]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
Merge branch 'x86/cpu' into x86/mm, before applying dependent patch
[karo-tx-linux.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <linux/iommu.h>
14 #include <net/ip.h>
15 #include <net/tso.h>
16
17 #include "nic_reg.h"
18 #include "nic.h"
19 #include "q_struct.h"
20 #include "nicvf_queues.h"
21
22 #define NICVF_PAGE_ORDER ((PAGE_SIZE <= 4096) ?  PAGE_ALLOC_COSTLY_ORDER : 0)
23
24 static inline u64 nicvf_iova_to_phys(struct nicvf *nic, dma_addr_t dma_addr)
25 {
26         /* Translation is installed only when IOMMU is present */
27         if (nic->iommu_domain)
28                 return iommu_iova_to_phys(nic->iommu_domain, dma_addr);
29         return dma_addr;
30 }
31
32 static void nicvf_get_page(struct nicvf *nic)
33 {
34         if (!nic->rb_pageref || !nic->rb_page)
35                 return;
36
37         page_ref_add(nic->rb_page, nic->rb_pageref);
38         nic->rb_pageref = 0;
39 }
40
41 /* Poll a register for a specific value */
42 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
43                           u64 reg, int bit_pos, int bits, int val)
44 {
45         u64 bit_mask;
46         u64 reg_val;
47         int timeout = 10;
48
49         bit_mask = (1ULL << bits) - 1;
50         bit_mask = (bit_mask << bit_pos);
51
52         while (timeout) {
53                 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
54                 if (((reg_val & bit_mask) >> bit_pos) == val)
55                         return 0;
56                 usleep_range(1000, 2000);
57                 timeout--;
58         }
59         netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
60         return 1;
61 }
62
63 /* Allocate memory for a queue's descriptors */
64 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
65                                   int q_len, int desc_size, int align_bytes)
66 {
67         dmem->q_len = q_len;
68         dmem->size = (desc_size * q_len) + align_bytes;
69         /* Save address, need it while freeing */
70         dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
71                                                 &dmem->dma, GFP_KERNEL);
72         if (!dmem->unalign_base)
73                 return -ENOMEM;
74
75         /* Align memory address for 'align_bytes' */
76         dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
77         dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
78         return 0;
79 }
80
81 /* Free queue's descriptor memory */
82 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
83 {
84         if (!dmem)
85                 return;
86
87         dma_free_coherent(&nic->pdev->dev, dmem->size,
88                           dmem->unalign_base, dmem->dma);
89         dmem->unalign_base = NULL;
90         dmem->base = NULL;
91 }
92
93 /* Allocate buffer for packet reception
94  * HW returns memory address where packet is DMA'ed but not a pointer
95  * into RBDR ring, so save buffer address at the start of fragment and
96  * align the start address to a cache aligned address
97  */
98 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
99                                          u32 buf_len, u64 **rbuf)
100 {
101         int order = NICVF_PAGE_ORDER;
102
103         /* Check if request can be accomodated in previous allocated page */
104         if (nic->rb_page &&
105             ((nic->rb_page_offset + buf_len) < (PAGE_SIZE << order))) {
106                 nic->rb_pageref++;
107                 goto ret;
108         }
109
110         nicvf_get_page(nic);
111
112         /* Allocate a new page */
113         nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
114                                    order);
115         if (!nic->rb_page) {
116                 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
117                 return -ENOMEM;
118         }
119         nic->rb_page_offset = 0;
120 ret:
121         /* HW will ensure data coherency, CPU sync not required */
122         *rbuf = (u64 *)((u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
123                                                 nic->rb_page_offset, buf_len,
124                                                 DMA_FROM_DEVICE,
125                                                 DMA_ATTR_SKIP_CPU_SYNC));
126         if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
127                 if (!nic->rb_page_offset)
128                         __free_pages(nic->rb_page, order);
129                 nic->rb_page = NULL;
130                 return -ENOMEM;
131         }
132         nic->rb_page_offset += buf_len;
133
134         return 0;
135 }
136
137 /* Build skb around receive buffer */
138 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
139                                            u64 rb_ptr, int len)
140 {
141         void *data;
142         struct sk_buff *skb;
143
144         data = phys_to_virt(rb_ptr);
145
146         /* Now build an skb to give to stack */
147         skb = build_skb(data, RCV_FRAG_LEN);
148         if (!skb) {
149                 put_page(virt_to_page(data));
150                 return NULL;
151         }
152
153         prefetch(skb->data);
154         return skb;
155 }
156
157 /* Allocate RBDR ring and populate receive buffers */
158 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
159                             int ring_len, int buf_size)
160 {
161         int idx;
162         u64 *rbuf;
163         struct rbdr_entry_t *desc;
164         int err;
165
166         err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
167                                      sizeof(struct rbdr_entry_t),
168                                      NICVF_RCV_BUF_ALIGN_BYTES);
169         if (err)
170                 return err;
171
172         rbdr->desc = rbdr->dmem.base;
173         /* Buffer size has to be in multiples of 128 bytes */
174         rbdr->dma_size = buf_size;
175         rbdr->enable = true;
176         rbdr->thresh = RBDR_THRESH;
177         rbdr->head = 0;
178         rbdr->tail = 0;
179
180         nic->rb_page = NULL;
181         for (idx = 0; idx < ring_len; idx++) {
182                 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
183                                              &rbuf);
184                 if (err) {
185                         /* To free already allocated and mapped ones */
186                         rbdr->tail = idx - 1;
187                         return err;
188                 }
189
190                 desc = GET_RBDR_DESC(rbdr, idx);
191                 desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
192         }
193
194         nicvf_get_page(nic);
195
196         return 0;
197 }
198
199 /* Free RBDR ring and its receive buffers */
200 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
201 {
202         int head, tail;
203         u64 buf_addr, phys_addr;
204         struct rbdr_entry_t *desc;
205
206         if (!rbdr)
207                 return;
208
209         rbdr->enable = false;
210         if (!rbdr->dmem.base)
211                 return;
212
213         head = rbdr->head;
214         tail = rbdr->tail;
215
216         /* Release page references */
217         while (head != tail) {
218                 desc = GET_RBDR_DESC(rbdr, head);
219                 buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
220                 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
221                 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
222                                      DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
223                 if (phys_addr)
224                         put_page(virt_to_page(phys_to_virt(phys_addr)));
225                 head++;
226                 head &= (rbdr->dmem.q_len - 1);
227         }
228         /* Release buffer of tail desc */
229         desc = GET_RBDR_DESC(rbdr, tail);
230         buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
231         phys_addr = nicvf_iova_to_phys(nic, buf_addr);
232         dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
233                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
234         if (phys_addr)
235                 put_page(virt_to_page(phys_to_virt(phys_addr)));
236
237         /* Free RBDR ring */
238         nicvf_free_q_desc_mem(nic, &rbdr->dmem);
239 }
240
241 /* Refill receive buffer descriptors with new buffers.
242  */
243 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
244 {
245         struct queue_set *qs = nic->qs;
246         int rbdr_idx = qs->rbdr_cnt;
247         int tail, qcount;
248         int refill_rb_cnt;
249         struct rbdr *rbdr;
250         struct rbdr_entry_t *desc;
251         u64 *rbuf;
252         int new_rb = 0;
253
254 refill:
255         if (!rbdr_idx)
256                 return;
257         rbdr_idx--;
258         rbdr = &qs->rbdr[rbdr_idx];
259         /* Check if it's enabled */
260         if (!rbdr->enable)
261                 goto next_rbdr;
262
263         /* Get no of desc's to be refilled */
264         qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
265         qcount &= 0x7FFFF;
266         /* Doorbell can be ringed with a max of ring size minus 1 */
267         if (qcount >= (qs->rbdr_len - 1))
268                 goto next_rbdr;
269         else
270                 refill_rb_cnt = qs->rbdr_len - qcount - 1;
271
272         /* Start filling descs from tail */
273         tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
274         while (refill_rb_cnt) {
275                 tail++;
276                 tail &= (rbdr->dmem.q_len - 1);
277
278                 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
279                         break;
280
281                 desc = GET_RBDR_DESC(rbdr, tail);
282                 desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
283                 refill_rb_cnt--;
284                 new_rb++;
285         }
286
287         nicvf_get_page(nic);
288
289         /* make sure all memory stores are done before ringing doorbell */
290         smp_wmb();
291
292         /* Check if buffer allocation failed */
293         if (refill_rb_cnt)
294                 nic->rb_alloc_fail = true;
295         else
296                 nic->rb_alloc_fail = false;
297
298         /* Notify HW */
299         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
300                               rbdr_idx, new_rb);
301 next_rbdr:
302         /* Re-enable RBDR interrupts only if buffer allocation is success */
303         if (!nic->rb_alloc_fail && rbdr->enable &&
304             netif_running(nic->pnicvf->netdev))
305                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
306
307         if (rbdr_idx)
308                 goto refill;
309 }
310
311 /* Alloc rcv buffers in non-atomic mode for better success */
312 void nicvf_rbdr_work(struct work_struct *work)
313 {
314         struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
315
316         nicvf_refill_rbdr(nic, GFP_KERNEL);
317         if (nic->rb_alloc_fail)
318                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
319         else
320                 nic->rb_work_scheduled = false;
321 }
322
323 /* In Softirq context, alloc rcv buffers in atomic mode */
324 void nicvf_rbdr_task(unsigned long data)
325 {
326         struct nicvf *nic = (struct nicvf *)data;
327
328         nicvf_refill_rbdr(nic, GFP_ATOMIC);
329         if (nic->rb_alloc_fail) {
330                 nic->rb_work_scheduled = true;
331                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
332         }
333 }
334
335 /* Initialize completion queue */
336 static int nicvf_init_cmp_queue(struct nicvf *nic,
337                                 struct cmp_queue *cq, int q_len)
338 {
339         int err;
340
341         err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
342                                      NICVF_CQ_BASE_ALIGN_BYTES);
343         if (err)
344                 return err;
345
346         cq->desc = cq->dmem.base;
347         cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
348         nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
349
350         return 0;
351 }
352
353 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
354 {
355         if (!cq)
356                 return;
357         if (!cq->dmem.base)
358                 return;
359
360         nicvf_free_q_desc_mem(nic, &cq->dmem);
361 }
362
363 /* Initialize transmit queue */
364 static int nicvf_init_snd_queue(struct nicvf *nic,
365                                 struct snd_queue *sq, int q_len)
366 {
367         int err;
368
369         err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
370                                      NICVF_SQ_BASE_ALIGN_BYTES);
371         if (err)
372                 return err;
373
374         sq->desc = sq->dmem.base;
375         sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
376         if (!sq->skbuff)
377                 return -ENOMEM;
378         sq->head = 0;
379         sq->tail = 0;
380         atomic_set(&sq->free_cnt, q_len - 1);
381         sq->thresh = SND_QUEUE_THRESH;
382
383         /* Preallocate memory for TSO segment's header */
384         sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
385                                           q_len * TSO_HEADER_SIZE,
386                                           &sq->tso_hdrs_phys, GFP_KERNEL);
387         if (!sq->tso_hdrs)
388                 return -ENOMEM;
389
390         return 0;
391 }
392
393 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
394                               int hdr_sqe, u8 subdesc_cnt)
395 {
396         u8 idx;
397         struct sq_gather_subdesc *gather;
398
399         /* Unmap DMA mapped skb data buffers */
400         for (idx = 0; idx < subdesc_cnt; idx++) {
401                 hdr_sqe++;
402                 hdr_sqe &= (sq->dmem.q_len - 1);
403                 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
404                 /* HW will ensure data coherency, CPU sync not required */
405                 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
406                                      gather->size, DMA_TO_DEVICE,
407                                      DMA_ATTR_SKIP_CPU_SYNC);
408         }
409 }
410
411 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
412 {
413         struct sk_buff *skb;
414         struct sq_hdr_subdesc *hdr;
415         struct sq_hdr_subdesc *tso_sqe;
416
417         if (!sq)
418                 return;
419         if (!sq->dmem.base)
420                 return;
421
422         if (sq->tso_hdrs)
423                 dma_free_coherent(&nic->pdev->dev,
424                                   sq->dmem.q_len * TSO_HEADER_SIZE,
425                                   sq->tso_hdrs, sq->tso_hdrs_phys);
426
427         /* Free pending skbs in the queue */
428         smp_rmb();
429         while (sq->head != sq->tail) {
430                 skb = (struct sk_buff *)sq->skbuff[sq->head];
431                 if (!skb)
432                         goto next;
433                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
434                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
435                 if (hdr->dont_send) {
436                         /* Get actual TSO descriptors and unmap them */
437                         tso_sqe =
438                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
439                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
440                                                  tso_sqe->subdesc_cnt);
441                 } else {
442                         nicvf_unmap_sndq_buffers(nic, sq, sq->head,
443                                                  hdr->subdesc_cnt);
444                 }
445                 dev_kfree_skb_any(skb);
446 next:
447                 sq->head++;
448                 sq->head &= (sq->dmem.q_len - 1);
449         }
450         kfree(sq->skbuff);
451         nicvf_free_q_desc_mem(nic, &sq->dmem);
452 }
453
454 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
455                                     struct queue_set *qs, int qidx)
456 {
457         /* Disable send queue */
458         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
459         /* Check if SQ is stopped */
460         if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
461                 return;
462         /* Reset send queue */
463         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
464 }
465
466 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
467                                     struct queue_set *qs, int qidx)
468 {
469         union nic_mbx mbx = {};
470
471         /* Make sure all packets in the pipeline are written back into mem */
472         mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
473         nicvf_send_msg_to_pf(nic, &mbx);
474 }
475
476 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
477                                     struct queue_set *qs, int qidx)
478 {
479         /* Disable timer threshold (doesn't get reset upon CQ reset */
480         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
481         /* Disable completion queue */
482         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
483         /* Reset completion queue */
484         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
485 }
486
487 static void nicvf_reclaim_rbdr(struct nicvf *nic,
488                                struct rbdr *rbdr, int qidx)
489 {
490         u64 tmp, fifo_state;
491         int timeout = 10;
492
493         /* Save head and tail pointers for feeing up buffers */
494         rbdr->head = nicvf_queue_reg_read(nic,
495                                           NIC_QSET_RBDR_0_1_HEAD,
496                                           qidx) >> 3;
497         rbdr->tail = nicvf_queue_reg_read(nic,
498                                           NIC_QSET_RBDR_0_1_TAIL,
499                                           qidx) >> 3;
500
501         /* If RBDR FIFO is in 'FAIL' state then do a reset first
502          * before relaiming.
503          */
504         fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
505         if (((fifo_state >> 62) & 0x03) == 0x3)
506                 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
507                                       qidx, NICVF_RBDR_RESET);
508
509         /* Disable RBDR */
510         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
511         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
512                 return;
513         while (1) {
514                 tmp = nicvf_queue_reg_read(nic,
515                                            NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
516                                            qidx);
517                 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
518                         break;
519                 usleep_range(1000, 2000);
520                 timeout--;
521                 if (!timeout) {
522                         netdev_err(nic->netdev,
523                                    "Failed polling on prefetch status\n");
524                         return;
525                 }
526         }
527         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
528                               qidx, NICVF_RBDR_RESET);
529
530         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
531                 return;
532         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
533         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
534                 return;
535 }
536
537 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
538 {
539         u64 rq_cfg;
540         int sqs;
541
542         rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
543
544         /* Enable first VLAN stripping */
545         if (features & NETIF_F_HW_VLAN_CTAG_RX)
546                 rq_cfg |= (1ULL << 25);
547         else
548                 rq_cfg &= ~(1ULL << 25);
549         nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
550
551         /* Configure Secondary Qsets, if any */
552         for (sqs = 0; sqs < nic->sqs_count; sqs++)
553                 if (nic->snicvf[sqs])
554                         nicvf_queue_reg_write(nic->snicvf[sqs],
555                                               NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
556 }
557
558 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
559 {
560         union nic_mbx mbx = {};
561
562         /* Reset all RQ/SQ and VF stats */
563         mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
564         mbx.reset_stat.rx_stat_mask = 0x3FFF;
565         mbx.reset_stat.tx_stat_mask = 0x1F;
566         mbx.reset_stat.rq_stat_mask = 0xFFFF;
567         mbx.reset_stat.sq_stat_mask = 0xFFFF;
568         nicvf_send_msg_to_pf(nic, &mbx);
569 }
570
571 /* Configures receive queue */
572 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
573                                    int qidx, bool enable)
574 {
575         union nic_mbx mbx = {};
576         struct rcv_queue *rq;
577         struct rq_cfg rq_cfg;
578
579         rq = &qs->rq[qidx];
580         rq->enable = enable;
581
582         /* Disable receive queue */
583         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
584
585         if (!rq->enable) {
586                 nicvf_reclaim_rcv_queue(nic, qs, qidx);
587                 return;
588         }
589
590         rq->cq_qs = qs->vnic_id;
591         rq->cq_idx = qidx;
592         rq->start_rbdr_qs = qs->vnic_id;
593         rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
594         rq->cont_rbdr_qs = qs->vnic_id;
595         rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
596         /* all writes of RBDR data to be loaded into L2 Cache as well*/
597         rq->caching = 1;
598
599         /* Send a mailbox msg to PF to config RQ */
600         mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
601         mbx.rq.qs_num = qs->vnic_id;
602         mbx.rq.rq_num = qidx;
603         mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
604                           (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
605                           (rq->cont_qs_rbdr_idx << 8) |
606                           (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
607         nicvf_send_msg_to_pf(nic, &mbx);
608
609         mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
610         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
611                      (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
612                      (qs->vnic_id << 0);
613         nicvf_send_msg_to_pf(nic, &mbx);
614
615         /* RQ drop config
616          * Enable CQ drop to reserve sufficient CQEs for all tx packets
617          */
618         mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
619         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
620                      (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
621                      (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
622         nicvf_send_msg_to_pf(nic, &mbx);
623
624         if (!nic->sqs_mode && (qidx == 0)) {
625                 /* Enable checking L3/L4 length and TCP/UDP checksums
626                  * Also allow IPv6 pkts with zero UDP checksum.
627                  */
628                 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
629                                       (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
630                 nicvf_config_vlan_stripping(nic, nic->netdev->features);
631         }
632
633         /* Enable Receive queue */
634         memset(&rq_cfg, 0, sizeof(struct rq_cfg));
635         rq_cfg.ena = 1;
636         rq_cfg.tcp_ena = 0;
637         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
638 }
639
640 /* Configures completion queue */
641 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
642                             int qidx, bool enable)
643 {
644         struct cmp_queue *cq;
645         struct cq_cfg cq_cfg;
646
647         cq = &qs->cq[qidx];
648         cq->enable = enable;
649
650         if (!cq->enable) {
651                 nicvf_reclaim_cmp_queue(nic, qs, qidx);
652                 return;
653         }
654
655         /* Reset completion queue */
656         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
657
658         if (!cq->enable)
659                 return;
660
661         spin_lock_init(&cq->lock);
662         /* Set completion queue base address */
663         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
664                               qidx, (u64)(cq->dmem.phys_base));
665
666         /* Enable Completion queue */
667         memset(&cq_cfg, 0, sizeof(struct cq_cfg));
668         cq_cfg.ena = 1;
669         cq_cfg.reset = 0;
670         cq_cfg.caching = 0;
671         cq_cfg.qsize = ilog2(qs->cq_len >> 10);
672         cq_cfg.avg_con = 0;
673         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
674
675         /* Set threshold value for interrupt generation */
676         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
677         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
678                               qidx, CMP_QUEUE_TIMER_THRESH);
679 }
680
681 /* Configures transmit queue */
682 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
683                                    int qidx, bool enable)
684 {
685         union nic_mbx mbx = {};
686         struct snd_queue *sq;
687         struct sq_cfg sq_cfg;
688
689         sq = &qs->sq[qidx];
690         sq->enable = enable;
691
692         if (!sq->enable) {
693                 nicvf_reclaim_snd_queue(nic, qs, qidx);
694                 return;
695         }
696
697         /* Reset send queue */
698         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
699
700         sq->cq_qs = qs->vnic_id;
701         sq->cq_idx = qidx;
702
703         /* Send a mailbox msg to PF to config SQ */
704         mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
705         mbx.sq.qs_num = qs->vnic_id;
706         mbx.sq.sq_num = qidx;
707         mbx.sq.sqs_mode = nic->sqs_mode;
708         mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
709         nicvf_send_msg_to_pf(nic, &mbx);
710
711         /* Set queue base address */
712         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
713                               qidx, (u64)(sq->dmem.phys_base));
714
715         /* Enable send queue  & set queue size */
716         memset(&sq_cfg, 0, sizeof(struct sq_cfg));
717         sq_cfg.ena = 1;
718         sq_cfg.reset = 0;
719         sq_cfg.ldwb = 0;
720         sq_cfg.qsize = ilog2(qs->sq_len >> 10);
721         sq_cfg.tstmp_bgx_intf = 0;
722         /* CQ's level at which HW will stop processing SQEs to avoid
723          * transmitting a pkt with no space in CQ to post CQE_TX.
724          */
725         sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
726         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
727
728         /* Set threshold value for interrupt generation */
729         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
730
731         /* Set queue:cpu affinity for better load distribution */
732         if (cpu_online(qidx)) {
733                 cpumask_set_cpu(qidx, &sq->affinity_mask);
734                 netif_set_xps_queue(nic->netdev,
735                                     &sq->affinity_mask, qidx);
736         }
737 }
738
739 /* Configures receive buffer descriptor ring */
740 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
741                               int qidx, bool enable)
742 {
743         struct rbdr *rbdr;
744         struct rbdr_cfg rbdr_cfg;
745
746         rbdr = &qs->rbdr[qidx];
747         nicvf_reclaim_rbdr(nic, rbdr, qidx);
748         if (!enable)
749                 return;
750
751         /* Set descriptor base address */
752         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
753                               qidx, (u64)(rbdr->dmem.phys_base));
754
755         /* Enable RBDR  & set queue size */
756         /* Buffer size should be in multiples of 128 bytes */
757         memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
758         rbdr_cfg.ena = 1;
759         rbdr_cfg.reset = 0;
760         rbdr_cfg.ldwb = 0;
761         rbdr_cfg.qsize = RBDR_SIZE;
762         rbdr_cfg.avg_con = 0;
763         rbdr_cfg.lines = rbdr->dma_size / 128;
764         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
765                               qidx, *(u64 *)&rbdr_cfg);
766
767         /* Notify HW */
768         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
769                               qidx, qs->rbdr_len - 1);
770
771         /* Set threshold value for interrupt generation */
772         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
773                               qidx, rbdr->thresh - 1);
774 }
775
776 /* Requests PF to assign and enable Qset */
777 void nicvf_qset_config(struct nicvf *nic, bool enable)
778 {
779         union nic_mbx mbx = {};
780         struct queue_set *qs = nic->qs;
781         struct qs_cfg *qs_cfg;
782
783         if (!qs) {
784                 netdev_warn(nic->netdev,
785                             "Qset is still not allocated, don't init queues\n");
786                 return;
787         }
788
789         qs->enable = enable;
790         qs->vnic_id = nic->vf_id;
791
792         /* Send a mailbox msg to PF to config Qset */
793         mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
794         mbx.qs.num = qs->vnic_id;
795         mbx.qs.sqs_count = nic->sqs_count;
796
797         mbx.qs.cfg = 0;
798         qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
799         if (qs->enable) {
800                 qs_cfg->ena = 1;
801 #ifdef __BIG_ENDIAN
802                 qs_cfg->be = 1;
803 #endif
804                 qs_cfg->vnic = qs->vnic_id;
805         }
806         nicvf_send_msg_to_pf(nic, &mbx);
807 }
808
809 static void nicvf_free_resources(struct nicvf *nic)
810 {
811         int qidx;
812         struct queue_set *qs = nic->qs;
813
814         /* Free receive buffer descriptor ring */
815         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
816                 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
817
818         /* Free completion queue */
819         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
820                 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
821
822         /* Free send queue */
823         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
824                 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
825 }
826
827 static int nicvf_alloc_resources(struct nicvf *nic)
828 {
829         int qidx;
830         struct queue_set *qs = nic->qs;
831
832         /* Alloc receive buffer descriptor ring */
833         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
834                 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
835                                     DMA_BUFFER_LEN))
836                         goto alloc_fail;
837         }
838
839         /* Alloc send queue */
840         for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
841                 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
842                         goto alloc_fail;
843         }
844
845         /* Alloc completion queue */
846         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
847                 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
848                         goto alloc_fail;
849         }
850
851         return 0;
852 alloc_fail:
853         nicvf_free_resources(nic);
854         return -ENOMEM;
855 }
856
857 int nicvf_set_qset_resources(struct nicvf *nic)
858 {
859         struct queue_set *qs;
860
861         qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
862         if (!qs)
863                 return -ENOMEM;
864         nic->qs = qs;
865
866         /* Set count of each queue */
867         qs->rbdr_cnt = DEFAULT_RBDR_CNT;
868         qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
869         qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
870         qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
871
872         /* Set queue lengths */
873         qs->rbdr_len = RCV_BUF_COUNT;
874         qs->sq_len = SND_QUEUE_LEN;
875         qs->cq_len = CMP_QUEUE_LEN;
876
877         nic->rx_queues = qs->rq_cnt;
878         nic->tx_queues = qs->sq_cnt;
879
880         return 0;
881 }
882
883 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
884 {
885         bool disable = false;
886         struct queue_set *qs = nic->qs;
887         struct queue_set *pqs = nic->pnicvf->qs;
888         int qidx;
889
890         if (!qs)
891                 return 0;
892
893         /* Take primary VF's queue lengths.
894          * This is needed to take queue lengths set from ethtool
895          * into consideration.
896          */
897         if (nic->sqs_mode && pqs) {
898                 qs->cq_len = pqs->cq_len;
899                 qs->sq_len = pqs->sq_len;
900         }
901
902         if (enable) {
903                 if (nicvf_alloc_resources(nic))
904                         return -ENOMEM;
905
906                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
907                         nicvf_snd_queue_config(nic, qs, qidx, enable);
908                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
909                         nicvf_cmp_queue_config(nic, qs, qidx, enable);
910                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
911                         nicvf_rbdr_config(nic, qs, qidx, enable);
912                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
913                         nicvf_rcv_queue_config(nic, qs, qidx, enable);
914         } else {
915                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
916                         nicvf_rcv_queue_config(nic, qs, qidx, disable);
917                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
918                         nicvf_rbdr_config(nic, qs, qidx, disable);
919                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
920                         nicvf_snd_queue_config(nic, qs, qidx, disable);
921                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
922                         nicvf_cmp_queue_config(nic, qs, qidx, disable);
923
924                 nicvf_free_resources(nic);
925         }
926
927         /* Reset RXQ's stats.
928          * SQ's stats will get reset automatically once SQ is reset.
929          */
930         nicvf_reset_rcv_queue_stats(nic);
931
932         return 0;
933 }
934
935 /* Get a free desc from SQ
936  * returns descriptor ponter & descriptor number
937  */
938 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
939 {
940         int qentry;
941
942         qentry = sq->tail;
943         atomic_sub(desc_cnt, &sq->free_cnt);
944         sq->tail += desc_cnt;
945         sq->tail &= (sq->dmem.q_len - 1);
946
947         return qentry;
948 }
949
950 /* Rollback to previous tail pointer when descriptors not used */
951 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
952                                           int qentry, int desc_cnt)
953 {
954         sq->tail = qentry;
955         atomic_add(desc_cnt, &sq->free_cnt);
956 }
957
958 /* Free descriptor back to SQ for future use */
959 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
960 {
961         atomic_add(desc_cnt, &sq->free_cnt);
962         sq->head += desc_cnt;
963         sq->head &= (sq->dmem.q_len - 1);
964 }
965
966 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
967 {
968         qentry++;
969         qentry &= (sq->dmem.q_len - 1);
970         return qentry;
971 }
972
973 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
974 {
975         u64 sq_cfg;
976
977         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
978         sq_cfg |= NICVF_SQ_EN;
979         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
980         /* Ring doorbell so that H/W restarts processing SQEs */
981         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
982 }
983
984 void nicvf_sq_disable(struct nicvf *nic, int qidx)
985 {
986         u64 sq_cfg;
987
988         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
989         sq_cfg &= ~NICVF_SQ_EN;
990         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
991 }
992
993 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
994                               int qidx)
995 {
996         u64 head, tail;
997         struct sk_buff *skb;
998         struct nicvf *nic = netdev_priv(netdev);
999         struct sq_hdr_subdesc *hdr;
1000
1001         head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1002         tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1003         while (sq->head != head) {
1004                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1005                 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1006                         nicvf_put_sq_desc(sq, 1);
1007                         continue;
1008                 }
1009                 skb = (struct sk_buff *)sq->skbuff[sq->head];
1010                 if (skb)
1011                         dev_kfree_skb_any(skb);
1012                 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1013                 atomic64_add(hdr->tot_len,
1014                              (atomic64_t *)&netdev->stats.tx_bytes);
1015                 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1016         }
1017 }
1018
1019 /* Calculate no of SQ subdescriptors needed to transmit all
1020  * segments of this TSO packet.
1021  * Taken from 'Tilera network driver' with a minor modification.
1022  */
1023 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1024 {
1025         struct skb_shared_info *sh = skb_shinfo(skb);
1026         unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1027         unsigned int data_len = skb->len - sh_len;
1028         unsigned int p_len = sh->gso_size;
1029         long f_id = -1;    /* id of the current fragment */
1030         long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1031         long f_used = 0;  /* bytes used from the current fragment */
1032         long n;            /* size of the current piece of payload */
1033         int num_edescs = 0;
1034         int segment;
1035
1036         for (segment = 0; segment < sh->gso_segs; segment++) {
1037                 unsigned int p_used = 0;
1038
1039                 /* One edesc for header and for each piece of the payload. */
1040                 for (num_edescs++; p_used < p_len; num_edescs++) {
1041                         /* Advance as needed. */
1042                         while (f_used >= f_size) {
1043                                 f_id++;
1044                                 f_size = skb_frag_size(&sh->frags[f_id]);
1045                                 f_used = 0;
1046                         }
1047
1048                         /* Use bytes from the current fragment. */
1049                         n = p_len - p_used;
1050                         if (n > f_size - f_used)
1051                                 n = f_size - f_used;
1052                         f_used += n;
1053                         p_used += n;
1054                 }
1055
1056                 /* The last segment may be less than gso_size. */
1057                 data_len -= p_len;
1058                 if (data_len < p_len)
1059                         p_len = data_len;
1060         }
1061
1062         /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1063         return num_edescs + sh->gso_segs;
1064 }
1065
1066 #define POST_CQE_DESC_COUNT 2
1067
1068 /* Get the number of SQ descriptors needed to xmit this skb */
1069 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1070 {
1071         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1072
1073         if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1074                 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1075                 return subdesc_cnt;
1076         }
1077
1078         /* Dummy descriptors to get TSO pkt completion notification */
1079         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1080                 subdesc_cnt += POST_CQE_DESC_COUNT;
1081
1082         if (skb_shinfo(skb)->nr_frags)
1083                 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1084
1085         return subdesc_cnt;
1086 }
1087
1088 /* Add SQ HEADER subdescriptor.
1089  * First subdescriptor for every send descriptor.
1090  */
1091 static inline void
1092 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1093                          int subdesc_cnt, struct sk_buff *skb, int len)
1094 {
1095         int proto;
1096         struct sq_hdr_subdesc *hdr;
1097
1098         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1099         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1100         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1101
1102         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1103                 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1104                  * segment transmitted on 88xx.
1105                  */
1106                 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1107         } else {
1108                 sq->skbuff[qentry] = (u64)skb;
1109                 /* Enable notification via CQE after processing SQE */
1110                 hdr->post_cqe = 1;
1111                 /* No of subdescriptors following this */
1112                 hdr->subdesc_cnt = subdesc_cnt;
1113         }
1114         hdr->tot_len = len;
1115
1116         /* Offload checksum calculation to HW */
1117         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118                 hdr->csum_l3 = 1; /* Enable IP csum calculation */
1119                 hdr->l3_offset = skb_network_offset(skb);
1120                 hdr->l4_offset = skb_transport_offset(skb);
1121
1122                 proto = ip_hdr(skb)->protocol;
1123                 switch (proto) {
1124                 case IPPROTO_TCP:
1125                         hdr->csum_l4 = SEND_L4_CSUM_TCP;
1126                         break;
1127                 case IPPROTO_UDP:
1128                         hdr->csum_l4 = SEND_L4_CSUM_UDP;
1129                         break;
1130                 case IPPROTO_SCTP:
1131                         hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1132                         break;
1133                 }
1134         }
1135
1136         if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1137                 hdr->tso = 1;
1138                 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1139                 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1140                 /* For non-tunneled pkts, point this to L2 ethertype */
1141                 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1142                 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1143         }
1144 }
1145
1146 /* SQ GATHER subdescriptor
1147  * Must follow HDR descriptor
1148  */
1149 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1150                                                int size, u64 data)
1151 {
1152         struct sq_gather_subdesc *gather;
1153
1154         qentry &= (sq->dmem.q_len - 1);
1155         gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1156
1157         memset(gather, 0, SND_QUEUE_DESC_SIZE);
1158         gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1159         gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1160         gather->size = size;
1161         gather->addr = data;
1162 }
1163
1164 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1165  * packet so that a CQE is posted as a notifation for transmission of
1166  * TSO packet.
1167  */
1168 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1169                                             int tso_sqe, struct sk_buff *skb)
1170 {
1171         struct sq_imm_subdesc *imm;
1172         struct sq_hdr_subdesc *hdr;
1173
1174         sq->skbuff[qentry] = (u64)skb;
1175
1176         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1177         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1178         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1179         /* Enable notification via CQE after processing SQE */
1180         hdr->post_cqe = 1;
1181         /* There is no packet to transmit here */
1182         hdr->dont_send = 1;
1183         hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1184         hdr->tot_len = 1;
1185         /* Actual TSO header SQE index, needed for cleanup */
1186         hdr->rsvd2 = tso_sqe;
1187
1188         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1189         imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1190         memset(imm, 0, SND_QUEUE_DESC_SIZE);
1191         imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1192         imm->len = 1;
1193 }
1194
1195 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1196                                      int sq_num, int desc_cnt)
1197 {
1198         struct netdev_queue *txq;
1199
1200         txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1201                                   skb_get_queue_mapping(skb));
1202
1203         netdev_tx_sent_queue(txq, skb->len);
1204
1205         /* make sure all memory stores are done before ringing doorbell */
1206         smp_wmb();
1207
1208         /* Inform HW to xmit all TSO segments */
1209         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1210                               sq_num, desc_cnt);
1211 }
1212
1213 /* Segment a TSO packet into 'gso_size' segments and append
1214  * them to SQ for transfer
1215  */
1216 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1217                                int sq_num, int qentry, struct sk_buff *skb)
1218 {
1219         struct tso_t tso;
1220         int seg_subdescs = 0, desc_cnt = 0;
1221         int seg_len, total_len, data_left;
1222         int hdr_qentry = qentry;
1223         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1224
1225         tso_start(skb, &tso);
1226         total_len = skb->len - hdr_len;
1227         while (total_len > 0) {
1228                 char *hdr;
1229
1230                 /* Save Qentry for adding HDR_SUBDESC at the end */
1231                 hdr_qentry = qentry;
1232
1233                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1234                 total_len -= data_left;
1235
1236                 /* Add segment's header */
1237                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1238                 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1239                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1240                 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1241                                             sq->tso_hdrs_phys +
1242                                             qentry * TSO_HEADER_SIZE);
1243                 /* HDR_SUDESC + GATHER */
1244                 seg_subdescs = 2;
1245                 seg_len = hdr_len;
1246
1247                 /* Add segment's payload fragments */
1248                 while (data_left > 0) {
1249                         int size;
1250
1251                         size = min_t(int, tso.size, data_left);
1252
1253                         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1254                         nicvf_sq_add_gather_subdesc(sq, qentry, size,
1255                                                     virt_to_phys(tso.data));
1256                         seg_subdescs++;
1257                         seg_len += size;
1258
1259                         data_left -= size;
1260                         tso_build_data(skb, &tso, size);
1261                 }
1262                 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1263                                          seg_subdescs - 1, skb, seg_len);
1264                 sq->skbuff[hdr_qentry] = (u64)NULL;
1265                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1266
1267                 desc_cnt += seg_subdescs;
1268         }
1269         /* Save SKB in the last segment for freeing */
1270         sq->skbuff[hdr_qentry] = (u64)skb;
1271
1272         nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1273
1274         this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1275         return 1;
1276 }
1277
1278 /* Append an skb to a SQ for packet transfer. */
1279 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1280                         struct sk_buff *skb, u8 sq_num)
1281 {
1282         int i, size;
1283         int subdesc_cnt, hdr_sqe = 0;
1284         int qentry;
1285         u64 dma_addr;
1286
1287         subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1288         if (subdesc_cnt > atomic_read(&sq->free_cnt))
1289                 goto append_fail;
1290
1291         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1292
1293         /* Check if its a TSO packet */
1294         if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1295                 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1296
1297         /* Add SQ header subdesc */
1298         nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1299                                  skb, skb->len);
1300         hdr_sqe = qentry;
1301
1302         /* Add SQ gather subdescs */
1303         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1304         size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1305         /* HW will ensure data coherency, CPU sync not required */
1306         dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1307                                       offset_in_page(skb->data), size,
1308                                       DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1309         if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1310                 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1311                 return 0;
1312         }
1313
1314         nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1315
1316         /* Check for scattered buffer */
1317         if (!skb_is_nonlinear(skb))
1318                 goto doorbell;
1319
1320         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1321                 const struct skb_frag_struct *frag;
1322
1323                 frag = &skb_shinfo(skb)->frags[i];
1324
1325                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1326                 size = skb_frag_size(frag);
1327                 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1328                                               skb_frag_page(frag),
1329                                               frag->page_offset, size,
1330                                               DMA_TO_DEVICE,
1331                                               DMA_ATTR_SKIP_CPU_SYNC);
1332                 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1333                         /* Free entire chain of mapped buffers
1334                          * here 'i' = frags mapped + above mapped skb->data
1335                          */
1336                         nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1337                         nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1338                         return 0;
1339                 }
1340                 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1341         }
1342
1343 doorbell:
1344         if (nic->t88 && skb_shinfo(skb)->gso_size) {
1345                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1346                 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1347         }
1348
1349         nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1350
1351         return 1;
1352
1353 append_fail:
1354         /* Use original PCI dev for debug log */
1355         nic = nic->pnicvf;
1356         netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1357         return 0;
1358 }
1359
1360 static inline unsigned frag_num(unsigned i)
1361 {
1362 #ifdef __BIG_ENDIAN
1363         return (i & ~3) + 3 - (i & 3);
1364 #else
1365         return i;
1366 #endif
1367 }
1368
1369 /* Returns SKB for a received packet */
1370 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1371 {
1372         int frag;
1373         int payload_len = 0;
1374         struct sk_buff *skb = NULL;
1375         struct page *page;
1376         int offset;
1377         u16 *rb_lens = NULL;
1378         u64 *rb_ptrs = NULL;
1379         u64 phys_addr;
1380
1381         rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1382         /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1383          * CQE_RX at word6, hence buffer pointers move by word
1384          *
1385          * Use existing 'hw_tso' flag which will be set for all chips
1386          * except 88xx pass1 instead of a additional cache line
1387          * access (or miss) by using pci dev's revision.
1388          */
1389         if (!nic->hw_tso)
1390                 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1391         else
1392                 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1393
1394         for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1395                 payload_len = rb_lens[frag_num(frag)];
1396                 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1397                 if (!phys_addr) {
1398                         if (skb)
1399                                 dev_kfree_skb_any(skb);
1400                         return NULL;
1401                 }
1402
1403                 if (!frag) {
1404                         /* First fragment */
1405                         dma_unmap_page_attrs(&nic->pdev->dev,
1406                                              *rb_ptrs - cqe_rx->align_pad,
1407                                              RCV_FRAG_LEN, DMA_FROM_DEVICE,
1408                                              DMA_ATTR_SKIP_CPU_SYNC);
1409                         skb = nicvf_rb_ptr_to_skb(nic,
1410                                                   phys_addr - cqe_rx->align_pad,
1411                                                   payload_len);
1412                         if (!skb)
1413                                 return NULL;
1414                         skb_reserve(skb, cqe_rx->align_pad);
1415                         skb_put(skb, payload_len);
1416                 } else {
1417                         /* Add fragments */
1418                         dma_unmap_page_attrs(&nic->pdev->dev, *rb_ptrs,
1419                                              RCV_FRAG_LEN, DMA_FROM_DEVICE,
1420                                              DMA_ATTR_SKIP_CPU_SYNC);
1421                         page = virt_to_page(phys_to_virt(phys_addr));
1422                         offset = phys_to_virt(phys_addr) - page_address(page);
1423                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1424                                         offset, payload_len, RCV_FRAG_LEN);
1425                 }
1426                 /* Next buffer pointer */
1427                 rb_ptrs++;
1428         }
1429         return skb;
1430 }
1431
1432 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1433 {
1434         u64 reg_val;
1435
1436         switch (int_type) {
1437         case NICVF_INTR_CQ:
1438                 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1439                 break;
1440         case NICVF_INTR_SQ:
1441                 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1442                 break;
1443         case NICVF_INTR_RBDR:
1444                 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1445                 break;
1446         case NICVF_INTR_PKT_DROP:
1447                 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1448                 break;
1449         case NICVF_INTR_TCP_TIMER:
1450                 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1451                 break;
1452         case NICVF_INTR_MBOX:
1453                 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1454                 break;
1455         case NICVF_INTR_QS_ERR:
1456                 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1457                 break;
1458         default:
1459                 reg_val = 0;
1460         }
1461
1462         return reg_val;
1463 }
1464
1465 /* Enable interrupt */
1466 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1467 {
1468         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1469
1470         if (!mask) {
1471                 netdev_dbg(nic->netdev,
1472                            "Failed to enable interrupt: unknown type\n");
1473                 return;
1474         }
1475         nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1476                         nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1477 }
1478
1479 /* Disable interrupt */
1480 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1481 {
1482         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1483
1484         if (!mask) {
1485                 netdev_dbg(nic->netdev,
1486                            "Failed to disable interrupt: unknown type\n");
1487                 return;
1488         }
1489
1490         nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1491 }
1492
1493 /* Clear interrupt */
1494 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1495 {
1496         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1497
1498         if (!mask) {
1499                 netdev_dbg(nic->netdev,
1500                            "Failed to clear interrupt: unknown type\n");
1501                 return;
1502         }
1503
1504         nicvf_reg_write(nic, NIC_VF_INT, mask);
1505 }
1506
1507 /* Check if interrupt is enabled */
1508 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1509 {
1510         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1511         /* If interrupt type is unknown, we treat it disabled. */
1512         if (!mask) {
1513                 netdev_dbg(nic->netdev,
1514                            "Failed to check interrupt enable: unknown type\n");
1515                 return 0;
1516         }
1517
1518         return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1519 }
1520
1521 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1522 {
1523         struct rcv_queue *rq;
1524
1525 #define GET_RQ_STATS(reg) \
1526         nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1527                             (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1528
1529         rq = &nic->qs->rq[rq_idx];
1530         rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1531         rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1532 }
1533
1534 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1535 {
1536         struct snd_queue *sq;
1537
1538 #define GET_SQ_STATS(reg) \
1539         nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1540                             (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1541
1542         sq = &nic->qs->sq[sq_idx];
1543         sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1544         sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1545 }
1546
1547 /* Check for errors in the receive cmp.queue entry */
1548 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1549 {
1550         if (!cqe_rx->err_level && !cqe_rx->err_opcode)
1551                 return 0;
1552
1553         if (netif_msg_rx_err(nic))
1554                 netdev_err(nic->netdev,
1555                            "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1556                            nic->netdev->name,
1557                            cqe_rx->err_level, cqe_rx->err_opcode);
1558
1559         switch (cqe_rx->err_opcode) {
1560         case CQ_RX_ERROP_RE_PARTIAL:
1561                 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1562                 break;
1563         case CQ_RX_ERROP_RE_JABBER:
1564                 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1565                 break;
1566         case CQ_RX_ERROP_RE_FCS:
1567                 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1568                 break;
1569         case CQ_RX_ERROP_RE_RX_CTL:
1570                 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1571                 break;
1572         case CQ_RX_ERROP_PREL2_ERR:
1573                 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1574                 break;
1575         case CQ_RX_ERROP_L2_MAL:
1576                 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1577                 break;
1578         case CQ_RX_ERROP_L2_OVERSIZE:
1579                 this_cpu_inc(nic->drv_stats->rx_oversize);
1580                 break;
1581         case CQ_RX_ERROP_L2_UNDERSIZE:
1582                 this_cpu_inc(nic->drv_stats->rx_undersize);
1583                 break;
1584         case CQ_RX_ERROP_L2_LENMISM:
1585                 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1586                 break;
1587         case CQ_RX_ERROP_L2_PCLP:
1588                 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1589                 break;
1590         case CQ_RX_ERROP_IP_NOT:
1591                 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1592                 break;
1593         case CQ_RX_ERROP_IP_CSUM_ERR:
1594                 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1595                 break;
1596         case CQ_RX_ERROP_IP_MAL:
1597                 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1598                 break;
1599         case CQ_RX_ERROP_IP_MALD:
1600                 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1601                 break;
1602         case CQ_RX_ERROP_IP_HOP:
1603                 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1604                 break;
1605         case CQ_RX_ERROP_L3_PCLP:
1606                 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1607                 break;
1608         case CQ_RX_ERROP_L4_MAL:
1609                 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1610                 break;
1611         case CQ_RX_ERROP_L4_CHK:
1612                 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1613                 break;
1614         case CQ_RX_ERROP_UDP_LEN:
1615                 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1616                 break;
1617         case CQ_RX_ERROP_L4_PORT:
1618                 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1619                 break;
1620         case CQ_RX_ERROP_TCP_FLAG:
1621                 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1622                 break;
1623         case CQ_RX_ERROP_TCP_OFFSET:
1624                 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1625                 break;
1626         case CQ_RX_ERROP_L4_PCLP:
1627                 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1628                 break;
1629         case CQ_RX_ERROP_RBDR_TRUNC:
1630                 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1631                 break;
1632         }
1633
1634         return 1;
1635 }
1636
1637 /* Check for errors in the send cmp.queue entry */
1638 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1639 {
1640         switch (cqe_tx->send_status) {
1641         case CQ_TX_ERROP_GOOD:
1642                 return 0;
1643         case CQ_TX_ERROP_DESC_FAULT:
1644                 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1645                 break;
1646         case CQ_TX_ERROP_HDR_CONS_ERR:
1647                 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1648                 break;
1649         case CQ_TX_ERROP_SUBDC_ERR:
1650                 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1651                 break;
1652         case CQ_TX_ERROP_MAX_SIZE_VIOL:
1653                 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1654                 break;
1655         case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1656                 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1657                 break;
1658         case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1659                 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1660                 break;
1661         case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1662                 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1663                 break;
1664         case CQ_TX_ERROP_LOCK_VIOL:
1665                 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1666                 break;
1667         case CQ_TX_ERROP_DATA_FAULT:
1668                 this_cpu_inc(nic->drv_stats->tx_data_fault);
1669                 break;
1670         case CQ_TX_ERROP_TSTMP_CONFLICT:
1671                 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1672                 break;
1673         case CQ_TX_ERROP_TSTMP_TIMEOUT:
1674                 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1675                 break;
1676         case CQ_TX_ERROP_MEM_FAULT:
1677                 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1678                 break;
1679         case CQ_TX_ERROP_CK_OVERLAP:
1680                 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1681                 break;
1682         case CQ_TX_ERROP_CK_OFLOW:
1683                 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1684                 break;
1685         }
1686
1687         return 1;
1688 }