(i >> 2)].ptr[(i & 3)],
1373                                frag->size, DMA_TO_DEVICE);
1374                 i++;
1375         }
1376
1377         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1378                          finfo->dptr, g->sg_size,
1379                          DMA_TO_DEVICE);
1380
1381         iq = skb_iq(lio, skb);
1382
1383         spin_lock(&lio->glist_lock[iq]);
1384         list_add_tail(&g->list, &lio->glist[iq]);
1385         spin_unlock(&lio->glist_lock[iq]);
1386
1387         /* Don't free the skb yet */
1388
1389         check_txq_state(lio, skb);
1390 }
1391
1392 /**
1393  * \brief Setup output queue
1394  * @param oct octeon device
1395  * @param q_no which queue
1396  * @param num_descs how many descriptors
1397  * @param desc_size size of each descriptor
1398  * @param app_ctx application context
1399  */
1400 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1401                              int desc_size, void *app_ctx)
1402 {
1403         int ret_val;
1404
1405         dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1406         /* droq creation and local register settings. */
1407         ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1408         if (ret_val < 0)
1409                 return ret_val;
1410
1411         if (ret_val == 1) {
1412                 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1413                 return 0;
1414         }
1415
1416         /* Enable the droq queues */
1417         octeon_set_droq_pkt_op(oct, q_no, 1);
1418
1419         /* Send Credit for Octeon Output queues. Credits are always
1420          * sent after the output queue is enabled.
1421          */
1422         writel(oct->droq[q_no]->max_count, oct->droq[q_no]->pkts_credit_reg);
1423
1424         return ret_val;
1425 }
1426
1427 /**
1428  * \brief Callback for getting interface configuration
1429  * @param status status of request
1430  * @param buf pointer to resp structure
1431  */
1432 static void if_cfg_callback(struct octeon_device *oct,
1433                             u32 status __attribute__((unused)), void *buf)
1434 {
1435         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1436         struct liquidio_if_cfg_context *ctx;
1437         struct liquidio_if_cfg_resp *resp;
1438
1439         resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1440         ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1441
1442         oct = lio_get_device(ctx->octeon_id);
1443         if (resp->status)
1444                 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1445                         CVM_CAST64(resp->status));
1446         WRITE_ONCE(ctx->cond, 1);
1447
1448         snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
1449                  resp->cfg_info.liquidio_firmware_version);
1450
1451         /* This barrier is required to be sure that the response has been
1452          * written fully before waking up the handler
1453          */
1454         wmb();
1455
1456         wake_up_interruptible(&ctx->wc);
1457 }
1458
1459 /** Routine to push packets arriving on Octeon interface upto network layer.
1460  * @param oct_id   - octeon device id.
1461  * @param skbuff   - skbuff struct to be passed to network layer.
1462  * @param len      - size of total data received.
1463  * @param rh       - Control header associated with the packet
1464  * @param param    - additional control data with the packet
1465  * @param arg      - farg registered in droq_ops
1466  */
1467 static void
1468 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
1469                      void *skbuff,
1470                      u32 len,
1471                      union octeon_rh *rh,
1472                      void *param,
1473                      void *arg)
1474 {
1475         struct napi_struct *napi = param;
1476         struct octeon_droq *droq =
1477                 container_of(param, struct octeon_droq, napi);
1478         struct net_device *netdev = (struct net_device *)arg;
1479         struct sk_buff *skb = (struct sk_buff *)skbuff;
1480         u16 vtag = 0;
1481         u32 r_dh_off;
1482
1483         if (netdev) {
1484                 struct lio *lio = GET_LIO(netdev);
1485                 int packet_was_received;
1486
1487                 /* Do not proceed if the interface is not in RUNNING state. */
1488                 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1489                         recv_buffer_free(skb);
1490                         droq->stats.rx_dropped++;
1491                         return;
1492                 }
1493
1494                 skb->dev = netdev;
1495
1496                 skb_record_rx_queue(skb, droq->q_no);
1497                 if (likely(len > MIN_SKB_SIZE)) {
1498                         struct octeon_skb_page_info *pg_info;
1499                         unsigned char *va;
1500
1501                         pg_info = ((struct octeon_skb_page_info *)(skb->cb));
1502                         if (pg_info->page) {
1503                                 /* For Paged allocation use the frags */
1504                                 va = page_address(pg_info->page) +
1505                                         pg_info->page_offset;
1506                                 memcpy(skb->data, va, MIN_SKB_SIZE);
1507                                 skb_put(skb, MIN_SKB_SIZE);
1508                                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1509                                                 pg_info->page,
1510                                                 pg_info->page_offset +
1511                                                 MIN_SKB_SIZE,
1512                                                 len - MIN_SKB_SIZE,
1513                                                 LIO_RXBUFFER_SZ);
1514                         }
1515                 } else {
1516                         struct octeon_skb_page_info *pg_info =
1517                                 ((struct octeon_skb_page_info *)(skb->cb));
1518                         skb_copy_to_linear_data(skb,
1519                                                 page_address(pg_info->page) +
1520                                                 pg_info->page_offset, len);
1521                         skb_put(skb, len);
1522                         put_page(pg_info->page);
1523                 }
1524
1525                 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
1526
1527                 if (rh->r_dh.has_hwtstamp)
1528                         r_dh_off -= BYTES_PER_DHLEN_UNIT;
1529
1530                 if (rh->r_dh.has_hash) {
1531                         __be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
1532                         u32 hash = be32_to_cpu(*hash_be);
1533
1534                         skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
1535                         r_dh_off -= BYTES_PER_DHLEN_UNIT;
1536                 }
1537
1538                 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
1539                 skb->protocol = eth_type_trans(skb, skb->dev);
1540
1541                 if ((netdev->features & NETIF_F_RXCSUM) &&
1542                     (((rh->r_dh.encap_on) &&
1543                       (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
1544                      (!(rh->r_dh.encap_on) &&
1545                       (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
1546                         /* checksum has already been verified */
1547                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1548                 else
1549                         skb->ip_summed = CHECKSUM_NONE;
1550
1551                 /* Setting Encapsulation field on basis of status received
1552                  * from the firmware
1553                  */
1554                 if (rh->r_dh.encap_on) {
1555                         skb->encapsulation = 1;
1556                         skb->csum_level = 1;
1557                         droq->stats.rx_vxlan++;
1558                 }
1559
1560                 /* inbound VLAN tag */
1561                 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1562                     rh->r_dh.vlan) {
1563                         u16 priority = rh->r_dh.priority;
1564                         u16 vid = rh->r_dh.vlan;
1565
1566                         vtag = (priority << VLAN_PRIO_SHIFT) | vid;
1567                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
1568                 }
1569
1570                 packet_was_received = (napi_gro_receive(napi, skb) != GRO_DROP);
1571
1572                 if (packet_was_received) {
1573                         droq->stats.rx_bytes_received += len;
1574                         droq->stats.rx_pkts_received++;
1575                 } else {
1576                         droq->stats.rx_dropped++;
1577                         netif_info(lio, rx_err, lio->netdev,
1578                                    "droq:%d  error rx_dropped:%llu\n",
1579                                    droq->q_no, droq->stats.rx_dropped);
1580                 }
1581
1582         } else {
1583                 recv_buffer_free(skb);
1584         }
1585 }
1586
1587 /**
1588  * \brief callback when receive interrupt occurs and we are in NAPI mode
1589  * @param arg pointer to octeon output queue
1590  */
1591 static void liquidio_vf_napi_drv_callback(void *arg)
1592 {
1593         struct octeon_droq *droq = arg;
1594
1595         napi_schedule_irqoff(&droq->napi);
1596 }
1597
1598 /**
1599  * \brief Entry point for NAPI polling
1600  * @param napi NAPI structure
1601  * @param budget maximum number of items to process
1602  */
1603 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1604 {
1605         struct octeon_instr_queue *iq;
1606         struct octeon_device *oct;
1607         struct octeon_droq *droq;
1608         int tx_done = 0, iq_no;
1609         int work_done;
1610
1611         droq = container_of(napi, struct octeon_droq, napi);
1612         oct = droq->oct_dev;
1613         iq_no = droq->q_no;
1614
1615         /* Handle Droq descriptors */
1616         work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1617                                                  POLL_EVENT_PROCESS_PKTS,
1618                                                  budget);
1619
1620         /* Flush the instruction queue */
1621         iq = oct->instr_queue[iq_no];
1622         if (iq) {
1623                 /* Process iq buffers with in the budget limits */
1624                 tx_done = octeon_flush_iq(oct, iq, budget);
1625                 /* Update iq read-index rather than waiting for next interrupt.
1626                  * Return back if tx_done is false.
1627                  */
1628                 update_txq_status(oct, iq_no);
1629         } else {
1630                 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
1631                         __func__, iq_no);
1632         }
1633
1634         /* force enable interrupt if reg cnts are high to avoid wraparound */
1635         if ((work_done < budget && tx_done) ||
1636             (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
1637             (droq->pkt_count >= MAX_REG_CNT)) {
1638                 tx_done = 1;
1639                 napi_complete_done(napi, work_done);
1640                 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1641                                              POLL_EVENT_ENABLE_INTR, 0);
1642                 return 0;
1643         }
1644
1645         return (!tx_done) ? (budget) : (work_done);
1646 }
1647
1648 /**
1649  * \brief Setup input and output queues
1650  * @param octeon_dev octeon device
1651  * @param ifidx Interface index
1652  *
1653  * Note: Queues are with respect to the octeon device. Thus
1654  * an input queue is for egress packets, and output queues
1655  * are for ingress packets.
1656  */
1657 static int setup_io_queues(struct octeon_device *octeon_dev, int ifidx)
1658 {
1659         struct octeon_droq_ops droq_ops;
1660         struct net_device *netdev;
1661         static int cpu_id_modulus;
1662         struct octeon_droq *droq;
1663         struct napi_struct *napi;
1664         static int cpu_id;
1665         int num_tx_descs;
1666         struct lio *lio;
1667         int retval = 0;
1668         int q, q_no;
1669
1670         netdev = octeon_dev->props[ifidx].netdev;
1671
1672         lio = GET_LIO(netdev);
1673
1674         memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1675
1676         droq_ops.fptr = liquidio_push_packet;
1677         droq_ops.farg = netdev;
1678
1679         droq_ops.poll_mode = 1;
1680         droq_ops.napi_fn = liquidio_vf_napi_drv_callback;
1681         cpu_id = 0;
1682         cpu_id_modulus = num_present_cpus();
1683
1684         /* set up DROQs. */
1685         for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1686                 q_no = lio->linfo.rxpciq[q].s.q_no;
1687
1688                 retval = octeon_setup_droq(
1689                     octeon_dev, q_no,
1690                     CFG_GET_NUM_RX_DESCS_NIC_IF(octeon_get_conf(octeon_dev),
1691                                                 lio->ifidx),
1692                     CFG_GET_NUM_RX_BUF_SIZE_NIC_IF(octeon_get_conf(octeon_dev),
1693                                                    lio->ifidx),
1694                     NULL);
1695                 if (retval) {
1696                         dev_err(&octeon_dev->pci_dev->dev,
1697                                 "%s : Runtime DROQ(RxQ) creation failed.\n",
1698                                 __func__);
1699                         return 1;
1700                 }
1701
1702                 droq = octeon_dev->droq[q_no];
1703                 napi = &droq->napi;
1704                 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
1705
1706                 /* designate a CPU for this droq */
1707                 droq->cpu_id = cpu_id;
1708                 cpu_id++;
1709                 if (cpu_id >= cpu_id_modulus)
1710                         cpu_id = 0;
1711
1712                 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1713         }
1714
1715         /* 23XX VF can send/recv control messages (via the first VF-owned
1716          * droq) from the firmware even if the ethX interface is down,
1717          * so that's why poll_mode must be off for the first droq.
1718          */
1719         octeon_dev->droq[0]->ops.poll_mode = 0;
1720
1721         /* set up IQs. */
1722         for (q = 0; q < lio->linfo.num_txpciq; q++) {
1723                 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(
1724                     octeon_get_conf(octeon_dev), lio->ifidx);
1725                 retval = octeon_setup_iq(octeon_dev, ifidx, q,
1726                                          lio->linfo.txpciq[q], num_tx_descs,
1727                                          netdev_get_tx_queue(netdev, q));
1728                 if (retval) {
1729                         dev_err(&octeon_dev->pci_dev->dev,
1730                                 " %s : Runtime IQ(TxQ) creation failed.\n",
1731                                 __func__);
1732                         return 1;
1733                 }
1734         }
1735
1736         return 0;
1737 }
1738
1739 /**
1740  * \brief Net device open for LiquidIO
1741  * @param netdev network device
1742  */
1743 static int liquidio_open(struct net_device *netdev)
1744 {
1745         struct lio *lio = GET_LIO(netdev);
1746         struct octeon_device *oct = lio->oct_dev;
1747         struct napi_struct *napi, *n;
1748
1749         if (!oct->props[lio->ifidx].napi_enabled) {
1750                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1751                         napi_enable(napi);
1752
1753                 oct->props[lio->ifidx].napi_enabled = 1;
1754
1755                 oct->droq[0]->ops.poll_mode = 1;
1756         }
1757
1758         ifstate_set(lio, LIO_IFSTATE_RUNNING);
1759
1760         /* Ready for link status updates */
1761         lio->intf_open = 1;
1762
1763         netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
1764         start_txq(netdev);
1765
1766         /* tell Octeon to start forwarding packets to host */
1767         send_rx_ctrl_cmd(lio, 1);
1768
1769         dev_info(&oct->pci_dev->dev, "%s interface is opened\n", netdev->name);
1770
1771         return 0;
1772 }
1773
1774 /**
1775  * \brief Net device stop for LiquidIO
1776  * @param netdev network device
1777  */
1778 static int liquidio_stop(struct net_device *netdev)
1779 {
1780         struct lio *lio = GET_LIO(netdev);
1781         struct octeon_device *oct = lio->oct_dev;
1782
1783         netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
1784         /* Inform that netif carrier is down */
1785         lio->intf_open = 0;
1786         lio->linfo.link.s.link_up = 0;
1787
1788         netif_carrier_off(netdev);
1789         lio->link_changes++;
1790
1791         /* tell Octeon to stop forwarding packets to host */
1792         send_rx_ctrl_cmd(lio, 0);
1793
1794         ifstate_reset(lio, LIO_IFSTATE_RUNNING);
1795
1796         txqs_stop(netdev);
1797
1798         dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
1799
1800         return 0;
1801 }
1802
1803 /**
1804  * \brief Converts a mask based on net device flags
1805  * @param netdev network device
1806  *
1807  * This routine generates a octnet_ifflags mask from the net device flags
1808  * received from the OS.
1809  */
1810 static enum octnet_ifflags get_new_flags(struct net_device *netdev)
1811 {
1812         enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
1813
1814         if (netdev->flags & IFF_PROMISC)
1815                 f |= OCTNET_IFFLAG_PROMISC;
1816
1817         if (netdev->flags & IFF_ALLMULTI)
1818                 f |= OCTNET_IFFLAG_ALLMULTI;
1819
1820         if (netdev->flags & IFF_MULTICAST) {
1821                 f |= OCTNET_IFFLAG_MULTICAST;
1822
1823                 /* Accept all multicast addresses if there are more than we
1824                  * can handle
1825                  */
1826                 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
1827                         f |= OCTNET_IFFLAG_ALLMULTI;
1828         }
1829
1830         if (netdev->flags & IFF_BROADCAST)
1831                 f |= OCTNET_IFFLAG_BROADCAST;
1832
1833         return f;
1834 }
1835
1836 static void liquidio_set_uc_list(struct net_device *netdev)
1837 {
1838         struct lio *lio = GET_LIO(netdev);
1839         struct octeon_device *oct = lio->oct_dev;
1840         struct octnic_ctrl_pkt nctrl;
1841         struct netdev_hw_addr *ha;
1842         u64 *mac;
1843
1844         if (lio->netdev_uc_count == netdev_uc_count(netdev))
1845                 return;
1846
1847         if (netdev_uc_count(netdev) > MAX_NCTRL_UDD) {
1848                 dev_err(&oct->pci_dev->dev, "too many MAC addresses in netdev uc list\n");
1849                 return;
1850         }
1851
1852         lio->netdev_uc_count = netdev_uc_count(netdev);
1853
1854         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1855         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_UC_LIST;
1856         nctrl.ncmd.s.more = lio->netdev_uc_count;
1857         nctrl.ncmd.s.param1 = oct->vf_num;
1858         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1859         nctrl.netpndev = (u64)netdev;
1860         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1861
1862         /* copy all the addresses into the udd */
1863         mac = &nctrl.udd[0];
1864         netdev_for_each_uc_addr(ha, netdev) {
1865                 ether_addr_copy(((u8 *)mac) + 2, ha->addr);
1866                 mac++;
1867         }
1868
1869         octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1870 }
1871
1872 /**
1873  * \brief Net device set_multicast_list
1874  * @param netdev network device
1875  */
1876 static void liquidio_set_mcast_list(struct net_device *netdev)
1877 {
1878         int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
1879         struct lio *lio = GET_LIO(netdev);
1880         struct octeon_device *oct = lio->oct_dev;
1881         struct octnic_ctrl_pkt nctrl;
1882         struct netdev_hw_addr *ha;
1883         u64 *mc;
1884         int ret;
1885
1886         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1887
1888         /* Create a ctrl pkt command to be sent to core app. */
1889         nctrl.ncmd.u64 = 0;
1890         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
1891         nctrl.ncmd.s.param1 = get_new_flags(netdev);
1892         nctrl.ncmd.s.param2 = mc_count;
1893         nctrl.ncmd.s.more = mc_count;
1894         nctrl.netpndev = (u64)netdev;
1895         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1896
1897         /* copy all the addresses into the udd */
1898         mc = &nctrl.udd[0];
1899         netdev_for_each_mc_addr(ha, netdev) {
1900                 *mc = 0;
1901                 ether_addr_copy(((u8 *)mc) + 2, ha->addr);
1902                 /* no need to swap bytes */
1903                 if (++mc > &nctrl.udd[mc_count])
1904                         break;
1905         }
1906
1907         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1908
1909         /* Apparently, any activity in this call from the kernel has to
1910          * be atomic. So we won't wait for response.
1911          */
1912         nctrl.wait_time = 0;
1913
1914         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1915         if (ret < 0) {
1916                 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
1917                         ret);
1918         }
1919
1920         liquidio_set_uc_list(netdev);
1921 }
1922
1923 /**
1924  * \brief Net device set_mac_address
1925  * @param netdev network device
1926  */
1927 static int liquidio_set_mac(struct net_device *netdev, void *p)
1928 {
1929         struct sockaddr *addr = (struct sockaddr *)p;
1930         struct lio *lio = GET_LIO(netdev);
1931         struct octeon_device *oct = lio->oct_dev;
1932         struct octnic_ctrl_pkt nctrl;
1933         int ret = 0;
1934
1935         if (!is_valid_ether_addr(addr->sa_data))
1936                 return -EADDRNOTAVAIL;
1937
1938         if (ether_addr_equal(addr->sa_data, netdev->dev_addr))
1939                 return 0;
1940
1941         if (lio->linfo.macaddr_is_admin_asgnd)
1942                 return -EPERM;
1943
1944         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1945
1946         nctrl.ncmd.u64 = 0;
1947         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
1948         nctrl.ncmd.s.param1 = 0;
1949         nctrl.ncmd.s.more = 1;
1950         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1951         nctrl.netpndev = (u64)netdev;
1952         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1953         nctrl.wait_time = 100;
1954
1955         nctrl.udd[0] = 0;
1956         /* The MAC Address is presented in network byte order. */
1957         ether_addr_copy((u8 *)&nctrl.udd[0] + 2, addr->sa_data);
1958
1959         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1960         if (ret < 0) {
1961                 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
1962                 return -ENOMEM;
1963         }
1964         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1965         ether_addr_copy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data);
1966
1967         return 0;
1968 }
1969
1970 /**
1971  * \brief Net device get_stats
1972  * @param netdev network device
1973  */
1974 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
1975 {
1976         struct lio *lio = GET_LIO(netdev);
1977         struct net_device_stats *stats = &netdev->stats;
1978         u64 pkts = 0, drop = 0, bytes = 0;
1979         struct oct_droq_stats *oq_stats;
1980         struct oct_iq_stats *iq_stats;
1981         struct octeon_device *oct;
1982         int i, iq_no, oq_no;
1983
1984         oct = lio->oct_dev;
1985
1986         for (i = 0; i < lio->linfo.num_txpciq; i++) {
1987                 iq_no = lio->linfo.txpciq[i].s.q_no;
1988                 iq_stats = &oct->instr_queue[iq_no]->stats;
1989                 pkts += iq_stats->tx_done;
1990                 drop += iq_stats->tx_dropped;
1991                 bytes += iq_stats->tx_tot_bytes;
1992         }
1993
1994         stats->tx_packets = pkts;
1995         stats->tx_bytes = bytes;
1996         stats->tx_dropped = drop;
1997
1998         pkts = 0;
1999         drop = 0;
2000         bytes = 0;
2001
2002         for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2003                 oq_no = lio->linfo.rxpciq[i].s.q_no;
2004                 oq_stats = &oct->droq[oq_no]->stats;
2005                 pkts += oq_stats->rx_pkts_received;
2006                 drop += (oq_stats->rx_dropped +
2007                          oq_stats->dropped_nodispatch +
2008                          oq_stats->dropped_toomany +
2009                          oq_stats->dropped_nomem);
2010                 bytes += oq_stats->rx_bytes_received;
2011         }
2012
2013         stats->rx_bytes = bytes;
2014         stats->rx_packets = pkts;
2015         stats->rx_dropped = drop;
2016
2017         return stats;
2018 }
2019
2020 /**
2021  * \brief Net device change_mtu
2022  * @param netdev network device
2023  */
2024 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2025 {
2026         struct lio *lio = GET_LIO(netdev);
2027         struct octeon_device *oct = lio->oct_dev;
2028
2029         lio->mtu = new_mtu;
2030
2031         netif_info(lio, probe, lio->netdev, "MTU Changed from %d to %d\n",
2032                    netdev->mtu, new_mtu);
2033         dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2034                  netdev->name, netdev->mtu, new_mtu);
2035
2036         netdev->mtu = new_mtu;
2037
2038         return 0;
2039 }
2040
2041 /**
2042  * \brief Handler for SIOCSHWTSTAMP ioctl
2043  * @param netdev network device
2044  * @param ifr interface request
2045  * @param cmd command
2046  */
2047 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2048 {
2049         struct lio *lio = GET_LIO(netdev);
2050         struct hwtstamp_config conf;
2051
2052         if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2053                 return -EFAULT;
2054
2055         if (conf.flags)
2056                 return -EINVAL;
2057
2058         switch (conf.tx_type) {
2059         case HWTSTAMP_TX_ON:
2060         case HWTSTAMP_TX_OFF:
2061                 break;
2062         default:
2063                 return -ERANGE;
2064         }
2065
2066         switch (conf.rx_filter) {
2067         case HWTSTAMP_FILTER_NONE:
2068                 break;
2069         case HWTSTAMP_FILTER_ALL:
2070         case HWTSTAMP_FILTER_SOME:
2071         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2072         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2073         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2074         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2075         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2076         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2077         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2078         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2079         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2080         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2081         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2082         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2083                 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2084                 break;
2085         default:
2086                 return -ERANGE;
2087         }
2088
2089         if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2090                 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2091
2092         else
2093                 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2094
2095         return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2096 }
2097
2098 /**
2099  * \brief ioctl handler
2100  * @param netdev network device
2101  * @param ifr interface request
2102  * @param cmd command
2103  */
2104 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2105 {
2106         switch (cmd) {
2107         case SIOCSHWTSTAMP:
2108                 return hwtstamp_ioctl(netdev, ifr);
2109         default:
2110                 return -EOPNOTSUPP;
2111         }
2112 }
2113
2114 static void handle_timestamp(struct octeon_device *oct, u32 status, void *buf)
2115 {
2116         struct sk_buff *skb = (struct sk_buff *)buf;
2117         struct octnet_buf_free_info *finfo;
2118         struct oct_timestamp_resp *resp;
2119         struct octeon_soft_command *sc;
2120         struct lio *lio;
2121
2122         finfo = (struct octnet_buf_free_info *)skb->cb;
2123         lio = finfo->lio;
2124         sc = finfo->sc;
2125         oct = lio->oct_dev;
2126         resp = (struct oct_timestamp_resp *)sc->virtrptr;
2127
2128         if (status != OCTEON_REQUEST_DONE) {
2129                 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2130                         CVM_CAST64(status));
2131                 resp->timestamp = 0;
2132         }
2133
2134         octeon_swap_8B_data(&resp->timestamp, 1);
2135
2136         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2137                 struct skb_shared_hwtstamps ts;
2138                 u64 ns = resp->timestamp;
2139
2140                 netif_info(lio, tx_done, lio->netdev,
2141                            "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2142                            skb, (unsigned long long)ns);
2143                 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2144                 skb_tstamp_tx(skb, &ts);
2145         }
2146
2147         octeon_free_soft_command(oct, sc);
2148         tx_buffer_free(skb);
2149 }
2150
2151 /* \brief Send a data packet that will be timestamped
2152  * @param oct octeon device
2153  * @param ndata pointer to network data
2154  * @param finfo pointer to private network data
2155  */
2156 static int send_nic_timestamp_pkt(struct octeon_device *oct,
2157                                   struct octnic_data_pkt *ndata,
2158                                   struct octnet_buf_free_info *finfo)
2159 {
2160         struct octeon_soft_command *sc;
2161         int ring_doorbell;
2162         struct lio *lio;
2163         int retval;
2164         u32 len;
2165
2166         lio = finfo->lio;
2167
2168         sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2169                                             sizeof(struct oct_timestamp_resp));
2170         finfo->sc = sc;
2171
2172         if (!sc) {
2173                 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2174                 return IQ_SEND_FAILED;
2175         }
2176
2177         if (ndata->reqtype == REQTYPE_NORESP_NET)
2178                 ndata->reqtype = REQTYPE_RESP_NET;
2179         else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2180                 ndata->reqtype = REQTYPE_RESP_NET_SG;
2181
2182         sc->callback = handle_timestamp;
2183         sc->callback_arg = finfo->skb;
2184         sc->iq_no = ndata->q_no;
2185
2186         len = (u32)((struct octeon_instr_ih3 *)(&sc->cmd.cmd3.ih3))->dlengsz;
2187
2188         ring_doorbell = 1;
2189
2190         retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2191                                      sc, len, ndata->reqtype);
2192
2193         if (retval == IQ_SEND_FAILED) {
2194                 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2195                         retval);
2196                 octeon_free_soft_command(oct, sc);
2197         } else {
2198                 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2199         }
2200
2201         return retval;
2202 }
2203
2204 /** \brief Transmit networks packets to the Octeon interface
2205  * @param skbuff   skbuff struct to be passed to network layer.
2206  * @param netdev   pointer to network device
2207  * @returns whether the packet was transmitted to the device okay or not
2208  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2209  */
2210 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2211 {
2212         struct octnet_buf_free_info *finfo;
2213         union octnic_cmd_setup cmdsetup;
2214         struct octnic_data_pkt ndata;
2215         struct octeon_instr_irh *irh;
2216         struct oct_iq_stats *stats;
2217         struct octeon_device *oct;
2218         int q_idx = 0, iq_no = 0;
2219         union tx_info *tx_info;
2220         struct lio *lio;
2221         int status = 0;
2222         u64 dptr = 0;
2223         u32 tag = 0;
2224         int j;
2225
2226         lio = GET_LIO(netdev);
2227         oct = lio->oct_dev;
2228
2229         if (netif_is_multiqueue(netdev)) {
2230                 q_idx = skb->queue_mapping;
2231                 q_idx = (q_idx % (lio->linfo.num_txpciq));
2232                 tag = q_idx;
2233                 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
2234         } else {
2235                 iq_no = lio->txq;
2236         }
2237
2238         stats = &oct->instr_queue[iq_no]->stats;
2239
2240         /* Check for all conditions in which the current packet cannot be
2241          * transmitted.
2242          */
2243         if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2244             (!lio->linfo.link.s.link_up) || (skb->len <= 0)) {
2245                 netif_info(lio, tx_err, lio->netdev, "Transmit failed link_status : %d\n",
2246                            lio->linfo.link.s.link_up);
2247                 goto lio_xmit_failed;
2248         }
2249
2250         /* Use space in skb->cb to store info used to unmap and
2251          * free the buffers.
2252          */
2253         finfo = (struct octnet_buf_free_info *)skb->cb;
2254         finfo->lio = lio;
2255         finfo->skb = skb;
2256         finfo->sc = NULL;
2257
2258         /* Prepare the attributes for the data to be passed to OSI. */
2259         memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2260
2261         ndata.buf = finfo;
2262
2263         ndata.q_no = iq_no;
2264
2265         if (netif_is_multiqueue(netdev)) {
2266                 if (octnet_iq_is_full(oct, ndata.q_no)) {
2267                         /* defer sending if queue is full */
2268                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2269                                    ndata.q_no);
2270                         stats->tx_iq_busy++;
2271                         return NETDEV_TX_BUSY;
2272                 }
2273         } else {
2274                 if (octnet_iq_is_full(oct, lio->txq)) {
2275                         /* defer sending if queue is full */
2276                         stats->tx_iq_busy++;
2277                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2278                                    ndata.q_no);
2279                         return NETDEV_TX_BUSY;
2280                 }
2281         }
2282
2283         ndata.datasize = skb->len;
2284
2285         cmdsetup.u64 = 0;
2286         cmdsetup.s.iq_no = iq_no;
2287
2288         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2289                 if (skb->encapsulation) {
2290                         cmdsetup.s.tnl_csum = 1;
2291                         stats->tx_vxlan++;
2292                 } else {
2293                         cmdsetup.s.transport_csum = 1;
2294                 }
2295         }
2296         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2297                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2298                 cmdsetup.s.timestamp = 1;
2299         }
2300
2301         if (!skb_shinfo(skb)->nr_frags) {
2302                 cmdsetup.s.u.datasize = skb->len;
2303                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2304                 /* Offload checksum calculation for TCP/UDP packets */
2305                 dptr = dma_map_single(&oct->pci_dev->dev,
2306                                       skb->data,
2307                                       skb->len,
2308                                       DMA_TO_DEVICE);
2309                 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2310                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2311                                 __func__);
2312                         return NETDEV_TX_BUSY;
2313                 }
2314
2315                 ndata.cmd.cmd3.dptr = dptr;
2316                 finfo->dptr = dptr;
2317                 ndata.reqtype = REQTYPE_NORESP_NET;
2318
2319         } else {
2320                 struct skb_frag_struct *frag;
2321                 struct octnic_gather *g;
2322                 int i, frags;
2323
2324                 spin_lock(&lio->glist_lock[q_idx]);
2325                 g = (struct octnic_gather *)list_delete_head(
2326                     &lio->glist[q_idx]);
2327                 spin_unlock(&lio->glist_lock[q_idx]);
2328
2329                 if (!g) {
2330                         netif_info(lio, tx_err, lio->netdev,
2331                                    "Transmit scatter gather: glist null!\n");
2332                         goto lio_xmit_failed;
2333                 }
2334
2335                 cmdsetup.s.gather = 1;
2336                 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2337                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2338
2339                 memset(g->sg, 0, g->sg_size);
2340
2341                 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2342                                                  skb->data,
2343                                                  (skb->len - skb->data_len),
2344                                                  DMA_TO_DEVICE);
2345                 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2346                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2347                                 __func__);
2348                         return NETDEV_TX_BUSY;
2349                 }
2350                 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2351
2352                 frags = skb_shinfo(skb)->nr_frags;
2353                 i = 1;
2354                 while (frags--) {
2355                         frag = &skb_shinfo(skb)->frags[i - 1];
2356
2357                         g->sg[(i >> 2)].ptr[(i & 3)] =
2358                                 dma_map_page(&oct->pci_dev->dev,
2359                                              frag->page.p,
2360                                              frag->page_offset,
2361                                              frag->size,
2362                                              DMA_TO_DEVICE);
2363                         if (dma_mapping_error(&oct->pci_dev->dev,
2364                                               g->sg[i >> 2].ptr[i & 3])) {
2365                                 dma_unmap_single(&oct->pci_dev->dev,
2366                                                  g->sg[0].ptr[0],
2367                                                  skb->len - skb->data_len,
2368                                                  DMA_TO_DEVICE);
2369                                 for (j = 1; j < i; j++) {
2370                                         frag = &skb_shinfo(skb)->frags[j - 1];
2371                                         dma_unmap_page(&oct->pci_dev->dev,
2372                                                        g->sg[j >> 2].ptr[j & 3],
2373                                                        frag->size,
2374                                                        DMA_TO_DEVICE);
2375                                 }
2376                                 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2377                                         __func__);
2378                                 return NETDEV_TX_BUSY;
2379                         }
2380
2381                         add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2382                         i++;
2383                 }
2384
2385                 dptr = dma_map_single(&oct->pci_dev->dev,
2386                                       g->sg, g->sg_size,
2387                                       DMA_TO_DEVICE);
2388                 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2389                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 4\n",
2390                                 __func__);
2391                         dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2392                                          skb->len - skb->data_len,
2393                                          DMA_TO_DEVICE);
2394                         for (j = 1; j <= frags; j++) {
2395                                 frag = &skb_shinfo(skb)->frags[j - 1];
2396                                 dma_unmap_page(&oct->pci_dev->dev,
2397                                                g->sg[j >> 2].ptr[j & 3],
2398                                                frag->size, DMA_TO_DEVICE);
2399                         }
2400                         return NETDEV_TX_BUSY;
2401                 }
2402
2403                 ndata.cmd.cmd3.dptr = dptr;
2404                 finfo->dptr = dptr;
2405                 finfo->g = g;
2406
2407                 ndata.reqtype = REQTYPE_NORESP_NET_SG;
2408         }
2409
2410         irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
2411         tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
2412
2413         if (skb_shinfo(skb)->gso_size) {
2414                 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2415                 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2416         }
2417
2418         /* HW insert VLAN tag */
2419         if (skb_vlan_tag_present(skb)) {
2420                 irh->priority = skb_vlan_tag_get(skb) >> VLAN_PRIO_SHIFT;
2421                 irh->vlan = skb_vlan_tag_get(skb) & VLAN_VID_MASK;
2422         }
2423
2424         if (unlikely(cmdsetup.s.timestamp))
2425                 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
2426         else
2427                 status = octnet_send_nic_data_pkt(oct, &ndata);
2428         if (status == IQ_SEND_FAILED)
2429                 goto lio_xmit_failed;
2430
2431         netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2432
2433         if (status == IQ_SEND_STOP) {
2434                 dev_err(&oct->pci_dev->dev, "Rcvd IQ_SEND_STOP signal; stopping IQ-%d\n",
2435                         iq_no);
2436                 stop_q(lio->netdev, q_idx);
2437         }
2438
2439         netif_trans_update(netdev);
2440
2441         if (tx_info->s.gso_segs)
2442                 stats->tx_done += tx_info->s.gso_segs;
2443         else
2444                 stats->tx_done++;
2445         stats->tx_tot_bytes += ndata.datasize;
2446
2447         return NETDEV_TX_OK;
2448
2449 lio_xmit_failed:
2450         stats->tx_dropped++;
2451         netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2452                    iq_no, stats->tx_dropped);
2453         if (dptr)
2454                 dma_unmap_single(&oct->pci_dev->dev, dptr,
2455                                  ndata.datasize, DMA_TO_DEVICE);
2456         tx_buffer_free(skb);
2457         return NETDEV_TX_OK;
2458 }
2459
2460 /** \brief Network device Tx timeout
2461  * @param netdev    pointer to network device
2462  */
2463 static void liquidio_tx_timeout(struct net_device *netdev)
2464 {
2465         struct lio *lio;
2466
2467         lio = GET_LIO(netdev);
2468
2469         netif_info(lio, tx_err, lio->netdev,
2470                    "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2471                    netdev->stats.tx_dropped);
2472         netif_trans_update(netdev);
2473         txqs_wake(netdev);
2474 }
2475
2476 static int
2477 liquidio_vlan_rx_add_vid(struct net_device *netdev,
2478                          __be16 proto __attribute__((unused)), u16 vid)
2479 {
2480         struct lio *lio = GET_LIO(netdev);
2481         struct octeon_device *oct = lio->oct_dev;
2482         struct octnic_ctrl_pkt nctrl;
2483         int ret = 0;
2484
2485         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2486
2487         nctrl.ncmd.u64 = 0;
2488         nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
2489         nctrl.ncmd.s.param1 = vid;
2490         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2491         nctrl.wait_time = 100;
2492         nctrl.netpndev = (u64)netdev;
2493         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2494
2495         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2496         if (ret < 0) {
2497                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2498                         ret);
2499         }
2500
2501         return ret;
2502 }
2503
2504 static int
2505 liquidio_vlan_rx_kill_vid(struct net_device *netdev,
2506                           __be16 proto __attribute__((unused)), u16 vid)
2507 {
2508         struct lio *lio = GET_LIO(netdev);
2509         struct octeon_device *oct = lio->oct_dev;
2510         struct octnic_ctrl_pkt nctrl;
2511         int ret = 0;
2512
2513         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2514
2515         nctrl.ncmd.u64 = 0;
2516         nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
2517         nctrl.ncmd.s.param1 = vid;
2518         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2519         nctrl.wait_time = 100;
2520         nctrl.netpndev = (u64)netdev;
2521         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2522
2523         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2524         if (ret < 0) {
2525                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2526                         ret);
2527         }
2528         return ret;
2529 }
2530
2531 /** Sending command to enable/disable RX checksum offload
2532  * @param netdev                pointer to network device
2533  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
2534  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
2535  *                              OCTNET_CMD_RXCSUM_DISABLE
2536  * @returns                     SUCCESS or FAILURE
2537  */
2538 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
2539                                        u8 rx_cmd)
2540 {
2541         struct lio *lio = GET_LIO(netdev);
2542         struct octeon_device *oct = lio->oct_dev;
2543         struct octnic_ctrl_pkt nctrl;
2544         int ret = 0;
2545
2546         nctrl.ncmd.u64 = 0;
2547         nctrl.ncmd.s.cmd = command;
2548         nctrl.ncmd.s.param1 = rx_cmd;
2549         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2550         nctrl.wait_time = 100;
2551         nctrl.netpndev = (u64)netdev;
2552         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2553
2554         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2555         if (ret < 0) {
2556                 dev_err(&oct->pci_dev->dev, "DEVFLAGS RXCSUM change failed in core (ret:0x%x)\n",
2557                         ret);
2558         }
2559         return ret;
2560 }
2561
2562 /** Sending command to add/delete VxLAN UDP port to firmware
2563  * @param netdev                pointer to network device
2564  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
2565  * @param vxlan_port            VxLAN port to be added or deleted
2566  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
2567  *                              OCTNET_CMD_VXLAN_PORT_DEL
2568  * @returns                     SUCCESS or FAILURE
2569  */
2570 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
2571                                        u16 vxlan_port, u8 vxlan_cmd_bit)
2572 {
2573         struct lio *lio = GET_LIO(netdev);
2574         struct octeon_device *oct = lio->oct_dev;
2575         struct octnic_ctrl_pkt nctrl;
2576         int ret = 0;
2577
2578         nctrl.ncmd.u64 = 0;
2579         nctrl.ncmd.s.cmd = command;
2580         nctrl.ncmd.s.more = vxlan_cmd_bit;
2581         nctrl.ncmd.s.param1 = vxlan_port;
2582         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2583         nctrl.wait_time = 100;
2584         nctrl.netpndev = (u64)netdev;
2585         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2586
2587         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2588         if (ret < 0) {
2589                 dev_err(&oct->pci_dev->dev,
2590                         "DEVFLAGS VxLAN port add/delete failed in core (ret : 0x%x)\n",
2591                         ret);
2592         }
2593         return ret;
2594 }
2595
2596 /** \brief Net device fix features
2597  * @param netdev  pointer to network device
2598  * @param request features requested
2599  * @returns updated features list
2600  */
2601 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2602                                                netdev_features_t request)
2603 {
2604         struct lio *lio = netdev_priv(netdev);
2605
2606         if ((request & NETIF_F_RXCSUM) &&
2607             !(lio->dev_capability & NETIF_F_RXCSUM))
2608                 request &= ~NETIF_F_RXCSUM;
2609
2610         if ((request & NETIF_F_HW_CSUM) &&
2611             !(lio->dev_capability & NETIF_F_HW_CSUM))
2612                 request &= ~NETIF_F_HW_CSUM;
2613
2614         if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2615                 request &= ~NETIF_F_TSO;
2616
2617         if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2618                 request &= ~NETIF_F_TSO6;
2619
2620         if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2621                 request &= ~NETIF_F_LRO;
2622
2623         /* Disable LRO if RXCSUM is off */
2624         if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2625             (lio->dev_capability & NETIF_F_LRO))
2626                 request &= ~NETIF_F_LRO;
2627
2628         return request;
2629 }
2630
2631 /** \brief Net device set features
2632  * @param netdev  pointer to network device
2633  * @param features features to enable/disable
2634  */
2635 static int liquidio_set_features(struct net_device *netdev,
2636                                  netdev_features_t features)
2637 {
2638         struct lio *lio = netdev_priv(netdev);
2639
2640         if (!((netdev->features ^ features) & NETIF_F_LRO))
2641                 return 0;
2642
2643         if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
2644                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
2645                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2646         else if (!(features & NETIF_F_LRO) &&
2647                  (lio->dev_capability & NETIF_F_LRO))
2648                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
2649                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2650         if (!(netdev->features & NETIF_F_RXCSUM) &&
2651             (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
2652             (features & NETIF_F_RXCSUM))
2653                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
2654                                             OCTNET_CMD_RXCSUM_ENABLE);
2655         else if ((netdev->features & NETIF_F_RXCSUM) &&
2656                  (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
2657                  !(features & NETIF_F_RXCSUM))
2658                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
2659                                             OCTNET_CMD_RXCSUM_DISABLE);
2660
2661         return 0;
2662 }
2663
2664 static void liquidio_add_vxlan_port(struct net_device *netdev,
2665                                     struct udp_tunnel_info *ti)
2666 {
2667         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2668                 return;
2669
2670         liquidio_vxlan_port_command(netdev,
2671                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
2672                                     htons(ti->port),
2673                                     OCTNET_CMD_VXLAN_PORT_ADD);
2674 }
2675
2676 static void liquidio_del_vxlan_port(struct net_device *netdev,
2677                                     struct udp_tunnel_info *ti)
2678 {
2679         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2680                 return;
2681
2682         liquidio_vxlan_port_command(netdev,
2683                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
2684                                     htons(ti->port),
2685                                     OCTNET_CMD_VXLAN_PORT_DEL);
2686 }
2687
2688 static const struct net_device_ops lionetdevops = {
2689         .ndo_open               = liquidio_open,
2690         .ndo_stop               = liquidio_stop,
2691         .ndo_start_xmit         = liquidio_xmit,
2692         .ndo_get_stats          = liquidio_get_stats,
2693         .ndo_set_mac_address    = liquidio_set_mac,
2694         .ndo_set_rx_mode        = liquidio_set_mcast_list,
2695         .ndo_tx_timeout         = liquidio_tx_timeout,
2696         .ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
2697         .ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
2698         .ndo_change_mtu         = liquidio_change_mtu,
2699         .ndo_do_ioctl           = liquidio_ioctl,
2700         .ndo_fix_features       = liquidio_fix_features,
2701         .ndo_set_features       = liquidio_set_features,
2702         .ndo_udp_tunnel_add     = liquidio_add_vxlan_port,
2703         .ndo_udp_tunnel_del     = liquidio_del_vxlan_port,
2704 };
2705
2706 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
2707 {
2708         struct octeon_device *oct = (struct octeon_device *)buf;
2709         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
2710         union oct_link_status *ls;
2711         int gmxport = 0;
2712         int i;
2713
2714         if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
2715                 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
2716                         recv_pkt->buffer_size[0],
2717                         recv_pkt->rh.r_nic_info.gmxport);
2718                 goto nic_info_err;
2719         }
2720
2721         gmxport = recv_pkt->rh.r_nic_info.gmxport;
2722         ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
2723
2724         octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
2725
2726         for (i = 0; i < oct->ifcount; i++) {
2727                 if (oct->props[i].gmxport == gmxport) {
2728                         update_link_status(oct->props[i].netdev, ls);
2729                         break;
2730                 }
2731         }
2732
2733 nic_info_err:
2734         for (i = 0; i < recv_pkt->buffer_count; i++)
2735                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
2736         octeon_free_recv_info(recv_info);
2737         return 0;
2738 }
2739
2740 /**
2741  * \brief Setup network interfaces
2742  * @param octeon_dev  octeon device
2743  *
2744  * Called during init time for each device. It assumes the NIC
2745  * is already up and running.  The link information for each
2746  * interface is passed in link_info.
2747  */
2748 static int setup_nic_devices(struct octeon_device *octeon_dev)
2749 {
2750         int retval, num_iqueues, num_oqueues;
2751         struct liquidio_if_cfg_context *ctx;
2752         u32 resp_size, ctx_size, data_size;
2753         struct liquidio_if_cfg_resp *resp;
2754         struct octeon_soft_command *sc;
2755         union oct_nic_if_cfg if_cfg;
2756         struct octdev_props *props;
2757         struct net_device *netdev;
2758         struct lio_version *vdata;
2759         struct lio *lio = NULL;
2760         u8 mac[ETH_ALEN], i, j;
2761         u32 ifidx_or_pfnum;
2762
2763         ifidx_or_pfnum = octeon_dev->pf_num;
2764
2765         /* This is to handle link status changes */
2766         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, OPCODE_NIC_INFO,
2767                                     lio_nic_info, octeon_dev);
2768
2769         /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
2770          * They are handled directly.
2771          */
2772         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
2773                                         free_netbuf);
2774
2775         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
2776                                         free_netsgbuf);
2777
2778         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
2779                                         free_netsgbuf_with_resp);
2780
2781         for (i = 0; i < octeon_dev->ifcount; i++) {
2782                 resp_size = sizeof(struct liquidio_if_cfg_resp);
2783                 ctx_size = sizeof(struct liquidio_if_cfg_context);
2784                 data_size = sizeof(struct lio_version);
2785                 sc = (struct octeon_soft_command *)
2786                         octeon_alloc_soft_command(octeon_dev, data_size,
2787                                                   resp_size, ctx_size);
2788                 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2789                 ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
2790                 vdata = (struct lio_version *)sc->virtdptr;
2791
2792                 *((u64 *)vdata) = 0;
2793                 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
2794                 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
2795                 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
2796
2797                 WRITE_ONCE(ctx->cond, 0);
2798                 ctx->octeon_id = lio_get_device_id(octeon_dev);
2799                 init_waitqueue_head(&ctx->wc);
2800
2801                 if_cfg.u64 = 0;
2802
2803                 if_cfg.s.num_iqueues = octeon_dev->sriov_info.rings_per_vf;
2804                 if_cfg.s.num_oqueues = octeon_dev->sriov_info.rings_per_vf;
2805                 if_cfg.s.base_queue = 0;
2806
2807                 sc->iq_no = 0;
2808
2809                 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
2810                                             OPCODE_NIC_IF_CFG, 0, if_cfg.u64,
2811                                             0);
2812
2813                 sc->callback = if_cfg_callback;
2814                 sc->callback_arg = sc;
2815                 sc->wait_time = 5000;
2816
2817                 retval = octeon_send_soft_command(octeon_dev, sc);
2818                 if (retval == IQ_SEND_FAILED) {
2819                         dev_err(&octeon_dev->pci_dev->dev,
2820                                 "iq/oq config failed status: %x\n", retval);
2821                         /* Soft instr is freed by driver in case of failure. */
2822                         goto setup_nic_dev_fail;
2823                 }
2824
2825                 /* Sleep on a wait queue till the cond flag indicates that the
2826                  * response arrived or timed-out.
2827                  */
2828                 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
2829                         dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
2830                         goto setup_nic_wait_intr;
2831                 }
2832
2833                 retval = resp->status;
2834                 if (retval) {
2835                         dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
2836                         goto setup_nic_dev_fail;
2837                 }
2838
2839                 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
2840                                     (sizeof(struct liquidio_if_cfg_info)) >> 3);
2841
2842                 num_iqueues = hweight64(resp->cfg_info.iqmask);
2843                 num_oqueues = hweight64(resp->cfg_info.oqmask);
2844
2845                 if (!(num_iqueues) || !(num_oqueues)) {
2846                         dev_err(&octeon_dev->pci_dev->dev,
2847                                 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
2848                                 resp->cfg_info.iqmask, resp->cfg_info.oqmask);
2849                         goto setup_nic_dev_fail;
2850                 }
2851                 dev_dbg(&octeon_dev->pci_dev->dev,
2852                         "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
2853                         i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
2854                         num_iqueues, num_oqueues);
2855
2856                 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
2857
2858                 if (!netdev) {
2859                         dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
2860                         goto setup_nic_dev_fail;
2861                 }
2862
2863                 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
2864
2865                 /* Associate the routines that will handle different
2866                  * netdev tasks.
2867                  */
2868                 netdev->netdev_ops = &lionetdevops;
2869
2870                 lio = GET_LIO(netdev);
2871
2872                 memset(lio, 0, sizeof(struct lio));
2873
2874                 lio->ifidx = ifidx_or_pfnum;
2875
2876                 props = &octeon_dev->props[i];
2877                 props->gmxport = resp->cfg_info.linfo.gmxport;
2878                 props->netdev = netdev;
2879
2880                 lio->linfo.num_rxpciq = num_oqueues;
2881                 lio->linfo.num_txpciq = num_iqueues;
2882
2883                 for (j = 0; j < num_oqueues; j++) {
2884                         lio->linfo.rxpciq[j].u64 =
2885                             resp->cfg_info.linfo.rxpciq[j].u64;
2886                 }
2887                 for (j = 0; j < num_iqueues; j++) {
2888                         lio->linfo.txpciq[j].u64 =
2889                             resp->cfg_info.linfo.txpciq[j].u64;
2890                 }
2891
2892                 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
2893                 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
2894                 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
2895                 lio->linfo.macaddr_is_admin_asgnd =
2896                         resp->cfg_info.linfo.macaddr_is_admin_asgnd;
2897
2898                 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2899
2900                 lio->dev_capability = NETIF_F_HIGHDMA
2901                                       | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2902                                       | NETIF_F_SG | NETIF_F_RXCSUM
2903                                       | NETIF_F_TSO | NETIF_F_TSO6
2904                                       | NETIF_F_GRO
2905                                       | NETIF_F_LRO;
2906                 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
2907
2908                 /* Copy of transmit encapsulation capabilities:
2909                  * TSO, TSO6, Checksums for this device
2910                  */
2911                 lio->enc_dev_capability = NETIF_F_IP_CSUM
2912                                           | NETIF_F_IPV6_CSUM
2913                                           | NETIF_F_GSO_UDP_TUNNEL
2914                                           | NETIF_F_HW_CSUM | NETIF_F_SG
2915                                           | NETIF_F_RXCSUM
2916                                           | NETIF_F_TSO | NETIF_F_TSO6
2917                                           | NETIF_F_LRO;
2918
2919                 netdev->hw_enc_features =
2920                     (lio->enc_dev_capability & ~NETIF_F_LRO);
2921                 netdev->vlan_features = lio->dev_capability;
2922                 /* Add any unchangeable hw features */
2923                 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
2924                                        NETIF_F_HW_VLAN_CTAG_RX |
2925                                        NETIF_F_HW_VLAN_CTAG_TX;
2926
2927                 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
2928
2929                 netdev->hw_features = lio->dev_capability;
2930
2931                 /* MTU range: 68 - 16000 */
2932                 netdev->min_mtu = LIO_MIN_MTU_SIZE;
2933                 netdev->max_mtu = LIO_MAX_MTU_SIZE;
2934
2935                 /* Point to the  properties for octeon device to which this
2936                  * interface belongs.
2937                  */
2938                 lio->oct_dev = octeon_dev;
2939                 lio->octprops = props;
2940                 lio->netdev = netdev;
2941
2942                 dev_dbg(&octeon_dev->pci_dev->dev,
2943                         "if%d gmx: %d hw_addr: 0x%llx\n", i,
2944                         lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
2945
2946                 /* 64-bit swap required on LE machines */
2947                 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
2948                 for (j = 0; j < ETH_ALEN; j++)
2949                         mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
2950
2951                 /* Copy MAC Address to OS network device structure */
2952                 ether_addr_copy(netdev->dev_addr, mac);
2953
2954                 if (setup_io_queues(octeon_dev, i)) {
2955                         dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
2956                         goto setup_nic_dev_fail;
2957                 }
2958
2959                 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
2960
2961                 /* For VFs, enable Octeon device interrupts here,
2962                  * as this is contingent upon IO queue setup
2963                  */
2964                 octeon_dev->fn_list.enable_interrupt(octeon_dev,
2965                                                      OCTEON_ALL_INTR);
2966
2967                 /* By default all interfaces on a single Octeon uses the same
2968                  * tx and rx queues
2969                  */
2970                 lio->txq = lio->linfo.txpciq[0].s.q_no;
2971                 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
2972
2973                 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
2974                 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
2975
2976                 if (setup_glists(lio, num_iqueues)) {
2977                         dev_err(&octeon_dev->pci_dev->dev,
2978                                 "Gather list allocation failed\n");
2979                         goto setup_nic_dev_fail;
2980                 }
2981
2982                 /* Register ethtool support */
2983                 liquidio_set_ethtool_ops(netdev);
2984                 if (lio->oct_dev->chip_id == OCTEON_CN23XX_VF_VID)
2985                         octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
2986                 else
2987                         octeon_dev->priv_flags = 0x0;
2988
2989                 if (netdev->features & NETIF_F_LRO)
2990                         liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
2991                                              OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2992
2993                 if ((debug != -1) && (debug & NETIF_MSG_HW))
2994                         liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE,
2995                                              0);
2996
2997                 if (setup_link_status_change_wq(netdev))
2998                         goto setup_nic_dev_fail;
2999
3000                 /* Register the network device with the OS */
3001                 if (register_netdev(netdev)) {
3002                         dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3003                         goto setup_nic_dev_fail;
3004                 }
3005
3006                 dev_dbg(&octeon_dev->pci_dev->dev,
3007                         "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3008                         i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3009                 netif_carrier_off(netdev);
3010                 lio->link_changes++;
3011
3012                 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3013
3014                 /* Sending command to firmware to enable Rx checksum offload
3015                  * by default at the time of setup of Liquidio driver for
3016                  * this device
3017                  */
3018                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3019                                             OCTNET_CMD_RXCSUM_ENABLE);
3020                 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3021                                      OCTNET_CMD_TXCSUM_ENABLE);
3022
3023                 dev_dbg(&octeon_dev->pci_dev->dev,
3024                         "NIC ifidx:%d Setup successful\n", i);
3025
3026                 octeon_free_soft_command(octeon_dev, sc);
3027         }
3028
3029         return 0;
3030
3031 setup_nic_dev_fail:
3032
3033         octeon_free_soft_command(octeon_dev, sc);
3034
3035 setup_nic_wait_intr:
3036
3037         while (i--) {
3038                 dev_err(&octeon_dev->pci_dev->dev,
3039                         "NIC ifidx:%d Setup failed\n", i);
3040                 liquidio_destroy_nic_device(octeon_dev, i);
3041         }
3042         return -ENODEV;
3043 }
3044
3045 /**
3046  * \brief initialize the NIC
3047  * @param oct octeon device
3048  *
3049  * This initialization routine is called once the Octeon device application is
3050  * up and running
3051  */
3052 static int liquidio_init_nic_module(struct octeon_device *oct)
3053 {
3054         struct oct_intrmod_cfg *intrmod_cfg;
3055         int num_nic_ports = 1;
3056         int i, retval = 0;
3057
3058         dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3059
3060         /* only default iq and oq were initialized
3061          * initialize the rest as well run port_config command for each port
3062          */
3063         oct->ifcount = num_nic_ports;
3064         memset(oct->props, 0,
3065                sizeof(struct octdev_props) * num_nic_ports);
3066
3067         for (i = 0; i < MAX_OCTEON_LINKS; i++)
3068                 oct->props[i].gmxport = -1;
3069
3070         retval = setup_nic_devices(oct);
3071         if (retval) {
3072                 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3073                 goto octnet_init_failure;
3074         }
3075
3076         /* Initialize interrupt moderation params */
3077         intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3078         intrmod_cfg->rx_enable = 1;
3079         intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3080         intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3081         intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3082         intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
3083         intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
3084         intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
3085         intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
3086         intrmod_cfg->tx_enable = 1;
3087         intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
3088         intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
3089         intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
3090         intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
3091         intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
3092         dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3093
3094         return retval;
3095
3096 octnet_init_failure:
3097
3098         oct->ifcount = 0;
3099
3100         return retval;
3101 }
3102
3103 /**
3104  * \brief Device initialization for each Octeon device that is probed
3105  * @param octeon_dev  octeon device
3106  */
3107 static int octeon_device_init(struct octeon_device *oct)
3108 {
3109         u32 rev_id;
3110         int j;
3111
3112         atomic_set(&oct->status, OCT_DEV_BEGIN_STATE);
3113
3114         /* Enable access to the octeon device and make its DMA capability
3115          * known to the OS.
3116          */
3117         if (octeon_pci_os_setup(oct))
3118                 return 1;
3119         atomic_set(&oct->status, OCT_DEV_PCI_ENABLE_DONE);
3120
3121         oct->chip_id = OCTEON_CN23XX_VF_VID;
3122         pci_read_config_dword(oct->pci_dev, 8, &rev_id);
3123         oct->rev_id = rev_id & 0xff;
3124
3125         if (cn23xx_setup_octeon_vf_device(oct))
3126                 return 1;
3127
3128         atomic_set(&oct->status, OCT_DEV_PCI_MAP_DONE);
3129
3130         oct->app_mode = CVM_DRV_NIC_APP;
3131
3132         /* Initialize the dispatch mechanism used to push packets arriving on
3133          * Octeon Output queues.
3134          */
3135         if (octeon_init_dispatch_list(oct))
3136                 return 1;
3137
3138         atomic_set(&oct->status, OCT_DEV_DISPATCH_INIT_DONE);
3139
3140         if (octeon_set_io_queues_off(oct)) {
3141                 dev_err(&oct->pci_dev->dev, "setting io queues off failed\n");
3142                 return 1;
3143         }
3144
3145         if (oct->fn_list.setup_device_regs(oct)) {
3146                 dev_err(&oct->pci_dev->dev, "device registers configuration failed\n");
3147                 return 1;
3148         }
3149
3150         /* Initialize soft command buffer pool */
3151         if (octeon_setup_sc_buffer_pool(oct)) {
3152                 dev_err(&oct->pci_dev->dev, "sc buffer pool allocation failed\n");
3153                 return 1;
3154         }
3155         atomic_set(&oct->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3156
3157         /* Setup the data structures that manage this Octeon's Input queues. */
3158         if (octeon_setup_instr_queues(oct)) {
3159                 dev_err(&oct->pci_dev->dev, "instruction queue initialization failed\n");
3160                 return 1;
3161         }
3162         atomic_set(&oct->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3163
3164         /* Initialize lists to manage the requests of different types that
3165          * arrive from user & kernel applications for this octeon device.
3166          */
3167         if (octeon_setup_response_list(oct)) {
3168                 dev_err(&oct->pci_dev->dev, "Response list allocation failed\n");
3169                 return 1;
3170         }
3171         atomic_set(&oct->status, OCT_DEV_RESP_LIST_INIT_DONE);
3172
3173         if (octeon_setup_output_queues(oct)) {
3174                 dev_err(&oct->pci_dev->dev, "Output queue initialization failed\n");
3175                 return 1;
3176         }
3177         atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);
3178
3179         if (oct->fn_list.setup_mbox(oct)) {
3180                 dev_err(&oct->pci_dev->dev, "Mailbox setup failed\n");
3181                 return 1;
3182         }
3183         atomic_set(&oct->status, OCT_DEV_MBOX_SETUP_DONE);
3184
3185         if (octeon_allocate_ioq_vector(oct)) {
3186                 dev_err(&oct->pci_dev->dev, "ioq vector allocation failed\n");
3187                 return 1;
3188         }
3189         atomic_set(&oct->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
3190
3191         dev_info(&oct->pci_dev->dev, "OCTEON_CN23XX VF Version: %s, %d ioqs\n",
3192                  LIQUIDIO_VERSION, oct->sriov_info.rings_per_vf);
3193
3194         /* Setup the interrupt handler and record the INT SUM register address*/
3195         if (octeon_setup_interrupt(oct))
3196                 return 1;
3197
3198         if (cn23xx_octeon_pfvf_handshake(oct))
3199                 return 1;
3200
3201         /* Enable Octeon device interrupts */
3202         oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
3203
3204         atomic_set(&oct->status, OCT_DEV_INTR_SET_DONE);
3205
3206         /* Enable the input and output queues for this Octeon device */
3207         if (oct->fn_list.enable_io_queues(oct)) {
3208                 dev_err(&oct->pci_dev->dev, "enabling io queues failed\n");
3209                 return 1;
3210         }
3211
3212         atomic_set(&oct->status, OCT_DEV_IO_QUEUES_DONE);
3213
3214         atomic_set(&oct->status, OCT_DEV_HOST_OK);
3215
3216         /* Send Credit for Octeon Output queues. Credits are always sent after
3217          * the output queue is enabled.
3218          */
3219         for (j = 0; j < oct->num_oqs; j++)
3220                 writel(oct->droq[j]->max_count, oct->droq[j]->pkts_credit_reg);
3221
3222         /* Packets can start arriving on the output queues from this point. */
3223
3224         atomic_set(&oct->status, OCT_DEV_CORE_OK);
3225
3226         atomic_set(&oct->status, OCT_DEV_RUNNING);
3227
3228         if (liquidio_init_nic_module(oct))
3229                 return 1;
3230
3231         return 0;
3232 }
3233
3234 static int __init liquidio_vf_init(void)
3235 {
3236         octeon_init_device_list(0);
3237         return pci_register_driver(&liquidio_vf_pci_driver);
3238 }
3239
3240 static void __exit liquidio_vf_exit(void)
3241 {
3242         pci_unregister_driver(&liquidio_vf_pci_driver);
3243
3244         pr_info("LiquidIO_VF network module is now unloaded\n");
3245 }
3246
3247 module_init(liquidio_vf_init);
3248 module_exit(liquidio_vf_exit);