]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
gianfar: Bundle Rx allocation, cleanup
[karo-tx-linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120                                 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145                                struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149                                   const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157                             dma_addr_t buf)
158 {
159         u32 lstatus;
160
161         bdp->bufPtr = cpu_to_be32(buf);
162
163         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165                 lstatus |= BD_LFLAG(RXBD_WRAP);
166
167         gfar_wmb();
168
169         bdp->lstatus = cpu_to_be32(lstatus);
170 }
171
172 static void gfar_init_bds(struct net_device *ndev)
173 {
174         struct gfar_private *priv = netdev_priv(ndev);
175         struct gfar __iomem *regs = priv->gfargrp[0].regs;
176         struct gfar_priv_tx_q *tx_queue = NULL;
177         struct gfar_priv_rx_q *rx_queue = NULL;
178         struct txbd8 *txbdp;
179         u32 __iomem *rfbptr;
180         int i, j;
181
182         for (i = 0; i < priv->num_tx_queues; i++) {
183                 tx_queue = priv->tx_queue[i];
184                 /* Initialize some variables in our dev structure */
185                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
186                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
187                 tx_queue->cur_tx = tx_queue->tx_bd_base;
188                 tx_queue->skb_curtx = 0;
189                 tx_queue->skb_dirtytx = 0;
190
191                 /* Initialize Transmit Descriptor Ring */
192                 txbdp = tx_queue->tx_bd_base;
193                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
194                         txbdp->lstatus = 0;
195                         txbdp->bufPtr = 0;
196                         txbdp++;
197                 }
198
199                 /* Set the last descriptor in the ring to indicate wrap */
200                 txbdp--;
201                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
202                                             TXBD_WRAP);
203         }
204
205         rfbptr = &regs->rfbptr0;
206         for (i = 0; i < priv->num_rx_queues; i++) {
207                 rx_queue = priv->rx_queue[i];
208
209                 rx_queue->next_to_clean = 0;
210                 rx_queue->next_to_use = 0;
211
212                 /* make sure next_to_clean != next_to_use after this
213                  * by leaving at least 1 unused descriptor
214                  */
215                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217                 rx_queue->rfbptr = rfbptr;
218                 rfbptr += 2;
219         }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224         void *vaddr;
225         dma_addr_t addr;
226         int i, j, k;
227         struct gfar_private *priv = netdev_priv(ndev);
228         struct device *dev = priv->dev;
229         struct gfar_priv_tx_q *tx_queue = NULL;
230         struct gfar_priv_rx_q *rx_queue = NULL;
231
232         priv->total_tx_ring_size = 0;
233         for (i = 0; i < priv->num_tx_queues; i++)
234                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236         priv->total_rx_ring_size = 0;
237         for (i = 0; i < priv->num_rx_queues; i++)
238                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240         /* Allocate memory for the buffer descriptors */
241         vaddr = dma_alloc_coherent(dev,
242                                    (priv->total_tx_ring_size *
243                                     sizeof(struct txbd8)) +
244                                    (priv->total_rx_ring_size *
245                                     sizeof(struct rxbd8)),
246                                    &addr, GFP_KERNEL);
247         if (!vaddr)
248                 return -ENOMEM;
249
250         for (i = 0; i < priv->num_tx_queues; i++) {
251                 tx_queue = priv->tx_queue[i];
252                 tx_queue->tx_bd_base = vaddr;
253                 tx_queue->tx_bd_dma_base = addr;
254                 tx_queue->dev = ndev;
255                 /* enet DMA only understands physical addresses */
256                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258         }
259
260         /* Start the rx descriptor ring where the tx ring leaves off */
261         for (i = 0; i < priv->num_rx_queues; i++) {
262                 rx_queue = priv->rx_queue[i];
263                 rx_queue->rx_bd_base = vaddr;
264                 rx_queue->rx_bd_dma_base = addr;
265                 rx_queue->dev = ndev;
266                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
267                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268         }
269
270         /* Setup the skbuff rings */
271         for (i = 0; i < priv->num_tx_queues; i++) {
272                 tx_queue = priv->tx_queue[i];
273                 tx_queue->tx_skbuff =
274                         kmalloc_array(tx_queue->tx_ring_size,
275                                       sizeof(*tx_queue->tx_skbuff),
276                                       GFP_KERNEL);
277                 if (!tx_queue->tx_skbuff)
278                         goto cleanup;
279
280                 for (k = 0; k < tx_queue->tx_ring_size; k++)
281                         tx_queue->tx_skbuff[k] = NULL;
282         }
283
284         for (i = 0; i < priv->num_rx_queues; i++) {
285                 rx_queue = priv->rx_queue[i];
286                 rx_queue->rx_skbuff =
287                         kmalloc_array(rx_queue->rx_ring_size,
288                                       sizeof(*rx_queue->rx_skbuff),
289                                       GFP_KERNEL);
290                 if (!rx_queue->rx_skbuff)
291                         goto cleanup;
292
293                 for (j = 0; j < rx_queue->rx_ring_size; j++)
294                         rx_queue->rx_skbuff[j] = NULL;
295         }
296
297         gfar_init_bds(ndev);
298
299         return 0;
300
301 cleanup:
302         free_skb_resources(priv);
303         return -ENOMEM;
304 }
305
306 static void gfar_init_tx_rx_base(struct gfar_private *priv)
307 {
308         struct gfar __iomem *regs = priv->gfargrp[0].regs;
309         u32 __iomem *baddr;
310         int i;
311
312         baddr = &regs->tbase0;
313         for (i = 0; i < priv->num_tx_queues; i++) {
314                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
315                 baddr += 2;
316         }
317
318         baddr = &regs->rbase0;
319         for (i = 0; i < priv->num_rx_queues; i++) {
320                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
321                 baddr += 2;
322         }
323 }
324
325 static void gfar_init_rqprm(struct gfar_private *priv)
326 {
327         struct gfar __iomem *regs = priv->gfargrp[0].regs;
328         u32 __iomem *baddr;
329         int i;
330
331         baddr = &regs->rqprm0;
332         for (i = 0; i < priv->num_rx_queues; i++) {
333                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
334                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
335                 baddr++;
336         }
337 }
338
339 static void gfar_rx_buff_size_config(struct gfar_private *priv)
340 {
341         int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
342
343         /* set this when rx hw offload (TOE) functions are being used */
344         priv->uses_rxfcb = 0;
345
346         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
347                 priv->uses_rxfcb = 1;
348
349         if (priv->hwts_rx_en)
350                 priv->uses_rxfcb = 1;
351
352         if (priv->uses_rxfcb)
353                 frame_size += GMAC_FCB_LEN;
354
355         frame_size += priv->padding;
356
357         frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
358                      INCREMENTAL_BUFFER_SIZE;
359
360         priv->rx_buffer_size = frame_size;
361 }
362
363 static void gfar_mac_rx_config(struct gfar_private *priv)
364 {
365         struct gfar __iomem *regs = priv->gfargrp[0].regs;
366         u32 rctrl = 0;
367
368         if (priv->rx_filer_enable) {
369                 rctrl |= RCTRL_FILREN;
370                 /* Program the RIR0 reg with the required distribution */
371                 if (priv->poll_mode == GFAR_SQ_POLLING)
372                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
373                 else /* GFAR_MQ_POLLING */
374                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
375         }
376
377         /* Restore PROMISC mode */
378         if (priv->ndev->flags & IFF_PROMISC)
379                 rctrl |= RCTRL_PROM;
380
381         if (priv->ndev->features & NETIF_F_RXCSUM)
382                 rctrl |= RCTRL_CHECKSUMMING;
383
384         if (priv->extended_hash)
385                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
386
387         if (priv->padding) {
388                 rctrl &= ~RCTRL_PAL_MASK;
389                 rctrl |= RCTRL_PADDING(priv->padding);
390         }
391
392         /* Enable HW time stamping if requested from user space */
393         if (priv->hwts_rx_en)
394                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
395
396         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
397                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
398
399         /* Clear the LFC bit */
400         gfar_write(&regs->rctrl, rctrl);
401         /* Init flow control threshold values */
402         gfar_init_rqprm(priv);
403         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
404         rctrl |= RCTRL_LFC;
405
406         /* Init rctrl based on our settings */
407         gfar_write(&regs->rctrl, rctrl);
408 }
409
410 static void gfar_mac_tx_config(struct gfar_private *priv)
411 {
412         struct gfar __iomem *regs = priv->gfargrp[0].regs;
413         u32 tctrl = 0;
414
415         if (priv->ndev->features & NETIF_F_IP_CSUM)
416                 tctrl |= TCTRL_INIT_CSUM;
417
418         if (priv->prio_sched_en)
419                 tctrl |= TCTRL_TXSCHED_PRIO;
420         else {
421                 tctrl |= TCTRL_TXSCHED_WRRS;
422                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
423                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
424         }
425
426         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
427                 tctrl |= TCTRL_VLINS;
428
429         gfar_write(&regs->tctrl, tctrl);
430 }
431
432 static void gfar_configure_coalescing(struct gfar_private *priv,
433                                unsigned long tx_mask, unsigned long rx_mask)
434 {
435         struct gfar __iomem *regs = priv->gfargrp[0].regs;
436         u32 __iomem *baddr;
437
438         if (priv->mode == MQ_MG_MODE) {
439                 int i = 0;
440
441                 baddr = &regs->txic0;
442                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
443                         gfar_write(baddr + i, 0);
444                         if (likely(priv->tx_queue[i]->txcoalescing))
445                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
446                 }
447
448                 baddr = &regs->rxic0;
449                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
450                         gfar_write(baddr + i, 0);
451                         if (likely(priv->rx_queue[i]->rxcoalescing))
452                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
453                 }
454         } else {
455                 /* Backward compatible case -- even if we enable
456                  * multiple queues, there's only single reg to program
457                  */
458                 gfar_write(&regs->txic, 0);
459                 if (likely(priv->tx_queue[0]->txcoalescing))
460                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
461
462                 gfar_write(&regs->rxic, 0);
463                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
464                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
465         }
466 }
467
468 void gfar_configure_coalescing_all(struct gfar_private *priv)
469 {
470         gfar_configure_coalescing(priv, 0xFF, 0xFF);
471 }
472
473 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
474 {
475         struct gfar_private *priv = netdev_priv(dev);
476         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
477         unsigned long tx_packets = 0, tx_bytes = 0;
478         int i;
479
480         for (i = 0; i < priv->num_rx_queues; i++) {
481                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
482                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
483                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
484         }
485
486         dev->stats.rx_packets = rx_packets;
487         dev->stats.rx_bytes   = rx_bytes;
488         dev->stats.rx_dropped = rx_dropped;
489
490         for (i = 0; i < priv->num_tx_queues; i++) {
491                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
492                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
493         }
494
495         dev->stats.tx_bytes   = tx_bytes;
496         dev->stats.tx_packets = tx_packets;
497
498         return &dev->stats;
499 }
500
501 static int gfar_set_mac_addr(struct net_device *dev, void *p)
502 {
503         eth_mac_addr(dev, p);
504
505         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
506
507         return 0;
508 }
509
510 static const struct net_device_ops gfar_netdev_ops = {
511         .ndo_open = gfar_enet_open,
512         .ndo_start_xmit = gfar_start_xmit,
513         .ndo_stop = gfar_close,
514         .ndo_change_mtu = gfar_change_mtu,
515         .ndo_set_features = gfar_set_features,
516         .ndo_set_rx_mode = gfar_set_multi,
517         .ndo_tx_timeout = gfar_timeout,
518         .ndo_do_ioctl = gfar_ioctl,
519         .ndo_get_stats = gfar_get_stats,
520         .ndo_set_mac_address = gfar_set_mac_addr,
521         .ndo_validate_addr = eth_validate_addr,
522 #ifdef CONFIG_NET_POLL_CONTROLLER
523         .ndo_poll_controller = gfar_netpoll,
524 #endif
525 };
526
527 static void gfar_ints_disable(struct gfar_private *priv)
528 {
529         int i;
530         for (i = 0; i < priv->num_grps; i++) {
531                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
532                 /* Clear IEVENT */
533                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
534
535                 /* Initialize IMASK */
536                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
537         }
538 }
539
540 static void gfar_ints_enable(struct gfar_private *priv)
541 {
542         int i;
543         for (i = 0; i < priv->num_grps; i++) {
544                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
545                 /* Unmask the interrupts we look for */
546                 gfar_write(&regs->imask, IMASK_DEFAULT);
547         }
548 }
549
550 static void lock_tx_qs(struct gfar_private *priv)
551 {
552         int i;
553
554         for (i = 0; i < priv->num_tx_queues; i++)
555                 spin_lock(&priv->tx_queue[i]->txlock);
556 }
557
558 static void unlock_tx_qs(struct gfar_private *priv)
559 {
560         int i;
561
562         for (i = 0; i < priv->num_tx_queues; i++)
563                 spin_unlock(&priv->tx_queue[i]->txlock);
564 }
565
566 static int gfar_alloc_tx_queues(struct gfar_private *priv)
567 {
568         int i;
569
570         for (i = 0; i < priv->num_tx_queues; i++) {
571                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
572                                             GFP_KERNEL);
573                 if (!priv->tx_queue[i])
574                         return -ENOMEM;
575
576                 priv->tx_queue[i]->tx_skbuff = NULL;
577                 priv->tx_queue[i]->qindex = i;
578                 priv->tx_queue[i]->dev = priv->ndev;
579                 spin_lock_init(&(priv->tx_queue[i]->txlock));
580         }
581         return 0;
582 }
583
584 static int gfar_alloc_rx_queues(struct gfar_private *priv)
585 {
586         int i;
587
588         for (i = 0; i < priv->num_rx_queues; i++) {
589                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
590                                             GFP_KERNEL);
591                 if (!priv->rx_queue[i])
592                         return -ENOMEM;
593
594                 priv->rx_queue[i]->rx_skbuff = NULL;
595                 priv->rx_queue[i]->qindex = i;
596                 priv->rx_queue[i]->dev = priv->ndev;
597         }
598         return 0;
599 }
600
601 static void gfar_free_tx_queues(struct gfar_private *priv)
602 {
603         int i;
604
605         for (i = 0; i < priv->num_tx_queues; i++)
606                 kfree(priv->tx_queue[i]);
607 }
608
609 static void gfar_free_rx_queues(struct gfar_private *priv)
610 {
611         int i;
612
613         for (i = 0; i < priv->num_rx_queues; i++)
614                 kfree(priv->rx_queue[i]);
615 }
616
617 static void unmap_group_regs(struct gfar_private *priv)
618 {
619         int i;
620
621         for (i = 0; i < MAXGROUPS; i++)
622                 if (priv->gfargrp[i].regs)
623                         iounmap(priv->gfargrp[i].regs);
624 }
625
626 static void free_gfar_dev(struct gfar_private *priv)
627 {
628         int i, j;
629
630         for (i = 0; i < priv->num_grps; i++)
631                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
632                         kfree(priv->gfargrp[i].irqinfo[j]);
633                         priv->gfargrp[i].irqinfo[j] = NULL;
634                 }
635
636         free_netdev(priv->ndev);
637 }
638
639 static void disable_napi(struct gfar_private *priv)
640 {
641         int i;
642
643         for (i = 0; i < priv->num_grps; i++) {
644                 napi_disable(&priv->gfargrp[i].napi_rx);
645                 napi_disable(&priv->gfargrp[i].napi_tx);
646         }
647 }
648
649 static void enable_napi(struct gfar_private *priv)
650 {
651         int i;
652
653         for (i = 0; i < priv->num_grps; i++) {
654                 napi_enable(&priv->gfargrp[i].napi_rx);
655                 napi_enable(&priv->gfargrp[i].napi_tx);
656         }
657 }
658
659 static int gfar_parse_group(struct device_node *np,
660                             struct gfar_private *priv, const char *model)
661 {
662         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
663         int i;
664
665         for (i = 0; i < GFAR_NUM_IRQS; i++) {
666                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
667                                           GFP_KERNEL);
668                 if (!grp->irqinfo[i])
669                         return -ENOMEM;
670         }
671
672         grp->regs = of_iomap(np, 0);
673         if (!grp->regs)
674                 return -ENOMEM;
675
676         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
677
678         /* If we aren't the FEC we have multiple interrupts */
679         if (model && strcasecmp(model, "FEC")) {
680                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
681                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
682                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
683                     gfar_irq(grp, RX)->irq == NO_IRQ ||
684                     gfar_irq(grp, ER)->irq == NO_IRQ)
685                         return -EINVAL;
686         }
687
688         grp->priv = priv;
689         spin_lock_init(&grp->grplock);
690         if (priv->mode == MQ_MG_MODE) {
691                 u32 rxq_mask, txq_mask;
692                 int ret;
693
694                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
695                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
696
697                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
698                 if (!ret) {
699                         grp->rx_bit_map = rxq_mask ?
700                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
701                 }
702
703                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
704                 if (!ret) {
705                         grp->tx_bit_map = txq_mask ?
706                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
707                 }
708
709                 if (priv->poll_mode == GFAR_SQ_POLLING) {
710                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
711                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
712                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
713                 }
714         } else {
715                 grp->rx_bit_map = 0xFF;
716                 grp->tx_bit_map = 0xFF;
717         }
718
719         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
720          * right to left, so we need to revert the 8 bits to get the q index
721          */
722         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
723         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
724
725         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
726          * also assign queues to groups
727          */
728         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
729                 if (!grp->rx_queue)
730                         grp->rx_queue = priv->rx_queue[i];
731                 grp->num_rx_queues++;
732                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
733                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
734                 priv->rx_queue[i]->grp = grp;
735         }
736
737         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
738                 if (!grp->tx_queue)
739                         grp->tx_queue = priv->tx_queue[i];
740                 grp->num_tx_queues++;
741                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
742                 priv->tqueue |= (TQUEUE_EN0 >> i);
743                 priv->tx_queue[i]->grp = grp;
744         }
745
746         priv->num_grps++;
747
748         return 0;
749 }
750
751 static int gfar_of_group_count(struct device_node *np)
752 {
753         struct device_node *child;
754         int num = 0;
755
756         for_each_available_child_of_node(np, child)
757                 if (!of_node_cmp(child->name, "queue-group"))
758                         num++;
759
760         return num;
761 }
762
763 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
764 {
765         const char *model;
766         const char *ctype;
767         const void *mac_addr;
768         int err = 0, i;
769         struct net_device *dev = NULL;
770         struct gfar_private *priv = NULL;
771         struct device_node *np = ofdev->dev.of_node;
772         struct device_node *child = NULL;
773         struct property *stash;
774         u32 stash_len = 0;
775         u32 stash_idx = 0;
776         unsigned int num_tx_qs, num_rx_qs;
777         unsigned short mode, poll_mode;
778
779         if (!np)
780                 return -ENODEV;
781
782         if (of_device_is_compatible(np, "fsl,etsec2")) {
783                 mode = MQ_MG_MODE;
784                 poll_mode = GFAR_SQ_POLLING;
785         } else {
786                 mode = SQ_SG_MODE;
787                 poll_mode = GFAR_SQ_POLLING;
788         }
789
790         if (mode == SQ_SG_MODE) {
791                 num_tx_qs = 1;
792                 num_rx_qs = 1;
793         } else { /* MQ_MG_MODE */
794                 /* get the actual number of supported groups */
795                 unsigned int num_grps = gfar_of_group_count(np);
796
797                 if (num_grps == 0 || num_grps > MAXGROUPS) {
798                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
799                                 num_grps);
800                         pr_err("Cannot do alloc_etherdev, aborting\n");
801                         return -EINVAL;
802                 }
803
804                 if (poll_mode == GFAR_SQ_POLLING) {
805                         num_tx_qs = num_grps; /* one txq per int group */
806                         num_rx_qs = num_grps; /* one rxq per int group */
807                 } else { /* GFAR_MQ_POLLING */
808                         u32 tx_queues, rx_queues;
809                         int ret;
810
811                         /* parse the num of HW tx and rx queues */
812                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
813                                                    &tx_queues);
814                         num_tx_qs = ret ? 1 : tx_queues;
815
816                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
817                                                    &rx_queues);
818                         num_rx_qs = ret ? 1 : rx_queues;
819                 }
820         }
821
822         if (num_tx_qs > MAX_TX_QS) {
823                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
824                        num_tx_qs, MAX_TX_QS);
825                 pr_err("Cannot do alloc_etherdev, aborting\n");
826                 return -EINVAL;
827         }
828
829         if (num_rx_qs > MAX_RX_QS) {
830                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
831                        num_rx_qs, MAX_RX_QS);
832                 pr_err("Cannot do alloc_etherdev, aborting\n");
833                 return -EINVAL;
834         }
835
836         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
837         dev = *pdev;
838         if (NULL == dev)
839                 return -ENOMEM;
840
841         priv = netdev_priv(dev);
842         priv->ndev = dev;
843
844         priv->mode = mode;
845         priv->poll_mode = poll_mode;
846
847         priv->num_tx_queues = num_tx_qs;
848         netif_set_real_num_rx_queues(dev, num_rx_qs);
849         priv->num_rx_queues = num_rx_qs;
850
851         err = gfar_alloc_tx_queues(priv);
852         if (err)
853                 goto tx_alloc_failed;
854
855         err = gfar_alloc_rx_queues(priv);
856         if (err)
857                 goto rx_alloc_failed;
858
859         err = of_property_read_string(np, "model", &model);
860         if (err) {
861                 pr_err("Device model property missing, aborting\n");
862                 goto rx_alloc_failed;
863         }
864
865         /* Init Rx queue filer rule set linked list */
866         INIT_LIST_HEAD(&priv->rx_list.list);
867         priv->rx_list.count = 0;
868         mutex_init(&priv->rx_queue_access);
869
870         for (i = 0; i < MAXGROUPS; i++)
871                 priv->gfargrp[i].regs = NULL;
872
873         /* Parse and initialize group specific information */
874         if (priv->mode == MQ_MG_MODE) {
875                 for_each_available_child_of_node(np, child) {
876                         if (of_node_cmp(child->name, "queue-group"))
877                                 continue;
878
879                         err = gfar_parse_group(child, priv, model);
880                         if (err)
881                                 goto err_grp_init;
882                 }
883         } else { /* SQ_SG_MODE */
884                 err = gfar_parse_group(np, priv, model);
885                 if (err)
886                         goto err_grp_init;
887         }
888
889         stash = of_find_property(np, "bd-stash", NULL);
890
891         if (stash) {
892                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
893                 priv->bd_stash_en = 1;
894         }
895
896         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
897
898         if (err == 0)
899                 priv->rx_stash_size = stash_len;
900
901         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
902
903         if (err == 0)
904                 priv->rx_stash_index = stash_idx;
905
906         if (stash_len || stash_idx)
907                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
908
909         mac_addr = of_get_mac_address(np);
910
911         if (mac_addr)
912                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
913
914         if (model && !strcasecmp(model, "TSEC"))
915                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
916                                      FSL_GIANFAR_DEV_HAS_COALESCE |
917                                      FSL_GIANFAR_DEV_HAS_RMON |
918                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
919
920         if (model && !strcasecmp(model, "eTSEC"))
921                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
922                                      FSL_GIANFAR_DEV_HAS_COALESCE |
923                                      FSL_GIANFAR_DEV_HAS_RMON |
924                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
925                                      FSL_GIANFAR_DEV_HAS_CSUM |
926                                      FSL_GIANFAR_DEV_HAS_VLAN |
927                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
928                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
929                                      FSL_GIANFAR_DEV_HAS_TIMER;
930
931         err = of_property_read_string(np, "phy-connection-type", &ctype);
932
933         /* We only care about rgmii-id.  The rest are autodetected */
934         if (err == 0 && !strcmp(ctype, "rgmii-id"))
935                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
936         else
937                 priv->interface = PHY_INTERFACE_MODE_MII;
938
939         if (of_find_property(np, "fsl,magic-packet", NULL))
940                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
941
942         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
943
944         /* In the case of a fixed PHY, the DT node associated
945          * to the PHY is the Ethernet MAC DT node.
946          */
947         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
948                 err = of_phy_register_fixed_link(np);
949                 if (err)
950                         goto err_grp_init;
951
952                 priv->phy_node = of_node_get(np);
953         }
954
955         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
956         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
957
958         return 0;
959
960 err_grp_init:
961         unmap_group_regs(priv);
962 rx_alloc_failed:
963         gfar_free_rx_queues(priv);
964 tx_alloc_failed:
965         gfar_free_tx_queues(priv);
966         free_gfar_dev(priv);
967         return err;
968 }
969
970 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
971 {
972         struct hwtstamp_config config;
973         struct gfar_private *priv = netdev_priv(netdev);
974
975         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
976                 return -EFAULT;
977
978         /* reserved for future extensions */
979         if (config.flags)
980                 return -EINVAL;
981
982         switch (config.tx_type) {
983         case HWTSTAMP_TX_OFF:
984                 priv->hwts_tx_en = 0;
985                 break;
986         case HWTSTAMP_TX_ON:
987                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
988                         return -ERANGE;
989                 priv->hwts_tx_en = 1;
990                 break;
991         default:
992                 return -ERANGE;
993         }
994
995         switch (config.rx_filter) {
996         case HWTSTAMP_FILTER_NONE:
997                 if (priv->hwts_rx_en) {
998                         priv->hwts_rx_en = 0;
999                         reset_gfar(netdev);
1000                 }
1001                 break;
1002         default:
1003                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1004                         return -ERANGE;
1005                 if (!priv->hwts_rx_en) {
1006                         priv->hwts_rx_en = 1;
1007                         reset_gfar(netdev);
1008                 }
1009                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1010                 break;
1011         }
1012
1013         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1014                 -EFAULT : 0;
1015 }
1016
1017 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1018 {
1019         struct hwtstamp_config config;
1020         struct gfar_private *priv = netdev_priv(netdev);
1021
1022         config.flags = 0;
1023         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1024         config.rx_filter = (priv->hwts_rx_en ?
1025                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1026
1027         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1028                 -EFAULT : 0;
1029 }
1030
1031 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1032 {
1033         struct gfar_private *priv = netdev_priv(dev);
1034
1035         if (!netif_running(dev))
1036                 return -EINVAL;
1037
1038         if (cmd == SIOCSHWTSTAMP)
1039                 return gfar_hwtstamp_set(dev, rq);
1040         if (cmd == SIOCGHWTSTAMP)
1041                 return gfar_hwtstamp_get(dev, rq);
1042
1043         if (!priv->phydev)
1044                 return -ENODEV;
1045
1046         return phy_mii_ioctl(priv->phydev, rq, cmd);
1047 }
1048
1049 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1050                                    u32 class)
1051 {
1052         u32 rqfpr = FPR_FILER_MASK;
1053         u32 rqfcr = 0x0;
1054
1055         rqfar--;
1056         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1057         priv->ftp_rqfpr[rqfar] = rqfpr;
1058         priv->ftp_rqfcr[rqfar] = rqfcr;
1059         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1060
1061         rqfar--;
1062         rqfcr = RQFCR_CMP_NOMATCH;
1063         priv->ftp_rqfpr[rqfar] = rqfpr;
1064         priv->ftp_rqfcr[rqfar] = rqfcr;
1065         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1066
1067         rqfar--;
1068         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1069         rqfpr = class;
1070         priv->ftp_rqfcr[rqfar] = rqfcr;
1071         priv->ftp_rqfpr[rqfar] = rqfpr;
1072         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1073
1074         rqfar--;
1075         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1076         rqfpr = class;
1077         priv->ftp_rqfcr[rqfar] = rqfcr;
1078         priv->ftp_rqfpr[rqfar] = rqfpr;
1079         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1080
1081         return rqfar;
1082 }
1083
1084 static void gfar_init_filer_table(struct gfar_private *priv)
1085 {
1086         int i = 0x0;
1087         u32 rqfar = MAX_FILER_IDX;
1088         u32 rqfcr = 0x0;
1089         u32 rqfpr = FPR_FILER_MASK;
1090
1091         /* Default rule */
1092         rqfcr = RQFCR_CMP_MATCH;
1093         priv->ftp_rqfcr[rqfar] = rqfcr;
1094         priv->ftp_rqfpr[rqfar] = rqfpr;
1095         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1096
1097         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1098         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1099         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1100         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1101         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1102         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1103
1104         /* cur_filer_idx indicated the first non-masked rule */
1105         priv->cur_filer_idx = rqfar;
1106
1107         /* Rest are masked rules */
1108         rqfcr = RQFCR_CMP_NOMATCH;
1109         for (i = 0; i < rqfar; i++) {
1110                 priv->ftp_rqfcr[i] = rqfcr;
1111                 priv->ftp_rqfpr[i] = rqfpr;
1112                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1113         }
1114 }
1115
1116 #ifdef CONFIG_PPC
1117 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1118 {
1119         unsigned int pvr = mfspr(SPRN_PVR);
1120         unsigned int svr = mfspr(SPRN_SVR);
1121         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1122         unsigned int rev = svr & 0xffff;
1123
1124         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1125         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1126             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1127                 priv->errata |= GFAR_ERRATA_74;
1128
1129         /* MPC8313 and MPC837x all rev */
1130         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1131             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1132                 priv->errata |= GFAR_ERRATA_76;
1133
1134         /* MPC8313 Rev < 2.0 */
1135         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1136                 priv->errata |= GFAR_ERRATA_12;
1137 }
1138
1139 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1140 {
1141         unsigned int svr = mfspr(SPRN_SVR);
1142
1143         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1144                 priv->errata |= GFAR_ERRATA_12;
1145         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1146             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1147                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1148 }
1149 #endif
1150
1151 static void gfar_detect_errata(struct gfar_private *priv)
1152 {
1153         struct device *dev = &priv->ofdev->dev;
1154
1155         /* no plans to fix */
1156         priv->errata |= GFAR_ERRATA_A002;
1157
1158 #ifdef CONFIG_PPC
1159         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1160                 __gfar_detect_errata_85xx(priv);
1161         else /* non-mpc85xx parts, i.e. e300 core based */
1162                 __gfar_detect_errata_83xx(priv);
1163 #endif
1164
1165         if (priv->errata)
1166                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1167                          priv->errata);
1168 }
1169
1170 void gfar_mac_reset(struct gfar_private *priv)
1171 {
1172         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1173         u32 tempval;
1174
1175         /* Reset MAC layer */
1176         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1177
1178         /* We need to delay at least 3 TX clocks */
1179         udelay(3);
1180
1181         /* the soft reset bit is not self-resetting, so we need to
1182          * clear it before resuming normal operation
1183          */
1184         gfar_write(&regs->maccfg1, 0);
1185
1186         udelay(3);
1187
1188         /* Compute rx_buff_size based on config flags */
1189         gfar_rx_buff_size_config(priv);
1190
1191         /* Initialize the max receive frame/buffer lengths */
1192         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1193         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1194
1195         /* Initialize the Minimum Frame Length Register */
1196         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1197
1198         /* Initialize MACCFG2. */
1199         tempval = MACCFG2_INIT_SETTINGS;
1200
1201         /* If the mtu is larger than the max size for standard
1202          * ethernet frames (ie, a jumbo frame), then set maccfg2
1203          * to allow huge frames, and to check the length
1204          */
1205         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1206             gfar_has_errata(priv, GFAR_ERRATA_74))
1207                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1208
1209         gfar_write(&regs->maccfg2, tempval);
1210
1211         /* Clear mac addr hash registers */
1212         gfar_write(&regs->igaddr0, 0);
1213         gfar_write(&regs->igaddr1, 0);
1214         gfar_write(&regs->igaddr2, 0);
1215         gfar_write(&regs->igaddr3, 0);
1216         gfar_write(&regs->igaddr4, 0);
1217         gfar_write(&regs->igaddr5, 0);
1218         gfar_write(&regs->igaddr6, 0);
1219         gfar_write(&regs->igaddr7, 0);
1220
1221         gfar_write(&regs->gaddr0, 0);
1222         gfar_write(&regs->gaddr1, 0);
1223         gfar_write(&regs->gaddr2, 0);
1224         gfar_write(&regs->gaddr3, 0);
1225         gfar_write(&regs->gaddr4, 0);
1226         gfar_write(&regs->gaddr5, 0);
1227         gfar_write(&regs->gaddr6, 0);
1228         gfar_write(&regs->gaddr7, 0);
1229
1230         if (priv->extended_hash)
1231                 gfar_clear_exact_match(priv->ndev);
1232
1233         gfar_mac_rx_config(priv);
1234
1235         gfar_mac_tx_config(priv);
1236
1237         gfar_set_mac_address(priv->ndev);
1238
1239         gfar_set_multi(priv->ndev);
1240
1241         /* clear ievent and imask before configuring coalescing */
1242         gfar_ints_disable(priv);
1243
1244         /* Configure the coalescing support */
1245         gfar_configure_coalescing_all(priv);
1246 }
1247
1248 static void gfar_hw_init(struct gfar_private *priv)
1249 {
1250         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1251         u32 attrs;
1252
1253         /* Stop the DMA engine now, in case it was running before
1254          * (The firmware could have used it, and left it running).
1255          */
1256         gfar_halt(priv);
1257
1258         gfar_mac_reset(priv);
1259
1260         /* Zero out the rmon mib registers if it has them */
1261         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1262                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1263
1264                 /* Mask off the CAM interrupts */
1265                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1266                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1267         }
1268
1269         /* Initialize ECNTRL */
1270         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1271
1272         /* Set the extraction length and index */
1273         attrs = ATTRELI_EL(priv->rx_stash_size) |
1274                 ATTRELI_EI(priv->rx_stash_index);
1275
1276         gfar_write(&regs->attreli, attrs);
1277
1278         /* Start with defaults, and add stashing
1279          * depending on driver parameters
1280          */
1281         attrs = ATTR_INIT_SETTINGS;
1282
1283         if (priv->bd_stash_en)
1284                 attrs |= ATTR_BDSTASH;
1285
1286         if (priv->rx_stash_size != 0)
1287                 attrs |= ATTR_BUFSTASH;
1288
1289         gfar_write(&regs->attr, attrs);
1290
1291         /* FIFO configs */
1292         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1293         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1294         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1295
1296         /* Program the interrupt steering regs, only for MG devices */
1297         if (priv->num_grps > 1)
1298                 gfar_write_isrg(priv);
1299 }
1300
1301 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1302 {
1303         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1304
1305         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1306                 priv->extended_hash = 1;
1307                 priv->hash_width = 9;
1308
1309                 priv->hash_regs[0] = &regs->igaddr0;
1310                 priv->hash_regs[1] = &regs->igaddr1;
1311                 priv->hash_regs[2] = &regs->igaddr2;
1312                 priv->hash_regs[3] = &regs->igaddr3;
1313                 priv->hash_regs[4] = &regs->igaddr4;
1314                 priv->hash_regs[5] = &regs->igaddr5;
1315                 priv->hash_regs[6] = &regs->igaddr6;
1316                 priv->hash_regs[7] = &regs->igaddr7;
1317                 priv->hash_regs[8] = &regs->gaddr0;
1318                 priv->hash_regs[9] = &regs->gaddr1;
1319                 priv->hash_regs[10] = &regs->gaddr2;
1320                 priv->hash_regs[11] = &regs->gaddr3;
1321                 priv->hash_regs[12] = &regs->gaddr4;
1322                 priv->hash_regs[13] = &regs->gaddr5;
1323                 priv->hash_regs[14] = &regs->gaddr6;
1324                 priv->hash_regs[15] = &regs->gaddr7;
1325
1326         } else {
1327                 priv->extended_hash = 0;
1328                 priv->hash_width = 8;
1329
1330                 priv->hash_regs[0] = &regs->gaddr0;
1331                 priv->hash_regs[1] = &regs->gaddr1;
1332                 priv->hash_regs[2] = &regs->gaddr2;
1333                 priv->hash_regs[3] = &regs->gaddr3;
1334                 priv->hash_regs[4] = &regs->gaddr4;
1335                 priv->hash_regs[5] = &regs->gaddr5;
1336                 priv->hash_regs[6] = &regs->gaddr6;
1337                 priv->hash_regs[7] = &regs->gaddr7;
1338         }
1339 }
1340
1341 /* Set up the ethernet device structure, private data,
1342  * and anything else we need before we start
1343  */
1344 static int gfar_probe(struct platform_device *ofdev)
1345 {
1346         struct net_device *dev = NULL;
1347         struct gfar_private *priv = NULL;
1348         int err = 0, i;
1349
1350         err = gfar_of_init(ofdev, &dev);
1351
1352         if (err)
1353                 return err;
1354
1355         priv = netdev_priv(dev);
1356         priv->ndev = dev;
1357         priv->ofdev = ofdev;
1358         priv->dev = &ofdev->dev;
1359         SET_NETDEV_DEV(dev, &ofdev->dev);
1360
1361         spin_lock_init(&priv->bflock);
1362         INIT_WORK(&priv->reset_task, gfar_reset_task);
1363
1364         platform_set_drvdata(ofdev, priv);
1365
1366         gfar_detect_errata(priv);
1367
1368         /* Set the dev->base_addr to the gfar reg region */
1369         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1370
1371         /* Fill in the dev structure */
1372         dev->watchdog_timeo = TX_TIMEOUT;
1373         dev->mtu = 1500;
1374         dev->netdev_ops = &gfar_netdev_ops;
1375         dev->ethtool_ops = &gfar_ethtool_ops;
1376
1377         /* Register for napi ...We are registering NAPI for each grp */
1378         for (i = 0; i < priv->num_grps; i++) {
1379                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1380                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1381                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1382                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1383                                        gfar_poll_tx_sq, 2);
1384                 } else {
1385                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1386                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1387                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1388                                        gfar_poll_tx, 2);
1389                 }
1390         }
1391
1392         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1393                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1394                                    NETIF_F_RXCSUM;
1395                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1396                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1397         }
1398
1399         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1400                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1401                                     NETIF_F_HW_VLAN_CTAG_RX;
1402                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1403         }
1404
1405         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1406
1407         gfar_init_addr_hash_table(priv);
1408
1409         /* Insert receive time stamps into padding alignment bytes */
1410         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1411                 priv->padding = 8;
1412
1413         if (dev->features & NETIF_F_IP_CSUM ||
1414             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1415                 dev->needed_headroom = GMAC_FCB_LEN;
1416
1417         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1418
1419         /* Initializing some of the rx/tx queue level parameters */
1420         for (i = 0; i < priv->num_tx_queues; i++) {
1421                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1422                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1423                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1424                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1425         }
1426
1427         for (i = 0; i < priv->num_rx_queues; i++) {
1428                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1429                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1430                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1431         }
1432
1433         /* always enable rx filer */
1434         priv->rx_filer_enable = 1;
1435         /* Enable most messages by default */
1436         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1437         /* use pritority h/w tx queue scheduling for single queue devices */
1438         if (priv->num_tx_queues == 1)
1439                 priv->prio_sched_en = 1;
1440
1441         set_bit(GFAR_DOWN, &priv->state);
1442
1443         gfar_hw_init(priv);
1444
1445         /* Carrier starts down, phylib will bring it up */
1446         netif_carrier_off(dev);
1447
1448         err = register_netdev(dev);
1449
1450         if (err) {
1451                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1452                 goto register_fail;
1453         }
1454
1455         device_init_wakeup(&dev->dev,
1456                            priv->device_flags &
1457                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1458
1459         /* fill out IRQ number and name fields */
1460         for (i = 0; i < priv->num_grps; i++) {
1461                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1462                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1463                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1464                                 dev->name, "_g", '0' + i, "_tx");
1465                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1466                                 dev->name, "_g", '0' + i, "_rx");
1467                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1468                                 dev->name, "_g", '0' + i, "_er");
1469                 } else
1470                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1471         }
1472
1473         /* Initialize the filer table */
1474         gfar_init_filer_table(priv);
1475
1476         /* Print out the device info */
1477         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1478
1479         /* Even more device info helps when determining which kernel
1480          * provided which set of benchmarks.
1481          */
1482         netdev_info(dev, "Running with NAPI enabled\n");
1483         for (i = 0; i < priv->num_rx_queues; i++)
1484                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1485                             i, priv->rx_queue[i]->rx_ring_size);
1486         for (i = 0; i < priv->num_tx_queues; i++)
1487                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1488                             i, priv->tx_queue[i]->tx_ring_size);
1489
1490         return 0;
1491
1492 register_fail:
1493         unmap_group_regs(priv);
1494         gfar_free_rx_queues(priv);
1495         gfar_free_tx_queues(priv);
1496         of_node_put(priv->phy_node);
1497         of_node_put(priv->tbi_node);
1498         free_gfar_dev(priv);
1499         return err;
1500 }
1501
1502 static int gfar_remove(struct platform_device *ofdev)
1503 {
1504         struct gfar_private *priv = platform_get_drvdata(ofdev);
1505
1506         of_node_put(priv->phy_node);
1507         of_node_put(priv->tbi_node);
1508
1509         unregister_netdev(priv->ndev);
1510         unmap_group_regs(priv);
1511         gfar_free_rx_queues(priv);
1512         gfar_free_tx_queues(priv);
1513         free_gfar_dev(priv);
1514
1515         return 0;
1516 }
1517
1518 #ifdef CONFIG_PM
1519
1520 static int gfar_suspend(struct device *dev)
1521 {
1522         struct gfar_private *priv = dev_get_drvdata(dev);
1523         struct net_device *ndev = priv->ndev;
1524         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1525         unsigned long flags;
1526         u32 tempval;
1527
1528         int magic_packet = priv->wol_en &&
1529                            (priv->device_flags &
1530                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1531
1532         netif_device_detach(ndev);
1533
1534         if (netif_running(ndev)) {
1535
1536                 local_irq_save(flags);
1537                 lock_tx_qs(priv);
1538
1539                 gfar_halt_nodisable(priv);
1540
1541                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1542                 tempval = gfar_read(&regs->maccfg1);
1543
1544                 tempval &= ~MACCFG1_TX_EN;
1545
1546                 if (!magic_packet)
1547                         tempval &= ~MACCFG1_RX_EN;
1548
1549                 gfar_write(&regs->maccfg1, tempval);
1550
1551                 unlock_tx_qs(priv);
1552                 local_irq_restore(flags);
1553
1554                 disable_napi(priv);
1555
1556                 if (magic_packet) {
1557                         /* Enable interrupt on Magic Packet */
1558                         gfar_write(&regs->imask, IMASK_MAG);
1559
1560                         /* Enable Magic Packet mode */
1561                         tempval = gfar_read(&regs->maccfg2);
1562                         tempval |= MACCFG2_MPEN;
1563                         gfar_write(&regs->maccfg2, tempval);
1564                 } else {
1565                         phy_stop(priv->phydev);
1566                 }
1567         }
1568
1569         return 0;
1570 }
1571
1572 static int gfar_resume(struct device *dev)
1573 {
1574         struct gfar_private *priv = dev_get_drvdata(dev);
1575         struct net_device *ndev = priv->ndev;
1576         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1577         unsigned long flags;
1578         u32 tempval;
1579         int magic_packet = priv->wol_en &&
1580                            (priv->device_flags &
1581                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1582
1583         if (!netif_running(ndev)) {
1584                 netif_device_attach(ndev);
1585                 return 0;
1586         }
1587
1588         if (!magic_packet && priv->phydev)
1589                 phy_start(priv->phydev);
1590
1591         /* Disable Magic Packet mode, in case something
1592          * else woke us up.
1593          */
1594         local_irq_save(flags);
1595         lock_tx_qs(priv);
1596
1597         tempval = gfar_read(&regs->maccfg2);
1598         tempval &= ~MACCFG2_MPEN;
1599         gfar_write(&regs->maccfg2, tempval);
1600
1601         gfar_start(priv);
1602
1603         unlock_tx_qs(priv);
1604         local_irq_restore(flags);
1605
1606         netif_device_attach(ndev);
1607
1608         enable_napi(priv);
1609
1610         return 0;
1611 }
1612
1613 static int gfar_restore(struct device *dev)
1614 {
1615         struct gfar_private *priv = dev_get_drvdata(dev);
1616         struct net_device *ndev = priv->ndev;
1617
1618         if (!netif_running(ndev)) {
1619                 netif_device_attach(ndev);
1620
1621                 return 0;
1622         }
1623
1624         gfar_init_bds(ndev);
1625
1626         gfar_mac_reset(priv);
1627
1628         gfar_init_tx_rx_base(priv);
1629
1630         gfar_start(priv);
1631
1632         priv->oldlink = 0;
1633         priv->oldspeed = 0;
1634         priv->oldduplex = -1;
1635
1636         if (priv->phydev)
1637                 phy_start(priv->phydev);
1638
1639         netif_device_attach(ndev);
1640         enable_napi(priv);
1641
1642         return 0;
1643 }
1644
1645 static struct dev_pm_ops gfar_pm_ops = {
1646         .suspend = gfar_suspend,
1647         .resume = gfar_resume,
1648         .freeze = gfar_suspend,
1649         .thaw = gfar_resume,
1650         .restore = gfar_restore,
1651 };
1652
1653 #define GFAR_PM_OPS (&gfar_pm_ops)
1654
1655 #else
1656
1657 #define GFAR_PM_OPS NULL
1658
1659 #endif
1660
1661 /* Reads the controller's registers to determine what interface
1662  * connects it to the PHY.
1663  */
1664 static phy_interface_t gfar_get_interface(struct net_device *dev)
1665 {
1666         struct gfar_private *priv = netdev_priv(dev);
1667         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1668         u32 ecntrl;
1669
1670         ecntrl = gfar_read(&regs->ecntrl);
1671
1672         if (ecntrl & ECNTRL_SGMII_MODE)
1673                 return PHY_INTERFACE_MODE_SGMII;
1674
1675         if (ecntrl & ECNTRL_TBI_MODE) {
1676                 if (ecntrl & ECNTRL_REDUCED_MODE)
1677                         return PHY_INTERFACE_MODE_RTBI;
1678                 else
1679                         return PHY_INTERFACE_MODE_TBI;
1680         }
1681
1682         if (ecntrl & ECNTRL_REDUCED_MODE) {
1683                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1684                         return PHY_INTERFACE_MODE_RMII;
1685                 }
1686                 else {
1687                         phy_interface_t interface = priv->interface;
1688
1689                         /* This isn't autodetected right now, so it must
1690                          * be set by the device tree or platform code.
1691                          */
1692                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1693                                 return PHY_INTERFACE_MODE_RGMII_ID;
1694
1695                         return PHY_INTERFACE_MODE_RGMII;
1696                 }
1697         }
1698
1699         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1700                 return PHY_INTERFACE_MODE_GMII;
1701
1702         return PHY_INTERFACE_MODE_MII;
1703 }
1704
1705
1706 /* Initializes driver's PHY state, and attaches to the PHY.
1707  * Returns 0 on success.
1708  */
1709 static int init_phy(struct net_device *dev)
1710 {
1711         struct gfar_private *priv = netdev_priv(dev);
1712         uint gigabit_support =
1713                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1714                 GFAR_SUPPORTED_GBIT : 0;
1715         phy_interface_t interface;
1716
1717         priv->oldlink = 0;
1718         priv->oldspeed = 0;
1719         priv->oldduplex = -1;
1720
1721         interface = gfar_get_interface(dev);
1722
1723         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1724                                       interface);
1725         if (!priv->phydev) {
1726                 dev_err(&dev->dev, "could not attach to PHY\n");
1727                 return -ENODEV;
1728         }
1729
1730         if (interface == PHY_INTERFACE_MODE_SGMII)
1731                 gfar_configure_serdes(dev);
1732
1733         /* Remove any features not supported by the controller */
1734         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1735         priv->phydev->advertising = priv->phydev->supported;
1736
1737         /* Add support for flow control, but don't advertise it by default */
1738         priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1739
1740         return 0;
1741 }
1742
1743 /* Initialize TBI PHY interface for communicating with the
1744  * SERDES lynx PHY on the chip.  We communicate with this PHY
1745  * through the MDIO bus on each controller, treating it as a
1746  * "normal" PHY at the address found in the TBIPA register.  We assume
1747  * that the TBIPA register is valid.  Either the MDIO bus code will set
1748  * it to a value that doesn't conflict with other PHYs on the bus, or the
1749  * value doesn't matter, as there are no other PHYs on the bus.
1750  */
1751 static void gfar_configure_serdes(struct net_device *dev)
1752 {
1753         struct gfar_private *priv = netdev_priv(dev);
1754         struct phy_device *tbiphy;
1755
1756         if (!priv->tbi_node) {
1757                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1758                                     "device tree specify a tbi-handle\n");
1759                 return;
1760         }
1761
1762         tbiphy = of_phy_find_device(priv->tbi_node);
1763         if (!tbiphy) {
1764                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1765                 return;
1766         }
1767
1768         /* If the link is already up, we must already be ok, and don't need to
1769          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1770          * everything for us?  Resetting it takes the link down and requires
1771          * several seconds for it to come back.
1772          */
1773         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1774                 return;
1775
1776         /* Single clk mode, mii mode off(for serdes communication) */
1777         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1778
1779         phy_write(tbiphy, MII_ADVERTISE,
1780                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1781                   ADVERTISE_1000XPSE_ASYM);
1782
1783         phy_write(tbiphy, MII_BMCR,
1784                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1785                   BMCR_SPEED1000);
1786 }
1787
1788 static int __gfar_is_rx_idle(struct gfar_private *priv)
1789 {
1790         u32 res;
1791
1792         /* Normaly TSEC should not hang on GRS commands, so we should
1793          * actually wait for IEVENT_GRSC flag.
1794          */
1795         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1796                 return 0;
1797
1798         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1799          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1800          * and the Rx can be safely reset.
1801          */
1802         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1803         res &= 0x7f807f80;
1804         if ((res & 0xffff) == (res >> 16))
1805                 return 1;
1806
1807         return 0;
1808 }
1809
1810 /* Halt the receive and transmit queues */
1811 static void gfar_halt_nodisable(struct gfar_private *priv)
1812 {
1813         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1814         u32 tempval;
1815         unsigned int timeout;
1816         int stopped;
1817
1818         gfar_ints_disable(priv);
1819
1820         if (gfar_is_dma_stopped(priv))
1821                 return;
1822
1823         /* Stop the DMA, and wait for it to stop */
1824         tempval = gfar_read(&regs->dmactrl);
1825         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1826         gfar_write(&regs->dmactrl, tempval);
1827
1828 retry:
1829         timeout = 1000;
1830         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1831                 cpu_relax();
1832                 timeout--;
1833         }
1834
1835         if (!timeout)
1836                 stopped = gfar_is_dma_stopped(priv);
1837
1838         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1839             !__gfar_is_rx_idle(priv))
1840                 goto retry;
1841 }
1842
1843 /* Halt the receive and transmit queues */
1844 void gfar_halt(struct gfar_private *priv)
1845 {
1846         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1847         u32 tempval;
1848
1849         /* Dissable the Rx/Tx hw queues */
1850         gfar_write(&regs->rqueue, 0);
1851         gfar_write(&regs->tqueue, 0);
1852
1853         mdelay(10);
1854
1855         gfar_halt_nodisable(priv);
1856
1857         /* Disable Rx/Tx DMA */
1858         tempval = gfar_read(&regs->maccfg1);
1859         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1860         gfar_write(&regs->maccfg1, tempval);
1861 }
1862
1863 void stop_gfar(struct net_device *dev)
1864 {
1865         struct gfar_private *priv = netdev_priv(dev);
1866
1867         netif_tx_stop_all_queues(dev);
1868
1869         smp_mb__before_atomic();
1870         set_bit(GFAR_DOWN, &priv->state);
1871         smp_mb__after_atomic();
1872
1873         disable_napi(priv);
1874
1875         /* disable ints and gracefully shut down Rx/Tx DMA */
1876         gfar_halt(priv);
1877
1878         phy_stop(priv->phydev);
1879
1880         free_skb_resources(priv);
1881 }
1882
1883 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1884 {
1885         struct txbd8 *txbdp;
1886         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1887         int i, j;
1888
1889         txbdp = tx_queue->tx_bd_base;
1890
1891         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1892                 if (!tx_queue->tx_skbuff[i])
1893                         continue;
1894
1895                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1896                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1897                 txbdp->lstatus = 0;
1898                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1899                      j++) {
1900                         txbdp++;
1901                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1902                                        be16_to_cpu(txbdp->length),
1903                                        DMA_TO_DEVICE);
1904                 }
1905                 txbdp++;
1906                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1907                 tx_queue->tx_skbuff[i] = NULL;
1908         }
1909         kfree(tx_queue->tx_skbuff);
1910         tx_queue->tx_skbuff = NULL;
1911 }
1912
1913 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1914 {
1915         struct rxbd8 *rxbdp;
1916         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1917         int i;
1918
1919         rxbdp = rx_queue->rx_bd_base;
1920
1921         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1922                 if (rx_queue->rx_skbuff[i]) {
1923                         dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1924                                          priv->rx_buffer_size,
1925                                          DMA_FROM_DEVICE);
1926                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1927                         rx_queue->rx_skbuff[i] = NULL;
1928                 }
1929                 rxbdp->lstatus = 0;
1930                 rxbdp->bufPtr = 0;
1931                 rxbdp++;
1932         }
1933         kfree(rx_queue->rx_skbuff);
1934         rx_queue->rx_skbuff = NULL;
1935 }
1936
1937 /* If there are any tx skbs or rx skbs still around, free them.
1938  * Then free tx_skbuff and rx_skbuff
1939  */
1940 static void free_skb_resources(struct gfar_private *priv)
1941 {
1942         struct gfar_priv_tx_q *tx_queue = NULL;
1943         struct gfar_priv_rx_q *rx_queue = NULL;
1944         int i;
1945
1946         /* Go through all the buffer descriptors and free their data buffers */
1947         for (i = 0; i < priv->num_tx_queues; i++) {
1948                 struct netdev_queue *txq;
1949
1950                 tx_queue = priv->tx_queue[i];
1951                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1952                 if (tx_queue->tx_skbuff)
1953                         free_skb_tx_queue(tx_queue);
1954                 netdev_tx_reset_queue(txq);
1955         }
1956
1957         for (i = 0; i < priv->num_rx_queues; i++) {
1958                 rx_queue = priv->rx_queue[i];
1959                 if (rx_queue->rx_skbuff)
1960                         free_skb_rx_queue(rx_queue);
1961         }
1962
1963         dma_free_coherent(priv->dev,
1964                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1965                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1966                           priv->tx_queue[0]->tx_bd_base,
1967                           priv->tx_queue[0]->tx_bd_dma_base);
1968 }
1969
1970 void gfar_start(struct gfar_private *priv)
1971 {
1972         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1973         u32 tempval;
1974         int i = 0;
1975
1976         /* Enable Rx/Tx hw queues */
1977         gfar_write(&regs->rqueue, priv->rqueue);
1978         gfar_write(&regs->tqueue, priv->tqueue);
1979
1980         /* Initialize DMACTRL to have WWR and WOP */
1981         tempval = gfar_read(&regs->dmactrl);
1982         tempval |= DMACTRL_INIT_SETTINGS;
1983         gfar_write(&regs->dmactrl, tempval);
1984
1985         /* Make sure we aren't stopped */
1986         tempval = gfar_read(&regs->dmactrl);
1987         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1988         gfar_write(&regs->dmactrl, tempval);
1989
1990         for (i = 0; i < priv->num_grps; i++) {
1991                 regs = priv->gfargrp[i].regs;
1992                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1993                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1994                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1995         }
1996
1997         /* Enable Rx/Tx DMA */
1998         tempval = gfar_read(&regs->maccfg1);
1999         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2000         gfar_write(&regs->maccfg1, tempval);
2001
2002         gfar_ints_enable(priv);
2003
2004         priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2005 }
2006
2007 static void free_grp_irqs(struct gfar_priv_grp *grp)
2008 {
2009         free_irq(gfar_irq(grp, TX)->irq, grp);
2010         free_irq(gfar_irq(grp, RX)->irq, grp);
2011         free_irq(gfar_irq(grp, ER)->irq, grp);
2012 }
2013
2014 static int register_grp_irqs(struct gfar_priv_grp *grp)
2015 {
2016         struct gfar_private *priv = grp->priv;
2017         struct net_device *dev = priv->ndev;
2018         int err;
2019
2020         /* If the device has multiple interrupts, register for
2021          * them.  Otherwise, only register for the one
2022          */
2023         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2024                 /* Install our interrupt handlers for Error,
2025                  * Transmit, and Receive
2026                  */
2027                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2028                                   gfar_irq(grp, ER)->name, grp);
2029                 if (err < 0) {
2030                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2031                                   gfar_irq(grp, ER)->irq);
2032
2033                         goto err_irq_fail;
2034                 }
2035                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2036                                   gfar_irq(grp, TX)->name, grp);
2037                 if (err < 0) {
2038                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2039                                   gfar_irq(grp, TX)->irq);
2040                         goto tx_irq_fail;
2041                 }
2042                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2043                                   gfar_irq(grp, RX)->name, grp);
2044                 if (err < 0) {
2045                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2046                                   gfar_irq(grp, RX)->irq);
2047                         goto rx_irq_fail;
2048                 }
2049         } else {
2050                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2051                                   gfar_irq(grp, TX)->name, grp);
2052                 if (err < 0) {
2053                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2054                                   gfar_irq(grp, TX)->irq);
2055                         goto err_irq_fail;
2056                 }
2057         }
2058
2059         return 0;
2060
2061 rx_irq_fail:
2062         free_irq(gfar_irq(grp, TX)->irq, grp);
2063 tx_irq_fail:
2064         free_irq(gfar_irq(grp, ER)->irq, grp);
2065 err_irq_fail:
2066         return err;
2067
2068 }
2069
2070 static void gfar_free_irq(struct gfar_private *priv)
2071 {
2072         int i;
2073
2074         /* Free the IRQs */
2075         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2076                 for (i = 0; i < priv->num_grps; i++)
2077                         free_grp_irqs(&priv->gfargrp[i]);
2078         } else {
2079                 for (i = 0; i < priv->num_grps; i++)
2080                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2081                                  &priv->gfargrp[i]);
2082         }
2083 }
2084
2085 static int gfar_request_irq(struct gfar_private *priv)
2086 {
2087         int err, i, j;
2088
2089         for (i = 0; i < priv->num_grps; i++) {
2090                 err = register_grp_irqs(&priv->gfargrp[i]);
2091                 if (err) {
2092                         for (j = 0; j < i; j++)
2093                                 free_grp_irqs(&priv->gfargrp[j]);
2094                         return err;
2095                 }
2096         }
2097
2098         return 0;
2099 }
2100
2101 /* Bring the controller up and running */
2102 int startup_gfar(struct net_device *ndev)
2103 {
2104         struct gfar_private *priv = netdev_priv(ndev);
2105         int err;
2106
2107         gfar_mac_reset(priv);
2108
2109         err = gfar_alloc_skb_resources(ndev);
2110         if (err)
2111                 return err;
2112
2113         gfar_init_tx_rx_base(priv);
2114
2115         smp_mb__before_atomic();
2116         clear_bit(GFAR_DOWN, &priv->state);
2117         smp_mb__after_atomic();
2118
2119         /* Start Rx/Tx DMA and enable the interrupts */
2120         gfar_start(priv);
2121
2122         phy_start(priv->phydev);
2123
2124         enable_napi(priv);
2125
2126         netif_tx_wake_all_queues(ndev);
2127
2128         return 0;
2129 }
2130
2131 /* Called when something needs to use the ethernet device
2132  * Returns 0 for success.
2133  */
2134 static int gfar_enet_open(struct net_device *dev)
2135 {
2136         struct gfar_private *priv = netdev_priv(dev);
2137         int err;
2138
2139         err = init_phy(dev);
2140         if (err)
2141                 return err;
2142
2143         err = gfar_request_irq(priv);
2144         if (err)
2145                 return err;
2146
2147         err = startup_gfar(dev);
2148         if (err)
2149                 return err;
2150
2151         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2152
2153         return err;
2154 }
2155
2156 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2157 {
2158         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2159
2160         memset(fcb, 0, GMAC_FCB_LEN);
2161
2162         return fcb;
2163 }
2164
2165 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2166                                     int fcb_length)
2167 {
2168         /* If we're here, it's a IP packet with a TCP or UDP
2169          * payload.  We set it to checksum, using a pseudo-header
2170          * we provide
2171          */
2172         u8 flags = TXFCB_DEFAULT;
2173
2174         /* Tell the controller what the protocol is
2175          * And provide the already calculated phcs
2176          */
2177         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2178                 flags |= TXFCB_UDP;
2179                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2180         } else
2181                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2182
2183         /* l3os is the distance between the start of the
2184          * frame (skb->data) and the start of the IP hdr.
2185          * l4os is the distance between the start of the
2186          * l3 hdr and the l4 hdr
2187          */
2188         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2189         fcb->l4os = skb_network_header_len(skb);
2190
2191         fcb->flags = flags;
2192 }
2193
2194 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2195 {
2196         fcb->flags |= TXFCB_VLN;
2197         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2198 }
2199
2200 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2201                                       struct txbd8 *base, int ring_size)
2202 {
2203         struct txbd8 *new_bd = bdp + stride;
2204
2205         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2206 }
2207
2208 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2209                                       int ring_size)
2210 {
2211         return skip_txbd(bdp, 1, base, ring_size);
2212 }
2213
2214 /* eTSEC12: csum generation not supported for some fcb offsets */
2215 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2216                                        unsigned long fcb_addr)
2217 {
2218         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2219                (fcb_addr % 0x20) > 0x18);
2220 }
2221
2222 /* eTSEC76: csum generation for frames larger than 2500 may
2223  * cause excess delays before start of transmission
2224  */
2225 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2226                                        unsigned int len)
2227 {
2228         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2229                (len > 2500));
2230 }
2231
2232 /* This is called by the kernel when a frame is ready for transmission.
2233  * It is pointed to by the dev->hard_start_xmit function pointer
2234  */
2235 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2236 {
2237         struct gfar_private *priv = netdev_priv(dev);
2238         struct gfar_priv_tx_q *tx_queue = NULL;
2239         struct netdev_queue *txq;
2240         struct gfar __iomem *regs = NULL;
2241         struct txfcb *fcb = NULL;
2242         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2243         u32 lstatus;
2244         int i, rq = 0;
2245         int do_tstamp, do_csum, do_vlan;
2246         u32 bufaddr;
2247         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2248
2249         rq = skb->queue_mapping;
2250         tx_queue = priv->tx_queue[rq];
2251         txq = netdev_get_tx_queue(dev, rq);
2252         base = tx_queue->tx_bd_base;
2253         regs = tx_queue->grp->regs;
2254
2255         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2256         do_vlan = skb_vlan_tag_present(skb);
2257         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2258                     priv->hwts_tx_en;
2259
2260         if (do_csum || do_vlan)
2261                 fcb_len = GMAC_FCB_LEN;
2262
2263         /* check if time stamp should be generated */
2264         if (unlikely(do_tstamp))
2265                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2266
2267         /* make space for additional header when fcb is needed */
2268         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2269                 struct sk_buff *skb_new;
2270
2271                 skb_new = skb_realloc_headroom(skb, fcb_len);
2272                 if (!skb_new) {
2273                         dev->stats.tx_errors++;
2274                         dev_kfree_skb_any(skb);
2275                         return NETDEV_TX_OK;
2276                 }
2277
2278                 if (skb->sk)
2279                         skb_set_owner_w(skb_new, skb->sk);
2280                 dev_consume_skb_any(skb);
2281                 skb = skb_new;
2282         }
2283
2284         /* total number of fragments in the SKB */
2285         nr_frags = skb_shinfo(skb)->nr_frags;
2286
2287         /* calculate the required number of TxBDs for this skb */
2288         if (unlikely(do_tstamp))
2289                 nr_txbds = nr_frags + 2;
2290         else
2291                 nr_txbds = nr_frags + 1;
2292
2293         /* check if there is space to queue this packet */
2294         if (nr_txbds > tx_queue->num_txbdfree) {
2295                 /* no space, stop the queue */
2296                 netif_tx_stop_queue(txq);
2297                 dev->stats.tx_fifo_errors++;
2298                 return NETDEV_TX_BUSY;
2299         }
2300
2301         /* Update transmit stats */
2302         bytes_sent = skb->len;
2303         tx_queue->stats.tx_bytes += bytes_sent;
2304         /* keep Tx bytes on wire for BQL accounting */
2305         GFAR_CB(skb)->bytes_sent = bytes_sent;
2306         tx_queue->stats.tx_packets++;
2307
2308         txbdp = txbdp_start = tx_queue->cur_tx;
2309         lstatus = be32_to_cpu(txbdp->lstatus);
2310
2311         /* Time stamp insertion requires one additional TxBD */
2312         if (unlikely(do_tstamp))
2313                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2314                                                  tx_queue->tx_ring_size);
2315
2316         if (nr_frags == 0) {
2317                 if (unlikely(do_tstamp)) {
2318                         u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2319
2320                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2321                         txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2322                 } else {
2323                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2324                 }
2325         } else {
2326                 /* Place the fragment addresses and lengths into the TxBDs */
2327                 for (i = 0; i < nr_frags; i++) {
2328                         unsigned int frag_len;
2329                         /* Point at the next BD, wrapping as needed */
2330                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2331
2332                         frag_len = skb_shinfo(skb)->frags[i].size;
2333
2334                         lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2335                                   BD_LFLAG(TXBD_READY);
2336
2337                         /* Handle the last BD specially */
2338                         if (i == nr_frags - 1)
2339                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2340
2341                         bufaddr = skb_frag_dma_map(priv->dev,
2342                                                    &skb_shinfo(skb)->frags[i],
2343                                                    0,
2344                                                    frag_len,
2345                                                    DMA_TO_DEVICE);
2346                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2347                                 goto dma_map_err;
2348
2349                         /* set the TxBD length and buffer pointer */
2350                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2351                         txbdp->lstatus = cpu_to_be32(lstatus);
2352                 }
2353
2354                 lstatus = be32_to_cpu(txbdp_start->lstatus);
2355         }
2356
2357         /* Add TxPAL between FCB and frame if required */
2358         if (unlikely(do_tstamp)) {
2359                 skb_push(skb, GMAC_TXPAL_LEN);
2360                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2361         }
2362
2363         /* Add TxFCB if required */
2364         if (fcb_len) {
2365                 fcb = gfar_add_fcb(skb);
2366                 lstatus |= BD_LFLAG(TXBD_TOE);
2367         }
2368
2369         /* Set up checksumming */
2370         if (do_csum) {
2371                 gfar_tx_checksum(skb, fcb, fcb_len);
2372
2373                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2374                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2375                         __skb_pull(skb, GMAC_FCB_LEN);
2376                         skb_checksum_help(skb);
2377                         if (do_vlan || do_tstamp) {
2378                                 /* put back a new fcb for vlan/tstamp TOE */
2379                                 fcb = gfar_add_fcb(skb);
2380                         } else {
2381                                 /* Tx TOE not used */
2382                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2383                                 fcb = NULL;
2384                         }
2385                 }
2386         }
2387
2388         if (do_vlan)
2389                 gfar_tx_vlan(skb, fcb);
2390
2391         /* Setup tx hardware time stamping if requested */
2392         if (unlikely(do_tstamp)) {
2393                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2394                 fcb->ptp = 1;
2395         }
2396
2397         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2398                                  DMA_TO_DEVICE);
2399         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2400                 goto dma_map_err;
2401
2402         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2403
2404         /* If time stamping is requested one additional TxBD must be set up. The
2405          * first TxBD points to the FCB and must have a data length of
2406          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2407          * the full frame length.
2408          */
2409         if (unlikely(do_tstamp)) {
2410                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2411
2412                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2413                 bufaddr += fcb_len;
2414                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2415                               (skb_headlen(skb) - fcb_len);
2416
2417                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2418                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2419                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2420         } else {
2421                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2422         }
2423
2424         netdev_tx_sent_queue(txq, bytes_sent);
2425
2426         gfar_wmb();
2427
2428         txbdp_start->lstatus = cpu_to_be32(lstatus);
2429
2430         gfar_wmb(); /* force lstatus write before tx_skbuff */
2431
2432         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2433
2434         /* Update the current skb pointer to the next entry we will use
2435          * (wrapping if necessary)
2436          */
2437         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2438                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2439
2440         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2441
2442         /* We can work in parallel with gfar_clean_tx_ring(), except
2443          * when modifying num_txbdfree. Note that we didn't grab the lock
2444          * when we were reading the num_txbdfree and checking for available
2445          * space, that's because outside of this function it can only grow.
2446          */
2447         spin_lock_bh(&tx_queue->txlock);
2448         /* reduce TxBD free count */
2449         tx_queue->num_txbdfree -= (nr_txbds);
2450         spin_unlock_bh(&tx_queue->txlock);
2451
2452         /* If the next BD still needs to be cleaned up, then the bds
2453          * are full.  We need to tell the kernel to stop sending us stuff.
2454          */
2455         if (!tx_queue->num_txbdfree) {
2456                 netif_tx_stop_queue(txq);
2457
2458                 dev->stats.tx_fifo_errors++;
2459         }
2460
2461         /* Tell the DMA to go go go */
2462         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2463
2464         return NETDEV_TX_OK;
2465
2466 dma_map_err:
2467         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2468         if (do_tstamp)
2469                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2470         for (i = 0; i < nr_frags; i++) {
2471                 lstatus = be32_to_cpu(txbdp->lstatus);
2472                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2473                         break;
2474
2475                 lstatus &= ~BD_LFLAG(TXBD_READY);
2476                 txbdp->lstatus = cpu_to_be32(lstatus);
2477                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2478                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2479                                DMA_TO_DEVICE);
2480                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2481         }
2482         gfar_wmb();
2483         dev_kfree_skb_any(skb);
2484         return NETDEV_TX_OK;
2485 }
2486
2487 /* Stops the kernel queue, and halts the controller */
2488 static int gfar_close(struct net_device *dev)
2489 {
2490         struct gfar_private *priv = netdev_priv(dev);
2491
2492         cancel_work_sync(&priv->reset_task);
2493         stop_gfar(dev);
2494
2495         /* Disconnect from the PHY */
2496         phy_disconnect(priv->phydev);
2497         priv->phydev = NULL;
2498
2499         gfar_free_irq(priv);
2500
2501         return 0;
2502 }
2503
2504 /* Changes the mac address if the controller is not running. */
2505 static int gfar_set_mac_address(struct net_device *dev)
2506 {
2507         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2508
2509         return 0;
2510 }
2511
2512 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2513 {
2514         struct gfar_private *priv = netdev_priv(dev);
2515         int frame_size = new_mtu + ETH_HLEN;
2516
2517         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2518                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2519                 return -EINVAL;
2520         }
2521
2522         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2523                 cpu_relax();
2524
2525         if (dev->flags & IFF_UP)
2526                 stop_gfar(dev);
2527
2528         dev->mtu = new_mtu;
2529
2530         if (dev->flags & IFF_UP)
2531                 startup_gfar(dev);
2532
2533         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2534
2535         return 0;
2536 }
2537
2538 void reset_gfar(struct net_device *ndev)
2539 {
2540         struct gfar_private *priv = netdev_priv(ndev);
2541
2542         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2543                 cpu_relax();
2544
2545         stop_gfar(ndev);
2546         startup_gfar(ndev);
2547
2548         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2549 }
2550
2551 /* gfar_reset_task gets scheduled when a packet has not been
2552  * transmitted after a set amount of time.
2553  * For now, assume that clearing out all the structures, and
2554  * starting over will fix the problem.
2555  */
2556 static void gfar_reset_task(struct work_struct *work)
2557 {
2558         struct gfar_private *priv = container_of(work, struct gfar_private,
2559                                                  reset_task);
2560         reset_gfar(priv->ndev);
2561 }
2562
2563 static void gfar_timeout(struct net_device *dev)
2564 {
2565         struct gfar_private *priv = netdev_priv(dev);
2566
2567         dev->stats.tx_errors++;
2568         schedule_work(&priv->reset_task);
2569 }
2570
2571 static void gfar_align_skb(struct sk_buff *skb)
2572 {
2573         /* We need the data buffer to be aligned properly.  We will reserve
2574          * as many bytes as needed to align the data properly
2575          */
2576         skb_reserve(skb, RXBUF_ALIGNMENT -
2577                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2578 }
2579
2580 /* Interrupt Handler for Transmit complete */
2581 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2582 {
2583         struct net_device *dev = tx_queue->dev;
2584         struct netdev_queue *txq;
2585         struct gfar_private *priv = netdev_priv(dev);
2586         struct txbd8 *bdp, *next = NULL;
2587         struct txbd8 *lbdp = NULL;
2588         struct txbd8 *base = tx_queue->tx_bd_base;
2589         struct sk_buff *skb;
2590         int skb_dirtytx;
2591         int tx_ring_size = tx_queue->tx_ring_size;
2592         int frags = 0, nr_txbds = 0;
2593         int i;
2594         int howmany = 0;
2595         int tqi = tx_queue->qindex;
2596         unsigned int bytes_sent = 0;
2597         u32 lstatus;
2598         size_t buflen;
2599
2600         txq = netdev_get_tx_queue(dev, tqi);
2601         bdp = tx_queue->dirty_tx;
2602         skb_dirtytx = tx_queue->skb_dirtytx;
2603
2604         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2605
2606                 frags = skb_shinfo(skb)->nr_frags;
2607
2608                 /* When time stamping, one additional TxBD must be freed.
2609                  * Also, we need to dma_unmap_single() the TxPAL.
2610                  */
2611                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2612                         nr_txbds = frags + 2;
2613                 else
2614                         nr_txbds = frags + 1;
2615
2616                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2617
2618                 lstatus = be32_to_cpu(lbdp->lstatus);
2619
2620                 /* Only clean completed frames */
2621                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2622                     (lstatus & BD_LENGTH_MASK))
2623                         break;
2624
2625                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2626                         next = next_txbd(bdp, base, tx_ring_size);
2627                         buflen = be16_to_cpu(next->length) +
2628                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2629                 } else
2630                         buflen = be16_to_cpu(bdp->length);
2631
2632                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2633                                  buflen, DMA_TO_DEVICE);
2634
2635                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2636                         struct skb_shared_hwtstamps shhwtstamps;
2637                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2638
2639                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2640                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2641                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2642                         skb_tstamp_tx(skb, &shhwtstamps);
2643                         gfar_clear_txbd_status(bdp);
2644                         bdp = next;
2645                 }
2646
2647                 gfar_clear_txbd_status(bdp);
2648                 bdp = next_txbd(bdp, base, tx_ring_size);
2649
2650                 for (i = 0; i < frags; i++) {
2651                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2652                                        be16_to_cpu(bdp->length),
2653                                        DMA_TO_DEVICE);
2654                         gfar_clear_txbd_status(bdp);
2655                         bdp = next_txbd(bdp, base, tx_ring_size);
2656                 }
2657
2658                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2659
2660                 dev_kfree_skb_any(skb);
2661
2662                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2663
2664                 skb_dirtytx = (skb_dirtytx + 1) &
2665                               TX_RING_MOD_MASK(tx_ring_size);
2666
2667                 howmany++;
2668                 spin_lock(&tx_queue->txlock);
2669                 tx_queue->num_txbdfree += nr_txbds;
2670                 spin_unlock(&tx_queue->txlock);
2671         }
2672
2673         /* If we freed a buffer, we can restart transmission, if necessary */
2674         if (tx_queue->num_txbdfree &&
2675             netif_tx_queue_stopped(txq) &&
2676             !(test_bit(GFAR_DOWN, &priv->state)))
2677                 netif_wake_subqueue(priv->ndev, tqi);
2678
2679         /* Update dirty indicators */
2680         tx_queue->skb_dirtytx = skb_dirtytx;
2681         tx_queue->dirty_tx = bdp;
2682
2683         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2684 }
2685
2686 static struct sk_buff *gfar_new_skb(struct net_device *ndev,
2687                                     dma_addr_t *bufaddr)
2688 {
2689         struct gfar_private *priv = netdev_priv(ndev);
2690         struct sk_buff *skb;
2691         dma_addr_t addr;
2692
2693         skb = netdev_alloc_skb(ndev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2694         if (!skb)
2695                 return NULL;
2696
2697         gfar_align_skb(skb);
2698
2699         addr = dma_map_single(priv->dev, skb->data,
2700                               priv->rx_buffer_size, DMA_FROM_DEVICE);
2701         if (unlikely(dma_mapping_error(priv->dev, addr))) {
2702                 dev_kfree_skb_any(skb);
2703                 return NULL;
2704         }
2705
2706         *bufaddr = addr;
2707         return skb;
2708 }
2709
2710 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2711 {
2712         struct gfar_private *priv = netdev_priv(rx_queue->dev);
2713         struct gfar_extra_stats *estats = &priv->extra_stats;
2714
2715         netdev_err(rx_queue->dev, "Can't alloc RX buffers\n");
2716         atomic64_inc(&estats->rx_alloc_err);
2717 }
2718
2719 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2720                                 int alloc_cnt)
2721 {
2722         struct net_device *ndev = rx_queue->dev;
2723         struct rxbd8 *bdp, *base;
2724         dma_addr_t bufaddr;
2725         int i;
2726
2727         i = rx_queue->next_to_use;
2728         base = rx_queue->rx_bd_base;
2729         bdp = &rx_queue->rx_bd_base[i];
2730
2731         while (alloc_cnt--) {
2732                 struct sk_buff *skb = rx_queue->rx_skbuff[i];
2733
2734                 if (likely(!skb)) {
2735                         skb = gfar_new_skb(ndev, &bufaddr);
2736                         if (unlikely(!skb)) {
2737                                 gfar_rx_alloc_err(rx_queue);
2738                                 break;
2739                         }
2740                 } else { /* restore from sleep state */
2741                         bufaddr = be32_to_cpu(bdp->bufPtr);
2742                 }
2743
2744                 rx_queue->rx_skbuff[i] = skb;
2745
2746                 /* Setup the new RxBD */
2747                 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2748
2749                 /* Update to the next pointer */
2750                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2751
2752                 if (unlikely(++i == rx_queue->rx_ring_size))
2753                         i = 0;
2754         }
2755
2756         rx_queue->next_to_use = i;
2757 }
2758
2759 static inline void count_errors(unsigned short status, struct net_device *dev)
2760 {
2761         struct gfar_private *priv = netdev_priv(dev);
2762         struct net_device_stats *stats = &dev->stats;
2763         struct gfar_extra_stats *estats = &priv->extra_stats;
2764
2765         /* If the packet was truncated, none of the other errors matter */
2766         if (status & RXBD_TRUNCATED) {
2767                 stats->rx_length_errors++;
2768
2769                 atomic64_inc(&estats->rx_trunc);
2770
2771                 return;
2772         }
2773         /* Count the errors, if there were any */
2774         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2775                 stats->rx_length_errors++;
2776
2777                 if (status & RXBD_LARGE)
2778                         atomic64_inc(&estats->rx_large);
2779                 else
2780                         atomic64_inc(&estats->rx_short);
2781         }
2782         if (status & RXBD_NONOCTET) {
2783                 stats->rx_frame_errors++;
2784                 atomic64_inc(&estats->rx_nonoctet);
2785         }
2786         if (status & RXBD_CRCERR) {
2787                 atomic64_inc(&estats->rx_crcerr);
2788                 stats->rx_crc_errors++;
2789         }
2790         if (status & RXBD_OVERRUN) {
2791                 atomic64_inc(&estats->rx_overrun);
2792                 stats->rx_crc_errors++;
2793         }
2794 }
2795
2796 irqreturn_t gfar_receive(int irq, void *grp_id)
2797 {
2798         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2799         unsigned long flags;
2800         u32 imask;
2801
2802         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2803                 spin_lock_irqsave(&grp->grplock, flags);
2804                 imask = gfar_read(&grp->regs->imask);
2805                 imask &= IMASK_RX_DISABLED;
2806                 gfar_write(&grp->regs->imask, imask);
2807                 spin_unlock_irqrestore(&grp->grplock, flags);
2808                 __napi_schedule(&grp->napi_rx);
2809         } else {
2810                 /* Clear IEVENT, so interrupts aren't called again
2811                  * because of the packets that have already arrived.
2812                  */
2813                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2814         }
2815
2816         return IRQ_HANDLED;
2817 }
2818
2819 /* Interrupt Handler for Transmit complete */
2820 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2821 {
2822         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2823         unsigned long flags;
2824         u32 imask;
2825
2826         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2827                 spin_lock_irqsave(&grp->grplock, flags);
2828                 imask = gfar_read(&grp->regs->imask);
2829                 imask &= IMASK_TX_DISABLED;
2830                 gfar_write(&grp->regs->imask, imask);
2831                 spin_unlock_irqrestore(&grp->grplock, flags);
2832                 __napi_schedule(&grp->napi_tx);
2833         } else {
2834                 /* Clear IEVENT, so interrupts aren't called again
2835                  * because of the packets that have already arrived.
2836                  */
2837                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2838         }
2839
2840         return IRQ_HANDLED;
2841 }
2842
2843 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2844 {
2845         /* If valid headers were found, and valid sums
2846          * were verified, then we tell the kernel that no
2847          * checksumming is necessary.  Otherwise, it is [FIXME]
2848          */
2849         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2850             (RXFCB_CIP | RXFCB_CTU))
2851                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2852         else
2853                 skb_checksum_none_assert(skb);
2854 }
2855
2856 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2857 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2858                                struct napi_struct *napi)
2859 {
2860         struct gfar_private *priv = netdev_priv(dev);
2861         struct rxfcb *fcb = NULL;
2862
2863         /* fcb is at the beginning if exists */
2864         fcb = (struct rxfcb *)skb->data;
2865
2866         /* Remove the FCB from the skb
2867          * Remove the padded bytes, if there are any
2868          */
2869         if (priv->uses_rxfcb) {
2870                 skb_record_rx_queue(skb, fcb->rq);
2871                 skb_pull(skb, GMAC_FCB_LEN);
2872         }
2873
2874         /* Get receive timestamp from the skb */
2875         if (priv->hwts_rx_en) {
2876                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2877                 u64 *ns = (u64 *) skb->data;
2878
2879                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2880                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2881         }
2882
2883         if (priv->padding)
2884                 skb_pull(skb, priv->padding);
2885
2886         if (dev->features & NETIF_F_RXCSUM)
2887                 gfar_rx_checksum(skb, fcb);
2888
2889         /* Tell the skb what kind of packet this is */
2890         skb->protocol = eth_type_trans(skb, dev);
2891
2892         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2893          * Even if vlan rx accel is disabled, on some chips
2894          * RXFCB_VLN is pseudo randomly set.
2895          */
2896         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2897             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2898                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2899                                        be16_to_cpu(fcb->vlctl));
2900
2901         /* Send the packet up the stack */
2902         napi_gro_receive(napi, skb);
2903
2904 }
2905
2906 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2907  * until the budget/quota has been reached. Returns the number
2908  * of frames handled
2909  */
2910 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2911 {
2912         struct net_device *dev = rx_queue->dev;
2913         struct rxbd8 *bdp, *base;
2914         struct sk_buff *skb;
2915         int i, howmany = 0;
2916         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2917         struct gfar_private *priv = netdev_priv(dev);
2918
2919         /* Get the first full descriptor */
2920         base = rx_queue->rx_bd_base;
2921         i = rx_queue->next_to_clean;
2922
2923         while (rx_work_limit--) {
2924
2925                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2926                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2927                         cleaned_cnt = 0;
2928                 }
2929
2930                 bdp = &rx_queue->rx_bd_base[i];
2931                 if (be16_to_cpu(bdp->status) & RXBD_EMPTY)
2932                         break;
2933
2934                 /* order rx buffer descriptor reads */
2935                 rmb();
2936
2937                 /* fetch next to clean buffer from the ring */
2938                 skb = rx_queue->rx_skbuff[i];
2939
2940                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2941                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2942
2943                 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2944                              be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2945                         bdp->status = cpu_to_be16(RXBD_LARGE);
2946
2947                 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2948                              be16_to_cpu(bdp->status) & RXBD_ERR)) {
2949                         count_errors(be16_to_cpu(bdp->status), dev);
2950
2951                         /* discard faulty buffer */
2952                         dev_kfree_skb(skb);
2953
2954                 } else {
2955                         /* Increment the number of packets */
2956                         rx_queue->stats.rx_packets++;
2957                         howmany++;
2958
2959                         if (likely(skb)) {
2960                                 int pkt_len = be16_to_cpu(bdp->length) -
2961                                           ETH_FCS_LEN;
2962                                 /* Remove the FCS from the packet length */
2963                                 skb_put(skb, pkt_len);
2964                                 rx_queue->stats.rx_bytes += pkt_len;
2965                                 skb_record_rx_queue(skb, rx_queue->qindex);
2966                                 gfar_process_frame(dev, skb,
2967                                                    &rx_queue->grp->napi_rx);
2968
2969                         } else {
2970                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2971                                 rx_queue->stats.rx_dropped++;
2972                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2973                         }
2974
2975                 }
2976
2977                 rx_queue->rx_skbuff[i] = NULL;
2978                 cleaned_cnt++;
2979                 if (unlikely(++i == rx_queue->rx_ring_size))
2980                         i = 0;
2981         }
2982
2983         rx_queue->next_to_clean = i;
2984
2985         if (cleaned_cnt)
2986                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2987
2988         /* Update Last Free RxBD pointer for LFC */
2989         if (unlikely(priv->tx_actual_en)) {
2990                 bdp = gfar_rxbd_lastfree(rx_queue);
2991                 gfar_write(rx_queue->rfbptr, (u32)bdp);
2992         }
2993
2994         return howmany;
2995 }
2996
2997 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2998 {
2999         struct gfar_priv_grp *gfargrp =
3000                 container_of(napi, struct gfar_priv_grp, napi_rx);
3001         struct gfar __iomem *regs = gfargrp->regs;
3002         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3003         int work_done = 0;
3004
3005         /* Clear IEVENT, so interrupts aren't called again
3006          * because of the packets that have already arrived
3007          */
3008         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3009
3010         work_done = gfar_clean_rx_ring(rx_queue, budget);
3011
3012         if (work_done < budget) {
3013                 u32 imask;
3014                 napi_complete(napi);
3015                 /* Clear the halt bit in RSTAT */
3016                 gfar_write(&regs->rstat, gfargrp->rstat);
3017
3018                 spin_lock_irq(&gfargrp->grplock);
3019                 imask = gfar_read(&regs->imask);
3020                 imask |= IMASK_RX_DEFAULT;
3021                 gfar_write(&regs->imask, imask);
3022                 spin_unlock_irq(&gfargrp->grplock);
3023         }
3024
3025         return work_done;
3026 }
3027
3028 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3029 {
3030         struct gfar_priv_grp *gfargrp =
3031                 container_of(napi, struct gfar_priv_grp, napi_tx);
3032         struct gfar __iomem *regs = gfargrp->regs;
3033         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3034         u32 imask;
3035
3036         /* Clear IEVENT, so interrupts aren't called again
3037          * because of the packets that have already arrived
3038          */
3039         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3040
3041         /* run Tx cleanup to completion */
3042         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3043                 gfar_clean_tx_ring(tx_queue);
3044
3045         napi_complete(napi);
3046
3047         spin_lock_irq(&gfargrp->grplock);
3048         imask = gfar_read(&regs->imask);
3049         imask |= IMASK_TX_DEFAULT;
3050         gfar_write(&regs->imask, imask);
3051         spin_unlock_irq(&gfargrp->grplock);
3052
3053         return 0;
3054 }
3055
3056 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3057 {
3058         struct gfar_priv_grp *gfargrp =
3059                 container_of(napi, struct gfar_priv_grp, napi_rx);
3060         struct gfar_private *priv = gfargrp->priv;
3061         struct gfar __iomem *regs = gfargrp->regs;
3062         struct gfar_priv_rx_q *rx_queue = NULL;
3063         int work_done = 0, work_done_per_q = 0;
3064         int i, budget_per_q = 0;
3065         unsigned long rstat_rxf;
3066         int num_act_queues;
3067
3068         /* Clear IEVENT, so interrupts aren't called again
3069          * because of the packets that have already arrived
3070          */
3071         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3072
3073         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3074
3075         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3076         if (num_act_queues)
3077                 budget_per_q = budget/num_act_queues;
3078
3079         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3080                 /* skip queue if not active */
3081                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3082                         continue;
3083
3084                 rx_queue = priv->rx_queue[i];
3085                 work_done_per_q =
3086                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3087                 work_done += work_done_per_q;
3088
3089                 /* finished processing this queue */
3090                 if (work_done_per_q < budget_per_q) {
3091                         /* clear active queue hw indication */
3092                         gfar_write(&regs->rstat,
3093                                    RSTAT_CLEAR_RXF0 >> i);
3094                         num_act_queues--;
3095
3096                         if (!num_act_queues)
3097                                 break;
3098                 }
3099         }
3100
3101         if (!num_act_queues) {
3102                 u32 imask;
3103                 napi_complete(napi);
3104
3105                 /* Clear the halt bit in RSTAT */
3106                 gfar_write(&regs->rstat, gfargrp->rstat);
3107
3108                 spin_lock_irq(&gfargrp->grplock);
3109                 imask = gfar_read(&regs->imask);
3110                 imask |= IMASK_RX_DEFAULT;
3111                 gfar_write(&regs->imask, imask);
3112                 spin_unlock_irq(&gfargrp->grplock);
3113         }
3114
3115         return work_done;
3116 }
3117
3118 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3119 {
3120         struct gfar_priv_grp *gfargrp =
3121                 container_of(napi, struct gfar_priv_grp, napi_tx);
3122         struct gfar_private *priv = gfargrp->priv;
3123         struct gfar __iomem *regs = gfargrp->regs;
3124         struct gfar_priv_tx_q *tx_queue = NULL;
3125         int has_tx_work = 0;
3126         int i;
3127
3128         /* Clear IEVENT, so interrupts aren't called again
3129          * because of the packets that have already arrived
3130          */
3131         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3132
3133         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3134                 tx_queue = priv->tx_queue[i];
3135                 /* run Tx cleanup to completion */
3136                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3137                         gfar_clean_tx_ring(tx_queue);
3138                         has_tx_work = 1;
3139                 }
3140         }
3141
3142         if (!has_tx_work) {
3143                 u32 imask;
3144                 napi_complete(napi);
3145
3146                 spin_lock_irq(&gfargrp->grplock);
3147                 imask = gfar_read(&regs->imask);
3148                 imask |= IMASK_TX_DEFAULT;
3149                 gfar_write(&regs->imask, imask);
3150                 spin_unlock_irq(&gfargrp->grplock);
3151         }
3152
3153         return 0;
3154 }
3155
3156
3157 #ifdef CONFIG_NET_POLL_CONTROLLER
3158 /* Polling 'interrupt' - used by things like netconsole to send skbs
3159  * without having to re-enable interrupts. It's not called while
3160  * the interrupt routine is executing.
3161  */
3162 static void gfar_netpoll(struct net_device *dev)
3163 {
3164         struct gfar_private *priv = netdev_priv(dev);
3165         int i;
3166
3167         /* If the device has multiple interrupts, run tx/rx */
3168         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3169                 for (i = 0; i < priv->num_grps; i++) {
3170                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3171
3172                         disable_irq(gfar_irq(grp, TX)->irq);
3173                         disable_irq(gfar_irq(grp, RX)->irq);
3174                         disable_irq(gfar_irq(grp, ER)->irq);
3175                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3176                         enable_irq(gfar_irq(grp, ER)->irq);
3177                         enable_irq(gfar_irq(grp, RX)->irq);
3178                         enable_irq(gfar_irq(grp, TX)->irq);
3179                 }
3180         } else {
3181                 for (i = 0; i < priv->num_grps; i++) {
3182                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3183
3184                         disable_irq(gfar_irq(grp, TX)->irq);
3185                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3186                         enable_irq(gfar_irq(grp, TX)->irq);
3187                 }
3188         }
3189 }
3190 #endif
3191
3192 /* The interrupt handler for devices with one interrupt */
3193 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3194 {
3195         struct gfar_priv_grp *gfargrp = grp_id;
3196
3197         /* Save ievent for future reference */
3198         u32 events = gfar_read(&gfargrp->regs->ievent);
3199
3200         /* Check for reception */
3201         if (events & IEVENT_RX_MASK)
3202                 gfar_receive(irq, grp_id);
3203
3204         /* Check for transmit completion */
3205         if (events & IEVENT_TX_MASK)
3206                 gfar_transmit(irq, grp_id);
3207
3208         /* Check for errors */
3209         if (events & IEVENT_ERR_MASK)
3210                 gfar_error(irq, grp_id);
3211
3212         return IRQ_HANDLED;
3213 }
3214
3215 /* Called every time the controller might need to be made
3216  * aware of new link state.  The PHY code conveys this
3217  * information through variables in the phydev structure, and this
3218  * function converts those variables into the appropriate
3219  * register values, and can bring down the device if needed.
3220  */
3221 static void adjust_link(struct net_device *dev)
3222 {
3223         struct gfar_private *priv = netdev_priv(dev);
3224         struct phy_device *phydev = priv->phydev;
3225
3226         if (unlikely(phydev->link != priv->oldlink ||
3227                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3228                                        phydev->speed != priv->oldspeed))))
3229                 gfar_update_link_state(priv);
3230 }
3231
3232 /* Update the hash table based on the current list of multicast
3233  * addresses we subscribe to.  Also, change the promiscuity of
3234  * the device based on the flags (this function is called
3235  * whenever dev->flags is changed
3236  */
3237 static void gfar_set_multi(struct net_device *dev)
3238 {
3239         struct netdev_hw_addr *ha;
3240         struct gfar_private *priv = netdev_priv(dev);
3241         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3242         u32 tempval;
3243
3244         if (dev->flags & IFF_PROMISC) {
3245                 /* Set RCTRL to PROM */
3246                 tempval = gfar_read(&regs->rctrl);
3247                 tempval |= RCTRL_PROM;
3248                 gfar_write(&regs->rctrl, tempval);
3249         } else {
3250                 /* Set RCTRL to not PROM */
3251                 tempval = gfar_read(&regs->rctrl);
3252                 tempval &= ~(RCTRL_PROM);
3253                 gfar_write(&regs->rctrl, tempval);
3254         }
3255
3256         if (dev->flags & IFF_ALLMULTI) {
3257                 /* Set the hash to rx all multicast frames */
3258                 gfar_write(&regs->igaddr0, 0xffffffff);
3259                 gfar_write(&regs->igaddr1, 0xffffffff);
3260                 gfar_write(&regs->igaddr2, 0xffffffff);
3261                 gfar_write(&regs->igaddr3, 0xffffffff);
3262                 gfar_write(&regs->igaddr4, 0xffffffff);
3263                 gfar_write(&regs->igaddr5, 0xffffffff);
3264                 gfar_write(&regs->igaddr6, 0xffffffff);
3265                 gfar_write(&regs->igaddr7, 0xffffffff);
3266                 gfar_write(&regs->gaddr0, 0xffffffff);
3267                 gfar_write(&regs->gaddr1, 0xffffffff);
3268                 gfar_write(&regs->gaddr2, 0xffffffff);
3269                 gfar_write(&regs->gaddr3, 0xffffffff);
3270                 gfar_write(&regs->gaddr4, 0xffffffff);
3271                 gfar_write(&regs->gaddr5, 0xffffffff);
3272                 gfar_write(&regs->gaddr6, 0xffffffff);
3273                 gfar_write(&regs->gaddr7, 0xffffffff);
3274         } else {
3275                 int em_num;
3276                 int idx;
3277
3278                 /* zero out the hash */
3279                 gfar_write(&regs->igaddr0, 0x0);
3280                 gfar_write(&regs->igaddr1, 0x0);
3281                 gfar_write(&regs->igaddr2, 0x0);
3282                 gfar_write(&regs->igaddr3, 0x0);
3283                 gfar_write(&regs->igaddr4, 0x0);
3284                 gfar_write(&regs->igaddr5, 0x0);
3285                 gfar_write(&regs->igaddr6, 0x0);
3286                 gfar_write(&regs->igaddr7, 0x0);
3287                 gfar_write(&regs->gaddr0, 0x0);
3288                 gfar_write(&regs->gaddr1, 0x0);
3289                 gfar_write(&regs->gaddr2, 0x0);
3290                 gfar_write(&regs->gaddr3, 0x0);
3291                 gfar_write(&regs->gaddr4, 0x0);
3292                 gfar_write(&regs->gaddr5, 0x0);
3293                 gfar_write(&regs->gaddr6, 0x0);
3294                 gfar_write(&regs->gaddr7, 0x0);
3295
3296                 /* If we have extended hash tables, we need to
3297                  * clear the exact match registers to prepare for
3298                  * setting them
3299                  */
3300                 if (priv->extended_hash) {
3301                         em_num = GFAR_EM_NUM + 1;
3302                         gfar_clear_exact_match(dev);
3303                         idx = 1;
3304                 } else {
3305                         idx = 0;
3306                         em_num = 0;
3307                 }
3308
3309                 if (netdev_mc_empty(dev))
3310                         return;
3311
3312                 /* Parse the list, and set the appropriate bits */
3313                 netdev_for_each_mc_addr(ha, dev) {
3314                         if (idx < em_num) {
3315                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3316                                 idx++;
3317                         } else
3318                                 gfar_set_hash_for_addr(dev, ha->addr);
3319                 }
3320         }
3321 }
3322
3323
3324 /* Clears each of the exact match registers to zero, so they
3325  * don't interfere with normal reception
3326  */
3327 static void gfar_clear_exact_match(struct net_device *dev)
3328 {
3329         int idx;
3330         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3331
3332         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3333                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3334 }
3335
3336 /* Set the appropriate hash bit for the given addr */
3337 /* The algorithm works like so:
3338  * 1) Take the Destination Address (ie the multicast address), and
3339  * do a CRC on it (little endian), and reverse the bits of the
3340  * result.
3341  * 2) Use the 8 most significant bits as a hash into a 256-entry
3342  * table.  The table is controlled through 8 32-bit registers:
3343  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3344  * gaddr7.  This means that the 3 most significant bits in the
3345  * hash index which gaddr register to use, and the 5 other bits
3346  * indicate which bit (assuming an IBM numbering scheme, which
3347  * for PowerPC (tm) is usually the case) in the register holds
3348  * the entry.
3349  */
3350 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3351 {
3352         u32 tempval;
3353         struct gfar_private *priv = netdev_priv(dev);
3354         u32 result = ether_crc(ETH_ALEN, addr);
3355         int width = priv->hash_width;
3356         u8 whichbit = (result >> (32 - width)) & 0x1f;
3357         u8 whichreg = result >> (32 - width + 5);
3358         u32 value = (1 << (31-whichbit));
3359
3360         tempval = gfar_read(priv->hash_regs[whichreg]);
3361         tempval |= value;
3362         gfar_write(priv->hash_regs[whichreg], tempval);
3363 }
3364
3365
3366 /* There are multiple MAC Address register pairs on some controllers
3367  * This function sets the numth pair to a given address
3368  */
3369 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3370                                   const u8 *addr)
3371 {
3372         struct gfar_private *priv = netdev_priv(dev);
3373         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3374         u32 tempval;
3375         u32 __iomem *macptr = &regs->macstnaddr1;
3376
3377         macptr += num*2;
3378
3379         /* For a station address of 0x12345678ABCD in transmission
3380          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3381          * MACnADDR2 is set to 0x34120000.
3382          */
3383         tempval = (addr[5] << 24) | (addr[4] << 16) |
3384                   (addr[3] << 8)  |  addr[2];
3385
3386         gfar_write(macptr, tempval);
3387
3388         tempval = (addr[1] << 24) | (addr[0] << 16);
3389
3390         gfar_write(macptr+1, tempval);
3391 }
3392
3393 /* GFAR error interrupt handler */
3394 static irqreturn_t gfar_error(int irq, void *grp_id)
3395 {
3396         struct gfar_priv_grp *gfargrp = grp_id;
3397         struct gfar __iomem *regs = gfargrp->regs;
3398         struct gfar_private *priv= gfargrp->priv;
3399         struct net_device *dev = priv->ndev;
3400
3401         /* Save ievent for future reference */
3402         u32 events = gfar_read(&regs->ievent);
3403
3404         /* Clear IEVENT */
3405         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3406
3407         /* Magic Packet is not an error. */
3408         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3409             (events & IEVENT_MAG))
3410                 events &= ~IEVENT_MAG;
3411
3412         /* Hmm... */
3413         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3414                 netdev_dbg(dev,
3415                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3416                            events, gfar_read(&regs->imask));
3417
3418         /* Update the error counters */
3419         if (events & IEVENT_TXE) {
3420                 dev->stats.tx_errors++;
3421
3422                 if (events & IEVENT_LC)
3423                         dev->stats.tx_window_errors++;
3424                 if (events & IEVENT_CRL)
3425                         dev->stats.tx_aborted_errors++;
3426                 if (events & IEVENT_XFUN) {
3427                         netif_dbg(priv, tx_err, dev,
3428                                   "TX FIFO underrun, packet dropped\n");
3429                         dev->stats.tx_dropped++;
3430                         atomic64_inc(&priv->extra_stats.tx_underrun);
3431
3432                         schedule_work(&priv->reset_task);
3433                 }
3434                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3435         }
3436         if (events & IEVENT_BSY) {
3437                 dev->stats.rx_errors++;
3438                 atomic64_inc(&priv->extra_stats.rx_bsy);
3439
3440                 gfar_receive(irq, grp_id);
3441
3442                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3443                           gfar_read(&regs->rstat));
3444         }
3445         if (events & IEVENT_BABR) {
3446                 dev->stats.rx_errors++;
3447                 atomic64_inc(&priv->extra_stats.rx_babr);
3448
3449                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3450         }
3451         if (events & IEVENT_EBERR) {
3452                 atomic64_inc(&priv->extra_stats.eberr);
3453                 netif_dbg(priv, rx_err, dev, "bus error\n");
3454         }
3455         if (events & IEVENT_RXC)
3456                 netif_dbg(priv, rx_status, dev, "control frame\n");
3457
3458         if (events & IEVENT_BABT) {
3459                 atomic64_inc(&priv->extra_stats.tx_babt);
3460                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3461         }
3462         return IRQ_HANDLED;
3463 }
3464
3465 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3466 {
3467         struct phy_device *phydev = priv->phydev;
3468         u32 val = 0;
3469
3470         if (!phydev->duplex)
3471                 return val;
3472
3473         if (!priv->pause_aneg_en) {
3474                 if (priv->tx_pause_en)
3475                         val |= MACCFG1_TX_FLOW;
3476                 if (priv->rx_pause_en)
3477                         val |= MACCFG1_RX_FLOW;
3478         } else {
3479                 u16 lcl_adv, rmt_adv;
3480                 u8 flowctrl;
3481                 /* get link partner capabilities */
3482                 rmt_adv = 0;
3483                 if (phydev->pause)
3484                         rmt_adv = LPA_PAUSE_CAP;
3485                 if (phydev->asym_pause)
3486                         rmt_adv |= LPA_PAUSE_ASYM;
3487
3488                 lcl_adv = 0;
3489                 if (phydev->advertising & ADVERTISED_Pause)
3490                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3491                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3492                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3493
3494                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3495                 if (flowctrl & FLOW_CTRL_TX)
3496                         val |= MACCFG1_TX_FLOW;
3497                 if (flowctrl & FLOW_CTRL_RX)
3498                         val |= MACCFG1_RX_FLOW;
3499         }
3500
3501         return val;
3502 }
3503
3504 static noinline void gfar_update_link_state(struct gfar_private *priv)
3505 {
3506         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3507         struct phy_device *phydev = priv->phydev;
3508         struct gfar_priv_rx_q *rx_queue = NULL;
3509         int i;
3510         struct rxbd8 *bdp;
3511
3512         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3513                 return;
3514
3515         if (phydev->link) {
3516                 u32 tempval1 = gfar_read(&regs->maccfg1);
3517                 u32 tempval = gfar_read(&regs->maccfg2);
3518                 u32 ecntrl = gfar_read(&regs->ecntrl);
3519                 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3520
3521                 if (phydev->duplex != priv->oldduplex) {
3522                         if (!(phydev->duplex))
3523                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3524                         else
3525                                 tempval |= MACCFG2_FULL_DUPLEX;
3526
3527                         priv->oldduplex = phydev->duplex;
3528                 }
3529
3530                 if (phydev->speed != priv->oldspeed) {
3531                         switch (phydev->speed) {
3532                         case 1000:
3533                                 tempval =
3534                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3535
3536                                 ecntrl &= ~(ECNTRL_R100);
3537                                 break;
3538                         case 100:
3539                         case 10:
3540                                 tempval =
3541                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3542
3543                                 /* Reduced mode distinguishes
3544                                  * between 10 and 100
3545                                  */
3546                                 if (phydev->speed == SPEED_100)
3547                                         ecntrl |= ECNTRL_R100;
3548                                 else
3549                                         ecntrl &= ~(ECNTRL_R100);
3550                                 break;
3551                         default:
3552                                 netif_warn(priv, link, priv->ndev,
3553                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3554                                            phydev->speed);
3555                                 break;
3556                         }
3557
3558                         priv->oldspeed = phydev->speed;
3559                 }
3560
3561                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3562                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3563
3564                 /* Turn last free buffer recording on */
3565                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3566                         for (i = 0; i < priv->num_rx_queues; i++) {
3567                                 rx_queue = priv->rx_queue[i];
3568                                 bdp = gfar_rxbd_lastfree(rx_queue);
3569                                 gfar_write(rx_queue->rfbptr, (u32)bdp);
3570                         }
3571
3572                         priv->tx_actual_en = 1;
3573                 }
3574
3575                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3576                         priv->tx_actual_en = 0;
3577
3578                 gfar_write(&regs->maccfg1, tempval1);
3579                 gfar_write(&regs->maccfg2, tempval);
3580                 gfar_write(&regs->ecntrl, ecntrl);
3581
3582                 if (!priv->oldlink)
3583                         priv->oldlink = 1;
3584
3585         } else if (priv->oldlink) {
3586                 priv->oldlink = 0;
3587                 priv->oldspeed = 0;
3588                 priv->oldduplex = -1;
3589         }
3590
3591         if (netif_msg_link(priv))
3592                 phy_print_status(phydev);
3593 }
3594
3595 static const struct of_device_id gfar_match[] =
3596 {
3597         {
3598                 .type = "network",
3599                 .compatible = "gianfar",
3600         },
3601         {
3602                 .compatible = "fsl,etsec2",
3603         },
3604         {},
3605 };
3606 MODULE_DEVICE_TABLE(of, gfar_match);
3607
3608 /* Structure for a device driver */
3609 static struct platform_driver gfar_driver = {
3610         .driver = {
3611                 .name = "fsl-gianfar",
3612                 .pm = GFAR_PM_OPS,
3613                 .of_match_table = gfar_match,
3614         },
3615         .probe = gfar_probe,
3616         .remove = gfar_remove,
3617 };
3618
3619 module_platform_driver(gfar_driver);