]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/ethernet/freescale/gianfar.c
803ed4c93503405369b5c4144ce3391698b08110
[linux-beck.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (1*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120                                 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159
160         bdp->bufPtr = cpu_to_be32(buf);
161
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166         gfar_wmb();
167
168         bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar __iomem *regs = priv->gfargrp[0].regs;
175         struct gfar_priv_tx_q *tx_queue = NULL;
176         struct gfar_priv_rx_q *rx_queue = NULL;
177         struct txbd8 *txbdp;
178         u32 __iomem *rfbptr;
179         int i, j;
180
181         for (i = 0; i < priv->num_tx_queues; i++) {
182                 tx_queue = priv->tx_queue[i];
183                 /* Initialize some variables in our dev structure */
184                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186                 tx_queue->cur_tx = tx_queue->tx_bd_base;
187                 tx_queue->skb_curtx = 0;
188                 tx_queue->skb_dirtytx = 0;
189
190                 /* Initialize Transmit Descriptor Ring */
191                 txbdp = tx_queue->tx_bd_base;
192                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193                         txbdp->lstatus = 0;
194                         txbdp->bufPtr = 0;
195                         txbdp++;
196                 }
197
198                 /* Set the last descriptor in the ring to indicate wrap */
199                 txbdp--;
200                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201                                             TXBD_WRAP);
202         }
203
204         rfbptr = &regs->rfbptr0;
205         for (i = 0; i < priv->num_rx_queues; i++) {
206                 rx_queue = priv->rx_queue[i];
207
208                 rx_queue->next_to_clean = 0;
209                 rx_queue->next_to_use = 0;
210                 rx_queue->next_to_alloc = 0;
211
212                 /* make sure next_to_clean != next_to_use after this
213                  * by leaving at least 1 unused descriptor
214                  */
215                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217                 rx_queue->rfbptr = rfbptr;
218                 rfbptr += 2;
219         }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224         void *vaddr;
225         dma_addr_t addr;
226         int i, j;
227         struct gfar_private *priv = netdev_priv(ndev);
228         struct device *dev = priv->dev;
229         struct gfar_priv_tx_q *tx_queue = NULL;
230         struct gfar_priv_rx_q *rx_queue = NULL;
231
232         priv->total_tx_ring_size = 0;
233         for (i = 0; i < priv->num_tx_queues; i++)
234                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236         priv->total_rx_ring_size = 0;
237         for (i = 0; i < priv->num_rx_queues; i++)
238                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240         /* Allocate memory for the buffer descriptors */
241         vaddr = dma_alloc_coherent(dev,
242                                    (priv->total_tx_ring_size *
243                                     sizeof(struct txbd8)) +
244                                    (priv->total_rx_ring_size *
245                                     sizeof(struct rxbd8)),
246                                    &addr, GFP_KERNEL);
247         if (!vaddr)
248                 return -ENOMEM;
249
250         for (i = 0; i < priv->num_tx_queues; i++) {
251                 tx_queue = priv->tx_queue[i];
252                 tx_queue->tx_bd_base = vaddr;
253                 tx_queue->tx_bd_dma_base = addr;
254                 tx_queue->dev = ndev;
255                 /* enet DMA only understands physical addresses */
256                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258         }
259
260         /* Start the rx descriptor ring where the tx ring leaves off */
261         for (i = 0; i < priv->num_rx_queues; i++) {
262                 rx_queue = priv->rx_queue[i];
263                 rx_queue->rx_bd_base = vaddr;
264                 rx_queue->rx_bd_dma_base = addr;
265                 rx_queue->ndev = ndev;
266                 rx_queue->dev = dev;
267                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269         }
270
271         /* Setup the skbuff rings */
272         for (i = 0; i < priv->num_tx_queues; i++) {
273                 tx_queue = priv->tx_queue[i];
274                 tx_queue->tx_skbuff =
275                         kmalloc_array(tx_queue->tx_ring_size,
276                                       sizeof(*tx_queue->tx_skbuff),
277                                       GFP_KERNEL);
278                 if (!tx_queue->tx_skbuff)
279                         goto cleanup;
280
281                 for (j = 0; j < tx_queue->tx_ring_size; j++)
282                         tx_queue->tx_skbuff[j] = NULL;
283         }
284
285         for (i = 0; i < priv->num_rx_queues; i++) {
286                 rx_queue = priv->rx_queue[i];
287                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288                                             sizeof(*rx_queue->rx_buff),
289                                             GFP_KERNEL);
290                 if (!rx_queue->rx_buff)
291                         goto cleanup;
292         }
293
294         gfar_init_bds(ndev);
295
296         return 0;
297
298 cleanup:
299         free_skb_resources(priv);
300         return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305         struct gfar __iomem *regs = priv->gfargrp[0].regs;
306         u32 __iomem *baddr;
307         int i;
308
309         baddr = &regs->tbase0;
310         for (i = 0; i < priv->num_tx_queues; i++) {
311                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312                 baddr += 2;
313         }
314
315         baddr = &regs->rbase0;
316         for (i = 0; i < priv->num_rx_queues; i++) {
317                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318                 baddr += 2;
319         }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324         struct gfar __iomem *regs = priv->gfargrp[0].regs;
325         u32 __iomem *baddr;
326         int i;
327
328         baddr = &regs->rqprm0;
329         for (i = 0; i < priv->num_rx_queues; i++) {
330                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332                 baddr++;
333         }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338         /* set this when rx hw offload (TOE) functions are being used */
339         priv->uses_rxfcb = 0;
340
341         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342                 priv->uses_rxfcb = 1;
343
344         if (priv->hwts_rx_en)
345                 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350         struct gfar __iomem *regs = priv->gfargrp[0].regs;
351         u32 rctrl = 0;
352
353         if (priv->rx_filer_enable) {
354                 rctrl |= RCTRL_FILREN;
355                 /* Program the RIR0 reg with the required distribution */
356                 if (priv->poll_mode == GFAR_SQ_POLLING)
357                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358                 else /* GFAR_MQ_POLLING */
359                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360         }
361
362         /* Restore PROMISC mode */
363         if (priv->ndev->flags & IFF_PROMISC)
364                 rctrl |= RCTRL_PROM;
365
366         if (priv->ndev->features & NETIF_F_RXCSUM)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash)
370                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Enable HW time stamping if requested from user space */
378         if (priv->hwts_rx_en)
379                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384         /* Clear the LFC bit */
385         gfar_write(&regs->rctrl, rctrl);
386         /* Init flow control threshold values */
387         gfar_init_rqprm(priv);
388         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389         rctrl |= RCTRL_LFC;
390
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397         struct gfar __iomem *regs = priv->gfargrp[0].regs;
398         u32 tctrl = 0;
399
400         if (priv->ndev->features & NETIF_F_IP_CSUM)
401                 tctrl |= TCTRL_INIT_CSUM;
402
403         if (priv->prio_sched_en)
404                 tctrl |= TCTRL_TXSCHED_PRIO;
405         else {
406                 tctrl |= TCTRL_TXSCHED_WRRS;
407                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409         }
410
411         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412                 tctrl |= TCTRL_VLINS;
413
414         gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418                                unsigned long tx_mask, unsigned long rx_mask)
419 {
420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
421         u32 __iomem *baddr;
422
423         if (priv->mode == MQ_MG_MODE) {
424                 int i = 0;
425
426                 baddr = &regs->txic0;
427                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428                         gfar_write(baddr + i, 0);
429                         if (likely(priv->tx_queue[i]->txcoalescing))
430                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431                 }
432
433                 baddr = &regs->rxic0;
434                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435                         gfar_write(baddr + i, 0);
436                         if (likely(priv->rx_queue[i]->rxcoalescing))
437                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438                 }
439         } else {
440                 /* Backward compatible case -- even if we enable
441                  * multiple queues, there's only single reg to program
442                  */
443                 gfar_write(&regs->txic, 0);
444                 if (likely(priv->tx_queue[0]->txcoalescing))
445                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447                 gfar_write(&regs->rxic, 0);
448                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450         }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455         gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460         struct gfar_private *priv = netdev_priv(dev);
461         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462         unsigned long tx_packets = 0, tx_bytes = 0;
463         int i;
464
465         for (i = 0; i < priv->num_rx_queues; i++) {
466                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469         }
470
471         dev->stats.rx_packets = rx_packets;
472         dev->stats.rx_bytes   = rx_bytes;
473         dev->stats.rx_dropped = rx_dropped;
474
475         for (i = 0; i < priv->num_tx_queues; i++) {
476                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478         }
479
480         dev->stats.tx_bytes   = tx_bytes;
481         dev->stats.tx_packets = tx_packets;
482
483         return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488         eth_mac_addr(dev, p);
489
490         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492         return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496         .ndo_open = gfar_enet_open,
497         .ndo_start_xmit = gfar_start_xmit,
498         .ndo_stop = gfar_close,
499         .ndo_change_mtu = gfar_change_mtu,
500         .ndo_set_features = gfar_set_features,
501         .ndo_set_rx_mode = gfar_set_multi,
502         .ndo_tx_timeout = gfar_timeout,
503         .ndo_do_ioctl = gfar_ioctl,
504         .ndo_get_stats = gfar_get_stats,
505         .ndo_set_mac_address = gfar_set_mac_addr,
506         .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508         .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514         int i;
515         for (i = 0; i < priv->num_grps; i++) {
516                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517                 /* Clear IEVENT */
518                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520                 /* Initialize IMASK */
521                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522         }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527         int i;
528         for (i = 0; i < priv->num_grps; i++) {
529                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530                 /* Unmask the interrupts we look for */
531                 gfar_write(&regs->imask, IMASK_DEFAULT);
532         }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537         int i;
538
539         for (i = 0; i < priv->num_tx_queues; i++) {
540                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541                                             GFP_KERNEL);
542                 if (!priv->tx_queue[i])
543                         return -ENOMEM;
544
545                 priv->tx_queue[i]->tx_skbuff = NULL;
546                 priv->tx_queue[i]->qindex = i;
547                 priv->tx_queue[i]->dev = priv->ndev;
548                 spin_lock_init(&(priv->tx_queue[i]->txlock));
549         }
550         return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555         int i;
556
557         for (i = 0; i < priv->num_rx_queues; i++) {
558                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559                                             GFP_KERNEL);
560                 if (!priv->rx_queue[i])
561                         return -ENOMEM;
562
563                 priv->rx_queue[i]->qindex = i;
564                 priv->rx_queue[i]->ndev = priv->ndev;
565         }
566         return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571         int i;
572
573         for (i = 0; i < priv->num_tx_queues; i++)
574                 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579         int i;
580
581         for (i = 0; i < priv->num_rx_queues; i++)
582                 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587         int i;
588
589         for (i = 0; i < MAXGROUPS; i++)
590                 if (priv->gfargrp[i].regs)
591                         iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596         int i, j;
597
598         for (i = 0; i < priv->num_grps; i++)
599                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600                         kfree(priv->gfargrp[i].irqinfo[j]);
601                         priv->gfargrp[i].irqinfo[j] = NULL;
602                 }
603
604         free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609         int i;
610
611         for (i = 0; i < priv->num_grps; i++) {
612                 napi_disable(&priv->gfargrp[i].napi_rx);
613                 napi_disable(&priv->gfargrp[i].napi_tx);
614         }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619         int i;
620
621         for (i = 0; i < priv->num_grps; i++) {
622                 napi_enable(&priv->gfargrp[i].napi_rx);
623                 napi_enable(&priv->gfargrp[i].napi_tx);
624         }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628                             struct gfar_private *priv, const char *model)
629 {
630         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631         int i;
632
633         for (i = 0; i < GFAR_NUM_IRQS; i++) {
634                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635                                           GFP_KERNEL);
636                 if (!grp->irqinfo[i])
637                         return -ENOMEM;
638         }
639
640         grp->regs = of_iomap(np, 0);
641         if (!grp->regs)
642                 return -ENOMEM;
643
644         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646         /* If we aren't the FEC we have multiple interrupts */
647         if (model && strcasecmp(model, "FEC")) {
648                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651                     gfar_irq(grp, RX)->irq == NO_IRQ ||
652                     gfar_irq(grp, ER)->irq == NO_IRQ)
653                         return -EINVAL;
654         }
655
656         grp->priv = priv;
657         spin_lock_init(&grp->grplock);
658         if (priv->mode == MQ_MG_MODE) {
659                 u32 rxq_mask, txq_mask;
660                 int ret;
661
662                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666                 if (!ret) {
667                         grp->rx_bit_map = rxq_mask ?
668                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669                 }
670
671                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672                 if (!ret) {
673                         grp->tx_bit_map = txq_mask ?
674                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675                 }
676
677                 if (priv->poll_mode == GFAR_SQ_POLLING) {
678                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681                 }
682         } else {
683                 grp->rx_bit_map = 0xFF;
684                 grp->tx_bit_map = 0xFF;
685         }
686
687         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688          * right to left, so we need to revert the 8 bits to get the q index
689          */
690         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694          * also assign queues to groups
695          */
696         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697                 if (!grp->rx_queue)
698                         grp->rx_queue = priv->rx_queue[i];
699                 grp->num_rx_queues++;
700                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702                 priv->rx_queue[i]->grp = grp;
703         }
704
705         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706                 if (!grp->tx_queue)
707                         grp->tx_queue = priv->tx_queue[i];
708                 grp->num_tx_queues++;
709                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710                 priv->tqueue |= (TQUEUE_EN0 >> i);
711                 priv->tx_queue[i]->grp = grp;
712         }
713
714         priv->num_grps++;
715
716         return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721         struct device_node *child;
722         int num = 0;
723
724         for_each_available_child_of_node(np, child)
725                 if (!of_node_cmp(child->name, "queue-group"))
726                         num++;
727
728         return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733         const char *model;
734         const char *ctype;
735         const void *mac_addr;
736         int err = 0, i;
737         struct net_device *dev = NULL;
738         struct gfar_private *priv = NULL;
739         struct device_node *np = ofdev->dev.of_node;
740         struct device_node *child = NULL;
741         struct property *stash;
742         u32 stash_len = 0;
743         u32 stash_idx = 0;
744         unsigned int num_tx_qs, num_rx_qs;
745         unsigned short mode, poll_mode;
746
747         if (!np)
748                 return -ENODEV;
749
750         if (of_device_is_compatible(np, "fsl,etsec2")) {
751                 mode = MQ_MG_MODE;
752                 poll_mode = GFAR_SQ_POLLING;
753         } else {
754                 mode = SQ_SG_MODE;
755                 poll_mode = GFAR_SQ_POLLING;
756         }
757
758         if (mode == SQ_SG_MODE) {
759                 num_tx_qs = 1;
760                 num_rx_qs = 1;
761         } else { /* MQ_MG_MODE */
762                 /* get the actual number of supported groups */
763                 unsigned int num_grps = gfar_of_group_count(np);
764
765                 if (num_grps == 0 || num_grps > MAXGROUPS) {
766                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767                                 num_grps);
768                         pr_err("Cannot do alloc_etherdev, aborting\n");
769                         return -EINVAL;
770                 }
771
772                 if (poll_mode == GFAR_SQ_POLLING) {
773                         num_tx_qs = num_grps; /* one txq per int group */
774                         num_rx_qs = num_grps; /* one rxq per int group */
775                 } else { /* GFAR_MQ_POLLING */
776                         u32 tx_queues, rx_queues;
777                         int ret;
778
779                         /* parse the num of HW tx and rx queues */
780                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
781                                                    &tx_queues);
782                         num_tx_qs = ret ? 1 : tx_queues;
783
784                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
785                                                    &rx_queues);
786                         num_rx_qs = ret ? 1 : rx_queues;
787                 }
788         }
789
790         if (num_tx_qs > MAX_TX_QS) {
791                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792                        num_tx_qs, MAX_TX_QS);
793                 pr_err("Cannot do alloc_etherdev, aborting\n");
794                 return -EINVAL;
795         }
796
797         if (num_rx_qs > MAX_RX_QS) {
798                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799                        num_rx_qs, MAX_RX_QS);
800                 pr_err("Cannot do alloc_etherdev, aborting\n");
801                 return -EINVAL;
802         }
803
804         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805         dev = *pdev;
806         if (NULL == dev)
807                 return -ENOMEM;
808
809         priv = netdev_priv(dev);
810         priv->ndev = dev;
811
812         priv->mode = mode;
813         priv->poll_mode = poll_mode;
814
815         priv->num_tx_queues = num_tx_qs;
816         netif_set_real_num_rx_queues(dev, num_rx_qs);
817         priv->num_rx_queues = num_rx_qs;
818
819         err = gfar_alloc_tx_queues(priv);
820         if (err)
821                 goto tx_alloc_failed;
822
823         err = gfar_alloc_rx_queues(priv);
824         if (err)
825                 goto rx_alloc_failed;
826
827         err = of_property_read_string(np, "model", &model);
828         if (err) {
829                 pr_err("Device model property missing, aborting\n");
830                 goto rx_alloc_failed;
831         }
832
833         /* Init Rx queue filer rule set linked list */
834         INIT_LIST_HEAD(&priv->rx_list.list);
835         priv->rx_list.count = 0;
836         mutex_init(&priv->rx_queue_access);
837
838         for (i = 0; i < MAXGROUPS; i++)
839                 priv->gfargrp[i].regs = NULL;
840
841         /* Parse and initialize group specific information */
842         if (priv->mode == MQ_MG_MODE) {
843                 for_each_available_child_of_node(np, child) {
844                         if (of_node_cmp(child->name, "queue-group"))
845                                 continue;
846
847                         err = gfar_parse_group(child, priv, model);
848                         if (err)
849                                 goto err_grp_init;
850                 }
851         } else { /* SQ_SG_MODE */
852                 err = gfar_parse_group(np, priv, model);
853                 if (err)
854                         goto err_grp_init;
855         }
856
857         stash = of_find_property(np, "bd-stash", NULL);
858
859         if (stash) {
860                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861                 priv->bd_stash_en = 1;
862         }
863
864         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865
866         if (err == 0)
867                 priv->rx_stash_size = stash_len;
868
869         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870
871         if (err == 0)
872                 priv->rx_stash_index = stash_idx;
873
874         if (stash_len || stash_idx)
875                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876
877         mac_addr = of_get_mac_address(np);
878
879         if (mac_addr)
880                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881
882         if (model && !strcasecmp(model, "TSEC"))
883                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884                                      FSL_GIANFAR_DEV_HAS_COALESCE |
885                                      FSL_GIANFAR_DEV_HAS_RMON |
886                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887
888         if (model && !strcasecmp(model, "eTSEC"))
889                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890                                      FSL_GIANFAR_DEV_HAS_COALESCE |
891                                      FSL_GIANFAR_DEV_HAS_RMON |
892                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893                                      FSL_GIANFAR_DEV_HAS_CSUM |
894                                      FSL_GIANFAR_DEV_HAS_VLAN |
895                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897                                      FSL_GIANFAR_DEV_HAS_TIMER;
898
899         err = of_property_read_string(np, "phy-connection-type", &ctype);
900
901         /* We only care about rgmii-id.  The rest are autodetected */
902         if (err == 0 && !strcmp(ctype, "rgmii-id"))
903                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904         else
905                 priv->interface = PHY_INTERFACE_MODE_MII;
906
907         if (of_find_property(np, "fsl,magic-packet", NULL))
908                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909
910         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911
912         /* In the case of a fixed PHY, the DT node associated
913          * to the PHY is the Ethernet MAC DT node.
914          */
915         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916                 err = of_phy_register_fixed_link(np);
917                 if (err)
918                         goto err_grp_init;
919
920                 priv->phy_node = of_node_get(np);
921         }
922
923         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
924         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925
926         return 0;
927
928 err_grp_init:
929         unmap_group_regs(priv);
930 rx_alloc_failed:
931         gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933         gfar_free_tx_queues(priv);
934         free_gfar_dev(priv);
935         return err;
936 }
937
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940         struct hwtstamp_config config;
941         struct gfar_private *priv = netdev_priv(netdev);
942
943         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944                 return -EFAULT;
945
946         /* reserved for future extensions */
947         if (config.flags)
948                 return -EINVAL;
949
950         switch (config.tx_type) {
951         case HWTSTAMP_TX_OFF:
952                 priv->hwts_tx_en = 0;
953                 break;
954         case HWTSTAMP_TX_ON:
955                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956                         return -ERANGE;
957                 priv->hwts_tx_en = 1;
958                 break;
959         default:
960                 return -ERANGE;
961         }
962
963         switch (config.rx_filter) {
964         case HWTSTAMP_FILTER_NONE:
965                 if (priv->hwts_rx_en) {
966                         priv->hwts_rx_en = 0;
967                         reset_gfar(netdev);
968                 }
969                 break;
970         default:
971                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972                         return -ERANGE;
973                 if (!priv->hwts_rx_en) {
974                         priv->hwts_rx_en = 1;
975                         reset_gfar(netdev);
976                 }
977                 config.rx_filter = HWTSTAMP_FILTER_ALL;
978                 break;
979         }
980
981         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982                 -EFAULT : 0;
983 }
984
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987         struct hwtstamp_config config;
988         struct gfar_private *priv = netdev_priv(netdev);
989
990         config.flags = 0;
991         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992         config.rx_filter = (priv->hwts_rx_en ?
993                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994
995         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996                 -EFAULT : 0;
997 }
998
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001         struct gfar_private *priv = netdev_priv(dev);
1002
1003         if (!netif_running(dev))
1004                 return -EINVAL;
1005
1006         if (cmd == SIOCSHWTSTAMP)
1007                 return gfar_hwtstamp_set(dev, rq);
1008         if (cmd == SIOCGHWTSTAMP)
1009                 return gfar_hwtstamp_get(dev, rq);
1010
1011         if (!priv->phydev)
1012                 return -ENODEV;
1013
1014         return phy_mii_ioctl(priv->phydev, rq, cmd);
1015 }
1016
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018                                    u32 class)
1019 {
1020         u32 rqfpr = FPR_FILER_MASK;
1021         u32 rqfcr = 0x0;
1022
1023         rqfar--;
1024         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025         priv->ftp_rqfpr[rqfar] = rqfpr;
1026         priv->ftp_rqfcr[rqfar] = rqfcr;
1027         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028
1029         rqfar--;
1030         rqfcr = RQFCR_CMP_NOMATCH;
1031         priv->ftp_rqfpr[rqfar] = rqfpr;
1032         priv->ftp_rqfcr[rqfar] = rqfcr;
1033         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034
1035         rqfar--;
1036         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037         rqfpr = class;
1038         priv->ftp_rqfcr[rqfar] = rqfcr;
1039         priv->ftp_rqfpr[rqfar] = rqfpr;
1040         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041
1042         rqfar--;
1043         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044         rqfpr = class;
1045         priv->ftp_rqfcr[rqfar] = rqfcr;
1046         priv->ftp_rqfpr[rqfar] = rqfpr;
1047         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048
1049         return rqfar;
1050 }
1051
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054         int i = 0x0;
1055         u32 rqfar = MAX_FILER_IDX;
1056         u32 rqfcr = 0x0;
1057         u32 rqfpr = FPR_FILER_MASK;
1058
1059         /* Default rule */
1060         rqfcr = RQFCR_CMP_MATCH;
1061         priv->ftp_rqfcr[rqfar] = rqfcr;
1062         priv->ftp_rqfpr[rqfar] = rqfpr;
1063         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064
1065         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071
1072         /* cur_filer_idx indicated the first non-masked rule */
1073         priv->cur_filer_idx = rqfar;
1074
1075         /* Rest are masked rules */
1076         rqfcr = RQFCR_CMP_NOMATCH;
1077         for (i = 0; i < rqfar; i++) {
1078                 priv->ftp_rqfcr[i] = rqfcr;
1079                 priv->ftp_rqfpr[i] = rqfpr;
1080                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1081         }
1082 }
1083
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087         unsigned int pvr = mfspr(SPRN_PVR);
1088         unsigned int svr = mfspr(SPRN_SVR);
1089         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090         unsigned int rev = svr & 0xffff;
1091
1092         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1093         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095                 priv->errata |= GFAR_ERRATA_74;
1096
1097         /* MPC8313 and MPC837x all rev */
1098         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100                 priv->errata |= GFAR_ERRATA_76;
1101
1102         /* MPC8313 Rev < 2.0 */
1103         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104                 priv->errata |= GFAR_ERRATA_12;
1105 }
1106
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109         unsigned int svr = mfspr(SPRN_SVR);
1110
1111         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112                 priv->errata |= GFAR_ERRATA_12;
1113         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1115                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1116 }
1117 #endif
1118
1119 static void gfar_detect_errata(struct gfar_private *priv)
1120 {
1121         struct device *dev = &priv->ofdev->dev;
1122
1123         /* no plans to fix */
1124         priv->errata |= GFAR_ERRATA_A002;
1125
1126 #ifdef CONFIG_PPC
1127         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1128                 __gfar_detect_errata_85xx(priv);
1129         else /* non-mpc85xx parts, i.e. e300 core based */
1130                 __gfar_detect_errata_83xx(priv);
1131 #endif
1132
1133         if (priv->errata)
1134                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1135                          priv->errata);
1136 }
1137
1138 void gfar_mac_reset(struct gfar_private *priv)
1139 {
1140         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1141         u32 tempval;
1142
1143         /* Reset MAC layer */
1144         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1145
1146         /* We need to delay at least 3 TX clocks */
1147         udelay(3);
1148
1149         /* the soft reset bit is not self-resetting, so we need to
1150          * clear it before resuming normal operation
1151          */
1152         gfar_write(&regs->maccfg1, 0);
1153
1154         udelay(3);
1155
1156         gfar_rx_offload_en(priv);
1157
1158         /* Initialize the max receive frame/buffer lengths */
1159         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1160         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1161
1162         /* Initialize the Minimum Frame Length Register */
1163         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1164
1165         /* Initialize MACCFG2. */
1166         tempval = MACCFG2_INIT_SETTINGS;
1167
1168         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1169          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1170          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1171          */
1172         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1173                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1174
1175         gfar_write(&regs->maccfg2, tempval);
1176
1177         /* Clear mac addr hash registers */
1178         gfar_write(&regs->igaddr0, 0);
1179         gfar_write(&regs->igaddr1, 0);
1180         gfar_write(&regs->igaddr2, 0);
1181         gfar_write(&regs->igaddr3, 0);
1182         gfar_write(&regs->igaddr4, 0);
1183         gfar_write(&regs->igaddr5, 0);
1184         gfar_write(&regs->igaddr6, 0);
1185         gfar_write(&regs->igaddr7, 0);
1186
1187         gfar_write(&regs->gaddr0, 0);
1188         gfar_write(&regs->gaddr1, 0);
1189         gfar_write(&regs->gaddr2, 0);
1190         gfar_write(&regs->gaddr3, 0);
1191         gfar_write(&regs->gaddr4, 0);
1192         gfar_write(&regs->gaddr5, 0);
1193         gfar_write(&regs->gaddr6, 0);
1194         gfar_write(&regs->gaddr7, 0);
1195
1196         if (priv->extended_hash)
1197                 gfar_clear_exact_match(priv->ndev);
1198
1199         gfar_mac_rx_config(priv);
1200
1201         gfar_mac_tx_config(priv);
1202
1203         gfar_set_mac_address(priv->ndev);
1204
1205         gfar_set_multi(priv->ndev);
1206
1207         /* clear ievent and imask before configuring coalescing */
1208         gfar_ints_disable(priv);
1209
1210         /* Configure the coalescing support */
1211         gfar_configure_coalescing_all(priv);
1212 }
1213
1214 static void gfar_hw_init(struct gfar_private *priv)
1215 {
1216         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217         u32 attrs;
1218
1219         /* Stop the DMA engine now, in case it was running before
1220          * (The firmware could have used it, and left it running).
1221          */
1222         gfar_halt(priv);
1223
1224         gfar_mac_reset(priv);
1225
1226         /* Zero out the rmon mib registers if it has them */
1227         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1228                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1229
1230                 /* Mask off the CAM interrupts */
1231                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1232                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1233         }
1234
1235         /* Initialize ECNTRL */
1236         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1237
1238         /* Set the extraction length and index */
1239         attrs = ATTRELI_EL(priv->rx_stash_size) |
1240                 ATTRELI_EI(priv->rx_stash_index);
1241
1242         gfar_write(&regs->attreli, attrs);
1243
1244         /* Start with defaults, and add stashing
1245          * depending on driver parameters
1246          */
1247         attrs = ATTR_INIT_SETTINGS;
1248
1249         if (priv->bd_stash_en)
1250                 attrs |= ATTR_BDSTASH;
1251
1252         if (priv->rx_stash_size != 0)
1253                 attrs |= ATTR_BUFSTASH;
1254
1255         gfar_write(&regs->attr, attrs);
1256
1257         /* FIFO configs */
1258         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1259         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1260         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1261
1262         /* Program the interrupt steering regs, only for MG devices */
1263         if (priv->num_grps > 1)
1264                 gfar_write_isrg(priv);
1265 }
1266
1267 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1268 {
1269         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270
1271         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1272                 priv->extended_hash = 1;
1273                 priv->hash_width = 9;
1274
1275                 priv->hash_regs[0] = &regs->igaddr0;
1276                 priv->hash_regs[1] = &regs->igaddr1;
1277                 priv->hash_regs[2] = &regs->igaddr2;
1278                 priv->hash_regs[3] = &regs->igaddr3;
1279                 priv->hash_regs[4] = &regs->igaddr4;
1280                 priv->hash_regs[5] = &regs->igaddr5;
1281                 priv->hash_regs[6] = &regs->igaddr6;
1282                 priv->hash_regs[7] = &regs->igaddr7;
1283                 priv->hash_regs[8] = &regs->gaddr0;
1284                 priv->hash_regs[9] = &regs->gaddr1;
1285                 priv->hash_regs[10] = &regs->gaddr2;
1286                 priv->hash_regs[11] = &regs->gaddr3;
1287                 priv->hash_regs[12] = &regs->gaddr4;
1288                 priv->hash_regs[13] = &regs->gaddr5;
1289                 priv->hash_regs[14] = &regs->gaddr6;
1290                 priv->hash_regs[15] = &regs->gaddr7;
1291
1292         } else {
1293                 priv->extended_hash = 0;
1294                 priv->hash_width = 8;
1295
1296                 priv->hash_regs[0] = &regs->gaddr0;
1297                 priv->hash_regs[1] = &regs->gaddr1;
1298                 priv->hash_regs[2] = &regs->gaddr2;
1299                 priv->hash_regs[3] = &regs->gaddr3;
1300                 priv->hash_regs[4] = &regs->gaddr4;
1301                 priv->hash_regs[5] = &regs->gaddr5;
1302                 priv->hash_regs[6] = &regs->gaddr6;
1303                 priv->hash_regs[7] = &regs->gaddr7;
1304         }
1305 }
1306
1307 /* Set up the ethernet device structure, private data,
1308  * and anything else we need before we start
1309  */
1310 static int gfar_probe(struct platform_device *ofdev)
1311 {
1312         struct net_device *dev = NULL;
1313         struct gfar_private *priv = NULL;
1314         int err = 0, i;
1315
1316         err = gfar_of_init(ofdev, &dev);
1317
1318         if (err)
1319                 return err;
1320
1321         priv = netdev_priv(dev);
1322         priv->ndev = dev;
1323         priv->ofdev = ofdev;
1324         priv->dev = &ofdev->dev;
1325         SET_NETDEV_DEV(dev, &ofdev->dev);
1326
1327         INIT_WORK(&priv->reset_task, gfar_reset_task);
1328
1329         platform_set_drvdata(ofdev, priv);
1330
1331         gfar_detect_errata(priv);
1332
1333         /* Set the dev->base_addr to the gfar reg region */
1334         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1335
1336         /* Fill in the dev structure */
1337         dev->watchdog_timeo = TX_TIMEOUT;
1338         dev->mtu = 1500;
1339         dev->netdev_ops = &gfar_netdev_ops;
1340         dev->ethtool_ops = &gfar_ethtool_ops;
1341
1342         /* Register for napi ...We are registering NAPI for each grp */
1343         for (i = 0; i < priv->num_grps; i++) {
1344                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1345                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1346                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1347                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1348                                        gfar_poll_tx_sq, 2);
1349                 } else {
1350                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1352                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353                                        gfar_poll_tx, 2);
1354                 }
1355         }
1356
1357         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1358                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1359                                    NETIF_F_RXCSUM;
1360                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1361                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1362         }
1363
1364         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1365                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1366                                     NETIF_F_HW_VLAN_CTAG_RX;
1367                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1368         }
1369
1370         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1371
1372         gfar_init_addr_hash_table(priv);
1373
1374         /* Insert receive time stamps into padding alignment bytes */
1375         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1376                 priv->padding = 8;
1377
1378         if (dev->features & NETIF_F_IP_CSUM ||
1379             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380                 dev->needed_headroom = GMAC_FCB_LEN;
1381
1382         /* Initializing some of the rx/tx queue level parameters */
1383         for (i = 0; i < priv->num_tx_queues; i++) {
1384                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1385                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1386                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1387                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1388         }
1389
1390         for (i = 0; i < priv->num_rx_queues; i++) {
1391                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1392                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1393                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1394         }
1395
1396         /* always enable rx filer */
1397         priv->rx_filer_enable = 1;
1398         /* Enable most messages by default */
1399         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1400         /* use pritority h/w tx queue scheduling for single queue devices */
1401         if (priv->num_tx_queues == 1)
1402                 priv->prio_sched_en = 1;
1403
1404         set_bit(GFAR_DOWN, &priv->state);
1405
1406         gfar_hw_init(priv);
1407
1408         /* Carrier starts down, phylib will bring it up */
1409         netif_carrier_off(dev);
1410
1411         err = register_netdev(dev);
1412
1413         if (err) {
1414                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1415                 goto register_fail;
1416         }
1417
1418         device_set_wakeup_capable(&dev->dev, priv->device_flags &
1419                                   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1420
1421         /* fill out IRQ number and name fields */
1422         for (i = 0; i < priv->num_grps; i++) {
1423                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1424                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1425                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1426                                 dev->name, "_g", '0' + i, "_tx");
1427                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1428                                 dev->name, "_g", '0' + i, "_rx");
1429                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1430                                 dev->name, "_g", '0' + i, "_er");
1431                 } else
1432                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1433         }
1434
1435         /* Initialize the filer table */
1436         gfar_init_filer_table(priv);
1437
1438         /* Print out the device info */
1439         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1440
1441         /* Even more device info helps when determining which kernel
1442          * provided which set of benchmarks.
1443          */
1444         netdev_info(dev, "Running with NAPI enabled\n");
1445         for (i = 0; i < priv->num_rx_queues; i++)
1446                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1447                             i, priv->rx_queue[i]->rx_ring_size);
1448         for (i = 0; i < priv->num_tx_queues; i++)
1449                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1450                             i, priv->tx_queue[i]->tx_ring_size);
1451
1452         return 0;
1453
1454 register_fail:
1455         unmap_group_regs(priv);
1456         gfar_free_rx_queues(priv);
1457         gfar_free_tx_queues(priv);
1458         of_node_put(priv->phy_node);
1459         of_node_put(priv->tbi_node);
1460         free_gfar_dev(priv);
1461         return err;
1462 }
1463
1464 static int gfar_remove(struct platform_device *ofdev)
1465 {
1466         struct gfar_private *priv = platform_get_drvdata(ofdev);
1467
1468         of_node_put(priv->phy_node);
1469         of_node_put(priv->tbi_node);
1470
1471         unregister_netdev(priv->ndev);
1472         unmap_group_regs(priv);
1473         gfar_free_rx_queues(priv);
1474         gfar_free_tx_queues(priv);
1475         free_gfar_dev(priv);
1476
1477         return 0;
1478 }
1479
1480 #ifdef CONFIG_PM
1481
1482 static int gfar_suspend(struct device *dev)
1483 {
1484         struct gfar_private *priv = dev_get_drvdata(dev);
1485         struct net_device *ndev = priv->ndev;
1486         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487         u32 tempval;
1488         int magic_packet = priv->wol_en &&
1489                            (priv->device_flags &
1490                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1491
1492         if (!netif_running(ndev))
1493                 return 0;
1494
1495         disable_napi(priv);
1496         netif_tx_lock(ndev);
1497         netif_device_detach(ndev);
1498         netif_tx_unlock(ndev);
1499
1500         gfar_halt(priv);
1501
1502         if (magic_packet) {
1503                 /* Enable interrupt on Magic Packet */
1504                 gfar_write(&regs->imask, IMASK_MAG);
1505
1506                 /* Enable Magic Packet mode */
1507                 tempval = gfar_read(&regs->maccfg2);
1508                 tempval |= MACCFG2_MPEN;
1509                 gfar_write(&regs->maccfg2, tempval);
1510
1511                 /* re-enable the Rx block */
1512                 tempval = gfar_read(&regs->maccfg1);
1513                 tempval |= MACCFG1_RX_EN;
1514                 gfar_write(&regs->maccfg1, tempval);
1515
1516         } else {
1517                 phy_stop(priv->phydev);
1518         }
1519
1520         return 0;
1521 }
1522
1523 static int gfar_resume(struct device *dev)
1524 {
1525         struct gfar_private *priv = dev_get_drvdata(dev);
1526         struct net_device *ndev = priv->ndev;
1527         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1528         u32 tempval;
1529         int magic_packet = priv->wol_en &&
1530                            (priv->device_flags &
1531                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532
1533         if (!netif_running(ndev))
1534                 return 0;
1535
1536         if (magic_packet) {
1537                 /* Disable Magic Packet mode */
1538                 tempval = gfar_read(&regs->maccfg2);
1539                 tempval &= ~MACCFG2_MPEN;
1540                 gfar_write(&regs->maccfg2, tempval);
1541         } else {
1542                 phy_start(priv->phydev);
1543         }
1544
1545         gfar_start(priv);
1546
1547         netif_device_attach(ndev);
1548         enable_napi(priv);
1549
1550         return 0;
1551 }
1552
1553 static int gfar_restore(struct device *dev)
1554 {
1555         struct gfar_private *priv = dev_get_drvdata(dev);
1556         struct net_device *ndev = priv->ndev;
1557
1558         if (!netif_running(ndev)) {
1559                 netif_device_attach(ndev);
1560
1561                 return 0;
1562         }
1563
1564         gfar_init_bds(ndev);
1565
1566         gfar_mac_reset(priv);
1567
1568         gfar_init_tx_rx_base(priv);
1569
1570         gfar_start(priv);
1571
1572         priv->oldlink = 0;
1573         priv->oldspeed = 0;
1574         priv->oldduplex = -1;
1575
1576         if (priv->phydev)
1577                 phy_start(priv->phydev);
1578
1579         netif_device_attach(ndev);
1580         enable_napi(priv);
1581
1582         return 0;
1583 }
1584
1585 static struct dev_pm_ops gfar_pm_ops = {
1586         .suspend = gfar_suspend,
1587         .resume = gfar_resume,
1588         .freeze = gfar_suspend,
1589         .thaw = gfar_resume,
1590         .restore = gfar_restore,
1591 };
1592
1593 #define GFAR_PM_OPS (&gfar_pm_ops)
1594
1595 #else
1596
1597 #define GFAR_PM_OPS NULL
1598
1599 #endif
1600
1601 /* Reads the controller's registers to determine what interface
1602  * connects it to the PHY.
1603  */
1604 static phy_interface_t gfar_get_interface(struct net_device *dev)
1605 {
1606         struct gfar_private *priv = netdev_priv(dev);
1607         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1608         u32 ecntrl;
1609
1610         ecntrl = gfar_read(&regs->ecntrl);
1611
1612         if (ecntrl & ECNTRL_SGMII_MODE)
1613                 return PHY_INTERFACE_MODE_SGMII;
1614
1615         if (ecntrl & ECNTRL_TBI_MODE) {
1616                 if (ecntrl & ECNTRL_REDUCED_MODE)
1617                         return PHY_INTERFACE_MODE_RTBI;
1618                 else
1619                         return PHY_INTERFACE_MODE_TBI;
1620         }
1621
1622         if (ecntrl & ECNTRL_REDUCED_MODE) {
1623                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1624                         return PHY_INTERFACE_MODE_RMII;
1625                 }
1626                 else {
1627                         phy_interface_t interface = priv->interface;
1628
1629                         /* This isn't autodetected right now, so it must
1630                          * be set by the device tree or platform code.
1631                          */
1632                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1633                                 return PHY_INTERFACE_MODE_RGMII_ID;
1634
1635                         return PHY_INTERFACE_MODE_RGMII;
1636                 }
1637         }
1638
1639         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1640                 return PHY_INTERFACE_MODE_GMII;
1641
1642         return PHY_INTERFACE_MODE_MII;
1643 }
1644
1645
1646 /* Initializes driver's PHY state, and attaches to the PHY.
1647  * Returns 0 on success.
1648  */
1649 static int init_phy(struct net_device *dev)
1650 {
1651         struct gfar_private *priv = netdev_priv(dev);
1652         uint gigabit_support =
1653                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1654                 GFAR_SUPPORTED_GBIT : 0;
1655         phy_interface_t interface;
1656
1657         priv->oldlink = 0;
1658         priv->oldspeed = 0;
1659         priv->oldduplex = -1;
1660
1661         interface = gfar_get_interface(dev);
1662
1663         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1664                                       interface);
1665         if (!priv->phydev) {
1666                 dev_err(&dev->dev, "could not attach to PHY\n");
1667                 return -ENODEV;
1668         }
1669
1670         if (interface == PHY_INTERFACE_MODE_SGMII)
1671                 gfar_configure_serdes(dev);
1672
1673         /* Remove any features not supported by the controller */
1674         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1675         priv->phydev->advertising = priv->phydev->supported;
1676
1677         /* Add support for flow control, but don't advertise it by default */
1678         priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1679
1680         return 0;
1681 }
1682
1683 /* Initialize TBI PHY interface for communicating with the
1684  * SERDES lynx PHY on the chip.  We communicate with this PHY
1685  * through the MDIO bus on each controller, treating it as a
1686  * "normal" PHY at the address found in the TBIPA register.  We assume
1687  * that the TBIPA register is valid.  Either the MDIO bus code will set
1688  * it to a value that doesn't conflict with other PHYs on the bus, or the
1689  * value doesn't matter, as there are no other PHYs on the bus.
1690  */
1691 static void gfar_configure_serdes(struct net_device *dev)
1692 {
1693         struct gfar_private *priv = netdev_priv(dev);
1694         struct phy_device *tbiphy;
1695
1696         if (!priv->tbi_node) {
1697                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1698                                     "device tree specify a tbi-handle\n");
1699                 return;
1700         }
1701
1702         tbiphy = of_phy_find_device(priv->tbi_node);
1703         if (!tbiphy) {
1704                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1705                 return;
1706         }
1707
1708         /* If the link is already up, we must already be ok, and don't need to
1709          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1710          * everything for us?  Resetting it takes the link down and requires
1711          * several seconds for it to come back.
1712          */
1713         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1714                 return;
1715
1716         /* Single clk mode, mii mode off(for serdes communication) */
1717         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1718
1719         phy_write(tbiphy, MII_ADVERTISE,
1720                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1721                   ADVERTISE_1000XPSE_ASYM);
1722
1723         phy_write(tbiphy, MII_BMCR,
1724                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1725                   BMCR_SPEED1000);
1726 }
1727
1728 static int __gfar_is_rx_idle(struct gfar_private *priv)
1729 {
1730         u32 res;
1731
1732         /* Normaly TSEC should not hang on GRS commands, so we should
1733          * actually wait for IEVENT_GRSC flag.
1734          */
1735         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1736                 return 0;
1737
1738         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1739          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1740          * and the Rx can be safely reset.
1741          */
1742         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1743         res &= 0x7f807f80;
1744         if ((res & 0xffff) == (res >> 16))
1745                 return 1;
1746
1747         return 0;
1748 }
1749
1750 /* Halt the receive and transmit queues */
1751 static void gfar_halt_nodisable(struct gfar_private *priv)
1752 {
1753         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1754         u32 tempval;
1755         unsigned int timeout;
1756         int stopped;
1757
1758         gfar_ints_disable(priv);
1759
1760         if (gfar_is_dma_stopped(priv))
1761                 return;
1762
1763         /* Stop the DMA, and wait for it to stop */
1764         tempval = gfar_read(&regs->dmactrl);
1765         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1766         gfar_write(&regs->dmactrl, tempval);
1767
1768 retry:
1769         timeout = 1000;
1770         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1771                 cpu_relax();
1772                 timeout--;
1773         }
1774
1775         if (!timeout)
1776                 stopped = gfar_is_dma_stopped(priv);
1777
1778         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1779             !__gfar_is_rx_idle(priv))
1780                 goto retry;
1781 }
1782
1783 /* Halt the receive and transmit queues */
1784 void gfar_halt(struct gfar_private *priv)
1785 {
1786         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1787         u32 tempval;
1788
1789         /* Dissable the Rx/Tx hw queues */
1790         gfar_write(&regs->rqueue, 0);
1791         gfar_write(&regs->tqueue, 0);
1792
1793         mdelay(10);
1794
1795         gfar_halt_nodisable(priv);
1796
1797         /* Disable Rx/Tx DMA */
1798         tempval = gfar_read(&regs->maccfg1);
1799         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1800         gfar_write(&regs->maccfg1, tempval);
1801 }
1802
1803 void stop_gfar(struct net_device *dev)
1804 {
1805         struct gfar_private *priv = netdev_priv(dev);
1806
1807         netif_tx_stop_all_queues(dev);
1808
1809         smp_mb__before_atomic();
1810         set_bit(GFAR_DOWN, &priv->state);
1811         smp_mb__after_atomic();
1812
1813         disable_napi(priv);
1814
1815         /* disable ints and gracefully shut down Rx/Tx DMA */
1816         gfar_halt(priv);
1817
1818         phy_stop(priv->phydev);
1819
1820         free_skb_resources(priv);
1821 }
1822
1823 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1824 {
1825         struct txbd8 *txbdp;
1826         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1827         int i, j;
1828
1829         txbdp = tx_queue->tx_bd_base;
1830
1831         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1832                 if (!tx_queue->tx_skbuff[i])
1833                         continue;
1834
1835                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1836                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1837                 txbdp->lstatus = 0;
1838                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1839                      j++) {
1840                         txbdp++;
1841                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1842                                        be16_to_cpu(txbdp->length),
1843                                        DMA_TO_DEVICE);
1844                 }
1845                 txbdp++;
1846                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1847                 tx_queue->tx_skbuff[i] = NULL;
1848         }
1849         kfree(tx_queue->tx_skbuff);
1850         tx_queue->tx_skbuff = NULL;
1851 }
1852
1853 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1854 {
1855         int i;
1856
1857         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1858
1859         if (rx_queue->skb)
1860                 dev_kfree_skb(rx_queue->skb);
1861
1862         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1863                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1864
1865                 rxbdp->lstatus = 0;
1866                 rxbdp->bufPtr = 0;
1867                 rxbdp++;
1868
1869                 if (!rxb->page)
1870                         continue;
1871
1872                 dma_unmap_single(rx_queue->dev, rxb->dma,
1873                                  PAGE_SIZE, DMA_FROM_DEVICE);
1874                 __free_page(rxb->page);
1875
1876                 rxb->page = NULL;
1877         }
1878
1879         kfree(rx_queue->rx_buff);
1880         rx_queue->rx_buff = NULL;
1881 }
1882
1883 /* If there are any tx skbs or rx skbs still around, free them.
1884  * Then free tx_skbuff and rx_skbuff
1885  */
1886 static void free_skb_resources(struct gfar_private *priv)
1887 {
1888         struct gfar_priv_tx_q *tx_queue = NULL;
1889         struct gfar_priv_rx_q *rx_queue = NULL;
1890         int i;
1891
1892         /* Go through all the buffer descriptors and free their data buffers */
1893         for (i = 0; i < priv->num_tx_queues; i++) {
1894                 struct netdev_queue *txq;
1895
1896                 tx_queue = priv->tx_queue[i];
1897                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1898                 if (tx_queue->tx_skbuff)
1899                         free_skb_tx_queue(tx_queue);
1900                 netdev_tx_reset_queue(txq);
1901         }
1902
1903         for (i = 0; i < priv->num_rx_queues; i++) {
1904                 rx_queue = priv->rx_queue[i];
1905                 if (rx_queue->rx_buff)
1906                         free_skb_rx_queue(rx_queue);
1907         }
1908
1909         dma_free_coherent(priv->dev,
1910                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1911                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1912                           priv->tx_queue[0]->tx_bd_base,
1913                           priv->tx_queue[0]->tx_bd_dma_base);
1914 }
1915
1916 void gfar_start(struct gfar_private *priv)
1917 {
1918         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1919         u32 tempval;
1920         int i = 0;
1921
1922         /* Enable Rx/Tx hw queues */
1923         gfar_write(&regs->rqueue, priv->rqueue);
1924         gfar_write(&regs->tqueue, priv->tqueue);
1925
1926         /* Initialize DMACTRL to have WWR and WOP */
1927         tempval = gfar_read(&regs->dmactrl);
1928         tempval |= DMACTRL_INIT_SETTINGS;
1929         gfar_write(&regs->dmactrl, tempval);
1930
1931         /* Make sure we aren't stopped */
1932         tempval = gfar_read(&regs->dmactrl);
1933         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1934         gfar_write(&regs->dmactrl, tempval);
1935
1936         for (i = 0; i < priv->num_grps; i++) {
1937                 regs = priv->gfargrp[i].regs;
1938                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1939                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1940                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1941         }
1942
1943         /* Enable Rx/Tx DMA */
1944         tempval = gfar_read(&regs->maccfg1);
1945         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1946         gfar_write(&regs->maccfg1, tempval);
1947
1948         gfar_ints_enable(priv);
1949
1950         priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1951 }
1952
1953 static void free_grp_irqs(struct gfar_priv_grp *grp)
1954 {
1955         free_irq(gfar_irq(grp, TX)->irq, grp);
1956         free_irq(gfar_irq(grp, RX)->irq, grp);
1957         free_irq(gfar_irq(grp, ER)->irq, grp);
1958 }
1959
1960 static int register_grp_irqs(struct gfar_priv_grp *grp)
1961 {
1962         struct gfar_private *priv = grp->priv;
1963         struct net_device *dev = priv->ndev;
1964         int err;
1965
1966         /* If the device has multiple interrupts, register for
1967          * them.  Otherwise, only register for the one
1968          */
1969         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970                 /* Install our interrupt handlers for Error,
1971                  * Transmit, and Receive
1972                  */
1973                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1974                                   gfar_irq(grp, ER)->name, grp);
1975                 if (err < 0) {
1976                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1977                                   gfar_irq(grp, ER)->irq);
1978
1979                         goto err_irq_fail;
1980                 }
1981                 enable_irq_wake(gfar_irq(grp, ER)->irq);
1982
1983                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1984                                   gfar_irq(grp, TX)->name, grp);
1985                 if (err < 0) {
1986                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1987                                   gfar_irq(grp, TX)->irq);
1988                         goto tx_irq_fail;
1989                 }
1990                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1991                                   gfar_irq(grp, RX)->name, grp);
1992                 if (err < 0) {
1993                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1994                                   gfar_irq(grp, RX)->irq);
1995                         goto rx_irq_fail;
1996                 }
1997         } else {
1998                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1999                                   gfar_irq(grp, TX)->name, grp);
2000                 if (err < 0) {
2001                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2002                                   gfar_irq(grp, TX)->irq);
2003                         goto err_irq_fail;
2004                 }
2005                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2006         }
2007
2008         return 0;
2009
2010 rx_irq_fail:
2011         free_irq(gfar_irq(grp, TX)->irq, grp);
2012 tx_irq_fail:
2013         free_irq(gfar_irq(grp, ER)->irq, grp);
2014 err_irq_fail:
2015         return err;
2016
2017 }
2018
2019 static void gfar_free_irq(struct gfar_private *priv)
2020 {
2021         int i;
2022
2023         /* Free the IRQs */
2024         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2025                 for (i = 0; i < priv->num_grps; i++)
2026                         free_grp_irqs(&priv->gfargrp[i]);
2027         } else {
2028                 for (i = 0; i < priv->num_grps; i++)
2029                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2030                                  &priv->gfargrp[i]);
2031         }
2032 }
2033
2034 static int gfar_request_irq(struct gfar_private *priv)
2035 {
2036         int err, i, j;
2037
2038         for (i = 0; i < priv->num_grps; i++) {
2039                 err = register_grp_irqs(&priv->gfargrp[i]);
2040                 if (err) {
2041                         for (j = 0; j < i; j++)
2042                                 free_grp_irqs(&priv->gfargrp[j]);
2043                         return err;
2044                 }
2045         }
2046
2047         return 0;
2048 }
2049
2050 /* Bring the controller up and running */
2051 int startup_gfar(struct net_device *ndev)
2052 {
2053         struct gfar_private *priv = netdev_priv(ndev);
2054         int err;
2055
2056         gfar_mac_reset(priv);
2057
2058         err = gfar_alloc_skb_resources(ndev);
2059         if (err)
2060                 return err;
2061
2062         gfar_init_tx_rx_base(priv);
2063
2064         smp_mb__before_atomic();
2065         clear_bit(GFAR_DOWN, &priv->state);
2066         smp_mb__after_atomic();
2067
2068         /* Start Rx/Tx DMA and enable the interrupts */
2069         gfar_start(priv);
2070
2071         /* force link state update after mac reset */
2072         priv->oldlink = 0;
2073         priv->oldspeed = 0;
2074         priv->oldduplex = -1;
2075
2076         phy_start(priv->phydev);
2077
2078         enable_napi(priv);
2079
2080         netif_tx_wake_all_queues(ndev);
2081
2082         return 0;
2083 }
2084
2085 /* Called when something needs to use the ethernet device
2086  * Returns 0 for success.
2087  */
2088 static int gfar_enet_open(struct net_device *dev)
2089 {
2090         struct gfar_private *priv = netdev_priv(dev);
2091         int err;
2092
2093         err = init_phy(dev);
2094         if (err)
2095                 return err;
2096
2097         err = gfar_request_irq(priv);
2098         if (err)
2099                 return err;
2100
2101         err = startup_gfar(dev);
2102         if (err)
2103                 return err;
2104
2105         return err;
2106 }
2107
2108 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2109 {
2110         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2111
2112         memset(fcb, 0, GMAC_FCB_LEN);
2113
2114         return fcb;
2115 }
2116
2117 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2118                                     int fcb_length)
2119 {
2120         /* If we're here, it's a IP packet with a TCP or UDP
2121          * payload.  We set it to checksum, using a pseudo-header
2122          * we provide
2123          */
2124         u8 flags = TXFCB_DEFAULT;
2125
2126         /* Tell the controller what the protocol is
2127          * And provide the already calculated phcs
2128          */
2129         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2130                 flags |= TXFCB_UDP;
2131                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2132         } else
2133                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2134
2135         /* l3os is the distance between the start of the
2136          * frame (skb->data) and the start of the IP hdr.
2137          * l4os is the distance between the start of the
2138          * l3 hdr and the l4 hdr
2139          */
2140         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2141         fcb->l4os = skb_network_header_len(skb);
2142
2143         fcb->flags = flags;
2144 }
2145
2146 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2147 {
2148         fcb->flags |= TXFCB_VLN;
2149         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2150 }
2151
2152 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2153                                       struct txbd8 *base, int ring_size)
2154 {
2155         struct txbd8 *new_bd = bdp + stride;
2156
2157         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2158 }
2159
2160 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2161                                       int ring_size)
2162 {
2163         return skip_txbd(bdp, 1, base, ring_size);
2164 }
2165
2166 /* eTSEC12: csum generation not supported for some fcb offsets */
2167 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2168                                        unsigned long fcb_addr)
2169 {
2170         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2171                (fcb_addr % 0x20) > 0x18);
2172 }
2173
2174 /* eTSEC76: csum generation for frames larger than 2500 may
2175  * cause excess delays before start of transmission
2176  */
2177 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2178                                        unsigned int len)
2179 {
2180         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2181                (len > 2500));
2182 }
2183
2184 /* This is called by the kernel when a frame is ready for transmission.
2185  * It is pointed to by the dev->hard_start_xmit function pointer
2186  */
2187 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2188 {
2189         struct gfar_private *priv = netdev_priv(dev);
2190         struct gfar_priv_tx_q *tx_queue = NULL;
2191         struct netdev_queue *txq;
2192         struct gfar __iomem *regs = NULL;
2193         struct txfcb *fcb = NULL;
2194         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2195         u32 lstatus;
2196         int i, rq = 0;
2197         int do_tstamp, do_csum, do_vlan;
2198         u32 bufaddr;
2199         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2200
2201         rq = skb->queue_mapping;
2202         tx_queue = priv->tx_queue[rq];
2203         txq = netdev_get_tx_queue(dev, rq);
2204         base = tx_queue->tx_bd_base;
2205         regs = tx_queue->grp->regs;
2206
2207         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2208         do_vlan = skb_vlan_tag_present(skb);
2209         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2210                     priv->hwts_tx_en;
2211
2212         if (do_csum || do_vlan)
2213                 fcb_len = GMAC_FCB_LEN;
2214
2215         /* check if time stamp should be generated */
2216         if (unlikely(do_tstamp))
2217                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2218
2219         /* make space for additional header when fcb is needed */
2220         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2221                 struct sk_buff *skb_new;
2222
2223                 skb_new = skb_realloc_headroom(skb, fcb_len);
2224                 if (!skb_new) {
2225                         dev->stats.tx_errors++;
2226                         dev_kfree_skb_any(skb);
2227                         return NETDEV_TX_OK;
2228                 }
2229
2230                 if (skb->sk)
2231                         skb_set_owner_w(skb_new, skb->sk);
2232                 dev_consume_skb_any(skb);
2233                 skb = skb_new;
2234         }
2235
2236         /* total number of fragments in the SKB */
2237         nr_frags = skb_shinfo(skb)->nr_frags;
2238
2239         /* calculate the required number of TxBDs for this skb */
2240         if (unlikely(do_tstamp))
2241                 nr_txbds = nr_frags + 2;
2242         else
2243                 nr_txbds = nr_frags + 1;
2244
2245         /* check if there is space to queue this packet */
2246         if (nr_txbds > tx_queue->num_txbdfree) {
2247                 /* no space, stop the queue */
2248                 netif_tx_stop_queue(txq);
2249                 dev->stats.tx_fifo_errors++;
2250                 return NETDEV_TX_BUSY;
2251         }
2252
2253         /* Update transmit stats */
2254         bytes_sent = skb->len;
2255         tx_queue->stats.tx_bytes += bytes_sent;
2256         /* keep Tx bytes on wire for BQL accounting */
2257         GFAR_CB(skb)->bytes_sent = bytes_sent;
2258         tx_queue->stats.tx_packets++;
2259
2260         txbdp = txbdp_start = tx_queue->cur_tx;
2261         lstatus = be32_to_cpu(txbdp->lstatus);
2262
2263         /* Time stamp insertion requires one additional TxBD */
2264         if (unlikely(do_tstamp))
2265                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2266                                                  tx_queue->tx_ring_size);
2267
2268         if (nr_frags == 0) {
2269                 if (unlikely(do_tstamp)) {
2270                         u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2271
2272                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2273                         txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2274                 } else {
2275                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2276                 }
2277         } else {
2278                 /* Place the fragment addresses and lengths into the TxBDs */
2279                 for (i = 0; i < nr_frags; i++) {
2280                         unsigned int frag_len;
2281                         /* Point at the next BD, wrapping as needed */
2282                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2283
2284                         frag_len = skb_shinfo(skb)->frags[i].size;
2285
2286                         lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2287                                   BD_LFLAG(TXBD_READY);
2288
2289                         /* Handle the last BD specially */
2290                         if (i == nr_frags - 1)
2291                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2292
2293                         bufaddr = skb_frag_dma_map(priv->dev,
2294                                                    &skb_shinfo(skb)->frags[i],
2295                                                    0,
2296                                                    frag_len,
2297                                                    DMA_TO_DEVICE);
2298                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2299                                 goto dma_map_err;
2300
2301                         /* set the TxBD length and buffer pointer */
2302                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2303                         txbdp->lstatus = cpu_to_be32(lstatus);
2304                 }
2305
2306                 lstatus = be32_to_cpu(txbdp_start->lstatus);
2307         }
2308
2309         /* Add TxPAL between FCB and frame if required */
2310         if (unlikely(do_tstamp)) {
2311                 skb_push(skb, GMAC_TXPAL_LEN);
2312                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2313         }
2314
2315         /* Add TxFCB if required */
2316         if (fcb_len) {
2317                 fcb = gfar_add_fcb(skb);
2318                 lstatus |= BD_LFLAG(TXBD_TOE);
2319         }
2320
2321         /* Set up checksumming */
2322         if (do_csum) {
2323                 gfar_tx_checksum(skb, fcb, fcb_len);
2324
2325                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2326                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2327                         __skb_pull(skb, GMAC_FCB_LEN);
2328                         skb_checksum_help(skb);
2329                         if (do_vlan || do_tstamp) {
2330                                 /* put back a new fcb for vlan/tstamp TOE */
2331                                 fcb = gfar_add_fcb(skb);
2332                         } else {
2333                                 /* Tx TOE not used */
2334                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2335                                 fcb = NULL;
2336                         }
2337                 }
2338         }
2339
2340         if (do_vlan)
2341                 gfar_tx_vlan(skb, fcb);
2342
2343         /* Setup tx hardware time stamping if requested */
2344         if (unlikely(do_tstamp)) {
2345                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2346                 fcb->ptp = 1;
2347         }
2348
2349         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2350                                  DMA_TO_DEVICE);
2351         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2352                 goto dma_map_err;
2353
2354         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2355
2356         /* If time stamping is requested one additional TxBD must be set up. The
2357          * first TxBD points to the FCB and must have a data length of
2358          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2359          * the full frame length.
2360          */
2361         if (unlikely(do_tstamp)) {
2362                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2363
2364                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2365                 bufaddr += fcb_len;
2366                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2367                               (skb_headlen(skb) - fcb_len);
2368
2369                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2370                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2371                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2372         } else {
2373                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2374         }
2375
2376         netdev_tx_sent_queue(txq, bytes_sent);
2377
2378         gfar_wmb();
2379
2380         txbdp_start->lstatus = cpu_to_be32(lstatus);
2381
2382         gfar_wmb(); /* force lstatus write before tx_skbuff */
2383
2384         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2385
2386         /* Update the current skb pointer to the next entry we will use
2387          * (wrapping if necessary)
2388          */
2389         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2390                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2391
2392         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2393
2394         /* We can work in parallel with gfar_clean_tx_ring(), except
2395          * when modifying num_txbdfree. Note that we didn't grab the lock
2396          * when we were reading the num_txbdfree and checking for available
2397          * space, that's because outside of this function it can only grow.
2398          */
2399         spin_lock_bh(&tx_queue->txlock);
2400         /* reduce TxBD free count */
2401         tx_queue->num_txbdfree -= (nr_txbds);
2402         spin_unlock_bh(&tx_queue->txlock);
2403
2404         /* If the next BD still needs to be cleaned up, then the bds
2405          * are full.  We need to tell the kernel to stop sending us stuff.
2406          */
2407         if (!tx_queue->num_txbdfree) {
2408                 netif_tx_stop_queue(txq);
2409
2410                 dev->stats.tx_fifo_errors++;
2411         }
2412
2413         /* Tell the DMA to go go go */
2414         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2415
2416         return NETDEV_TX_OK;
2417
2418 dma_map_err:
2419         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2420         if (do_tstamp)
2421                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2422         for (i = 0; i < nr_frags; i++) {
2423                 lstatus = be32_to_cpu(txbdp->lstatus);
2424                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2425                         break;
2426
2427                 lstatus &= ~BD_LFLAG(TXBD_READY);
2428                 txbdp->lstatus = cpu_to_be32(lstatus);
2429                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2430                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2431                                DMA_TO_DEVICE);
2432                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2433         }
2434         gfar_wmb();
2435         dev_kfree_skb_any(skb);
2436         return NETDEV_TX_OK;
2437 }
2438
2439 /* Stops the kernel queue, and halts the controller */
2440 static int gfar_close(struct net_device *dev)
2441 {
2442         struct gfar_private *priv = netdev_priv(dev);
2443
2444         cancel_work_sync(&priv->reset_task);
2445         stop_gfar(dev);
2446
2447         /* Disconnect from the PHY */
2448         phy_disconnect(priv->phydev);
2449         priv->phydev = NULL;
2450
2451         gfar_free_irq(priv);
2452
2453         return 0;
2454 }
2455
2456 /* Changes the mac address if the controller is not running. */
2457 static int gfar_set_mac_address(struct net_device *dev)
2458 {
2459         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2460
2461         return 0;
2462 }
2463
2464 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2465 {
2466         struct gfar_private *priv = netdev_priv(dev);
2467         int frame_size = new_mtu + ETH_HLEN;
2468
2469         if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2470                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2471                 return -EINVAL;
2472         }
2473
2474         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2475                 cpu_relax();
2476
2477         if (dev->flags & IFF_UP)
2478                 stop_gfar(dev);
2479
2480         dev->mtu = new_mtu;
2481
2482         if (dev->flags & IFF_UP)
2483                 startup_gfar(dev);
2484
2485         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2486
2487         return 0;
2488 }
2489
2490 void reset_gfar(struct net_device *ndev)
2491 {
2492         struct gfar_private *priv = netdev_priv(ndev);
2493
2494         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2495                 cpu_relax();
2496
2497         stop_gfar(ndev);
2498         startup_gfar(ndev);
2499
2500         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2501 }
2502
2503 /* gfar_reset_task gets scheduled when a packet has not been
2504  * transmitted after a set amount of time.
2505  * For now, assume that clearing out all the structures, and
2506  * starting over will fix the problem.
2507  */
2508 static void gfar_reset_task(struct work_struct *work)
2509 {
2510         struct gfar_private *priv = container_of(work, struct gfar_private,
2511                                                  reset_task);
2512         reset_gfar(priv->ndev);
2513 }
2514
2515 static void gfar_timeout(struct net_device *dev)
2516 {
2517         struct gfar_private *priv = netdev_priv(dev);
2518
2519         dev->stats.tx_errors++;
2520         schedule_work(&priv->reset_task);
2521 }
2522
2523 /* Interrupt Handler for Transmit complete */
2524 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2525 {
2526         struct net_device *dev = tx_queue->dev;
2527         struct netdev_queue *txq;
2528         struct gfar_private *priv = netdev_priv(dev);
2529         struct txbd8 *bdp, *next = NULL;
2530         struct txbd8 *lbdp = NULL;
2531         struct txbd8 *base = tx_queue->tx_bd_base;
2532         struct sk_buff *skb;
2533         int skb_dirtytx;
2534         int tx_ring_size = tx_queue->tx_ring_size;
2535         int frags = 0, nr_txbds = 0;
2536         int i;
2537         int howmany = 0;
2538         int tqi = tx_queue->qindex;
2539         unsigned int bytes_sent = 0;
2540         u32 lstatus;
2541         size_t buflen;
2542
2543         txq = netdev_get_tx_queue(dev, tqi);
2544         bdp = tx_queue->dirty_tx;
2545         skb_dirtytx = tx_queue->skb_dirtytx;
2546
2547         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2548
2549                 frags = skb_shinfo(skb)->nr_frags;
2550
2551                 /* When time stamping, one additional TxBD must be freed.
2552                  * Also, we need to dma_unmap_single() the TxPAL.
2553                  */
2554                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2555                         nr_txbds = frags + 2;
2556                 else
2557                         nr_txbds = frags + 1;
2558
2559                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2560
2561                 lstatus = be32_to_cpu(lbdp->lstatus);
2562
2563                 /* Only clean completed frames */
2564                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2565                     (lstatus & BD_LENGTH_MASK))
2566                         break;
2567
2568                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2569                         next = next_txbd(bdp, base, tx_ring_size);
2570                         buflen = be16_to_cpu(next->length) +
2571                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2572                 } else
2573                         buflen = be16_to_cpu(bdp->length);
2574
2575                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2576                                  buflen, DMA_TO_DEVICE);
2577
2578                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2579                         struct skb_shared_hwtstamps shhwtstamps;
2580                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2581                                           ~0x7UL);
2582
2583                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2584                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2585                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2586                         skb_tstamp_tx(skb, &shhwtstamps);
2587                         gfar_clear_txbd_status(bdp);
2588                         bdp = next;
2589                 }
2590
2591                 gfar_clear_txbd_status(bdp);
2592                 bdp = next_txbd(bdp, base, tx_ring_size);
2593
2594                 for (i = 0; i < frags; i++) {
2595                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2596                                        be16_to_cpu(bdp->length),
2597                                        DMA_TO_DEVICE);
2598                         gfar_clear_txbd_status(bdp);
2599                         bdp = next_txbd(bdp, base, tx_ring_size);
2600                 }
2601
2602                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2603
2604                 dev_kfree_skb_any(skb);
2605
2606                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2607
2608                 skb_dirtytx = (skb_dirtytx + 1) &
2609                               TX_RING_MOD_MASK(tx_ring_size);
2610
2611                 howmany++;
2612                 spin_lock(&tx_queue->txlock);
2613                 tx_queue->num_txbdfree += nr_txbds;
2614                 spin_unlock(&tx_queue->txlock);
2615         }
2616
2617         /* If we freed a buffer, we can restart transmission, if necessary */
2618         if (tx_queue->num_txbdfree &&
2619             netif_tx_queue_stopped(txq) &&
2620             !(test_bit(GFAR_DOWN, &priv->state)))
2621                 netif_wake_subqueue(priv->ndev, tqi);
2622
2623         /* Update dirty indicators */
2624         tx_queue->skb_dirtytx = skb_dirtytx;
2625         tx_queue->dirty_tx = bdp;
2626
2627         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2628 }
2629
2630 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2631 {
2632         struct page *page;
2633         dma_addr_t addr;
2634
2635         page = dev_alloc_page();
2636         if (unlikely(!page))
2637                 return false;
2638
2639         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2640         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2641                 __free_page(page);
2642
2643                 return false;
2644         }
2645
2646         rxb->dma = addr;
2647         rxb->page = page;
2648         rxb->page_offset = 0;
2649
2650         return true;
2651 }
2652
2653 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2654 {
2655         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2656         struct gfar_extra_stats *estats = &priv->extra_stats;
2657
2658         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2659         atomic64_inc(&estats->rx_alloc_err);
2660 }
2661
2662 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2663                                 int alloc_cnt)
2664 {
2665         struct rxbd8 *bdp;
2666         struct gfar_rx_buff *rxb;
2667         int i;
2668
2669         i = rx_queue->next_to_use;
2670         bdp = &rx_queue->rx_bd_base[i];
2671         rxb = &rx_queue->rx_buff[i];
2672
2673         while (alloc_cnt--) {
2674                 /* try reuse page */
2675                 if (unlikely(!rxb->page)) {
2676                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2677                                 gfar_rx_alloc_err(rx_queue);
2678                                 break;
2679                         }
2680                 }
2681
2682                 /* Setup the new RxBD */
2683                 gfar_init_rxbdp(rx_queue, bdp,
2684                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2685
2686                 /* Update to the next pointer */
2687                 bdp++;
2688                 rxb++;
2689
2690                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2691                         i = 0;
2692                         bdp = rx_queue->rx_bd_base;
2693                         rxb = rx_queue->rx_buff;
2694                 }
2695         }
2696
2697         rx_queue->next_to_use = i;
2698         rx_queue->next_to_alloc = i;
2699 }
2700
2701 static void count_errors(u32 lstatus, struct net_device *ndev)
2702 {
2703         struct gfar_private *priv = netdev_priv(ndev);
2704         struct net_device_stats *stats = &ndev->stats;
2705         struct gfar_extra_stats *estats = &priv->extra_stats;
2706
2707         /* If the packet was truncated, none of the other errors matter */
2708         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2709                 stats->rx_length_errors++;
2710
2711                 atomic64_inc(&estats->rx_trunc);
2712
2713                 return;
2714         }
2715         /* Count the errors, if there were any */
2716         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2717                 stats->rx_length_errors++;
2718
2719                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2720                         atomic64_inc(&estats->rx_large);
2721                 else
2722                         atomic64_inc(&estats->rx_short);
2723         }
2724         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2725                 stats->rx_frame_errors++;
2726                 atomic64_inc(&estats->rx_nonoctet);
2727         }
2728         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2729                 atomic64_inc(&estats->rx_crcerr);
2730                 stats->rx_crc_errors++;
2731         }
2732         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2733                 atomic64_inc(&estats->rx_overrun);
2734                 stats->rx_over_errors++;
2735         }
2736 }
2737
2738 irqreturn_t gfar_receive(int irq, void *grp_id)
2739 {
2740         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2741         unsigned long flags;
2742         u32 imask;
2743
2744         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2745                 spin_lock_irqsave(&grp->grplock, flags);
2746                 imask = gfar_read(&grp->regs->imask);
2747                 imask &= IMASK_RX_DISABLED;
2748                 gfar_write(&grp->regs->imask, imask);
2749                 spin_unlock_irqrestore(&grp->grplock, flags);
2750                 __napi_schedule(&grp->napi_rx);
2751         } else {
2752                 /* Clear IEVENT, so interrupts aren't called again
2753                  * because of the packets that have already arrived.
2754                  */
2755                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2756         }
2757
2758         return IRQ_HANDLED;
2759 }
2760
2761 /* Interrupt Handler for Transmit complete */
2762 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2763 {
2764         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2765         unsigned long flags;
2766         u32 imask;
2767
2768         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2769                 spin_lock_irqsave(&grp->grplock, flags);
2770                 imask = gfar_read(&grp->regs->imask);
2771                 imask &= IMASK_TX_DISABLED;
2772                 gfar_write(&grp->regs->imask, imask);
2773                 spin_unlock_irqrestore(&grp->grplock, flags);
2774                 __napi_schedule(&grp->napi_tx);
2775         } else {
2776                 /* Clear IEVENT, so interrupts aren't called again
2777                  * because of the packets that have already arrived.
2778                  */
2779                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2780         }
2781
2782         return IRQ_HANDLED;
2783 }
2784
2785 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2786                              struct sk_buff *skb, bool first)
2787 {
2788         unsigned int size = lstatus & BD_LENGTH_MASK;
2789         struct page *page = rxb->page;
2790
2791         /* Remove the FCS from the packet length */
2792         if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2793                 size -= ETH_FCS_LEN;
2794
2795         if (likely(first))
2796                 skb_put(skb, size);
2797         else
2798                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2799                                 rxb->page_offset + RXBUF_ALIGNMENT,
2800                                 size, GFAR_RXB_TRUESIZE);
2801
2802         /* try reuse page */
2803         if (unlikely(page_count(page) != 1))
2804                 return false;
2805
2806         /* change offset to the other half */
2807         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2808
2809         atomic_inc(&page->_count);
2810
2811         return true;
2812 }
2813
2814 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2815                                struct gfar_rx_buff *old_rxb)
2816 {
2817         struct gfar_rx_buff *new_rxb;
2818         u16 nta = rxq->next_to_alloc;
2819
2820         new_rxb = &rxq->rx_buff[nta];
2821
2822         /* find next buf that can reuse a page */
2823         nta++;
2824         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2825
2826         /* copy page reference */
2827         *new_rxb = *old_rxb;
2828
2829         /* sync for use by the device */
2830         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2831                                          old_rxb->page_offset,
2832                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2833 }
2834
2835 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2836                                             u32 lstatus, struct sk_buff *skb)
2837 {
2838         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2839         struct page *page = rxb->page;
2840         bool first = false;
2841
2842         if (likely(!skb)) {
2843                 void *buff_addr = page_address(page) + rxb->page_offset;
2844
2845                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2846                 if (unlikely(!skb)) {
2847                         gfar_rx_alloc_err(rx_queue);
2848                         return NULL;
2849                 }
2850                 skb_reserve(skb, RXBUF_ALIGNMENT);
2851                 first = true;
2852         }
2853
2854         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2855                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2856
2857         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2858                 /* reuse the free half of the page */
2859                 gfar_reuse_rx_page(rx_queue, rxb);
2860         } else {
2861                 /* page cannot be reused, unmap it */
2862                 dma_unmap_page(rx_queue->dev, rxb->dma,
2863                                PAGE_SIZE, DMA_FROM_DEVICE);
2864         }
2865
2866         /* clear rxb content */
2867         rxb->page = NULL;
2868
2869         return skb;
2870 }
2871
2872 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2873 {
2874         /* If valid headers were found, and valid sums
2875          * were verified, then we tell the kernel that no
2876          * checksumming is necessary.  Otherwise, it is [FIXME]
2877          */
2878         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2879             (RXFCB_CIP | RXFCB_CTU))
2880                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2881         else
2882                 skb_checksum_none_assert(skb);
2883 }
2884
2885 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2886 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2887 {
2888         struct gfar_private *priv = netdev_priv(ndev);
2889         struct rxfcb *fcb = NULL;
2890
2891         /* fcb is at the beginning if exists */
2892         fcb = (struct rxfcb *)skb->data;
2893
2894         /* Remove the FCB from the skb
2895          * Remove the padded bytes, if there are any
2896          */
2897         if (priv->uses_rxfcb)
2898                 skb_pull(skb, GMAC_FCB_LEN);
2899
2900         /* Get receive timestamp from the skb */
2901         if (priv->hwts_rx_en) {
2902                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2903                 u64 *ns = (u64 *) skb->data;
2904
2905                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2906                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2907         }
2908
2909         if (priv->padding)
2910                 skb_pull(skb, priv->padding);
2911
2912         if (ndev->features & NETIF_F_RXCSUM)
2913                 gfar_rx_checksum(skb, fcb);
2914
2915         /* Tell the skb what kind of packet this is */
2916         skb->protocol = eth_type_trans(skb, ndev);
2917
2918         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2919          * Even if vlan rx accel is disabled, on some chips
2920          * RXFCB_VLN is pseudo randomly set.
2921          */
2922         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2923             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2924                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2925                                        be16_to_cpu(fcb->vlctl));
2926 }
2927
2928 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2929  * until the budget/quota has been reached. Returns the number
2930  * of frames handled
2931  */
2932 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2933 {
2934         struct net_device *ndev = rx_queue->ndev;
2935         struct gfar_private *priv = netdev_priv(ndev);
2936         struct rxbd8 *bdp;
2937         int i, howmany = 0;
2938         struct sk_buff *skb = rx_queue->skb;
2939         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2940         unsigned int total_bytes = 0, total_pkts = 0;
2941
2942         /* Get the first full descriptor */
2943         i = rx_queue->next_to_clean;
2944
2945         while (rx_work_limit--) {
2946                 u32 lstatus;
2947
2948                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2949                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2950                         cleaned_cnt = 0;
2951                 }
2952
2953                 bdp = &rx_queue->rx_bd_base[i];
2954                 lstatus = be32_to_cpu(bdp->lstatus);
2955                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2956                         break;
2957
2958                 /* order rx buffer descriptor reads */
2959                 rmb();
2960
2961                 /* fetch next to clean buffer from the ring */
2962                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2963                 if (unlikely(!skb))
2964                         break;
2965
2966                 cleaned_cnt++;
2967                 howmany++;
2968
2969                 if (unlikely(++i == rx_queue->rx_ring_size))
2970                         i = 0;
2971
2972                 rx_queue->next_to_clean = i;
2973
2974                 /* fetch next buffer if not the last in frame */
2975                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2976                         continue;
2977
2978                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2979                         count_errors(lstatus, ndev);
2980
2981                         /* discard faulty buffer */
2982                         dev_kfree_skb(skb);
2983                         skb = NULL;
2984                         rx_queue->stats.rx_dropped++;
2985                         continue;
2986                 }
2987
2988                 /* Increment the number of packets */
2989                 total_pkts++;
2990                 total_bytes += skb->len;
2991
2992                 skb_record_rx_queue(skb, rx_queue->qindex);
2993
2994                 gfar_process_frame(ndev, skb);
2995
2996                 /* Send the packet up the stack */
2997                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2998
2999                 skb = NULL;
3000         }
3001
3002         /* Store incomplete frames for completion */
3003         rx_queue->skb = skb;
3004
3005         rx_queue->stats.rx_packets += total_pkts;
3006         rx_queue->stats.rx_bytes += total_bytes;
3007
3008         if (cleaned_cnt)
3009                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3010
3011         /* Update Last Free RxBD pointer for LFC */
3012         if (unlikely(priv->tx_actual_en)) {
3013                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3014
3015                 gfar_write(rx_queue->rfbptr, bdp_dma);
3016         }
3017
3018         return howmany;
3019 }
3020
3021 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3022 {
3023         struct gfar_priv_grp *gfargrp =
3024                 container_of(napi, struct gfar_priv_grp, napi_rx);
3025         struct gfar __iomem *regs = gfargrp->regs;
3026         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3027         int work_done = 0;
3028
3029         /* Clear IEVENT, so interrupts aren't called again
3030          * because of the packets that have already arrived
3031          */
3032         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3033
3034         work_done = gfar_clean_rx_ring(rx_queue, budget);
3035
3036         if (work_done < budget) {
3037                 u32 imask;
3038                 napi_complete(napi);
3039                 /* Clear the halt bit in RSTAT */
3040                 gfar_write(&regs->rstat, gfargrp->rstat);
3041
3042                 spin_lock_irq(&gfargrp->grplock);
3043                 imask = gfar_read(&regs->imask);
3044                 imask |= IMASK_RX_DEFAULT;
3045                 gfar_write(&regs->imask, imask);
3046                 spin_unlock_irq(&gfargrp->grplock);
3047         }
3048
3049         return work_done;
3050 }
3051
3052 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3053 {
3054         struct gfar_priv_grp *gfargrp =
3055                 container_of(napi, struct gfar_priv_grp, napi_tx);
3056         struct gfar __iomem *regs = gfargrp->regs;
3057         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3058         u32 imask;
3059
3060         /* Clear IEVENT, so interrupts aren't called again
3061          * because of the packets that have already arrived
3062          */
3063         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3064
3065         /* run Tx cleanup to completion */
3066         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3067                 gfar_clean_tx_ring(tx_queue);
3068
3069         napi_complete(napi);
3070
3071         spin_lock_irq(&gfargrp->grplock);
3072         imask = gfar_read(&regs->imask);
3073         imask |= IMASK_TX_DEFAULT;
3074         gfar_write(&regs->imask, imask);
3075         spin_unlock_irq(&gfargrp->grplock);
3076
3077         return 0;
3078 }
3079
3080 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3081 {
3082         struct gfar_priv_grp *gfargrp =
3083                 container_of(napi, struct gfar_priv_grp, napi_rx);
3084         struct gfar_private *priv = gfargrp->priv;
3085         struct gfar __iomem *regs = gfargrp->regs;
3086         struct gfar_priv_rx_q *rx_queue = NULL;
3087         int work_done = 0, work_done_per_q = 0;
3088         int i, budget_per_q = 0;
3089         unsigned long rstat_rxf;
3090         int num_act_queues;
3091
3092         /* Clear IEVENT, so interrupts aren't called again
3093          * because of the packets that have already arrived
3094          */
3095         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3096
3097         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3098
3099         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3100         if (num_act_queues)
3101                 budget_per_q = budget/num_act_queues;
3102
3103         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3104                 /* skip queue if not active */
3105                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3106                         continue;
3107
3108                 rx_queue = priv->rx_queue[i];
3109                 work_done_per_q =
3110                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3111                 work_done += work_done_per_q;
3112
3113                 /* finished processing this queue */
3114                 if (work_done_per_q < budget_per_q) {
3115                         /* clear active queue hw indication */
3116                         gfar_write(&regs->rstat,
3117                                    RSTAT_CLEAR_RXF0 >> i);
3118                         num_act_queues--;
3119
3120                         if (!num_act_queues)
3121                                 break;
3122                 }
3123         }
3124
3125         if (!num_act_queues) {
3126                 u32 imask;
3127                 napi_complete(napi);
3128
3129                 /* Clear the halt bit in RSTAT */
3130                 gfar_write(&regs->rstat, gfargrp->rstat);
3131
3132                 spin_lock_irq(&gfargrp->grplock);
3133                 imask = gfar_read(&regs->imask);
3134                 imask |= IMASK_RX_DEFAULT;
3135                 gfar_write(&regs->imask, imask);
3136                 spin_unlock_irq(&gfargrp->grplock);
3137         }
3138
3139         return work_done;
3140 }
3141
3142 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3143 {
3144         struct gfar_priv_grp *gfargrp =
3145                 container_of(napi, struct gfar_priv_grp, napi_tx);
3146         struct gfar_private *priv = gfargrp->priv;
3147         struct gfar __iomem *regs = gfargrp->regs;
3148         struct gfar_priv_tx_q *tx_queue = NULL;
3149         int has_tx_work = 0;
3150         int i;
3151
3152         /* Clear IEVENT, so interrupts aren't called again
3153          * because of the packets that have already arrived
3154          */
3155         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3156
3157         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3158                 tx_queue = priv->tx_queue[i];
3159                 /* run Tx cleanup to completion */
3160                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3161                         gfar_clean_tx_ring(tx_queue);
3162                         has_tx_work = 1;
3163                 }
3164         }
3165
3166         if (!has_tx_work) {
3167                 u32 imask;
3168                 napi_complete(napi);
3169
3170                 spin_lock_irq(&gfargrp->grplock);
3171                 imask = gfar_read(&regs->imask);
3172                 imask |= IMASK_TX_DEFAULT;
3173                 gfar_write(&regs->imask, imask);
3174                 spin_unlock_irq(&gfargrp->grplock);
3175         }
3176
3177         return 0;
3178 }
3179
3180
3181 #ifdef CONFIG_NET_POLL_CONTROLLER
3182 /* Polling 'interrupt' - used by things like netconsole to send skbs
3183  * without having to re-enable interrupts. It's not called while
3184  * the interrupt routine is executing.
3185  */
3186 static void gfar_netpoll(struct net_device *dev)
3187 {
3188         struct gfar_private *priv = netdev_priv(dev);
3189         int i;
3190
3191         /* If the device has multiple interrupts, run tx/rx */
3192         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3193                 for (i = 0; i < priv->num_grps; i++) {
3194                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3195
3196                         disable_irq(gfar_irq(grp, TX)->irq);
3197                         disable_irq(gfar_irq(grp, RX)->irq);
3198                         disable_irq(gfar_irq(grp, ER)->irq);
3199                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3200                         enable_irq(gfar_irq(grp, ER)->irq);
3201                         enable_irq(gfar_irq(grp, RX)->irq);
3202                         enable_irq(gfar_irq(grp, TX)->irq);
3203                 }
3204         } else {
3205                 for (i = 0; i < priv->num_grps; i++) {
3206                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3207
3208                         disable_irq(gfar_irq(grp, TX)->irq);
3209                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3210                         enable_irq(gfar_irq(grp, TX)->irq);
3211                 }
3212         }
3213 }
3214 #endif
3215
3216 /* The interrupt handler for devices with one interrupt */
3217 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3218 {
3219         struct gfar_priv_grp *gfargrp = grp_id;
3220
3221         /* Save ievent for future reference */
3222         u32 events = gfar_read(&gfargrp->regs->ievent);
3223
3224         /* Check for reception */
3225         if (events & IEVENT_RX_MASK)
3226                 gfar_receive(irq, grp_id);
3227
3228         /* Check for transmit completion */
3229         if (events & IEVENT_TX_MASK)
3230                 gfar_transmit(irq, grp_id);
3231
3232         /* Check for errors */
3233         if (events & IEVENT_ERR_MASK)
3234                 gfar_error(irq, grp_id);
3235
3236         return IRQ_HANDLED;
3237 }
3238
3239 /* Called every time the controller might need to be made
3240  * aware of new link state.  The PHY code conveys this
3241  * information through variables in the phydev structure, and this
3242  * function converts those variables into the appropriate
3243  * register values, and can bring down the device if needed.
3244  */
3245 static void adjust_link(struct net_device *dev)
3246 {
3247         struct gfar_private *priv = netdev_priv(dev);
3248         struct phy_device *phydev = priv->phydev;
3249
3250         if (unlikely(phydev->link != priv->oldlink ||
3251                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3252                                        phydev->speed != priv->oldspeed))))
3253                 gfar_update_link_state(priv);
3254 }
3255
3256 /* Update the hash table based on the current list of multicast
3257  * addresses we subscribe to.  Also, change the promiscuity of
3258  * the device based on the flags (this function is called
3259  * whenever dev->flags is changed
3260  */
3261 static void gfar_set_multi(struct net_device *dev)
3262 {
3263         struct netdev_hw_addr *ha;
3264         struct gfar_private *priv = netdev_priv(dev);
3265         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3266         u32 tempval;
3267
3268         if (dev->flags & IFF_PROMISC) {
3269                 /* Set RCTRL to PROM */
3270                 tempval = gfar_read(&regs->rctrl);
3271                 tempval |= RCTRL_PROM;
3272                 gfar_write(&regs->rctrl, tempval);
3273         } else {
3274                 /* Set RCTRL to not PROM */
3275                 tempval = gfar_read(&regs->rctrl);
3276                 tempval &= ~(RCTRL_PROM);
3277                 gfar_write(&regs->rctrl, tempval);
3278         }
3279
3280         if (dev->flags & IFF_ALLMULTI) {
3281                 /* Set the hash to rx all multicast frames */
3282                 gfar_write(&regs->igaddr0, 0xffffffff);
3283                 gfar_write(&regs->igaddr1, 0xffffffff);
3284                 gfar_write(&regs->igaddr2, 0xffffffff);
3285                 gfar_write(&regs->igaddr3, 0xffffffff);
3286                 gfar_write(&regs->igaddr4, 0xffffffff);
3287                 gfar_write(&regs->igaddr5, 0xffffffff);
3288                 gfar_write(&regs->igaddr6, 0xffffffff);
3289                 gfar_write(&regs->igaddr7, 0xffffffff);
3290                 gfar_write(&regs->gaddr0, 0xffffffff);
3291                 gfar_write(&regs->gaddr1, 0xffffffff);
3292                 gfar_write(&regs->gaddr2, 0xffffffff);
3293                 gfar_write(&regs->gaddr3, 0xffffffff);
3294                 gfar_write(&regs->gaddr4, 0xffffffff);
3295                 gfar_write(&regs->gaddr5, 0xffffffff);
3296                 gfar_write(&regs->gaddr6, 0xffffffff);
3297                 gfar_write(&regs->gaddr7, 0xffffffff);
3298         } else {
3299                 int em_num;
3300                 int idx;
3301
3302                 /* zero out the hash */
3303                 gfar_write(&regs->igaddr0, 0x0);
3304                 gfar_write(&regs->igaddr1, 0x0);
3305                 gfar_write(&regs->igaddr2, 0x0);
3306                 gfar_write(&regs->igaddr3, 0x0);
3307                 gfar_write(&regs->igaddr4, 0x0);
3308                 gfar_write(&regs->igaddr5, 0x0);
3309                 gfar_write(&regs->igaddr6, 0x0);
3310                 gfar_write(&regs->igaddr7, 0x0);
3311                 gfar_write(&regs->gaddr0, 0x0);
3312                 gfar_write(&regs->gaddr1, 0x0);
3313                 gfar_write(&regs->gaddr2, 0x0);
3314                 gfar_write(&regs->gaddr3, 0x0);
3315                 gfar_write(&regs->gaddr4, 0x0);
3316                 gfar_write(&regs->gaddr5, 0x0);
3317                 gfar_write(&regs->gaddr6, 0x0);
3318                 gfar_write(&regs->gaddr7, 0x0);
3319
3320                 /* If we have extended hash tables, we need to
3321                  * clear the exact match registers to prepare for
3322                  * setting them
3323                  */
3324                 if (priv->extended_hash) {
3325                         em_num = GFAR_EM_NUM + 1;
3326                         gfar_clear_exact_match(dev);
3327                         idx = 1;
3328                 } else {
3329                         idx = 0;
3330                         em_num = 0;
3331                 }
3332
3333                 if (netdev_mc_empty(dev))
3334                         return;
3335
3336                 /* Parse the list, and set the appropriate bits */
3337                 netdev_for_each_mc_addr(ha, dev) {
3338                         if (idx < em_num) {
3339                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3340                                 idx++;
3341                         } else
3342                                 gfar_set_hash_for_addr(dev, ha->addr);
3343                 }
3344         }
3345 }
3346
3347
3348 /* Clears each of the exact match registers to zero, so they
3349  * don't interfere with normal reception
3350  */
3351 static void gfar_clear_exact_match(struct net_device *dev)
3352 {
3353         int idx;
3354         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3355
3356         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3357                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3358 }
3359
3360 /* Set the appropriate hash bit for the given addr */
3361 /* The algorithm works like so:
3362  * 1) Take the Destination Address (ie the multicast address), and
3363  * do a CRC on it (little endian), and reverse the bits of the
3364  * result.
3365  * 2) Use the 8 most significant bits as a hash into a 256-entry
3366  * table.  The table is controlled through 8 32-bit registers:
3367  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3368  * gaddr7.  This means that the 3 most significant bits in the
3369  * hash index which gaddr register to use, and the 5 other bits
3370  * indicate which bit (assuming an IBM numbering scheme, which
3371  * for PowerPC (tm) is usually the case) in the register holds
3372  * the entry.
3373  */
3374 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3375 {
3376         u32 tempval;
3377         struct gfar_private *priv = netdev_priv(dev);
3378         u32 result = ether_crc(ETH_ALEN, addr);
3379         int width = priv->hash_width;
3380         u8 whichbit = (result >> (32 - width)) & 0x1f;
3381         u8 whichreg = result >> (32 - width + 5);
3382         u32 value = (1 << (31-whichbit));
3383
3384         tempval = gfar_read(priv->hash_regs[whichreg]);
3385         tempval |= value;
3386         gfar_write(priv->hash_regs[whichreg], tempval);
3387 }
3388
3389
3390 /* There are multiple MAC Address register pairs on some controllers
3391  * This function sets the numth pair to a given address
3392  */
3393 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3394                                   const u8 *addr)
3395 {
3396         struct gfar_private *priv = netdev_priv(dev);
3397         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3398         u32 tempval;
3399         u32 __iomem *macptr = &regs->macstnaddr1;
3400
3401         macptr += num*2;
3402
3403         /* For a station address of 0x12345678ABCD in transmission
3404          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3405          * MACnADDR2 is set to 0x34120000.
3406          */
3407         tempval = (addr[5] << 24) | (addr[4] << 16) |
3408                   (addr[3] << 8)  |  addr[2];
3409
3410         gfar_write(macptr, tempval);
3411
3412         tempval = (addr[1] << 24) | (addr[0] << 16);
3413
3414         gfar_write(macptr+1, tempval);
3415 }
3416
3417 /* GFAR error interrupt handler */
3418 static irqreturn_t gfar_error(int irq, void *grp_id)
3419 {
3420         struct gfar_priv_grp *gfargrp = grp_id;
3421         struct gfar __iomem *regs = gfargrp->regs;
3422         struct gfar_private *priv= gfargrp->priv;
3423         struct net_device *dev = priv->ndev;
3424
3425         /* Save ievent for future reference */
3426         u32 events = gfar_read(&regs->ievent);
3427
3428         /* Clear IEVENT */
3429         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3430
3431         /* Magic Packet is not an error. */
3432         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3433             (events & IEVENT_MAG))
3434                 events &= ~IEVENT_MAG;
3435
3436         /* Hmm... */
3437         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3438                 netdev_dbg(dev,
3439                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3440                            events, gfar_read(&regs->imask));
3441
3442         /* Update the error counters */
3443         if (events & IEVENT_TXE) {
3444                 dev->stats.tx_errors++;
3445
3446                 if (events & IEVENT_LC)
3447                         dev->stats.tx_window_errors++;
3448                 if (events & IEVENT_CRL)
3449                         dev->stats.tx_aborted_errors++;
3450                 if (events & IEVENT_XFUN) {
3451                         netif_dbg(priv, tx_err, dev,
3452                                   "TX FIFO underrun, packet dropped\n");
3453                         dev->stats.tx_dropped++;
3454                         atomic64_inc(&priv->extra_stats.tx_underrun);
3455
3456                         schedule_work(&priv->reset_task);
3457                 }
3458                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3459         }
3460         if (events & IEVENT_BSY) {
3461                 dev->stats.rx_errors++;
3462                 atomic64_inc(&priv->extra_stats.rx_bsy);
3463
3464                 gfar_receive(irq, grp_id);
3465
3466                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3467                           gfar_read(&regs->rstat));
3468         }
3469         if (events & IEVENT_BABR) {
3470                 dev->stats.rx_errors++;
3471                 atomic64_inc(&priv->extra_stats.rx_babr);
3472
3473                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3474         }
3475         if (events & IEVENT_EBERR) {
3476                 atomic64_inc(&priv->extra_stats.eberr);
3477                 netif_dbg(priv, rx_err, dev, "bus error\n");
3478         }
3479         if (events & IEVENT_RXC)
3480                 netif_dbg(priv, rx_status, dev, "control frame\n");
3481
3482         if (events & IEVENT_BABT) {
3483                 atomic64_inc(&priv->extra_stats.tx_babt);
3484                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3485         }
3486         return IRQ_HANDLED;
3487 }
3488
3489 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3490 {
3491         struct phy_device *phydev = priv->phydev;
3492         u32 val = 0;
3493
3494         if (!phydev->duplex)
3495                 return val;
3496
3497         if (!priv->pause_aneg_en) {
3498                 if (priv->tx_pause_en)
3499                         val |= MACCFG1_TX_FLOW;
3500                 if (priv->rx_pause_en)
3501                         val |= MACCFG1_RX_FLOW;
3502         } else {
3503                 u16 lcl_adv, rmt_adv;
3504                 u8 flowctrl;
3505                 /* get link partner capabilities */
3506                 rmt_adv = 0;
3507                 if (phydev->pause)
3508                         rmt_adv = LPA_PAUSE_CAP;
3509                 if (phydev->asym_pause)
3510                         rmt_adv |= LPA_PAUSE_ASYM;
3511
3512                 lcl_adv = 0;
3513                 if (phydev->advertising & ADVERTISED_Pause)
3514                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3515                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3516                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3517
3518                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3519                 if (flowctrl & FLOW_CTRL_TX)
3520                         val |= MACCFG1_TX_FLOW;
3521                 if (flowctrl & FLOW_CTRL_RX)
3522                         val |= MACCFG1_RX_FLOW;
3523         }
3524
3525         return val;
3526 }
3527
3528 static noinline void gfar_update_link_state(struct gfar_private *priv)
3529 {
3530         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3531         struct phy_device *phydev = priv->phydev;
3532         struct gfar_priv_rx_q *rx_queue = NULL;
3533         int i;
3534
3535         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3536                 return;
3537
3538         if (phydev->link) {
3539                 u32 tempval1 = gfar_read(&regs->maccfg1);
3540                 u32 tempval = gfar_read(&regs->maccfg2);
3541                 u32 ecntrl = gfar_read(&regs->ecntrl);
3542                 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3543
3544                 if (phydev->duplex != priv->oldduplex) {
3545                         if (!(phydev->duplex))
3546                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3547                         else
3548                                 tempval |= MACCFG2_FULL_DUPLEX;
3549
3550                         priv->oldduplex = phydev->duplex;
3551                 }
3552
3553                 if (phydev->speed != priv->oldspeed) {
3554                         switch (phydev->speed) {
3555                         case 1000:
3556                                 tempval =
3557                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3558
3559                                 ecntrl &= ~(ECNTRL_R100);
3560                                 break;
3561                         case 100:
3562                         case 10:
3563                                 tempval =
3564                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3565
3566                                 /* Reduced mode distinguishes
3567                                  * between 10 and 100
3568                                  */
3569                                 if (phydev->speed == SPEED_100)
3570                                         ecntrl |= ECNTRL_R100;
3571                                 else
3572                                         ecntrl &= ~(ECNTRL_R100);
3573                                 break;
3574                         default:
3575                                 netif_warn(priv, link, priv->ndev,
3576                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3577                                            phydev->speed);
3578                                 break;
3579                         }
3580
3581                         priv->oldspeed = phydev->speed;
3582                 }
3583
3584                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3585                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3586
3587                 /* Turn last free buffer recording on */
3588                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3589                         for (i = 0; i < priv->num_rx_queues; i++) {
3590                                 u32 bdp_dma;
3591
3592                                 rx_queue = priv->rx_queue[i];
3593                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3594                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3595                         }
3596
3597                         priv->tx_actual_en = 1;
3598                 }
3599
3600                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3601                         priv->tx_actual_en = 0;
3602
3603                 gfar_write(&regs->maccfg1, tempval1);
3604                 gfar_write(&regs->maccfg2, tempval);
3605                 gfar_write(&regs->ecntrl, ecntrl);
3606
3607                 if (!priv->oldlink)
3608                         priv->oldlink = 1;
3609
3610         } else if (priv->oldlink) {
3611                 priv->oldlink = 0;
3612                 priv->oldspeed = 0;
3613                 priv->oldduplex = -1;
3614         }
3615
3616         if (netif_msg_link(priv))
3617                 phy_print_status(phydev);
3618 }
3619
3620 static const struct of_device_id gfar_match[] =
3621 {
3622         {
3623                 .type = "network",
3624                 .compatible = "gianfar",
3625         },
3626         {
3627                 .compatible = "fsl,etsec2",
3628         },
3629         {},
3630 };
3631 MODULE_DEVICE_TABLE(of, gfar_match);
3632
3633 /* Structure for a device driver */
3634 static struct platform_driver gfar_driver = {
3635         .driver = {
3636                 .name = "fsl-gianfar",
3637                 .pm = GFAR_PM_OPS,
3638                 .of_match_table = gfar_match,
3639         },
3640         .probe = gfar_probe,
3641         .remove = gfar_remove,
3642 };
3643
3644 module_platform_driver(gfar_driver);