]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge tag 'powerpc-4.12-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99         static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
109
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111                 { 0, } \
112         }
113
114 #include "t4_pci_id_tbl.h"
115
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135
136 /*
137  * The driver uses the best interrupt scheme available on a platform in the
138  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
139  * of these schemes the driver may consider as follows:
140  *
141  * msi = 2: choose from among all three options
142  * msi = 1: only consider MSI and INTx interrupts
143  * msi = 0: force INTx interrupts
144  */
145 static int msi = 2;
146
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149
150 /*
151  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152  * offset by 2 bytes in order to have the IP headers line up on 4-byte
153  * boundaries.  This is a requirement for many architectures which will throw
154  * a machine check fault if an attempt is made to access one of the 4-byte IP
155  * header fields on a non-4-byte boundary.  And it's a major performance issue
156  * even on some architectures which allow it like some implementations of the
157  * x86 ISA.  However, some architectures don't mind this and for some very
158  * edge-case performance sensitive applications (like forwarding large volumes
159  * of small packets), setting this DMA offset to 0 will decrease the number of
160  * PCI-E Bus transfers enough to measurably affect performance.
161  */
162 static int rx_dma_offset = 2;
163
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165  * queue. Select between the kernel provided function (select_queue=0) or user
166  * cxgb_select_queue function (select_queue=1)
167  *
168  * Default: select_queue=0
169  */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174
175 static struct dentry *cxgb4_debugfs_root;
176
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179
180 static void link_report(struct net_device *dev)
181 {
182         if (!netif_carrier_ok(dev))
183                 netdev_info(dev, "link down\n");
184         else {
185                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186
187                 const char *s;
188                 const struct port_info *p = netdev_priv(dev);
189
190                 switch (p->link_cfg.speed) {
191                 case 100:
192                         s = "100Mbps";
193                         break;
194                 case 1000:
195                         s = "1Gbps";
196                         break;
197                 case 10000:
198                         s = "10Gbps";
199                         break;
200                 case 25000:
201                         s = "25Gbps";
202                         break;
203                 case 40000:
204                         s = "40Gbps";
205                         break;
206                 case 100000:
207                         s = "100Gbps";
208                         break;
209                 default:
210                         pr_info("%s: unsupported speed: %d\n",
211                                 dev->name, p->link_cfg.speed);
212                         return;
213                 }
214
215                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
216                             fc[p->link_cfg.fc]);
217         }
218 }
219
220 #ifdef CONFIG_CHELSIO_T4_DCB
221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
223 {
224         struct port_info *pi = netdev_priv(dev);
225         struct adapter *adap = pi->adapter;
226         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
227         int i;
228
229         /* We use a simple mapping of Port TX Queue Index to DCB
230          * Priority when we're enabling DCB.
231          */
232         for (i = 0; i < pi->nqsets; i++, txq++) {
233                 u32 name, value;
234                 int err;
235
236                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
237                         FW_PARAMS_PARAM_X_V(
238                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
239                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240                 value = enable ? i : 0xffffffff;
241
242                 /* Since we can be called while atomic (from "interrupt
243                  * level") we need to issue the Set Parameters Commannd
244                  * without sleeping (timeout < 0).
245                  */
246                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247                                             &name, &value,
248                                             -FW_CMD_MAX_TIMEOUT);
249
250                 if (err)
251                         dev_err(adap->pdev_dev,
252                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
253                                 enable ? "set" : "unset", pi->port_id, i, -err);
254                 else
255                         txq->dcb_prio = value;
256         }
257 }
258
259 static int cxgb4_dcb_enabled(const struct net_device *dev)
260 {
261         struct port_info *pi = netdev_priv(dev);
262
263         if (!pi->dcb.enabled)
264                 return 0;
265
266         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
267                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
268 }
269 #endif /* CONFIG_CHELSIO_T4_DCB */
270
271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
272 {
273         struct net_device *dev = adapter->port[port_id];
274
275         /* Skip changes from disabled ports. */
276         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
277                 if (link_stat)
278                         netif_carrier_on(dev);
279                 else {
280 #ifdef CONFIG_CHELSIO_T4_DCB
281                         if (cxgb4_dcb_enabled(dev)) {
282                                 cxgb4_dcb_state_init(dev);
283                                 dcb_tx_queue_prio_enable(dev, false);
284                         }
285 #endif /* CONFIG_CHELSIO_T4_DCB */
286                         netif_carrier_off(dev);
287                 }
288
289                 link_report(dev);
290         }
291 }
292
293 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
294 {
295         static const char *mod_str[] = {
296                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297         };
298
299         const struct net_device *dev = adap->port[port_id];
300         const struct port_info *pi = netdev_priv(dev);
301
302         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
303                 netdev_info(dev, "port module unplugged\n");
304         else if (pi->mod_type < ARRAY_SIZE(mod_str))
305                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
307                 netdev_info(dev, "%s: unsupported port module inserted\n",
308                             dev->name);
309         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
310                 netdev_info(dev, "%s: unknown port module inserted\n",
311                             dev->name);
312         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
313                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
314         else
315                 netdev_info(dev, "%s: unknown module type %d inserted\n",
316                             dev->name, pi->mod_type);
317 }
318
319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
320 module_param(dbfifo_int_thresh, int, 0644);
321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
322
323 /*
324  * usecs to sleep while draining the dbfifo
325  */
326 static int dbfifo_drain_delay = 1000;
327 module_param(dbfifo_drain_delay, int, 0644);
328 MODULE_PARM_DESC(dbfifo_drain_delay,
329                  "usecs to sleep while draining the dbfifo");
330
331 static inline int cxgb4_set_addr_hash(struct port_info *pi)
332 {
333         struct adapter *adap = pi->adapter;
334         u64 vec = 0;
335         bool ucast = false;
336         struct hash_mac_addr *entry;
337
338         /* Calculate the hash vector for the updated list and program it */
339         list_for_each_entry(entry, &adap->mac_hlist, list) {
340                 ucast |= is_unicast_ether_addr(entry->addr);
341                 vec |= (1ULL << hash_mac_addr(entry->addr));
342         }
343         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
344                                 vec, false);
345 }
346
347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
348 {
349         struct port_info *pi = netdev_priv(netdev);
350         struct adapter *adap = pi->adapter;
351         int ret;
352         u64 mhash = 0;
353         u64 uhash = 0;
354         bool free = false;
355         bool ucast = is_unicast_ether_addr(mac_addr);
356         const u8 *maclist[1] = {mac_addr};
357         struct hash_mac_addr *new_entry;
358
359         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
360                                 NULL, ucast ? &uhash : &mhash, false);
361         if (ret < 0)
362                 goto out;
363         /* if hash != 0, then add the addr to hash addr list
364          * so on the end we will calculate the hash for the
365          * list and program it
366          */
367         if (uhash || mhash) {
368                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
369                 if (!new_entry)
370                         return -ENOMEM;
371                 ether_addr_copy(new_entry->addr, mac_addr);
372                 list_add_tail(&new_entry->list, &adap->mac_hlist);
373                 ret = cxgb4_set_addr_hash(pi);
374         }
375 out:
376         return ret < 0 ? ret : 0;
377 }
378
379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
380 {
381         struct port_info *pi = netdev_priv(netdev);
382         struct adapter *adap = pi->adapter;
383         int ret;
384         const u8 *maclist[1] = {mac_addr};
385         struct hash_mac_addr *entry, *tmp;
386
387         /* If the MAC address to be removed is in the hash addr
388          * list, delete it from the list and update hash vector
389          */
390         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
391                 if (ether_addr_equal(entry->addr, mac_addr)) {
392                         list_del(&entry->list);
393                         kfree(entry);
394                         return cxgb4_set_addr_hash(pi);
395                 }
396         }
397
398         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
399         return ret < 0 ? -EINVAL : 0;
400 }
401
402 /*
403  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
404  * If @mtu is -1 it is left unchanged.
405  */
406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
407 {
408         struct port_info *pi = netdev_priv(dev);
409         struct adapter *adapter = pi->adapter;
410
411         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
412         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413
414         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
415                              (dev->flags & IFF_PROMISC) ? 1 : 0,
416                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417                              sleep_ok);
418 }
419
420 /**
421  *      link_start - enable a port
422  *      @dev: the port to enable
423  *
424  *      Performs the MAC and PHY actions needed to enable a port.
425  */
426 static int link_start(struct net_device *dev)
427 {
428         int ret;
429         struct port_info *pi = netdev_priv(dev);
430         unsigned int mb = pi->adapter->pf;
431
432         /*
433          * We do not set address filters and promiscuity here, the stack does
434          * that step explicitly.
435          */
436         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438         if (ret == 0) {
439                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
440                                     pi->xact_addr_filt, dev->dev_addr, true,
441                                     true);
442                 if (ret >= 0) {
443                         pi->xact_addr_filt = ret;
444                         ret = 0;
445                 }
446         }
447         if (ret == 0)
448                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449                                     &pi->link_cfg);
450         if (ret == 0) {
451                 local_bh_disable();
452                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
453                                           true, CXGB4_DCB_ENABLED);
454                 local_bh_enable();
455         }
456
457         return ret;
458 }
459
460 #ifdef CONFIG_CHELSIO_T4_DCB
461 /* Handle a Data Center Bridging update message from the firmware. */
462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
463 {
464         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465         struct net_device *dev = adap->port[adap->chan_map[port]];
466         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
467         int new_dcb_enabled;
468
469         cxgb4_dcb_handle_fw_update(adap, pcmd);
470         new_dcb_enabled = cxgb4_dcb_enabled(dev);
471
472         /* If the DCB has become enabled or disabled on the port then we're
473          * going to need to set up/tear down DCB Priority parameters for the
474          * TX Queues associated with the port.
475          */
476         if (new_dcb_enabled != old_dcb_enabled)
477                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
478 }
479 #endif /* CONFIG_CHELSIO_T4_DCB */
480
481 /* Response queue handler for the FW event queue.
482  */
483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
484                           const struct pkt_gl *gl)
485 {
486         u8 opcode = ((const struct rss_header *)rsp)->opcode;
487
488         rsp++;                                          /* skip RSS header */
489
490         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
491          */
492         if (unlikely(opcode == CPL_FW4_MSG &&
493            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
494                 rsp++;
495                 opcode = ((const struct rss_header *)rsp)->opcode;
496                 rsp++;
497                 if (opcode != CPL_SGE_EGR_UPDATE) {
498                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
499                                 , opcode);
500                         goto out;
501                 }
502         }
503
504         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
505                 const struct cpl_sge_egr_update *p = (void *)rsp;
506                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507                 struct sge_txq *txq;
508
509                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510                 txq->restarts++;
511                 if (txq->q_type == CXGB4_TXQ_ETH) {
512                         struct sge_eth_txq *eq;
513
514                         eq = container_of(txq, struct sge_eth_txq, q);
515                         netif_tx_wake_queue(eq->txq);
516                 } else {
517                         struct sge_uld_txq *oq;
518
519                         oq = container_of(txq, struct sge_uld_txq, q);
520                         tasklet_schedule(&oq->qresume_tsk);
521                 }
522         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
523                 const struct cpl_fw6_msg *p = (void *)rsp;
524
525 #ifdef CONFIG_CHELSIO_T4_DCB
526                 const struct fw_port_cmd *pcmd = (const void *)p->data;
527                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528                 unsigned int action =
529                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530
531                 if (cmd == FW_PORT_CMD &&
532                     action == FW_PORT_ACTION_GET_PORT_INFO) {
533                         int port = FW_PORT_CMD_PORTID_G(
534                                         be32_to_cpu(pcmd->op_to_portid));
535                         struct net_device *dev =
536                                 q->adap->port[q->adap->chan_map[port]];
537                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
538                                             FW_PORT_CMD_DCBXDIS_F)
539                                            ? CXGB4_DCB_INPUT_FW_DISABLED
540                                            : CXGB4_DCB_INPUT_FW_ENABLED);
541
542                         cxgb4_dcb_state_fsm(dev, state_input);
543                 }
544
545                 if (cmd == FW_PORT_CMD &&
546                     action == FW_PORT_ACTION_L2_DCB_CFG)
547                         dcb_rpl(q->adap, pcmd);
548                 else
549 #endif
550                         if (p->type == 0)
551                                 t4_handle_fw_rpl(q->adap, p->data);
552         } else if (opcode == CPL_L2T_WRITE_RPL) {
553                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
554
555                 do_l2t_write_rpl(q->adap, p);
556         } else if (opcode == CPL_SET_TCB_RPL) {
557                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
558
559                 filter_rpl(q->adap, p);
560         } else
561                 dev_err(q->adap->pdev_dev,
562                         "unexpected CPL %#x on FW event queue\n", opcode);
563 out:
564         return 0;
565 }
566
567 static void disable_msi(struct adapter *adapter)
568 {
569         if (adapter->flags & USING_MSIX) {
570                 pci_disable_msix(adapter->pdev);
571                 adapter->flags &= ~USING_MSIX;
572         } else if (adapter->flags & USING_MSI) {
573                 pci_disable_msi(adapter->pdev);
574                 adapter->flags &= ~USING_MSI;
575         }
576 }
577
578 /*
579  * Interrupt handler for non-data events used with MSI-X.
580  */
581 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
582 {
583         struct adapter *adap = cookie;
584         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585
586         if (v & PFSW_F) {
587                 adap->swintr = 1;
588                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589         }
590         if (adap->flags & MASTER_PF)
591                 t4_slow_intr_handler(adap);
592         return IRQ_HANDLED;
593 }
594
595 /*
596  * Name the MSI-X interrupts.
597  */
598 static void name_msix_vecs(struct adapter *adap)
599 {
600         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601
602         /* non-data interrupts */
603         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604
605         /* FW events */
606         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
607                  adap->port[0]->name);
608
609         /* Ethernet queues */
610         for_each_port(adap, j) {
611                 struct net_device *d = adap->port[j];
612                 const struct port_info *pi = netdev_priv(d);
613
614                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
615                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
616                                  d->name, i);
617         }
618 }
619
620 static int request_msix_queue_irqs(struct adapter *adap)
621 {
622         struct sge *s = &adap->sge;
623         int err, ethqidx;
624         int msi_index = 2;
625
626         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
627                           adap->msix_info[1].desc, &s->fw_evtq);
628         if (err)
629                 return err;
630
631         for_each_ethrxq(s, ethqidx) {
632                 err = request_irq(adap->msix_info[msi_index].vec,
633                                   t4_sge_intr_msix, 0,
634                                   adap->msix_info[msi_index].desc,
635                                   &s->ethrxq[ethqidx].rspq);
636                 if (err)
637                         goto unwind;
638                 msi_index++;
639         }
640         return 0;
641
642 unwind:
643         while (--ethqidx >= 0)
644                 free_irq(adap->msix_info[--msi_index].vec,
645                          &s->ethrxq[ethqidx].rspq);
646         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
647         return err;
648 }
649
650 static void free_msix_queue_irqs(struct adapter *adap)
651 {
652         int i, msi_index = 2;
653         struct sge *s = &adap->sge;
654
655         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
656         for_each_ethrxq(s, i)
657                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 }
659
660 /**
661  *      cxgb4_write_rss - write the RSS table for a given port
662  *      @pi: the port
663  *      @queues: array of queue indices for RSS
664  *
665  *      Sets up the portion of the HW RSS table for the port's VI to distribute
666  *      packets to the Rx queues in @queues.
667  *      Should never be called before setting up sge eth rx queues
668  */
669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 {
671         u16 *rss;
672         int i, err;
673         struct adapter *adapter = pi->adapter;
674         const struct sge_eth_rxq *rxq;
675
676         rxq = &adapter->sge.ethrxq[pi->first_qset];
677         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
678         if (!rss)
679                 return -ENOMEM;
680
681         /* map the queue indices to queue ids */
682         for (i = 0; i < pi->rss_size; i++, queues++)
683                 rss[i] = rxq[*queues].rspq.abs_id;
684
685         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686                                   pi->rss_size, rss, pi->rss_size);
687         /* If Tunnel All Lookup isn't specified in the global RSS
688          * Configuration, then we need to specify a default Ingress
689          * Queue for any ingress packets which aren't hashed.  We'll
690          * use our first ingress queue ...
691          */
692         if (!err)
693                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
694                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
695                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
696                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
697                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
698                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
699                                        rss[0]);
700         kfree(rss);
701         return err;
702 }
703
704 /**
705  *      setup_rss - configure RSS
706  *      @adap: the adapter
707  *
708  *      Sets up RSS for each port.
709  */
710 static int setup_rss(struct adapter *adap)
711 {
712         int i, j, err;
713
714         for_each_port(adap, i) {
715                 const struct port_info *pi = adap2pinfo(adap, i);
716
717                 /* Fill default values with equal distribution */
718                 for (j = 0; j < pi->rss_size; j++)
719                         pi->rss[j] = j % pi->nqsets;
720
721                 err = cxgb4_write_rss(pi, pi->rss);
722                 if (err)
723                         return err;
724         }
725         return 0;
726 }
727
728 /*
729  * Return the channel of the ingress queue with the given qid.
730  */
731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
732 {
733         qid -= p->ingr_start;
734         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
735 }
736
737 /*
738  * Wait until all NAPI handlers are descheduled.
739  */
740 static void quiesce_rx(struct adapter *adap)
741 {
742         int i;
743
744         for (i = 0; i < adap->sge.ingr_sz; i++) {
745                 struct sge_rspq *q = adap->sge.ingr_map[i];
746
747                 if (q && q->handler)
748                         napi_disable(&q->napi);
749         }
750 }
751
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755         if (adap->flags & FULL_INIT_DONE) {
756                 t4_intr_disable(adap);
757                 if (adap->flags & USING_MSIX) {
758                         free_msix_queue_irqs(adap);
759                         free_irq(adap->msix_info[0].vec, adap);
760                 } else {
761                         free_irq(adap->pdev->irq, adap);
762                 }
763                 quiesce_rx(adap);
764         }
765 }
766
767 /*
768  * Enable NAPI scheduling and interrupt generation for all Rx queues.
769  */
770 static void enable_rx(struct adapter *adap)
771 {
772         int i;
773
774         for (i = 0; i < adap->sge.ingr_sz; i++) {
775                 struct sge_rspq *q = adap->sge.ingr_map[i];
776
777                 if (!q)
778                         continue;
779                 if (q->handler)
780                         napi_enable(&q->napi);
781
782                 /* 0-increment GTS to start the timer and enable interrupts */
783                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
784                              SEINTARM_V(q->intr_params) |
785                              INGRESSQID_V(q->cntxt_id));
786         }
787 }
788
789
790 static int setup_fw_sge_queues(struct adapter *adap)
791 {
792         struct sge *s = &adap->sge;
793         int err = 0;
794
795         bitmap_zero(s->starving_fl, s->egr_sz);
796         bitmap_zero(s->txq_maperr, s->egr_sz);
797
798         if (adap->flags & USING_MSIX)
799                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800         else {
801                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802                                        NULL, NULL, NULL, -1);
803                 if (err)
804                         return err;
805                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
806         }
807
808         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810         if (err)
811                 t4_free_sge_resources(adap);
812         return err;
813 }
814
815 /**
816  *      setup_sge_queues - configure SGE Tx/Rx/response queues
817  *      @adap: the adapter
818  *
819  *      Determines how many sets of SGE queues to use and initializes them.
820  *      We support multiple queue sets per port if we have MSI-X, otherwise
821  *      just one queue set per port.
822  */
823 static int setup_sge_queues(struct adapter *adap)
824 {
825         int err, i, j;
826         struct sge *s = &adap->sge;
827         struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
828         unsigned int cmplqid = 0;
829
830         for_each_port(adap, i) {
831                 struct net_device *dev = adap->port[i];
832                 struct port_info *pi = netdev_priv(dev);
833                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
834                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
835
836                 for (j = 0; j < pi->nqsets; j++, q++) {
837                         if (adap->msi_idx > 0)
838                                 adap->msi_idx++;
839                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840                                                adap->msi_idx, &q->fl,
841                                                t4_ethrx_handler,
842                                                NULL,
843                                                t4_get_mps_bg_map(adap,
844                                                                  pi->tx_chan));
845                         if (err)
846                                 goto freeout;
847                         q->rspq.idx = j;
848                         memset(&q->stats, 0, sizeof(q->stats));
849                 }
850                 for (j = 0; j < pi->nqsets; j++, t++) {
851                         err = t4_sge_alloc_eth_txq(adap, t, dev,
852                                         netdev_get_tx_queue(dev, j),
853                                         s->fw_evtq.cntxt_id);
854                         if (err)
855                                 goto freeout;
856                 }
857         }
858
859         for_each_port(adap, i) {
860                 /* Note that cmplqid below is 0 if we don't
861                  * have RDMA queues, and that's the right value.
862                  */
863                 if (rxq_info)
864                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
865
866                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867                                             s->fw_evtq.cntxt_id, cmplqid);
868                 if (err)
869                         goto freeout;
870         }
871
872         t4_write_reg(adap, is_t4(adap->params.chip) ?
873                                 MPS_TRC_RSS_CONTROL_A :
874                                 MPS_T5_TRC_RSS_CONTROL_A,
875                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
876                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877         return 0;
878 freeout:
879         t4_free_sge_resources(adap);
880         return err;
881 }
882
883 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
884                              void *accel_priv, select_queue_fallback_t fallback)
885 {
886         int txq;
887
888 #ifdef CONFIG_CHELSIO_T4_DCB
889         /* If a Data Center Bridging has been successfully negotiated on this
890          * link then we'll use the skb's priority to map it to a TX Queue.
891          * The skb's priority is determined via the VLAN Tag Priority Code
892          * Point field.
893          */
894         if (cxgb4_dcb_enabled(dev)) {
895                 u16 vlan_tci;
896                 int err;
897
898                 err = vlan_get_tag(skb, &vlan_tci);
899                 if (unlikely(err)) {
900                         if (net_ratelimit())
901                                 netdev_warn(dev,
902                                             "TX Packet without VLAN Tag on DCB Link\n");
903                         txq = 0;
904                 } else {
905                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
906 #ifdef CONFIG_CHELSIO_T4_FCOE
907                         if (skb->protocol == htons(ETH_P_FCOE))
908                                 txq = skb->priority & 0x7;
909 #endif /* CONFIG_CHELSIO_T4_FCOE */
910                 }
911                 return txq;
912         }
913 #endif /* CONFIG_CHELSIO_T4_DCB */
914
915         if (select_queue) {
916                 txq = (skb_rx_queue_recorded(skb)
917                         ? skb_get_rx_queue(skb)
918                         : smp_processor_id());
919
920                 while (unlikely(txq >= dev->real_num_tx_queues))
921                         txq -= dev->real_num_tx_queues;
922
923                 return txq;
924         }
925
926         return fallback(dev, skb) % dev->real_num_tx_queues;
927 }
928
929 static int closest_timer(const struct sge *s, int time)
930 {
931         int i, delta, match = 0, min_delta = INT_MAX;
932
933         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
934                 delta = time - s->timer_val[i];
935                 if (delta < 0)
936                         delta = -delta;
937                 if (delta < min_delta) {
938                         min_delta = delta;
939                         match = i;
940                 }
941         }
942         return match;
943 }
944
945 static int closest_thres(const struct sge *s, int thres)
946 {
947         int i, delta, match = 0, min_delta = INT_MAX;
948
949         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
950                 delta = thres - s->counter_val[i];
951                 if (delta < 0)
952                         delta = -delta;
953                 if (delta < min_delta) {
954                         min_delta = delta;
955                         match = i;
956                 }
957         }
958         return match;
959 }
960
961 /**
962  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
963  *      @q: the Rx queue
964  *      @us: the hold-off time in us, or 0 to disable timer
965  *      @cnt: the hold-off packet count, or 0 to disable counter
966  *
967  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
968  *      one of the two needs to be enabled for the queue to generate interrupts.
969  */
970 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
971                                unsigned int us, unsigned int cnt)
972 {
973         struct adapter *adap = q->adap;
974
975         if ((us | cnt) == 0)
976                 cnt = 1;
977
978         if (cnt) {
979                 int err;
980                 u32 v, new_idx;
981
982                 new_idx = closest_thres(&adap->sge, cnt);
983                 if (q->desc && q->pktcnt_idx != new_idx) {
984                         /* the queue has already been created, update it */
985                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
986                             FW_PARAMS_PARAM_X_V(
987                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
988                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
989                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
990                                             &v, &new_idx);
991                         if (err)
992                                 return err;
993                 }
994                 q->pktcnt_idx = new_idx;
995         }
996
997         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
998         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
999         return 0;
1000 }
1001
1002 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1003 {
1004         const struct port_info *pi = netdev_priv(dev);
1005         netdev_features_t changed = dev->features ^ features;
1006         int err;
1007
1008         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1009                 return 0;
1010
1011         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1012                             -1, -1, -1,
1013                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1014         if (unlikely(err))
1015                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1016         return err;
1017 }
1018
1019 static int setup_debugfs(struct adapter *adap)
1020 {
1021         if (IS_ERR_OR_NULL(adap->debugfs_root))
1022                 return -1;
1023
1024 #ifdef CONFIG_DEBUG_FS
1025         t4_setup_debugfs(adap);
1026 #endif
1027         return 0;
1028 }
1029
1030 /*
1031  * upper-layer driver support
1032  */
1033
1034 /*
1035  * Allocate an active-open TID and set it to the supplied value.
1036  */
1037 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1038 {
1039         int atid = -1;
1040
1041         spin_lock_bh(&t->atid_lock);
1042         if (t->afree) {
1043                 union aopen_entry *p = t->afree;
1044
1045                 atid = (p - t->atid_tab) + t->atid_base;
1046                 t->afree = p->next;
1047                 p->data = data;
1048                 t->atids_in_use++;
1049         }
1050         spin_unlock_bh(&t->atid_lock);
1051         return atid;
1052 }
1053 EXPORT_SYMBOL(cxgb4_alloc_atid);
1054
1055 /*
1056  * Release an active-open TID.
1057  */
1058 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1059 {
1060         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1061
1062         spin_lock_bh(&t->atid_lock);
1063         p->next = t->afree;
1064         t->afree = p;
1065         t->atids_in_use--;
1066         spin_unlock_bh(&t->atid_lock);
1067 }
1068 EXPORT_SYMBOL(cxgb4_free_atid);
1069
1070 /*
1071  * Allocate a server TID and set it to the supplied value.
1072  */
1073 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1074 {
1075         int stid;
1076
1077         spin_lock_bh(&t->stid_lock);
1078         if (family == PF_INET) {
1079                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1080                 if (stid < t->nstids)
1081                         __set_bit(stid, t->stid_bmap);
1082                 else
1083                         stid = -1;
1084         } else {
1085                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1086                 if (stid < 0)
1087                         stid = -1;
1088         }
1089         if (stid >= 0) {
1090                 t->stid_tab[stid].data = data;
1091                 stid += t->stid_base;
1092                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1093                  * This is equivalent to 4 TIDs. With CLIP enabled it
1094                  * needs 2 TIDs.
1095                  */
1096                 if (family == PF_INET)
1097                         t->stids_in_use++;
1098                 else
1099                         t->stids_in_use += 2;
1100         }
1101         spin_unlock_bh(&t->stid_lock);
1102         return stid;
1103 }
1104 EXPORT_SYMBOL(cxgb4_alloc_stid);
1105
1106 /* Allocate a server filter TID and set it to the supplied value.
1107  */
1108 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1109 {
1110         int stid;
1111
1112         spin_lock_bh(&t->stid_lock);
1113         if (family == PF_INET) {
1114                 stid = find_next_zero_bit(t->stid_bmap,
1115                                 t->nstids + t->nsftids, t->nstids);
1116                 if (stid < (t->nstids + t->nsftids))
1117                         __set_bit(stid, t->stid_bmap);
1118                 else
1119                         stid = -1;
1120         } else {
1121                 stid = -1;
1122         }
1123         if (stid >= 0) {
1124                 t->stid_tab[stid].data = data;
1125                 stid -= t->nstids;
1126                 stid += t->sftid_base;
1127                 t->sftids_in_use++;
1128         }
1129         spin_unlock_bh(&t->stid_lock);
1130         return stid;
1131 }
1132 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1133
1134 /* Release a server TID.
1135  */
1136 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1137 {
1138         /* Is it a server filter TID? */
1139         if (t->nsftids && (stid >= t->sftid_base)) {
1140                 stid -= t->sftid_base;
1141                 stid += t->nstids;
1142         } else {
1143                 stid -= t->stid_base;
1144         }
1145
1146         spin_lock_bh(&t->stid_lock);
1147         if (family == PF_INET)
1148                 __clear_bit(stid, t->stid_bmap);
1149         else
1150                 bitmap_release_region(t->stid_bmap, stid, 1);
1151         t->stid_tab[stid].data = NULL;
1152         if (stid < t->nstids) {
1153                 if (family == PF_INET)
1154                         t->stids_in_use--;
1155                 else
1156                         t->stids_in_use -= 2;
1157         } else {
1158                 t->sftids_in_use--;
1159         }
1160         spin_unlock_bh(&t->stid_lock);
1161 }
1162 EXPORT_SYMBOL(cxgb4_free_stid);
1163
1164 /*
1165  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1166  */
1167 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1168                            unsigned int tid)
1169 {
1170         struct cpl_tid_release *req;
1171
1172         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1173         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1174         INIT_TP_WR(req, tid);
1175         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1176 }
1177
1178 /*
1179  * Queue a TID release request and if necessary schedule a work queue to
1180  * process it.
1181  */
1182 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1183                                     unsigned int tid)
1184 {
1185         void **p = &t->tid_tab[tid];
1186         struct adapter *adap = container_of(t, struct adapter, tids);
1187
1188         spin_lock_bh(&adap->tid_release_lock);
1189         *p = adap->tid_release_head;
1190         /* Low 2 bits encode the Tx channel number */
1191         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1192         if (!adap->tid_release_task_busy) {
1193                 adap->tid_release_task_busy = true;
1194                 queue_work(adap->workq, &adap->tid_release_task);
1195         }
1196         spin_unlock_bh(&adap->tid_release_lock);
1197 }
1198
1199 /*
1200  * Process the list of pending TID release requests.
1201  */
1202 static void process_tid_release_list(struct work_struct *work)
1203 {
1204         struct sk_buff *skb;
1205         struct adapter *adap;
1206
1207         adap = container_of(work, struct adapter, tid_release_task);
1208
1209         spin_lock_bh(&adap->tid_release_lock);
1210         while (adap->tid_release_head) {
1211                 void **p = adap->tid_release_head;
1212                 unsigned int chan = (uintptr_t)p & 3;
1213                 p = (void *)p - chan;
1214
1215                 adap->tid_release_head = *p;
1216                 *p = NULL;
1217                 spin_unlock_bh(&adap->tid_release_lock);
1218
1219                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1220                                          GFP_KERNEL)))
1221                         schedule_timeout_uninterruptible(1);
1222
1223                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1224                 t4_ofld_send(adap, skb);
1225                 spin_lock_bh(&adap->tid_release_lock);
1226         }
1227         adap->tid_release_task_busy = false;
1228         spin_unlock_bh(&adap->tid_release_lock);
1229 }
1230
1231 /*
1232  * Release a TID and inform HW.  If we are unable to allocate the release
1233  * message we defer to a work queue.
1234  */
1235 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1236 {
1237         struct sk_buff *skb;
1238         struct adapter *adap = container_of(t, struct adapter, tids);
1239
1240         WARN_ON(tid >= t->ntids);
1241
1242         if (t->tid_tab[tid]) {
1243                 t->tid_tab[tid] = NULL;
1244                 if (t->hash_base && (tid >= t->hash_base))
1245                         atomic_dec(&t->hash_tids_in_use);
1246                 else
1247                         atomic_dec(&t->tids_in_use);
1248         }
1249
1250         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1251         if (likely(skb)) {
1252                 mk_tid_release(skb, chan, tid);
1253                 t4_ofld_send(adap, skb);
1254         } else
1255                 cxgb4_queue_tid_release(t, chan, tid);
1256 }
1257 EXPORT_SYMBOL(cxgb4_remove_tid);
1258
1259 /*
1260  * Allocate and initialize the TID tables.  Returns 0 on success.
1261  */
1262 static int tid_init(struct tid_info *t)
1263 {
1264         struct adapter *adap = container_of(t, struct adapter, tids);
1265         unsigned int max_ftids = t->nftids + t->nsftids;
1266         unsigned int natids = t->natids;
1267         unsigned int stid_bmap_size;
1268         unsigned int ftid_bmap_size;
1269         size_t size;
1270
1271         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1272         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1273         size = t->ntids * sizeof(*t->tid_tab) +
1274                natids * sizeof(*t->atid_tab) +
1275                t->nstids * sizeof(*t->stid_tab) +
1276                t->nsftids * sizeof(*t->stid_tab) +
1277                stid_bmap_size * sizeof(long) +
1278                max_ftids * sizeof(*t->ftid_tab) +
1279                ftid_bmap_size * sizeof(long);
1280
1281         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1282         if (!t->tid_tab)
1283                 return -ENOMEM;
1284
1285         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1286         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1287         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1288         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1289         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1290         spin_lock_init(&t->stid_lock);
1291         spin_lock_init(&t->atid_lock);
1292         spin_lock_init(&t->ftid_lock);
1293
1294         t->stids_in_use = 0;
1295         t->sftids_in_use = 0;
1296         t->afree = NULL;
1297         t->atids_in_use = 0;
1298         atomic_set(&t->tids_in_use, 0);
1299         atomic_set(&t->hash_tids_in_use, 0);
1300
1301         /* Setup the free list for atid_tab and clear the stid bitmap. */
1302         if (natids) {
1303                 while (--natids)
1304                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1305                 t->afree = t->atid_tab;
1306         }
1307
1308         if (is_offload(adap)) {
1309                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1310                 /* Reserve stid 0 for T4/T5 adapters */
1311                 if (!t->stid_base &&
1312                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1313                         __set_bit(0, t->stid_bmap);
1314         }
1315
1316         bitmap_zero(t->ftid_bmap, t->nftids);
1317         return 0;
1318 }
1319
1320 /**
1321  *      cxgb4_create_server - create an IP server
1322  *      @dev: the device
1323  *      @stid: the server TID
1324  *      @sip: local IP address to bind server to
1325  *      @sport: the server's TCP port
1326  *      @queue: queue to direct messages from this server to
1327  *
1328  *      Create an IP server for the given port and address.
1329  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1330  */
1331 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1332                         __be32 sip, __be16 sport, __be16 vlan,
1333                         unsigned int queue)
1334 {
1335         unsigned int chan;
1336         struct sk_buff *skb;
1337         struct adapter *adap;
1338         struct cpl_pass_open_req *req;
1339         int ret;
1340
1341         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1342         if (!skb)
1343                 return -ENOMEM;
1344
1345         adap = netdev2adap(dev);
1346         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1347         INIT_TP_WR(req, 0);
1348         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1349         req->local_port = sport;
1350         req->peer_port = htons(0);
1351         req->local_ip = sip;
1352         req->peer_ip = htonl(0);
1353         chan = rxq_to_chan(&adap->sge, queue);
1354         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1355         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1356                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1357         ret = t4_mgmt_tx(adap, skb);
1358         return net_xmit_eval(ret);
1359 }
1360 EXPORT_SYMBOL(cxgb4_create_server);
1361
1362 /*      cxgb4_create_server6 - create an IPv6 server
1363  *      @dev: the device
1364  *      @stid: the server TID
1365  *      @sip: local IPv6 address to bind server to
1366  *      @sport: the server's TCP port
1367  *      @queue: queue to direct messages from this server to
1368  *
1369  *      Create an IPv6 server for the given port and address.
1370  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1371  */
1372 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1373                          const struct in6_addr *sip, __be16 sport,
1374                          unsigned int queue)
1375 {
1376         unsigned int chan;
1377         struct sk_buff *skb;
1378         struct adapter *adap;
1379         struct cpl_pass_open_req6 *req;
1380         int ret;
1381
1382         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1383         if (!skb)
1384                 return -ENOMEM;
1385
1386         adap = netdev2adap(dev);
1387         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1388         INIT_TP_WR(req, 0);
1389         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1390         req->local_port = sport;
1391         req->peer_port = htons(0);
1392         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1393         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1394         req->peer_ip_hi = cpu_to_be64(0);
1395         req->peer_ip_lo = cpu_to_be64(0);
1396         chan = rxq_to_chan(&adap->sge, queue);
1397         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1398         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1399                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1400         ret = t4_mgmt_tx(adap, skb);
1401         return net_xmit_eval(ret);
1402 }
1403 EXPORT_SYMBOL(cxgb4_create_server6);
1404
1405 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1406                         unsigned int queue, bool ipv6)
1407 {
1408         struct sk_buff *skb;
1409         struct adapter *adap;
1410         struct cpl_close_listsvr_req *req;
1411         int ret;
1412
1413         adap = netdev2adap(dev);
1414
1415         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1416         if (!skb)
1417                 return -ENOMEM;
1418
1419         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1420         INIT_TP_WR(req, 0);
1421         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1422         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1423                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1424         ret = t4_mgmt_tx(adap, skb);
1425         return net_xmit_eval(ret);
1426 }
1427 EXPORT_SYMBOL(cxgb4_remove_server);
1428
1429 /**
1430  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1431  *      @mtus: the HW MTU table
1432  *      @mtu: the target MTU
1433  *      @idx: index of selected entry in the MTU table
1434  *
1435  *      Returns the index and the value in the HW MTU table that is closest to
1436  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1437  *      table, in which case that smallest available value is selected.
1438  */
1439 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1440                             unsigned int *idx)
1441 {
1442         unsigned int i = 0;
1443
1444         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1445                 ++i;
1446         if (idx)
1447                 *idx = i;
1448         return mtus[i];
1449 }
1450 EXPORT_SYMBOL(cxgb4_best_mtu);
1451
1452 /**
1453  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1454  *     @mtus: the HW MTU table
1455  *     @header_size: Header Size
1456  *     @data_size_max: maximum Data Segment Size
1457  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1458  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1459  *
1460  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1461  *     MTU Table based solely on a Maximum MTU parameter, we break that
1462  *     parameter up into a Header Size and Maximum Data Segment Size, and
1463  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1464  *     the Hardware MTU Table which will result in a Data Segment Size with
1465  *     the requested alignment _and_ that MTU isn't "too far" from the
1466  *     closest MTU, then we'll return that rather than the closest MTU.
1467  */
1468 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1469                                     unsigned short header_size,
1470                                     unsigned short data_size_max,
1471                                     unsigned short data_size_align,
1472                                     unsigned int *mtu_idxp)
1473 {
1474         unsigned short max_mtu = header_size + data_size_max;
1475         unsigned short data_size_align_mask = data_size_align - 1;
1476         int mtu_idx, aligned_mtu_idx;
1477
1478         /* Scan the MTU Table till we find an MTU which is larger than our
1479          * Maximum MTU or we reach the end of the table.  Along the way,
1480          * record the last MTU found, if any, which will result in a Data
1481          * Segment Length matching the requested alignment.
1482          */
1483         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1484                 unsigned short data_size = mtus[mtu_idx] - header_size;
1485
1486                 /* If this MTU minus the Header Size would result in a
1487                  * Data Segment Size of the desired alignment, remember it.
1488                  */
1489                 if ((data_size & data_size_align_mask) == 0)
1490                         aligned_mtu_idx = mtu_idx;
1491
1492                 /* If we're not at the end of the Hardware MTU Table and the
1493                  * next element is larger than our Maximum MTU, drop out of
1494                  * the loop.
1495                  */
1496                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1497                         break;
1498         }
1499
1500         /* If we fell out of the loop because we ran to the end of the table,
1501          * then we just have to use the last [largest] entry.
1502          */
1503         if (mtu_idx == NMTUS)
1504                 mtu_idx--;
1505
1506         /* If we found an MTU which resulted in the requested Data Segment
1507          * Length alignment and that's "not far" from the largest MTU which is
1508          * less than or equal to the maximum MTU, then use that.
1509          */
1510         if (aligned_mtu_idx >= 0 &&
1511             mtu_idx - aligned_mtu_idx <= 1)
1512                 mtu_idx = aligned_mtu_idx;
1513
1514         /* If the caller has passed in an MTU Index pointer, pass the
1515          * MTU Index back.  Return the MTU value.
1516          */
1517         if (mtu_idxp)
1518                 *mtu_idxp = mtu_idx;
1519         return mtus[mtu_idx];
1520 }
1521 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1522
1523 /**
1524  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1525  *      @chip: chip type
1526  *      @viid: VI id of the given port
1527  *
1528  *      Return the SMT index for this VI.
1529  */
1530 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1531 {
1532         /* In T4/T5, SMT contains 256 SMAC entries organized in
1533          * 128 rows of 2 entries each.
1534          * In T6, SMT contains 256 SMAC entries in 256 rows.
1535          * TODO: The below code needs to be updated when we add support
1536          * for 256 VFs.
1537          */
1538         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1539                 return ((viid & 0x7f) << 1);
1540         else
1541                 return (viid & 0x7f);
1542 }
1543 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1544
1545 /**
1546  *      cxgb4_port_chan - get the HW channel of a port
1547  *      @dev: the net device for the port
1548  *
1549  *      Return the HW Tx channel of the given port.
1550  */
1551 unsigned int cxgb4_port_chan(const struct net_device *dev)
1552 {
1553         return netdev2pinfo(dev)->tx_chan;
1554 }
1555 EXPORT_SYMBOL(cxgb4_port_chan);
1556
1557 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1558 {
1559         struct adapter *adap = netdev2adap(dev);
1560         u32 v1, v2, lp_count, hp_count;
1561
1562         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1563         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1564         if (is_t4(adap->params.chip)) {
1565                 lp_count = LP_COUNT_G(v1);
1566                 hp_count = HP_COUNT_G(v1);
1567         } else {
1568                 lp_count = LP_COUNT_T5_G(v1);
1569                 hp_count = HP_COUNT_T5_G(v2);
1570         }
1571         return lpfifo ? lp_count : hp_count;
1572 }
1573 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1574
1575 /**
1576  *      cxgb4_port_viid - get the VI id of a port
1577  *      @dev: the net device for the port
1578  *
1579  *      Return the VI id of the given port.
1580  */
1581 unsigned int cxgb4_port_viid(const struct net_device *dev)
1582 {
1583         return netdev2pinfo(dev)->viid;
1584 }
1585 EXPORT_SYMBOL(cxgb4_port_viid);
1586
1587 /**
1588  *      cxgb4_port_idx - get the index of a port
1589  *      @dev: the net device for the port
1590  *
1591  *      Return the index of the given port.
1592  */
1593 unsigned int cxgb4_port_idx(const struct net_device *dev)
1594 {
1595         return netdev2pinfo(dev)->port_id;
1596 }
1597 EXPORT_SYMBOL(cxgb4_port_idx);
1598
1599 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1600                          struct tp_tcp_stats *v6)
1601 {
1602         struct adapter *adap = pci_get_drvdata(pdev);
1603
1604         spin_lock(&adap->stats_lock);
1605         t4_tp_get_tcp_stats(adap, v4, v6);
1606         spin_unlock(&adap->stats_lock);
1607 }
1608 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1609
1610 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1611                       const unsigned int *pgsz_order)
1612 {
1613         struct adapter *adap = netdev2adap(dev);
1614
1615         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1616         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1617                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1618                      HPZ3_V(pgsz_order[3]));
1619 }
1620 EXPORT_SYMBOL(cxgb4_iscsi_init);
1621
1622 int cxgb4_flush_eq_cache(struct net_device *dev)
1623 {
1624         struct adapter *adap = netdev2adap(dev);
1625
1626         return t4_sge_ctxt_flush(adap, adap->mbox);
1627 }
1628 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1629
1630 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1631 {
1632         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1633         __be64 indices;
1634         int ret;
1635
1636         spin_lock(&adap->win0_lock);
1637         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1638                            sizeof(indices), (__be32 *)&indices,
1639                            T4_MEMORY_READ);
1640         spin_unlock(&adap->win0_lock);
1641         if (!ret) {
1642                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1643                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1644         }
1645         return ret;
1646 }
1647
1648 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1649                         u16 size)
1650 {
1651         struct adapter *adap = netdev2adap(dev);
1652         u16 hw_pidx, hw_cidx;
1653         int ret;
1654
1655         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1656         if (ret)
1657                 goto out;
1658
1659         if (pidx != hw_pidx) {
1660                 u16 delta;
1661                 u32 val;
1662
1663                 if (pidx >= hw_pidx)
1664                         delta = pidx - hw_pidx;
1665                 else
1666                         delta = size - hw_pidx + pidx;
1667
1668                 if (is_t4(adap->params.chip))
1669                         val = PIDX_V(delta);
1670                 else
1671                         val = PIDX_T5_V(delta);
1672                 wmb();
1673                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1674                              QID_V(qid) | val);
1675         }
1676 out:
1677         return ret;
1678 }
1679 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1680
1681 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1682 {
1683         struct adapter *adap;
1684         u32 offset, memtype, memaddr;
1685         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1686         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1687         int ret;
1688
1689         adap = netdev2adap(dev);
1690
1691         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1692
1693         /* Figure out where the offset lands in the Memory Type/Address scheme.
1694          * This code assumes that the memory is laid out starting at offset 0
1695          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1696          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1697          * MC0, and some have both MC0 and MC1.
1698          */
1699         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1700         edc0_size = EDRAM0_SIZE_G(size) << 20;
1701         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1702         edc1_size = EDRAM1_SIZE_G(size) << 20;
1703         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1704         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1705
1706         edc0_end = edc0_size;
1707         edc1_end = edc0_end + edc1_size;
1708         mc0_end = edc1_end + mc0_size;
1709
1710         if (offset < edc0_end) {
1711                 memtype = MEM_EDC0;
1712                 memaddr = offset;
1713         } else if (offset < edc1_end) {
1714                 memtype = MEM_EDC1;
1715                 memaddr = offset - edc0_end;
1716         } else {
1717                 if (offset < mc0_end) {
1718                         memtype = MEM_MC0;
1719                         memaddr = offset - edc1_end;
1720                 } else if (is_t5(adap->params.chip)) {
1721                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1722                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1723                         mc1_end = mc0_end + mc1_size;
1724                         if (offset < mc1_end) {
1725                                 memtype = MEM_MC1;
1726                                 memaddr = offset - mc0_end;
1727                         } else {
1728                                 /* offset beyond the end of any memory */
1729                                 goto err;
1730                         }
1731                 } else {
1732                         /* T4/T6 only has a single memory channel */
1733                         goto err;
1734                 }
1735         }
1736
1737         spin_lock(&adap->win0_lock);
1738         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1739         spin_unlock(&adap->win0_lock);
1740         return ret;
1741
1742 err:
1743         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1744                 stag, offset);
1745         return -EINVAL;
1746 }
1747 EXPORT_SYMBOL(cxgb4_read_tpte);
1748
1749 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1750 {
1751         u32 hi, lo;
1752         struct adapter *adap;
1753
1754         adap = netdev2adap(dev);
1755         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1756         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1757
1758         return ((u64)hi << 32) | (u64)lo;
1759 }
1760 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1761
1762 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1763                          unsigned int qid,
1764                          enum cxgb4_bar2_qtype qtype,
1765                          int user,
1766                          u64 *pbar2_qoffset,
1767                          unsigned int *pbar2_qid)
1768 {
1769         return t4_bar2_sge_qregs(netdev2adap(dev),
1770                                  qid,
1771                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1772                                   ? T4_BAR2_QTYPE_EGRESS
1773                                   : T4_BAR2_QTYPE_INGRESS),
1774                                  user,
1775                                  pbar2_qoffset,
1776                                  pbar2_qid);
1777 }
1778 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1779
1780 static struct pci_driver cxgb4_driver;
1781
1782 static void check_neigh_update(struct neighbour *neigh)
1783 {
1784         const struct device *parent;
1785         const struct net_device *netdev = neigh->dev;
1786
1787         if (is_vlan_dev(netdev))
1788                 netdev = vlan_dev_real_dev(netdev);
1789         parent = netdev->dev.parent;
1790         if (parent && parent->driver == &cxgb4_driver.driver)
1791                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1792 }
1793
1794 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1795                        void *data)
1796 {
1797         switch (event) {
1798         case NETEVENT_NEIGH_UPDATE:
1799                 check_neigh_update(data);
1800                 break;
1801         case NETEVENT_REDIRECT:
1802         default:
1803                 break;
1804         }
1805         return 0;
1806 }
1807
1808 static bool netevent_registered;
1809 static struct notifier_block cxgb4_netevent_nb = {
1810         .notifier_call = netevent_cb
1811 };
1812
1813 static void drain_db_fifo(struct adapter *adap, int usecs)
1814 {
1815         u32 v1, v2, lp_count, hp_count;
1816
1817         do {
1818                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1819                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1820                 if (is_t4(adap->params.chip)) {
1821                         lp_count = LP_COUNT_G(v1);
1822                         hp_count = HP_COUNT_G(v1);
1823                 } else {
1824                         lp_count = LP_COUNT_T5_G(v1);
1825                         hp_count = HP_COUNT_T5_G(v2);
1826                 }
1827
1828                 if (lp_count == 0 && hp_count == 0)
1829                         break;
1830                 set_current_state(TASK_UNINTERRUPTIBLE);
1831                 schedule_timeout(usecs_to_jiffies(usecs));
1832         } while (1);
1833 }
1834
1835 static void disable_txq_db(struct sge_txq *q)
1836 {
1837         unsigned long flags;
1838
1839         spin_lock_irqsave(&q->db_lock, flags);
1840         q->db_disabled = 1;
1841         spin_unlock_irqrestore(&q->db_lock, flags);
1842 }
1843
1844 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1845 {
1846         spin_lock_irq(&q->db_lock);
1847         if (q->db_pidx_inc) {
1848                 /* Make sure that all writes to the TX descriptors
1849                  * are committed before we tell HW about them.
1850                  */
1851                 wmb();
1852                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1853                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1854                 q->db_pidx_inc = 0;
1855         }
1856         q->db_disabled = 0;
1857         spin_unlock_irq(&q->db_lock);
1858 }
1859
1860 static void disable_dbs(struct adapter *adap)
1861 {
1862         int i;
1863
1864         for_each_ethrxq(&adap->sge, i)
1865                 disable_txq_db(&adap->sge.ethtxq[i].q);
1866         if (is_offload(adap)) {
1867                 struct sge_uld_txq_info *txq_info =
1868                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1869
1870                 if (txq_info) {
1871                         for_each_ofldtxq(&adap->sge, i) {
1872                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1873
1874                                 disable_txq_db(&txq->q);
1875                         }
1876                 }
1877         }
1878         for_each_port(adap, i)
1879                 disable_txq_db(&adap->sge.ctrlq[i].q);
1880 }
1881
1882 static void enable_dbs(struct adapter *adap)
1883 {
1884         int i;
1885
1886         for_each_ethrxq(&adap->sge, i)
1887                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1888         if (is_offload(adap)) {
1889                 struct sge_uld_txq_info *txq_info =
1890                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1891
1892                 if (txq_info) {
1893                         for_each_ofldtxq(&adap->sge, i) {
1894                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1895
1896                                 enable_txq_db(adap, &txq->q);
1897                         }
1898                 }
1899         }
1900         for_each_port(adap, i)
1901                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1902 }
1903
1904 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1905 {
1906         enum cxgb4_uld type = CXGB4_ULD_RDMA;
1907
1908         if (adap->uld && adap->uld[type].handle)
1909                 adap->uld[type].control(adap->uld[type].handle, cmd);
1910 }
1911
1912 static void process_db_full(struct work_struct *work)
1913 {
1914         struct adapter *adap;
1915
1916         adap = container_of(work, struct adapter, db_full_task);
1917
1918         drain_db_fifo(adap, dbfifo_drain_delay);
1919         enable_dbs(adap);
1920         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1921         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1922                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1923                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1924                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1925         else
1926                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1927                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1928 }
1929
1930 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1931 {
1932         u16 hw_pidx, hw_cidx;
1933         int ret;
1934
1935         spin_lock_irq(&q->db_lock);
1936         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1937         if (ret)
1938                 goto out;
1939         if (q->db_pidx != hw_pidx) {
1940                 u16 delta;
1941                 u32 val;
1942
1943                 if (q->db_pidx >= hw_pidx)
1944                         delta = q->db_pidx - hw_pidx;
1945                 else
1946                         delta = q->size - hw_pidx + q->db_pidx;
1947
1948                 if (is_t4(adap->params.chip))
1949                         val = PIDX_V(delta);
1950                 else
1951                         val = PIDX_T5_V(delta);
1952                 wmb();
1953                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1954                              QID_V(q->cntxt_id) | val);
1955         }
1956 out:
1957         q->db_disabled = 0;
1958         q->db_pidx_inc = 0;
1959         spin_unlock_irq(&q->db_lock);
1960         if (ret)
1961                 CH_WARN(adap, "DB drop recovery failed.\n");
1962 }
1963
1964 static void recover_all_queues(struct adapter *adap)
1965 {
1966         int i;
1967
1968         for_each_ethrxq(&adap->sge, i)
1969                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1970         if (is_offload(adap)) {
1971                 struct sge_uld_txq_info *txq_info =
1972                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1973                 if (txq_info) {
1974                         for_each_ofldtxq(&adap->sge, i) {
1975                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1976
1977                                 sync_txq_pidx(adap, &txq->q);
1978                         }
1979                 }
1980         }
1981         for_each_port(adap, i)
1982                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
1983 }
1984
1985 static void process_db_drop(struct work_struct *work)
1986 {
1987         struct adapter *adap;
1988
1989         adap = container_of(work, struct adapter, db_drop_task);
1990
1991         if (is_t4(adap->params.chip)) {
1992                 drain_db_fifo(adap, dbfifo_drain_delay);
1993                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
1994                 drain_db_fifo(adap, dbfifo_drain_delay);
1995                 recover_all_queues(adap);
1996                 drain_db_fifo(adap, dbfifo_drain_delay);
1997                 enable_dbs(adap);
1998                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1999         } else if (is_t5(adap->params.chip)) {
2000                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2001                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2002                 u16 pidx_inc = dropped_db & 0x1fff;
2003                 u64 bar2_qoffset;
2004                 unsigned int bar2_qid;
2005                 int ret;
2006
2007                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2008                                         0, &bar2_qoffset, &bar2_qid);
2009                 if (ret)
2010                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2011                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2012                 else
2013                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2014                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2015
2016                 /* Re-enable BAR2 WC */
2017                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2018         }
2019
2020         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2021                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2022 }
2023
2024 void t4_db_full(struct adapter *adap)
2025 {
2026         if (is_t4(adap->params.chip)) {
2027                 disable_dbs(adap);
2028                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2029                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2030                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2031                 queue_work(adap->workq, &adap->db_full_task);
2032         }
2033 }
2034
2035 void t4_db_dropped(struct adapter *adap)
2036 {
2037         if (is_t4(adap->params.chip)) {
2038                 disable_dbs(adap);
2039                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2040         }
2041         queue_work(adap->workq, &adap->db_drop_task);
2042 }
2043
2044 void t4_register_netevent_notifier(void)
2045 {
2046         if (!netevent_registered) {
2047                 register_netevent_notifier(&cxgb4_netevent_nb);
2048                 netevent_registered = true;
2049         }
2050 }
2051
2052 static void detach_ulds(struct adapter *adap)
2053 {
2054         unsigned int i;
2055
2056         mutex_lock(&uld_mutex);
2057         list_del(&adap->list_node);
2058         for (i = 0; i < CXGB4_ULD_MAX; i++)
2059                 if (adap->uld && adap->uld[i].handle) {
2060                         adap->uld[i].state_change(adap->uld[i].handle,
2061                                              CXGB4_STATE_DETACH);
2062                         adap->uld[i].handle = NULL;
2063                 }
2064         if (netevent_registered && list_empty(&adapter_list)) {
2065                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2066                 netevent_registered = false;
2067         }
2068         mutex_unlock(&uld_mutex);
2069 }
2070
2071 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2072 {
2073         unsigned int i;
2074
2075         mutex_lock(&uld_mutex);
2076         for (i = 0; i < CXGB4_ULD_MAX; i++)
2077                 if (adap->uld && adap->uld[i].handle)
2078                         adap->uld[i].state_change(adap->uld[i].handle,
2079                                                   new_state);
2080         mutex_unlock(&uld_mutex);
2081 }
2082
2083 #if IS_ENABLED(CONFIG_IPV6)
2084 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2085                                    unsigned long event, void *data)
2086 {
2087         struct inet6_ifaddr *ifa = data;
2088         struct net_device *event_dev = ifa->idev->dev;
2089         const struct device *parent = NULL;
2090 #if IS_ENABLED(CONFIG_BONDING)
2091         struct adapter *adap;
2092 #endif
2093         if (is_vlan_dev(event_dev))
2094                 event_dev = vlan_dev_real_dev(event_dev);
2095 #if IS_ENABLED(CONFIG_BONDING)
2096         if (event_dev->flags & IFF_MASTER) {
2097                 list_for_each_entry(adap, &adapter_list, list_node) {
2098                         switch (event) {
2099                         case NETDEV_UP:
2100                                 cxgb4_clip_get(adap->port[0],
2101                                                (const u32 *)ifa, 1);
2102                                 break;
2103                         case NETDEV_DOWN:
2104                                 cxgb4_clip_release(adap->port[0],
2105                                                    (const u32 *)ifa, 1);
2106                                 break;
2107                         default:
2108                                 break;
2109                         }
2110                 }
2111                 return NOTIFY_OK;
2112         }
2113 #endif
2114
2115         if (event_dev)
2116                 parent = event_dev->dev.parent;
2117
2118         if (parent && parent->driver == &cxgb4_driver.driver) {
2119                 switch (event) {
2120                 case NETDEV_UP:
2121                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2122                         break;
2123                 case NETDEV_DOWN:
2124                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2125                         break;
2126                 default:
2127                         break;
2128                 }
2129         }
2130         return NOTIFY_OK;
2131 }
2132
2133 static bool inet6addr_registered;
2134 static struct notifier_block cxgb4_inet6addr_notifier = {
2135         .notifier_call = cxgb4_inet6addr_handler
2136 };
2137
2138 static void update_clip(const struct adapter *adap)
2139 {
2140         int i;
2141         struct net_device *dev;
2142         int ret;
2143
2144         rcu_read_lock();
2145
2146         for (i = 0; i < MAX_NPORTS; i++) {
2147                 dev = adap->port[i];
2148                 ret = 0;
2149
2150                 if (dev)
2151                         ret = cxgb4_update_root_dev_clip(dev);
2152
2153                 if (ret < 0)
2154                         break;
2155         }
2156         rcu_read_unlock();
2157 }
2158 #endif /* IS_ENABLED(CONFIG_IPV6) */
2159
2160 /**
2161  *      cxgb_up - enable the adapter
2162  *      @adap: adapter being enabled
2163  *
2164  *      Called when the first port is enabled, this function performs the
2165  *      actions necessary to make an adapter operational, such as completing
2166  *      the initialization of HW modules, and enabling interrupts.
2167  *
2168  *      Must be called with the rtnl lock held.
2169  */
2170 static int cxgb_up(struct adapter *adap)
2171 {
2172         int err;
2173
2174         err = setup_sge_queues(adap);
2175         if (err)
2176                 goto out;
2177         err = setup_rss(adap);
2178         if (err)
2179                 goto freeq;
2180
2181         if (adap->flags & USING_MSIX) {
2182                 name_msix_vecs(adap);
2183                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2184                                   adap->msix_info[0].desc, adap);
2185                 if (err)
2186                         goto irq_err;
2187                 err = request_msix_queue_irqs(adap);
2188                 if (err) {
2189                         free_irq(adap->msix_info[0].vec, adap);
2190                         goto irq_err;
2191                 }
2192         } else {
2193                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2194                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2195                                   adap->port[0]->name, adap);
2196                 if (err)
2197                         goto irq_err;
2198         }
2199
2200         mutex_lock(&uld_mutex);
2201         enable_rx(adap);
2202         t4_sge_start(adap);
2203         t4_intr_enable(adap);
2204         adap->flags |= FULL_INIT_DONE;
2205         mutex_unlock(&uld_mutex);
2206
2207         notify_ulds(adap, CXGB4_STATE_UP);
2208 #if IS_ENABLED(CONFIG_IPV6)
2209         update_clip(adap);
2210 #endif
2211         /* Initialize hash mac addr list*/
2212         INIT_LIST_HEAD(&adap->mac_hlist);
2213  out:
2214         return err;
2215  irq_err:
2216         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2217  freeq:
2218         t4_free_sge_resources(adap);
2219         goto out;
2220 }
2221
2222 static void cxgb_down(struct adapter *adapter)
2223 {
2224         cancel_work_sync(&adapter->tid_release_task);
2225         cancel_work_sync(&adapter->db_full_task);
2226         cancel_work_sync(&adapter->db_drop_task);
2227         adapter->tid_release_task_busy = false;
2228         adapter->tid_release_head = NULL;
2229
2230         t4_sge_stop(adapter);
2231         t4_free_sge_resources(adapter);
2232         adapter->flags &= ~FULL_INIT_DONE;
2233 }
2234
2235 /*
2236  * net_device operations
2237  */
2238 static int cxgb_open(struct net_device *dev)
2239 {
2240         int err;
2241         struct port_info *pi = netdev_priv(dev);
2242         struct adapter *adapter = pi->adapter;
2243
2244         netif_carrier_off(dev);
2245
2246         if (!(adapter->flags & FULL_INIT_DONE)) {
2247                 err = cxgb_up(adapter);
2248                 if (err < 0)
2249                         return err;
2250         }
2251
2252         err = link_start(dev);
2253         if (!err)
2254                 netif_tx_start_all_queues(dev);
2255         return err;
2256 }
2257
2258 static int cxgb_close(struct net_device *dev)
2259 {
2260         struct port_info *pi = netdev_priv(dev);
2261         struct adapter *adapter = pi->adapter;
2262
2263         netif_tx_stop_all_queues(dev);
2264         netif_carrier_off(dev);
2265         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2266 }
2267
2268 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2269                 __be32 sip, __be16 sport, __be16 vlan,
2270                 unsigned int queue, unsigned char port, unsigned char mask)
2271 {
2272         int ret;
2273         struct filter_entry *f;
2274         struct adapter *adap;
2275         int i;
2276         u8 *val;
2277
2278         adap = netdev2adap(dev);
2279
2280         /* Adjust stid to correct filter index */
2281         stid -= adap->tids.sftid_base;
2282         stid += adap->tids.nftids;
2283
2284         /* Check to make sure the filter requested is writable ...
2285          */
2286         f = &adap->tids.ftid_tab[stid];
2287         ret = writable_filter(f);
2288         if (ret)
2289                 return ret;
2290
2291         /* Clear out any old resources being used by the filter before
2292          * we start constructing the new filter.
2293          */
2294         if (f->valid)
2295                 clear_filter(adap, f);
2296
2297         /* Clear out filter specifications */
2298         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2299         f->fs.val.lport = cpu_to_be16(sport);
2300         f->fs.mask.lport  = ~0;
2301         val = (u8 *)&sip;
2302         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2303                 for (i = 0; i < 4; i++) {
2304                         f->fs.val.lip[i] = val[i];
2305                         f->fs.mask.lip[i] = ~0;
2306                 }
2307                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2308                         f->fs.val.iport = port;
2309                         f->fs.mask.iport = mask;
2310                 }
2311         }
2312
2313         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2314                 f->fs.val.proto = IPPROTO_TCP;
2315                 f->fs.mask.proto = ~0;
2316         }
2317
2318         f->fs.dirsteer = 1;
2319         f->fs.iq = queue;
2320         /* Mark filter as locked */
2321         f->locked = 1;
2322         f->fs.rpttid = 1;
2323
2324         /* Save the actual tid. We need this to get the corresponding
2325          * filter entry structure in filter_rpl.
2326          */
2327         f->tid = stid + adap->tids.ftid_base;
2328         ret = set_filter_wr(adap, stid);
2329         if (ret) {
2330                 clear_filter(adap, f);
2331                 return ret;
2332         }
2333
2334         return 0;
2335 }
2336 EXPORT_SYMBOL(cxgb4_create_server_filter);
2337
2338 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2339                 unsigned int queue, bool ipv6)
2340 {
2341         struct filter_entry *f;
2342         struct adapter *adap;
2343
2344         adap = netdev2adap(dev);
2345
2346         /* Adjust stid to correct filter index */
2347         stid -= adap->tids.sftid_base;
2348         stid += adap->tids.nftids;
2349
2350         f = &adap->tids.ftid_tab[stid];
2351         /* Unlock the filter */
2352         f->locked = 0;
2353
2354         return delete_filter(adap, stid);
2355 }
2356 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2357
2358 static void cxgb_get_stats(struct net_device *dev,
2359                            struct rtnl_link_stats64 *ns)
2360 {
2361         struct port_stats stats;
2362         struct port_info *p = netdev_priv(dev);
2363         struct adapter *adapter = p->adapter;
2364
2365         /* Block retrieving statistics during EEH error
2366          * recovery. Otherwise, the recovery might fail
2367          * and the PCI device will be removed permanently
2368          */
2369         spin_lock(&adapter->stats_lock);
2370         if (!netif_device_present(dev)) {
2371                 spin_unlock(&adapter->stats_lock);
2372                 return;
2373         }
2374         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2375                                  &p->stats_base);
2376         spin_unlock(&adapter->stats_lock);
2377
2378         ns->tx_bytes   = stats.tx_octets;
2379         ns->tx_packets = stats.tx_frames;
2380         ns->rx_bytes   = stats.rx_octets;
2381         ns->rx_packets = stats.rx_frames;
2382         ns->multicast  = stats.rx_mcast_frames;
2383
2384         /* detailed rx_errors */
2385         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2386                                stats.rx_runt;
2387         ns->rx_over_errors   = 0;
2388         ns->rx_crc_errors    = stats.rx_fcs_err;
2389         ns->rx_frame_errors  = stats.rx_symbol_err;
2390         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2391                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2392                                stats.rx_trunc0 + stats.rx_trunc1 +
2393                                stats.rx_trunc2 + stats.rx_trunc3;
2394         ns->rx_missed_errors = 0;
2395
2396         /* detailed tx_errors */
2397         ns->tx_aborted_errors   = 0;
2398         ns->tx_carrier_errors   = 0;
2399         ns->tx_fifo_errors      = 0;
2400         ns->tx_heartbeat_errors = 0;
2401         ns->tx_window_errors    = 0;
2402
2403         ns->tx_errors = stats.tx_error_frames;
2404         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2405                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2406 }
2407
2408 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2409 {
2410         unsigned int mbox;
2411         int ret = 0, prtad, devad;
2412         struct port_info *pi = netdev_priv(dev);
2413         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2414
2415         switch (cmd) {
2416         case SIOCGMIIPHY:
2417                 if (pi->mdio_addr < 0)
2418                         return -EOPNOTSUPP;
2419                 data->phy_id = pi->mdio_addr;
2420                 break;
2421         case SIOCGMIIREG:
2422         case SIOCSMIIREG:
2423                 if (mdio_phy_id_is_c45(data->phy_id)) {
2424                         prtad = mdio_phy_id_prtad(data->phy_id);
2425                         devad = mdio_phy_id_devad(data->phy_id);
2426                 } else if (data->phy_id < 32) {
2427                         prtad = data->phy_id;
2428                         devad = 0;
2429                         data->reg_num &= 0x1f;
2430                 } else
2431                         return -EINVAL;
2432
2433                 mbox = pi->adapter->pf;
2434                 if (cmd == SIOCGMIIREG)
2435                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2436                                          data->reg_num, &data->val_out);
2437                 else
2438                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2439                                          data->reg_num, data->val_in);
2440                 break;
2441         case SIOCGHWTSTAMP:
2442                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2443                                     sizeof(pi->tstamp_config)) ?
2444                         -EFAULT : 0;
2445         case SIOCSHWTSTAMP:
2446                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2447                                    sizeof(pi->tstamp_config)))
2448                         return -EFAULT;
2449
2450                 switch (pi->tstamp_config.rx_filter) {
2451                 case HWTSTAMP_FILTER_NONE:
2452                         pi->rxtstamp = false;
2453                         break;
2454                 case HWTSTAMP_FILTER_ALL:
2455                         pi->rxtstamp = true;
2456                         break;
2457                 default:
2458                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2459                         return -ERANGE;
2460                 }
2461
2462                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2463                                     sizeof(pi->tstamp_config)) ?
2464                         -EFAULT : 0;
2465         default:
2466                 return -EOPNOTSUPP;
2467         }
2468         return ret;
2469 }
2470
2471 static void cxgb_set_rxmode(struct net_device *dev)
2472 {
2473         /* unfortunately we can't return errors to the stack */
2474         set_rxmode(dev, -1, false);
2475 }
2476
2477 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2478 {
2479         int ret;
2480         struct port_info *pi = netdev_priv(dev);
2481
2482         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2483                             -1, -1, -1, true);
2484         if (!ret)
2485                 dev->mtu = new_mtu;
2486         return ret;
2487 }
2488
2489 #ifdef CONFIG_PCI_IOV
2490 static int dummy_open(struct net_device *dev)
2491 {
2492         /* Turn carrier off since we don't have to transmit anything on this
2493          * interface.
2494          */
2495         netif_carrier_off(dev);
2496         return 0;
2497 }
2498
2499 /* Fill MAC address that will be assigned by the FW */
2500 static void fill_vf_station_mac_addr(struct adapter *adap)
2501 {
2502         unsigned int i;
2503         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2504         int err;
2505         u8 *na;
2506         u16 a, b;
2507
2508         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2509         if (!err) {
2510                 na = adap->params.vpd.na;
2511                 for (i = 0; i < ETH_ALEN; i++)
2512                         hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2513                                       hex2val(na[2 * i + 1]));
2514                 a = (hw_addr[0] << 8) | hw_addr[1];
2515                 b = (hw_addr[1] << 8) | hw_addr[2];
2516                 a ^= b;
2517                 a |= 0x0200;    /* locally assigned Ethernet MAC address */
2518                 a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2519                 macaddr[0] = a >> 8;
2520                 macaddr[1] = a & 0xff;
2521
2522                 for (i = 2; i < 5; i++)
2523                         macaddr[i] = hw_addr[i + 1];
2524
2525                 for (i = 0; i < adap->num_vfs; i++) {
2526                         macaddr[5] = adap->pf * 16 + i;
2527                         ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2528                 }
2529         }
2530 }
2531
2532 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2533 {
2534         struct port_info *pi = netdev_priv(dev);
2535         struct adapter *adap = pi->adapter;
2536         int ret;
2537
2538         /* verify MAC addr is valid */
2539         if (!is_valid_ether_addr(mac)) {
2540                 dev_err(pi->adapter->pdev_dev,
2541                         "Invalid Ethernet address %pM for VF %d\n",
2542                         mac, vf);
2543                 return -EINVAL;
2544         }
2545
2546         dev_info(pi->adapter->pdev_dev,
2547                  "Setting MAC %pM on VF %d\n", mac, vf);
2548         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2549         if (!ret)
2550                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2551         return ret;
2552 }
2553
2554 static int cxgb_get_vf_config(struct net_device *dev,
2555                               int vf, struct ifla_vf_info *ivi)
2556 {
2557         struct port_info *pi = netdev_priv(dev);
2558         struct adapter *adap = pi->adapter;
2559
2560         if (vf >= adap->num_vfs)
2561                 return -EINVAL;
2562         ivi->vf = vf;
2563         ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2564         return 0;
2565 }
2566
2567 static int cxgb_get_phys_port_id(struct net_device *dev,
2568                                  struct netdev_phys_item_id *ppid)
2569 {
2570         struct port_info *pi = netdev_priv(dev);
2571         unsigned int phy_port_id;
2572
2573         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2574         ppid->id_len = sizeof(phy_port_id);
2575         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2576         return 0;
2577 }
2578
2579 #endif
2580
2581 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2582 {
2583         int ret;
2584         struct sockaddr *addr = p;
2585         struct port_info *pi = netdev_priv(dev);
2586
2587         if (!is_valid_ether_addr(addr->sa_data))
2588                 return -EADDRNOTAVAIL;
2589
2590         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2591                             pi->xact_addr_filt, addr->sa_data, true, true);
2592         if (ret < 0)
2593                 return ret;
2594
2595         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2596         pi->xact_addr_filt = ret;
2597         return 0;
2598 }
2599
2600 #ifdef CONFIG_NET_POLL_CONTROLLER
2601 static void cxgb_netpoll(struct net_device *dev)
2602 {
2603         struct port_info *pi = netdev_priv(dev);
2604         struct adapter *adap = pi->adapter;
2605
2606         if (adap->flags & USING_MSIX) {
2607                 int i;
2608                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2609
2610                 for (i = pi->nqsets; i; i--, rx++)
2611                         t4_sge_intr_msix(0, &rx->rspq);
2612         } else
2613                 t4_intr_handler(adap)(0, adap);
2614 }
2615 #endif
2616
2617 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2618 {
2619         struct port_info *pi = netdev_priv(dev);
2620         struct adapter *adap = pi->adapter;
2621         struct sched_class *e;
2622         struct ch_sched_params p;
2623         struct ch_sched_queue qe;
2624         u32 req_rate;
2625         int err = 0;
2626
2627         if (!can_sched(dev))
2628                 return -ENOTSUPP;
2629
2630         if (index < 0 || index > pi->nqsets - 1)
2631                 return -EINVAL;
2632
2633         if (!(adap->flags & FULL_INIT_DONE)) {
2634                 dev_err(adap->pdev_dev,
2635                         "Failed to rate limit on queue %d. Link Down?\n",
2636                         index);
2637                 return -EINVAL;
2638         }
2639
2640         /* Convert from Mbps to Kbps */
2641         req_rate = rate << 10;
2642
2643         /* Max rate is 10 Gbps */
2644         if (req_rate >= SCHED_MAX_RATE_KBPS) {
2645                 dev_err(adap->pdev_dev,
2646                         "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2647                         rate, SCHED_MAX_RATE_KBPS);
2648                 return -ERANGE;
2649         }
2650
2651         /* First unbind the queue from any existing class */
2652         memset(&qe, 0, sizeof(qe));
2653         qe.queue = index;
2654         qe.class = SCHED_CLS_NONE;
2655
2656         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2657         if (err) {
2658                 dev_err(adap->pdev_dev,
2659                         "Unbinding Queue %d on port %d fail. Err: %d\n",
2660                         index, pi->port_id, err);
2661                 return err;
2662         }
2663
2664         /* Queue already unbound */
2665         if (!req_rate)
2666                 return 0;
2667
2668         /* Fetch any available unused or matching scheduling class */
2669         memset(&p, 0, sizeof(p));
2670         p.type = SCHED_CLASS_TYPE_PACKET;
2671         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2672         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2673         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2674         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2675         p.u.params.channel  = pi->tx_chan;
2676         p.u.params.class    = SCHED_CLS_NONE;
2677         p.u.params.minrate  = 0;
2678         p.u.params.maxrate  = req_rate;
2679         p.u.params.weight   = 0;
2680         p.u.params.pktsize  = dev->mtu;
2681
2682         e = cxgb4_sched_class_alloc(dev, &p);
2683         if (!e)
2684                 return -ENOMEM;
2685
2686         /* Bind the queue to a scheduling class */
2687         memset(&qe, 0, sizeof(qe));
2688         qe.queue = index;
2689         qe.class = e->idx;
2690
2691         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2692         if (err)
2693                 dev_err(adap->pdev_dev,
2694                         "Queue rate limiting failed. Err: %d\n", err);
2695         return err;
2696 }
2697
2698 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2699                          struct tc_to_netdev *tc)
2700 {
2701         struct port_info *pi = netdev2pinfo(dev);
2702         struct adapter *adap = netdev2adap(dev);
2703
2704         if (!(adap->flags & FULL_INIT_DONE)) {
2705                 dev_err(adap->pdev_dev,
2706                         "Failed to setup tc on port %d. Link Down?\n",
2707                         pi->port_id);
2708                 return -EINVAL;
2709         }
2710
2711         if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2712             tc->type == TC_SETUP_CLSU32) {
2713                 switch (tc->cls_u32->command) {
2714                 case TC_CLSU32_NEW_KNODE:
2715                 case TC_CLSU32_REPLACE_KNODE:
2716                         return cxgb4_config_knode(dev, proto, tc->cls_u32);
2717                 case TC_CLSU32_DELETE_KNODE:
2718                         return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2719                 default:
2720                         return -EOPNOTSUPP;
2721                 }
2722         }
2723
2724         return -EOPNOTSUPP;
2725 }
2726
2727 static const struct net_device_ops cxgb4_netdev_ops = {
2728         .ndo_open             = cxgb_open,
2729         .ndo_stop             = cxgb_close,
2730         .ndo_start_xmit       = t4_eth_xmit,
2731         .ndo_select_queue     = cxgb_select_queue,
2732         .ndo_get_stats64      = cxgb_get_stats,
2733         .ndo_set_rx_mode      = cxgb_set_rxmode,
2734         .ndo_set_mac_address  = cxgb_set_mac_addr,
2735         .ndo_set_features     = cxgb_set_features,
2736         .ndo_validate_addr    = eth_validate_addr,
2737         .ndo_do_ioctl         = cxgb_ioctl,
2738         .ndo_change_mtu       = cxgb_change_mtu,
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740         .ndo_poll_controller  = cxgb_netpoll,
2741 #endif
2742 #ifdef CONFIG_CHELSIO_T4_FCOE
2743         .ndo_fcoe_enable      = cxgb_fcoe_enable,
2744         .ndo_fcoe_disable     = cxgb_fcoe_disable,
2745 #endif /* CONFIG_CHELSIO_T4_FCOE */
2746         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2747         .ndo_setup_tc         = cxgb_setup_tc,
2748 };
2749
2750 #ifdef CONFIG_PCI_IOV
2751 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2752         .ndo_open             = dummy_open,
2753         .ndo_set_vf_mac       = cxgb_set_vf_mac,
2754         .ndo_get_vf_config    = cxgb_get_vf_config,
2755         .ndo_get_phys_port_id = cxgb_get_phys_port_id,
2756 };
2757 #endif
2758
2759 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2760 {
2761         struct adapter *adapter = netdev2adap(dev);
2762
2763         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2764         strlcpy(info->version, cxgb4_driver_version,
2765                 sizeof(info->version));
2766         strlcpy(info->bus_info, pci_name(adapter->pdev),
2767                 sizeof(info->bus_info));
2768 }
2769
2770 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2771         .get_drvinfo       = get_drvinfo,
2772 };
2773
2774 void t4_fatal_err(struct adapter *adap)
2775 {
2776         int port;
2777
2778         if (pci_channel_offline(adap->pdev))
2779                 return;
2780
2781         /* Disable the SGE since ULDs are going to free resources that
2782          * could be exposed to the adapter.  RDMA MWs for example...
2783          */
2784         t4_shutdown_adapter(adap);
2785         for_each_port(adap, port) {
2786                 struct net_device *dev = adap->port[port];
2787
2788                 /* If we get here in very early initialization the network
2789                  * devices may not have been set up yet.
2790                  */
2791                 if (!dev)
2792                         continue;
2793
2794                 netif_tx_stop_all_queues(dev);
2795                 netif_carrier_off(dev);
2796         }
2797         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2798 }
2799
2800 static void setup_memwin(struct adapter *adap)
2801 {
2802         u32 nic_win_base = t4_get_util_window(adap);
2803
2804         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2805 }
2806
2807 static void setup_memwin_rdma(struct adapter *adap)
2808 {
2809         if (adap->vres.ocq.size) {
2810                 u32 start;
2811                 unsigned int sz_kb;
2812
2813                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2814                 start &= PCI_BASE_ADDRESS_MEM_MASK;
2815                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2816                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2817                 t4_write_reg(adap,
2818                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2819                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2820                 t4_write_reg(adap,
2821                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2822                              adap->vres.ocq.start);
2823                 t4_read_reg(adap,
2824                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2825         }
2826 }
2827
2828 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2829 {
2830         u32 v;
2831         int ret;
2832
2833         /* get device capabilities */
2834         memset(c, 0, sizeof(*c));
2835         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2836                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
2837         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2838         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2839         if (ret < 0)
2840                 return ret;
2841
2842         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2843                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2844         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2845         if (ret < 0)
2846                 return ret;
2847
2848         ret = t4_config_glbl_rss(adap, adap->pf,
2849                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2850                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2851                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2852         if (ret < 0)
2853                 return ret;
2854
2855         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2856                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2857                           FW_CMD_CAP_PF);
2858         if (ret < 0)
2859                 return ret;
2860
2861         t4_sge_init(adap);
2862
2863         /* tweak some settings */
2864         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2865         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2866         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2867         v = t4_read_reg(adap, TP_PIO_DATA_A);
2868         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2869
2870         /* first 4 Tx modulation queues point to consecutive Tx channels */
2871         adap->params.tp.tx_modq_map = 0xE4;
2872         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2873                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2874
2875         /* associate each Tx modulation queue with consecutive Tx channels */
2876         v = 0x84218421;
2877         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2878                           &v, 1, TP_TX_SCHED_HDR_A);
2879         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2880                           &v, 1, TP_TX_SCHED_FIFO_A);
2881         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2882                           &v, 1, TP_TX_SCHED_PCMD_A);
2883
2884 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2885         if (is_offload(adap)) {
2886                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2887                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2889                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2890                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2891                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2892                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2893                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2894                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2895                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2896         }
2897
2898         /* get basic stuff going */
2899         return t4_early_init(adap, adap->pf);
2900 }
2901
2902 /*
2903  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2904  */
2905 #define MAX_ATIDS 8192U
2906
2907 /*
2908  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2909  *
2910  * If the firmware we're dealing with has Configuration File support, then
2911  * we use that to perform all configuration
2912  */
2913
2914 /*
2915  * Tweak configuration based on module parameters, etc.  Most of these have
2916  * defaults assigned to them by Firmware Configuration Files (if we're using
2917  * them) but need to be explicitly set if we're using hard-coded
2918  * initialization.  But even in the case of using Firmware Configuration
2919  * Files, we'd like to expose the ability to change these via module
2920  * parameters so these are essentially common tweaks/settings for
2921  * Configuration Files and hard-coded initialization ...
2922  */
2923 static int adap_init0_tweaks(struct adapter *adapter)
2924 {
2925         /*
2926          * Fix up various Host-Dependent Parameters like Page Size, Cache
2927          * Line Size, etc.  The firmware default is for a 4KB Page Size and
2928          * 64B Cache Line Size ...
2929          */
2930         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2931
2932         /*
2933          * Process module parameters which affect early initialization.
2934          */
2935         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2936                 dev_err(&adapter->pdev->dev,
2937                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
2938                         rx_dma_offset);
2939                 rx_dma_offset = 2;
2940         }
2941         t4_set_reg_field(adapter, SGE_CONTROL_A,
2942                          PKTSHIFT_V(PKTSHIFT_M),
2943                          PKTSHIFT_V(rx_dma_offset));
2944
2945         /*
2946          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2947          * adds the pseudo header itself.
2948          */
2949         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2950                                CSUM_HAS_PSEUDO_HDR_F, 0);
2951
2952         return 0;
2953 }
2954
2955 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2956  * unto themselves and they contain their own firmware to perform their
2957  * tasks ...
2958  */
2959 static int phy_aq1202_version(const u8 *phy_fw_data,
2960                               size_t phy_fw_size)
2961 {
2962         int offset;
2963
2964         /* At offset 0x8 you're looking for the primary image's
2965          * starting offset which is 3 Bytes wide
2966          *
2967          * At offset 0xa of the primary image, you look for the offset
2968          * of the DRAM segment which is 3 Bytes wide.
2969          *
2970          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2971          * wide
2972          */
2973         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
2974         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2975         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
2976
2977         offset = le24(phy_fw_data + 0x8) << 12;
2978         offset = le24(phy_fw_data + offset + 0xa);
2979         return be16(phy_fw_data + offset + 0x27e);
2980
2981         #undef be16
2982         #undef le16
2983         #undef le24
2984 }
2985
2986 static struct info_10gbt_phy_fw {
2987         unsigned int phy_fw_id;         /* PCI Device ID */
2988         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
2989         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2990         int phy_flash;                  /* Has FLASH for PHY Firmware */
2991 } phy_info_array[] = {
2992         {
2993                 PHY_AQ1202_DEVICEID,
2994                 PHY_AQ1202_FIRMWARE,
2995                 phy_aq1202_version,
2996                 1,
2997         },
2998         {
2999                 PHY_BCM84834_DEVICEID,
3000                 PHY_BCM84834_FIRMWARE,
3001                 NULL,
3002                 0,
3003         },
3004         { 0, NULL, NULL },
3005 };
3006
3007 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3008 {
3009         int i;
3010
3011         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3012                 if (phy_info_array[i].phy_fw_id == devid)
3013                         return &phy_info_array[i];
3014         }
3015         return NULL;
3016 }
3017
3018 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3019  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3020  * we return a negative error number.  If we transfer new firmware we return 1
3021  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3022  */
3023 static int adap_init0_phy(struct adapter *adap)
3024 {
3025         const struct firmware *phyf;
3026         int ret;
3027         struct info_10gbt_phy_fw *phy_info;
3028
3029         /* Use the device ID to determine which PHY file to flash.
3030          */
3031         phy_info = find_phy_info(adap->pdev->device);
3032         if (!phy_info) {
3033                 dev_warn(adap->pdev_dev,
3034                          "No PHY Firmware file found for this PHY\n");
3035                 return -EOPNOTSUPP;
3036         }
3037
3038         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3039          * use that. The adapter firmware provides us with a memory buffer
3040          * where we can load a PHY firmware file from the host if we want to
3041          * override the PHY firmware File in flash.
3042          */
3043         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3044                                       adap->pdev_dev);
3045         if (ret < 0) {
3046                 /* For adapters without FLASH attached to PHY for their
3047                  * firmware, it's obviously a fatal error if we can't get the
3048                  * firmware to the adapter.  For adapters with PHY firmware
3049                  * FLASH storage, it's worth a warning if we can't find the
3050                  * PHY Firmware but we'll neuter the error ...
3051                  */
3052                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3053                         "/lib/firmware/%s, error %d\n",
3054                         phy_info->phy_fw_file, -ret);
3055                 if (phy_info->phy_flash) {
3056                         int cur_phy_fw_ver = 0;
3057
3058                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3059                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3060                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3061                         ret = 0;
3062                 }
3063
3064                 return ret;
3065         }
3066
3067         /* Load PHY Firmware onto adapter.
3068          */
3069         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3070                              phy_info->phy_fw_version,
3071                              (u8 *)phyf->data, phyf->size);
3072         if (ret < 0)
3073                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3074                         -ret);
3075         else if (ret > 0) {
3076                 int new_phy_fw_ver = 0;
3077
3078                 if (phy_info->phy_fw_version)
3079                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3080                                                                   phyf->size);
3081                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3082                          "Firmware /lib/firmware/%s, version %#x\n",
3083                          phy_info->phy_fw_file, new_phy_fw_ver);
3084         }
3085
3086         release_firmware(phyf);
3087
3088         return ret;
3089 }
3090
3091 /*
3092  * Attempt to initialize the adapter via a Firmware Configuration File.
3093  */
3094 static int adap_init0_config(struct adapter *adapter, int reset)
3095 {
3096         struct fw_caps_config_cmd caps_cmd;
3097         const struct firmware *cf;
3098         unsigned long mtype = 0, maddr = 0;
3099         u32 finiver, finicsum, cfcsum;
3100         int ret;
3101         int config_issued = 0;
3102         char *fw_config_file, fw_config_file_path[256];
3103         char *config_name = NULL;
3104
3105         /*
3106          * Reset device if necessary.
3107          */
3108         if (reset) {
3109                 ret = t4_fw_reset(adapter, adapter->mbox,
3110                                   PIORSTMODE_F | PIORST_F);
3111                 if (ret < 0)
3112                         goto bye;
3113         }
3114
3115         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3116          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3117          * to be performed after any global adapter RESET above since some
3118          * PHYs only have local RAM copies of the PHY firmware.
3119          */
3120         if (is_10gbt_device(adapter->pdev->device)) {
3121                 ret = adap_init0_phy(adapter);
3122                 if (ret < 0)
3123                         goto bye;
3124         }
3125         /*
3126          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3127          * then use that.  Otherwise, use the configuration file stored
3128          * in the adapter flash ...
3129          */
3130         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3131         case CHELSIO_T4:
3132                 fw_config_file = FW4_CFNAME;
3133                 break;
3134         case CHELSIO_T5:
3135                 fw_config_file = FW5_CFNAME;
3136                 break;
3137         case CHELSIO_T6:
3138                 fw_config_file = FW6_CFNAME;
3139                 break;
3140         default:
3141                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3142                        adapter->pdev->device);
3143                 ret = -EINVAL;
3144                 goto bye;
3145         }
3146
3147         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3148         if (ret < 0) {
3149                 config_name = "On FLASH";
3150                 mtype = FW_MEMTYPE_CF_FLASH;
3151                 maddr = t4_flash_cfg_addr(adapter);
3152         } else {
3153                 u32 params[7], val[7];
3154
3155                 sprintf(fw_config_file_path,
3156                         "/lib/firmware/%s", fw_config_file);
3157                 config_name = fw_config_file_path;
3158
3159                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3160                         ret = -ENOMEM;
3161                 else {
3162                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3163                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3164                         ret = t4_query_params(adapter, adapter->mbox,
3165                                               adapter->pf, 0, 1, params, val);
3166                         if (ret == 0) {
3167                                 /*
3168                                  * For t4_memory_rw() below addresses and
3169                                  * sizes have to be in terms of multiples of 4
3170                                  * bytes.  So, if the Configuration File isn't
3171                                  * a multiple of 4 bytes in length we'll have
3172                                  * to write that out separately since we can't
3173                                  * guarantee that the bytes following the
3174                                  * residual byte in the buffer returned by
3175                                  * request_firmware() are zeroed out ...
3176                                  */
3177                                 size_t resid = cf->size & 0x3;
3178                                 size_t size = cf->size & ~0x3;
3179                                 __be32 *data = (__be32 *)cf->data;
3180
3181                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3182                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3183
3184                                 spin_lock(&adapter->win0_lock);
3185                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3186                                                    size, data, T4_MEMORY_WRITE);
3187                                 if (ret == 0 && resid != 0) {
3188                                         union {
3189                                                 __be32 word;
3190                                                 char buf[4];
3191                                         } last;
3192                                         int i;
3193
3194                                         last.word = data[size >> 2];
3195                                         for (i = resid; i < 4; i++)
3196                                                 last.buf[i] = 0;
3197                                         ret = t4_memory_rw(adapter, 0, mtype,
3198                                                            maddr + size,
3199                                                            4, &last.word,
3200                                                            T4_MEMORY_WRITE);
3201                                 }
3202                                 spin_unlock(&adapter->win0_lock);
3203                         }
3204                 }
3205
3206                 release_firmware(cf);
3207                 if (ret)
3208                         goto bye;
3209         }
3210
3211         /*
3212          * Issue a Capability Configuration command to the firmware to get it
3213          * to parse the Configuration File.  We don't use t4_fw_config_file()
3214          * because we want the ability to modify various features after we've
3215          * processed the configuration file ...
3216          */
3217         memset(&caps_cmd, 0, sizeof(caps_cmd));
3218         caps_cmd.op_to_write =
3219                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3220                       FW_CMD_REQUEST_F |
3221                       FW_CMD_READ_F);
3222         caps_cmd.cfvalid_to_len16 =
3223                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3224                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3225                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3226                       FW_LEN16(caps_cmd));
3227         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3228                          &caps_cmd);
3229
3230         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3231          * Configuration File in FLASH), our last gasp effort is to use the
3232          * Firmware Configuration File which is embedded in the firmware.  A
3233          * very few early versions of the firmware didn't have one embedded
3234          * but we can ignore those.
3235          */
3236         if (ret == -ENOENT) {
3237                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3238                 caps_cmd.op_to_write =
3239                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3240                                         FW_CMD_REQUEST_F |
3241                                         FW_CMD_READ_F);
3242                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3243                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3244                                 sizeof(caps_cmd), &caps_cmd);
3245                 config_name = "Firmware Default";
3246         }
3247
3248         config_issued = 1;
3249         if (ret < 0)
3250                 goto bye;
3251
3252         finiver = ntohl(caps_cmd.finiver);
3253         finicsum = ntohl(caps_cmd.finicsum);
3254         cfcsum = ntohl(caps_cmd.cfcsum);
3255         if (finicsum != cfcsum)
3256                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3257                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3258                          finicsum, cfcsum);
3259
3260         /*
3261          * And now tell the firmware to use the configuration we just loaded.
3262          */
3263         caps_cmd.op_to_write =
3264                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3265                       FW_CMD_REQUEST_F |
3266                       FW_CMD_WRITE_F);
3267         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3268         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3269                          NULL);
3270         if (ret < 0)
3271                 goto bye;
3272
3273         /*
3274          * Tweak configuration based on system architecture, module
3275          * parameters, etc.
3276          */
3277         ret = adap_init0_tweaks(adapter);
3278         if (ret < 0)
3279                 goto bye;
3280
3281         /*
3282          * And finally tell the firmware to initialize itself using the
3283          * parameters from the Configuration File.
3284          */
3285         ret = t4_fw_initialize(adapter, adapter->mbox);
3286         if (ret < 0)
3287                 goto bye;
3288
3289         /* Emit Firmware Configuration File information and return
3290          * successfully.
3291          */
3292         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3293                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3294                  config_name, finiver, cfcsum);
3295         return 0;
3296
3297         /*
3298          * Something bad happened.  Return the error ...  (If the "error"
3299          * is that there's no Configuration File on the adapter we don't
3300          * want to issue a warning since this is fairly common.)
3301          */
3302 bye:
3303         if (config_issued && ret != -ENOENT)
3304                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3305                          config_name, -ret);
3306         return ret;
3307 }
3308
3309 static struct fw_info fw_info_array[] = {
3310         {
3311                 .chip = CHELSIO_T4,
3312                 .fs_name = FW4_CFNAME,
3313                 .fw_mod_name = FW4_FNAME,
3314                 .fw_hdr = {
3315                         .chip = FW_HDR_CHIP_T4,
3316                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3317                         .intfver_nic = FW_INTFVER(T4, NIC),
3318                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3319                         .intfver_ri = FW_INTFVER(T4, RI),
3320                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3321                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3322                 },
3323         }, {
3324                 .chip = CHELSIO_T5,
3325                 .fs_name = FW5_CFNAME,
3326                 .fw_mod_name = FW5_FNAME,
3327                 .fw_hdr = {
3328                         .chip = FW_HDR_CHIP_T5,
3329                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3330                         .intfver_nic = FW_INTFVER(T5, NIC),
3331                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3332                         .intfver_ri = FW_INTFVER(T5, RI),
3333                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3334                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3335                 },
3336         }, {
3337                 .chip = CHELSIO_T6,
3338                 .fs_name = FW6_CFNAME,
3339                 .fw_mod_name = FW6_FNAME,
3340                 .fw_hdr = {
3341                         .chip = FW_HDR_CHIP_T6,
3342                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3343                         .intfver_nic = FW_INTFVER(T6, NIC),
3344                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3345                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3346                         .intfver_ri = FW_INTFVER(T6, RI),
3347                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3348                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3349                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3350                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3351                 },
3352         }
3353
3354 };
3355
3356 static struct fw_info *find_fw_info(int chip)
3357 {
3358         int i;
3359
3360         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3361                 if (fw_info_array[i].chip == chip)
3362                         return &fw_info_array[i];
3363         }
3364         return NULL;
3365 }
3366
3367 /*
3368  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3369  */
3370 static int adap_init0(struct adapter *adap)
3371 {
3372         int ret;
3373         u32 v, port_vec;
3374         enum dev_state state;
3375         u32 params[7], val[7];
3376         struct fw_caps_config_cmd caps_cmd;
3377         int reset = 1;
3378
3379         /* Grab Firmware Device Log parameters as early as possible so we have
3380          * access to it for debugging, etc.
3381          */
3382         ret = t4_init_devlog_params(adap);
3383         if (ret < 0)
3384                 return ret;
3385
3386         /* Contact FW, advertising Master capability */
3387         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3388                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3389         if (ret < 0) {
3390                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3391                         ret);
3392                 return ret;
3393         }
3394         if (ret == adap->mbox)
3395                 adap->flags |= MASTER_PF;
3396
3397         /*
3398          * If we're the Master PF Driver and the device is uninitialized,
3399          * then let's consider upgrading the firmware ...  (We always want
3400          * to check the firmware version number in order to A. get it for
3401          * later reporting and B. to warn if the currently loaded firmware
3402          * is excessively mismatched relative to the driver.)
3403          */
3404         t4_get_fw_version(adap, &adap->params.fw_vers);
3405         t4_get_bs_version(adap, &adap->params.bs_vers);
3406         t4_get_tp_version(adap, &adap->params.tp_vers);
3407         t4_get_exprom_version(adap, &adap->params.er_vers);
3408
3409         ret = t4_check_fw_version(adap);
3410         /* If firmware is too old (not supported by driver) force an update. */
3411         if (ret)
3412                 state = DEV_STATE_UNINIT;
3413         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3414                 struct fw_info *fw_info;
3415                 struct fw_hdr *card_fw;
3416                 const struct firmware *fw;
3417                 const u8 *fw_data = NULL;
3418                 unsigned int fw_size = 0;
3419
3420                 /* This is the firmware whose headers the driver was compiled
3421                  * against
3422                  */
3423                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3424                 if (fw_info == NULL) {
3425                         dev_err(adap->pdev_dev,
3426                                 "unable to get firmware info for chip %d.\n",
3427                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3428                         return -EINVAL;
3429                 }
3430
3431                 /* allocate memory to read the header of the firmware on the
3432                  * card
3433                  */
3434                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3435
3436                 /* Get FW from from /lib/firmware/ */
3437                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3438                                        adap->pdev_dev);
3439                 if (ret < 0) {
3440                         dev_err(adap->pdev_dev,
3441                                 "unable to load firmware image %s, error %d\n",
3442                                 fw_info->fw_mod_name, ret);
3443                 } else {
3444                         fw_data = fw->data;
3445                         fw_size = fw->size;
3446                 }
3447
3448                 /* upgrade FW logic */
3449                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3450                                  state, &reset);
3451
3452                 /* Cleaning up */
3453                 release_firmware(fw);
3454                 kvfree(card_fw);
3455
3456                 if (ret < 0)
3457                         goto bye;
3458         }
3459
3460         /*
3461          * Grab VPD parameters.  This should be done after we establish a
3462          * connection to the firmware since some of the VPD parameters
3463          * (notably the Core Clock frequency) are retrieved via requests to
3464          * the firmware.  On the other hand, we need these fairly early on
3465          * so we do this right after getting ahold of the firmware.
3466          */
3467         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3468         if (ret < 0)
3469                 goto bye;
3470
3471         /*
3472          * Find out what ports are available to us.  Note that we need to do
3473          * this before calling adap_init0_no_config() since it needs nports
3474          * and portvec ...
3475          */
3476         v =
3477             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3478             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3479         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3480         if (ret < 0)
3481                 goto bye;
3482
3483         adap->params.nports = hweight32(port_vec);
3484         adap->params.portvec = port_vec;
3485
3486         /* If the firmware is initialized already, emit a simply note to that
3487          * effect. Otherwise, it's time to try initializing the adapter.
3488          */
3489         if (state == DEV_STATE_INIT) {
3490                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3491                          "Adapter already initialized\n",
3492                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3493         } else {
3494                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3495                          "Initializing adapter\n");
3496
3497                 /* Find out whether we're dealing with a version of the
3498                  * firmware which has configuration file support.
3499                  */
3500                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3501                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3502                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3503                                       params, val);
3504
3505                 /* If the firmware doesn't support Configuration Files,
3506                  * return an error.
3507                  */
3508                 if (ret < 0) {
3509                         dev_err(adap->pdev_dev, "firmware doesn't support "
3510                                 "Firmware Configuration Files\n");
3511                         goto bye;
3512                 }
3513
3514                 /* The firmware provides us with a memory buffer where we can
3515                  * load a Configuration File from the host if we want to
3516                  * override the Configuration File in flash.
3517                  */
3518                 ret = adap_init0_config(adap, reset);
3519                 if (ret == -ENOENT) {
3520                         dev_err(adap->pdev_dev, "no Configuration File "
3521                                 "present on adapter.\n");
3522                         goto bye;
3523                 }
3524                 if (ret < 0) {
3525                         dev_err(adap->pdev_dev, "could not initialize "
3526                                 "adapter, error %d\n", -ret);
3527                         goto bye;
3528                 }
3529         }
3530
3531         /* Give the SGE code a chance to pull in anything that it needs ...
3532          * Note that this must be called after we retrieve our VPD parameters
3533          * in order to know how to convert core ticks to seconds, etc.
3534          */
3535         ret = t4_sge_init(adap);
3536         if (ret < 0)
3537                 goto bye;
3538
3539         if (is_bypass_device(adap->pdev->device))
3540                 adap->params.bypass = 1;
3541
3542         /*
3543          * Grab some of our basic fundamental operating parameters.
3544          */
3545 #define FW_PARAM_DEV(param) \
3546         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3547         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3548
3549 #define FW_PARAM_PFVF(param) \
3550         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3551         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3552         FW_PARAMS_PARAM_Y_V(0) | \
3553         FW_PARAMS_PARAM_Z_V(0)
3554
3555         params[0] = FW_PARAM_PFVF(EQ_START);
3556         params[1] = FW_PARAM_PFVF(L2T_START);
3557         params[2] = FW_PARAM_PFVF(L2T_END);
3558         params[3] = FW_PARAM_PFVF(FILTER_START);
3559         params[4] = FW_PARAM_PFVF(FILTER_END);
3560         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3561         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3562         if (ret < 0)
3563                 goto bye;
3564         adap->sge.egr_start = val[0];
3565         adap->l2t_start = val[1];
3566         adap->l2t_end = val[2];
3567         adap->tids.ftid_base = val[3];
3568         adap->tids.nftids = val[4] - val[3] + 1;
3569         adap->sge.ingr_start = val[5];
3570
3571         /* qids (ingress/egress) returned from firmware can be anywhere
3572          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3573          * Hence driver needs to allocate memory for this range to
3574          * store the queue info. Get the highest IQFLINT/EQ index returned
3575          * in FW_EQ_*_CMD.alloc command.
3576          */
3577         params[0] = FW_PARAM_PFVF(EQ_END);
3578         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3579         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3580         if (ret < 0)
3581                 goto bye;
3582         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3583         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3584
3585         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3586                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3587         if (!adap->sge.egr_map) {
3588                 ret = -ENOMEM;
3589                 goto bye;
3590         }
3591
3592         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3593                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3594         if (!adap->sge.ingr_map) {
3595                 ret = -ENOMEM;
3596                 goto bye;
3597         }
3598
3599         /* Allocate the memory for the vaious egress queue bitmaps
3600          * ie starving_fl, txq_maperr and blocked_fl.
3601          */
3602         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3603                                         sizeof(long), GFP_KERNEL);
3604         if (!adap->sge.starving_fl) {
3605                 ret = -ENOMEM;
3606                 goto bye;
3607         }
3608
3609         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3610                                        sizeof(long), GFP_KERNEL);
3611         if (!adap->sge.txq_maperr) {
3612                 ret = -ENOMEM;
3613                 goto bye;
3614         }
3615
3616 #ifdef CONFIG_DEBUG_FS
3617         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3618                                        sizeof(long), GFP_KERNEL);
3619         if (!adap->sge.blocked_fl) {
3620                 ret = -ENOMEM;
3621                 goto bye;
3622         }
3623 #endif
3624
3625         params[0] = FW_PARAM_PFVF(CLIP_START);
3626         params[1] = FW_PARAM_PFVF(CLIP_END);
3627         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3628         if (ret < 0)
3629                 goto bye;
3630         adap->clipt_start = val[0];
3631         adap->clipt_end = val[1];
3632
3633         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3634          * Classes supported by the hardware/firmware so we hard code it here
3635          * for now.
3636          */
3637         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3638
3639         /* query params related to active filter region */
3640         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3641         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3642         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3643         /* If Active filter size is set we enable establishing
3644          * offload connection through firmware work request
3645          */
3646         if ((val[0] != val[1]) && (ret >= 0)) {
3647                 adap->flags |= FW_OFLD_CONN;
3648                 adap->tids.aftid_base = val[0];
3649                 adap->tids.aftid_end = val[1];
3650         }
3651
3652         /* If we're running on newer firmware, let it know that we're
3653          * prepared to deal with encapsulated CPL messages.  Older
3654          * firmware won't understand this and we'll just get
3655          * unencapsulated messages ...
3656          */
3657         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3658         val[0] = 1;
3659         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3660
3661         /*
3662          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3663          * capability.  Earlier versions of the firmware didn't have the
3664          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3665          * permission to use ULPTX MEMWRITE DSGL.
3666          */
3667         if (is_t4(adap->params.chip)) {
3668                 adap->params.ulptx_memwrite_dsgl = false;
3669         } else {
3670                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3671                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3672                                       1, params, val);
3673                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3674         }
3675
3676         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3677         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3678         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3679                               1, params, val);
3680         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3681
3682         /*
3683          * Get device capabilities so we can determine what resources we need
3684          * to manage.
3685          */
3686         memset(&caps_cmd, 0, sizeof(caps_cmd));
3687         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3688                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3689         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3690         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3691                          &caps_cmd);
3692         if (ret < 0)
3693                 goto bye;
3694
3695         if (caps_cmd.ofldcaps) {
3696                 /* query offload-related parameters */
3697                 params[0] = FW_PARAM_DEV(NTID);
3698                 params[1] = FW_PARAM_PFVF(SERVER_START);
3699                 params[2] = FW_PARAM_PFVF(SERVER_END);
3700                 params[3] = FW_PARAM_PFVF(TDDP_START);
3701                 params[4] = FW_PARAM_PFVF(TDDP_END);
3702                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3703                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3704                                       params, val);
3705                 if (ret < 0)
3706                         goto bye;
3707                 adap->tids.ntids = val[0];
3708                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3709                 adap->tids.stid_base = val[1];
3710                 adap->tids.nstids = val[2] - val[1] + 1;
3711                 /*
3712                  * Setup server filter region. Divide the available filter
3713                  * region into two parts. Regular filters get 1/3rd and server
3714                  * filters get 2/3rd part. This is only enabled if workarond
3715                  * path is enabled.
3716                  * 1. For regular filters.
3717                  * 2. Server filter: This are special filters which are used
3718                  * to redirect SYN packets to offload queue.
3719                  */
3720                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3721                         adap->tids.sftid_base = adap->tids.ftid_base +
3722                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3723                         adap->tids.nsftids = adap->tids.nftids -
3724                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3725                         adap->tids.nftids = adap->tids.sftid_base -
3726                                                 adap->tids.ftid_base;
3727                 }
3728                 adap->vres.ddp.start = val[3];
3729                 adap->vres.ddp.size = val[4] - val[3] + 1;
3730                 adap->params.ofldq_wr_cred = val[5];
3731
3732                 adap->params.offload = 1;
3733                 adap->num_ofld_uld += 1;
3734         }
3735         if (caps_cmd.rdmacaps) {
3736                 params[0] = FW_PARAM_PFVF(STAG_START);
3737                 params[1] = FW_PARAM_PFVF(STAG_END);
3738                 params[2] = FW_PARAM_PFVF(RQ_START);
3739                 params[3] = FW_PARAM_PFVF(RQ_END);
3740                 params[4] = FW_PARAM_PFVF(PBL_START);
3741                 params[5] = FW_PARAM_PFVF(PBL_END);
3742                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3743                                       params, val);
3744                 if (ret < 0)
3745                         goto bye;
3746                 adap->vres.stag.start = val[0];
3747                 adap->vres.stag.size = val[1] - val[0] + 1;
3748                 adap->vres.rq.start = val[2];
3749                 adap->vres.rq.size = val[3] - val[2] + 1;
3750                 adap->vres.pbl.start = val[4];
3751                 adap->vres.pbl.size = val[5] - val[4] + 1;
3752
3753                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3754                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3755                 params[2] = FW_PARAM_PFVF(CQ_START);
3756                 params[3] = FW_PARAM_PFVF(CQ_END);
3757                 params[4] = FW_PARAM_PFVF(OCQ_START);
3758                 params[5] = FW_PARAM_PFVF(OCQ_END);
3759                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3760                                       val);
3761                 if (ret < 0)
3762                         goto bye;
3763                 adap->vres.qp.start = val[0];
3764                 adap->vres.qp.size = val[1] - val[0] + 1;
3765                 adap->vres.cq.start = val[2];
3766                 adap->vres.cq.size = val[3] - val[2] + 1;
3767                 adap->vres.ocq.start = val[4];
3768                 adap->vres.ocq.size = val[5] - val[4] + 1;
3769
3770                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3771                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3772                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3773                                       val);
3774                 if (ret < 0) {
3775                         adap->params.max_ordird_qp = 8;
3776                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3777                         ret = 0;
3778                 } else {
3779                         adap->params.max_ordird_qp = val[0];
3780                         adap->params.max_ird_adapter = val[1];
3781                 }
3782                 dev_info(adap->pdev_dev,
3783                          "max_ordird_qp %d max_ird_adapter %d\n",
3784                          adap->params.max_ordird_qp,
3785                          adap->params.max_ird_adapter);
3786                 adap->num_ofld_uld += 2;
3787         }
3788         if (caps_cmd.iscsicaps) {
3789                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3790                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3791                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3792                                       params, val);
3793                 if (ret < 0)
3794                         goto bye;
3795                 adap->vres.iscsi.start = val[0];
3796                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3797                 /* LIO target and cxgb4i initiaitor */
3798                 adap->num_ofld_uld += 2;
3799         }
3800         if (caps_cmd.cryptocaps) {
3801                 /* Should query params here...TODO */
3802                 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
3803                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3804                                       params, val);
3805                 if (ret < 0) {
3806                         if (ret != -EINVAL)
3807                                 goto bye;
3808                 } else {
3809                         adap->vres.ncrypto_fc = val[0];
3810                 }
3811                 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3812                 adap->num_uld += 1;
3813         }
3814 #undef FW_PARAM_PFVF
3815 #undef FW_PARAM_DEV
3816
3817         /* The MTU/MSS Table is initialized by now, so load their values.  If
3818          * we're initializing the adapter, then we'll make any modifications
3819          * we want to the MTU/MSS Table and also initialize the congestion
3820          * parameters.
3821          */
3822         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3823         if (state != DEV_STATE_INIT) {
3824                 int i;
3825
3826                 /* The default MTU Table contains values 1492 and 1500.
3827                  * However, for TCP, it's better to have two values which are
3828                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3829                  * This allows us to have a TCP Data Payload which is a
3830                  * multiple of 8 regardless of what combination of TCP Options
3831                  * are in use (always a multiple of 4 bytes) which is
3832                  * important for performance reasons.  For instance, if no
3833                  * options are in use, then we have a 20-byte IP header and a
3834                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
3835                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3836                  * which is not a multiple of 8.  So using an MSS of 1488 in
3837                  * this case results in a TCP Data Payload of 1448 bytes which
3838                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3839                  * Stamps have been negotiated, then an MTU of 1500 bytes
3840                  * results in a TCP Data Payload of 1448 bytes which, as
3841                  * above, is a multiple of 8 bytes ...
3842                  */
3843                 for (i = 0; i < NMTUS; i++)
3844                         if (adap->params.mtus[i] == 1492) {
3845                                 adap->params.mtus[i] = 1488;
3846                                 break;
3847                         }
3848
3849                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3850                              adap->params.b_wnd);
3851         }
3852         t4_init_sge_params(adap);
3853         adap->flags |= FW_OK;
3854         t4_init_tp_params(adap);
3855         return 0;
3856
3857         /*
3858          * Something bad happened.  If a command timed out or failed with EIO
3859          * FW does not operate within its spec or something catastrophic
3860          * happened to HW/FW, stop issuing commands.
3861          */
3862 bye:
3863         kfree(adap->sge.egr_map);
3864         kfree(adap->sge.ingr_map);
3865         kfree(adap->sge.starving_fl);
3866         kfree(adap->sge.txq_maperr);
3867 #ifdef CONFIG_DEBUG_FS
3868         kfree(adap->sge.blocked_fl);
3869 #endif
3870         if (ret != -ETIMEDOUT && ret != -EIO)
3871                 t4_fw_bye(adap, adap->mbox);
3872         return ret;
3873 }
3874
3875 /* EEH callbacks */
3876
3877 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3878                                          pci_channel_state_t state)
3879 {
3880         int i;
3881         struct adapter *adap = pci_get_drvdata(pdev);
3882
3883         if (!adap)
3884                 goto out;
3885
3886         rtnl_lock();
3887         adap->flags &= ~FW_OK;
3888         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3889         spin_lock(&adap->stats_lock);
3890         for_each_port(adap, i) {
3891                 struct net_device *dev = adap->port[i];
3892                 if (dev) {
3893                         netif_device_detach(dev);
3894                         netif_carrier_off(dev);
3895                 }
3896         }
3897         spin_unlock(&adap->stats_lock);
3898         disable_interrupts(adap);
3899         if (adap->flags & FULL_INIT_DONE)
3900                 cxgb_down(adap);
3901         rtnl_unlock();
3902         if ((adap->flags & DEV_ENABLED)) {
3903                 pci_disable_device(pdev);
3904                 adap->flags &= ~DEV_ENABLED;
3905         }
3906 out:    return state == pci_channel_io_perm_failure ?
3907                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3908 }
3909
3910 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3911 {
3912         int i, ret;
3913         struct fw_caps_config_cmd c;
3914         struct adapter *adap = pci_get_drvdata(pdev);
3915
3916         if (!adap) {
3917                 pci_restore_state(pdev);
3918                 pci_save_state(pdev);
3919                 return PCI_ERS_RESULT_RECOVERED;
3920         }
3921
3922         if (!(adap->flags & DEV_ENABLED)) {
3923                 if (pci_enable_device(pdev)) {
3924                         dev_err(&pdev->dev, "Cannot reenable PCI "
3925                                             "device after reset\n");
3926                         return PCI_ERS_RESULT_DISCONNECT;
3927                 }
3928                 adap->flags |= DEV_ENABLED;
3929         }
3930
3931         pci_set_master(pdev);
3932         pci_restore_state(pdev);
3933         pci_save_state(pdev);
3934         pci_cleanup_aer_uncorrect_error_status(pdev);
3935
3936         if (t4_wait_dev_ready(adap->regs) < 0)
3937                 return PCI_ERS_RESULT_DISCONNECT;
3938         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3939                 return PCI_ERS_RESULT_DISCONNECT;
3940         adap->flags |= FW_OK;
3941         if (adap_init1(adap, &c))
3942                 return PCI_ERS_RESULT_DISCONNECT;
3943
3944         for_each_port(adap, i) {
3945                 struct port_info *p = adap2pinfo(adap, i);
3946
3947                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3948                                   NULL, NULL);
3949                 if (ret < 0)
3950                         return PCI_ERS_RESULT_DISCONNECT;
3951                 p->viid = ret;
3952                 p->xact_addr_filt = -1;
3953         }
3954
3955         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3956                      adap->params.b_wnd);
3957         setup_memwin(adap);
3958         if (cxgb_up(adap))
3959                 return PCI_ERS_RESULT_DISCONNECT;
3960         return PCI_ERS_RESULT_RECOVERED;
3961 }
3962
3963 static void eeh_resume(struct pci_dev *pdev)
3964 {
3965         int i;
3966         struct adapter *adap = pci_get_drvdata(pdev);
3967
3968         if (!adap)
3969                 return;
3970
3971         rtnl_lock();
3972         for_each_port(adap, i) {
3973                 struct net_device *dev = adap->port[i];
3974                 if (dev) {
3975                         if (netif_running(dev)) {
3976                                 link_start(dev);
3977                                 cxgb_set_rxmode(dev);
3978                         }
3979                         netif_device_attach(dev);
3980                 }
3981         }
3982         rtnl_unlock();
3983 }
3984
3985 static const struct pci_error_handlers cxgb4_eeh = {
3986         .error_detected = eeh_err_detected,
3987         .slot_reset     = eeh_slot_reset,
3988         .resume         = eeh_resume,
3989 };
3990
3991 /* Return true if the Link Configuration supports "High Speeds" (those greater
3992  * than 1Gb/s).
3993  */
3994 static inline bool is_x_10g_port(const struct link_config *lc)
3995 {
3996         unsigned int speeds, high_speeds;
3997
3998         speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3999         high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4000
4001         return high_speeds != 0;
4002 }
4003
4004 /*
4005  * Perform default configuration of DMA queues depending on the number and type
4006  * of ports we found and the number of available CPUs.  Most settings can be
4007  * modified by the admin prior to actual use.
4008  */
4009 static void cfg_queues(struct adapter *adap)
4010 {
4011         struct sge *s = &adap->sge;
4012         int i = 0, n10g = 0, qidx = 0;
4013 #ifndef CONFIG_CHELSIO_T4_DCB
4014         int q10g = 0;
4015 #endif
4016
4017         /* Reduce memory usage in kdump environment, disable all offload.
4018          */
4019         if (is_kdump_kernel()) {
4020                 adap->params.offload = 0;
4021                 adap->params.crypto = 0;
4022         } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4023                 adap->params.offload = 0;
4024                 adap->params.crypto = 0;
4025         }
4026
4027         n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4028 #ifdef CONFIG_CHELSIO_T4_DCB
4029         /* For Data Center Bridging support we need to be able to support up
4030          * to 8 Traffic Priorities; each of which will be assigned to its
4031          * own TX Queue in order to prevent Head-Of-Line Blocking.
4032          */
4033         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4034                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4035                         MAX_ETH_QSETS, adap->params.nports * 8);
4036                 BUG_ON(1);
4037         }
4038
4039         for_each_port(adap, i) {
4040                 struct port_info *pi = adap2pinfo(adap, i);
4041
4042                 pi->first_qset = qidx;
4043                 pi->nqsets = 8;
4044                 qidx += pi->nqsets;
4045         }
4046 #else /* !CONFIG_CHELSIO_T4_DCB */
4047         /*
4048          * We default to 1 queue per non-10G port and up to # of cores queues
4049          * per 10G port.
4050          */
4051         if (n10g)
4052                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4053         if (q10g > netif_get_num_default_rss_queues())
4054                 q10g = netif_get_num_default_rss_queues();
4055
4056         for_each_port(adap, i) {
4057                 struct port_info *pi = adap2pinfo(adap, i);
4058
4059                 pi->first_qset = qidx;
4060                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4061                 qidx += pi->nqsets;
4062         }
4063 #endif /* !CONFIG_CHELSIO_T4_DCB */
4064
4065         s->ethqsets = qidx;
4066         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4067
4068         if (is_uld(adap)) {
4069                 /*
4070                  * For offload we use 1 queue/channel if all ports are up to 1G,
4071                  * otherwise we divide all available queues amongst the channels
4072                  * capped by the number of available cores.
4073                  */
4074                 if (n10g) {
4075                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4076                         s->ofldqsets = roundup(i, adap->params.nports);
4077                 } else {
4078                         s->ofldqsets = adap->params.nports;
4079                 }
4080         }
4081
4082         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4083                 struct sge_eth_rxq *r = &s->ethrxq[i];
4084
4085                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4086                 r->fl.size = 72;
4087         }
4088
4089         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4090                 s->ethtxq[i].q.size = 1024;
4091
4092         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4093                 s->ctrlq[i].q.size = 512;
4094
4095         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4096         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4097 }
4098
4099 /*
4100  * Reduce the number of Ethernet queues across all ports to at most n.
4101  * n provides at least one queue per port.
4102  */
4103 static void reduce_ethqs(struct adapter *adap, int n)
4104 {
4105         int i;
4106         struct port_info *pi;
4107
4108         while (n < adap->sge.ethqsets)
4109                 for_each_port(adap, i) {
4110                         pi = adap2pinfo(adap, i);
4111                         if (pi->nqsets > 1) {
4112                                 pi->nqsets--;
4113                                 adap->sge.ethqsets--;
4114                                 if (adap->sge.ethqsets <= n)
4115                                         break;
4116                         }
4117                 }
4118
4119         n = 0;
4120         for_each_port(adap, i) {
4121                 pi = adap2pinfo(adap, i);
4122                 pi->first_qset = n;
4123                 n += pi->nqsets;
4124         }
4125 }
4126
4127 static int get_msix_info(struct adapter *adap)
4128 {
4129         struct uld_msix_info *msix_info;
4130         unsigned int max_ingq = 0;
4131
4132         if (is_offload(adap))
4133                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4134         if (is_pci_uld(adap))
4135                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4136
4137         if (!max_ingq)
4138                 goto out;
4139
4140         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4141         if (!msix_info)
4142                 return -ENOMEM;
4143
4144         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4145                                                  sizeof(long), GFP_KERNEL);
4146         if (!adap->msix_bmap_ulds.msix_bmap) {
4147                 kfree(msix_info);
4148                 return -ENOMEM;
4149         }
4150         spin_lock_init(&adap->msix_bmap_ulds.lock);
4151         adap->msix_info_ulds = msix_info;
4152 out:
4153         return 0;
4154 }
4155
4156 static void free_msix_info(struct adapter *adap)
4157 {
4158         if (!(adap->num_uld && adap->num_ofld_uld))
4159                 return;
4160
4161         kfree(adap->msix_info_ulds);
4162         kfree(adap->msix_bmap_ulds.msix_bmap);
4163 }
4164
4165 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4166 #define EXTRA_VECS 2
4167
4168 static int enable_msix(struct adapter *adap)
4169 {
4170         int ofld_need = 0, uld_need = 0;
4171         int i, j, want, need, allocated;
4172         struct sge *s = &adap->sge;
4173         unsigned int nchan = adap->params.nports;
4174         struct msix_entry *entries;
4175         int max_ingq = MAX_INGQ;
4176
4177         if (is_pci_uld(adap))
4178                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4179         if (is_offload(adap))
4180                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4181         entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4182                           GFP_KERNEL);
4183         if (!entries)
4184                 return -ENOMEM;
4185
4186         /* map for msix */
4187         if (get_msix_info(adap)) {
4188                 adap->params.offload = 0;
4189                 adap->params.crypto = 0;
4190         }
4191
4192         for (i = 0; i < max_ingq + 1; ++i)
4193                 entries[i].entry = i;
4194
4195         want = s->max_ethqsets + EXTRA_VECS;
4196         if (is_offload(adap)) {
4197                 want += adap->num_ofld_uld * s->ofldqsets;
4198                 ofld_need = adap->num_ofld_uld * nchan;
4199         }
4200         if (is_pci_uld(adap)) {
4201                 want += adap->num_uld * s->ofldqsets;
4202                 uld_need = adap->num_uld * nchan;
4203         }
4204 #ifdef CONFIG_CHELSIO_T4_DCB
4205         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4206          * each port.
4207          */
4208         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4209 #else
4210         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4211 #endif
4212         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4213         if (allocated < 0) {
4214                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4215                          " not using MSI-X\n");
4216                 kfree(entries);
4217                 return allocated;
4218         }
4219
4220         /* Distribute available vectors to the various queue groups.
4221          * Every group gets its minimum requirement and NIC gets top
4222          * priority for leftovers.
4223          */
4224         i = allocated - EXTRA_VECS - ofld_need - uld_need;
4225         if (i < s->max_ethqsets) {
4226                 s->max_ethqsets = i;
4227                 if (i < s->ethqsets)
4228                         reduce_ethqs(adap, i);
4229         }
4230         if (is_uld(adap)) {
4231                 if (allocated < want)
4232                         s->nqs_per_uld = nchan;
4233                 else
4234                         s->nqs_per_uld = s->ofldqsets;
4235         }
4236
4237         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4238                 adap->msix_info[i].vec = entries[i].vector;
4239         if (is_uld(adap)) {
4240                 for (j = 0 ; i < allocated; ++i, j++) {
4241                         adap->msix_info_ulds[j].vec = entries[i].vector;
4242                         adap->msix_info_ulds[j].idx = i;
4243                 }
4244                 adap->msix_bmap_ulds.mapsize = j;
4245         }
4246         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4247                  "nic %d per uld %d\n",
4248                  allocated, s->max_ethqsets, s->nqs_per_uld);
4249
4250         kfree(entries);
4251         return 0;
4252 }
4253
4254 #undef EXTRA_VECS
4255
4256 static int init_rss(struct adapter *adap)
4257 {
4258         unsigned int i;
4259         int err;
4260
4261         err = t4_init_rss_mode(adap, adap->mbox);
4262         if (err)
4263                 return err;
4264
4265         for_each_port(adap, i) {
4266                 struct port_info *pi = adap2pinfo(adap, i);
4267
4268                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4269                 if (!pi->rss)
4270                         return -ENOMEM;
4271         }
4272         return 0;
4273 }
4274
4275 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4276                                         enum pci_bus_speed *speed,
4277                                         enum pcie_link_width *width)
4278 {
4279         u32 lnkcap1, lnkcap2;
4280         int err1, err2;
4281
4282 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4283
4284         *speed = PCI_SPEED_UNKNOWN;
4285         *width = PCIE_LNK_WIDTH_UNKNOWN;
4286
4287         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4288                                           &lnkcap1);
4289         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4290                                           &lnkcap2);
4291         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4292                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4293                         *speed = PCIE_SPEED_8_0GT;
4294                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4295                         *speed = PCIE_SPEED_5_0GT;
4296                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4297                         *speed = PCIE_SPEED_2_5GT;
4298         }
4299         if (!err1) {
4300                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4301                 if (!lnkcap2) { /* pre-r3.0 */
4302                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4303                                 *speed = PCIE_SPEED_5_0GT;
4304                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4305                                 *speed = PCIE_SPEED_2_5GT;
4306                 }
4307         }
4308
4309         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4310                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4311         return 0;
4312 }
4313
4314 static void cxgb4_check_pcie_caps(struct adapter *adap)
4315 {
4316         enum pcie_link_width width, width_cap;
4317         enum pci_bus_speed speed, speed_cap;
4318
4319 #define PCIE_SPEED_STR(speed) \
4320         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4321          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4322          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4323          "Unknown")
4324
4325         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4326                 dev_warn(adap->pdev_dev,
4327                          "Unable to determine PCIe device BW capabilities\n");
4328                 return;
4329         }
4330
4331         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4332             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4333                 dev_warn(adap->pdev_dev,
4334                          "Unable to determine PCI Express bandwidth.\n");
4335                 return;
4336         }
4337
4338         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4339                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4340         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4341                  width, width_cap);
4342         if (speed < speed_cap || width < width_cap)
4343                 dev_info(adap->pdev_dev,
4344                          "A slot with more lanes and/or higher speed is "
4345                          "suggested for optimal performance.\n");
4346 }
4347
4348 /* Dump basic information about the adapter */
4349 static void print_adapter_info(struct adapter *adapter)
4350 {
4351         /* Device information */
4352         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4353                  adapter->params.vpd.id,
4354                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
4355         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4356                  adapter->params.vpd.sn, adapter->params.vpd.pn);
4357
4358         /* Firmware Version */
4359         if (!adapter->params.fw_vers)
4360                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4361         else
4362                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4363                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4364                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4365                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4366                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4367
4368         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4369          * Firmware, so dev_info() is more appropriate here.)
4370          */
4371         if (!adapter->params.bs_vers)
4372                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4373         else
4374                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4375                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4376                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4377                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4378                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4379
4380         /* TP Microcode Version */
4381         if (!adapter->params.tp_vers)
4382                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4383         else
4384                 dev_info(adapter->pdev_dev,
4385                          "TP Microcode version: %u.%u.%u.%u\n",
4386                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4387                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4388                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4389                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4390
4391         /* Expansion ROM version */
4392         if (!adapter->params.er_vers)
4393                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4394         else
4395                 dev_info(adapter->pdev_dev,
4396                          "Expansion ROM version: %u.%u.%u.%u\n",
4397                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4398                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4399                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4400                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4401
4402         /* Software/Hardware configuration */
4403         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4404                  is_offload(adapter) ? "R" : "",
4405                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
4406                   (adapter->flags & USING_MSI) ? "MSI" : ""),
4407                  is_offload(adapter) ? "Offload" : "non-Offload");
4408 }
4409
4410 static void print_port_info(const struct net_device *dev)
4411 {
4412         char buf[80];
4413         char *bufp = buf;
4414         const char *spd = "";
4415         const struct port_info *pi = netdev_priv(dev);
4416         const struct adapter *adap = pi->adapter;
4417
4418         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4419                 spd = " 2.5 GT/s";
4420         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4421                 spd = " 5 GT/s";
4422         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4423                 spd = " 8 GT/s";
4424
4425         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4426                 bufp += sprintf(bufp, "100M/");
4427         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4428                 bufp += sprintf(bufp, "1G/");
4429         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4430                 bufp += sprintf(bufp, "10G/");
4431         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4432                 bufp += sprintf(bufp, "25G/");
4433         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4434                 bufp += sprintf(bufp, "40G/");
4435         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4436                 bufp += sprintf(bufp, "100G/");
4437         if (bufp != buf)
4438                 --bufp;
4439         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4440
4441         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4442                     dev->name, adap->params.vpd.id, adap->name, buf);
4443 }
4444
4445 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4446 {
4447         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4448 }
4449
4450 /*
4451  * Free the following resources:
4452  * - memory used for tables
4453  * - MSI/MSI-X
4454  * - net devices
4455  * - resources FW is holding for us
4456  */
4457 static void free_some_resources(struct adapter *adapter)
4458 {
4459         unsigned int i;
4460
4461         kvfree(adapter->l2t);
4462         t4_cleanup_sched(adapter);
4463         kvfree(adapter->tids.tid_tab);
4464         cxgb4_cleanup_tc_u32(adapter);
4465         kfree(adapter->sge.egr_map);
4466         kfree(adapter->sge.ingr_map);
4467         kfree(adapter->sge.starving_fl);
4468         kfree(adapter->sge.txq_maperr);
4469 #ifdef CONFIG_DEBUG_FS
4470         kfree(adapter->sge.blocked_fl);
4471 #endif
4472         disable_msi(adapter);
4473
4474         for_each_port(adapter, i)
4475                 if (adapter->port[i]) {
4476                         struct port_info *pi = adap2pinfo(adapter, i);
4477
4478                         if (pi->viid != 0)
4479                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4480                                            0, pi->viid);
4481                         kfree(adap2pinfo(adapter, i)->rss);
4482                         free_netdev(adapter->port[i]);
4483                 }
4484         if (adapter->flags & FW_OK)
4485                 t4_fw_bye(adapter, adapter->pf);
4486 }
4487
4488 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4489 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4490                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4491 #define SEGMENT_SIZE 128
4492
4493 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4494 {
4495         u16 device_id;
4496
4497         /* Retrieve adapter's device ID */
4498         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4499
4500         switch (device_id >> 12) {
4501         case CHELSIO_T4:
4502                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4503         case CHELSIO_T5:
4504                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4505         case CHELSIO_T6:
4506                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4507         default:
4508                 dev_err(&pdev->dev, "Device %d is not supported\n",
4509                         device_id);
4510         }
4511         return -EINVAL;
4512 }
4513
4514 #ifdef CONFIG_PCI_IOV
4515 static void dummy_setup(struct net_device *dev)
4516 {
4517         dev->type = ARPHRD_NONE;
4518         dev->mtu = 0;
4519         dev->hard_header_len = 0;
4520         dev->addr_len = 0;
4521         dev->tx_queue_len = 0;
4522         dev->flags |= IFF_NOARP;
4523         dev->priv_flags |= IFF_NO_QUEUE;
4524
4525         /* Initialize the device structure. */
4526         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4527         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4528         dev->destructor = free_netdev;
4529 }
4530
4531 static int config_mgmt_dev(struct pci_dev *pdev)
4532 {
4533         struct adapter *adap = pci_get_drvdata(pdev);
4534         struct net_device *netdev;
4535         struct port_info *pi;
4536         char name[IFNAMSIZ];
4537         int err;
4538
4539         snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4540         netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4541                               dummy_setup);
4542         if (!netdev)
4543                 return -ENOMEM;
4544
4545         pi = netdev_priv(netdev);
4546         pi->adapter = adap;
4547         pi->port_id = adap->pf % adap->params.nports;
4548         SET_NETDEV_DEV(netdev, &pdev->dev);
4549
4550         adap->port[0] = netdev;
4551
4552         err = register_netdev(adap->port[0]);
4553         if (err) {
4554                 pr_info("Unable to register VF mgmt netdev %s\n", name);
4555                 free_netdev(adap->port[0]);
4556                 adap->port[0] = NULL;
4557                 return err;
4558         }
4559         return 0;
4560 }
4561
4562 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4563 {
4564         struct adapter *adap = pci_get_drvdata(pdev);
4565         int err = 0;
4566         int current_vfs = pci_num_vf(pdev);
4567         u32 pcie_fw;
4568
4569         pcie_fw = readl(adap->regs + PCIE_FW_A);
4570         /* Check if cxgb4 is the MASTER and fw is initialized */
4571         if (!(pcie_fw & PCIE_FW_INIT_F) ||
4572             !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4573             PCIE_FW_MASTER_G(pcie_fw) != 4) {
4574                 dev_warn(&pdev->dev,
4575                          "cxgb4 driver needs to be MASTER to support SRIOV\n");
4576                 return -EOPNOTSUPP;
4577         }
4578
4579         /* If any of the VF's is already assigned to Guest OS, then
4580          * SRIOV for the same cannot be modified
4581          */
4582         if (current_vfs && pci_vfs_assigned(pdev)) {
4583                 dev_err(&pdev->dev,
4584                         "Cannot modify SR-IOV while VFs are assigned\n");
4585                 num_vfs = current_vfs;
4586                 return num_vfs;
4587         }
4588
4589         /* Disable SRIOV when zero is passed.
4590          * One needs to disable SRIOV before modifying it, else
4591          * stack throws the below warning:
4592          * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4593          */
4594         if (!num_vfs) {
4595                 pci_disable_sriov(pdev);
4596                 if (adap->port[0]) {
4597                         unregister_netdev(adap->port[0]);
4598                         adap->port[0] = NULL;
4599                 }
4600                 /* free VF resources */
4601                 kfree(adap->vfinfo);
4602                 adap->vfinfo = NULL;
4603                 adap->num_vfs = 0;
4604                 return num_vfs;
4605         }
4606
4607         if (num_vfs != current_vfs) {
4608                 err = pci_enable_sriov(pdev, num_vfs);
4609                 if (err)
4610                         return err;
4611
4612                 adap->num_vfs = num_vfs;
4613                 err = config_mgmt_dev(pdev);
4614                 if (err)
4615                         return err;
4616         }
4617
4618         adap->vfinfo = kcalloc(adap->num_vfs,
4619                                sizeof(struct vf_info), GFP_KERNEL);
4620         if (adap->vfinfo)
4621                 fill_vf_station_mac_addr(adap);
4622         return num_vfs;
4623 }
4624 #endif
4625
4626 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4627 {
4628         int func, i, err, s_qpp, qpp, num_seg;
4629         struct port_info *pi;
4630         bool highdma = false;
4631         struct adapter *adapter = NULL;
4632         struct net_device *netdev;
4633         void __iomem *regs;
4634         u32 whoami, pl_rev;
4635         enum chip_type chip;
4636         static int adap_idx = 1;
4637 #ifdef CONFIG_PCI_IOV
4638         u32 v, port_vec;
4639 #endif
4640
4641         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4642
4643         err = pci_request_regions(pdev, KBUILD_MODNAME);
4644         if (err) {
4645                 /* Just info, some other driver may have claimed the device. */
4646                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4647                 return err;
4648         }
4649
4650         err = pci_enable_device(pdev);
4651         if (err) {
4652                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4653                 goto out_release_regions;
4654         }
4655
4656         regs = pci_ioremap_bar(pdev, 0);
4657         if (!regs) {
4658                 dev_err(&pdev->dev, "cannot map device registers\n");
4659                 err = -ENOMEM;
4660                 goto out_disable_device;
4661         }
4662
4663         err = t4_wait_dev_ready(regs);
4664         if (err < 0)
4665                 goto out_unmap_bar0;
4666
4667         /* We control everything through one PF */
4668         whoami = readl(regs + PL_WHOAMI_A);
4669         pl_rev = REV_G(readl(regs + PL_REV_A));
4670         chip = get_chip_type(pdev, pl_rev);
4671         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4672                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4673         if (func != ent->driver_data) {
4674 #ifndef CONFIG_PCI_IOV
4675                 iounmap(regs);
4676 #endif
4677                 pci_disable_device(pdev);
4678                 pci_save_state(pdev);        /* to restore SR-IOV later */
4679                 goto sriov;
4680         }
4681
4682         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4683                 highdma = true;
4684                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4685                 if (err) {
4686                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4687                                 "coherent allocations\n");
4688                         goto out_unmap_bar0;
4689                 }
4690         } else {
4691                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4692                 if (err) {
4693                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4694                         goto out_unmap_bar0;
4695                 }
4696         }
4697
4698         pci_enable_pcie_error_reporting(pdev);
4699         enable_pcie_relaxed_ordering(pdev);
4700         pci_set_master(pdev);
4701         pci_save_state(pdev);
4702
4703         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4704         if (!adapter) {
4705                 err = -ENOMEM;
4706                 goto out_unmap_bar0;
4707         }
4708         adap_idx++;
4709
4710         adapter->workq = create_singlethread_workqueue("cxgb4");
4711         if (!adapter->workq) {
4712                 err = -ENOMEM;
4713                 goto out_free_adapter;
4714         }
4715
4716         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4717                                     (sizeof(struct mbox_cmd) *
4718                                      T4_OS_LOG_MBOX_CMDS),
4719                                     GFP_KERNEL);
4720         if (!adapter->mbox_log) {
4721                 err = -ENOMEM;
4722                 goto out_free_adapter;
4723         }
4724         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4725
4726         /* PCI device has been enabled */
4727         adapter->flags |= DEV_ENABLED;
4728
4729         adapter->regs = regs;
4730         adapter->pdev = pdev;
4731         adapter->pdev_dev = &pdev->dev;
4732         adapter->name = pci_name(pdev);
4733         adapter->mbox = func;
4734         adapter->pf = func;
4735         adapter->msg_enable = DFLT_MSG_ENABLE;
4736         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4737
4738         spin_lock_init(&adapter->stats_lock);
4739         spin_lock_init(&adapter->tid_release_lock);
4740         spin_lock_init(&adapter->win0_lock);
4741         spin_lock_init(&adapter->mbox_lock);
4742
4743         INIT_LIST_HEAD(&adapter->mlist.list);
4744
4745         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4746         INIT_WORK(&adapter->db_full_task, process_db_full);
4747         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4748
4749         err = t4_prep_adapter(adapter);
4750         if (err)
4751                 goto out_free_adapter;
4752
4753
4754         if (!is_t4(adapter->params.chip)) {
4755                 s_qpp = (QUEUESPERPAGEPF0_S +
4756                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4757                         adapter->pf);
4758                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4759                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4760                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4761
4762                 /* Each segment size is 128B. Write coalescing is enabled only
4763                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4764                  * queue is less no of segments that can be accommodated in
4765                  * a page size.
4766                  */
4767                 if (qpp > num_seg) {
4768                         dev_err(&pdev->dev,
4769                                 "Incorrect number of egress queues per page\n");
4770                         err = -EINVAL;
4771                         goto out_free_adapter;
4772                 }
4773                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4774                 pci_resource_len(pdev, 2));
4775                 if (!adapter->bar2) {
4776                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4777                         err = -ENOMEM;
4778                         goto out_free_adapter;
4779                 }
4780         }
4781
4782         setup_memwin(adapter);
4783         err = adap_init0(adapter);
4784 #ifdef CONFIG_DEBUG_FS
4785         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4786 #endif
4787         setup_memwin_rdma(adapter);
4788         if (err)
4789                 goto out_unmap_bar;
4790
4791         /* configure SGE_STAT_CFG_A to read WC stats */
4792         if (!is_t4(adapter->params.chip))
4793                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4794                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4795                               T6_STATMODE_V(0)));
4796
4797         for_each_port(adapter, i) {
4798                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4799                                            MAX_ETH_QSETS);
4800                 if (!netdev) {
4801                         err = -ENOMEM;
4802                         goto out_free_dev;
4803                 }
4804
4805                 SET_NETDEV_DEV(netdev, &pdev->dev);
4806
4807                 adapter->port[i] = netdev;
4808                 pi = netdev_priv(netdev);
4809                 pi->adapter = adapter;
4810                 pi->xact_addr_filt = -1;
4811                 pi->port_id = i;
4812                 netdev->irq = pdev->irq;
4813
4814                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4815                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4816                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4817                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4818                         NETIF_F_HW_TC;
4819                 if (highdma)
4820                         netdev->hw_features |= NETIF_F_HIGHDMA;
4821                 netdev->features |= netdev->hw_features;
4822                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4823
4824                 netdev->priv_flags |= IFF_UNICAST_FLT;
4825
4826                 /* MTU range: 81 - 9600 */
4827                 netdev->min_mtu = 81;
4828                 netdev->max_mtu = MAX_MTU;
4829
4830                 netdev->netdev_ops = &cxgb4_netdev_ops;
4831 #ifdef CONFIG_CHELSIO_T4_DCB
4832                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4833                 cxgb4_dcb_state_init(netdev);
4834 #endif
4835                 cxgb4_set_ethtool_ops(netdev);
4836         }
4837
4838         pci_set_drvdata(pdev, adapter);
4839
4840         if (adapter->flags & FW_OK) {
4841                 err = t4_port_init(adapter, func, func, 0);
4842                 if (err)
4843                         goto out_free_dev;
4844         } else if (adapter->params.nports == 1) {
4845                 /* If we don't have a connection to the firmware -- possibly
4846                  * because of an error -- grab the raw VPD parameters so we
4847                  * can set the proper MAC Address on the debug network
4848                  * interface that we've created.
4849                  */
4850                 u8 hw_addr[ETH_ALEN];
4851                 u8 *na = adapter->params.vpd.na;
4852
4853                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4854                 if (!err) {
4855                         for (i = 0; i < ETH_ALEN; i++)
4856                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4857                                               hex2val(na[2 * i + 1]));
4858                         t4_set_hw_addr(adapter, 0, hw_addr);
4859                 }
4860         }
4861
4862         /* Configure queues and allocate tables now, they can be needed as
4863          * soon as the first register_netdev completes.
4864          */
4865         cfg_queues(adapter);
4866
4867         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4868         if (!adapter->l2t) {
4869                 /* We tolerate a lack of L2T, giving up some functionality */
4870                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4871                 adapter->params.offload = 0;
4872         }
4873
4874 #if IS_ENABLED(CONFIG_IPV6)
4875         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4876             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4877                 /* CLIP functionality is not present in hardware,
4878                  * hence disable all offload features
4879                  */
4880                 dev_warn(&pdev->dev,
4881                          "CLIP not enabled in hardware, continuing\n");
4882                 adapter->params.offload = 0;
4883         } else {
4884                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4885                                                   adapter->clipt_end);
4886                 if (!adapter->clipt) {
4887                         /* We tolerate a lack of clip_table, giving up
4888                          * some functionality
4889                          */
4890                         dev_warn(&pdev->dev,
4891                                  "could not allocate Clip table, continuing\n");
4892                         adapter->params.offload = 0;
4893                 }
4894         }
4895 #endif
4896
4897         for_each_port(adapter, i) {
4898                 pi = adap2pinfo(adapter, i);
4899                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4900                 if (!pi->sched_tbl)
4901                         dev_warn(&pdev->dev,
4902                                  "could not activate scheduling on port %d\n",
4903                                  i);
4904         }
4905
4906         if (tid_init(&adapter->tids) < 0) {
4907                 dev_warn(&pdev->dev, "could not allocate TID table, "
4908                          "continuing\n");
4909                 adapter->params.offload = 0;
4910         } else {
4911                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
4912                 if (!adapter->tc_u32)
4913                         dev_warn(&pdev->dev,
4914                                  "could not offload tc u32, continuing\n");
4915         }
4916
4917         if (is_offload(adapter)) {
4918                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4919                         u32 hash_base, hash_reg;
4920
4921                         if (chip <= CHELSIO_T5) {
4922                                 hash_reg = LE_DB_TID_HASHBASE_A;
4923                                 hash_base = t4_read_reg(adapter, hash_reg);
4924                                 adapter->tids.hash_base = hash_base / 4;
4925                         } else {
4926                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4927                                 hash_base = t4_read_reg(adapter, hash_reg);
4928                                 adapter->tids.hash_base = hash_base;
4929                         }
4930                 }
4931         }
4932
4933         /* See what interrupts we'll be using */
4934         if (msi > 1 && enable_msix(adapter) == 0)
4935                 adapter->flags |= USING_MSIX;
4936         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4937                 adapter->flags |= USING_MSI;
4938                 if (msi > 1)
4939                         free_msix_info(adapter);
4940         }
4941
4942         /* check for PCI Express bandwidth capabiltites */
4943         cxgb4_check_pcie_caps(adapter);
4944
4945         err = init_rss(adapter);
4946         if (err)
4947                 goto out_free_dev;
4948
4949         /*
4950          * The card is now ready to go.  If any errors occur during device
4951          * registration we do not fail the whole card but rather proceed only
4952          * with the ports we manage to register successfully.  However we must
4953          * register at least one net device.
4954          */
4955         for_each_port(adapter, i) {
4956                 pi = adap2pinfo(adapter, i);
4957                 adapter->port[i]->dev_port = pi->lport;
4958                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4959                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4960
4961                 err = register_netdev(adapter->port[i]);
4962                 if (err)
4963                         break;
4964                 adapter->chan_map[pi->tx_chan] = i;
4965                 print_port_info(adapter->port[i]);
4966         }
4967         if (i == 0) {
4968                 dev_err(&pdev->dev, "could not register any net devices\n");
4969                 goto out_free_dev;
4970         }
4971         if (err) {
4972                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4973                 err = 0;
4974         }
4975
4976         if (cxgb4_debugfs_root) {
4977                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4978                                                            cxgb4_debugfs_root);
4979                 setup_debugfs(adapter);
4980         }
4981
4982         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4983         pdev->needs_freset = 1;
4984
4985         if (is_uld(adapter)) {
4986                 mutex_lock(&uld_mutex);
4987                 list_add_tail(&adapter->list_node, &adapter_list);
4988                 mutex_unlock(&uld_mutex);
4989         }
4990
4991         print_adapter_info(adapter);
4992         setup_fw_sge_queues(adapter);
4993         return 0;
4994
4995 sriov:
4996 #ifdef CONFIG_PCI_IOV
4997         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4998         if (!adapter) {
4999                 err = -ENOMEM;
5000                 goto free_pci_region;
5001         }
5002
5003         adapter->pdev = pdev;
5004         adapter->pdev_dev = &pdev->dev;
5005         adapter->name = pci_name(pdev);
5006         adapter->mbox = func;
5007         adapter->pf = func;
5008         adapter->regs = regs;
5009         adapter->adap_idx = adap_idx;
5010         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5011                                     (sizeof(struct mbox_cmd) *
5012                                      T4_OS_LOG_MBOX_CMDS),
5013                                     GFP_KERNEL);
5014         if (!adapter->mbox_log) {
5015                 err = -ENOMEM;
5016                 goto free_adapter;
5017         }
5018         spin_lock_init(&adapter->mbox_lock);
5019         INIT_LIST_HEAD(&adapter->mlist.list);
5020
5021         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5022             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5023         err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5024                               &v, &port_vec);
5025         if (err < 0) {
5026                 dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5027                 goto free_adapter;
5028         }
5029
5030         adapter->params.nports = hweight32(port_vec);
5031         pci_set_drvdata(pdev, adapter);
5032         return 0;
5033
5034  free_adapter:
5035         kfree(adapter);
5036  free_pci_region:
5037         iounmap(regs);
5038         pci_disable_sriov(pdev);
5039         pci_release_regions(pdev);
5040         return err;
5041 #else
5042         return 0;
5043 #endif
5044
5045  out_free_dev:
5046         free_some_resources(adapter);
5047         if (adapter->flags & USING_MSIX)
5048                 free_msix_info(adapter);
5049         if (adapter->num_uld || adapter->num_ofld_uld)
5050                 t4_uld_mem_free(adapter);
5051  out_unmap_bar:
5052         if (!is_t4(adapter->params.chip))
5053                 iounmap(adapter->bar2);
5054  out_free_adapter:
5055         if (adapter->workq)
5056                 destroy_workqueue(adapter->workq);
5057
5058         kfree(adapter->mbox_log);
5059         kfree(adapter);
5060  out_unmap_bar0:
5061         iounmap(regs);
5062  out_disable_device:
5063         pci_disable_pcie_error_reporting(pdev);
5064         pci_disable_device(pdev);
5065  out_release_regions:
5066         pci_release_regions(pdev);
5067         return err;
5068 }
5069
5070 static void remove_one(struct pci_dev *pdev)
5071 {
5072         struct adapter *adapter = pci_get_drvdata(pdev);
5073
5074         if (!adapter) {
5075                 pci_release_regions(pdev);
5076                 return;
5077         }
5078
5079         if (adapter->pf == 4) {
5080                 int i;
5081
5082                 /* Tear down per-adapter Work Queue first since it can contain
5083                  * references to our adapter data structure.
5084                  */
5085                 destroy_workqueue(adapter->workq);
5086
5087                 if (is_uld(adapter))
5088                         detach_ulds(adapter);
5089
5090                 disable_interrupts(adapter);
5091
5092                 for_each_port(adapter, i)
5093                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5094                                 unregister_netdev(adapter->port[i]);
5095
5096                 debugfs_remove_recursive(adapter->debugfs_root);
5097
5098                 /* If we allocated filters, free up state associated with any
5099                  * valid filters ...
5100                  */
5101                 clear_all_filters(adapter);
5102
5103                 if (adapter->flags & FULL_INIT_DONE)
5104                         cxgb_down(adapter);
5105
5106                 if (adapter->flags & USING_MSIX)
5107                         free_msix_info(adapter);
5108                 if (adapter->num_uld || adapter->num_ofld_uld)
5109                         t4_uld_mem_free(adapter);
5110                 free_some_resources(adapter);
5111 #if IS_ENABLED(CONFIG_IPV6)
5112                 t4_cleanup_clip_tbl(adapter);
5113 #endif
5114                 iounmap(adapter->regs);
5115                 if (!is_t4(adapter->params.chip))
5116                         iounmap(adapter->bar2);
5117                 pci_disable_pcie_error_reporting(pdev);
5118                 if ((adapter->flags & DEV_ENABLED)) {
5119                         pci_disable_device(pdev);
5120                         adapter->flags &= ~DEV_ENABLED;
5121                 }
5122                 pci_release_regions(pdev);
5123                 kfree(adapter->mbox_log);
5124                 synchronize_rcu();
5125                 kfree(adapter);
5126         }
5127 #ifdef CONFIG_PCI_IOV
5128         else {
5129                 if (adapter->port[0])
5130                         unregister_netdev(adapter->port[0]);
5131                 iounmap(adapter->regs);
5132                 kfree(adapter->vfinfo);
5133                 kfree(adapter);
5134                 pci_disable_sriov(pdev);
5135                 pci_release_regions(pdev);
5136         }
5137 #endif
5138 }
5139
5140 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5141  * delivery.  This is essentially a stripped down version of the PCI remove()
5142  * function where we do the minimal amount of work necessary to shutdown any
5143  * further activity.
5144  */
5145 static void shutdown_one(struct pci_dev *pdev)
5146 {
5147         struct adapter *adapter = pci_get_drvdata(pdev);
5148
5149         /* As with remove_one() above (see extended comment), we only want do
5150          * do cleanup on PCI Devices which went all the way through init_one()
5151          * ...
5152          */
5153         if (!adapter) {
5154                 pci_release_regions(pdev);
5155                 return;
5156         }
5157
5158         if (adapter->pf == 4) {
5159                 int i;
5160
5161                 for_each_port(adapter, i)
5162                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5163                                 cxgb_close(adapter->port[i]);
5164
5165                 t4_uld_clean_up(adapter);
5166                 disable_interrupts(adapter);
5167                 disable_msi(adapter);
5168
5169                 t4_sge_stop(adapter);
5170                 if (adapter->flags & FW_OK)
5171                         t4_fw_bye(adapter, adapter->mbox);
5172         }
5173 #ifdef CONFIG_PCI_IOV
5174         else {
5175                 if (adapter->port[0])
5176                         unregister_netdev(adapter->port[0]);
5177                 iounmap(adapter->regs);
5178                 kfree(adapter->vfinfo);
5179                 kfree(adapter);
5180                 pci_disable_sriov(pdev);
5181                 pci_release_regions(pdev);
5182         }
5183 #endif
5184 }
5185
5186 static struct pci_driver cxgb4_driver = {
5187         .name     = KBUILD_MODNAME,
5188         .id_table = cxgb4_pci_tbl,
5189         .probe    = init_one,
5190         .remove   = remove_one,
5191         .shutdown = shutdown_one,
5192 #ifdef CONFIG_PCI_IOV
5193         .sriov_configure = cxgb4_iov_configure,
5194 #endif
5195         .err_handler = &cxgb4_eeh,
5196 };
5197
5198 static int __init cxgb4_init_module(void)
5199 {
5200         int ret;
5201
5202         /* Debugfs support is optional, just warn if this fails */
5203         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5204         if (!cxgb4_debugfs_root)
5205                 pr_warn("could not create debugfs entry, continuing\n");
5206
5207         ret = pci_register_driver(&cxgb4_driver);
5208         if (ret < 0)
5209                 debugfs_remove(cxgb4_debugfs_root);
5210
5211 #if IS_ENABLED(CONFIG_IPV6)
5212         if (!inet6addr_registered) {
5213                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5214                 inet6addr_registered = true;
5215         }
5216 #endif
5217
5218         return ret;
5219 }
5220
5221 static void __exit cxgb4_cleanup_module(void)
5222 {
5223 #if IS_ENABLED(CONFIG_IPV6)
5224         if (inet6addr_registered) {
5225                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5226                 inet6addr_registered = false;
5227         }
5228 #endif
5229         pci_unregister_driver(&cxgb4_driver);
5230         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5231 }
5232
5233 module_init(cxgb4_init_module);
5234 module_exit(cxgb4_cleanup_module);