]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/fec_main.c
Merge remote-tracking branches 'spi/fix/pxa2xx', 'spi/fix/qup' and 'spi/fix/sh-sci...
[karo-tx-linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 #include <linux/pinctrl/consumer.h>
59
60 #include <asm/cacheflush.h>
61
62 #include "fec.h"
63
64 static void set_multicast_list(struct net_device *ndev);
65
66 #if defined(CONFIG_ARM)
67 #define FEC_ALIGNMENT   0xf
68 #else
69 #define FEC_ALIGNMENT   0x3
70 #endif
71
72 #define DRIVER_NAME     "fec"
73
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE    (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V  0xFFF0
81
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC              (1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME            (1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET            (1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT              (1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX        (1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM              (1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN              (1 << 6)
96 /* ENET IP errata ERR006358
97  *
98  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
99  * detected as not set during a prior frame transmission, then the
100  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102  * frames not being transmitted until there is a 0-to-1 transition on
103  * ENET_TDAR[TDAR].
104  */
105 #define FEC_QUIRK_ERR006358            (1 << 7)
106
107 static struct platform_device_id fec_devtype[] = {
108         {
109                 /* keep it for coldfire */
110                 .name = DRIVER_NAME,
111                 .driver_data = 0,
112         }, {
113                 .name = "imx25-fec",
114                 .driver_data = FEC_QUIRK_USE_GASKET,
115         }, {
116                 .name = "imx27-fec",
117                 .driver_data = 0,
118         }, {
119                 .name = "imx28-fec",
120                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
121         }, {
122                 .name = "imx6q-fec",
123                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
126         }, {
127                 .name = "mvf600-fec",
128                 .driver_data = FEC_QUIRK_ENET_MAC,
129         }, {
130                 /* sentinel */
131         }
132 };
133 MODULE_DEVICE_TABLE(platform, fec_devtype);
134
135 enum imx_fec_type {
136         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
137         IMX27_FEC,      /* runs on i.mx27/35/51 */
138         IMX28_FEC,
139         IMX6Q_FEC,
140         MVF600_FEC,
141 };
142
143 static const struct of_device_id fec_dt_ids[] = {
144         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149         { /* sentinel */ }
150 };
151 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152
153 static unsigned char macaddr[ETH_ALEN];
154 module_param_array(macaddr, byte, NULL, 0);
155 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156
157 #if defined(CONFIG_M5272)
158 /*
159  * Some hardware gets it MAC address out of local flash memory.
160  * if this is non-zero then assume it is the address to get MAC from.
161  */
162 #if defined(CONFIG_NETtel)
163 #define FEC_FLASHMAC    0xf0006006
164 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
165 #define FEC_FLASHMAC    0xf0006000
166 #elif defined(CONFIG_CANCam)
167 #define FEC_FLASHMAC    0xf0020000
168 #elif defined (CONFIG_M5272C3)
169 #define FEC_FLASHMAC    (0xffe04000 + 4)
170 #elif defined(CONFIG_MOD5272)
171 #define FEC_FLASHMAC    0xffc0406b
172 #else
173 #define FEC_FLASHMAC    0
174 #endif
175 #endif /* CONFIG_M5272 */
176
177 /* Interrupt events/masks. */
178 #define FEC_ENET_HBERR  ((uint)0x80000000)      /* Heartbeat error */
179 #define FEC_ENET_BABR   ((uint)0x40000000)      /* Babbling receiver */
180 #define FEC_ENET_BABT   ((uint)0x20000000)      /* Babbling transmitter */
181 #define FEC_ENET_GRA    ((uint)0x10000000)      /* Graceful stop complete */
182 #define FEC_ENET_TXF    ((uint)0x08000000)      /* Full frame transmitted */
183 #define FEC_ENET_TXB    ((uint)0x04000000)      /* A buffer was transmitted */
184 #define FEC_ENET_RXF    ((uint)0x02000000)      /* Full frame received */
185 #define FEC_ENET_RXB    ((uint)0x01000000)      /* A buffer was received */
186 #define FEC_ENET_MII    ((uint)0x00800000)      /* MII interrupt */
187 #define FEC_ENET_EBERR  ((uint)0x00400000)      /* SDMA bus error */
188
189 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
190 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
191
192 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
193  */
194 #define PKT_MAXBUF_SIZE         1522
195 #define PKT_MINBUF_SIZE         64
196 #define PKT_MAXBLR_SIZE         1536
197
198 /* FEC receive acceleration */
199 #define FEC_RACC_IPDIS          (1 << 1)
200 #define FEC_RACC_PRODIS         (1 << 2)
201 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
202
203 /*
204  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
205  * size bits. Other FEC hardware does not, so we need to take that into
206  * account when setting it.
207  */
208 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
209     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
210 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
211 #else
212 #define OPT_FRAME_SIZE  0
213 #endif
214
215 /* FEC MII MMFR bits definition */
216 #define FEC_MMFR_ST             (1 << 30)
217 #define FEC_MMFR_OP_READ        (2 << 28)
218 #define FEC_MMFR_OP_WRITE       (1 << 28)
219 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
220 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
221 #define FEC_MMFR_TA             (2 << 16)
222 #define FEC_MMFR_DATA(v)        (v & 0xffff)
223
224 #define FEC_MII_TIMEOUT         30000 /* us */
225
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228
229 #define FEC_PAUSE_FLAG_AUTONEG  0x1
230 #define FEC_PAUSE_FLAG_ENABLE   0x2
231
232 #define TSO_HEADER_SIZE         128
233 /* Max number of allowed TCP segments for software TSO */
234 #define FEC_MAX_TSO_SEGS        100
235 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
236
237 #define IS_TSO_HEADER(txq, addr) \
238         ((addr >= txq->tso_hdrs_dma) && \
239         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
240
241 static int mii_cnt;
242
243 static inline
244 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
245 {
246         struct bufdesc *new_bd = bdp + 1;
247         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
248         struct bufdesc_ex *ex_base;
249         struct bufdesc *base;
250         int ring_size;
251
252         if (bdp >= fep->tx_bd_base) {
253                 base = fep->tx_bd_base;
254                 ring_size = fep->tx_ring_size;
255                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
256         } else {
257                 base = fep->rx_bd_base;
258                 ring_size = fep->rx_ring_size;
259                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
260         }
261
262         if (fep->bufdesc_ex)
263                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
264                         ex_base : ex_new_bd);
265         else
266                 return (new_bd >= (base + ring_size)) ?
267                         base : new_bd;
268 }
269
270 static inline
271 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
272 {
273         struct bufdesc *new_bd = bdp - 1;
274         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
275         struct bufdesc_ex *ex_base;
276         struct bufdesc *base;
277         int ring_size;
278
279         if (bdp >= fep->tx_bd_base) {
280                 base = fep->tx_bd_base;
281                 ring_size = fep->tx_ring_size;
282                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
283         } else {
284                 base = fep->rx_bd_base;
285                 ring_size = fep->rx_ring_size;
286                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
287         }
288
289         if (fep->bufdesc_ex)
290                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
291                         (ex_new_bd + ring_size) : ex_new_bd);
292         else
293                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
294 }
295
296 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
297                                 struct fec_enet_private *fep)
298 {
299         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
300 }
301
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
303 {
304         int entries;
305
306         entries = ((const char *)fep->dirty_tx -
307                         (const char *)fep->cur_tx) / fep->bufdesc_size - 1;
308
309         return entries > 0 ? entries : entries + fep->tx_ring_size;
310 }
311
312 static void *swap_buffer(void *bufaddr, int len)
313 {
314         int i;
315         unsigned int *buf = bufaddr;
316
317         for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
318                 *buf = cpu_to_be32(*buf);
319
320         return bufaddr;
321 }
322
323 static int
324 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
325 {
326         /* Only run for packets requiring a checksum. */
327         if (skb->ip_summed != CHECKSUM_PARTIAL)
328                 return 0;
329
330         if (unlikely(skb_cow_head(skb, 0)))
331                 return -1;
332
333         ip_hdr(skb)->check = 0;
334         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
335
336         return 0;
337 }
338
339 static void
340 fec_enet_submit_work(struct bufdesc *bdp, struct fec_enet_private *fep)
341 {
342         const struct platform_device_id *id_entry =
343                                 platform_get_device_id(fep->pdev);
344         struct bufdesc *bdp_pre;
345
346         bdp_pre = fec_enet_get_prevdesc(bdp, fep);
347         if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
348             !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
349                 fep->delay_work.trig_tx = true;
350                 schedule_delayed_work(&(fep->delay_work.delay_work),
351                                         msecs_to_jiffies(1));
352         }
353 }
354
355 static int
356 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
357 {
358         struct fec_enet_private *fep = netdev_priv(ndev);
359         const struct platform_device_id *id_entry =
360                                 platform_get_device_id(fep->pdev);
361         struct bufdesc *bdp = fep->cur_tx;
362         struct bufdesc_ex *ebdp;
363         int nr_frags = skb_shinfo(skb)->nr_frags;
364         int frag, frag_len;
365         unsigned short status;
366         unsigned int estatus = 0;
367         skb_frag_t *this_frag;
368         unsigned int index;
369         void *bufaddr;
370         int i;
371
372         for (frag = 0; frag < nr_frags; frag++) {
373                 this_frag = &skb_shinfo(skb)->frags[frag];
374                 bdp = fec_enet_get_nextdesc(bdp, fep);
375                 ebdp = (struct bufdesc_ex *)bdp;
376
377                 status = bdp->cbd_sc;
378                 status &= ~BD_ENET_TX_STATS;
379                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
380                 frag_len = skb_shinfo(skb)->frags[frag].size;
381
382                 /* Handle the last BD specially */
383                 if (frag == nr_frags - 1) {
384                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
385                         if (fep->bufdesc_ex) {
386                                 estatus |= BD_ENET_TX_INT;
387                                 if (unlikely(skb_shinfo(skb)->tx_flags &
388                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
389                                         estatus |= BD_ENET_TX_TS;
390                         }
391                 }
392
393                 if (fep->bufdesc_ex) {
394                         if (skb->ip_summed == CHECKSUM_PARTIAL)
395                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
396                         ebdp->cbd_bdu = 0;
397                         ebdp->cbd_esc = estatus;
398                 }
399
400                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
401
402                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
403                 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
404                         id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
405                         memcpy(fep->tx_bounce[index], bufaddr, frag_len);
406                         bufaddr = fep->tx_bounce[index];
407
408                         if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
409                                 swap_buffer(bufaddr, frag_len);
410                 }
411
412                 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
413                                                 frag_len, DMA_TO_DEVICE);
414                 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
415                         dev_kfree_skb_any(skb);
416                         if (net_ratelimit())
417                                 netdev_err(ndev, "Tx DMA memory map failed\n");
418                         goto dma_mapping_error;
419                 }
420
421                 bdp->cbd_datlen = frag_len;
422                 bdp->cbd_sc = status;
423         }
424
425         fep->cur_tx = bdp;
426
427         return 0;
428
429 dma_mapping_error:
430         bdp = fep->cur_tx;
431         for (i = 0; i < frag; i++) {
432                 bdp = fec_enet_get_nextdesc(bdp, fep);
433                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
434                                 bdp->cbd_datlen, DMA_TO_DEVICE);
435         }
436         return NETDEV_TX_OK;
437 }
438
439 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
440 {
441         struct fec_enet_private *fep = netdev_priv(ndev);
442         const struct platform_device_id *id_entry =
443                                 platform_get_device_id(fep->pdev);
444         int nr_frags = skb_shinfo(skb)->nr_frags;
445         struct bufdesc *bdp, *last_bdp;
446         void *bufaddr;
447         unsigned short status;
448         unsigned short buflen;
449         unsigned int estatus = 0;
450         unsigned int index;
451         int entries_free;
452         int ret;
453
454         entries_free = fec_enet_get_free_txdesc_num(fep);
455         if (entries_free < MAX_SKB_FRAGS + 1) {
456                 dev_kfree_skb_any(skb);
457                 if (net_ratelimit())
458                         netdev_err(ndev, "NOT enough BD for SG!\n");
459                 return NETDEV_TX_OK;
460         }
461
462         /* Protocol checksum off-load for TCP and UDP. */
463         if (fec_enet_clear_csum(skb, ndev)) {
464                 dev_kfree_skb_any(skb);
465                 return NETDEV_TX_OK;
466         }
467
468         /* Fill in a Tx ring entry */
469         bdp = fep->cur_tx;
470         status = bdp->cbd_sc;
471         status &= ~BD_ENET_TX_STATS;
472
473         /* Set buffer length and buffer pointer */
474         bufaddr = skb->data;
475         buflen = skb_headlen(skb);
476
477         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
478         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
479                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
480                 memcpy(fep->tx_bounce[index], skb->data, buflen);
481                 bufaddr = fep->tx_bounce[index];
482
483                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
484                         swap_buffer(bufaddr, buflen);
485         }
486
487         /* Push the data cache so the CPM does not get stale memory
488          * data.
489          */
490         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
491                                         buflen, DMA_TO_DEVICE);
492         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
493                 dev_kfree_skb_any(skb);
494                 if (net_ratelimit())
495                         netdev_err(ndev, "Tx DMA memory map failed\n");
496                 return NETDEV_TX_OK;
497         }
498
499         if (nr_frags) {
500                 ret = fec_enet_txq_submit_frag_skb(skb, ndev);
501                 if (ret)
502                         return ret;
503         } else {
504                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
505                 if (fep->bufdesc_ex) {
506                         estatus = BD_ENET_TX_INT;
507                         if (unlikely(skb_shinfo(skb)->tx_flags &
508                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
509                                 estatus |= BD_ENET_TX_TS;
510                 }
511         }
512
513         if (fep->bufdesc_ex) {
514
515                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
516
517                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
518                         fep->hwts_tx_en))
519                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
520
521                 if (skb->ip_summed == CHECKSUM_PARTIAL)
522                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
523
524                 ebdp->cbd_bdu = 0;
525                 ebdp->cbd_esc = estatus;
526         }
527
528         last_bdp = fep->cur_tx;
529         index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
530         /* Save skb pointer */
531         fep->tx_skbuff[index] = skb;
532
533         bdp->cbd_datlen = buflen;
534
535         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
536          * it's the last BD of the frame, and to put the CRC on the end.
537          */
538         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
539         bdp->cbd_sc = status;
540
541         fec_enet_submit_work(bdp, fep);
542
543         /* If this was the last BD in the ring, start at the beginning again. */
544         bdp = fec_enet_get_nextdesc(last_bdp, fep);
545
546         skb_tx_timestamp(skb);
547
548         fep->cur_tx = bdp;
549
550         /* Trigger transmission start */
551         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
552
553         return 0;
554 }
555
556 static int
557 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
558                         struct bufdesc *bdp, int index, char *data,
559                         int size, bool last_tcp, bool is_last)
560 {
561         struct fec_enet_private *fep = netdev_priv(ndev);
562         const struct platform_device_id *id_entry =
563                                 platform_get_device_id(fep->pdev);
564         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
565         unsigned short status;
566         unsigned int estatus = 0;
567
568         status = bdp->cbd_sc;
569         status &= ~BD_ENET_TX_STATS;
570
571         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
572         bdp->cbd_datlen = size;
573
574         if (((unsigned long) data) & FEC_ALIGNMENT ||
575                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
576                 memcpy(fep->tx_bounce[index], data, size);
577                 data = fep->tx_bounce[index];
578
579                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
580                         swap_buffer(data, size);
581         }
582
583         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
584                                         size, DMA_TO_DEVICE);
585         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
586                 dev_kfree_skb_any(skb);
587                 if (net_ratelimit())
588                         netdev_err(ndev, "Tx DMA memory map failed\n");
589                 return NETDEV_TX_BUSY;
590         }
591
592         if (fep->bufdesc_ex) {
593                 if (skb->ip_summed == CHECKSUM_PARTIAL)
594                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
595                 ebdp->cbd_bdu = 0;
596                 ebdp->cbd_esc = estatus;
597         }
598
599         /* Handle the last BD specially */
600         if (last_tcp)
601                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
602         if (is_last) {
603                 status |= BD_ENET_TX_INTR;
604                 if (fep->bufdesc_ex)
605                         ebdp->cbd_esc |= BD_ENET_TX_INT;
606         }
607
608         bdp->cbd_sc = status;
609
610         return 0;
611 }
612
613 static int
614 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
615                         struct bufdesc *bdp, int index)
616 {
617         struct fec_enet_private *fep = netdev_priv(ndev);
618         const struct platform_device_id *id_entry =
619                                 platform_get_device_id(fep->pdev);
620         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
621         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
622         void *bufaddr;
623         unsigned long dmabuf;
624         unsigned short status;
625         unsigned int estatus = 0;
626
627         status = bdp->cbd_sc;
628         status &= ~BD_ENET_TX_STATS;
629         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
630
631         bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
632         dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
633         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
634                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
635                 memcpy(fep->tx_bounce[index], skb->data, hdr_len);
636                 bufaddr = fep->tx_bounce[index];
637
638                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
639                         swap_buffer(bufaddr, hdr_len);
640
641                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
642                                         hdr_len, DMA_TO_DEVICE);
643                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
644                         dev_kfree_skb_any(skb);
645                         if (net_ratelimit())
646                                 netdev_err(ndev, "Tx DMA memory map failed\n");
647                         return NETDEV_TX_BUSY;
648                 }
649         }
650
651         bdp->cbd_bufaddr = dmabuf;
652         bdp->cbd_datlen = hdr_len;
653
654         if (fep->bufdesc_ex) {
655                 if (skb->ip_summed == CHECKSUM_PARTIAL)
656                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657                 ebdp->cbd_bdu = 0;
658                 ebdp->cbd_esc = estatus;
659         }
660
661         bdp->cbd_sc = status;
662
663         return 0;
664 }
665
666 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
667 {
668         struct fec_enet_private *fep = netdev_priv(ndev);
669         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
670         int total_len, data_left;
671         struct bufdesc *bdp = fep->cur_tx;
672         struct tso_t tso;
673         unsigned int index = 0;
674         int ret;
675
676         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
677                 dev_kfree_skb_any(skb);
678                 if (net_ratelimit())
679                         netdev_err(ndev, "NOT enough BD for TSO!\n");
680                 return NETDEV_TX_OK;
681         }
682
683         /* Protocol checksum off-load for TCP and UDP. */
684         if (fec_enet_clear_csum(skb, ndev)) {
685                 dev_kfree_skb_any(skb);
686                 return NETDEV_TX_OK;
687         }
688
689         /* Initialize the TSO handler, and prepare the first payload */
690         tso_start(skb, &tso);
691
692         total_len = skb->len - hdr_len;
693         while (total_len > 0) {
694                 char *hdr;
695
696                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
697                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
698                 total_len -= data_left;
699
700                 /* prepare packet headers: MAC + IP + TCP */
701                 hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
702                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
703                 ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
704                 if (ret)
705                         goto err_release;
706
707                 while (data_left > 0) {
708                         int size;
709
710                         size = min_t(int, tso.size, data_left);
711                         bdp = fec_enet_get_nextdesc(bdp, fep);
712                         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
713                         ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
714                                                         size, size == data_left,
715                                                         total_len == 0);
716                         if (ret)
717                                 goto err_release;
718
719                         data_left -= size;
720                         tso_build_data(skb, &tso, size);
721                 }
722
723                 bdp = fec_enet_get_nextdesc(bdp, fep);
724         }
725
726         /* Save skb pointer */
727         fep->tx_skbuff[index] = skb;
728
729         fec_enet_submit_work(bdp, fep);
730
731         skb_tx_timestamp(skb);
732         fep->cur_tx = bdp;
733
734         /* Trigger transmission start */
735         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
736
737         return 0;
738
739 err_release:
740         /* TODO: Release all used data descriptors for TSO */
741         return ret;
742 }
743
744 static netdev_tx_t
745 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
746 {
747         struct fec_enet_private *fep = netdev_priv(ndev);
748         int entries_free;
749         int ret;
750
751         if (skb_is_gso(skb))
752                 ret = fec_enet_txq_submit_tso(skb, ndev);
753         else
754                 ret = fec_enet_txq_submit_skb(skb, ndev);
755         if (ret)
756                 return ret;
757
758         entries_free = fec_enet_get_free_txdesc_num(fep);
759         if (entries_free <= fep->tx_stop_threshold)
760                 netif_stop_queue(ndev);
761
762         return NETDEV_TX_OK;
763 }
764
765 /* Init RX & TX buffer descriptors
766  */
767 static void fec_enet_bd_init(struct net_device *dev)
768 {
769         struct fec_enet_private *fep = netdev_priv(dev);
770         struct bufdesc *bdp;
771         unsigned int i;
772
773         /* Initialize the receive buffer descriptors. */
774         bdp = fep->rx_bd_base;
775         for (i = 0; i < fep->rx_ring_size; i++) {
776
777                 /* Initialize the BD for every fragment in the page. */
778                 if (bdp->cbd_bufaddr)
779                         bdp->cbd_sc = BD_ENET_RX_EMPTY;
780                 else
781                         bdp->cbd_sc = 0;
782                 bdp = fec_enet_get_nextdesc(bdp, fep);
783         }
784
785         /* Set the last buffer to wrap */
786         bdp = fec_enet_get_prevdesc(bdp, fep);
787         bdp->cbd_sc |= BD_SC_WRAP;
788
789         fep->cur_rx = fep->rx_bd_base;
790
791         /* ...and the same for transmit */
792         bdp = fep->tx_bd_base;
793         fep->cur_tx = bdp;
794         for (i = 0; i < fep->tx_ring_size; i++) {
795
796                 /* Initialize the BD for every fragment in the page. */
797                 bdp->cbd_sc = 0;
798                 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
799                         dev_kfree_skb_any(fep->tx_skbuff[i]);
800                         fep->tx_skbuff[i] = NULL;
801                 }
802                 bdp->cbd_bufaddr = 0;
803                 bdp = fec_enet_get_nextdesc(bdp, fep);
804         }
805
806         /* Set the last buffer to wrap */
807         bdp = fec_enet_get_prevdesc(bdp, fep);
808         bdp->cbd_sc |= BD_SC_WRAP;
809         fep->dirty_tx = bdp;
810 }
811
812 /* This function is called to start or restart the FEC during a link
813  * change.  This only happens when switching between half and full
814  * duplex.
815  */
816 static void
817 fec_restart(struct net_device *ndev, int duplex)
818 {
819         struct fec_enet_private *fep = netdev_priv(ndev);
820         const struct platform_device_id *id_entry =
821                                 platform_get_device_id(fep->pdev);
822         int i;
823         u32 val;
824         u32 temp_mac[2];
825         u32 rcntl = OPT_FRAME_SIZE | 0x04;
826         u32 ecntl = 0x2; /* ETHEREN */
827
828         if (netif_running(ndev)) {
829                 netif_device_detach(ndev);
830                 napi_disable(&fep->napi);
831                 netif_stop_queue(ndev);
832                 netif_tx_lock_bh(ndev);
833         }
834
835         /* Whack a reset.  We should wait for this. */
836         writel(1, fep->hwp + FEC_ECNTRL);
837         udelay(10);
838
839         /*
840          * enet-mac reset will reset mac address registers too,
841          * so need to reconfigure it.
842          */
843         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
844                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
845                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
846                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
847         }
848
849         /* Clear any outstanding interrupt. */
850         writel(0xffc00000, fep->hwp + FEC_IEVENT);
851
852         /* Set maximum receive buffer size. */
853         writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
854
855         fec_enet_bd_init(ndev);
856
857         /* Set receive and transmit descriptor base. */
858         writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
859         if (fep->bufdesc_ex)
860                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
861                         * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
862         else
863                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
864                         * fep->rx_ring_size,    fep->hwp + FEC_X_DES_START);
865
866
867         for (i = 0; i <= TX_RING_MOD_MASK; i++) {
868                 if (fep->tx_skbuff[i]) {
869                         dev_kfree_skb_any(fep->tx_skbuff[i]);
870                         fep->tx_skbuff[i] = NULL;
871                 }
872         }
873
874         /* Enable MII mode */
875         if (duplex) {
876                 /* FD enable */
877                 writel(0x04, fep->hwp + FEC_X_CNTRL);
878         } else {
879                 /* No Rcv on Xmit */
880                 rcntl |= 0x02;
881                 writel(0x0, fep->hwp + FEC_X_CNTRL);
882         }
883
884         fep->full_duplex = duplex;
885
886         /* Set MII speed */
887         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
888
889 #if !defined(CONFIG_M5272)
890         /* set RX checksum */
891         val = readl(fep->hwp + FEC_RACC);
892         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
893                 val |= FEC_RACC_OPTIONS;
894         else
895                 val &= ~FEC_RACC_OPTIONS;
896         writel(val, fep->hwp + FEC_RACC);
897 #endif
898
899         /*
900          * The phy interface and speed need to get configured
901          * differently on enet-mac.
902          */
903         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
904                 /* Enable flow control and length check */
905                 rcntl |= 0x40000000 | 0x00000020;
906
907                 /* RGMII, RMII or MII */
908                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
909                         rcntl |= (1 << 6);
910                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
911                         rcntl |= (1 << 8);
912                 else
913                         rcntl &= ~(1 << 8);
914
915                 /* 1G, 100M or 10M */
916                 if (fep->phy_dev) {
917                         if (fep->phy_dev->speed == SPEED_1000)
918                                 ecntl |= (1 << 5);
919                         else if (fep->phy_dev->speed == SPEED_100)
920                                 rcntl &= ~(1 << 9);
921                         else
922                                 rcntl |= (1 << 9);
923                 }
924         } else {
925 #ifdef FEC_MIIGSK_ENR
926                 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
927                         u32 cfgr;
928                         /* disable the gasket and wait */
929                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
930                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
931                                 udelay(1);
932
933                         /*
934                          * configure the gasket:
935                          *   RMII, 50 MHz, no loopback, no echo
936                          *   MII, 25 MHz, no loopback, no echo
937                          */
938                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
939                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
940                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
941                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
942                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
943
944                         /* re-enable the gasket */
945                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
946                 }
947 #endif
948         }
949
950 #if !defined(CONFIG_M5272)
951         /* enable pause frame*/
952         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
953             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
954              fep->phy_dev && fep->phy_dev->pause)) {
955                 rcntl |= FEC_ENET_FCE;
956
957                 /* set FIFO threshold parameter to reduce overrun */
958                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
959                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
960                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
961                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
962
963                 /* OPD */
964                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
965         } else {
966                 rcntl &= ~FEC_ENET_FCE;
967         }
968 #endif /* !defined(CONFIG_M5272) */
969
970         writel(rcntl, fep->hwp + FEC_R_CNTRL);
971
972         /* Setup multicast filter. */
973         set_multicast_list(ndev);
974 #ifndef CONFIG_M5272
975         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
976         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
977 #endif
978
979         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
980                 /* enable ENET endian swap */
981                 ecntl |= (1 << 8);
982                 /* enable ENET store and forward mode */
983                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
984         }
985
986         if (fep->bufdesc_ex)
987                 ecntl |= (1 << 4);
988
989 #ifndef CONFIG_M5272
990         /* Enable the MIB statistic event counters */
991         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
992 #endif
993
994         /* And last, enable the transmit and receive processing */
995         writel(ecntl, fep->hwp + FEC_ECNTRL);
996         writel(0, fep->hwp + FEC_R_DES_ACTIVE);
997
998         if (fep->bufdesc_ex)
999                 fec_ptp_start_cyclecounter(ndev);
1000
1001         /* Enable interrupts we wish to service */
1002         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1003
1004         if (netif_running(ndev)) {
1005                 netif_tx_unlock_bh(ndev);
1006                 netif_wake_queue(ndev);
1007                 napi_enable(&fep->napi);
1008                 netif_device_attach(ndev);
1009         }
1010 }
1011
1012 static void
1013 fec_stop(struct net_device *ndev)
1014 {
1015         struct fec_enet_private *fep = netdev_priv(ndev);
1016         const struct platform_device_id *id_entry =
1017                                 platform_get_device_id(fep->pdev);
1018         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1019
1020         /* We cannot expect a graceful transmit stop without link !!! */
1021         if (fep->link) {
1022                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1023                 udelay(10);
1024                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1025                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1026         }
1027
1028         /* Whack a reset.  We should wait for this. */
1029         writel(1, fep->hwp + FEC_ECNTRL);
1030         udelay(10);
1031         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1032         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1033
1034         /* We have to keep ENET enabled to have MII interrupt stay working */
1035         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1036                 writel(2, fep->hwp + FEC_ECNTRL);
1037                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1038         }
1039 }
1040
1041
1042 static void
1043 fec_timeout(struct net_device *ndev)
1044 {
1045         struct fec_enet_private *fep = netdev_priv(ndev);
1046
1047         ndev->stats.tx_errors++;
1048
1049         fep->delay_work.timeout = true;
1050         schedule_delayed_work(&(fep->delay_work.delay_work), 0);
1051 }
1052
1053 static void fec_enet_work(struct work_struct *work)
1054 {
1055         struct fec_enet_private *fep =
1056                 container_of(work,
1057                              struct fec_enet_private,
1058                              delay_work.delay_work.work);
1059
1060         if (fep->delay_work.timeout) {
1061                 fep->delay_work.timeout = false;
1062                 fec_restart(fep->netdev, fep->full_duplex);
1063                 netif_wake_queue(fep->netdev);
1064         }
1065
1066         if (fep->delay_work.trig_tx) {
1067                 fep->delay_work.trig_tx = false;
1068                 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1069         }
1070 }
1071
1072 static void
1073 fec_enet_tx(struct net_device *ndev)
1074 {
1075         struct  fec_enet_private *fep;
1076         struct bufdesc *bdp;
1077         unsigned short status;
1078         struct  sk_buff *skb;
1079         int     index = 0;
1080         int     entries_free;
1081
1082         fep = netdev_priv(ndev);
1083         bdp = fep->dirty_tx;
1084
1085         /* get next bdp of dirty_tx */
1086         bdp = fec_enet_get_nextdesc(bdp, fep);
1087
1088         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1089
1090                 /* current queue is empty */
1091                 if (bdp == fep->cur_tx)
1092                         break;
1093
1094                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1095
1096                 skb = fep->tx_skbuff[index];
1097                 if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1098                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1099                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1100                 bdp->cbd_bufaddr = 0;
1101                 if (!skb) {
1102                         bdp = fec_enet_get_nextdesc(bdp, fep);
1103                         continue;
1104                 }
1105
1106                 /* Check for errors. */
1107                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1108                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1109                                    BD_ENET_TX_CSL)) {
1110                         ndev->stats.tx_errors++;
1111                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1112                                 ndev->stats.tx_heartbeat_errors++;
1113                         if (status & BD_ENET_TX_LC)  /* Late collision */
1114                                 ndev->stats.tx_window_errors++;
1115                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1116                                 ndev->stats.tx_aborted_errors++;
1117                         if (status & BD_ENET_TX_UN)  /* Underrun */
1118                                 ndev->stats.tx_fifo_errors++;
1119                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1120                                 ndev->stats.tx_carrier_errors++;
1121                 } else {
1122                         ndev->stats.tx_packets++;
1123                         ndev->stats.tx_bytes += skb->len;
1124                 }
1125
1126                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1127                         fep->bufdesc_ex) {
1128                         struct skb_shared_hwtstamps shhwtstamps;
1129                         unsigned long flags;
1130                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1131
1132                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1133                         spin_lock_irqsave(&fep->tmreg_lock, flags);
1134                         shhwtstamps.hwtstamp = ns_to_ktime(
1135                                 timecounter_cyc2time(&fep->tc, ebdp->ts));
1136                         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1137                         skb_tstamp_tx(skb, &shhwtstamps);
1138                 }
1139
1140                 if (status & BD_ENET_TX_READY)
1141                         netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
1142
1143                 /* Deferred means some collisions occurred during transmit,
1144                  * but we eventually sent the packet OK.
1145                  */
1146                 if (status & BD_ENET_TX_DEF)
1147                         ndev->stats.collisions++;
1148
1149                 /* Free the sk buffer associated with this last transmit */
1150                 dev_kfree_skb_any(skb);
1151                 fep->tx_skbuff[index] = NULL;
1152
1153                 fep->dirty_tx = bdp;
1154
1155                 /* Update pointer to next buffer descriptor to be transmitted */
1156                 bdp = fec_enet_get_nextdesc(bdp, fep);
1157
1158                 /* Since we have freed up a buffer, the ring is no longer full
1159                  */
1160                 if (netif_queue_stopped(ndev)) {
1161                         entries_free = fec_enet_get_free_txdesc_num(fep);
1162                         if (entries_free >= fep->tx_wake_threshold)
1163                                 netif_wake_queue(ndev);
1164                 }
1165         }
1166         return;
1167 }
1168
1169 /* During a receive, the cur_rx points to the current incoming buffer.
1170  * When we update through the ring, if the next incoming buffer has
1171  * not been given to the system, we just set the empty indicator,
1172  * effectively tossing the packet.
1173  */
1174 static int
1175 fec_enet_rx(struct net_device *ndev, int budget)
1176 {
1177         struct fec_enet_private *fep = netdev_priv(ndev);
1178         const struct platform_device_id *id_entry =
1179                                 platform_get_device_id(fep->pdev);
1180         struct bufdesc *bdp;
1181         unsigned short status;
1182         struct  sk_buff *skb;
1183         ushort  pkt_len;
1184         __u8 *data;
1185         int     pkt_received = 0;
1186         struct  bufdesc_ex *ebdp = NULL;
1187         bool    vlan_packet_rcvd = false;
1188         u16     vlan_tag;
1189         int     index = 0;
1190
1191 #ifdef CONFIG_M532x
1192         flush_cache_all();
1193 #endif
1194
1195         /* First, grab all of the stats for the incoming packet.
1196          * These get messed up if we get called due to a busy condition.
1197          */
1198         bdp = fep->cur_rx;
1199
1200         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1201
1202                 if (pkt_received >= budget)
1203                         break;
1204                 pkt_received++;
1205
1206                 /* Since we have allocated space to hold a complete frame,
1207                  * the last indicator should be set.
1208                  */
1209                 if ((status & BD_ENET_RX_LAST) == 0)
1210                         netdev_err(ndev, "rcv is not +last\n");
1211
1212                 if (!fep->opened)
1213                         goto rx_processing_done;
1214
1215                 /* Check for errors. */
1216                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1217                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1218                         ndev->stats.rx_errors++;
1219                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1220                                 /* Frame too long or too short. */
1221                                 ndev->stats.rx_length_errors++;
1222                         }
1223                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1224                                 ndev->stats.rx_frame_errors++;
1225                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1226                                 ndev->stats.rx_crc_errors++;
1227                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1228                                 ndev->stats.rx_fifo_errors++;
1229                 }
1230
1231                 /* Report late collisions as a frame error.
1232                  * On this error, the BD is closed, but we don't know what we
1233                  * have in the buffer.  So, just drop this frame on the floor.
1234                  */
1235                 if (status & BD_ENET_RX_CL) {
1236                         ndev->stats.rx_errors++;
1237                         ndev->stats.rx_frame_errors++;
1238                         goto rx_processing_done;
1239                 }
1240
1241                 /* Process the incoming frame. */
1242                 ndev->stats.rx_packets++;
1243                 pkt_len = bdp->cbd_datlen;
1244                 ndev->stats.rx_bytes += pkt_len;
1245
1246                 index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1247                 data = fep->rx_skbuff[index]->data;
1248                 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1249                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1250
1251                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1252                         swap_buffer(data, pkt_len);
1253
1254                 /* Extract the enhanced buffer descriptor */
1255                 ebdp = NULL;
1256                 if (fep->bufdesc_ex)
1257                         ebdp = (struct bufdesc_ex *)bdp;
1258
1259                 /* If this is a VLAN packet remove the VLAN Tag */
1260                 vlan_packet_rcvd = false;
1261                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1262                     fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1263                         /* Push and remove the vlan tag */
1264                         struct vlan_hdr *vlan_header =
1265                                         (struct vlan_hdr *) (data + ETH_HLEN);
1266                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1267                         pkt_len -= VLAN_HLEN;
1268
1269                         vlan_packet_rcvd = true;
1270                 }
1271
1272                 /* This does 16 byte alignment, exactly what we need.
1273                  * The packet length includes FCS, but we don't want to
1274                  * include that when passing upstream as it messes up
1275                  * bridging applications.
1276                  */
1277                 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1278
1279                 if (unlikely(!skb)) {
1280                         ndev->stats.rx_dropped++;
1281                 } else {
1282                         int payload_offset = (2 * ETH_ALEN);
1283                         skb_reserve(skb, NET_IP_ALIGN);
1284                         skb_put(skb, pkt_len - 4);      /* Make room */
1285
1286                         /* Extract the frame data without the VLAN header. */
1287                         skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1288                         if (vlan_packet_rcvd)
1289                                 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1290                         skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1291                                                        data + payload_offset,
1292                                                        pkt_len - 4 - (2 * ETH_ALEN));
1293
1294                         skb->protocol = eth_type_trans(skb, ndev);
1295
1296                         /* Get receive timestamp from the skb */
1297                         if (fep->hwts_rx_en && fep->bufdesc_ex) {
1298                                 struct skb_shared_hwtstamps *shhwtstamps =
1299                                                             skb_hwtstamps(skb);
1300                                 unsigned long flags;
1301
1302                                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1303
1304                                 spin_lock_irqsave(&fep->tmreg_lock, flags);
1305                                 shhwtstamps->hwtstamp = ns_to_ktime(
1306                                     timecounter_cyc2time(&fep->tc, ebdp->ts));
1307                                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1308                         }
1309
1310                         if (fep->bufdesc_ex &&
1311                             (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1312                                 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1313                                         /* don't check it */
1314                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1315                                 } else {
1316                                         skb_checksum_none_assert(skb);
1317                                 }
1318                         }
1319
1320                         /* Handle received VLAN packets */
1321                         if (vlan_packet_rcvd)
1322                                 __vlan_hwaccel_put_tag(skb,
1323                                                        htons(ETH_P_8021Q),
1324                                                        vlan_tag);
1325
1326                         napi_gro_receive(&fep->napi, skb);
1327                 }
1328
1329                 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1330                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1331 rx_processing_done:
1332                 /* Clear the status flags for this buffer */
1333                 status &= ~BD_ENET_RX_STATS;
1334
1335                 /* Mark the buffer empty */
1336                 status |= BD_ENET_RX_EMPTY;
1337                 bdp->cbd_sc = status;
1338
1339                 if (fep->bufdesc_ex) {
1340                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1341
1342                         ebdp->cbd_esc = BD_ENET_RX_INT;
1343                         ebdp->cbd_prot = 0;
1344                         ebdp->cbd_bdu = 0;
1345                 }
1346
1347                 /* Update BD pointer to next entry */
1348                 bdp = fec_enet_get_nextdesc(bdp, fep);
1349
1350                 /* Doing this here will keep the FEC running while we process
1351                  * incoming frames.  On a heavily loaded network, we should be
1352                  * able to keep up at the expense of system resources.
1353                  */
1354                 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1355         }
1356         fep->cur_rx = bdp;
1357
1358         return pkt_received;
1359 }
1360
1361 static irqreturn_t
1362 fec_enet_interrupt(int irq, void *dev_id)
1363 {
1364         struct net_device *ndev = dev_id;
1365         struct fec_enet_private *fep = netdev_priv(ndev);
1366         uint int_events;
1367         irqreturn_t ret = IRQ_NONE;
1368
1369         do {
1370                 int_events = readl(fep->hwp + FEC_IEVENT);
1371                 writel(int_events, fep->hwp + FEC_IEVENT);
1372
1373                 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1374                         ret = IRQ_HANDLED;
1375
1376                         /* Disable the RX interrupt */
1377                         if (napi_schedule_prep(&fep->napi)) {
1378                                 writel(FEC_RX_DISABLED_IMASK,
1379                                         fep->hwp + FEC_IMASK);
1380                                 __napi_schedule(&fep->napi);
1381                         }
1382                 }
1383
1384                 if (int_events & FEC_ENET_MII) {
1385                         ret = IRQ_HANDLED;
1386                         complete(&fep->mdio_done);
1387                 }
1388         } while (int_events);
1389
1390         return ret;
1391 }
1392
1393 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1394 {
1395         struct net_device *ndev = napi->dev;
1396         int pkts = fec_enet_rx(ndev, budget);
1397         struct fec_enet_private *fep = netdev_priv(ndev);
1398
1399         fec_enet_tx(ndev);
1400
1401         if (pkts < budget) {
1402                 napi_complete(napi);
1403                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404         }
1405         return pkts;
1406 }
1407
1408 /* ------------------------------------------------------------------------- */
1409 static void fec_get_mac(struct net_device *ndev)
1410 {
1411         struct fec_enet_private *fep = netdev_priv(ndev);
1412         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1413         unsigned char *iap, tmpaddr[ETH_ALEN];
1414
1415         /*
1416          * try to get mac address in following order:
1417          *
1418          * 1) module parameter via kernel command line in form
1419          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1420          */
1421         iap = macaddr;
1422
1423         /*
1424          * 2) from device tree data
1425          */
1426         if (!is_valid_ether_addr(iap)) {
1427                 struct device_node *np = fep->pdev->dev.of_node;
1428                 if (np) {
1429                         const char *mac = of_get_mac_address(np);
1430                         if (mac)
1431                                 iap = (unsigned char *) mac;
1432                 }
1433         }
1434
1435         /*
1436          * 3) from flash or fuse (via platform data)
1437          */
1438         if (!is_valid_ether_addr(iap)) {
1439 #ifdef CONFIG_M5272
1440                 if (FEC_FLASHMAC)
1441                         iap = (unsigned char *)FEC_FLASHMAC;
1442 #else
1443                 if (pdata)
1444                         iap = (unsigned char *)&pdata->mac;
1445 #endif
1446         }
1447
1448         /*
1449          * 4) FEC mac registers set by bootloader
1450          */
1451         if (!is_valid_ether_addr(iap)) {
1452                 *((__be32 *) &tmpaddr[0]) =
1453                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1454                 *((__be16 *) &tmpaddr[4]) =
1455                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1456                 iap = &tmpaddr[0];
1457         }
1458
1459         /*
1460          * 5) random mac address
1461          */
1462         if (!is_valid_ether_addr(iap)) {
1463                 /* Report it and use a random ethernet address instead */
1464                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1465                 eth_hw_addr_random(ndev);
1466                 netdev_info(ndev, "Using random MAC address: %pM\n",
1467                             ndev->dev_addr);
1468                 return;
1469         }
1470
1471         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1472
1473         /* Adjust MAC if using macaddr */
1474         if (iap == macaddr)
1475                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1476 }
1477
1478 /* ------------------------------------------------------------------------- */
1479
1480 /*
1481  * Phy section
1482  */
1483 static void fec_enet_adjust_link(struct net_device *ndev)
1484 {
1485         struct fec_enet_private *fep = netdev_priv(ndev);
1486         struct phy_device *phy_dev = fep->phy_dev;
1487         int status_change = 0;
1488
1489         /* Prevent a state halted on mii error */
1490         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1491                 phy_dev->state = PHY_RESUMING;
1492                 return;
1493         }
1494
1495         if (phy_dev->link) {
1496                 if (!fep->link) {
1497                         fep->link = phy_dev->link;
1498                         status_change = 1;
1499                 }
1500
1501                 if (fep->full_duplex != phy_dev->duplex)
1502                         status_change = 1;
1503
1504                 if (phy_dev->speed != fep->speed) {
1505                         fep->speed = phy_dev->speed;
1506                         status_change = 1;
1507                 }
1508
1509                 /* if any of the above changed restart the FEC */
1510                 if (status_change)
1511                         fec_restart(ndev, phy_dev->duplex);
1512         } else {
1513                 if (fep->link) {
1514                         fec_stop(ndev);
1515                         fep->link = phy_dev->link;
1516                         status_change = 1;
1517                 }
1518         }
1519
1520         if (status_change)
1521                 phy_print_status(phy_dev);
1522 }
1523
1524 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1525 {
1526         struct fec_enet_private *fep = bus->priv;
1527         unsigned long time_left;
1528
1529         fep->mii_timeout = 0;
1530         init_completion(&fep->mdio_done);
1531
1532         /* start a read op */
1533         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1534                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1535                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1536
1537         /* wait for end of transfer */
1538         time_left = wait_for_completion_timeout(&fep->mdio_done,
1539                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1540         if (time_left == 0) {
1541                 fep->mii_timeout = 1;
1542                 netdev_err(fep->netdev, "MDIO read timeout\n");
1543                 return -ETIMEDOUT;
1544         }
1545
1546         /* return value */
1547         return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1548 }
1549
1550 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1551                            u16 value)
1552 {
1553         struct fec_enet_private *fep = bus->priv;
1554         unsigned long time_left;
1555
1556         fep->mii_timeout = 0;
1557         init_completion(&fep->mdio_done);
1558
1559         /* start a write op */
1560         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1561                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1562                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1563                 fep->hwp + FEC_MII_DATA);
1564
1565         /* wait for end of transfer */
1566         time_left = wait_for_completion_timeout(&fep->mdio_done,
1567                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1568         if (time_left == 0) {
1569                 fep->mii_timeout = 1;
1570                 netdev_err(fep->netdev, "MDIO write timeout\n");
1571                 return -ETIMEDOUT;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1578 {
1579         struct fec_enet_private *fep = netdev_priv(ndev);
1580         int ret;
1581
1582         if (enable) {
1583                 ret = clk_prepare_enable(fep->clk_ahb);
1584                 if (ret)
1585                         return ret;
1586                 ret = clk_prepare_enable(fep->clk_ipg);
1587                 if (ret)
1588                         goto failed_clk_ipg;
1589                 if (fep->clk_enet_out) {
1590                         ret = clk_prepare_enable(fep->clk_enet_out);
1591                         if (ret)
1592                                 goto failed_clk_enet_out;
1593                 }
1594                 if (fep->clk_ptp) {
1595                         ret = clk_prepare_enable(fep->clk_ptp);
1596                         if (ret)
1597                                 goto failed_clk_ptp;
1598                 }
1599         } else {
1600                 clk_disable_unprepare(fep->clk_ahb);
1601                 clk_disable_unprepare(fep->clk_ipg);
1602                 if (fep->clk_enet_out)
1603                         clk_disable_unprepare(fep->clk_enet_out);
1604                 if (fep->clk_ptp)
1605                         clk_disable_unprepare(fep->clk_ptp);
1606         }
1607
1608         return 0;
1609 failed_clk_ptp:
1610         if (fep->clk_enet_out)
1611                 clk_disable_unprepare(fep->clk_enet_out);
1612 failed_clk_enet_out:
1613                 clk_disable_unprepare(fep->clk_ipg);
1614 failed_clk_ipg:
1615                 clk_disable_unprepare(fep->clk_ahb);
1616
1617         return ret;
1618 }
1619
1620 static int fec_enet_mii_probe(struct net_device *ndev)
1621 {
1622         struct fec_enet_private *fep = netdev_priv(ndev);
1623         const struct platform_device_id *id_entry =
1624                                 platform_get_device_id(fep->pdev);
1625         struct phy_device *phy_dev = NULL;
1626         char mdio_bus_id[MII_BUS_ID_SIZE];
1627         char phy_name[MII_BUS_ID_SIZE + 3];
1628         int phy_id;
1629         int dev_id = fep->dev_id;
1630
1631         fep->phy_dev = NULL;
1632
1633         /* check for attached phy */
1634         for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1635                 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1636                         continue;
1637                 if (fep->mii_bus->phy_map[phy_id] == NULL)
1638                         continue;
1639                 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1640                         continue;
1641                 if (dev_id--)
1642                         continue;
1643                 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1644                 break;
1645         }
1646
1647         if (phy_id >= PHY_MAX_ADDR) {
1648                 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1649                 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1650                 phy_id = 0;
1651         }
1652
1653         snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1654         phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1655                               fep->phy_interface);
1656         if (IS_ERR(phy_dev)) {
1657                 netdev_err(ndev, "could not attach to PHY\n");
1658                 return PTR_ERR(phy_dev);
1659         }
1660
1661         /* mask with MAC supported features */
1662         if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1663                 phy_dev->supported &= PHY_GBIT_FEATURES;
1664 #if !defined(CONFIG_M5272)
1665                 phy_dev->supported |= SUPPORTED_Pause;
1666 #endif
1667         }
1668         else
1669                 phy_dev->supported &= PHY_BASIC_FEATURES;
1670
1671         phy_dev->advertising = phy_dev->supported;
1672
1673         fep->phy_dev = phy_dev;
1674         fep->link = 0;
1675         fep->full_duplex = 0;
1676
1677         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1678                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1679                     fep->phy_dev->irq);
1680
1681         return 0;
1682 }
1683
1684 static int fec_enet_mii_init(struct platform_device *pdev)
1685 {
1686         static struct mii_bus *fec0_mii_bus;
1687         struct net_device *ndev = platform_get_drvdata(pdev);
1688         struct fec_enet_private *fep = netdev_priv(ndev);
1689         const struct platform_device_id *id_entry =
1690                                 platform_get_device_id(fep->pdev);
1691         int err = -ENXIO, i;
1692
1693         /*
1694          * The dual fec interfaces are not equivalent with enet-mac.
1695          * Here are the differences:
1696          *
1697          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1698          *  - fec0 acts as the 1588 time master while fec1 is slave
1699          *  - external phys can only be configured by fec0
1700          *
1701          * That is to say fec1 can not work independently. It only works
1702          * when fec0 is working. The reason behind this design is that the
1703          * second interface is added primarily for Switch mode.
1704          *
1705          * Because of the last point above, both phys are attached on fec0
1706          * mdio interface in board design, and need to be configured by
1707          * fec0 mii_bus.
1708          */
1709         if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1710                 /* fec1 uses fec0 mii_bus */
1711                 if (mii_cnt && fec0_mii_bus) {
1712                         fep->mii_bus = fec0_mii_bus;
1713                         mii_cnt++;
1714                         return 0;
1715                 }
1716                 return -ENOENT;
1717         }
1718
1719         fep->mii_timeout = 0;
1720
1721         /*
1722          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1723          *
1724          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1725          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1726          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1727          * document.
1728          */
1729         fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1730         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1731                 fep->phy_speed--;
1732         fep->phy_speed <<= 1;
1733         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1734
1735         fep->mii_bus = mdiobus_alloc();
1736         if (fep->mii_bus == NULL) {
1737                 err = -ENOMEM;
1738                 goto err_out;
1739         }
1740
1741         fep->mii_bus->name = "fec_enet_mii_bus";
1742         fep->mii_bus->read = fec_enet_mdio_read;
1743         fep->mii_bus->write = fec_enet_mdio_write;
1744         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1745                 pdev->name, fep->dev_id + 1);
1746         fep->mii_bus->priv = fep;
1747         fep->mii_bus->parent = &pdev->dev;
1748
1749         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1750         if (!fep->mii_bus->irq) {
1751                 err = -ENOMEM;
1752                 goto err_out_free_mdiobus;
1753         }
1754
1755         for (i = 0; i < PHY_MAX_ADDR; i++)
1756                 fep->mii_bus->irq[i] = PHY_POLL;
1757
1758         if (mdiobus_register(fep->mii_bus))
1759                 goto err_out_free_mdio_irq;
1760
1761         mii_cnt++;
1762
1763         /* save fec0 mii_bus */
1764         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1765                 fec0_mii_bus = fep->mii_bus;
1766
1767         return 0;
1768
1769 err_out_free_mdio_irq:
1770         kfree(fep->mii_bus->irq);
1771 err_out_free_mdiobus:
1772         mdiobus_free(fep->mii_bus);
1773 err_out:
1774         return err;
1775 }
1776
1777 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1778 {
1779         if (--mii_cnt == 0) {
1780                 mdiobus_unregister(fep->mii_bus);
1781                 kfree(fep->mii_bus->irq);
1782                 mdiobus_free(fep->mii_bus);
1783         }
1784 }
1785
1786 static int fec_enet_get_settings(struct net_device *ndev,
1787                                   struct ethtool_cmd *cmd)
1788 {
1789         struct fec_enet_private *fep = netdev_priv(ndev);
1790         struct phy_device *phydev = fep->phy_dev;
1791
1792         if (!phydev)
1793                 return -ENODEV;
1794
1795         return phy_ethtool_gset(phydev, cmd);
1796 }
1797
1798 static int fec_enet_set_settings(struct net_device *ndev,
1799                                  struct ethtool_cmd *cmd)
1800 {
1801         struct fec_enet_private *fep = netdev_priv(ndev);
1802         struct phy_device *phydev = fep->phy_dev;
1803
1804         if (!phydev)
1805                 return -ENODEV;
1806
1807         return phy_ethtool_sset(phydev, cmd);
1808 }
1809
1810 static void fec_enet_get_drvinfo(struct net_device *ndev,
1811                                  struct ethtool_drvinfo *info)
1812 {
1813         struct fec_enet_private *fep = netdev_priv(ndev);
1814
1815         strlcpy(info->driver, fep->pdev->dev.driver->name,
1816                 sizeof(info->driver));
1817         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1818         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1819 }
1820
1821 static int fec_enet_get_ts_info(struct net_device *ndev,
1822                                 struct ethtool_ts_info *info)
1823 {
1824         struct fec_enet_private *fep = netdev_priv(ndev);
1825
1826         if (fep->bufdesc_ex) {
1827
1828                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1829                                         SOF_TIMESTAMPING_RX_SOFTWARE |
1830                                         SOF_TIMESTAMPING_SOFTWARE |
1831                                         SOF_TIMESTAMPING_TX_HARDWARE |
1832                                         SOF_TIMESTAMPING_RX_HARDWARE |
1833                                         SOF_TIMESTAMPING_RAW_HARDWARE;
1834                 if (fep->ptp_clock)
1835                         info->phc_index = ptp_clock_index(fep->ptp_clock);
1836                 else
1837                         info->phc_index = -1;
1838
1839                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1840                                  (1 << HWTSTAMP_TX_ON);
1841
1842                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1843                                    (1 << HWTSTAMP_FILTER_ALL);
1844                 return 0;
1845         } else {
1846                 return ethtool_op_get_ts_info(ndev, info);
1847         }
1848 }
1849
1850 #if !defined(CONFIG_M5272)
1851
1852 static void fec_enet_get_pauseparam(struct net_device *ndev,
1853                                     struct ethtool_pauseparam *pause)
1854 {
1855         struct fec_enet_private *fep = netdev_priv(ndev);
1856
1857         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1858         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1859         pause->rx_pause = pause->tx_pause;
1860 }
1861
1862 static int fec_enet_set_pauseparam(struct net_device *ndev,
1863                                    struct ethtool_pauseparam *pause)
1864 {
1865         struct fec_enet_private *fep = netdev_priv(ndev);
1866
1867         if (pause->tx_pause != pause->rx_pause) {
1868                 netdev_info(ndev,
1869                         "hardware only support enable/disable both tx and rx");
1870                 return -EINVAL;
1871         }
1872
1873         fep->pause_flag = 0;
1874
1875         /* tx pause must be same as rx pause */
1876         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1877         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1878
1879         if (pause->rx_pause || pause->autoneg) {
1880                 fep->phy_dev->supported |= ADVERTISED_Pause;
1881                 fep->phy_dev->advertising |= ADVERTISED_Pause;
1882         } else {
1883                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1884                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1885         }
1886
1887         if (pause->autoneg) {
1888                 if (netif_running(ndev))
1889                         fec_stop(ndev);
1890                 phy_start_aneg(fep->phy_dev);
1891         }
1892         if (netif_running(ndev))
1893                 fec_restart(ndev, 0);
1894
1895         return 0;
1896 }
1897
1898 static const struct fec_stat {
1899         char name[ETH_GSTRING_LEN];
1900         u16 offset;
1901 } fec_stats[] = {
1902         /* RMON TX */
1903         { "tx_dropped", RMON_T_DROP },
1904         { "tx_packets", RMON_T_PACKETS },
1905         { "tx_broadcast", RMON_T_BC_PKT },
1906         { "tx_multicast", RMON_T_MC_PKT },
1907         { "tx_crc_errors", RMON_T_CRC_ALIGN },
1908         { "tx_undersize", RMON_T_UNDERSIZE },
1909         { "tx_oversize", RMON_T_OVERSIZE },
1910         { "tx_fragment", RMON_T_FRAG },
1911         { "tx_jabber", RMON_T_JAB },
1912         { "tx_collision", RMON_T_COL },
1913         { "tx_64byte", RMON_T_P64 },
1914         { "tx_65to127byte", RMON_T_P65TO127 },
1915         { "tx_128to255byte", RMON_T_P128TO255 },
1916         { "tx_256to511byte", RMON_T_P256TO511 },
1917         { "tx_512to1023byte", RMON_T_P512TO1023 },
1918         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1919         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1920         { "tx_octets", RMON_T_OCTETS },
1921
1922         /* IEEE TX */
1923         { "IEEE_tx_drop", IEEE_T_DROP },
1924         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1925         { "IEEE_tx_1col", IEEE_T_1COL },
1926         { "IEEE_tx_mcol", IEEE_T_MCOL },
1927         { "IEEE_tx_def", IEEE_T_DEF },
1928         { "IEEE_tx_lcol", IEEE_T_LCOL },
1929         { "IEEE_tx_excol", IEEE_T_EXCOL },
1930         { "IEEE_tx_macerr", IEEE_T_MACERR },
1931         { "IEEE_tx_cserr", IEEE_T_CSERR },
1932         { "IEEE_tx_sqe", IEEE_T_SQE },
1933         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1934         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1935
1936         /* RMON RX */
1937         { "rx_packets", RMON_R_PACKETS },
1938         { "rx_broadcast", RMON_R_BC_PKT },
1939         { "rx_multicast", RMON_R_MC_PKT },
1940         { "rx_crc_errors", RMON_R_CRC_ALIGN },
1941         { "rx_undersize", RMON_R_UNDERSIZE },
1942         { "rx_oversize", RMON_R_OVERSIZE },
1943         { "rx_fragment", RMON_R_FRAG },
1944         { "rx_jabber", RMON_R_JAB },
1945         { "rx_64byte", RMON_R_P64 },
1946         { "rx_65to127byte", RMON_R_P65TO127 },
1947         { "rx_128to255byte", RMON_R_P128TO255 },
1948         { "rx_256to511byte", RMON_R_P256TO511 },
1949         { "rx_512to1023byte", RMON_R_P512TO1023 },
1950         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1951         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1952         { "rx_octets", RMON_R_OCTETS },
1953
1954         /* IEEE RX */
1955         { "IEEE_rx_drop", IEEE_R_DROP },
1956         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1957         { "IEEE_rx_crc", IEEE_R_CRC },
1958         { "IEEE_rx_align", IEEE_R_ALIGN },
1959         { "IEEE_rx_macerr", IEEE_R_MACERR },
1960         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1961         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1962 };
1963
1964 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1965         struct ethtool_stats *stats, u64 *data)
1966 {
1967         struct fec_enet_private *fep = netdev_priv(dev);
1968         int i;
1969
1970         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1971                 data[i] = readl(fep->hwp + fec_stats[i].offset);
1972 }
1973
1974 static void fec_enet_get_strings(struct net_device *netdev,
1975         u32 stringset, u8 *data)
1976 {
1977         int i;
1978         switch (stringset) {
1979         case ETH_SS_STATS:
1980                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1981                         memcpy(data + i * ETH_GSTRING_LEN,
1982                                 fec_stats[i].name, ETH_GSTRING_LEN);
1983                 break;
1984         }
1985 }
1986
1987 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1988 {
1989         switch (sset) {
1990         case ETH_SS_STATS:
1991                 return ARRAY_SIZE(fec_stats);
1992         default:
1993                 return -EOPNOTSUPP;
1994         }
1995 }
1996 #endif /* !defined(CONFIG_M5272) */
1997
1998 static int fec_enet_nway_reset(struct net_device *dev)
1999 {
2000         struct fec_enet_private *fep = netdev_priv(dev);
2001         struct phy_device *phydev = fep->phy_dev;
2002
2003         if (!phydev)
2004                 return -ENODEV;
2005
2006         return genphy_restart_aneg(phydev);
2007 }
2008
2009 static const struct ethtool_ops fec_enet_ethtool_ops = {
2010 #if !defined(CONFIG_M5272)
2011         .get_pauseparam         = fec_enet_get_pauseparam,
2012         .set_pauseparam         = fec_enet_set_pauseparam,
2013 #endif
2014         .get_settings           = fec_enet_get_settings,
2015         .set_settings           = fec_enet_set_settings,
2016         .get_drvinfo            = fec_enet_get_drvinfo,
2017         .get_link               = ethtool_op_get_link,
2018         .get_ts_info            = fec_enet_get_ts_info,
2019         .nway_reset             = fec_enet_nway_reset,
2020 #ifndef CONFIG_M5272
2021         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2022         .get_strings            = fec_enet_get_strings,
2023         .get_sset_count         = fec_enet_get_sset_count,
2024 #endif
2025 };
2026
2027 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2028 {
2029         struct fec_enet_private *fep = netdev_priv(ndev);
2030         struct phy_device *phydev = fep->phy_dev;
2031
2032         if (!netif_running(ndev))
2033                 return -EINVAL;
2034
2035         if (!phydev)
2036                 return -ENODEV;
2037
2038         if (fep->bufdesc_ex) {
2039                 if (cmd == SIOCSHWTSTAMP)
2040                         return fec_ptp_set(ndev, rq);
2041                 if (cmd == SIOCGHWTSTAMP)
2042                         return fec_ptp_get(ndev, rq);
2043         }
2044
2045         return phy_mii_ioctl(phydev, rq, cmd);
2046 }
2047
2048 static void fec_enet_free_buffers(struct net_device *ndev)
2049 {
2050         struct fec_enet_private *fep = netdev_priv(ndev);
2051         unsigned int i;
2052         struct sk_buff *skb;
2053         struct bufdesc  *bdp;
2054
2055         bdp = fep->rx_bd_base;
2056         for (i = 0; i < fep->rx_ring_size; i++) {
2057                 skb = fep->rx_skbuff[i];
2058
2059                 if (bdp->cbd_bufaddr)
2060                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2061                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2062                 if (skb)
2063                         dev_kfree_skb(skb);
2064                 bdp = fec_enet_get_nextdesc(bdp, fep);
2065         }
2066
2067         bdp = fep->tx_bd_base;
2068         for (i = 0; i < fep->tx_ring_size; i++)
2069                 kfree(fep->tx_bounce[i]);
2070 }
2071
2072 static int fec_enet_alloc_buffers(struct net_device *ndev)
2073 {
2074         struct fec_enet_private *fep = netdev_priv(ndev);
2075         unsigned int i;
2076         struct sk_buff *skb;
2077         struct bufdesc  *bdp;
2078
2079         bdp = fep->rx_bd_base;
2080         for (i = 0; i < fep->rx_ring_size; i++) {
2081                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2082                 if (!skb) {
2083                         fec_enet_free_buffers(ndev);
2084                         return -ENOMEM;
2085                 }
2086                 fep->rx_skbuff[i] = skb;
2087
2088                 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
2089                                 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2090                 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
2091                         fec_enet_free_buffers(ndev);
2092                         if (net_ratelimit())
2093                                 netdev_err(ndev, "Rx DMA memory map failed\n");
2094                         return -ENOMEM;
2095                 }
2096                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2097
2098                 if (fep->bufdesc_ex) {
2099                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2100                         ebdp->cbd_esc = BD_ENET_RX_INT;
2101                 }
2102
2103                 bdp = fec_enet_get_nextdesc(bdp, fep);
2104         }
2105
2106         /* Set the last buffer to wrap. */
2107         bdp = fec_enet_get_prevdesc(bdp, fep);
2108         bdp->cbd_sc |= BD_SC_WRAP;
2109
2110         bdp = fep->tx_bd_base;
2111         for (i = 0; i < fep->tx_ring_size; i++) {
2112                 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2113
2114                 bdp->cbd_sc = 0;
2115                 bdp->cbd_bufaddr = 0;
2116
2117                 if (fep->bufdesc_ex) {
2118                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2119                         ebdp->cbd_esc = BD_ENET_TX_INT;
2120                 }
2121
2122                 bdp = fec_enet_get_nextdesc(bdp, fep);
2123         }
2124
2125         /* Set the last buffer to wrap. */
2126         bdp = fec_enet_get_prevdesc(bdp, fep);
2127         bdp->cbd_sc |= BD_SC_WRAP;
2128
2129         return 0;
2130 }
2131
2132 static int
2133 fec_enet_open(struct net_device *ndev)
2134 {
2135         struct fec_enet_private *fep = netdev_priv(ndev);
2136         int ret;
2137
2138         pinctrl_pm_select_default_state(&fep->pdev->dev);
2139         ret = fec_enet_clk_enable(ndev, true);
2140         if (ret)
2141                 return ret;
2142
2143         /* I should reset the ring buffers here, but I don't yet know
2144          * a simple way to do that.
2145          */
2146
2147         ret = fec_enet_alloc_buffers(ndev);
2148         if (ret)
2149                 return ret;
2150
2151         /* Probe and connect to PHY when open the interface */
2152         ret = fec_enet_mii_probe(ndev);
2153         if (ret) {
2154                 fec_enet_free_buffers(ndev);
2155                 return ret;
2156         }
2157
2158         napi_enable(&fep->napi);
2159         phy_start(fep->phy_dev);
2160         netif_start_queue(ndev);
2161         fep->opened = 1;
2162         return 0;
2163 }
2164
2165 static int
2166 fec_enet_close(struct net_device *ndev)
2167 {
2168         struct fec_enet_private *fep = netdev_priv(ndev);
2169
2170         /* Don't know what to do yet. */
2171         napi_disable(&fep->napi);
2172         fep->opened = 0;
2173         netif_stop_queue(ndev);
2174         fec_stop(ndev);
2175
2176         if (fep->phy_dev) {
2177                 phy_stop(fep->phy_dev);
2178                 phy_disconnect(fep->phy_dev);
2179         }
2180
2181         fec_enet_clk_enable(ndev, false);
2182         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2183         fec_enet_free_buffers(ndev);
2184
2185         return 0;
2186 }
2187
2188 /* Set or clear the multicast filter for this adaptor.
2189  * Skeleton taken from sunlance driver.
2190  * The CPM Ethernet implementation allows Multicast as well as individual
2191  * MAC address filtering.  Some of the drivers check to make sure it is
2192  * a group multicast address, and discard those that are not.  I guess I
2193  * will do the same for now, but just remove the test if you want
2194  * individual filtering as well (do the upper net layers want or support
2195  * this kind of feature?).
2196  */
2197
2198 #define HASH_BITS       6               /* #bits in hash */
2199 #define CRC32_POLY      0xEDB88320
2200
2201 static void set_multicast_list(struct net_device *ndev)
2202 {
2203         struct fec_enet_private *fep = netdev_priv(ndev);
2204         struct netdev_hw_addr *ha;
2205         unsigned int i, bit, data, crc, tmp;
2206         unsigned char hash;
2207
2208         if (ndev->flags & IFF_PROMISC) {
2209                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2210                 tmp |= 0x8;
2211                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2212                 return;
2213         }
2214
2215         tmp = readl(fep->hwp + FEC_R_CNTRL);
2216         tmp &= ~0x8;
2217         writel(tmp, fep->hwp + FEC_R_CNTRL);
2218
2219         if (ndev->flags & IFF_ALLMULTI) {
2220                 /* Catch all multicast addresses, so set the
2221                  * filter to all 1's
2222                  */
2223                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2224                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2225
2226                 return;
2227         }
2228
2229         /* Clear filter and add the addresses in hash register
2230          */
2231         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2232         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2233
2234         netdev_for_each_mc_addr(ha, ndev) {
2235                 /* calculate crc32 value of mac address */
2236                 crc = 0xffffffff;
2237
2238                 for (i = 0; i < ndev->addr_len; i++) {
2239                         data = ha->addr[i];
2240                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2241                                 crc = (crc >> 1) ^
2242                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2243                         }
2244                 }
2245
2246                 /* only upper 6 bits (HASH_BITS) are used
2247                  * which point to specific bit in he hash registers
2248                  */
2249                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2250
2251                 if (hash > 31) {
2252                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2253                         tmp |= 1 << (hash - 32);
2254                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2255                 } else {
2256                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2257                         tmp |= 1 << hash;
2258                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2259                 }
2260         }
2261 }
2262
2263 /* Set a MAC change in hardware. */
2264 static int
2265 fec_set_mac_address(struct net_device *ndev, void *p)
2266 {
2267         struct fec_enet_private *fep = netdev_priv(ndev);
2268         struct sockaddr *addr = p;
2269
2270         if (addr) {
2271                 if (!is_valid_ether_addr(addr->sa_data))
2272                         return -EADDRNOTAVAIL;
2273                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2274         }
2275
2276         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2277                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2278                 fep->hwp + FEC_ADDR_LOW);
2279         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2280                 fep->hwp + FEC_ADDR_HIGH);
2281         return 0;
2282 }
2283
2284 #ifdef CONFIG_NET_POLL_CONTROLLER
2285 /**
2286  * fec_poll_controller - FEC Poll controller function
2287  * @dev: The FEC network adapter
2288  *
2289  * Polled functionality used by netconsole and others in non interrupt mode
2290  *
2291  */
2292 static void fec_poll_controller(struct net_device *dev)
2293 {
2294         int i;
2295         struct fec_enet_private *fep = netdev_priv(dev);
2296
2297         for (i = 0; i < FEC_IRQ_NUM; i++) {
2298                 if (fep->irq[i] > 0) {
2299                         disable_irq(fep->irq[i]);
2300                         fec_enet_interrupt(fep->irq[i], dev);
2301                         enable_irq(fep->irq[i]);
2302                 }
2303         }
2304 }
2305 #endif
2306
2307 static int fec_set_features(struct net_device *netdev,
2308         netdev_features_t features)
2309 {
2310         struct fec_enet_private *fep = netdev_priv(netdev);
2311         netdev_features_t changed = features ^ netdev->features;
2312
2313         netdev->features = features;
2314
2315         /* Receive checksum has been changed */
2316         if (changed & NETIF_F_RXCSUM) {
2317                 if (features & NETIF_F_RXCSUM)
2318                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2319                 else
2320                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2321
2322                 if (netif_running(netdev)) {
2323                         fec_stop(netdev);
2324                         fec_restart(netdev, fep->phy_dev->duplex);
2325                         netif_wake_queue(netdev);
2326                 } else {
2327                         fec_restart(netdev, fep->phy_dev->duplex);
2328                 }
2329         }
2330
2331         return 0;
2332 }
2333
2334 static const struct net_device_ops fec_netdev_ops = {
2335         .ndo_open               = fec_enet_open,
2336         .ndo_stop               = fec_enet_close,
2337         .ndo_start_xmit         = fec_enet_start_xmit,
2338         .ndo_set_rx_mode        = set_multicast_list,
2339         .ndo_change_mtu         = eth_change_mtu,
2340         .ndo_validate_addr      = eth_validate_addr,
2341         .ndo_tx_timeout         = fec_timeout,
2342         .ndo_set_mac_address    = fec_set_mac_address,
2343         .ndo_do_ioctl           = fec_enet_ioctl,
2344 #ifdef CONFIG_NET_POLL_CONTROLLER
2345         .ndo_poll_controller    = fec_poll_controller,
2346 #endif
2347         .ndo_set_features       = fec_set_features,
2348 };
2349
2350  /*
2351   * XXX:  We need to clean up on failure exits here.
2352   *
2353   */
2354 static int fec_enet_init(struct net_device *ndev)
2355 {
2356         struct fec_enet_private *fep = netdev_priv(ndev);
2357         const struct platform_device_id *id_entry =
2358                                 platform_get_device_id(fep->pdev);
2359         struct bufdesc *cbd_base;
2360         int bd_size;
2361
2362         /* init the tx & rx ring size */
2363         fep->tx_ring_size = TX_RING_SIZE;
2364         fep->rx_ring_size = RX_RING_SIZE;
2365
2366         fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2367         fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2368
2369         if (fep->bufdesc_ex)
2370                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2371         else
2372                 fep->bufdesc_size = sizeof(struct bufdesc);
2373         bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2374                         fep->bufdesc_size;
2375
2376         /* Allocate memory for buffer descriptors. */
2377         cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2378                                       GFP_KERNEL);
2379         if (!cbd_base)
2380                 return -ENOMEM;
2381
2382         fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2383                                                 &fep->tso_hdrs_dma, GFP_KERNEL);
2384         if (!fep->tso_hdrs) {
2385                 dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2386                 return -ENOMEM;
2387         }
2388
2389         memset(cbd_base, 0, PAGE_SIZE);
2390
2391         fep->netdev = ndev;
2392
2393         /* Get the Ethernet address */
2394         fec_get_mac(ndev);
2395         /* make sure MAC we just acquired is programmed into the hw */
2396         fec_set_mac_address(ndev, NULL);
2397
2398         /* Set receive and transmit descriptor base. */
2399         fep->rx_bd_base = cbd_base;
2400         if (fep->bufdesc_ex)
2401                 fep->tx_bd_base = (struct bufdesc *)
2402                         (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2403         else
2404                 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2405
2406         /* The FEC Ethernet specific entries in the device structure */
2407         ndev->watchdog_timeo = TX_TIMEOUT;
2408         ndev->netdev_ops = &fec_netdev_ops;
2409         ndev->ethtool_ops = &fec_enet_ethtool_ops;
2410
2411         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2412         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2413
2414         if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2415                 /* enable hw VLAN support */
2416                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2417
2418         if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2419                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2420
2421                 /* enable hw accelerator */
2422                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2423                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2424                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2425         }
2426
2427         ndev->hw_features = ndev->features;
2428
2429         fec_restart(ndev, 0);
2430
2431         return 0;
2432 }
2433
2434 #ifdef CONFIG_OF
2435 static void fec_reset_phy(struct platform_device *pdev)
2436 {
2437         int err, phy_reset;
2438         int msec = 1;
2439         struct device_node *np = pdev->dev.of_node;
2440
2441         if (!np)
2442                 return;
2443
2444         of_property_read_u32(np, "phy-reset-duration", &msec);
2445         /* A sane reset duration should not be longer than 1s */
2446         if (msec > 1000)
2447                 msec = 1;
2448
2449         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2450         if (!gpio_is_valid(phy_reset))
2451                 return;
2452
2453         err = devm_gpio_request_one(&pdev->dev, phy_reset,
2454                                     GPIOF_OUT_INIT_LOW, "phy-reset");
2455         if (err) {
2456                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2457                 return;
2458         }
2459         msleep(msec);
2460         gpio_set_value(phy_reset, 1);
2461 }
2462 #else /* CONFIG_OF */
2463 static void fec_reset_phy(struct platform_device *pdev)
2464 {
2465         /*
2466          * In case of platform probe, the reset has been done
2467          * by machine code.
2468          */
2469 }
2470 #endif /* CONFIG_OF */
2471
2472 static int
2473 fec_probe(struct platform_device *pdev)
2474 {
2475         struct fec_enet_private *fep;
2476         struct fec_platform_data *pdata;
2477         struct net_device *ndev;
2478         int i, irq, ret = 0;
2479         struct resource *r;
2480         const struct of_device_id *of_id;
2481         static int dev_id;
2482
2483         of_id = of_match_device(fec_dt_ids, &pdev->dev);
2484         if (of_id)
2485                 pdev->id_entry = of_id->data;
2486
2487         /* Init network device */
2488         ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2489         if (!ndev)
2490                 return -ENOMEM;
2491
2492         SET_NETDEV_DEV(ndev, &pdev->dev);
2493
2494         /* setup board info structure */
2495         fep = netdev_priv(ndev);
2496
2497 #if !defined(CONFIG_M5272)
2498         /* default enable pause frame auto negotiation */
2499         if (pdev->id_entry &&
2500             (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2501                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2502 #endif
2503
2504         /* Select default pin state */
2505         pinctrl_pm_select_default_state(&pdev->dev);
2506
2507         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2508         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2509         if (IS_ERR(fep->hwp)) {
2510                 ret = PTR_ERR(fep->hwp);
2511                 goto failed_ioremap;
2512         }
2513
2514         fep->pdev = pdev;
2515         fep->dev_id = dev_id++;
2516
2517         fep->bufdesc_ex = 0;
2518
2519         platform_set_drvdata(pdev, ndev);
2520
2521         ret = of_get_phy_mode(pdev->dev.of_node);
2522         if (ret < 0) {
2523                 pdata = dev_get_platdata(&pdev->dev);
2524                 if (pdata)
2525                         fep->phy_interface = pdata->phy;
2526                 else
2527                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
2528         } else {
2529                 fep->phy_interface = ret;
2530         }
2531
2532         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2533         if (IS_ERR(fep->clk_ipg)) {
2534                 ret = PTR_ERR(fep->clk_ipg);
2535                 goto failed_clk;
2536         }
2537
2538         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2539         if (IS_ERR(fep->clk_ahb)) {
2540                 ret = PTR_ERR(fep->clk_ahb);
2541                 goto failed_clk;
2542         }
2543
2544         /* enet_out is optional, depends on board */
2545         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2546         if (IS_ERR(fep->clk_enet_out))
2547                 fep->clk_enet_out = NULL;
2548
2549         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2550         fep->bufdesc_ex =
2551                 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2552         if (IS_ERR(fep->clk_ptp)) {
2553                 fep->clk_ptp = NULL;
2554                 fep->bufdesc_ex = 0;
2555         }
2556
2557         ret = fec_enet_clk_enable(ndev, true);
2558         if (ret)
2559                 goto failed_clk;
2560
2561         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2562         if (!IS_ERR(fep->reg_phy)) {
2563                 ret = regulator_enable(fep->reg_phy);
2564                 if (ret) {
2565                         dev_err(&pdev->dev,
2566                                 "Failed to enable phy regulator: %d\n", ret);
2567                         goto failed_regulator;
2568                 }
2569         } else {
2570                 fep->reg_phy = NULL;
2571         }
2572
2573         fec_reset_phy(pdev);
2574
2575         if (fep->bufdesc_ex)
2576                 fec_ptp_init(pdev);
2577
2578         ret = fec_enet_init(ndev);
2579         if (ret)
2580                 goto failed_init;
2581
2582         for (i = 0; i < FEC_IRQ_NUM; i++) {
2583                 irq = platform_get_irq(pdev, i);
2584                 if (irq < 0) {
2585                         if (i)
2586                                 break;
2587                         ret = irq;
2588                         goto failed_irq;
2589                 }
2590                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2591                                        0, pdev->name, ndev);
2592                 if (ret)
2593                         goto failed_irq;
2594         }
2595
2596         ret = fec_enet_mii_init(pdev);
2597         if (ret)
2598                 goto failed_mii_init;
2599
2600         /* Carrier starts down, phylib will bring it up */
2601         netif_carrier_off(ndev);
2602         fec_enet_clk_enable(ndev, false);
2603         pinctrl_pm_select_sleep_state(&pdev->dev);
2604
2605         ret = register_netdev(ndev);
2606         if (ret)
2607                 goto failed_register;
2608
2609         if (fep->bufdesc_ex && fep->ptp_clock)
2610                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2611
2612         INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2613         return 0;
2614
2615 failed_register:
2616         fec_enet_mii_remove(fep);
2617 failed_mii_init:
2618 failed_irq:
2619 failed_init:
2620         if (fep->reg_phy)
2621                 regulator_disable(fep->reg_phy);
2622 failed_regulator:
2623         fec_enet_clk_enable(ndev, false);
2624 failed_clk:
2625 failed_ioremap:
2626         free_netdev(ndev);
2627
2628         return ret;
2629 }
2630
2631 static int
2632 fec_drv_remove(struct platform_device *pdev)
2633 {
2634         struct net_device *ndev = platform_get_drvdata(pdev);
2635         struct fec_enet_private *fep = netdev_priv(ndev);
2636
2637         cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2638         unregister_netdev(ndev);
2639         fec_enet_mii_remove(fep);
2640         del_timer_sync(&fep->time_keep);
2641         if (fep->reg_phy)
2642                 regulator_disable(fep->reg_phy);
2643         if (fep->ptp_clock)
2644                 ptp_clock_unregister(fep->ptp_clock);
2645         fec_enet_clk_enable(ndev, false);
2646         free_netdev(ndev);
2647
2648         return 0;
2649 }
2650
2651 #ifdef CONFIG_PM_SLEEP
2652 static int
2653 fec_suspend(struct device *dev)
2654 {
2655         struct net_device *ndev = dev_get_drvdata(dev);
2656         struct fec_enet_private *fep = netdev_priv(ndev);
2657
2658         if (netif_running(ndev)) {
2659                 fec_stop(ndev);
2660                 netif_device_detach(ndev);
2661         }
2662         fec_enet_clk_enable(ndev, false);
2663         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2664
2665         if (fep->reg_phy)
2666                 regulator_disable(fep->reg_phy);
2667
2668         return 0;
2669 }
2670
2671 static int
2672 fec_resume(struct device *dev)
2673 {
2674         struct net_device *ndev = dev_get_drvdata(dev);
2675         struct fec_enet_private *fep = netdev_priv(ndev);
2676         int ret;
2677
2678         if (fep->reg_phy) {
2679                 ret = regulator_enable(fep->reg_phy);
2680                 if (ret)
2681                         return ret;
2682         }
2683
2684         pinctrl_pm_select_default_state(&fep->pdev->dev);
2685         ret = fec_enet_clk_enable(ndev, true);
2686         if (ret)
2687                 goto failed_clk;
2688
2689         if (netif_running(ndev)) {
2690                 fec_restart(ndev, fep->full_duplex);
2691                 netif_device_attach(ndev);
2692         }
2693
2694         return 0;
2695
2696 failed_clk:
2697         if (fep->reg_phy)
2698                 regulator_disable(fep->reg_phy);
2699         return ret;
2700 }
2701 #endif /* CONFIG_PM_SLEEP */
2702
2703 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2704
2705 static struct platform_driver fec_driver = {
2706         .driver = {
2707                 .name   = DRIVER_NAME,
2708                 .owner  = THIS_MODULE,
2709                 .pm     = &fec_pm_ops,
2710                 .of_match_table = fec_dt_ids,
2711         },
2712         .id_table = fec_devtype,
2713         .probe  = fec_probe,
2714         .remove = fec_drv_remove,
2715 };
2716
2717 module_platform_driver(fec_driver);
2718
2719 MODULE_ALIAS("platform:"DRIVER_NAME);
2720 MODULE_LICENSE("GPL");