]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/davicom/dm9000.c
Merge remote-tracking branch 'regulator/fix/core' into regulator-linus
[karo-tx-linux.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  *      Copyright (C) 1997  Sten Wang
4  *
5  *      This program is free software; you can redistribute it and/or
6  *      modify it under the terms of the GNU General Public License
7  *      as published by the Free Software Foundation; either version 2
8  *      of the License, or (at your option) any later version.
9  *
10  *      This program is distributed in the hope that it will be useful,
11  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *      GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *      Ben Dooks <ben@simtec.co.uk>
19  *      Sascha Hauer <s.hauer@pengutronix.de>
20  */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39
40 #include <asm/delay.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43
44 #include "dm9000.h"
45
46 /* Board/System/Debug information/definition ---------------- */
47
48 #define DM9000_PHY              0x40    /* PHY address 0x01 */
49
50 #define CARDNAME        "dm9000"
51 #define DRV_VERSION     "1.31"
52
53 /*
54  * Transmit timeout, default 5 seconds.
55  */
56 static int watchdog = 5000;
57 module_param(watchdog, int, 0400);
58 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
59
60 /*
61  * Debug messages level
62  */
63 static int debug;
64 module_param(debug, int, 0644);
65 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
66
67 /* DM9000 register address locking.
68  *
69  * The DM9000 uses an address register to control where data written
70  * to the data register goes. This means that the address register
71  * must be preserved over interrupts or similar calls.
72  *
73  * During interrupt and other critical calls, a spinlock is used to
74  * protect the system, but the calls themselves save the address
75  * in the address register in case they are interrupting another
76  * access to the device.
77  *
78  * For general accesses a lock is provided so that calls which are
79  * allowed to sleep are serialised so that the address register does
80  * not need to be saved. This lock also serves to serialise access
81  * to the EEPROM and PHY access registers which are shared between
82  * these two devices.
83  */
84
85 /* The driver supports the original DM9000E, and now the two newer
86  * devices, DM9000A and DM9000B.
87  */
88
89 enum dm9000_type {
90         TYPE_DM9000E,   /* original DM9000 */
91         TYPE_DM9000A,
92         TYPE_DM9000B
93 };
94
95 /* Structure/enum declaration ------------------------------- */
96 typedef struct board_info {
97
98         void __iomem    *io_addr;       /* Register I/O base address */
99         void __iomem    *io_data;       /* Data I/O address */
100         u16              irq;           /* IRQ */
101
102         u16             tx_pkt_cnt;
103         u16             queue_pkt_len;
104         u16             queue_start_addr;
105         u16             queue_ip_summed;
106         u16             dbug_cnt;
107         u8              io_mode;                /* 0:word, 2:byte */
108         u8              phy_addr;
109         u8              imr_all;
110
111         unsigned int    flags;
112         unsigned int    in_suspend:1;
113         unsigned int    wake_supported:1;
114
115         enum dm9000_type type;
116
117         void (*inblk)(void __iomem *port, void *data, int length);
118         void (*outblk)(void __iomem *port, void *data, int length);
119         void (*dumpblk)(void __iomem *port, int length);
120
121         struct device   *dev;        /* parent device */
122
123         struct resource *addr_res;   /* resources found */
124         struct resource *data_res;
125         struct resource *addr_req;   /* resources requested */
126         struct resource *data_req;
127         struct resource *irq_res;
128
129         int              irq_wake;
130
131         struct mutex     addr_lock;     /* phy and eeprom access lock */
132
133         struct delayed_work phy_poll;
134         struct net_device  *ndev;
135
136         spinlock_t      lock;
137
138         struct mii_if_info mii;
139         u32             msg_enable;
140         u32             wake_state;
141
142         int             ip_summed;
143 } board_info_t;
144
145 /* debug code */
146
147 #define dm9000_dbg(db, lev, msg...) do {                \
148         if ((lev) < debug) {                            \
149                 dev_dbg(db->dev, msg);                  \
150         }                                               \
151 } while (0)
152
153 static inline board_info_t *to_dm9000_board(struct net_device *dev)
154 {
155         return netdev_priv(dev);
156 }
157
158 /* DM9000 network board routine ---------------------------- */
159
160 /*
161  *   Read a byte from I/O port
162  */
163 static u8
164 ior(board_info_t *db, int reg)
165 {
166         writeb(reg, db->io_addr);
167         return readb(db->io_data);
168 }
169
170 /*
171  *   Write a byte to I/O port
172  */
173
174 static void
175 iow(board_info_t *db, int reg, int value)
176 {
177         writeb(reg, db->io_addr);
178         writeb(value, db->io_data);
179 }
180
181 static void
182 dm9000_reset(board_info_t *db)
183 {
184         dev_dbg(db->dev, "resetting device\n");
185
186         /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
187          * The essential point is that we have to do a double reset, and the
188          * instruction is to set LBK into MAC internal loopback mode.
189          */
190         iow(db, DM9000_NCR, 0x03);
191         udelay(100); /* Application note says at least 20 us */
192         if (ior(db, DM9000_NCR) & 1)
193                 dev_err(db->dev, "dm9000 did not respond to first reset\n");
194
195         iow(db, DM9000_NCR, 0);
196         iow(db, DM9000_NCR, 0x03);
197         udelay(100);
198         if (ior(db, DM9000_NCR) & 1)
199                 dev_err(db->dev, "dm9000 did not respond to second reset\n");
200 }
201
202 /* routines for sending block to chip */
203
204 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
205 {
206         iowrite8_rep(reg, data, count);
207 }
208
209 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
210 {
211         iowrite16_rep(reg, data, (count+1) >> 1);
212 }
213
214 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
215 {
216         iowrite32_rep(reg, data, (count+3) >> 2);
217 }
218
219 /* input block from chip to memory */
220
221 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
222 {
223         ioread8_rep(reg, data, count);
224 }
225
226
227 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
228 {
229         ioread16_rep(reg, data, (count+1) >> 1);
230 }
231
232 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
233 {
234         ioread32_rep(reg, data, (count+3) >> 2);
235 }
236
237 /* dump block from chip to null */
238
239 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
240 {
241         int i;
242         int tmp;
243
244         for (i = 0; i < count; i++)
245                 tmp = readb(reg);
246 }
247
248 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
249 {
250         int i;
251         int tmp;
252
253         count = (count + 1) >> 1;
254
255         for (i = 0; i < count; i++)
256                 tmp = readw(reg);
257 }
258
259 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
260 {
261         int i;
262         int tmp;
263
264         count = (count + 3) >> 2;
265
266         for (i = 0; i < count; i++)
267                 tmp = readl(reg);
268 }
269
270 /*
271  * Sleep, either by using msleep() or if we are suspending, then
272  * use mdelay() to sleep.
273  */
274 static void dm9000_msleep(board_info_t *db, unsigned int ms)
275 {
276         if (db->in_suspend)
277                 mdelay(ms);
278         else
279                 msleep(ms);
280 }
281
282 /* Read a word from phyxcer */
283 static int
284 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
285 {
286         board_info_t *db = netdev_priv(dev);
287         unsigned long flags;
288         unsigned int reg_save;
289         int ret;
290
291         mutex_lock(&db->addr_lock);
292
293         spin_lock_irqsave(&db->lock, flags);
294
295         /* Save previous register address */
296         reg_save = readb(db->io_addr);
297
298         /* Fill the phyxcer register into REG_0C */
299         iow(db, DM9000_EPAR, DM9000_PHY | reg);
300
301         /* Issue phyxcer read command */
302         iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
303
304         writeb(reg_save, db->io_addr);
305         spin_unlock_irqrestore(&db->lock, flags);
306
307         dm9000_msleep(db, 1);           /* Wait read complete */
308
309         spin_lock_irqsave(&db->lock, flags);
310         reg_save = readb(db->io_addr);
311
312         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
313
314         /* The read data keeps on REG_0D & REG_0E */
315         ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
316
317         /* restore the previous address */
318         writeb(reg_save, db->io_addr);
319         spin_unlock_irqrestore(&db->lock, flags);
320
321         mutex_unlock(&db->addr_lock);
322
323         dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
324         return ret;
325 }
326
327 /* Write a word to phyxcer */
328 static void
329 dm9000_phy_write(struct net_device *dev,
330                  int phyaddr_unused, int reg, int value)
331 {
332         board_info_t *db = netdev_priv(dev);
333         unsigned long flags;
334         unsigned long reg_save;
335
336         dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
337         mutex_lock(&db->addr_lock);
338
339         spin_lock_irqsave(&db->lock, flags);
340
341         /* Save previous register address */
342         reg_save = readb(db->io_addr);
343
344         /* Fill the phyxcer register into REG_0C */
345         iow(db, DM9000_EPAR, DM9000_PHY | reg);
346
347         /* Fill the written data into REG_0D & REG_0E */
348         iow(db, DM9000_EPDRL, value);
349         iow(db, DM9000_EPDRH, value >> 8);
350
351         /* Issue phyxcer write command */
352         iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
353
354         writeb(reg_save, db->io_addr);
355         spin_unlock_irqrestore(&db->lock, flags);
356
357         dm9000_msleep(db, 1);           /* Wait write complete */
358
359         spin_lock_irqsave(&db->lock, flags);
360         reg_save = readb(db->io_addr);
361
362         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
363
364         /* restore the previous address */
365         writeb(reg_save, db->io_addr);
366
367         spin_unlock_irqrestore(&db->lock, flags);
368         mutex_unlock(&db->addr_lock);
369 }
370
371 /* dm9000_set_io
372  *
373  * select the specified set of io routines to use with the
374  * device
375  */
376
377 static void dm9000_set_io(struct board_info *db, int byte_width)
378 {
379         /* use the size of the data resource to work out what IO
380          * routines we want to use
381          */
382
383         switch (byte_width) {
384         case 1:
385                 db->dumpblk = dm9000_dumpblk_8bit;
386                 db->outblk  = dm9000_outblk_8bit;
387                 db->inblk   = dm9000_inblk_8bit;
388                 break;
389
390
391         case 3:
392                 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
393         case 2:
394                 db->dumpblk = dm9000_dumpblk_16bit;
395                 db->outblk  = dm9000_outblk_16bit;
396                 db->inblk   = dm9000_inblk_16bit;
397                 break;
398
399         case 4:
400         default:
401                 db->dumpblk = dm9000_dumpblk_32bit;
402                 db->outblk  = dm9000_outblk_32bit;
403                 db->inblk   = dm9000_inblk_32bit;
404                 break;
405         }
406 }
407
408 static void dm9000_schedule_poll(board_info_t *db)
409 {
410         if (db->type == TYPE_DM9000E)
411                 schedule_delayed_work(&db->phy_poll, HZ * 2);
412 }
413
414 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
415 {
416         board_info_t *dm = to_dm9000_board(dev);
417
418         if (!netif_running(dev))
419                 return -EINVAL;
420
421         return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
422 }
423
424 static unsigned int
425 dm9000_read_locked(board_info_t *db, int reg)
426 {
427         unsigned long flags;
428         unsigned int ret;
429
430         spin_lock_irqsave(&db->lock, flags);
431         ret = ior(db, reg);
432         spin_unlock_irqrestore(&db->lock, flags);
433
434         return ret;
435 }
436
437 static int dm9000_wait_eeprom(board_info_t *db)
438 {
439         unsigned int status;
440         int timeout = 8;        /* wait max 8msec */
441
442         /* The DM9000 data sheets say we should be able to
443          * poll the ERRE bit in EPCR to wait for the EEPROM
444          * operation. From testing several chips, this bit
445          * does not seem to work.
446          *
447          * We attempt to use the bit, but fall back to the
448          * timeout (which is why we do not return an error
449          * on expiry) to say that the EEPROM operation has
450          * completed.
451          */
452
453         while (1) {
454                 status = dm9000_read_locked(db, DM9000_EPCR);
455
456                 if ((status & EPCR_ERRE) == 0)
457                         break;
458
459                 msleep(1);
460
461                 if (timeout-- < 0) {
462                         dev_dbg(db->dev, "timeout waiting EEPROM\n");
463                         break;
464                 }
465         }
466
467         return 0;
468 }
469
470 /*
471  *  Read a word data from EEPROM
472  */
473 static void
474 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
475 {
476         unsigned long flags;
477
478         if (db->flags & DM9000_PLATF_NO_EEPROM) {
479                 to[0] = 0xff;
480                 to[1] = 0xff;
481                 return;
482         }
483
484         mutex_lock(&db->addr_lock);
485
486         spin_lock_irqsave(&db->lock, flags);
487
488         iow(db, DM9000_EPAR, offset);
489         iow(db, DM9000_EPCR, EPCR_ERPRR);
490
491         spin_unlock_irqrestore(&db->lock, flags);
492
493         dm9000_wait_eeprom(db);
494
495         /* delay for at-least 150uS */
496         msleep(1);
497
498         spin_lock_irqsave(&db->lock, flags);
499
500         iow(db, DM9000_EPCR, 0x0);
501
502         to[0] = ior(db, DM9000_EPDRL);
503         to[1] = ior(db, DM9000_EPDRH);
504
505         spin_unlock_irqrestore(&db->lock, flags);
506
507         mutex_unlock(&db->addr_lock);
508 }
509
510 /*
511  * Write a word data to SROM
512  */
513 static void
514 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
515 {
516         unsigned long flags;
517
518         if (db->flags & DM9000_PLATF_NO_EEPROM)
519                 return;
520
521         mutex_lock(&db->addr_lock);
522
523         spin_lock_irqsave(&db->lock, flags);
524         iow(db, DM9000_EPAR, offset);
525         iow(db, DM9000_EPDRH, data[1]);
526         iow(db, DM9000_EPDRL, data[0]);
527         iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
528         spin_unlock_irqrestore(&db->lock, flags);
529
530         dm9000_wait_eeprom(db);
531
532         mdelay(1);      /* wait at least 150uS to clear */
533
534         spin_lock_irqsave(&db->lock, flags);
535         iow(db, DM9000_EPCR, 0);
536         spin_unlock_irqrestore(&db->lock, flags);
537
538         mutex_unlock(&db->addr_lock);
539 }
540
541 /* ethtool ops */
542
543 static void dm9000_get_drvinfo(struct net_device *dev,
544                                struct ethtool_drvinfo *info)
545 {
546         board_info_t *dm = to_dm9000_board(dev);
547
548         strlcpy(info->driver, CARDNAME, sizeof(info->driver));
549         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
550         strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
551                 sizeof(info->bus_info));
552 }
553
554 static u32 dm9000_get_msglevel(struct net_device *dev)
555 {
556         board_info_t *dm = to_dm9000_board(dev);
557
558         return dm->msg_enable;
559 }
560
561 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
562 {
563         board_info_t *dm = to_dm9000_board(dev);
564
565         dm->msg_enable = value;
566 }
567
568 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
569 {
570         board_info_t *dm = to_dm9000_board(dev);
571
572         mii_ethtool_gset(&dm->mii, cmd);
573         return 0;
574 }
575
576 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
577 {
578         board_info_t *dm = to_dm9000_board(dev);
579
580         return mii_ethtool_sset(&dm->mii, cmd);
581 }
582
583 static int dm9000_nway_reset(struct net_device *dev)
584 {
585         board_info_t *dm = to_dm9000_board(dev);
586         return mii_nway_restart(&dm->mii);
587 }
588
589 static int dm9000_set_features(struct net_device *dev,
590         netdev_features_t features)
591 {
592         board_info_t *dm = to_dm9000_board(dev);
593         netdev_features_t changed = dev->features ^ features;
594         unsigned long flags;
595
596         if (!(changed & NETIF_F_RXCSUM))
597                 return 0;
598
599         spin_lock_irqsave(&dm->lock, flags);
600         iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
601         spin_unlock_irqrestore(&dm->lock, flags);
602
603         return 0;
604 }
605
606 static u32 dm9000_get_link(struct net_device *dev)
607 {
608         board_info_t *dm = to_dm9000_board(dev);
609         u32 ret;
610
611         if (dm->flags & DM9000_PLATF_EXT_PHY)
612                 ret = mii_link_ok(&dm->mii);
613         else
614                 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
615
616         return ret;
617 }
618
619 #define DM_EEPROM_MAGIC         (0x444D394B)
620
621 static int dm9000_get_eeprom_len(struct net_device *dev)
622 {
623         return 128;
624 }
625
626 static int dm9000_get_eeprom(struct net_device *dev,
627                              struct ethtool_eeprom *ee, u8 *data)
628 {
629         board_info_t *dm = to_dm9000_board(dev);
630         int offset = ee->offset;
631         int len = ee->len;
632         int i;
633
634         /* EEPROM access is aligned to two bytes */
635
636         if ((len & 1) != 0 || (offset & 1) != 0)
637                 return -EINVAL;
638
639         if (dm->flags & DM9000_PLATF_NO_EEPROM)
640                 return -ENOENT;
641
642         ee->magic = DM_EEPROM_MAGIC;
643
644         for (i = 0; i < len; i += 2)
645                 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
646
647         return 0;
648 }
649
650 static int dm9000_set_eeprom(struct net_device *dev,
651                              struct ethtool_eeprom *ee, u8 *data)
652 {
653         board_info_t *dm = to_dm9000_board(dev);
654         int offset = ee->offset;
655         int len = ee->len;
656         int done;
657
658         /* EEPROM access is aligned to two bytes */
659
660         if (dm->flags & DM9000_PLATF_NO_EEPROM)
661                 return -ENOENT;
662
663         if (ee->magic != DM_EEPROM_MAGIC)
664                 return -EINVAL;
665
666         while (len > 0) {
667                 if (len & 1 || offset & 1) {
668                         int which = offset & 1;
669                         u8 tmp[2];
670
671                         dm9000_read_eeprom(dm, offset / 2, tmp);
672                         tmp[which] = *data;
673                         dm9000_write_eeprom(dm, offset / 2, tmp);
674
675                         done = 1;
676                 } else {
677                         dm9000_write_eeprom(dm, offset / 2, data);
678                         done = 2;
679                 }
680
681                 data += done;
682                 offset += done;
683                 len -= done;
684         }
685
686         return 0;
687 }
688
689 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
690 {
691         board_info_t *dm = to_dm9000_board(dev);
692
693         memset(w, 0, sizeof(struct ethtool_wolinfo));
694
695         /* note, we could probably support wake-phy too */
696         w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
697         w->wolopts = dm->wake_state;
698 }
699
700 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
701 {
702         board_info_t *dm = to_dm9000_board(dev);
703         unsigned long flags;
704         u32 opts = w->wolopts;
705         u32 wcr = 0;
706
707         if (!dm->wake_supported)
708                 return -EOPNOTSUPP;
709
710         if (opts & ~WAKE_MAGIC)
711                 return -EINVAL;
712
713         if (opts & WAKE_MAGIC)
714                 wcr |= WCR_MAGICEN;
715
716         mutex_lock(&dm->addr_lock);
717
718         spin_lock_irqsave(&dm->lock, flags);
719         iow(dm, DM9000_WCR, wcr);
720         spin_unlock_irqrestore(&dm->lock, flags);
721
722         mutex_unlock(&dm->addr_lock);
723
724         if (dm->wake_state != opts) {
725                 /* change in wol state, update IRQ state */
726
727                 if (!dm->wake_state)
728                         irq_set_irq_wake(dm->irq_wake, 1);
729                 else if (dm->wake_state && !opts)
730                         irq_set_irq_wake(dm->irq_wake, 0);
731         }
732
733         dm->wake_state = opts;
734         return 0;
735 }
736
737 static const struct ethtool_ops dm9000_ethtool_ops = {
738         .get_drvinfo            = dm9000_get_drvinfo,
739         .get_settings           = dm9000_get_settings,
740         .set_settings           = dm9000_set_settings,
741         .get_msglevel           = dm9000_get_msglevel,
742         .set_msglevel           = dm9000_set_msglevel,
743         .nway_reset             = dm9000_nway_reset,
744         .get_link               = dm9000_get_link,
745         .get_wol                = dm9000_get_wol,
746         .set_wol                = dm9000_set_wol,
747         .get_eeprom_len         = dm9000_get_eeprom_len,
748         .get_eeprom             = dm9000_get_eeprom,
749         .set_eeprom             = dm9000_set_eeprom,
750 };
751
752 static void dm9000_show_carrier(board_info_t *db,
753                                 unsigned carrier, unsigned nsr)
754 {
755         int lpa;
756         struct net_device *ndev = db->ndev;
757         struct mii_if_info *mii = &db->mii;
758         unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
759
760         if (carrier) {
761                 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
762                 dev_info(db->dev,
763                          "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
764                          ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
765                          (ncr & NCR_FDX) ? "full" : "half", lpa);
766         } else {
767                 dev_info(db->dev, "%s: link down\n", ndev->name);
768         }
769 }
770
771 static void
772 dm9000_poll_work(struct work_struct *w)
773 {
774         struct delayed_work *dw = to_delayed_work(w);
775         board_info_t *db = container_of(dw, board_info_t, phy_poll);
776         struct net_device *ndev = db->ndev;
777
778         if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
779             !(db->flags & DM9000_PLATF_EXT_PHY)) {
780                 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
781                 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
782                 unsigned new_carrier;
783
784                 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
785
786                 if (old_carrier != new_carrier) {
787                         if (netif_msg_link(db))
788                                 dm9000_show_carrier(db, new_carrier, nsr);
789
790                         if (!new_carrier)
791                                 netif_carrier_off(ndev);
792                         else
793                                 netif_carrier_on(ndev);
794                 }
795         } else
796                 mii_check_media(&db->mii, netif_msg_link(db), 0);
797
798         if (netif_running(ndev))
799                 dm9000_schedule_poll(db);
800 }
801
802 /* dm9000_release_board
803  *
804  * release a board, and any mapped resources
805  */
806
807 static void
808 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
809 {
810         /* unmap our resources */
811
812         iounmap(db->io_addr);
813         iounmap(db->io_data);
814
815         /* release the resources */
816
817         release_resource(db->data_req);
818         kfree(db->data_req);
819
820         release_resource(db->addr_req);
821         kfree(db->addr_req);
822 }
823
824 static unsigned char dm9000_type_to_char(enum dm9000_type type)
825 {
826         switch (type) {
827         case TYPE_DM9000E: return 'e';
828         case TYPE_DM9000A: return 'a';
829         case TYPE_DM9000B: return 'b';
830         }
831
832         return '?';
833 }
834
835 /*
836  *  Set DM9000 multicast address
837  */
838 static void
839 dm9000_hash_table_unlocked(struct net_device *dev)
840 {
841         board_info_t *db = netdev_priv(dev);
842         struct netdev_hw_addr *ha;
843         int i, oft;
844         u32 hash_val;
845         u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
846         u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
847
848         dm9000_dbg(db, 1, "entering %s\n", __func__);
849
850         for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
851                 iow(db, oft, dev->dev_addr[i]);
852
853         if (dev->flags & IFF_PROMISC)
854                 rcr |= RCR_PRMSC;
855
856         if (dev->flags & IFF_ALLMULTI)
857                 rcr |= RCR_ALL;
858
859         /* the multicast address in Hash Table : 64 bits */
860         netdev_for_each_mc_addr(ha, dev) {
861                 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
862                 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
863         }
864
865         /* Write the hash table to MAC MD table */
866         for (i = 0, oft = DM9000_MAR; i < 4; i++) {
867                 iow(db, oft++, hash_table[i]);
868                 iow(db, oft++, hash_table[i] >> 8);
869         }
870
871         iow(db, DM9000_RCR, rcr);
872 }
873
874 static void
875 dm9000_hash_table(struct net_device *dev)
876 {
877         board_info_t *db = netdev_priv(dev);
878         unsigned long flags;
879
880         spin_lock_irqsave(&db->lock, flags);
881         dm9000_hash_table_unlocked(dev);
882         spin_unlock_irqrestore(&db->lock, flags);
883 }
884
885 /*
886  * Initialize dm9000 board
887  */
888 static void
889 dm9000_init_dm9000(struct net_device *dev)
890 {
891         board_info_t *db = netdev_priv(dev);
892         unsigned int imr;
893         unsigned int ncr;
894
895         dm9000_dbg(db, 1, "entering %s\n", __func__);
896
897         /* I/O mode */
898         db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
899
900         /* Checksum mode */
901         if (dev->hw_features & NETIF_F_RXCSUM)
902                 iow(db, DM9000_RCSR,
903                         (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
904
905         iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
906         iow(db, DM9000_GPR, 0);
907
908         /* If we are dealing with DM9000B, some extra steps are required: a
909          * manual phy reset, and setting init params.
910          */
911         if (db->type == TYPE_DM9000B) {
912                 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
913                 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
914         }
915
916         ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
917
918         /* if wol is needed, then always set NCR_WAKEEN otherwise we end
919          * up dumping the wake events if we disable this. There is already
920          * a wake-mask in DM9000_WCR */
921         if (db->wake_supported)
922                 ncr |= NCR_WAKEEN;
923
924         iow(db, DM9000_NCR, ncr);
925
926         /* Program operating register */
927         iow(db, DM9000_TCR, 0);         /* TX Polling clear */
928         iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
929         iow(db, DM9000_FCR, 0xff);      /* Flow Control */
930         iow(db, DM9000_SMCR, 0);        /* Special Mode */
931         /* clear TX status */
932         iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
933         iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
934
935         /* Set address filter table */
936         dm9000_hash_table_unlocked(dev);
937
938         imr = IMR_PAR | IMR_PTM | IMR_PRM;
939         if (db->type != TYPE_DM9000E)
940                 imr |= IMR_LNKCHNG;
941
942         db->imr_all = imr;
943
944         /* Enable TX/RX interrupt mask */
945         iow(db, DM9000_IMR, imr);
946
947         /* Init Driver variable */
948         db->tx_pkt_cnt = 0;
949         db->queue_pkt_len = 0;
950         dev->trans_start = jiffies;
951 }
952
953 /* Our watchdog timed out. Called by the networking layer */
954 static void dm9000_timeout(struct net_device *dev)
955 {
956         board_info_t *db = netdev_priv(dev);
957         u8 reg_save;
958         unsigned long flags;
959
960         /* Save previous register address */
961         spin_lock_irqsave(&db->lock, flags);
962         reg_save = readb(db->io_addr);
963
964         netif_stop_queue(dev);
965         dm9000_reset(db);
966         dm9000_init_dm9000(dev);
967         /* We can accept TX packets again */
968         dev->trans_start = jiffies; /* prevent tx timeout */
969         netif_wake_queue(dev);
970
971         /* Restore previous register address */
972         writeb(reg_save, db->io_addr);
973         spin_unlock_irqrestore(&db->lock, flags);
974 }
975
976 static void dm9000_send_packet(struct net_device *dev,
977                                int ip_summed,
978                                u16 pkt_len)
979 {
980         board_info_t *dm = to_dm9000_board(dev);
981
982         /* The DM9000 is not smart enough to leave fragmented packets alone. */
983         if (dm->ip_summed != ip_summed) {
984                 if (ip_summed == CHECKSUM_NONE)
985                         iow(dm, DM9000_TCCR, 0);
986                 else
987                         iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
988                 dm->ip_summed = ip_summed;
989         }
990
991         /* Set TX length to DM9000 */
992         iow(dm, DM9000_TXPLL, pkt_len);
993         iow(dm, DM9000_TXPLH, pkt_len >> 8);
994
995         /* Issue TX polling command */
996         iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
997 }
998
999 /*
1000  *  Hardware start transmission.
1001  *  Send a packet to media from the upper layer.
1002  */
1003 static int
1004 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1005 {
1006         unsigned long flags;
1007         board_info_t *db = netdev_priv(dev);
1008
1009         dm9000_dbg(db, 3, "%s:\n", __func__);
1010
1011         if (db->tx_pkt_cnt > 1)
1012                 return NETDEV_TX_BUSY;
1013
1014         spin_lock_irqsave(&db->lock, flags);
1015
1016         /* Move data to DM9000 TX RAM */
1017         writeb(DM9000_MWCMD, db->io_addr);
1018
1019         (db->outblk)(db->io_data, skb->data, skb->len);
1020         dev->stats.tx_bytes += skb->len;
1021
1022         db->tx_pkt_cnt++;
1023         /* TX control: First packet immediately send, second packet queue */
1024         if (db->tx_pkt_cnt == 1) {
1025                 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1026         } else {
1027                 /* Second packet */
1028                 db->queue_pkt_len = skb->len;
1029                 db->queue_ip_summed = skb->ip_summed;
1030                 netif_stop_queue(dev);
1031         }
1032
1033         spin_unlock_irqrestore(&db->lock, flags);
1034
1035         /* free this SKB */
1036         dev_kfree_skb(skb);
1037
1038         return NETDEV_TX_OK;
1039 }
1040
1041 /*
1042  * DM9000 interrupt handler
1043  * receive the packet to upper layer, free the transmitted packet
1044  */
1045
1046 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1047 {
1048         int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1049
1050         if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1051                 /* One packet sent complete */
1052                 db->tx_pkt_cnt--;
1053                 dev->stats.tx_packets++;
1054
1055                 if (netif_msg_tx_done(db))
1056                         dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1057
1058                 /* Queue packet check & send */
1059                 if (db->tx_pkt_cnt > 0)
1060                         dm9000_send_packet(dev, db->queue_ip_summed,
1061                                            db->queue_pkt_len);
1062                 netif_wake_queue(dev);
1063         }
1064 }
1065
1066 struct dm9000_rxhdr {
1067         u8      RxPktReady;
1068         u8      RxStatus;
1069         __le16  RxLen;
1070 } __packed;
1071
1072 /*
1073  *  Received a packet and pass to upper layer
1074  */
1075 static void
1076 dm9000_rx(struct net_device *dev)
1077 {
1078         board_info_t *db = netdev_priv(dev);
1079         struct dm9000_rxhdr rxhdr;
1080         struct sk_buff *skb;
1081         u8 rxbyte, *rdptr;
1082         bool GoodPacket;
1083         int RxLen;
1084
1085         /* Check packet ready or not */
1086         do {
1087                 ior(db, DM9000_MRCMDX); /* Dummy read */
1088
1089                 /* Get most updated data */
1090                 rxbyte = readb(db->io_data);
1091
1092                 /* Status check: this byte must be 0 or 1 */
1093                 if (rxbyte & DM9000_PKT_ERR) {
1094                         dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1095                         iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1096                         iow(db, DM9000_ISR, IMR_PAR);   /* Stop INT request */
1097                         return;
1098                 }
1099
1100                 if (!(rxbyte & DM9000_PKT_RDY))
1101                         return;
1102
1103                 /* A packet ready now  & Get status/length */
1104                 GoodPacket = true;
1105                 writeb(DM9000_MRCMD, db->io_addr);
1106
1107                 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1108
1109                 RxLen = le16_to_cpu(rxhdr.RxLen);
1110
1111                 if (netif_msg_rx_status(db))
1112                         dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1113                                 rxhdr.RxStatus, RxLen);
1114
1115                 /* Packet Status check */
1116                 if (RxLen < 0x40) {
1117                         GoodPacket = false;
1118                         if (netif_msg_rx_err(db))
1119                                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1120                 }
1121
1122                 if (RxLen > DM9000_PKT_MAX) {
1123                         dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1124                 }
1125
1126                 /* rxhdr.RxStatus is identical to RSR register. */
1127                 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1128                                       RSR_PLE | RSR_RWTO |
1129                                       RSR_LCS | RSR_RF)) {
1130                         GoodPacket = false;
1131                         if (rxhdr.RxStatus & RSR_FOE) {
1132                                 if (netif_msg_rx_err(db))
1133                                         dev_dbg(db->dev, "fifo error\n");
1134                                 dev->stats.rx_fifo_errors++;
1135                         }
1136                         if (rxhdr.RxStatus & RSR_CE) {
1137                                 if (netif_msg_rx_err(db))
1138                                         dev_dbg(db->dev, "crc error\n");
1139                                 dev->stats.rx_crc_errors++;
1140                         }
1141                         if (rxhdr.RxStatus & RSR_RF) {
1142                                 if (netif_msg_rx_err(db))
1143                                         dev_dbg(db->dev, "length error\n");
1144                                 dev->stats.rx_length_errors++;
1145                         }
1146                 }
1147
1148                 /* Move data from DM9000 */
1149                 if (GoodPacket &&
1150                     ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1151                         skb_reserve(skb, 2);
1152                         rdptr = (u8 *) skb_put(skb, RxLen - 4);
1153
1154                         /* Read received packet from RX SRAM */
1155
1156                         (db->inblk)(db->io_data, rdptr, RxLen);
1157                         dev->stats.rx_bytes += RxLen;
1158
1159                         /* Pass to upper layer */
1160                         skb->protocol = eth_type_trans(skb, dev);
1161                         if (dev->features & NETIF_F_RXCSUM) {
1162                                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1163                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1164                                 else
1165                                         skb_checksum_none_assert(skb);
1166                         }
1167                         netif_rx(skb);
1168                         dev->stats.rx_packets++;
1169
1170                 } else {
1171                         /* need to dump the packet's data */
1172
1173                         (db->dumpblk)(db->io_data, RxLen);
1174                 }
1175         } while (rxbyte & DM9000_PKT_RDY);
1176 }
1177
1178 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1179 {
1180         struct net_device *dev = dev_id;
1181         board_info_t *db = netdev_priv(dev);
1182         int int_status;
1183         unsigned long flags;
1184         u8 reg_save;
1185
1186         dm9000_dbg(db, 3, "entering %s\n", __func__);
1187
1188         /* A real interrupt coming */
1189
1190         /* holders of db->lock must always block IRQs */
1191         spin_lock_irqsave(&db->lock, flags);
1192
1193         /* Save previous register address */
1194         reg_save = readb(db->io_addr);
1195
1196         /* Disable all interrupts */
1197         iow(db, DM9000_IMR, IMR_PAR);
1198
1199         /* Got DM9000 interrupt status */
1200         int_status = ior(db, DM9000_ISR);       /* Got ISR */
1201         iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1202
1203         if (netif_msg_intr(db))
1204                 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1205
1206         /* Received the coming packet */
1207         if (int_status & ISR_PRS)
1208                 dm9000_rx(dev);
1209
1210         /* Trnasmit Interrupt check */
1211         if (int_status & ISR_PTS)
1212                 dm9000_tx_done(dev, db);
1213
1214         if (db->type != TYPE_DM9000E) {
1215                 if (int_status & ISR_LNKCHNG) {
1216                         /* fire a link-change request */
1217                         schedule_delayed_work(&db->phy_poll, 1);
1218                 }
1219         }
1220
1221         /* Re-enable interrupt mask */
1222         iow(db, DM9000_IMR, db->imr_all);
1223
1224         /* Restore previous register address */
1225         writeb(reg_save, db->io_addr);
1226
1227         spin_unlock_irqrestore(&db->lock, flags);
1228
1229         return IRQ_HANDLED;
1230 }
1231
1232 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1233 {
1234         struct net_device *dev = dev_id;
1235         board_info_t *db = netdev_priv(dev);
1236         unsigned long flags;
1237         unsigned nsr, wcr;
1238
1239         spin_lock_irqsave(&db->lock, flags);
1240
1241         nsr = ior(db, DM9000_NSR);
1242         wcr = ior(db, DM9000_WCR);
1243
1244         dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1245
1246         if (nsr & NSR_WAKEST) {
1247                 /* clear, so we can avoid */
1248                 iow(db, DM9000_NSR, NSR_WAKEST);
1249
1250                 if (wcr & WCR_LINKST)
1251                         dev_info(db->dev, "wake by link status change\n");
1252                 if (wcr & WCR_SAMPLEST)
1253                         dev_info(db->dev, "wake by sample packet\n");
1254                 if (wcr & WCR_MAGICST)
1255                         dev_info(db->dev, "wake by magic packet\n");
1256                 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1257                         dev_err(db->dev, "wake signalled with no reason? "
1258                                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1259         }
1260
1261         spin_unlock_irqrestore(&db->lock, flags);
1262
1263         return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1264 }
1265
1266 #ifdef CONFIG_NET_POLL_CONTROLLER
1267 /*
1268  *Used by netconsole
1269  */
1270 static void dm9000_poll_controller(struct net_device *dev)
1271 {
1272         disable_irq(dev->irq);
1273         dm9000_interrupt(dev->irq, dev);
1274         enable_irq(dev->irq);
1275 }
1276 #endif
1277
1278 /*
1279  *  Open the interface.
1280  *  The interface is opened whenever "ifconfig" actives it.
1281  */
1282 static int
1283 dm9000_open(struct net_device *dev)
1284 {
1285         board_info_t *db = netdev_priv(dev);
1286         unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1287
1288         if (netif_msg_ifup(db))
1289                 dev_dbg(db->dev, "enabling %s\n", dev->name);
1290
1291         /* If there is no IRQ type specified, default to something that
1292          * may work, and tell the user that this is a problem */
1293
1294         if (irqflags == IRQF_TRIGGER_NONE)
1295                 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1296
1297         irqflags |= IRQF_SHARED;
1298
1299         /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1300         iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1301         mdelay(1); /* delay needs by DM9000B */
1302
1303         /* Initialize DM9000 board */
1304         dm9000_reset(db);
1305         dm9000_init_dm9000(dev);
1306
1307         if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1308                 return -EAGAIN;
1309
1310         /* Init driver variable */
1311         db->dbug_cnt = 0;
1312
1313         mii_check_media(&db->mii, netif_msg_link(db), 1);
1314         netif_start_queue(dev);
1315
1316         dm9000_schedule_poll(db);
1317
1318         return 0;
1319 }
1320
1321 static void
1322 dm9000_shutdown(struct net_device *dev)
1323 {
1324         board_info_t *db = netdev_priv(dev);
1325
1326         /* RESET device */
1327         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1328         iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1329         iow(db, DM9000_IMR, IMR_PAR);   /* Disable all interrupt */
1330         iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1331 }
1332
1333 /*
1334  * Stop the interface.
1335  * The interface is stopped when it is brought.
1336  */
1337 static int
1338 dm9000_stop(struct net_device *ndev)
1339 {
1340         board_info_t *db = netdev_priv(ndev);
1341
1342         if (netif_msg_ifdown(db))
1343                 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1344
1345         cancel_delayed_work_sync(&db->phy_poll);
1346
1347         netif_stop_queue(ndev);
1348         netif_carrier_off(ndev);
1349
1350         /* free interrupt */
1351         free_irq(ndev->irq, ndev);
1352
1353         dm9000_shutdown(ndev);
1354
1355         return 0;
1356 }
1357
1358 static const struct net_device_ops dm9000_netdev_ops = {
1359         .ndo_open               = dm9000_open,
1360         .ndo_stop               = dm9000_stop,
1361         .ndo_start_xmit         = dm9000_start_xmit,
1362         .ndo_tx_timeout         = dm9000_timeout,
1363         .ndo_set_rx_mode        = dm9000_hash_table,
1364         .ndo_do_ioctl           = dm9000_ioctl,
1365         .ndo_change_mtu         = eth_change_mtu,
1366         .ndo_set_features       = dm9000_set_features,
1367         .ndo_validate_addr      = eth_validate_addr,
1368         .ndo_set_mac_address    = eth_mac_addr,
1369 #ifdef CONFIG_NET_POLL_CONTROLLER
1370         .ndo_poll_controller    = dm9000_poll_controller,
1371 #endif
1372 };
1373
1374 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1375 {
1376         struct dm9000_plat_data *pdata;
1377         struct device_node *np = dev->of_node;
1378         const void *mac_addr;
1379
1380         if (!IS_ENABLED(CONFIG_OF) || !np)
1381                 return NULL;
1382
1383         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1384         if (!pdata)
1385                 return ERR_PTR(-ENOMEM);
1386
1387         if (of_find_property(np, "davicom,ext-phy", NULL))
1388                 pdata->flags |= DM9000_PLATF_EXT_PHY;
1389         if (of_find_property(np, "davicom,no-eeprom", NULL))
1390                 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1391
1392         mac_addr = of_get_mac_address(np);
1393         if (mac_addr)
1394                 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1395
1396         return pdata;
1397 }
1398
1399 /*
1400  * Search DM9000 board, allocate space and register it
1401  */
1402 static int
1403 dm9000_probe(struct platform_device *pdev)
1404 {
1405         struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1406         struct board_info *db;  /* Point a board information structure */
1407         struct net_device *ndev;
1408         const unsigned char *mac_src;
1409         int ret = 0;
1410         int iosize;
1411         int i;
1412         u32 id_val;
1413
1414         if (!pdata) {
1415                 pdata = dm9000_parse_dt(&pdev->dev);
1416                 if (IS_ERR(pdata))
1417                         return PTR_ERR(pdata);
1418         }
1419
1420         /* Init network device */
1421         ndev = alloc_etherdev(sizeof(struct board_info));
1422         if (!ndev)
1423                 return -ENOMEM;
1424
1425         SET_NETDEV_DEV(ndev, &pdev->dev);
1426
1427         dev_dbg(&pdev->dev, "dm9000_probe()\n");
1428
1429         /* setup board info structure */
1430         db = netdev_priv(ndev);
1431
1432         db->dev = &pdev->dev;
1433         db->ndev = ndev;
1434
1435         spin_lock_init(&db->lock);
1436         mutex_init(&db->addr_lock);
1437
1438         INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1439
1440         db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1441         db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1442         db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1443
1444         if (db->addr_res == NULL || db->data_res == NULL ||
1445             db->irq_res == NULL) {
1446                 dev_err(db->dev, "insufficient resources\n");
1447                 ret = -ENOENT;
1448                 goto out;
1449         }
1450
1451         db->irq_wake = platform_get_irq(pdev, 1);
1452         if (db->irq_wake >= 0) {
1453                 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1454
1455                 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1456                                   IRQF_SHARED, dev_name(db->dev), ndev);
1457                 if (ret) {
1458                         dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1459                 } else {
1460
1461                         /* test to see if irq is really wakeup capable */
1462                         ret = irq_set_irq_wake(db->irq_wake, 1);
1463                         if (ret) {
1464                                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1465                                         db->irq_wake, ret);
1466                                 ret = 0;
1467                         } else {
1468                                 irq_set_irq_wake(db->irq_wake, 0);
1469                                 db->wake_supported = 1;
1470                         }
1471                 }
1472         }
1473
1474         iosize = resource_size(db->addr_res);
1475         db->addr_req = request_mem_region(db->addr_res->start, iosize,
1476                                           pdev->name);
1477
1478         if (db->addr_req == NULL) {
1479                 dev_err(db->dev, "cannot claim address reg area\n");
1480                 ret = -EIO;
1481                 goto out;
1482         }
1483
1484         db->io_addr = ioremap(db->addr_res->start, iosize);
1485
1486         if (db->io_addr == NULL) {
1487                 dev_err(db->dev, "failed to ioremap address reg\n");
1488                 ret = -EINVAL;
1489                 goto out;
1490         }
1491
1492         iosize = resource_size(db->data_res);
1493         db->data_req = request_mem_region(db->data_res->start, iosize,
1494                                           pdev->name);
1495
1496         if (db->data_req == NULL) {
1497                 dev_err(db->dev, "cannot claim data reg area\n");
1498                 ret = -EIO;
1499                 goto out;
1500         }
1501
1502         db->io_data = ioremap(db->data_res->start, iosize);
1503
1504         if (db->io_data == NULL) {
1505                 dev_err(db->dev, "failed to ioremap data reg\n");
1506                 ret = -EINVAL;
1507                 goto out;
1508         }
1509
1510         /* fill in parameters for net-dev structure */
1511         ndev->base_addr = (unsigned long)db->io_addr;
1512         ndev->irq       = db->irq_res->start;
1513
1514         /* ensure at least we have a default set of IO routines */
1515         dm9000_set_io(db, iosize);
1516
1517         /* check to see if anything is being over-ridden */
1518         if (pdata != NULL) {
1519                 /* check to see if the driver wants to over-ride the
1520                  * default IO width */
1521
1522                 if (pdata->flags & DM9000_PLATF_8BITONLY)
1523                         dm9000_set_io(db, 1);
1524
1525                 if (pdata->flags & DM9000_PLATF_16BITONLY)
1526                         dm9000_set_io(db, 2);
1527
1528                 if (pdata->flags & DM9000_PLATF_32BITONLY)
1529                         dm9000_set_io(db, 4);
1530
1531                 /* check to see if there are any IO routine
1532                  * over-rides */
1533
1534                 if (pdata->inblk != NULL)
1535                         db->inblk = pdata->inblk;
1536
1537                 if (pdata->outblk != NULL)
1538                         db->outblk = pdata->outblk;
1539
1540                 if (pdata->dumpblk != NULL)
1541                         db->dumpblk = pdata->dumpblk;
1542
1543                 db->flags = pdata->flags;
1544         }
1545
1546 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1547         db->flags |= DM9000_PLATF_SIMPLE_PHY;
1548 #endif
1549
1550         /* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1551          * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1552          * while probe stage.
1553          */
1554
1555         iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1556
1557         /* try multiple times, DM9000 sometimes gets the read wrong */
1558         for (i = 0; i < 8; i++) {
1559                 id_val  = ior(db, DM9000_VIDL);
1560                 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1561                 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1562                 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1563
1564                 if (id_val == DM9000_ID)
1565                         break;
1566                 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1567         }
1568
1569         if (id_val != DM9000_ID) {
1570                 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1571                 ret = -ENODEV;
1572                 goto out;
1573         }
1574
1575         /* Identify what type of DM9000 we are working on */
1576
1577         id_val = ior(db, DM9000_CHIPR);
1578         dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1579
1580         switch (id_val) {
1581         case CHIPR_DM9000A:
1582                 db->type = TYPE_DM9000A;
1583                 break;
1584         case CHIPR_DM9000B:
1585                 db->type = TYPE_DM9000B;
1586                 break;
1587         default:
1588                 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1589                 db->type = TYPE_DM9000E;
1590         }
1591
1592         /* dm9000a/b are capable of hardware checksum offload */
1593         if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1594                 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1595                 ndev->features |= ndev->hw_features;
1596         }
1597
1598         /* from this point we assume that we have found a DM9000 */
1599
1600         /* driver system function */
1601         ether_setup(ndev);
1602
1603         ndev->netdev_ops        = &dm9000_netdev_ops;
1604         ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1605         ndev->ethtool_ops       = &dm9000_ethtool_ops;
1606
1607         db->msg_enable       = NETIF_MSG_LINK;
1608         db->mii.phy_id_mask  = 0x1f;
1609         db->mii.reg_num_mask = 0x1f;
1610         db->mii.force_media  = 0;
1611         db->mii.full_duplex  = 0;
1612         db->mii.dev          = ndev;
1613         db->mii.mdio_read    = dm9000_phy_read;
1614         db->mii.mdio_write   = dm9000_phy_write;
1615
1616         mac_src = "eeprom";
1617
1618         /* try reading the node address from the attached EEPROM */
1619         for (i = 0; i < 6; i += 2)
1620                 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1621
1622         if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1623                 mac_src = "platform data";
1624                 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1625         }
1626
1627         if (!is_valid_ether_addr(ndev->dev_addr)) {
1628                 /* try reading from mac */
1629
1630                 mac_src = "chip";
1631                 for (i = 0; i < 6; i++)
1632                         ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1633         }
1634
1635         if (!is_valid_ether_addr(ndev->dev_addr)) {
1636                 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1637                          "set using ifconfig\n", ndev->name);
1638
1639                 eth_hw_addr_random(ndev);
1640                 mac_src = "random";
1641         }
1642
1643
1644         platform_set_drvdata(pdev, ndev);
1645         ret = register_netdev(ndev);
1646
1647         if (ret == 0)
1648                 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1649                        ndev->name, dm9000_type_to_char(db->type),
1650                        db->io_addr, db->io_data, ndev->irq,
1651                        ndev->dev_addr, mac_src);
1652         return 0;
1653
1654 out:
1655         dev_err(db->dev, "not found (%d).\n", ret);
1656
1657         dm9000_release_board(pdev, db);
1658         free_netdev(ndev);
1659
1660         return ret;
1661 }
1662
1663 static int
1664 dm9000_drv_suspend(struct device *dev)
1665 {
1666         struct platform_device *pdev = to_platform_device(dev);
1667         struct net_device *ndev = platform_get_drvdata(pdev);
1668         board_info_t *db;
1669
1670         if (ndev) {
1671                 db = netdev_priv(ndev);
1672                 db->in_suspend = 1;
1673
1674                 if (!netif_running(ndev))
1675                         return 0;
1676
1677                 netif_device_detach(ndev);
1678
1679                 /* only shutdown if not using WoL */
1680                 if (!db->wake_state)
1681                         dm9000_shutdown(ndev);
1682         }
1683         return 0;
1684 }
1685
1686 static int
1687 dm9000_drv_resume(struct device *dev)
1688 {
1689         struct platform_device *pdev = to_platform_device(dev);
1690         struct net_device *ndev = platform_get_drvdata(pdev);
1691         board_info_t *db = netdev_priv(ndev);
1692
1693         if (ndev) {
1694                 if (netif_running(ndev)) {
1695                         /* reset if we were not in wake mode to ensure if
1696                          * the device was powered off it is in a known state */
1697                         if (!db->wake_state) {
1698                                 dm9000_reset(db);
1699                                 dm9000_init_dm9000(ndev);
1700                         }
1701
1702                         netif_device_attach(ndev);
1703                 }
1704
1705                 db->in_suspend = 0;
1706         }
1707         return 0;
1708 }
1709
1710 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1711         .suspend        = dm9000_drv_suspend,
1712         .resume         = dm9000_drv_resume,
1713 };
1714
1715 static int
1716 dm9000_drv_remove(struct platform_device *pdev)
1717 {
1718         struct net_device *ndev = platform_get_drvdata(pdev);
1719
1720         unregister_netdev(ndev);
1721         dm9000_release_board(pdev, netdev_priv(ndev));
1722         free_netdev(ndev);              /* free device structure */
1723
1724         dev_dbg(&pdev->dev, "released and freed device\n");
1725         return 0;
1726 }
1727
1728 #ifdef CONFIG_OF
1729 static const struct of_device_id dm9000_of_matches[] = {
1730         { .compatible = "davicom,dm9000", },
1731         { /* sentinel */ }
1732 };
1733 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1734 #endif
1735
1736 static struct platform_driver dm9000_driver = {
1737         .driver = {
1738                 .name    = "dm9000",
1739                 .owner   = THIS_MODULE,
1740                 .pm      = &dm9000_drv_pm_ops,
1741                 .of_match_table = of_match_ptr(dm9000_of_matches),
1742         },
1743         .probe   = dm9000_probe,
1744         .remove  = dm9000_drv_remove,
1745 };
1746
1747 module_platform_driver(dm9000_driver);
1748
1749 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1750 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1751 MODULE_LICENSE("GPL");
1752 MODULE_ALIAS("platform:dm9000");