]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
drivers: clean-up prom.h implicit includes
[karo-tx-linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_address.h>
82 #include <linux/of_irq.h>
83 #include <linux/of_mdio.h>
84 #include <linux/of_platform.h>
85 #include <linux/ip.h>
86 #include <linux/tcp.h>
87 #include <linux/udp.h>
88 #include <linux/in.h>
89 #include <linux/net_tstamp.h>
90
91 #include <asm/io.h>
92 #include <asm/reg.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
103
104 #include "gianfar.h"
105
106 #define TX_TIMEOUT      (1*HZ)
107
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117                            struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 static int gfar_poll_sq(struct napi_struct *napi, int budget);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device *dev);
136 #endif
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
138 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
139 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
140                                int amount_pull, struct napi_struct *napi);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146                                   const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154                             dma_addr_t buf)
155 {
156         u32 lstatus;
157
158         bdp->bufPtr = buf;
159
160         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162                 lstatus |= BD_LFLAG(RXBD_WRAP);
163
164         eieio();
165
166         bdp->lstatus = lstatus;
167 }
168
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171         struct gfar_private *priv = netdev_priv(ndev);
172         struct gfar_priv_tx_q *tx_queue = NULL;
173         struct gfar_priv_rx_q *rx_queue = NULL;
174         struct txbd8 *txbdp;
175         struct rxbd8 *rxbdp;
176         int i, j;
177
178         for (i = 0; i < priv->num_tx_queues; i++) {
179                 tx_queue = priv->tx_queue[i];
180                 /* Initialize some variables in our dev structure */
181                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
183                 tx_queue->cur_tx = tx_queue->tx_bd_base;
184                 tx_queue->skb_curtx = 0;
185                 tx_queue->skb_dirtytx = 0;
186
187                 /* Initialize Transmit Descriptor Ring */
188                 txbdp = tx_queue->tx_bd_base;
189                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
190                         txbdp->lstatus = 0;
191                         txbdp->bufPtr = 0;
192                         txbdp++;
193                 }
194
195                 /* Set the last descriptor in the ring to indicate wrap */
196                 txbdp--;
197                 txbdp->status |= TXBD_WRAP;
198         }
199
200         for (i = 0; i < priv->num_rx_queues; i++) {
201                 rx_queue = priv->rx_queue[i];
202                 rx_queue->cur_rx = rx_queue->rx_bd_base;
203                 rx_queue->skb_currx = 0;
204                 rxbdp = rx_queue->rx_bd_base;
205
206                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
207                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
208
209                         if (skb) {
210                                 gfar_init_rxbdp(rx_queue, rxbdp,
211                                                 rxbdp->bufPtr);
212                         } else {
213                                 skb = gfar_new_skb(ndev);
214                                 if (!skb) {
215                                         netdev_err(ndev, "Can't allocate RX buffers\n");
216                                         return -ENOMEM;
217                                 }
218                                 rx_queue->rx_skbuff[j] = skb;
219
220                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221                         }
222
223                         rxbdp++;
224                 }
225
226         }
227
228         return 0;
229 }
230
231 static int gfar_alloc_skb_resources(struct net_device *ndev)
232 {
233         void *vaddr;
234         dma_addr_t addr;
235         int i, j, k;
236         struct gfar_private *priv = netdev_priv(ndev);
237         struct device *dev = priv->dev;
238         struct gfar_priv_tx_q *tx_queue = NULL;
239         struct gfar_priv_rx_q *rx_queue = NULL;
240
241         priv->total_tx_ring_size = 0;
242         for (i = 0; i < priv->num_tx_queues; i++)
243                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
244
245         priv->total_rx_ring_size = 0;
246         for (i = 0; i < priv->num_rx_queues; i++)
247                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
248
249         /* Allocate memory for the buffer descriptors */
250         vaddr = dma_alloc_coherent(dev,
251                                    (priv->total_tx_ring_size *
252                                     sizeof(struct txbd8)) +
253                                    (priv->total_rx_ring_size *
254                                     sizeof(struct rxbd8)),
255                                    &addr, GFP_KERNEL);
256         if (!vaddr)
257                 return -ENOMEM;
258
259         for (i = 0; i < priv->num_tx_queues; i++) {
260                 tx_queue = priv->tx_queue[i];
261                 tx_queue->tx_bd_base = vaddr;
262                 tx_queue->tx_bd_dma_base = addr;
263                 tx_queue->dev = ndev;
264                 /* enet DMA only understands physical addresses */
265                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
267         }
268
269         /* Start the rx descriptor ring where the tx ring leaves off */
270         for (i = 0; i < priv->num_rx_queues; i++) {
271                 rx_queue = priv->rx_queue[i];
272                 rx_queue->rx_bd_base = vaddr;
273                 rx_queue->rx_bd_dma_base = addr;
274                 rx_queue->dev = ndev;
275                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
277         }
278
279         /* Setup the skbuff rings */
280         for (i = 0; i < priv->num_tx_queues; i++) {
281                 tx_queue = priv->tx_queue[i];
282                 tx_queue->tx_skbuff =
283                         kmalloc_array(tx_queue->tx_ring_size,
284                                       sizeof(*tx_queue->tx_skbuff),
285                                       GFP_KERNEL);
286                 if (!tx_queue->tx_skbuff)
287                         goto cleanup;
288
289                 for (k = 0; k < tx_queue->tx_ring_size; k++)
290                         tx_queue->tx_skbuff[k] = NULL;
291         }
292
293         for (i = 0; i < priv->num_rx_queues; i++) {
294                 rx_queue = priv->rx_queue[i];
295                 rx_queue->rx_skbuff =
296                         kmalloc_array(rx_queue->rx_ring_size,
297                                       sizeof(*rx_queue->rx_skbuff),
298                                       GFP_KERNEL);
299                 if (!rx_queue->rx_skbuff)
300                         goto cleanup;
301
302                 for (j = 0; j < rx_queue->rx_ring_size; j++)
303                         rx_queue->rx_skbuff[j] = NULL;
304         }
305
306         if (gfar_init_bds(ndev))
307                 goto cleanup;
308
309         return 0;
310
311 cleanup:
312         free_skb_resources(priv);
313         return -ENOMEM;
314 }
315
316 static void gfar_init_tx_rx_base(struct gfar_private *priv)
317 {
318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
319         u32 __iomem *baddr;
320         int i;
321
322         baddr = &regs->tbase0;
323         for (i = 0; i < priv->num_tx_queues; i++) {
324                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
325                 baddr += 2;
326         }
327
328         baddr = &regs->rbase0;
329         for (i = 0; i < priv->num_rx_queues; i++) {
330                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
331                 baddr += 2;
332         }
333 }
334
335 static void gfar_init_mac(struct net_device *ndev)
336 {
337         struct gfar_private *priv = netdev_priv(ndev);
338         struct gfar __iomem *regs = priv->gfargrp[0].regs;
339         u32 rctrl = 0;
340         u32 tctrl = 0;
341         u32 attrs = 0;
342
343         /* write the tx/rx base registers */
344         gfar_init_tx_rx_base(priv);
345
346         /* Configure the coalescing support */
347         gfar_configure_coalescing_all(priv);
348
349         /* set this when rx hw offload (TOE) functions are being used */
350         priv->uses_rxfcb = 0;
351
352         if (priv->rx_filer_enable) {
353                 rctrl |= RCTRL_FILREN;
354                 /* Program the RIR0 reg with the required distribution */
355                 gfar_write(&regs->rir0, DEFAULT_RIR0);
356         }
357
358         /* Restore PROMISC mode */
359         if (ndev->flags & IFF_PROMISC)
360                 rctrl |= RCTRL_PROM;
361
362         if (ndev->features & NETIF_F_RXCSUM) {
363                 rctrl |= RCTRL_CHECKSUMMING;
364                 priv->uses_rxfcb = 1;
365         }
366
367         if (priv->extended_hash) {
368                 rctrl |= RCTRL_EXTHASH;
369
370                 gfar_clear_exact_match(ndev);
371                 rctrl |= RCTRL_EMEN;
372         }
373
374         if (priv->padding) {
375                 rctrl &= ~RCTRL_PAL_MASK;
376                 rctrl |= RCTRL_PADDING(priv->padding);
377         }
378
379         /* Insert receive time stamps into padding alignment bytes */
380         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
381                 rctrl &= ~RCTRL_PAL_MASK;
382                 rctrl |= RCTRL_PADDING(8);
383                 priv->padding = 8;
384         }
385
386         /* Enable HW time stamping if requested from user space */
387         if (priv->hwts_rx_en) {
388                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
389                 priv->uses_rxfcb = 1;
390         }
391
392         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
393                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394                 priv->uses_rxfcb = 1;
395         }
396
397         /* Init rctrl based on our settings */
398         gfar_write(&regs->rctrl, rctrl);
399
400         if (ndev->features & NETIF_F_IP_CSUM)
401                 tctrl |= TCTRL_INIT_CSUM;
402
403         if (priv->prio_sched_en)
404                 tctrl |= TCTRL_TXSCHED_PRIO;
405         else {
406                 tctrl |= TCTRL_TXSCHED_WRRS;
407                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409         }
410
411         gfar_write(&regs->tctrl, tctrl);
412
413         /* Set the extraction length and index */
414         attrs = ATTRELI_EL(priv->rx_stash_size) |
415                 ATTRELI_EI(priv->rx_stash_index);
416
417         gfar_write(&regs->attreli, attrs);
418
419         /* Start with defaults, and add stashing or locking
420          * depending on the approprate variables
421          */
422         attrs = ATTR_INIT_SETTINGS;
423
424         if (priv->bd_stash_en)
425                 attrs |= ATTR_BDSTASH;
426
427         if (priv->rx_stash_size != 0)
428                 attrs |= ATTR_BUFSTASH;
429
430         gfar_write(&regs->attr, attrs);
431
432         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
433         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
434         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
435 }
436
437 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
438 {
439         struct gfar_private *priv = netdev_priv(dev);
440         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
441         unsigned long tx_packets = 0, tx_bytes = 0;
442         int i;
443
444         for (i = 0; i < priv->num_rx_queues; i++) {
445                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
446                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
447                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
448         }
449
450         dev->stats.rx_packets = rx_packets;
451         dev->stats.rx_bytes   = rx_bytes;
452         dev->stats.rx_dropped = rx_dropped;
453
454         for (i = 0; i < priv->num_tx_queues; i++) {
455                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
456                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
457         }
458
459         dev->stats.tx_bytes   = tx_bytes;
460         dev->stats.tx_packets = tx_packets;
461
462         return &dev->stats;
463 }
464
465 static const struct net_device_ops gfar_netdev_ops = {
466         .ndo_open = gfar_enet_open,
467         .ndo_start_xmit = gfar_start_xmit,
468         .ndo_stop = gfar_close,
469         .ndo_change_mtu = gfar_change_mtu,
470         .ndo_set_features = gfar_set_features,
471         .ndo_set_rx_mode = gfar_set_multi,
472         .ndo_tx_timeout = gfar_timeout,
473         .ndo_do_ioctl = gfar_ioctl,
474         .ndo_get_stats = gfar_get_stats,
475         .ndo_set_mac_address = eth_mac_addr,
476         .ndo_validate_addr = eth_validate_addr,
477 #ifdef CONFIG_NET_POLL_CONTROLLER
478         .ndo_poll_controller = gfar_netpoll,
479 #endif
480 };
481
482 void lock_rx_qs(struct gfar_private *priv)
483 {
484         int i;
485
486         for (i = 0; i < priv->num_rx_queues; i++)
487                 spin_lock(&priv->rx_queue[i]->rxlock);
488 }
489
490 void lock_tx_qs(struct gfar_private *priv)
491 {
492         int i;
493
494         for (i = 0; i < priv->num_tx_queues; i++)
495                 spin_lock(&priv->tx_queue[i]->txlock);
496 }
497
498 void unlock_rx_qs(struct gfar_private *priv)
499 {
500         int i;
501
502         for (i = 0; i < priv->num_rx_queues; i++)
503                 spin_unlock(&priv->rx_queue[i]->rxlock);
504 }
505
506 void unlock_tx_qs(struct gfar_private *priv)
507 {
508         int i;
509
510         for (i = 0; i < priv->num_tx_queues; i++)
511                 spin_unlock(&priv->tx_queue[i]->txlock);
512 }
513
514 static void free_tx_pointers(struct gfar_private *priv)
515 {
516         int i;
517
518         for (i = 0; i < priv->num_tx_queues; i++)
519                 kfree(priv->tx_queue[i]);
520 }
521
522 static void free_rx_pointers(struct gfar_private *priv)
523 {
524         int i;
525
526         for (i = 0; i < priv->num_rx_queues; i++)
527                 kfree(priv->rx_queue[i]);
528 }
529
530 static void unmap_group_regs(struct gfar_private *priv)
531 {
532         int i;
533
534         for (i = 0; i < MAXGROUPS; i++)
535                 if (priv->gfargrp[i].regs)
536                         iounmap(priv->gfargrp[i].regs);
537 }
538
539 static void free_gfar_dev(struct gfar_private *priv)
540 {
541         int i, j;
542
543         for (i = 0; i < priv->num_grps; i++)
544                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
545                         kfree(priv->gfargrp[i].irqinfo[j]);
546                         priv->gfargrp[i].irqinfo[j] = NULL;
547                 }
548
549         free_netdev(priv->ndev);
550 }
551
552 static void disable_napi(struct gfar_private *priv)
553 {
554         int i;
555
556         for (i = 0; i < priv->num_grps; i++)
557                 napi_disable(&priv->gfargrp[i].napi);
558 }
559
560 static void enable_napi(struct gfar_private *priv)
561 {
562         int i;
563
564         for (i = 0; i < priv->num_grps; i++)
565                 napi_enable(&priv->gfargrp[i].napi);
566 }
567
568 static int gfar_parse_group(struct device_node *np,
569                             struct gfar_private *priv, const char *model)
570 {
571         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
572         u32 *queue_mask;
573         int i;
574
575         for (i = 0; i < GFAR_NUM_IRQS; i++) {
576                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
577                                           GFP_KERNEL);
578                 if (!grp->irqinfo[i])
579                         return -ENOMEM;
580         }
581
582         grp->regs = of_iomap(np, 0);
583         if (!grp->regs)
584                 return -ENOMEM;
585
586         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
587
588         /* If we aren't the FEC we have multiple interrupts */
589         if (model && strcasecmp(model, "FEC")) {
590                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
591                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
592                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
593                     gfar_irq(grp, RX)->irq == NO_IRQ ||
594                     gfar_irq(grp, ER)->irq == NO_IRQ)
595                         return -EINVAL;
596         }
597
598         grp->priv = priv;
599         spin_lock_init(&grp->grplock);
600         if (priv->mode == MQ_MG_MODE) {
601                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
602                 grp->rx_bit_map = queue_mask ?
603                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
604                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
605                 grp->tx_bit_map = queue_mask ?
606                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
607         } else {
608                 grp->rx_bit_map = 0xFF;
609                 grp->tx_bit_map = 0xFF;
610         }
611         priv->num_grps++;
612
613         return 0;
614 }
615
616 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
617 {
618         const char *model;
619         const char *ctype;
620         const void *mac_addr;
621         int err = 0, i;
622         struct net_device *dev = NULL;
623         struct gfar_private *priv = NULL;
624         struct device_node *np = ofdev->dev.of_node;
625         struct device_node *child = NULL;
626         const u32 *stash;
627         const u32 *stash_len;
628         const u32 *stash_idx;
629         unsigned int num_tx_qs, num_rx_qs;
630         u32 *tx_queues, *rx_queues;
631
632         if (!np || !of_device_is_available(np))
633                 return -ENODEV;
634
635         /* parse the num of tx and rx queues */
636         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
637         num_tx_qs = tx_queues ? *tx_queues : 1;
638
639         if (num_tx_qs > MAX_TX_QS) {
640                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
641                        num_tx_qs, MAX_TX_QS);
642                 pr_err("Cannot do alloc_etherdev, aborting\n");
643                 return -EINVAL;
644         }
645
646         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
647         num_rx_qs = rx_queues ? *rx_queues : 1;
648
649         if (num_rx_qs > MAX_RX_QS) {
650                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
651                        num_rx_qs, MAX_RX_QS);
652                 pr_err("Cannot do alloc_etherdev, aborting\n");
653                 return -EINVAL;
654         }
655
656         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
657         dev = *pdev;
658         if (NULL == dev)
659                 return -ENOMEM;
660
661         priv = netdev_priv(dev);
662         priv->ndev = dev;
663
664         priv->num_tx_queues = num_tx_qs;
665         netif_set_real_num_rx_queues(dev, num_rx_qs);
666         priv->num_rx_queues = num_rx_qs;
667         priv->num_grps = 0x0;
668
669         /* Init Rx queue filer rule set linked list */
670         INIT_LIST_HEAD(&priv->rx_list.list);
671         priv->rx_list.count = 0;
672         mutex_init(&priv->rx_queue_access);
673
674         model = of_get_property(np, "model", NULL);
675
676         for (i = 0; i < MAXGROUPS; i++)
677                 priv->gfargrp[i].regs = NULL;
678
679         /* Parse and initialize group specific information */
680         if (of_device_is_compatible(np, "fsl,etsec2")) {
681                 priv->mode = MQ_MG_MODE;
682                 for_each_child_of_node(np, child) {
683                         err = gfar_parse_group(child, priv, model);
684                         if (err)
685                                 goto err_grp_init;
686                 }
687         } else {
688                 priv->mode = SQ_SG_MODE;
689                 err = gfar_parse_group(np, priv, model);
690                 if (err)
691                         goto err_grp_init;
692         }
693
694         for (i = 0; i < priv->num_tx_queues; i++)
695                 priv->tx_queue[i] = NULL;
696         for (i = 0; i < priv->num_rx_queues; i++)
697                 priv->rx_queue[i] = NULL;
698
699         for (i = 0; i < priv->num_tx_queues; i++) {
700                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
701                                             GFP_KERNEL);
702                 if (!priv->tx_queue[i]) {
703                         err = -ENOMEM;
704                         goto tx_alloc_failed;
705                 }
706                 priv->tx_queue[i]->tx_skbuff = NULL;
707                 priv->tx_queue[i]->qindex = i;
708                 priv->tx_queue[i]->dev = dev;
709                 spin_lock_init(&(priv->tx_queue[i]->txlock));
710         }
711
712         for (i = 0; i < priv->num_rx_queues; i++) {
713                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
714                                             GFP_KERNEL);
715                 if (!priv->rx_queue[i]) {
716                         err = -ENOMEM;
717                         goto rx_alloc_failed;
718                 }
719                 priv->rx_queue[i]->rx_skbuff = NULL;
720                 priv->rx_queue[i]->qindex = i;
721                 priv->rx_queue[i]->dev = dev;
722                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
723         }
724
725
726         stash = of_get_property(np, "bd-stash", NULL);
727
728         if (stash) {
729                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
730                 priv->bd_stash_en = 1;
731         }
732
733         stash_len = of_get_property(np, "rx-stash-len", NULL);
734
735         if (stash_len)
736                 priv->rx_stash_size = *stash_len;
737
738         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
739
740         if (stash_idx)
741                 priv->rx_stash_index = *stash_idx;
742
743         if (stash_len || stash_idx)
744                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
745
746         mac_addr = of_get_mac_address(np);
747
748         if (mac_addr)
749                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
750
751         if (model && !strcasecmp(model, "TSEC"))
752                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
753                                      FSL_GIANFAR_DEV_HAS_COALESCE |
754                                      FSL_GIANFAR_DEV_HAS_RMON |
755                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
756
757         if (model && !strcasecmp(model, "eTSEC"))
758                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
759                                      FSL_GIANFAR_DEV_HAS_COALESCE |
760                                      FSL_GIANFAR_DEV_HAS_RMON |
761                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
762                                      FSL_GIANFAR_DEV_HAS_PADDING |
763                                      FSL_GIANFAR_DEV_HAS_CSUM |
764                                      FSL_GIANFAR_DEV_HAS_VLAN |
765                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
766                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
767                                      FSL_GIANFAR_DEV_HAS_TIMER;
768
769         ctype = of_get_property(np, "phy-connection-type", NULL);
770
771         /* We only care about rgmii-id.  The rest are autodetected */
772         if (ctype && !strcmp(ctype, "rgmii-id"))
773                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
774         else
775                 priv->interface = PHY_INTERFACE_MODE_MII;
776
777         if (of_get_property(np, "fsl,magic-packet", NULL))
778                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
779
780         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
781
782         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
783         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
784
785         return 0;
786
787 rx_alloc_failed:
788         free_rx_pointers(priv);
789 tx_alloc_failed:
790         free_tx_pointers(priv);
791 err_grp_init:
792         unmap_group_regs(priv);
793         free_gfar_dev(priv);
794         return err;
795 }
796
797 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
798                                struct ifreq *ifr, int cmd)
799 {
800         struct hwtstamp_config config;
801         struct gfar_private *priv = netdev_priv(netdev);
802
803         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
804                 return -EFAULT;
805
806         /* reserved for future extensions */
807         if (config.flags)
808                 return -EINVAL;
809
810         switch (config.tx_type) {
811         case HWTSTAMP_TX_OFF:
812                 priv->hwts_tx_en = 0;
813                 break;
814         case HWTSTAMP_TX_ON:
815                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
816                         return -ERANGE;
817                 priv->hwts_tx_en = 1;
818                 break;
819         default:
820                 return -ERANGE;
821         }
822
823         switch (config.rx_filter) {
824         case HWTSTAMP_FILTER_NONE:
825                 if (priv->hwts_rx_en) {
826                         stop_gfar(netdev);
827                         priv->hwts_rx_en = 0;
828                         startup_gfar(netdev);
829                 }
830                 break;
831         default:
832                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
833                         return -ERANGE;
834                 if (!priv->hwts_rx_en) {
835                         stop_gfar(netdev);
836                         priv->hwts_rx_en = 1;
837                         startup_gfar(netdev);
838                 }
839                 config.rx_filter = HWTSTAMP_FILTER_ALL;
840                 break;
841         }
842
843         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
844                 -EFAULT : 0;
845 }
846
847 /* Ioctl MII Interface */
848 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
849 {
850         struct gfar_private *priv = netdev_priv(dev);
851
852         if (!netif_running(dev))
853                 return -EINVAL;
854
855         if (cmd == SIOCSHWTSTAMP)
856                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
857
858         if (!priv->phydev)
859                 return -ENODEV;
860
861         return phy_mii_ioctl(priv->phydev, rq, cmd);
862 }
863
864 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
865 {
866         unsigned int new_bit_map = 0x0;
867         int mask = 0x1 << (max_qs - 1), i;
868
869         for (i = 0; i < max_qs; i++) {
870                 if (bit_map & mask)
871                         new_bit_map = new_bit_map + (1 << i);
872                 mask = mask >> 0x1;
873         }
874         return new_bit_map;
875 }
876
877 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
878                                    u32 class)
879 {
880         u32 rqfpr = FPR_FILER_MASK;
881         u32 rqfcr = 0x0;
882
883         rqfar--;
884         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
885         priv->ftp_rqfpr[rqfar] = rqfpr;
886         priv->ftp_rqfcr[rqfar] = rqfcr;
887         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888
889         rqfar--;
890         rqfcr = RQFCR_CMP_NOMATCH;
891         priv->ftp_rqfpr[rqfar] = rqfpr;
892         priv->ftp_rqfcr[rqfar] = rqfcr;
893         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894
895         rqfar--;
896         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
897         rqfpr = class;
898         priv->ftp_rqfcr[rqfar] = rqfcr;
899         priv->ftp_rqfpr[rqfar] = rqfpr;
900         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
901
902         rqfar--;
903         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
904         rqfpr = class;
905         priv->ftp_rqfcr[rqfar] = rqfcr;
906         priv->ftp_rqfpr[rqfar] = rqfpr;
907         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
908
909         return rqfar;
910 }
911
912 static void gfar_init_filer_table(struct gfar_private *priv)
913 {
914         int i = 0x0;
915         u32 rqfar = MAX_FILER_IDX;
916         u32 rqfcr = 0x0;
917         u32 rqfpr = FPR_FILER_MASK;
918
919         /* Default rule */
920         rqfcr = RQFCR_CMP_MATCH;
921         priv->ftp_rqfcr[rqfar] = rqfcr;
922         priv->ftp_rqfpr[rqfar] = rqfpr;
923         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
924
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
929         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
930         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
931
932         /* cur_filer_idx indicated the first non-masked rule */
933         priv->cur_filer_idx = rqfar;
934
935         /* Rest are masked rules */
936         rqfcr = RQFCR_CMP_NOMATCH;
937         for (i = 0; i < rqfar; i++) {
938                 priv->ftp_rqfcr[i] = rqfcr;
939                 priv->ftp_rqfpr[i] = rqfpr;
940                 gfar_write_filer(priv, i, rqfcr, rqfpr);
941         }
942 }
943
944 static void gfar_detect_errata(struct gfar_private *priv)
945 {
946         struct device *dev = &priv->ofdev->dev;
947         unsigned int pvr = mfspr(SPRN_PVR);
948         unsigned int svr = mfspr(SPRN_SVR);
949         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
950         unsigned int rev = svr & 0xffff;
951
952         /* MPC8313 Rev 2.0 and higher; All MPC837x */
953         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
954             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
955                 priv->errata |= GFAR_ERRATA_74;
956
957         /* MPC8313 and MPC837x all rev */
958         if ((pvr == 0x80850010 && mod == 0x80b0) ||
959             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
960                 priv->errata |= GFAR_ERRATA_76;
961
962         /* MPC8313 and MPC837x all rev */
963         if ((pvr == 0x80850010 && mod == 0x80b0) ||
964             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
965                 priv->errata |= GFAR_ERRATA_A002;
966
967         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
968         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
969             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
970                 priv->errata |= GFAR_ERRATA_12;
971
972         if (priv->errata)
973                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
974                          priv->errata);
975 }
976
977 /* Set up the ethernet device structure, private data,
978  * and anything else we need before we start
979  */
980 static int gfar_probe(struct platform_device *ofdev)
981 {
982         u32 tempval;
983         struct net_device *dev = NULL;
984         struct gfar_private *priv = NULL;
985         struct gfar __iomem *regs = NULL;
986         int err = 0, i, grp_idx = 0;
987         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
988         u32 isrg = 0;
989         u32 __iomem *baddr;
990
991         err = gfar_of_init(ofdev, &dev);
992
993         if (err)
994                 return err;
995
996         priv = netdev_priv(dev);
997         priv->ndev = dev;
998         priv->ofdev = ofdev;
999         priv->dev = &ofdev->dev;
1000         SET_NETDEV_DEV(dev, &ofdev->dev);
1001
1002         spin_lock_init(&priv->bflock);
1003         INIT_WORK(&priv->reset_task, gfar_reset_task);
1004
1005         platform_set_drvdata(ofdev, priv);
1006         regs = priv->gfargrp[0].regs;
1007
1008         gfar_detect_errata(priv);
1009
1010         /* Stop the DMA engine now, in case it was running before
1011          * (The firmware could have used it, and left it running).
1012          */
1013         gfar_halt(dev);
1014
1015         /* Reset MAC layer */
1016         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1017
1018         /* We need to delay at least 3 TX clocks */
1019         udelay(2);
1020
1021         tempval = 0;
1022         if (!priv->pause_aneg_en && priv->tx_pause_en)
1023                 tempval |= MACCFG1_TX_FLOW;
1024         if (!priv->pause_aneg_en && priv->rx_pause_en)
1025                 tempval |= MACCFG1_RX_FLOW;
1026         /* the soft reset bit is not self-resetting, so we need to
1027          * clear it before resuming normal operation
1028          */
1029         gfar_write(&regs->maccfg1, tempval);
1030
1031         /* Initialize MACCFG2. */
1032         tempval = MACCFG2_INIT_SETTINGS;
1033         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1034                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1035         gfar_write(&regs->maccfg2, tempval);
1036
1037         /* Initialize ECNTRL */
1038         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1039
1040         /* Set the dev->base_addr to the gfar reg region */
1041         dev->base_addr = (unsigned long) regs;
1042
1043         /* Fill in the dev structure */
1044         dev->watchdog_timeo = TX_TIMEOUT;
1045         dev->mtu = 1500;
1046         dev->netdev_ops = &gfar_netdev_ops;
1047         dev->ethtool_ops = &gfar_ethtool_ops;
1048
1049         /* Register for napi ...We are registering NAPI for each grp */
1050         if (priv->mode == SQ_SG_MODE)
1051                 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1052                                GFAR_DEV_WEIGHT);
1053         else
1054                 for (i = 0; i < priv->num_grps; i++)
1055                         netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1056                                        GFAR_DEV_WEIGHT);
1057
1058         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1059                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1060                                    NETIF_F_RXCSUM;
1061                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1062                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1063         }
1064
1065         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1066                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1067                                     NETIF_F_HW_VLAN_CTAG_RX;
1068                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1069         }
1070
1071         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1072                 priv->extended_hash = 1;
1073                 priv->hash_width = 9;
1074
1075                 priv->hash_regs[0] = &regs->igaddr0;
1076                 priv->hash_regs[1] = &regs->igaddr1;
1077                 priv->hash_regs[2] = &regs->igaddr2;
1078                 priv->hash_regs[3] = &regs->igaddr3;
1079                 priv->hash_regs[4] = &regs->igaddr4;
1080                 priv->hash_regs[5] = &regs->igaddr5;
1081                 priv->hash_regs[6] = &regs->igaddr6;
1082                 priv->hash_regs[7] = &regs->igaddr7;
1083                 priv->hash_regs[8] = &regs->gaddr0;
1084                 priv->hash_regs[9] = &regs->gaddr1;
1085                 priv->hash_regs[10] = &regs->gaddr2;
1086                 priv->hash_regs[11] = &regs->gaddr3;
1087                 priv->hash_regs[12] = &regs->gaddr4;
1088                 priv->hash_regs[13] = &regs->gaddr5;
1089                 priv->hash_regs[14] = &regs->gaddr6;
1090                 priv->hash_regs[15] = &regs->gaddr7;
1091
1092         } else {
1093                 priv->extended_hash = 0;
1094                 priv->hash_width = 8;
1095
1096                 priv->hash_regs[0] = &regs->gaddr0;
1097                 priv->hash_regs[1] = &regs->gaddr1;
1098                 priv->hash_regs[2] = &regs->gaddr2;
1099                 priv->hash_regs[3] = &regs->gaddr3;
1100                 priv->hash_regs[4] = &regs->gaddr4;
1101                 priv->hash_regs[5] = &regs->gaddr5;
1102                 priv->hash_regs[6] = &regs->gaddr6;
1103                 priv->hash_regs[7] = &regs->gaddr7;
1104         }
1105
1106         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1107                 priv->padding = DEFAULT_PADDING;
1108         else
1109                 priv->padding = 0;
1110
1111         if (dev->features & NETIF_F_IP_CSUM ||
1112             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1113                 dev->needed_headroom = GMAC_FCB_LEN;
1114
1115         /* Program the isrg regs only if number of grps > 1 */
1116         if (priv->num_grps > 1) {
1117                 baddr = &regs->isrg0;
1118                 for (i = 0; i < priv->num_grps; i++) {
1119                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1120                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1121                         gfar_write(baddr, isrg);
1122                         baddr++;
1123                         isrg = 0x0;
1124                 }
1125         }
1126
1127         /* Need to reverse the bit maps as  bit_map's MSB is q0
1128          * but, for_each_set_bit parses from right to left, which
1129          * basically reverses the queue numbers
1130          */
1131         for (i = 0; i< priv->num_grps; i++) {
1132                 priv->gfargrp[i].tx_bit_map =
1133                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1134                 priv->gfargrp[i].rx_bit_map =
1135                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1136         }
1137
1138         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1139          * also assign queues to groups
1140          */
1141         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1142                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1143
1144                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1145                                  priv->num_rx_queues) {
1146                         priv->gfargrp[grp_idx].num_rx_queues++;
1147                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1148                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1149                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1150                 }
1151                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1152
1153                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1154                                  priv->num_tx_queues) {
1155                         priv->gfargrp[grp_idx].num_tx_queues++;
1156                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1157                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1158                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1159                 }
1160                 priv->gfargrp[grp_idx].rstat = rstat;
1161                 priv->gfargrp[grp_idx].tstat = tstat;
1162                 rstat = tstat =0;
1163         }
1164
1165         gfar_write(&regs->rqueue, rqueue);
1166         gfar_write(&regs->tqueue, tqueue);
1167
1168         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1169
1170         /* Initializing some of the rx/tx queue level parameters */
1171         for (i = 0; i < priv->num_tx_queues; i++) {
1172                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1173                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1174                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1175                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1176         }
1177
1178         for (i = 0; i < priv->num_rx_queues; i++) {
1179                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1180                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1181                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1182         }
1183
1184         /* always enable rx filer */
1185         priv->rx_filer_enable = 1;
1186         /* Enable most messages by default */
1187         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1188         /* use pritority h/w tx queue scheduling for single queue devices */
1189         if (priv->num_tx_queues == 1)
1190                 priv->prio_sched_en = 1;
1191
1192         /* Carrier starts down, phylib will bring it up */
1193         netif_carrier_off(dev);
1194
1195         err = register_netdev(dev);
1196
1197         if (err) {
1198                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1199                 goto register_fail;
1200         }
1201
1202         device_init_wakeup(&dev->dev,
1203                            priv->device_flags &
1204                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1205
1206         /* fill out IRQ number and name fields */
1207         for (i = 0; i < priv->num_grps; i++) {
1208                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1209                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1210                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1211                                 dev->name, "_g", '0' + i, "_tx");
1212                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1213                                 dev->name, "_g", '0' + i, "_rx");
1214                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1215                                 dev->name, "_g", '0' + i, "_er");
1216                 } else
1217                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1218         }
1219
1220         /* Initialize the filer table */
1221         gfar_init_filer_table(priv);
1222
1223         /* Create all the sysfs files */
1224         gfar_init_sysfs(dev);
1225
1226         /* Print out the device info */
1227         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1228
1229         /* Even more device info helps when determining which kernel
1230          * provided which set of benchmarks.
1231          */
1232         netdev_info(dev, "Running with NAPI enabled\n");
1233         for (i = 0; i < priv->num_rx_queues; i++)
1234                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1235                             i, priv->rx_queue[i]->rx_ring_size);
1236         for (i = 0; i < priv->num_tx_queues; i++)
1237                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1238                             i, priv->tx_queue[i]->tx_ring_size);
1239
1240         return 0;
1241
1242 register_fail:
1243         unmap_group_regs(priv);
1244         free_tx_pointers(priv);
1245         free_rx_pointers(priv);
1246         if (priv->phy_node)
1247                 of_node_put(priv->phy_node);
1248         if (priv->tbi_node)
1249                 of_node_put(priv->tbi_node);
1250         free_gfar_dev(priv);
1251         return err;
1252 }
1253
1254 static int gfar_remove(struct platform_device *ofdev)
1255 {
1256         struct gfar_private *priv = platform_get_drvdata(ofdev);
1257
1258         if (priv->phy_node)
1259                 of_node_put(priv->phy_node);
1260         if (priv->tbi_node)
1261                 of_node_put(priv->tbi_node);
1262
1263         unregister_netdev(priv->ndev);
1264         unmap_group_regs(priv);
1265         free_gfar_dev(priv);
1266
1267         return 0;
1268 }
1269
1270 #ifdef CONFIG_PM
1271
1272 static int gfar_suspend(struct device *dev)
1273 {
1274         struct gfar_private *priv = dev_get_drvdata(dev);
1275         struct net_device *ndev = priv->ndev;
1276         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1277         unsigned long flags;
1278         u32 tempval;
1279
1280         int magic_packet = priv->wol_en &&
1281                            (priv->device_flags &
1282                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1283
1284         netif_device_detach(ndev);
1285
1286         if (netif_running(ndev)) {
1287
1288                 local_irq_save(flags);
1289                 lock_tx_qs(priv);
1290                 lock_rx_qs(priv);
1291
1292                 gfar_halt_nodisable(ndev);
1293
1294                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1295                 tempval = gfar_read(&regs->maccfg1);
1296
1297                 tempval &= ~MACCFG1_TX_EN;
1298
1299                 if (!magic_packet)
1300                         tempval &= ~MACCFG1_RX_EN;
1301
1302                 gfar_write(&regs->maccfg1, tempval);
1303
1304                 unlock_rx_qs(priv);
1305                 unlock_tx_qs(priv);
1306                 local_irq_restore(flags);
1307
1308                 disable_napi(priv);
1309
1310                 if (magic_packet) {
1311                         /* Enable interrupt on Magic Packet */
1312                         gfar_write(&regs->imask, IMASK_MAG);
1313
1314                         /* Enable Magic Packet mode */
1315                         tempval = gfar_read(&regs->maccfg2);
1316                         tempval |= MACCFG2_MPEN;
1317                         gfar_write(&regs->maccfg2, tempval);
1318                 } else {
1319                         phy_stop(priv->phydev);
1320                 }
1321         }
1322
1323         return 0;
1324 }
1325
1326 static int gfar_resume(struct device *dev)
1327 {
1328         struct gfar_private *priv = dev_get_drvdata(dev);
1329         struct net_device *ndev = priv->ndev;
1330         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1331         unsigned long flags;
1332         u32 tempval;
1333         int magic_packet = priv->wol_en &&
1334                            (priv->device_flags &
1335                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1336
1337         if (!netif_running(ndev)) {
1338                 netif_device_attach(ndev);
1339                 return 0;
1340         }
1341
1342         if (!magic_packet && priv->phydev)
1343                 phy_start(priv->phydev);
1344
1345         /* Disable Magic Packet mode, in case something
1346          * else woke us up.
1347          */
1348         local_irq_save(flags);
1349         lock_tx_qs(priv);
1350         lock_rx_qs(priv);
1351
1352         tempval = gfar_read(&regs->maccfg2);
1353         tempval &= ~MACCFG2_MPEN;
1354         gfar_write(&regs->maccfg2, tempval);
1355
1356         gfar_start(ndev);
1357
1358         unlock_rx_qs(priv);
1359         unlock_tx_qs(priv);
1360         local_irq_restore(flags);
1361
1362         netif_device_attach(ndev);
1363
1364         enable_napi(priv);
1365
1366         return 0;
1367 }
1368
1369 static int gfar_restore(struct device *dev)
1370 {
1371         struct gfar_private *priv = dev_get_drvdata(dev);
1372         struct net_device *ndev = priv->ndev;
1373
1374         if (!netif_running(ndev)) {
1375                 netif_device_attach(ndev);
1376
1377                 return 0;
1378         }
1379
1380         if (gfar_init_bds(ndev)) {
1381                 free_skb_resources(priv);
1382                 return -ENOMEM;
1383         }
1384
1385         init_registers(ndev);
1386         gfar_set_mac_address(ndev);
1387         gfar_init_mac(ndev);
1388         gfar_start(ndev);
1389
1390         priv->oldlink = 0;
1391         priv->oldspeed = 0;
1392         priv->oldduplex = -1;
1393
1394         if (priv->phydev)
1395                 phy_start(priv->phydev);
1396
1397         netif_device_attach(ndev);
1398         enable_napi(priv);
1399
1400         return 0;
1401 }
1402
1403 static struct dev_pm_ops gfar_pm_ops = {
1404         .suspend = gfar_suspend,
1405         .resume = gfar_resume,
1406         .freeze = gfar_suspend,
1407         .thaw = gfar_resume,
1408         .restore = gfar_restore,
1409 };
1410
1411 #define GFAR_PM_OPS (&gfar_pm_ops)
1412
1413 #else
1414
1415 #define GFAR_PM_OPS NULL
1416
1417 #endif
1418
1419 /* Reads the controller's registers to determine what interface
1420  * connects it to the PHY.
1421  */
1422 static phy_interface_t gfar_get_interface(struct net_device *dev)
1423 {
1424         struct gfar_private *priv = netdev_priv(dev);
1425         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1426         u32 ecntrl;
1427
1428         ecntrl = gfar_read(&regs->ecntrl);
1429
1430         if (ecntrl & ECNTRL_SGMII_MODE)
1431                 return PHY_INTERFACE_MODE_SGMII;
1432
1433         if (ecntrl & ECNTRL_TBI_MODE) {
1434                 if (ecntrl & ECNTRL_REDUCED_MODE)
1435                         return PHY_INTERFACE_MODE_RTBI;
1436                 else
1437                         return PHY_INTERFACE_MODE_TBI;
1438         }
1439
1440         if (ecntrl & ECNTRL_REDUCED_MODE) {
1441                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1442                         return PHY_INTERFACE_MODE_RMII;
1443                 }
1444                 else {
1445                         phy_interface_t interface = priv->interface;
1446
1447                         /* This isn't autodetected right now, so it must
1448                          * be set by the device tree or platform code.
1449                          */
1450                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1451                                 return PHY_INTERFACE_MODE_RGMII_ID;
1452
1453                         return PHY_INTERFACE_MODE_RGMII;
1454                 }
1455         }
1456
1457         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1458                 return PHY_INTERFACE_MODE_GMII;
1459
1460         return PHY_INTERFACE_MODE_MII;
1461 }
1462
1463
1464 /* Initializes driver's PHY state, and attaches to the PHY.
1465  * Returns 0 on success.
1466  */
1467 static int init_phy(struct net_device *dev)
1468 {
1469         struct gfar_private *priv = netdev_priv(dev);
1470         uint gigabit_support =
1471                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1472                 GFAR_SUPPORTED_GBIT : 0;
1473         phy_interface_t interface;
1474
1475         priv->oldlink = 0;
1476         priv->oldspeed = 0;
1477         priv->oldduplex = -1;
1478
1479         interface = gfar_get_interface(dev);
1480
1481         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1482                                       interface);
1483         if (!priv->phydev)
1484                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1485                                                          interface);
1486         if (!priv->phydev) {
1487                 dev_err(&dev->dev, "could not attach to PHY\n");
1488                 return -ENODEV;
1489         }
1490
1491         if (interface == PHY_INTERFACE_MODE_SGMII)
1492                 gfar_configure_serdes(dev);
1493
1494         /* Remove any features not supported by the controller */
1495         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1496         priv->phydev->advertising = priv->phydev->supported;
1497
1498         return 0;
1499 }
1500
1501 /* Initialize TBI PHY interface for communicating with the
1502  * SERDES lynx PHY on the chip.  We communicate with this PHY
1503  * through the MDIO bus on each controller, treating it as a
1504  * "normal" PHY at the address found in the TBIPA register.  We assume
1505  * that the TBIPA register is valid.  Either the MDIO bus code will set
1506  * it to a value that doesn't conflict with other PHYs on the bus, or the
1507  * value doesn't matter, as there are no other PHYs on the bus.
1508  */
1509 static void gfar_configure_serdes(struct net_device *dev)
1510 {
1511         struct gfar_private *priv = netdev_priv(dev);
1512         struct phy_device *tbiphy;
1513
1514         if (!priv->tbi_node) {
1515                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1516                                     "device tree specify a tbi-handle\n");
1517                 return;
1518         }
1519
1520         tbiphy = of_phy_find_device(priv->tbi_node);
1521         if (!tbiphy) {
1522                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1523                 return;
1524         }
1525
1526         /* If the link is already up, we must already be ok, and don't need to
1527          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1528          * everything for us?  Resetting it takes the link down and requires
1529          * several seconds for it to come back.
1530          */
1531         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1532                 return;
1533
1534         /* Single clk mode, mii mode off(for serdes communication) */
1535         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1536
1537         phy_write(tbiphy, MII_ADVERTISE,
1538                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1539                   ADVERTISE_1000XPSE_ASYM);
1540
1541         phy_write(tbiphy, MII_BMCR,
1542                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1543                   BMCR_SPEED1000);
1544 }
1545
1546 static void init_registers(struct net_device *dev)
1547 {
1548         struct gfar_private *priv = netdev_priv(dev);
1549         struct gfar __iomem *regs = NULL;
1550         int i;
1551
1552         for (i = 0; i < priv->num_grps; i++) {
1553                 regs = priv->gfargrp[i].regs;
1554                 /* Clear IEVENT */
1555                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1556
1557                 /* Initialize IMASK */
1558                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1559         }
1560
1561         regs = priv->gfargrp[0].regs;
1562         /* Init hash registers to zero */
1563         gfar_write(&regs->igaddr0, 0);
1564         gfar_write(&regs->igaddr1, 0);
1565         gfar_write(&regs->igaddr2, 0);
1566         gfar_write(&regs->igaddr3, 0);
1567         gfar_write(&regs->igaddr4, 0);
1568         gfar_write(&regs->igaddr5, 0);
1569         gfar_write(&regs->igaddr6, 0);
1570         gfar_write(&regs->igaddr7, 0);
1571
1572         gfar_write(&regs->gaddr0, 0);
1573         gfar_write(&regs->gaddr1, 0);
1574         gfar_write(&regs->gaddr2, 0);
1575         gfar_write(&regs->gaddr3, 0);
1576         gfar_write(&regs->gaddr4, 0);
1577         gfar_write(&regs->gaddr5, 0);
1578         gfar_write(&regs->gaddr6, 0);
1579         gfar_write(&regs->gaddr7, 0);
1580
1581         /* Zero out the rmon mib registers if it has them */
1582         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1583                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1584
1585                 /* Mask off the CAM interrupts */
1586                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1587                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1588         }
1589
1590         /* Initialize the max receive buffer length */
1591         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1592
1593         /* Initialize the Minimum Frame Length Register */
1594         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1595 }
1596
1597 static int __gfar_is_rx_idle(struct gfar_private *priv)
1598 {
1599         u32 res;
1600
1601         /* Normaly TSEC should not hang on GRS commands, so we should
1602          * actually wait for IEVENT_GRSC flag.
1603          */
1604         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1605                 return 0;
1606
1607         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1608          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1609          * and the Rx can be safely reset.
1610          */
1611         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1612         res &= 0x7f807f80;
1613         if ((res & 0xffff) == (res >> 16))
1614                 return 1;
1615
1616         return 0;
1617 }
1618
1619 /* Halt the receive and transmit queues */
1620 static void gfar_halt_nodisable(struct net_device *dev)
1621 {
1622         struct gfar_private *priv = netdev_priv(dev);
1623         struct gfar __iomem *regs = NULL;
1624         u32 tempval;
1625         int i;
1626
1627         for (i = 0; i < priv->num_grps; i++) {
1628                 regs = priv->gfargrp[i].regs;
1629                 /* Mask all interrupts */
1630                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1631
1632                 /* Clear all interrupts */
1633                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1634         }
1635
1636         regs = priv->gfargrp[0].regs;
1637         /* Stop the DMA, and wait for it to stop */
1638         tempval = gfar_read(&regs->dmactrl);
1639         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1640             (DMACTRL_GRS | DMACTRL_GTS)) {
1641                 int ret;
1642
1643                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1644                 gfar_write(&regs->dmactrl, tempval);
1645
1646                 do {
1647                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1648                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1649                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1650                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1651                                 ret = __gfar_is_rx_idle(priv);
1652                 } while (!ret);
1653         }
1654 }
1655
1656 /* Halt the receive and transmit queues */
1657 void gfar_halt(struct net_device *dev)
1658 {
1659         struct gfar_private *priv = netdev_priv(dev);
1660         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1661         u32 tempval;
1662
1663         gfar_halt_nodisable(dev);
1664
1665         /* Disable Rx and Tx */
1666         tempval = gfar_read(&regs->maccfg1);
1667         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1668         gfar_write(&regs->maccfg1, tempval);
1669 }
1670
1671 static void free_grp_irqs(struct gfar_priv_grp *grp)
1672 {
1673         free_irq(gfar_irq(grp, TX)->irq, grp);
1674         free_irq(gfar_irq(grp, RX)->irq, grp);
1675         free_irq(gfar_irq(grp, ER)->irq, grp);
1676 }
1677
1678 void stop_gfar(struct net_device *dev)
1679 {
1680         struct gfar_private *priv = netdev_priv(dev);
1681         unsigned long flags;
1682         int i;
1683
1684         phy_stop(priv->phydev);
1685
1686
1687         /* Lock it down */
1688         local_irq_save(flags);
1689         lock_tx_qs(priv);
1690         lock_rx_qs(priv);
1691
1692         gfar_halt(dev);
1693
1694         unlock_rx_qs(priv);
1695         unlock_tx_qs(priv);
1696         local_irq_restore(flags);
1697
1698         /* Free the IRQs */
1699         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1700                 for (i = 0; i < priv->num_grps; i++)
1701                         free_grp_irqs(&priv->gfargrp[i]);
1702         } else {
1703                 for (i = 0; i < priv->num_grps; i++)
1704                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1705                                  &priv->gfargrp[i]);
1706         }
1707
1708         free_skb_resources(priv);
1709 }
1710
1711 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1712 {
1713         struct txbd8 *txbdp;
1714         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1715         int i, j;
1716
1717         txbdp = tx_queue->tx_bd_base;
1718
1719         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1720                 if (!tx_queue->tx_skbuff[i])
1721                         continue;
1722
1723                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1724                                  txbdp->length, DMA_TO_DEVICE);
1725                 txbdp->lstatus = 0;
1726                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1727                      j++) {
1728                         txbdp++;
1729                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1730                                        txbdp->length, DMA_TO_DEVICE);
1731                 }
1732                 txbdp++;
1733                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1734                 tx_queue->tx_skbuff[i] = NULL;
1735         }
1736         kfree(tx_queue->tx_skbuff);
1737         tx_queue->tx_skbuff = NULL;
1738 }
1739
1740 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1741 {
1742         struct rxbd8 *rxbdp;
1743         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1744         int i;
1745
1746         rxbdp = rx_queue->rx_bd_base;
1747
1748         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1749                 if (rx_queue->rx_skbuff[i]) {
1750                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1751                                          priv->rx_buffer_size,
1752                                          DMA_FROM_DEVICE);
1753                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1754                         rx_queue->rx_skbuff[i] = NULL;
1755                 }
1756                 rxbdp->lstatus = 0;
1757                 rxbdp->bufPtr = 0;
1758                 rxbdp++;
1759         }
1760         kfree(rx_queue->rx_skbuff);
1761         rx_queue->rx_skbuff = NULL;
1762 }
1763
1764 /* If there are any tx skbs or rx skbs still around, free them.
1765  * Then free tx_skbuff and rx_skbuff
1766  */
1767 static void free_skb_resources(struct gfar_private *priv)
1768 {
1769         struct gfar_priv_tx_q *tx_queue = NULL;
1770         struct gfar_priv_rx_q *rx_queue = NULL;
1771         int i;
1772
1773         /* Go through all the buffer descriptors and free their data buffers */
1774         for (i = 0; i < priv->num_tx_queues; i++) {
1775                 struct netdev_queue *txq;
1776
1777                 tx_queue = priv->tx_queue[i];
1778                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1779                 if (tx_queue->tx_skbuff)
1780                         free_skb_tx_queue(tx_queue);
1781                 netdev_tx_reset_queue(txq);
1782         }
1783
1784         for (i = 0; i < priv->num_rx_queues; i++) {
1785                 rx_queue = priv->rx_queue[i];
1786                 if (rx_queue->rx_skbuff)
1787                         free_skb_rx_queue(rx_queue);
1788         }
1789
1790         dma_free_coherent(priv->dev,
1791                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1792                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1793                           priv->tx_queue[0]->tx_bd_base,
1794                           priv->tx_queue[0]->tx_bd_dma_base);
1795 }
1796
1797 void gfar_start(struct net_device *dev)
1798 {
1799         struct gfar_private *priv = netdev_priv(dev);
1800         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1801         u32 tempval;
1802         int i = 0;
1803
1804         /* Enable Rx and Tx in MACCFG1 */
1805         tempval = gfar_read(&regs->maccfg1);
1806         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1807         gfar_write(&regs->maccfg1, tempval);
1808
1809         /* Initialize DMACTRL to have WWR and WOP */
1810         tempval = gfar_read(&regs->dmactrl);
1811         tempval |= DMACTRL_INIT_SETTINGS;
1812         gfar_write(&regs->dmactrl, tempval);
1813
1814         /* Make sure we aren't stopped */
1815         tempval = gfar_read(&regs->dmactrl);
1816         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1817         gfar_write(&regs->dmactrl, tempval);
1818
1819         for (i = 0; i < priv->num_grps; i++) {
1820                 regs = priv->gfargrp[i].regs;
1821                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1822                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1823                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1824                 /* Unmask the interrupts we look for */
1825                 gfar_write(&regs->imask, IMASK_DEFAULT);
1826         }
1827
1828         dev->trans_start = jiffies; /* prevent tx timeout */
1829 }
1830
1831 static void gfar_configure_coalescing(struct gfar_private *priv,
1832                                unsigned long tx_mask, unsigned long rx_mask)
1833 {
1834         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1835         u32 __iomem *baddr;
1836
1837         if (priv->mode == MQ_MG_MODE) {
1838                 int i = 0;
1839
1840                 baddr = &regs->txic0;
1841                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1842                         gfar_write(baddr + i, 0);
1843                         if (likely(priv->tx_queue[i]->txcoalescing))
1844                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1845                 }
1846
1847                 baddr = &regs->rxic0;
1848                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1849                         gfar_write(baddr + i, 0);
1850                         if (likely(priv->rx_queue[i]->rxcoalescing))
1851                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1852                 }
1853         } else {
1854                 /* Backward compatible case -- even if we enable
1855                  * multiple queues, there's only single reg to program
1856                  */
1857                 gfar_write(&regs->txic, 0);
1858                 if (likely(priv->tx_queue[0]->txcoalescing))
1859                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1860
1861                 gfar_write(&regs->rxic, 0);
1862                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1863                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1864         }
1865 }
1866
1867 void gfar_configure_coalescing_all(struct gfar_private *priv)
1868 {
1869         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1870 }
1871
1872 static int register_grp_irqs(struct gfar_priv_grp *grp)
1873 {
1874         struct gfar_private *priv = grp->priv;
1875         struct net_device *dev = priv->ndev;
1876         int err;
1877
1878         /* If the device has multiple interrupts, register for
1879          * them.  Otherwise, only register for the one
1880          */
1881         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1882                 /* Install our interrupt handlers for Error,
1883                  * Transmit, and Receive
1884                  */
1885                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1886                                   gfar_irq(grp, ER)->name, grp);
1887                 if (err < 0) {
1888                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1889                                   gfar_irq(grp, ER)->irq);
1890
1891                         goto err_irq_fail;
1892                 }
1893                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1894                                   gfar_irq(grp, TX)->name, grp);
1895                 if (err < 0) {
1896                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1897                                   gfar_irq(grp, TX)->irq);
1898                         goto tx_irq_fail;
1899                 }
1900                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1901                                   gfar_irq(grp, RX)->name, grp);
1902                 if (err < 0) {
1903                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1904                                   gfar_irq(grp, RX)->irq);
1905                         goto rx_irq_fail;
1906                 }
1907         } else {
1908                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1909                                   gfar_irq(grp, TX)->name, grp);
1910                 if (err < 0) {
1911                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1912                                   gfar_irq(grp, TX)->irq);
1913                         goto err_irq_fail;
1914                 }
1915         }
1916
1917         return 0;
1918
1919 rx_irq_fail:
1920         free_irq(gfar_irq(grp, TX)->irq, grp);
1921 tx_irq_fail:
1922         free_irq(gfar_irq(grp, ER)->irq, grp);
1923 err_irq_fail:
1924         return err;
1925
1926 }
1927
1928 /* Bring the controller up and running */
1929 int startup_gfar(struct net_device *ndev)
1930 {
1931         struct gfar_private *priv = netdev_priv(ndev);
1932         struct gfar __iomem *regs = NULL;
1933         int err, i, j;
1934
1935         for (i = 0; i < priv->num_grps; i++) {
1936                 regs= priv->gfargrp[i].regs;
1937                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1938         }
1939
1940         regs= priv->gfargrp[0].regs;
1941         err = gfar_alloc_skb_resources(ndev);
1942         if (err)
1943                 return err;
1944
1945         gfar_init_mac(ndev);
1946
1947         for (i = 0; i < priv->num_grps; i++) {
1948                 err = register_grp_irqs(&priv->gfargrp[i]);
1949                 if (err) {
1950                         for (j = 0; j < i; j++)
1951                                 free_grp_irqs(&priv->gfargrp[j]);
1952                         goto irq_fail;
1953                 }
1954         }
1955
1956         /* Start the controller */
1957         gfar_start(ndev);
1958
1959         phy_start(priv->phydev);
1960
1961         gfar_configure_coalescing_all(priv);
1962
1963         return 0;
1964
1965 irq_fail:
1966         free_skb_resources(priv);
1967         return err;
1968 }
1969
1970 /* Called when something needs to use the ethernet device
1971  * Returns 0 for success.
1972  */
1973 static int gfar_enet_open(struct net_device *dev)
1974 {
1975         struct gfar_private *priv = netdev_priv(dev);
1976         int err;
1977
1978         enable_napi(priv);
1979
1980         /* Initialize a bunch of registers */
1981         init_registers(dev);
1982
1983         gfar_set_mac_address(dev);
1984
1985         err = init_phy(dev);
1986
1987         if (err) {
1988                 disable_napi(priv);
1989                 return err;
1990         }
1991
1992         err = startup_gfar(dev);
1993         if (err) {
1994                 disable_napi(priv);
1995                 return err;
1996         }
1997
1998         netif_tx_start_all_queues(dev);
1999
2000         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2001
2002         return err;
2003 }
2004
2005 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2006 {
2007         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2008
2009         memset(fcb, 0, GMAC_FCB_LEN);
2010
2011         return fcb;
2012 }
2013
2014 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2015                                     int fcb_length)
2016 {
2017         /* If we're here, it's a IP packet with a TCP or UDP
2018          * payload.  We set it to checksum, using a pseudo-header
2019          * we provide
2020          */
2021         u8 flags = TXFCB_DEFAULT;
2022
2023         /* Tell the controller what the protocol is
2024          * And provide the already calculated phcs
2025          */
2026         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2027                 flags |= TXFCB_UDP;
2028                 fcb->phcs = udp_hdr(skb)->check;
2029         } else
2030                 fcb->phcs = tcp_hdr(skb)->check;
2031
2032         /* l3os is the distance between the start of the
2033          * frame (skb->data) and the start of the IP hdr.
2034          * l4os is the distance between the start of the
2035          * l3 hdr and the l4 hdr
2036          */
2037         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2038         fcb->l4os = skb_network_header_len(skb);
2039
2040         fcb->flags = flags;
2041 }
2042
2043 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2044 {
2045         fcb->flags |= TXFCB_VLN;
2046         fcb->vlctl = vlan_tx_tag_get(skb);
2047 }
2048
2049 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2050                                       struct txbd8 *base, int ring_size)
2051 {
2052         struct txbd8 *new_bd = bdp + stride;
2053
2054         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2055 }
2056
2057 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2058                                       int ring_size)
2059 {
2060         return skip_txbd(bdp, 1, base, ring_size);
2061 }
2062
2063 /* eTSEC12: csum generation not supported for some fcb offsets */
2064 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2065                                        unsigned long fcb_addr)
2066 {
2067         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2068                (fcb_addr % 0x20) > 0x18);
2069 }
2070
2071 /* eTSEC76: csum generation for frames larger than 2500 may
2072  * cause excess delays before start of transmission
2073  */
2074 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2075                                        unsigned int len)
2076 {
2077         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2078                (len > 2500));
2079 }
2080
2081 /* This is called by the kernel when a frame is ready for transmission.
2082  * It is pointed to by the dev->hard_start_xmit function pointer
2083  */
2084 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2085 {
2086         struct gfar_private *priv = netdev_priv(dev);
2087         struct gfar_priv_tx_q *tx_queue = NULL;
2088         struct netdev_queue *txq;
2089         struct gfar __iomem *regs = NULL;
2090         struct txfcb *fcb = NULL;
2091         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2092         u32 lstatus;
2093         int i, rq = 0;
2094         int do_tstamp, do_csum, do_vlan;
2095         u32 bufaddr;
2096         unsigned long flags;
2097         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2098
2099         rq = skb->queue_mapping;
2100         tx_queue = priv->tx_queue[rq];
2101         txq = netdev_get_tx_queue(dev, rq);
2102         base = tx_queue->tx_bd_base;
2103         regs = tx_queue->grp->regs;
2104
2105         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2106         do_vlan = vlan_tx_tag_present(skb);
2107         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2108                     priv->hwts_tx_en;
2109
2110         if (do_csum || do_vlan)
2111                 fcb_len = GMAC_FCB_LEN;
2112
2113         /* check if time stamp should be generated */
2114         if (unlikely(do_tstamp))
2115                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2116
2117         /* make space for additional header when fcb is needed */
2118         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2119                 struct sk_buff *skb_new;
2120
2121                 skb_new = skb_realloc_headroom(skb, fcb_len);
2122                 if (!skb_new) {
2123                         dev->stats.tx_errors++;
2124                         kfree_skb(skb);
2125                         return NETDEV_TX_OK;
2126                 }
2127
2128                 if (skb->sk)
2129                         skb_set_owner_w(skb_new, skb->sk);
2130                 consume_skb(skb);
2131                 skb = skb_new;
2132         }
2133
2134         /* total number of fragments in the SKB */
2135         nr_frags = skb_shinfo(skb)->nr_frags;
2136
2137         /* calculate the required number of TxBDs for this skb */
2138         if (unlikely(do_tstamp))
2139                 nr_txbds = nr_frags + 2;
2140         else
2141                 nr_txbds = nr_frags + 1;
2142
2143         /* check if there is space to queue this packet */
2144         if (nr_txbds > tx_queue->num_txbdfree) {
2145                 /* no space, stop the queue */
2146                 netif_tx_stop_queue(txq);
2147                 dev->stats.tx_fifo_errors++;
2148                 return NETDEV_TX_BUSY;
2149         }
2150
2151         /* Update transmit stats */
2152         bytes_sent = skb->len;
2153         tx_queue->stats.tx_bytes += bytes_sent;
2154         /* keep Tx bytes on wire for BQL accounting */
2155         GFAR_CB(skb)->bytes_sent = bytes_sent;
2156         tx_queue->stats.tx_packets++;
2157
2158         txbdp = txbdp_start = tx_queue->cur_tx;
2159         lstatus = txbdp->lstatus;
2160
2161         /* Time stamp insertion requires one additional TxBD */
2162         if (unlikely(do_tstamp))
2163                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2164                                                  tx_queue->tx_ring_size);
2165
2166         if (nr_frags == 0) {
2167                 if (unlikely(do_tstamp))
2168                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2169                                                           TXBD_INTERRUPT);
2170                 else
2171                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2172         } else {
2173                 /* Place the fragment addresses and lengths into the TxBDs */
2174                 for (i = 0; i < nr_frags; i++) {
2175                         unsigned int frag_len;
2176                         /* Point at the next BD, wrapping as needed */
2177                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2178
2179                         frag_len = skb_shinfo(skb)->frags[i].size;
2180
2181                         lstatus = txbdp->lstatus | frag_len |
2182                                   BD_LFLAG(TXBD_READY);
2183
2184                         /* Handle the last BD specially */
2185                         if (i == nr_frags - 1)
2186                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2187
2188                         bufaddr = skb_frag_dma_map(priv->dev,
2189                                                    &skb_shinfo(skb)->frags[i],
2190                                                    0,
2191                                                    frag_len,
2192                                                    DMA_TO_DEVICE);
2193
2194                         /* set the TxBD length and buffer pointer */
2195                         txbdp->bufPtr = bufaddr;
2196                         txbdp->lstatus = lstatus;
2197                 }
2198
2199                 lstatus = txbdp_start->lstatus;
2200         }
2201
2202         /* Add TxPAL between FCB and frame if required */
2203         if (unlikely(do_tstamp)) {
2204                 skb_push(skb, GMAC_TXPAL_LEN);
2205                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2206         }
2207
2208         /* Add TxFCB if required */
2209         if (fcb_len) {
2210                 fcb = gfar_add_fcb(skb);
2211                 lstatus |= BD_LFLAG(TXBD_TOE);
2212         }
2213
2214         /* Set up checksumming */
2215         if (do_csum) {
2216                 gfar_tx_checksum(skb, fcb, fcb_len);
2217
2218                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2219                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2220                         __skb_pull(skb, GMAC_FCB_LEN);
2221                         skb_checksum_help(skb);
2222                         if (do_vlan || do_tstamp) {
2223                                 /* put back a new fcb for vlan/tstamp TOE */
2224                                 fcb = gfar_add_fcb(skb);
2225                         } else {
2226                                 /* Tx TOE not used */
2227                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2228                                 fcb = NULL;
2229                         }
2230                 }
2231         }
2232
2233         if (do_vlan)
2234                 gfar_tx_vlan(skb, fcb);
2235
2236         /* Setup tx hardware time stamping if requested */
2237         if (unlikely(do_tstamp)) {
2238                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2239                 fcb->ptp = 1;
2240         }
2241
2242         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2243                                              skb_headlen(skb), DMA_TO_DEVICE);
2244
2245         /* If time stamping is requested one additional TxBD must be set up. The
2246          * first TxBD points to the FCB and must have a data length of
2247          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2248          * the full frame length.
2249          */
2250         if (unlikely(do_tstamp)) {
2251                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2252                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2253                                          (skb_headlen(skb) - fcb_len);
2254                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2255         } else {
2256                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2257         }
2258
2259         netdev_tx_sent_queue(txq, bytes_sent);
2260
2261         /* We can work in parallel with gfar_clean_tx_ring(), except
2262          * when modifying num_txbdfree. Note that we didn't grab the lock
2263          * when we were reading the num_txbdfree and checking for available
2264          * space, that's because outside of this function it can only grow,
2265          * and once we've got needed space, it cannot suddenly disappear.
2266          *
2267          * The lock also protects us from gfar_error(), which can modify
2268          * regs->tstat and thus retrigger the transfers, which is why we
2269          * also must grab the lock before setting ready bit for the first
2270          * to be transmitted BD.
2271          */
2272         spin_lock_irqsave(&tx_queue->txlock, flags);
2273
2274         /* The powerpc-specific eieio() is used, as wmb() has too strong
2275          * semantics (it requires synchronization between cacheable and
2276          * uncacheable mappings, which eieio doesn't provide and which we
2277          * don't need), thus requiring a more expensive sync instruction.  At
2278          * some point, the set of architecture-independent barrier functions
2279          * should be expanded to include weaker barriers.
2280          */
2281         eieio();
2282
2283         txbdp_start->lstatus = lstatus;
2284
2285         eieio(); /* force lstatus write before tx_skbuff */
2286
2287         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2288
2289         /* Update the current skb pointer to the next entry we will use
2290          * (wrapping if necessary)
2291          */
2292         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2293                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2294
2295         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2296
2297         /* reduce TxBD free count */
2298         tx_queue->num_txbdfree -= (nr_txbds);
2299
2300         /* If the next BD still needs to be cleaned up, then the bds
2301          * are full.  We need to tell the kernel to stop sending us stuff.
2302          */
2303         if (!tx_queue->num_txbdfree) {
2304                 netif_tx_stop_queue(txq);
2305
2306                 dev->stats.tx_fifo_errors++;
2307         }
2308
2309         /* Tell the DMA to go go go */
2310         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2311
2312         /* Unlock priv */
2313         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2314
2315         return NETDEV_TX_OK;
2316 }
2317
2318 /* Stops the kernel queue, and halts the controller */
2319 static int gfar_close(struct net_device *dev)
2320 {
2321         struct gfar_private *priv = netdev_priv(dev);
2322
2323         disable_napi(priv);
2324
2325         cancel_work_sync(&priv->reset_task);
2326         stop_gfar(dev);
2327
2328         /* Disconnect from the PHY */
2329         phy_disconnect(priv->phydev);
2330         priv->phydev = NULL;
2331
2332         netif_tx_stop_all_queues(dev);
2333
2334         return 0;
2335 }
2336
2337 /* Changes the mac address if the controller is not running. */
2338 static int gfar_set_mac_address(struct net_device *dev)
2339 {
2340         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2341
2342         return 0;
2343 }
2344
2345 /* Check if rx parser should be activated */
2346 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2347 {
2348         struct gfar __iomem *regs;
2349         u32 tempval;
2350
2351         regs = priv->gfargrp[0].regs;
2352
2353         tempval = gfar_read(&regs->rctrl);
2354         /* If parse is no longer required, then disable parser */
2355         if (tempval & RCTRL_REQ_PARSER) {
2356                 tempval |= RCTRL_PRSDEP_INIT;
2357                 priv->uses_rxfcb = 1;
2358         } else {
2359                 tempval &= ~RCTRL_PRSDEP_INIT;
2360                 priv->uses_rxfcb = 0;
2361         }
2362         gfar_write(&regs->rctrl, tempval);
2363 }
2364
2365 /* Enables and disables VLAN insertion/extraction */
2366 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2367 {
2368         struct gfar_private *priv = netdev_priv(dev);
2369         struct gfar __iomem *regs = NULL;
2370         unsigned long flags;
2371         u32 tempval;
2372
2373         regs = priv->gfargrp[0].regs;
2374         local_irq_save(flags);
2375         lock_rx_qs(priv);
2376
2377         if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2378                 /* Enable VLAN tag insertion */
2379                 tempval = gfar_read(&regs->tctrl);
2380                 tempval |= TCTRL_VLINS;
2381                 gfar_write(&regs->tctrl, tempval);
2382         } else {
2383                 /* Disable VLAN tag insertion */
2384                 tempval = gfar_read(&regs->tctrl);
2385                 tempval &= ~TCTRL_VLINS;
2386                 gfar_write(&regs->tctrl, tempval);
2387         }
2388
2389         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2390                 /* Enable VLAN tag extraction */
2391                 tempval = gfar_read(&regs->rctrl);
2392                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2393                 gfar_write(&regs->rctrl, tempval);
2394                 priv->uses_rxfcb = 1;
2395         } else {
2396                 /* Disable VLAN tag extraction */
2397                 tempval = gfar_read(&regs->rctrl);
2398                 tempval &= ~RCTRL_VLEX;
2399                 gfar_write(&regs->rctrl, tempval);
2400
2401                 gfar_check_rx_parser_mode(priv);
2402         }
2403
2404         gfar_change_mtu(dev, dev->mtu);
2405
2406         unlock_rx_qs(priv);
2407         local_irq_restore(flags);
2408 }
2409
2410 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2411 {
2412         int tempsize, tempval;
2413         struct gfar_private *priv = netdev_priv(dev);
2414         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2415         int oldsize = priv->rx_buffer_size;
2416         int frame_size = new_mtu + ETH_HLEN;
2417
2418         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2419                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2420                 return -EINVAL;
2421         }
2422
2423         if (priv->uses_rxfcb)
2424                 frame_size += GMAC_FCB_LEN;
2425
2426         frame_size += priv->padding;
2427
2428         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2429                    INCREMENTAL_BUFFER_SIZE;
2430
2431         /* Only stop and start the controller if it isn't already
2432          * stopped, and we changed something
2433          */
2434         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2435                 stop_gfar(dev);
2436
2437         priv->rx_buffer_size = tempsize;
2438
2439         dev->mtu = new_mtu;
2440
2441         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2442         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2443
2444         /* If the mtu is larger than the max size for standard
2445          * ethernet frames (ie, a jumbo frame), then set maccfg2
2446          * to allow huge frames, and to check the length
2447          */
2448         tempval = gfar_read(&regs->maccfg2);
2449
2450         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2451             gfar_has_errata(priv, GFAR_ERRATA_74))
2452                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2453         else
2454                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2455
2456         gfar_write(&regs->maccfg2, tempval);
2457
2458         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2459                 startup_gfar(dev);
2460
2461         return 0;
2462 }
2463
2464 /* gfar_reset_task gets scheduled when a packet has not been
2465  * transmitted after a set amount of time.
2466  * For now, assume that clearing out all the structures, and
2467  * starting over will fix the problem.
2468  */
2469 static void gfar_reset_task(struct work_struct *work)
2470 {
2471         struct gfar_private *priv = container_of(work, struct gfar_private,
2472                                                  reset_task);
2473         struct net_device *dev = priv->ndev;
2474
2475         if (dev->flags & IFF_UP) {
2476                 netif_tx_stop_all_queues(dev);
2477                 stop_gfar(dev);
2478                 startup_gfar(dev);
2479                 netif_tx_start_all_queues(dev);
2480         }
2481
2482         netif_tx_schedule_all(dev);
2483 }
2484
2485 static void gfar_timeout(struct net_device *dev)
2486 {
2487         struct gfar_private *priv = netdev_priv(dev);
2488
2489         dev->stats.tx_errors++;
2490         schedule_work(&priv->reset_task);
2491 }
2492
2493 static void gfar_align_skb(struct sk_buff *skb)
2494 {
2495         /* We need the data buffer to be aligned properly.  We will reserve
2496          * as many bytes as needed to align the data properly
2497          */
2498         skb_reserve(skb, RXBUF_ALIGNMENT -
2499                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2500 }
2501
2502 /* Interrupt Handler for Transmit complete */
2503 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2504 {
2505         struct net_device *dev = tx_queue->dev;
2506         struct netdev_queue *txq;
2507         struct gfar_private *priv = netdev_priv(dev);
2508         struct txbd8 *bdp, *next = NULL;
2509         struct txbd8 *lbdp = NULL;
2510         struct txbd8 *base = tx_queue->tx_bd_base;
2511         struct sk_buff *skb;
2512         int skb_dirtytx;
2513         int tx_ring_size = tx_queue->tx_ring_size;
2514         int frags = 0, nr_txbds = 0;
2515         int i;
2516         int howmany = 0;
2517         int tqi = tx_queue->qindex;
2518         unsigned int bytes_sent = 0;
2519         u32 lstatus;
2520         size_t buflen;
2521
2522         txq = netdev_get_tx_queue(dev, tqi);
2523         bdp = tx_queue->dirty_tx;
2524         skb_dirtytx = tx_queue->skb_dirtytx;
2525
2526         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2527                 unsigned long flags;
2528
2529                 frags = skb_shinfo(skb)->nr_frags;
2530
2531                 /* When time stamping, one additional TxBD must be freed.
2532                  * Also, we need to dma_unmap_single() the TxPAL.
2533                  */
2534                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2535                         nr_txbds = frags + 2;
2536                 else
2537                         nr_txbds = frags + 1;
2538
2539                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2540
2541                 lstatus = lbdp->lstatus;
2542
2543                 /* Only clean completed frames */
2544                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2545                     (lstatus & BD_LENGTH_MASK))
2546                         break;
2547
2548                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2549                         next = next_txbd(bdp, base, tx_ring_size);
2550                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2551                 } else
2552                         buflen = bdp->length;
2553
2554                 dma_unmap_single(priv->dev, bdp->bufPtr,
2555                                  buflen, DMA_TO_DEVICE);
2556
2557                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2558                         struct skb_shared_hwtstamps shhwtstamps;
2559                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2560
2561                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2562                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2563                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2564                         skb_tstamp_tx(skb, &shhwtstamps);
2565                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2566                         bdp = next;
2567                 }
2568
2569                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2570                 bdp = next_txbd(bdp, base, tx_ring_size);
2571
2572                 for (i = 0; i < frags; i++) {
2573                         dma_unmap_page(priv->dev, bdp->bufPtr,
2574                                        bdp->length, DMA_TO_DEVICE);
2575                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2576                         bdp = next_txbd(bdp, base, tx_ring_size);
2577                 }
2578
2579                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2580
2581                 dev_kfree_skb_any(skb);
2582
2583                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2584
2585                 skb_dirtytx = (skb_dirtytx + 1) &
2586                               TX_RING_MOD_MASK(tx_ring_size);
2587
2588                 howmany++;
2589                 spin_lock_irqsave(&tx_queue->txlock, flags);
2590                 tx_queue->num_txbdfree += nr_txbds;
2591                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2592         }
2593
2594         /* If we freed a buffer, we can restart transmission, if necessary */
2595         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2596                 netif_wake_subqueue(dev, tqi);
2597
2598         /* Update dirty indicators */
2599         tx_queue->skb_dirtytx = skb_dirtytx;
2600         tx_queue->dirty_tx = bdp;
2601
2602         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2603 }
2604
2605 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2606 {
2607         unsigned long flags;
2608
2609         spin_lock_irqsave(&gfargrp->grplock, flags);
2610         if (napi_schedule_prep(&gfargrp->napi)) {
2611                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2612                 __napi_schedule(&gfargrp->napi);
2613         } else {
2614                 /* Clear IEVENT, so interrupts aren't called again
2615                  * because of the packets that have already arrived.
2616                  */
2617                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2618         }
2619         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2620
2621 }
2622
2623 /* Interrupt Handler for Transmit complete */
2624 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2625 {
2626         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2627         return IRQ_HANDLED;
2628 }
2629
2630 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2631                            struct sk_buff *skb)
2632 {
2633         struct net_device *dev = rx_queue->dev;
2634         struct gfar_private *priv = netdev_priv(dev);
2635         dma_addr_t buf;
2636
2637         buf = dma_map_single(priv->dev, skb->data,
2638                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2639         gfar_init_rxbdp(rx_queue, bdp, buf);
2640 }
2641
2642 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2643 {
2644         struct gfar_private *priv = netdev_priv(dev);
2645         struct sk_buff *skb;
2646
2647         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2648         if (!skb)
2649                 return NULL;
2650
2651         gfar_align_skb(skb);
2652
2653         return skb;
2654 }
2655
2656 struct sk_buff *gfar_new_skb(struct net_device *dev)
2657 {
2658         return gfar_alloc_skb(dev);
2659 }
2660
2661 static inline void count_errors(unsigned short status, struct net_device *dev)
2662 {
2663         struct gfar_private *priv = netdev_priv(dev);
2664         struct net_device_stats *stats = &dev->stats;
2665         struct gfar_extra_stats *estats = &priv->extra_stats;
2666
2667         /* If the packet was truncated, none of the other errors matter */
2668         if (status & RXBD_TRUNCATED) {
2669                 stats->rx_length_errors++;
2670
2671                 atomic64_inc(&estats->rx_trunc);
2672
2673                 return;
2674         }
2675         /* Count the errors, if there were any */
2676         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2677                 stats->rx_length_errors++;
2678
2679                 if (status & RXBD_LARGE)
2680                         atomic64_inc(&estats->rx_large);
2681                 else
2682                         atomic64_inc(&estats->rx_short);
2683         }
2684         if (status & RXBD_NONOCTET) {
2685                 stats->rx_frame_errors++;
2686                 atomic64_inc(&estats->rx_nonoctet);
2687         }
2688         if (status & RXBD_CRCERR) {
2689                 atomic64_inc(&estats->rx_crcerr);
2690                 stats->rx_crc_errors++;
2691         }
2692         if (status & RXBD_OVERRUN) {
2693                 atomic64_inc(&estats->rx_overrun);
2694                 stats->rx_crc_errors++;
2695         }
2696 }
2697
2698 irqreturn_t gfar_receive(int irq, void *grp_id)
2699 {
2700         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2701         return IRQ_HANDLED;
2702 }
2703
2704 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2705 {
2706         /* If valid headers were found, and valid sums
2707          * were verified, then we tell the kernel that no
2708          * checksumming is necessary.  Otherwise, it is [FIXME]
2709          */
2710         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2711                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2712         else
2713                 skb_checksum_none_assert(skb);
2714 }
2715
2716
2717 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2718 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2719                                int amount_pull, struct napi_struct *napi)
2720 {
2721         struct gfar_private *priv = netdev_priv(dev);
2722         struct rxfcb *fcb = NULL;
2723
2724         /* fcb is at the beginning if exists */
2725         fcb = (struct rxfcb *)skb->data;
2726
2727         /* Remove the FCB from the skb
2728          * Remove the padded bytes, if there are any
2729          */
2730         if (amount_pull) {
2731                 skb_record_rx_queue(skb, fcb->rq);
2732                 skb_pull(skb, amount_pull);
2733         }
2734
2735         /* Get receive timestamp from the skb */
2736         if (priv->hwts_rx_en) {
2737                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2738                 u64 *ns = (u64 *) skb->data;
2739
2740                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2741                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2742         }
2743
2744         if (priv->padding)
2745                 skb_pull(skb, priv->padding);
2746
2747         if (dev->features & NETIF_F_RXCSUM)
2748                 gfar_rx_checksum(skb, fcb);
2749
2750         /* Tell the skb what kind of packet this is */
2751         skb->protocol = eth_type_trans(skb, dev);
2752
2753         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2754          * Even if vlan rx accel is disabled, on some chips
2755          * RXFCB_VLN is pseudo randomly set.
2756          */
2757         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2758             fcb->flags & RXFCB_VLN)
2759                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2760
2761         /* Send the packet up the stack */
2762         napi_gro_receive(napi, skb);
2763
2764 }
2765
2766 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2767  * until the budget/quota has been reached. Returns the number
2768  * of frames handled
2769  */
2770 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2771 {
2772         struct net_device *dev = rx_queue->dev;
2773         struct rxbd8 *bdp, *base;
2774         struct sk_buff *skb;
2775         int pkt_len;
2776         int amount_pull;
2777         int howmany = 0;
2778         struct gfar_private *priv = netdev_priv(dev);
2779
2780         /* Get the first full descriptor */
2781         bdp = rx_queue->cur_rx;
2782         base = rx_queue->rx_bd_base;
2783
2784         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2785
2786         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2787                 struct sk_buff *newskb;
2788
2789                 rmb();
2790
2791                 /* Add another skb for the future */
2792                 newskb = gfar_new_skb(dev);
2793
2794                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2795
2796                 dma_unmap_single(priv->dev, bdp->bufPtr,
2797                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2798
2799                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2800                              bdp->length > priv->rx_buffer_size))
2801                         bdp->status = RXBD_LARGE;
2802
2803                 /* We drop the frame if we failed to allocate a new buffer */
2804                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2805                              bdp->status & RXBD_ERR)) {
2806                         count_errors(bdp->status, dev);
2807
2808                         if (unlikely(!newskb))
2809                                 newskb = skb;
2810                         else if (skb)
2811                                 dev_kfree_skb(skb);
2812                 } else {
2813                         /* Increment the number of packets */
2814                         rx_queue->stats.rx_packets++;
2815                         howmany++;
2816
2817                         if (likely(skb)) {
2818                                 pkt_len = bdp->length - ETH_FCS_LEN;
2819                                 /* Remove the FCS from the packet length */
2820                                 skb_put(skb, pkt_len);
2821                                 rx_queue->stats.rx_bytes += pkt_len;
2822                                 skb_record_rx_queue(skb, rx_queue->qindex);
2823                                 gfar_process_frame(dev, skb, amount_pull,
2824                                                    &rx_queue->grp->napi);
2825
2826                         } else {
2827                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2828                                 rx_queue->stats.rx_dropped++;
2829                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2830                         }
2831
2832                 }
2833
2834                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2835
2836                 /* Setup the new bdp */
2837                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2838
2839                 /* Update to the next pointer */
2840                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2841
2842                 /* update to point at the next skb */
2843                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2844                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2845         }
2846
2847         /* Update the current rxbd pointer to be the next one */
2848         rx_queue->cur_rx = bdp;
2849
2850         return howmany;
2851 }
2852
2853 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2854 {
2855         struct gfar_priv_grp *gfargrp =
2856                 container_of(napi, struct gfar_priv_grp, napi);
2857         struct gfar __iomem *regs = gfargrp->regs;
2858         struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2859         struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2860         int work_done = 0;
2861
2862         /* Clear IEVENT, so interrupts aren't called again
2863          * because of the packets that have already arrived
2864          */
2865         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2866
2867         /* run Tx cleanup to completion */
2868         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2869                 gfar_clean_tx_ring(tx_queue);
2870
2871         work_done = gfar_clean_rx_ring(rx_queue, budget);
2872
2873         if (work_done < budget) {
2874                 napi_complete(napi);
2875                 /* Clear the halt bit in RSTAT */
2876                 gfar_write(&regs->rstat, gfargrp->rstat);
2877
2878                 gfar_write(&regs->imask, IMASK_DEFAULT);
2879
2880                 /* If we are coalescing interrupts, update the timer
2881                  * Otherwise, clear it
2882                  */
2883                 gfar_write(&regs->txic, 0);
2884                 if (likely(tx_queue->txcoalescing))
2885                         gfar_write(&regs->txic, tx_queue->txic);
2886
2887                 gfar_write(&regs->rxic, 0);
2888                 if (unlikely(rx_queue->rxcoalescing))
2889                         gfar_write(&regs->rxic, rx_queue->rxic);
2890         }
2891
2892         return work_done;
2893 }
2894
2895 static int gfar_poll(struct napi_struct *napi, int budget)
2896 {
2897         struct gfar_priv_grp *gfargrp =
2898                 container_of(napi, struct gfar_priv_grp, napi);
2899         struct gfar_private *priv = gfargrp->priv;
2900         struct gfar __iomem *regs = gfargrp->regs;
2901         struct gfar_priv_tx_q *tx_queue = NULL;
2902         struct gfar_priv_rx_q *rx_queue = NULL;
2903         int work_done = 0, work_done_per_q = 0;
2904         int i, budget_per_q = 0;
2905         int has_tx_work;
2906         unsigned long rstat_rxf;
2907         int num_act_queues;
2908
2909         /* Clear IEVENT, so interrupts aren't called again
2910          * because of the packets that have already arrived
2911          */
2912         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2913
2914         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2915
2916         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2917         if (num_act_queues)
2918                 budget_per_q = budget/num_act_queues;
2919
2920         while (1) {
2921                 has_tx_work = 0;
2922                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2923                         tx_queue = priv->tx_queue[i];
2924                         /* run Tx cleanup to completion */
2925                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2926                                 gfar_clean_tx_ring(tx_queue);
2927                                 has_tx_work = 1;
2928                         }
2929                 }
2930
2931                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2932                         /* skip queue if not active */
2933                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2934                                 continue;
2935
2936                         rx_queue = priv->rx_queue[i];
2937                         work_done_per_q =
2938                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2939                         work_done += work_done_per_q;
2940
2941                         /* finished processing this queue */
2942                         if (work_done_per_q < budget_per_q) {
2943                                 /* clear active queue hw indication */
2944                                 gfar_write(&regs->rstat,
2945                                            RSTAT_CLEAR_RXF0 >> i);
2946                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2947                                 num_act_queues--;
2948
2949                                 if (!num_act_queues)
2950                                         break;
2951                                 /* recompute budget per Rx queue */
2952                                 budget_per_q =
2953                                         (budget - work_done) / num_act_queues;
2954                         }
2955                 }
2956
2957                 if (work_done >= budget)
2958                         break;
2959
2960                 if (!num_act_queues && !has_tx_work) {
2961
2962                         napi_complete(napi);
2963
2964                         /* Clear the halt bit in RSTAT */
2965                         gfar_write(&regs->rstat, gfargrp->rstat);
2966
2967                         gfar_write(&regs->imask, IMASK_DEFAULT);
2968
2969                         /* If we are coalescing interrupts, update the timer
2970                          * Otherwise, clear it
2971                          */
2972                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2973                                                   gfargrp->tx_bit_map);
2974                         break;
2975                 }
2976         }
2977
2978         return work_done;
2979 }
2980
2981 #ifdef CONFIG_NET_POLL_CONTROLLER
2982 /* Polling 'interrupt' - used by things like netconsole to send skbs
2983  * without having to re-enable interrupts. It's not called while
2984  * the interrupt routine is executing.
2985  */
2986 static void gfar_netpoll(struct net_device *dev)
2987 {
2988         struct gfar_private *priv = netdev_priv(dev);
2989         int i;
2990
2991         /* If the device has multiple interrupts, run tx/rx */
2992         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2993                 for (i = 0; i < priv->num_grps; i++) {
2994                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2995
2996                         disable_irq(gfar_irq(grp, TX)->irq);
2997                         disable_irq(gfar_irq(grp, RX)->irq);
2998                         disable_irq(gfar_irq(grp, ER)->irq);
2999                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3000                         enable_irq(gfar_irq(grp, ER)->irq);
3001                         enable_irq(gfar_irq(grp, RX)->irq);
3002                         enable_irq(gfar_irq(grp, TX)->irq);
3003                 }
3004         } else {
3005                 for (i = 0; i < priv->num_grps; i++) {
3006                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3007
3008                         disable_irq(gfar_irq(grp, TX)->irq);
3009                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3010                         enable_irq(gfar_irq(grp, TX)->irq);
3011                 }
3012         }
3013 }
3014 #endif
3015
3016 /* The interrupt handler for devices with one interrupt */
3017 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3018 {
3019         struct gfar_priv_grp *gfargrp = grp_id;
3020
3021         /* Save ievent for future reference */
3022         u32 events = gfar_read(&gfargrp->regs->ievent);
3023
3024         /* Check for reception */
3025         if (events & IEVENT_RX_MASK)
3026                 gfar_receive(irq, grp_id);
3027
3028         /* Check for transmit completion */
3029         if (events & IEVENT_TX_MASK)
3030                 gfar_transmit(irq, grp_id);
3031
3032         /* Check for errors */
3033         if (events & IEVENT_ERR_MASK)
3034                 gfar_error(irq, grp_id);
3035
3036         return IRQ_HANDLED;
3037 }
3038
3039 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3040 {
3041         struct phy_device *phydev = priv->phydev;
3042         u32 val = 0;
3043
3044         if (!phydev->duplex)
3045                 return val;
3046
3047         if (!priv->pause_aneg_en) {
3048                 if (priv->tx_pause_en)
3049                         val |= MACCFG1_TX_FLOW;
3050                 if (priv->rx_pause_en)
3051                         val |= MACCFG1_RX_FLOW;
3052         } else {
3053                 u16 lcl_adv, rmt_adv;
3054                 u8 flowctrl;
3055                 /* get link partner capabilities */
3056                 rmt_adv = 0;
3057                 if (phydev->pause)
3058                         rmt_adv = LPA_PAUSE_CAP;
3059                 if (phydev->asym_pause)
3060                         rmt_adv |= LPA_PAUSE_ASYM;
3061
3062                 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3063
3064                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3065                 if (flowctrl & FLOW_CTRL_TX)
3066                         val |= MACCFG1_TX_FLOW;
3067                 if (flowctrl & FLOW_CTRL_RX)
3068                         val |= MACCFG1_RX_FLOW;
3069         }
3070
3071         return val;
3072 }
3073
3074 /* Called every time the controller might need to be made
3075  * aware of new link state.  The PHY code conveys this
3076  * information through variables in the phydev structure, and this
3077  * function converts those variables into the appropriate
3078  * register values, and can bring down the device if needed.
3079  */
3080 static void adjust_link(struct net_device *dev)
3081 {
3082         struct gfar_private *priv = netdev_priv(dev);
3083         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3084         unsigned long flags;
3085         struct phy_device *phydev = priv->phydev;
3086         int new_state = 0;
3087
3088         local_irq_save(flags);
3089         lock_tx_qs(priv);
3090
3091         if (phydev->link) {
3092                 u32 tempval1 = gfar_read(&regs->maccfg1);
3093                 u32 tempval = gfar_read(&regs->maccfg2);
3094                 u32 ecntrl = gfar_read(&regs->ecntrl);
3095
3096                 /* Now we make sure that we can be in full duplex mode.
3097                  * If not, we operate in half-duplex mode.
3098                  */
3099                 if (phydev->duplex != priv->oldduplex) {
3100                         new_state = 1;
3101                         if (!(phydev->duplex))
3102                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3103                         else
3104                                 tempval |= MACCFG2_FULL_DUPLEX;
3105
3106                         priv->oldduplex = phydev->duplex;
3107                 }
3108
3109                 if (phydev->speed != priv->oldspeed) {
3110                         new_state = 1;
3111                         switch (phydev->speed) {
3112                         case 1000:
3113                                 tempval =
3114                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3115
3116                                 ecntrl &= ~(ECNTRL_R100);
3117                                 break;
3118                         case 100:
3119                         case 10:
3120                                 tempval =
3121                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3122
3123                                 /* Reduced mode distinguishes
3124                                  * between 10 and 100
3125                                  */
3126                                 if (phydev->speed == SPEED_100)
3127                                         ecntrl |= ECNTRL_R100;
3128                                 else
3129                                         ecntrl &= ~(ECNTRL_R100);
3130                                 break;
3131                         default:
3132                                 netif_warn(priv, link, dev,
3133                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3134                                            phydev->speed);
3135                                 break;
3136                         }
3137
3138                         priv->oldspeed = phydev->speed;
3139                 }
3140
3141                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3142                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3143
3144                 gfar_write(&regs->maccfg1, tempval1);
3145                 gfar_write(&regs->maccfg2, tempval);
3146                 gfar_write(&regs->ecntrl, ecntrl);
3147
3148                 if (!priv->oldlink) {
3149                         new_state = 1;
3150                         priv->oldlink = 1;
3151                 }
3152         } else if (priv->oldlink) {
3153                 new_state = 1;
3154                 priv->oldlink = 0;
3155                 priv->oldspeed = 0;
3156                 priv->oldduplex = -1;
3157         }
3158
3159         if (new_state && netif_msg_link(priv))
3160                 phy_print_status(phydev);
3161         unlock_tx_qs(priv);
3162         local_irq_restore(flags);
3163 }
3164
3165 /* Update the hash table based on the current list of multicast
3166  * addresses we subscribe to.  Also, change the promiscuity of
3167  * the device based on the flags (this function is called
3168  * whenever dev->flags is changed
3169  */
3170 static void gfar_set_multi(struct net_device *dev)
3171 {
3172         struct netdev_hw_addr *ha;
3173         struct gfar_private *priv = netdev_priv(dev);
3174         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3175         u32 tempval;
3176
3177         if (dev->flags & IFF_PROMISC) {
3178                 /* Set RCTRL to PROM */
3179                 tempval = gfar_read(&regs->rctrl);
3180                 tempval |= RCTRL_PROM;
3181                 gfar_write(&regs->rctrl, tempval);
3182         } else {
3183                 /* Set RCTRL to not PROM */
3184                 tempval = gfar_read(&regs->rctrl);
3185                 tempval &= ~(RCTRL_PROM);
3186                 gfar_write(&regs->rctrl, tempval);
3187         }
3188
3189         if (dev->flags & IFF_ALLMULTI) {
3190                 /* Set the hash to rx all multicast frames */
3191                 gfar_write(&regs->igaddr0, 0xffffffff);
3192                 gfar_write(&regs->igaddr1, 0xffffffff);
3193                 gfar_write(&regs->igaddr2, 0xffffffff);
3194                 gfar_write(&regs->igaddr3, 0xffffffff);
3195                 gfar_write(&regs->igaddr4, 0xffffffff);
3196                 gfar_write(&regs->igaddr5, 0xffffffff);
3197                 gfar_write(&regs->igaddr6, 0xffffffff);
3198                 gfar_write(&regs->igaddr7, 0xffffffff);
3199                 gfar_write(&regs->gaddr0, 0xffffffff);
3200                 gfar_write(&regs->gaddr1, 0xffffffff);
3201                 gfar_write(&regs->gaddr2, 0xffffffff);
3202                 gfar_write(&regs->gaddr3, 0xffffffff);
3203                 gfar_write(&regs->gaddr4, 0xffffffff);
3204                 gfar_write(&regs->gaddr5, 0xffffffff);
3205                 gfar_write(&regs->gaddr6, 0xffffffff);
3206                 gfar_write(&regs->gaddr7, 0xffffffff);
3207         } else {
3208                 int em_num;
3209                 int idx;
3210
3211                 /* zero out the hash */
3212                 gfar_write(&regs->igaddr0, 0x0);
3213                 gfar_write(&regs->igaddr1, 0x0);
3214                 gfar_write(&regs->igaddr2, 0x0);
3215                 gfar_write(&regs->igaddr3, 0x0);
3216                 gfar_write(&regs->igaddr4, 0x0);
3217                 gfar_write(&regs->igaddr5, 0x0);
3218                 gfar_write(&regs->igaddr6, 0x0);
3219                 gfar_write(&regs->igaddr7, 0x0);
3220                 gfar_write(&regs->gaddr0, 0x0);
3221                 gfar_write(&regs->gaddr1, 0x0);
3222                 gfar_write(&regs->gaddr2, 0x0);
3223                 gfar_write(&regs->gaddr3, 0x0);
3224                 gfar_write(&regs->gaddr4, 0x0);
3225                 gfar_write(&regs->gaddr5, 0x0);
3226                 gfar_write(&regs->gaddr6, 0x0);
3227                 gfar_write(&regs->gaddr7, 0x0);
3228
3229                 /* If we have extended hash tables, we need to
3230                  * clear the exact match registers to prepare for
3231                  * setting them
3232                  */
3233                 if (priv->extended_hash) {
3234                         em_num = GFAR_EM_NUM + 1;
3235                         gfar_clear_exact_match(dev);
3236                         idx = 1;
3237                 } else {
3238                         idx = 0;
3239                         em_num = 0;
3240                 }
3241
3242                 if (netdev_mc_empty(dev))
3243                         return;
3244
3245                 /* Parse the list, and set the appropriate bits */
3246                 netdev_for_each_mc_addr(ha, dev) {
3247                         if (idx < em_num) {
3248                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3249                                 idx++;
3250                         } else
3251                                 gfar_set_hash_for_addr(dev, ha->addr);
3252                 }
3253         }
3254 }
3255
3256
3257 /* Clears each of the exact match registers to zero, so they
3258  * don't interfere with normal reception
3259  */
3260 static void gfar_clear_exact_match(struct net_device *dev)
3261 {
3262         int idx;
3263         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3264
3265         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3266                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3267 }
3268
3269 /* Set the appropriate hash bit for the given addr */
3270 /* The algorithm works like so:
3271  * 1) Take the Destination Address (ie the multicast address), and
3272  * do a CRC on it (little endian), and reverse the bits of the
3273  * result.
3274  * 2) Use the 8 most significant bits as a hash into a 256-entry
3275  * table.  The table is controlled through 8 32-bit registers:
3276  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3277  * gaddr7.  This means that the 3 most significant bits in the
3278  * hash index which gaddr register to use, and the 5 other bits
3279  * indicate which bit (assuming an IBM numbering scheme, which
3280  * for PowerPC (tm) is usually the case) in the register holds
3281  * the entry.
3282  */
3283 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3284 {
3285         u32 tempval;
3286         struct gfar_private *priv = netdev_priv(dev);
3287         u32 result = ether_crc(ETH_ALEN, addr);
3288         int width = priv->hash_width;
3289         u8 whichbit = (result >> (32 - width)) & 0x1f;
3290         u8 whichreg = result >> (32 - width + 5);
3291         u32 value = (1 << (31-whichbit));
3292
3293         tempval = gfar_read(priv->hash_regs[whichreg]);
3294         tempval |= value;
3295         gfar_write(priv->hash_regs[whichreg], tempval);
3296 }
3297
3298
3299 /* There are multiple MAC Address register pairs on some controllers
3300  * This function sets the numth pair to a given address
3301  */
3302 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3303                                   const u8 *addr)
3304 {
3305         struct gfar_private *priv = netdev_priv(dev);
3306         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3307         int idx;
3308         char tmpbuf[ETH_ALEN];
3309         u32 tempval;
3310         u32 __iomem *macptr = &regs->macstnaddr1;
3311
3312         macptr += num*2;
3313
3314         /* Now copy it into the mac registers backwards, cuz
3315          * little endian is silly
3316          */
3317         for (idx = 0; idx < ETH_ALEN; idx++)
3318                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3319
3320         gfar_write(macptr, *((u32 *) (tmpbuf)));
3321
3322         tempval = *((u32 *) (tmpbuf + 4));
3323
3324         gfar_write(macptr+1, tempval);
3325 }
3326
3327 /* GFAR error interrupt handler */
3328 static irqreturn_t gfar_error(int irq, void *grp_id)
3329 {
3330         struct gfar_priv_grp *gfargrp = grp_id;
3331         struct gfar __iomem *regs = gfargrp->regs;
3332         struct gfar_private *priv= gfargrp->priv;
3333         struct net_device *dev = priv->ndev;
3334
3335         /* Save ievent for future reference */
3336         u32 events = gfar_read(&regs->ievent);
3337
3338         /* Clear IEVENT */
3339         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3340
3341         /* Magic Packet is not an error. */
3342         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3343             (events & IEVENT_MAG))
3344                 events &= ~IEVENT_MAG;
3345
3346         /* Hmm... */
3347         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3348                 netdev_dbg(dev,
3349                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3350                            events, gfar_read(&regs->imask));
3351
3352         /* Update the error counters */
3353         if (events & IEVENT_TXE) {
3354                 dev->stats.tx_errors++;
3355
3356                 if (events & IEVENT_LC)
3357                         dev->stats.tx_window_errors++;
3358                 if (events & IEVENT_CRL)
3359                         dev->stats.tx_aborted_errors++;
3360                 if (events & IEVENT_XFUN) {
3361                         unsigned long flags;
3362
3363                         netif_dbg(priv, tx_err, dev,
3364                                   "TX FIFO underrun, packet dropped\n");
3365                         dev->stats.tx_dropped++;
3366                         atomic64_inc(&priv->extra_stats.tx_underrun);
3367
3368                         local_irq_save(flags);
3369                         lock_tx_qs(priv);
3370
3371                         /* Reactivate the Tx Queues */
3372                         gfar_write(&regs->tstat, gfargrp->tstat);
3373
3374                         unlock_tx_qs(priv);
3375                         local_irq_restore(flags);
3376                 }
3377                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3378         }
3379         if (events & IEVENT_BSY) {
3380                 dev->stats.rx_errors++;
3381                 atomic64_inc(&priv->extra_stats.rx_bsy);
3382
3383                 gfar_receive(irq, grp_id);
3384
3385                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3386                           gfar_read(&regs->rstat));
3387         }
3388         if (events & IEVENT_BABR) {
3389                 dev->stats.rx_errors++;
3390                 atomic64_inc(&priv->extra_stats.rx_babr);
3391
3392                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3393         }
3394         if (events & IEVENT_EBERR) {
3395                 atomic64_inc(&priv->extra_stats.eberr);
3396                 netif_dbg(priv, rx_err, dev, "bus error\n");
3397         }
3398         if (events & IEVENT_RXC)
3399                 netif_dbg(priv, rx_status, dev, "control frame\n");
3400
3401         if (events & IEVENT_BABT) {
3402                 atomic64_inc(&priv->extra_stats.tx_babt);
3403                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3404         }
3405         return IRQ_HANDLED;
3406 }
3407
3408 static struct of_device_id gfar_match[] =
3409 {
3410         {
3411                 .type = "network",
3412                 .compatible = "gianfar",
3413         },
3414         {
3415                 .compatible = "fsl,etsec2",
3416         },
3417         {},
3418 };
3419 MODULE_DEVICE_TABLE(of, gfar_match);
3420
3421 /* Structure for a device driver */
3422 static struct platform_driver gfar_driver = {
3423         .driver = {
3424                 .name = "fsl-gianfar",
3425                 .owner = THIS_MODULE,
3426                 .pm = GFAR_PM_OPS,
3427                 .of_match_table = gfar_match,
3428         },
3429         .probe = gfar_probe,
3430         .remove = gfar_remove,
3431 };
3432
3433 module_platform_driver(gfar_driver);