]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
drivers: usb: removed assignment of 0 to static variables
[karo-tx-linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43                          int size, dma_addr_t dma, int frag_end,
44                          int buf_num, enum hns_desc_type type, int mtu)
45 {
46         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48         struct iphdr *iphdr;
49         struct ipv6hdr *ipv6hdr;
50         struct sk_buff *skb;
51         int skb_tmp_len;
52         __be16 protocol;
53         u8 bn_pid = 0;
54         u8 rrcfv = 0;
55         u8 ip_offset = 0;
56         u8 tvsvsn = 0;
57         u16 mss = 0;
58         u8 l4_len = 0;
59         u16 paylen = 0;
60
61         desc_cb->priv = priv;
62         desc_cb->length = size;
63         desc_cb->dma = dma;
64         desc_cb->type = type;
65
66         desc->addr = cpu_to_le64(dma);
67         desc->tx.send_size = cpu_to_le16((u16)size);
68
69         /*config bd buffer end */
70         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73         if (type == DESC_TYPE_SKB) {
74                 skb = (struct sk_buff *)priv;
75
76                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
77                         skb_reset_mac_len(skb);
78                         protocol = skb->protocol;
79                         ip_offset = ETH_HLEN;
80
81                         if (protocol == htons(ETH_P_8021Q)) {
82                                 ip_offset += VLAN_HLEN;
83                                 protocol = vlan_get_protocol(skb);
84                                 skb->protocol = protocol;
85                         }
86
87                         if (skb->protocol == htons(ETH_P_IP)) {
88                                 iphdr = ip_hdr(skb);
89                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
90                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
91
92                                 /* check for tcp/udp header */
93                                 if (iphdr->protocol == IPPROTO_TCP) {
94                                         hnae_set_bit(tvsvsn,
95                                                      HNSV2_TXD_TSE_B, 1);
96                                         skb_tmp_len = SKB_TMP_LEN(skb);
97                                         l4_len = tcp_hdrlen(skb);
98                                         mss = mtu - skb_tmp_len - ETH_FCS_LEN;
99                                         paylen = skb->len - skb_tmp_len;
100                                 }
101                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
102                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
103                                 ipv6hdr = ipv6_hdr(skb);
104                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
105
106                                 /* check for tcp/udp header */
107                                 if (ipv6hdr->nexthdr == IPPROTO_TCP) {
108                                         hnae_set_bit(tvsvsn,
109                                                      HNSV2_TXD_TSE_B, 1);
110                                         skb_tmp_len = SKB_TMP_LEN(skb);
111                                         l4_len = tcp_hdrlen(skb);
112                                         mss = mtu - skb_tmp_len - ETH_FCS_LEN;
113                                         paylen = skb->len - skb_tmp_len;
114                                 }
115                         }
116                         desc->tx.ip_offset = ip_offset;
117                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
118                         desc->tx.mss = cpu_to_le16(mss);
119                         desc->tx.l4_len = l4_len;
120                         desc->tx.paylen = cpu_to_le16(paylen);
121                 }
122         }
123
124         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
125
126         desc->tx.bn_pid = bn_pid;
127         desc->tx.ra_ri_cs_fe_vld = rrcfv;
128
129         ring_ptr_move_fw(ring, next_to_use);
130 }
131
132 static void fill_desc(struct hnae_ring *ring, void *priv,
133                       int size, dma_addr_t dma, int frag_end,
134                       int buf_num, enum hns_desc_type type, int mtu)
135 {
136         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
137         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
138         struct sk_buff *skb;
139         __be16 protocol;
140         u32 ip_offset;
141         u32 asid_bufnum_pid = 0;
142         u32 flag_ipoffset = 0;
143
144         desc_cb->priv = priv;
145         desc_cb->length = size;
146         desc_cb->dma = dma;
147         desc_cb->type = type;
148
149         desc->addr = cpu_to_le64(dma);
150         desc->tx.send_size = cpu_to_le16((u16)size);
151
152         /*config bd buffer end */
153         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
154
155         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
156
157         if (type == DESC_TYPE_SKB) {
158                 skb = (struct sk_buff *)priv;
159
160                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
161                         protocol = skb->protocol;
162                         ip_offset = ETH_HLEN;
163
164                         /*if it is a SW VLAN check the next protocol*/
165                         if (protocol == htons(ETH_P_8021Q)) {
166                                 ip_offset += VLAN_HLEN;
167                                 protocol = vlan_get_protocol(skb);
168                                 skb->protocol = protocol;
169                         }
170
171                         if (skb->protocol == htons(ETH_P_IP)) {
172                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
173                                 /* check for tcp/udp header */
174                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
175
176                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
177                                 /* ipv6 has not l3 cs, check for L4 header */
178                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
179                         }
180
181                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
182                 }
183         }
184
185         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
186
187         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
188         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
189
190         ring_ptr_move_fw(ring, next_to_use);
191 }
192
193 static void unfill_desc(struct hnae_ring *ring)
194 {
195         ring_ptr_move_bw(ring, next_to_use);
196 }
197
198 static int hns_nic_maybe_stop_tx(
199         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
200 {
201         struct sk_buff *skb = *out_skb;
202         struct sk_buff *new_skb = NULL;
203         int buf_num;
204
205         /* no. of segments (plus a header) */
206         buf_num = skb_shinfo(skb)->nr_frags + 1;
207
208         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
209                 if (ring_space(ring) < 1)
210                         return -EBUSY;
211
212                 new_skb = skb_copy(skb, GFP_ATOMIC);
213                 if (!new_skb)
214                         return -ENOMEM;
215
216                 dev_kfree_skb_any(skb);
217                 *out_skb = new_skb;
218                 buf_num = 1;
219         } else if (buf_num > ring_space(ring)) {
220                 return -EBUSY;
221         }
222
223         *bnum = buf_num;
224         return 0;
225 }
226
227 static int hns_nic_maybe_stop_tso(
228         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
229 {
230         int i;
231         int size;
232         int buf_num;
233         int frag_num;
234         struct sk_buff *skb = *out_skb;
235         struct sk_buff *new_skb = NULL;
236         struct skb_frag_struct *frag;
237
238         size = skb_headlen(skb);
239         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
240
241         frag_num = skb_shinfo(skb)->nr_frags;
242         for (i = 0; i < frag_num; i++) {
243                 frag = &skb_shinfo(skb)->frags[i];
244                 size = skb_frag_size(frag);
245                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
246         }
247
248         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
249                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250                 if (ring_space(ring) < buf_num)
251                         return -EBUSY;
252                 /* manual split the send packet */
253                 new_skb = skb_copy(skb, GFP_ATOMIC);
254                 if (!new_skb)
255                         return -ENOMEM;
256                 dev_kfree_skb_any(skb);
257                 *out_skb = new_skb;
258
259         } else if (ring_space(ring) < buf_num) {
260                 return -EBUSY;
261         }
262
263         *bnum = buf_num;
264         return 0;
265 }
266
267 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
268                           int size, dma_addr_t dma, int frag_end,
269                           int buf_num, enum hns_desc_type type, int mtu)
270 {
271         int frag_buf_num;
272         int sizeoflast;
273         int k;
274
275         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
276         sizeoflast = size % BD_MAX_SEND_SIZE;
277         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
278
279         /* when the frag size is bigger than hardware, split this frag */
280         for (k = 0; k < frag_buf_num; k++)
281                 fill_v2_desc(ring, priv,
282                              (k == frag_buf_num - 1) ?
283                                         sizeoflast : BD_MAX_SEND_SIZE,
284                              dma + BD_MAX_SEND_SIZE * k,
285                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
286                              buf_num,
287                              (type == DESC_TYPE_SKB && !k) ?
288                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
289                              mtu);
290 }
291
292 int hns_nic_net_xmit_hw(struct net_device *ndev,
293                         struct sk_buff *skb,
294                         struct hns_nic_ring_data *ring_data)
295 {
296         struct hns_nic_priv *priv = netdev_priv(ndev);
297         struct device *dev = priv->dev;
298         struct hnae_ring *ring = ring_data->ring;
299         struct netdev_queue *dev_queue;
300         struct skb_frag_struct *frag;
301         int buf_num;
302         int seg_num;
303         dma_addr_t dma;
304         int size, next_to_use;
305         int i;
306
307         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
308         case -EBUSY:
309                 ring->stats.tx_busy++;
310                 goto out_net_tx_busy;
311         case -ENOMEM:
312                 ring->stats.sw_err_cnt++;
313                 netdev_err(ndev, "no memory to xmit!\n");
314                 goto out_err_tx_ok;
315         default:
316                 break;
317         }
318
319         /* no. of segments (plus a header) */
320         seg_num = skb_shinfo(skb)->nr_frags + 1;
321         next_to_use = ring->next_to_use;
322
323         /* fill the first part */
324         size = skb_headlen(skb);
325         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
326         if (dma_mapping_error(dev, dma)) {
327                 netdev_err(ndev, "TX head DMA map failed\n");
328                 ring->stats.sw_err_cnt++;
329                 goto out_err_tx_ok;
330         }
331         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
332                             buf_num, DESC_TYPE_SKB, ndev->mtu);
333
334         /* fill the fragments */
335         for (i = 1; i < seg_num; i++) {
336                 frag = &skb_shinfo(skb)->frags[i - 1];
337                 size = skb_frag_size(frag);
338                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
339                 if (dma_mapping_error(dev, dma)) {
340                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
341                         ring->stats.sw_err_cnt++;
342                         goto out_map_frag_fail;
343                 }
344                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
345                                     seg_num - 1 == i ? 1 : 0, buf_num,
346                                     DESC_TYPE_PAGE, ndev->mtu);
347         }
348
349         /*complete translate all packets*/
350         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
351         netdev_tx_sent_queue(dev_queue, skb->len);
352
353         wmb(); /* commit all data before submit */
354         assert(skb->queue_mapping < priv->ae_handle->q_num);
355         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
356         ring->stats.tx_pkts++;
357         ring->stats.tx_bytes += skb->len;
358
359         return NETDEV_TX_OK;
360
361 out_map_frag_fail:
362
363         while (ring->next_to_use != next_to_use) {
364                 unfill_desc(ring);
365                 if (ring->next_to_use != next_to_use)
366                         dma_unmap_page(dev,
367                                        ring->desc_cb[ring->next_to_use].dma,
368                                        ring->desc_cb[ring->next_to_use].length,
369                                        DMA_TO_DEVICE);
370                 else
371                         dma_unmap_single(dev,
372                                          ring->desc_cb[next_to_use].dma,
373                                          ring->desc_cb[next_to_use].length,
374                                          DMA_TO_DEVICE);
375         }
376
377 out_err_tx_ok:
378
379         dev_kfree_skb_any(skb);
380         return NETDEV_TX_OK;
381
382 out_net_tx_busy:
383
384         netif_stop_subqueue(ndev, skb->queue_mapping);
385
386         /* Herbert's original patch had:
387          *  smp_mb__after_netif_stop_queue();
388          * but since that doesn't exist yet, just open code it.
389          */
390         smp_mb();
391         return NETDEV_TX_BUSY;
392 }
393
394 /**
395  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
396  * @data: pointer to the start of the headers
397  * @max: total length of section to find headers in
398  *
399  * This function is meant to determine the length of headers that will
400  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
401  * motivation of doing this is to only perform one pull for IPv4 TCP
402  * packets so that we can do basic things like calculating the gso_size
403  * based on the average data per packet.
404  **/
405 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
406                                         unsigned int max_size)
407 {
408         unsigned char *network;
409         u8 hlen;
410
411         /* this should never happen, but better safe than sorry */
412         if (max_size < ETH_HLEN)
413                 return max_size;
414
415         /* initialize network frame pointer */
416         network = data;
417
418         /* set first protocol and move network header forward */
419         network += ETH_HLEN;
420
421         /* handle any vlan tag if present */
422         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
423                 == HNS_RX_FLAG_VLAN_PRESENT) {
424                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
425                         return max_size;
426
427                 network += VLAN_HLEN;
428         }
429
430         /* handle L3 protocols */
431         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
432                 == HNS_RX_FLAG_L3ID_IPV4) {
433                 if ((typeof(max_size))(network - data) >
434                     (max_size - sizeof(struct iphdr)))
435                         return max_size;
436
437                 /* access ihl as a u8 to avoid unaligned access on ia64 */
438                 hlen = (network[0] & 0x0F) << 2;
439
440                 /* verify hlen meets minimum size requirements */
441                 if (hlen < sizeof(struct iphdr))
442                         return network - data;
443
444                 /* record next protocol if header is present */
445         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
446                 == HNS_RX_FLAG_L3ID_IPV6) {
447                 if ((typeof(max_size))(network - data) >
448                     (max_size - sizeof(struct ipv6hdr)))
449                         return max_size;
450
451                 /* record next protocol */
452                 hlen = sizeof(struct ipv6hdr);
453         } else {
454                 return network - data;
455         }
456
457         /* relocate pointer to start of L4 header */
458         network += hlen;
459
460         /* finally sort out TCP/UDP */
461         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
462                 == HNS_RX_FLAG_L4ID_TCP) {
463                 if ((typeof(max_size))(network - data) >
464                     (max_size - sizeof(struct tcphdr)))
465                         return max_size;
466
467                 /* access doff as a u8 to avoid unaligned access on ia64 */
468                 hlen = (network[12] & 0xF0) >> 2;
469
470                 /* verify hlen meets minimum size requirements */
471                 if (hlen < sizeof(struct tcphdr))
472                         return network - data;
473
474                 network += hlen;
475         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
476                 == HNS_RX_FLAG_L4ID_UDP) {
477                 if ((typeof(max_size))(network - data) >
478                     (max_size - sizeof(struct udphdr)))
479                         return max_size;
480
481                 network += sizeof(struct udphdr);
482         }
483
484         /* If everything has gone correctly network should be the
485          * data section of the packet and will be the end of the header.
486          * If not then it probably represents the end of the last recognized
487          * header.
488          */
489         if ((typeof(max_size))(network - data) < max_size)
490                 return network - data;
491         else
492                 return max_size;
493 }
494
495 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
496                                struct hnae_ring *ring, int pull_len,
497                                struct hnae_desc_cb *desc_cb)
498 {
499         struct hnae_desc *desc;
500         int truesize, size;
501         int last_offset;
502         bool twobufs;
503
504         twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
505
506         desc = &ring->desc[ring->next_to_clean];
507         size = le16_to_cpu(desc->rx.size);
508
509         if (twobufs) {
510                 truesize = hnae_buf_size(ring);
511         } else {
512                 truesize = ALIGN(size, L1_CACHE_BYTES);
513                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
514         }
515
516         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
517                         size - pull_len, truesize - pull_len);
518
519          /* avoid re-using remote pages,flag default unreuse */
520         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
521                 return;
522
523         if (twobufs) {
524                 /* if we are only owner of page we can reuse it */
525                 if (likely(page_count(desc_cb->priv) == 1)) {
526                         /* flip page offset to other buffer */
527                         desc_cb->page_offset ^= truesize;
528
529                         desc_cb->reuse_flag = 1;
530                         /* bump ref count on page before it is given*/
531                         get_page(desc_cb->priv);
532                 }
533                 return;
534         }
535
536         /* move offset up to the next cache line */
537         desc_cb->page_offset += truesize;
538
539         if (desc_cb->page_offset <= last_offset) {
540                 desc_cb->reuse_flag = 1;
541                 /* bump ref count on page before it is given*/
542                 get_page(desc_cb->priv);
543         }
544 }
545
546 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
547 {
548         *out_bnum = hnae_get_field(bnum_flag,
549                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
550 }
551
552 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
553 {
554         *out_bnum = hnae_get_field(bnum_flag,
555                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
556 }
557
558 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
559                                struct sk_buff **out_skb, int *out_bnum)
560 {
561         struct hnae_ring *ring = ring_data->ring;
562         struct net_device *ndev = ring_data->napi.dev;
563         struct hns_nic_priv *priv = netdev_priv(ndev);
564         struct sk_buff *skb;
565         struct hnae_desc *desc;
566         struct hnae_desc_cb *desc_cb;
567         unsigned char *va;
568         int bnum, length, i;
569         int pull_len;
570         u32 bnum_flag;
571
572         desc = &ring->desc[ring->next_to_clean];
573         desc_cb = &ring->desc_cb[ring->next_to_clean];
574
575         prefetch(desc);
576
577         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
578
579         /* prefetch first cache line of first page */
580         prefetch(va);
581 #if L1_CACHE_BYTES < 128
582         prefetch(va + L1_CACHE_BYTES);
583 #endif
584
585         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
586                                         HNS_RX_HEAD_SIZE);
587         if (unlikely(!skb)) {
588                 netdev_err(ndev, "alloc rx skb fail\n");
589                 ring->stats.sw_err_cnt++;
590                 return -ENOMEM;
591         }
592
593         prefetchw(skb->data);
594         length = le16_to_cpu(desc->rx.pkt_len);
595         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
596         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
597         *out_bnum = bnum;
598
599         if (length <= HNS_RX_HEAD_SIZE) {
600                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
601
602                 /* we can reuse buffer as-is, just make sure it is local */
603                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
604                         desc_cb->reuse_flag = 1;
605                 else /* this page cannot be reused so discard it */
606                         put_page(desc_cb->priv);
607
608                 ring_ptr_move_fw(ring, next_to_clean);
609
610                 if (unlikely(bnum != 1)) { /* check err*/
611                         *out_bnum = 1;
612                         goto out_bnum_err;
613                 }
614         } else {
615                 ring->stats.seg_pkt_cnt++;
616
617                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
618                 memcpy(__skb_put(skb, pull_len), va,
619                        ALIGN(pull_len, sizeof(long)));
620
621                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
622                 ring_ptr_move_fw(ring, next_to_clean);
623
624                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
625                         *out_bnum = 1;
626                         goto out_bnum_err;
627                 }
628                 for (i = 1; i < bnum; i++) {
629                         desc = &ring->desc[ring->next_to_clean];
630                         desc_cb = &ring->desc_cb[ring->next_to_clean];
631
632                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
633                         ring_ptr_move_fw(ring, next_to_clean);
634                 }
635         }
636
637         /* check except process, free skb and jump the desc */
638         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
639 out_bnum_err:
640                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
641                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
642                            bnum, ring->max_desc_num_per_pkt,
643                            length, (int)MAX_SKB_FRAGS,
644                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
645                 ring->stats.err_bd_num++;
646                 dev_kfree_skb_any(skb);
647                 return -EDOM;
648         }
649
650         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
651
652         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
653                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
654                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
655                 ring->stats.non_vld_descs++;
656                 dev_kfree_skb_any(skb);
657                 return -EINVAL;
658         }
659
660         if (unlikely((!desc->rx.pkt_len) ||
661                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
662                 ring->stats.err_pkt_len++;
663                 dev_kfree_skb_any(skb);
664                 return -EFAULT;
665         }
666
667         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
668                 ring->stats.l2_err++;
669                 dev_kfree_skb_any(skb);
670                 return -EFAULT;
671         }
672
673         ring->stats.rx_pkts++;
674         ring->stats.rx_bytes += skb->len;
675
676         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
677                      hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
678                 ring->stats.l3l4_csum_err++;
679                 return 0;
680         }
681
682         skb->ip_summed = CHECKSUM_UNNECESSARY;
683
684         return 0;
685 }
686
687 static void
688 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
689 {
690         int i, ret;
691         struct hnae_desc_cb res_cbs;
692         struct hnae_desc_cb *desc_cb;
693         struct hnae_ring *ring = ring_data->ring;
694         struct net_device *ndev = ring_data->napi.dev;
695
696         for (i = 0; i < cleand_count; i++) {
697                 desc_cb = &ring->desc_cb[ring->next_to_use];
698                 if (desc_cb->reuse_flag) {
699                         ring->stats.reuse_pg_cnt++;
700                         hnae_reuse_buffer(ring, ring->next_to_use);
701                 } else {
702                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
703                         if (ret) {
704                                 ring->stats.sw_err_cnt++;
705                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
706                                 break;
707                         }
708                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
709                 }
710
711                 ring_ptr_move_fw(ring, next_to_use);
712         }
713
714         wmb(); /* make all data has been write before submit */
715         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
716 }
717
718 /* return error number for error or number of desc left to take
719  */
720 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
721                               struct sk_buff *skb)
722 {
723         struct net_device *ndev = ring_data->napi.dev;
724
725         skb->protocol = eth_type_trans(skb, ndev);
726         (void)napi_gro_receive(&ring_data->napi, skb);
727         ndev->last_rx = jiffies;
728 }
729
730 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
731                                int budget, void *v)
732 {
733         struct hnae_ring *ring = ring_data->ring;
734         struct sk_buff *skb;
735         int num, bnum, ex_num;
736 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
737         int recv_pkts, recv_bds, clean_count, err;
738
739         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
740         rmb(); /* make sure num taken effect before the other data is touched */
741
742         recv_pkts = 0, recv_bds = 0, clean_count = 0;
743 recv:
744         while (recv_pkts < budget && recv_bds < num) {
745                 /* reuse or realloc buffers*/
746                 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
747                         hns_nic_alloc_rx_buffers(ring_data, clean_count);
748                         clean_count = 0;
749                 }
750
751                 /* poll one pkg*/
752                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
753                 if (unlikely(!skb)) /* this fault cannot be repaired */
754                         break;
755
756                 recv_bds += bnum;
757                 clean_count += bnum;
758                 if (unlikely(err)) {  /* do jump the err */
759                         recv_pkts++;
760                         continue;
761                 }
762
763                 /* do update ip stack process*/
764                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
765                                                         ring_data, skb);
766                 recv_pkts++;
767         }
768
769         /* make all data has been write before submit */
770         if (recv_pkts < budget) {
771                 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
772
773                 if (ex_num > clean_count) {
774                         num += ex_num - clean_count;
775                         rmb(); /*complete read rx ring bd number*/
776                         goto recv;
777                 }
778         }
779
780         /* make all data has been write before submit */
781         if (clean_count > 0)
782                 hns_nic_alloc_rx_buffers(ring_data, clean_count);
783
784         return recv_pkts;
785 }
786
787 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
788 {
789         struct hnae_ring *ring = ring_data->ring;
790         int num = 0;
791
792         /* for hardware bug fixed */
793         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
794
795         if (num > 0) {
796                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
797                         ring_data->ring, 1);
798
799                 napi_schedule(&ring_data->napi);
800         }
801 }
802
803 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
804                                             int *bytes, int *pkts)
805 {
806         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
807
808         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
809         (*bytes) += desc_cb->length;
810         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
811         hnae_free_buffer_detach(ring, ring->next_to_clean);
812
813         ring_ptr_move_fw(ring, next_to_clean);
814 }
815
816 static int is_valid_clean_head(struct hnae_ring *ring, int h)
817 {
818         int u = ring->next_to_use;
819         int c = ring->next_to_clean;
820
821         if (unlikely(h > ring->desc_num))
822                 return 0;
823
824         assert(u > 0 && u < ring->desc_num);
825         assert(c > 0 && c < ring->desc_num);
826         assert(u != c && h != c); /* must be checked before call this func */
827
828         return u > c ? (h > c && h <= u) : (h > c || h <= u);
829 }
830
831 /* netif_tx_lock will turn down the performance, set only when necessary */
832 #ifdef CONFIG_NET_POLL_CONTROLLER
833 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
834 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
835 #else
836 #define NETIF_TX_LOCK(ndev)
837 #define NETIF_TX_UNLOCK(ndev)
838 #endif
839 /* reclaim all desc in one budget
840  * return error or number of desc left
841  */
842 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
843                                int budget, void *v)
844 {
845         struct hnae_ring *ring = ring_data->ring;
846         struct net_device *ndev = ring_data->napi.dev;
847         struct netdev_queue *dev_queue;
848         struct hns_nic_priv *priv = netdev_priv(ndev);
849         int head;
850         int bytes, pkts;
851
852         NETIF_TX_LOCK(ndev);
853
854         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
855         rmb(); /* make sure head is ready before touch any data */
856
857         if (is_ring_empty(ring) || head == ring->next_to_clean) {
858                 NETIF_TX_UNLOCK(ndev);
859                 return 0; /* no data to poll */
860         }
861
862         if (!is_valid_clean_head(ring, head)) {
863                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
864                            ring->next_to_use, ring->next_to_clean);
865                 ring->stats.io_err_cnt++;
866                 NETIF_TX_UNLOCK(ndev);
867                 return -EIO;
868         }
869
870         bytes = 0;
871         pkts = 0;
872         while (head != ring->next_to_clean) {
873                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
874                 /* issue prefetch for next Tx descriptor */
875                 prefetch(&ring->desc_cb[ring->next_to_clean]);
876         }
877
878         NETIF_TX_UNLOCK(ndev);
879
880         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
881         netdev_tx_completed_queue(dev_queue, pkts, bytes);
882
883         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
884                 netif_carrier_on(ndev);
885
886         if (unlikely(pkts && netif_carrier_ok(ndev) &&
887                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
888                 /* Make sure that anybody stopping the queue after this
889                  * sees the new next_to_clean.
890                  */
891                 smp_mb();
892                 if (netif_tx_queue_stopped(dev_queue) &&
893                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
894                         netif_tx_wake_queue(dev_queue);
895                         ring->stats.restart_queue++;
896                 }
897         }
898         return 0;
899 }
900
901 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
902 {
903         struct hnae_ring *ring = ring_data->ring;
904         int head = ring->next_to_clean;
905
906         /* for hardware bug fixed */
907         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
908
909         if (head != ring->next_to_clean) {
910                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
911                         ring_data->ring, 1);
912
913                 napi_schedule(&ring_data->napi);
914         }
915 }
916
917 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
918 {
919         struct hnae_ring *ring = ring_data->ring;
920         struct net_device *ndev = ring_data->napi.dev;
921         struct netdev_queue *dev_queue;
922         int head;
923         int bytes, pkts;
924
925         NETIF_TX_LOCK(ndev);
926
927         head = ring->next_to_use; /* ntu :soft setted ring position*/
928         bytes = 0;
929         pkts = 0;
930         while (head != ring->next_to_clean)
931                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
932
933         NETIF_TX_UNLOCK(ndev);
934
935         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
936         netdev_tx_reset_queue(dev_queue);
937 }
938
939 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
940 {
941         struct hns_nic_ring_data *ring_data =
942                 container_of(napi, struct hns_nic_ring_data, napi);
943         int clean_complete = ring_data->poll_one(
944                                 ring_data, budget, ring_data->ex_process);
945
946         if (clean_complete >= 0 && clean_complete < budget) {
947                 napi_complete(napi);
948                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
949                         ring_data->ring, 0);
950
951                 ring_data->fini_process(ring_data);
952                 return 0;
953         }
954
955         return clean_complete;
956 }
957
958 static irqreturn_t hns_irq_handle(int irq, void *dev)
959 {
960         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
961
962         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
963                 ring_data->ring, 1);
964         napi_schedule(&ring_data->napi);
965
966         return IRQ_HANDLED;
967 }
968
969 /**
970  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
971  *@ndev: net device
972  */
973 static void hns_nic_adjust_link(struct net_device *ndev)
974 {
975         struct hns_nic_priv *priv = netdev_priv(ndev);
976         struct hnae_handle *h = priv->ae_handle;
977
978         h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
979 }
980
981 /**
982  *hns_nic_init_phy - init phy
983  *@ndev: net device
984  *@h: ae handle
985  * Return 0 on success, negative on failure
986  */
987 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
988 {
989         struct hns_nic_priv *priv = netdev_priv(ndev);
990         struct phy_device *phy_dev = NULL;
991
992         if (!h->phy_node)
993                 return 0;
994
995         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
996                 phy_dev = of_phy_connect(ndev, h->phy_node,
997                                          hns_nic_adjust_link, 0, h->phy_if);
998         else
999                 phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1000
1001         if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1002                 return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1003
1004         phy_dev->supported &= h->if_support;
1005         phy_dev->advertising = phy_dev->supported;
1006
1007         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1008                 phy_dev->autoneg = false;
1009
1010         priv->phy = phy_dev;
1011
1012         return 0;
1013 }
1014
1015 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1016 {
1017         struct hns_nic_priv *priv = netdev_priv(netdev);
1018         struct hnae_handle *h = priv->ae_handle;
1019
1020         napi_enable(&priv->ring_data[idx].napi);
1021
1022         enable_irq(priv->ring_data[idx].ring->irq);
1023         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1024
1025         return 0;
1026 }
1027
1028 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1029 {
1030         struct hns_nic_priv *priv = netdev_priv(ndev);
1031         struct hnae_handle *h = priv->ae_handle;
1032         struct sockaddr *mac_addr = p;
1033         int ret;
1034
1035         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1036                 return -EADDRNOTAVAIL;
1037
1038         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1039         if (ret) {
1040                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1041                 return ret;
1042         }
1043
1044         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1045
1046         return 0;
1047 }
1048
1049 void hns_nic_update_stats(struct net_device *netdev)
1050 {
1051         struct hns_nic_priv *priv = netdev_priv(netdev);
1052         struct hnae_handle *h = priv->ae_handle;
1053
1054         h->dev->ops->update_stats(h, &netdev->stats);
1055 }
1056
1057 /* set mac addr if it is configed. or leave it to the AE driver */
1058 static void hns_init_mac_addr(struct net_device *ndev)
1059 {
1060         struct hns_nic_priv *priv = netdev_priv(ndev);
1061         struct device_node *node = priv->dev->of_node;
1062         const void *mac_addr_temp;
1063
1064         mac_addr_temp = of_get_mac_address(node);
1065         if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1066                 memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1067         } else {
1068                 eth_hw_addr_random(ndev);
1069                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1070                          ndev->dev_addr);
1071         }
1072 }
1073
1074 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1075 {
1076         struct hns_nic_priv *priv = netdev_priv(netdev);
1077         struct hnae_handle *h = priv->ae_handle;
1078
1079         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1080         disable_irq(priv->ring_data[idx].ring->irq);
1081
1082         napi_disable(&priv->ring_data[idx].napi);
1083 }
1084
1085 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1086 {
1087         struct hnae_handle *h = priv->ae_handle;
1088         struct hns_nic_ring_data *rd;
1089         int i;
1090         int cpu;
1091         cpumask_t mask;
1092
1093         /*diffrent irq banlance for 16core and 32core*/
1094         if (h->q_num == num_possible_cpus()) {
1095                 for (i = 0; i < h->q_num * 2; i++) {
1096                         rd = &priv->ring_data[i];
1097                         if (cpu_online(rd->queue_index)) {
1098                                 cpumask_clear(&mask);
1099                                 cpu = rd->queue_index;
1100                                 cpumask_set_cpu(cpu, &mask);
1101                                 (void)irq_set_affinity_hint(rd->ring->irq,
1102                                                             &mask);
1103                         }
1104                 }
1105         } else {
1106                 for (i = 0; i < h->q_num; i++) {
1107                         rd = &priv->ring_data[i];
1108                         if (cpu_online(rd->queue_index * 2)) {
1109                                 cpumask_clear(&mask);
1110                                 cpu = rd->queue_index * 2;
1111                                 cpumask_set_cpu(cpu, &mask);
1112                                 (void)irq_set_affinity_hint(rd->ring->irq,
1113                                                             &mask);
1114                         }
1115                 }
1116
1117                 for (i = h->q_num; i < h->q_num * 2; i++) {
1118                         rd = &priv->ring_data[i];
1119                         if (cpu_online(rd->queue_index * 2 + 1)) {
1120                                 cpumask_clear(&mask);
1121                                 cpu = rd->queue_index * 2 + 1;
1122                                 cpumask_set_cpu(cpu, &mask);
1123                                 (void)irq_set_affinity_hint(rd->ring->irq,
1124                                                             &mask);
1125                         }
1126                 }
1127         }
1128 }
1129
1130 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1131 {
1132         struct hnae_handle *h = priv->ae_handle;
1133         struct hns_nic_ring_data *rd;
1134         int i;
1135         int ret;
1136
1137         for (i = 0; i < h->q_num * 2; i++) {
1138                 rd = &priv->ring_data[i];
1139
1140                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1141                         break;
1142
1143                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1144                          "%s-%s%d", priv->netdev->name,
1145                          (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1146
1147                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1148
1149                 ret = request_irq(rd->ring->irq,
1150                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1151                 if (ret) {
1152                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1153                                    rd->ring->irq);
1154                         return ret;
1155                 }
1156                 disable_irq(rd->ring->irq);
1157                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1158         }
1159
1160         /*set cpu affinity*/
1161         hns_set_irq_affinity(priv);
1162
1163         return 0;
1164 }
1165
1166 static int hns_nic_net_up(struct net_device *ndev)
1167 {
1168         struct hns_nic_priv *priv = netdev_priv(ndev);
1169         struct hnae_handle *h = priv->ae_handle;
1170         int i, j, k;
1171         int ret;
1172
1173         ret = hns_nic_init_irq(priv);
1174         if (ret != 0) {
1175                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1176                 return ret;
1177         }
1178
1179         for (i = 0; i < h->q_num * 2; i++) {
1180                 ret = hns_nic_ring_open(ndev, i);
1181                 if (ret)
1182                         goto out_has_some_queues;
1183         }
1184
1185         for (k = 0; k < h->q_num; k++)
1186                 h->dev->ops->toggle_queue_status(h->qs[k], 1);
1187
1188         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1189         if (ret)
1190                 goto out_set_mac_addr_err;
1191
1192         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1193         if (ret)
1194                 goto out_start_err;
1195
1196         if (priv->phy)
1197                 phy_start(priv->phy);
1198
1199         clear_bit(NIC_STATE_DOWN, &priv->state);
1200         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1201
1202         return 0;
1203
1204 out_start_err:
1205         netif_stop_queue(ndev);
1206 out_set_mac_addr_err:
1207         for (k = 0; k < h->q_num; k++)
1208                 h->dev->ops->toggle_queue_status(h->qs[k], 0);
1209 out_has_some_queues:
1210         for (j = i - 1; j >= 0; j--)
1211                 hns_nic_ring_close(ndev, j);
1212
1213         set_bit(NIC_STATE_DOWN, &priv->state);
1214
1215         return ret;
1216 }
1217
1218 static void hns_nic_net_down(struct net_device *ndev)
1219 {
1220         int i;
1221         struct hnae_ae_ops *ops;
1222         struct hns_nic_priv *priv = netdev_priv(ndev);
1223
1224         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1225                 return;
1226
1227         (void)del_timer_sync(&priv->service_timer);
1228         netif_tx_stop_all_queues(ndev);
1229         netif_carrier_off(ndev);
1230         netif_tx_disable(ndev);
1231         priv->link = 0;
1232
1233         if (priv->phy)
1234                 phy_stop(priv->phy);
1235
1236         ops = priv->ae_handle->dev->ops;
1237
1238         if (ops->stop)
1239                 ops->stop(priv->ae_handle);
1240
1241         netif_tx_stop_all_queues(ndev);
1242
1243         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1244                 hns_nic_ring_close(ndev, i);
1245                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1246
1247                 /* clean tx buffers*/
1248                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1249         }
1250 }
1251
1252 void hns_nic_net_reset(struct net_device *ndev)
1253 {
1254         struct hns_nic_priv *priv = netdev_priv(ndev);
1255         struct hnae_handle *handle = priv->ae_handle;
1256
1257         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1258                 usleep_range(1000, 2000);
1259
1260         (void)hnae_reinit_handle(handle);
1261
1262         clear_bit(NIC_STATE_RESETTING, &priv->state);
1263 }
1264
1265 void hns_nic_net_reinit(struct net_device *netdev)
1266 {
1267         struct hns_nic_priv *priv = netdev_priv(netdev);
1268
1269         priv->netdev->trans_start = jiffies;
1270         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1271                 usleep_range(1000, 2000);
1272
1273         hns_nic_net_down(netdev);
1274         hns_nic_net_reset(netdev);
1275         (void)hns_nic_net_up(netdev);
1276         clear_bit(NIC_STATE_REINITING, &priv->state);
1277 }
1278
1279 static int hns_nic_net_open(struct net_device *ndev)
1280 {
1281         struct hns_nic_priv *priv = netdev_priv(ndev);
1282         struct hnae_handle *h = priv->ae_handle;
1283         int ret;
1284
1285         if (test_bit(NIC_STATE_TESTING, &priv->state))
1286                 return -EBUSY;
1287
1288         priv->link = 0;
1289         netif_carrier_off(ndev);
1290
1291         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1292         if (ret < 0) {
1293                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1294                            ret);
1295                 return ret;
1296         }
1297
1298         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1299         if (ret < 0) {
1300                 netdev_err(ndev,
1301                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1302                 return ret;
1303         }
1304
1305         ret = hns_nic_net_up(ndev);
1306         if (ret) {
1307                 netdev_err(ndev,
1308                            "hns net up fail, ret=%d!\n", ret);
1309                 return ret;
1310         }
1311
1312         return 0;
1313 }
1314
1315 static int hns_nic_net_stop(struct net_device *ndev)
1316 {
1317         hns_nic_net_down(ndev);
1318
1319         return 0;
1320 }
1321
1322 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1323 static void hns_nic_net_timeout(struct net_device *ndev)
1324 {
1325         struct hns_nic_priv *priv = netdev_priv(ndev);
1326
1327         hns_tx_timeout_reset(priv);
1328 }
1329
1330 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1331                             int cmd)
1332 {
1333         struct hns_nic_priv *priv = netdev_priv(netdev);
1334         struct phy_device *phy_dev = priv->phy;
1335
1336         if (!netif_running(netdev))
1337                 return -EINVAL;
1338
1339         if (!phy_dev)
1340                 return -ENOTSUPP;
1341
1342         return phy_mii_ioctl(phy_dev, ifr, cmd);
1343 }
1344
1345 /* use only for netconsole to poll with the device without interrupt */
1346 #ifdef CONFIG_NET_POLL_CONTROLLER
1347 void hns_nic_poll_controller(struct net_device *ndev)
1348 {
1349         struct hns_nic_priv *priv = netdev_priv(ndev);
1350         unsigned long flags;
1351         int i;
1352
1353         local_irq_save(flags);
1354         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1355                 napi_schedule(&priv->ring_data[i].napi);
1356         local_irq_restore(flags);
1357 }
1358 #endif
1359
1360 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1361                                     struct net_device *ndev)
1362 {
1363         struct hns_nic_priv *priv = netdev_priv(ndev);
1364         int ret;
1365
1366         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1367         ret = hns_nic_net_xmit_hw(ndev, skb,
1368                                   &tx_ring_data(priv, skb->queue_mapping));
1369         if (ret == NETDEV_TX_OK) {
1370                 ndev->trans_start = jiffies;
1371                 ndev->stats.tx_bytes += skb->len;
1372                 ndev->stats.tx_packets++;
1373         }
1374         return (netdev_tx_t)ret;
1375 }
1376
1377 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1378 {
1379         struct hns_nic_priv *priv = netdev_priv(ndev);
1380         struct hnae_handle *h = priv->ae_handle;
1381         int ret;
1382
1383         /* MTU < 68 is an error and causes problems on some kernels */
1384         if (new_mtu < 68)
1385                 return -EINVAL;
1386
1387         if (!h->dev->ops->set_mtu)
1388                 return -ENOTSUPP;
1389
1390         if (netif_running(ndev)) {
1391                 (void)hns_nic_net_stop(ndev);
1392                 msleep(100);
1393
1394                 ret = h->dev->ops->set_mtu(h, new_mtu);
1395                 if (ret)
1396                         netdev_err(ndev, "set mtu fail, return value %d\n",
1397                                    ret);
1398
1399                 if (hns_nic_net_open(ndev))
1400                         netdev_err(ndev, "hns net open fail\n");
1401         } else {
1402                 ret = h->dev->ops->set_mtu(h, new_mtu);
1403         }
1404
1405         if (!ret)
1406                 ndev->mtu = new_mtu;
1407
1408         return ret;
1409 }
1410
1411 static int hns_nic_set_features(struct net_device *netdev,
1412                                 netdev_features_t features)
1413 {
1414         struct hns_nic_priv *priv = netdev_priv(netdev);
1415         struct hnae_handle *h = priv->ae_handle;
1416
1417         switch (priv->enet_ver) {
1418         case AE_VERSION_1:
1419                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1420                         netdev_info(netdev, "enet v1 do not support tso!\n");
1421                 break;
1422         default:
1423                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1424                         priv->ops.fill_desc = fill_tso_desc;
1425                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1426                         /* The chip only support 7*4096 */
1427                         netif_set_gso_max_size(netdev, 7 * 4096);
1428                         h->dev->ops->set_tso_stats(h, 1);
1429                 } else {
1430                         priv->ops.fill_desc = fill_v2_desc;
1431                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1432                         h->dev->ops->set_tso_stats(h, 0);
1433                 }
1434                 break;
1435         }
1436         netdev->features = features;
1437         return 0;
1438 }
1439
1440 static netdev_features_t hns_nic_fix_features(
1441                 struct net_device *netdev, netdev_features_t features)
1442 {
1443         struct hns_nic_priv *priv = netdev_priv(netdev);
1444
1445         switch (priv->enet_ver) {
1446         case AE_VERSION_1:
1447                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1448                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1449                 break;
1450         default:
1451                 break;
1452         }
1453         return features;
1454 }
1455
1456 /**
1457  * nic_set_multicast_list - set mutl mac address
1458  * @netdev: net device
1459  * @p: mac address
1460  *
1461  * return void
1462  */
1463 void hns_set_multicast_list(struct net_device *ndev)
1464 {
1465         struct hns_nic_priv *priv = netdev_priv(ndev);
1466         struct hnae_handle *h = priv->ae_handle;
1467         struct netdev_hw_addr *ha = NULL;
1468
1469         if (!h) {
1470                 netdev_err(ndev, "hnae handle is null\n");
1471                 return;
1472         }
1473
1474         if (h->dev->ops->set_mc_addr) {
1475                 netdev_for_each_mc_addr(ha, ndev)
1476                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1477                                 netdev_err(ndev, "set multicast fail\n");
1478         }
1479 }
1480
1481 void hns_nic_set_rx_mode(struct net_device *ndev)
1482 {
1483         struct hns_nic_priv *priv = netdev_priv(ndev);
1484         struct hnae_handle *h = priv->ae_handle;
1485
1486         if (h->dev->ops->set_promisc_mode) {
1487                 if (ndev->flags & IFF_PROMISC)
1488                         h->dev->ops->set_promisc_mode(h, 1);
1489                 else
1490                         h->dev->ops->set_promisc_mode(h, 0);
1491         }
1492
1493         hns_set_multicast_list(ndev);
1494 }
1495
1496 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1497                                               struct rtnl_link_stats64 *stats)
1498 {
1499         int idx = 0;
1500         u64 tx_bytes = 0;
1501         u64 rx_bytes = 0;
1502         u64 tx_pkts = 0;
1503         u64 rx_pkts = 0;
1504         struct hns_nic_priv *priv = netdev_priv(ndev);
1505         struct hnae_handle *h = priv->ae_handle;
1506
1507         for (idx = 0; idx < h->q_num; idx++) {
1508                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1509                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1510                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1511                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1512         }
1513
1514         stats->tx_bytes = tx_bytes;
1515         stats->tx_packets = tx_pkts;
1516         stats->rx_bytes = rx_bytes;
1517         stats->rx_packets = rx_pkts;
1518
1519         stats->rx_errors = ndev->stats.rx_errors;
1520         stats->multicast = ndev->stats.multicast;
1521         stats->rx_length_errors = ndev->stats.rx_length_errors;
1522         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1523         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1524
1525         stats->tx_errors = ndev->stats.tx_errors;
1526         stats->rx_dropped = ndev->stats.rx_dropped;
1527         stats->tx_dropped = ndev->stats.tx_dropped;
1528         stats->collisions = ndev->stats.collisions;
1529         stats->rx_over_errors = ndev->stats.rx_over_errors;
1530         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1531         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1532         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1533         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1534         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1535         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1536         stats->tx_window_errors = ndev->stats.tx_window_errors;
1537         stats->rx_compressed = ndev->stats.rx_compressed;
1538         stats->tx_compressed = ndev->stats.tx_compressed;
1539
1540         return stats;
1541 }
1542
1543 static const struct net_device_ops hns_nic_netdev_ops = {
1544         .ndo_open = hns_nic_net_open,
1545         .ndo_stop = hns_nic_net_stop,
1546         .ndo_start_xmit = hns_nic_net_xmit,
1547         .ndo_tx_timeout = hns_nic_net_timeout,
1548         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1549         .ndo_change_mtu = hns_nic_change_mtu,
1550         .ndo_do_ioctl = hns_nic_do_ioctl,
1551         .ndo_set_features = hns_nic_set_features,
1552         .ndo_fix_features = hns_nic_fix_features,
1553         .ndo_get_stats64 = hns_nic_get_stats64,
1554 #ifdef CONFIG_NET_POLL_CONTROLLER
1555         .ndo_poll_controller = hns_nic_poll_controller,
1556 #endif
1557         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1558 };
1559
1560 static void hns_nic_update_link_status(struct net_device *netdev)
1561 {
1562         struct hns_nic_priv *priv = netdev_priv(netdev);
1563
1564         struct hnae_handle *h = priv->ae_handle;
1565         int state = 1;
1566
1567         if (priv->phy) {
1568                 if (!genphy_update_link(priv->phy))
1569                         state = priv->phy->link;
1570                 else
1571                         state = 0;
1572         }
1573         state = state && h->dev->ops->get_status(h);
1574
1575         if (state != priv->link) {
1576                 if (state) {
1577                         netif_carrier_on(netdev);
1578                         netif_tx_wake_all_queues(netdev);
1579                         netdev_info(netdev, "link up\n");
1580                 } else {
1581                         netif_carrier_off(netdev);
1582                         netdev_info(netdev, "link down\n");
1583                 }
1584                 priv->link = state;
1585         }
1586 }
1587
1588 /* for dumping key regs*/
1589 static void hns_nic_dump(struct hns_nic_priv *priv)
1590 {
1591         struct hnae_handle *h = priv->ae_handle;
1592         struct hnae_ae_ops *ops = h->dev->ops;
1593         u32 *data, reg_num, i;
1594
1595         if (ops->get_regs_len && ops->get_regs) {
1596                 reg_num = ops->get_regs_len(priv->ae_handle);
1597                 reg_num = (reg_num + 3ul) & ~3ul;
1598                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1599                 if (data) {
1600                         ops->get_regs(priv->ae_handle, data);
1601                         for (i = 0; i < reg_num; i += 4)
1602                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1603                                         i, data[i], data[i + 1],
1604                                         data[i + 2], data[i + 3]);
1605                         kfree(data);
1606                 }
1607         }
1608
1609         for (i = 0; i < h->q_num; i++) {
1610                 pr_info("tx_queue%d_next_to_clean:%d\n",
1611                         i, h->qs[i]->tx_ring.next_to_clean);
1612                 pr_info("tx_queue%d_next_to_use:%d\n",
1613                         i, h->qs[i]->tx_ring.next_to_use);
1614                 pr_info("rx_queue%d_next_to_clean:%d\n",
1615                         i, h->qs[i]->rx_ring.next_to_clean);
1616                 pr_info("rx_queue%d_next_to_use:%d\n",
1617                         i, h->qs[i]->rx_ring.next_to_use);
1618         }
1619 }
1620
1621 /* for resetting suntask*/
1622 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1623 {
1624         enum hnae_port_type type = priv->ae_handle->port_type;
1625
1626         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1627                 return;
1628         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1629
1630         /* If we're already down, removing or resetting, just bail */
1631         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1632             test_bit(NIC_STATE_REMOVING, &priv->state) ||
1633             test_bit(NIC_STATE_RESETTING, &priv->state))
1634                 return;
1635
1636         hns_nic_dump(priv);
1637         netdev_info(priv->netdev, "try to reset %s port!\n",
1638                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1639
1640         rtnl_lock();
1641         /* put off any impending NetWatchDogTimeout */
1642         priv->netdev->trans_start = jiffies;
1643
1644         if (type == HNAE_PORT_DEBUG) {
1645                 hns_nic_net_reinit(priv->netdev);
1646         } else {
1647                 netif_carrier_off(priv->netdev);
1648                 netif_tx_disable(priv->netdev);
1649         }
1650         rtnl_unlock();
1651 }
1652
1653 /* for doing service complete*/
1654 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1655 {
1656         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1657
1658         smp_mb__before_atomic();
1659         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1660 }
1661
1662 static void hns_nic_service_task(struct work_struct *work)
1663 {
1664         struct hns_nic_priv *priv
1665                 = container_of(work, struct hns_nic_priv, service_task);
1666         struct hnae_handle *h = priv->ae_handle;
1667
1668         hns_nic_update_link_status(priv->netdev);
1669         h->dev->ops->update_led_status(h);
1670         hns_nic_update_stats(priv->netdev);
1671
1672         hns_nic_reset_subtask(priv);
1673         hns_nic_service_event_complete(priv);
1674 }
1675
1676 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1677 {
1678         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1679             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1680             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1681                 (void)schedule_work(&priv->service_task);
1682 }
1683
1684 static void hns_nic_service_timer(unsigned long data)
1685 {
1686         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1687
1688         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1689
1690         hns_nic_task_schedule(priv);
1691 }
1692
1693 /**
1694  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1695  * @priv: driver private struct
1696  **/
1697 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1698 {
1699         /* Do the reset outside of interrupt context */
1700         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1701                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1702                 netdev_warn(priv->netdev,
1703                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
1704                             priv->tx_timeout_count, priv->state);
1705                 priv->tx_timeout_count++;
1706                 hns_nic_task_schedule(priv);
1707         }
1708 }
1709
1710 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1711 {
1712         struct hnae_handle *h = priv->ae_handle;
1713         struct hns_nic_ring_data *rd;
1714         int i;
1715
1716         if (h->q_num > NIC_MAX_Q_PER_VF) {
1717                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1718                 return -EINVAL;
1719         }
1720
1721         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1722                                   GFP_KERNEL);
1723         if (!priv->ring_data)
1724                 return -ENOMEM;
1725
1726         for (i = 0; i < h->q_num; i++) {
1727                 rd = &priv->ring_data[i];
1728                 rd->queue_index = i;
1729                 rd->ring = &h->qs[i]->tx_ring;
1730                 rd->poll_one = hns_nic_tx_poll_one;
1731                 rd->fini_process = hns_nic_tx_fini_pro;
1732
1733                 netif_napi_add(priv->netdev, &rd->napi,
1734                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1735                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1736         }
1737         for (i = h->q_num; i < h->q_num * 2; i++) {
1738                 rd = &priv->ring_data[i];
1739                 rd->queue_index = i - h->q_num;
1740                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1741                 rd->poll_one = hns_nic_rx_poll_one;
1742                 rd->ex_process = hns_nic_rx_up_pro;
1743                 rd->fini_process = hns_nic_rx_fini_pro;
1744
1745                 netif_napi_add(priv->netdev, &rd->napi,
1746                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1747                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1748         }
1749
1750         return 0;
1751 }
1752
1753 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1754 {
1755         struct hnae_handle *h = priv->ae_handle;
1756         int i;
1757
1758         for (i = 0; i < h->q_num * 2; i++) {
1759                 netif_napi_del(&priv->ring_data[i].napi);
1760                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1761                         (void)irq_set_affinity_hint(
1762                                 priv->ring_data[i].ring->irq,
1763                                 NULL);
1764                         free_irq(priv->ring_data[i].ring->irq,
1765                                  &priv->ring_data[i]);
1766                 }
1767
1768                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1769         }
1770         kfree(priv->ring_data);
1771 }
1772
1773 static void hns_nic_set_priv_ops(struct net_device *netdev)
1774 {
1775         struct hns_nic_priv *priv = netdev_priv(netdev);
1776         struct hnae_handle *h = priv->ae_handle;
1777
1778         if (AE_IS_VER1(priv->enet_ver)) {
1779                 priv->ops.fill_desc = fill_desc;
1780                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1781                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1782         } else {
1783                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1784                 if ((netdev->features & NETIF_F_TSO) ||
1785                     (netdev->features & NETIF_F_TSO6)) {
1786                         priv->ops.fill_desc = fill_tso_desc;
1787                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1788                         /* This chip only support 7*4096 */
1789                         netif_set_gso_max_size(netdev, 7 * 4096);
1790                         h->dev->ops->set_tso_stats(h, 1);
1791                 } else {
1792                         priv->ops.fill_desc = fill_v2_desc;
1793                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1794                 }
1795         }
1796 }
1797
1798 static int hns_nic_try_get_ae(struct net_device *ndev)
1799 {
1800         struct hns_nic_priv *priv = netdev_priv(ndev);
1801         struct hnae_handle *h;
1802         int ret;
1803
1804         h = hnae_get_handle(&priv->netdev->dev,
1805                             priv->ae_name, priv->port_id, NULL);
1806         if (IS_ERR_OR_NULL(h)) {
1807                 ret = PTR_ERR(h);
1808                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1809                 goto out;
1810         }
1811         priv->ae_handle = h;
1812
1813         ret = hns_nic_init_phy(ndev, h);
1814         if (ret) {
1815                 dev_err(priv->dev, "probe phy device fail!\n");
1816                 goto out_init_phy;
1817         }
1818
1819         ret = hns_nic_init_ring_data(priv);
1820         if (ret) {
1821                 ret = -ENOMEM;
1822                 goto out_init_ring_data;
1823         }
1824
1825         hns_nic_set_priv_ops(ndev);
1826
1827         ret = register_netdev(ndev);
1828         if (ret) {
1829                 dev_err(priv->dev, "probe register netdev fail!\n");
1830                 goto out_reg_ndev_fail;
1831         }
1832         return 0;
1833
1834 out_reg_ndev_fail:
1835         hns_nic_uninit_ring_data(priv);
1836         priv->ring_data = NULL;
1837 out_init_phy:
1838 out_init_ring_data:
1839         hnae_put_handle(priv->ae_handle);
1840         priv->ae_handle = NULL;
1841 out:
1842         return ret;
1843 }
1844
1845 static int hns_nic_notifier_action(struct notifier_block *nb,
1846                                    unsigned long action, void *data)
1847 {
1848         struct hns_nic_priv *priv =
1849                 container_of(nb, struct hns_nic_priv, notifier_block);
1850
1851         assert(action == HNAE_AE_REGISTER);
1852
1853         if (!hns_nic_try_get_ae(priv->netdev)) {
1854                 hnae_unregister_notifier(&priv->notifier_block);
1855                 priv->notifier_block.notifier_call = NULL;
1856         }
1857         return 0;
1858 }
1859
1860 static int hns_nic_dev_probe(struct platform_device *pdev)
1861 {
1862         struct device *dev = &pdev->dev;
1863         struct net_device *ndev;
1864         struct hns_nic_priv *priv;
1865         struct device_node *node = dev->of_node;
1866         int ret;
1867
1868         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1869         if (!ndev)
1870                 return -ENOMEM;
1871
1872         platform_set_drvdata(pdev, ndev);
1873
1874         priv = netdev_priv(ndev);
1875         priv->dev = dev;
1876         priv->netdev = ndev;
1877
1878         if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1879                 priv->enet_ver = AE_VERSION_1;
1880         else
1881                 priv->enet_ver = AE_VERSION_2;
1882
1883         ret = of_property_read_string(node, "ae-name", &priv->ae_name);
1884         if (ret)
1885                 goto out_read_string_fail;
1886
1887         ret = of_property_read_u32(node, "port-id", &priv->port_id);
1888         if (ret)
1889                 goto out_read_string_fail;
1890
1891         hns_init_mac_addr(ndev);
1892
1893         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1894         ndev->priv_flags |= IFF_UNICAST_FLT;
1895         ndev->netdev_ops = &hns_nic_netdev_ops;
1896         hns_ethtool_set_ops(ndev);
1897
1898         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1899                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1900                 NETIF_F_GRO;
1901         ndev->vlan_features |=
1902                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1903         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1904
1905         switch (priv->enet_ver) {
1906         case AE_VERSION_2:
1907                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1908                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1909                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1910                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1911                 break;
1912         default:
1913                 break;
1914         }
1915
1916         SET_NETDEV_DEV(ndev, dev);
1917
1918         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1919                 dev_dbg(dev, "set mask to 64bit\n");
1920         else
1921                 dev_err(dev, "set mask to 32bit fail!\n");
1922
1923         /* carrier off reporting is important to ethtool even BEFORE open */
1924         netif_carrier_off(ndev);
1925
1926         setup_timer(&priv->service_timer, hns_nic_service_timer,
1927                     (unsigned long)priv);
1928         INIT_WORK(&priv->service_task, hns_nic_service_task);
1929
1930         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1931         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1932         set_bit(NIC_STATE_DOWN, &priv->state);
1933
1934         if (hns_nic_try_get_ae(priv->netdev)) {
1935                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1936                 ret = hnae_register_notifier(&priv->notifier_block);
1937                 if (ret) {
1938                         dev_err(dev, "register notifier fail!\n");
1939                         goto out_notify_fail;
1940                 }
1941                 dev_dbg(dev, "has not handle, register notifier!\n");
1942         }
1943
1944         return 0;
1945
1946 out_notify_fail:
1947         (void)cancel_work_sync(&priv->service_task);
1948 out_read_string_fail:
1949         free_netdev(ndev);
1950         return ret;
1951 }
1952
1953 static int hns_nic_dev_remove(struct platform_device *pdev)
1954 {
1955         struct net_device *ndev = platform_get_drvdata(pdev);
1956         struct hns_nic_priv *priv = netdev_priv(ndev);
1957
1958         if (ndev->reg_state != NETREG_UNINITIALIZED)
1959                 unregister_netdev(ndev);
1960
1961         if (priv->ring_data)
1962                 hns_nic_uninit_ring_data(priv);
1963         priv->ring_data = NULL;
1964
1965         if (priv->phy)
1966                 phy_disconnect(priv->phy);
1967         priv->phy = NULL;
1968
1969         if (!IS_ERR_OR_NULL(priv->ae_handle))
1970                 hnae_put_handle(priv->ae_handle);
1971         priv->ae_handle = NULL;
1972         if (priv->notifier_block.notifier_call)
1973                 hnae_unregister_notifier(&priv->notifier_block);
1974         priv->notifier_block.notifier_call = NULL;
1975
1976         set_bit(NIC_STATE_REMOVING, &priv->state);
1977         (void)cancel_work_sync(&priv->service_task);
1978
1979         free_netdev(ndev);
1980         return 0;
1981 }
1982
1983 static const struct of_device_id hns_enet_of_match[] = {
1984         {.compatible = "hisilicon,hns-nic-v1",},
1985         {.compatible = "hisilicon,hns-nic-v2",},
1986         {},
1987 };
1988
1989 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
1990
1991 static struct platform_driver hns_nic_dev_driver = {
1992         .driver = {
1993                 .name = "hns-nic",
1994                 .of_match_table = hns_enet_of_match,
1995         },
1996         .probe = hns_nic_dev_probe,
1997         .remove = hns_nic_dev_remove,
1998 };
1999
2000 module_platform_driver(hns_nic_dev_driver);
2001
2002 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2003 MODULE_AUTHOR("Hisilicon, Inc.");
2004 MODULE_LICENSE("GPL");
2005 MODULE_ALIAS("platform:hns-nic");