]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/ethernet/intel/e1000/e1000_main.c
e1000: unmap ce4100_gbe_mdio_base_virt in e1000_remove
[mv-sheeva.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem *ce4100_gbe_mdio_base_virt;
40
41 char e1000_driver_name[] = "e1000";
42 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version[] = DRV_VERSION;
45 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
46
47 /* e1000_pci_tbl - PCI Device ID Table
48  *
49  * Last entry must be all 0s
50  *
51  * Macro expands to...
52  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
53  */
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
55         INTEL_E1000_ETHERNET_DEVICE(0x1000),
56         INTEL_E1000_ETHERNET_DEVICE(0x1001),
57         INTEL_E1000_ETHERNET_DEVICE(0x1004),
58         INTEL_E1000_ETHERNET_DEVICE(0x1008),
59         INTEL_E1000_ETHERNET_DEVICE(0x1009),
60         INTEL_E1000_ETHERNET_DEVICE(0x100C),
61         INTEL_E1000_ETHERNET_DEVICE(0x100D),
62         INTEL_E1000_ETHERNET_DEVICE(0x100E),
63         INTEL_E1000_ETHERNET_DEVICE(0x100F),
64         INTEL_E1000_ETHERNET_DEVICE(0x1010),
65         INTEL_E1000_ETHERNET_DEVICE(0x1011),
66         INTEL_E1000_ETHERNET_DEVICE(0x1012),
67         INTEL_E1000_ETHERNET_DEVICE(0x1013),
68         INTEL_E1000_ETHERNET_DEVICE(0x1014),
69         INTEL_E1000_ETHERNET_DEVICE(0x1015),
70         INTEL_E1000_ETHERNET_DEVICE(0x1016),
71         INTEL_E1000_ETHERNET_DEVICE(0x1017),
72         INTEL_E1000_ETHERNET_DEVICE(0x1018),
73         INTEL_E1000_ETHERNET_DEVICE(0x1019),
74         INTEL_E1000_ETHERNET_DEVICE(0x101A),
75         INTEL_E1000_ETHERNET_DEVICE(0x101D),
76         INTEL_E1000_ETHERNET_DEVICE(0x101E),
77         INTEL_E1000_ETHERNET_DEVICE(0x1026),
78         INTEL_E1000_ETHERNET_DEVICE(0x1027),
79         INTEL_E1000_ETHERNET_DEVICE(0x1028),
80         INTEL_E1000_ETHERNET_DEVICE(0x1075),
81         INTEL_E1000_ETHERNET_DEVICE(0x1076),
82         INTEL_E1000_ETHERNET_DEVICE(0x1077),
83         INTEL_E1000_ETHERNET_DEVICE(0x1078),
84         INTEL_E1000_ETHERNET_DEVICE(0x1079),
85         INTEL_E1000_ETHERNET_DEVICE(0x107A),
86         INTEL_E1000_ETHERNET_DEVICE(0x107B),
87         INTEL_E1000_ETHERNET_DEVICE(0x107C),
88         INTEL_E1000_ETHERNET_DEVICE(0x108A),
89         INTEL_E1000_ETHERNET_DEVICE(0x1099),
90         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
97
98 int e1000_up(struct e1000_adapter *adapter);
99 void e1000_down(struct e1000_adapter *adapter);
100 void e1000_reinit_locked(struct e1000_adapter *adapter);
101 void e1000_reset(struct e1000_adapter *adapter);
102 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
103 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
104 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
105 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
106 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *txdr);
108 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rxdr);
110 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
111                              struct e1000_tx_ring *tx_ring);
112 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
113                              struct e1000_rx_ring *rx_ring);
114 void e1000_update_stats(struct e1000_adapter *adapter);
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_rx_mode(struct net_device *netdev);
134 static void e1000_update_phy_info_task(struct work_struct *work);
135 static void e1000_watchdog(struct work_struct *work);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
137 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
138                                     struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data);
143 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                struct e1000_tx_ring *tx_ring);
145 static int e1000_clean(struct napi_struct *napi, int budget);
146 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
147                                struct e1000_rx_ring *rx_ring,
148                                int *work_done, int work_to_do);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
150                                      struct e1000_rx_ring *rx_ring,
151                                      int *work_done, int work_to_do);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153                                    struct e1000_rx_ring *rx_ring,
154                                    int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156                                          struct e1000_rx_ring *rx_ring,
157                                          int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160                            int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171                             netdev_features_t features);
172 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
173 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
174 static void e1000_restore_vlan(struct e1000_adapter *adapter);
175
176 #ifdef CONFIG_PM
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 static int e1000_resume(struct pci_dev *pdev);
179 #endif
180 static void e1000_shutdown(struct pci_dev *pdev);
181
182 #ifdef CONFIG_NET_POLL_CONTROLLER
183 /* for netdump / net console */
184 static void e1000_netpoll (struct net_device *netdev);
185 #endif
186
187 #define COPYBREAK_DEFAULT 256
188 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
189 module_param(copybreak, uint, 0644);
190 MODULE_PARM_DESC(copybreak,
191         "Maximum size of packet that is copied to a new buffer on receive");
192
193 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
194                      pci_channel_state_t state);
195 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
196 static void e1000_io_resume(struct pci_dev *pdev);
197
198 static struct pci_error_handlers e1000_err_handler = {
199         .error_detected = e1000_io_error_detected,
200         .slot_reset = e1000_io_slot_reset,
201         .resume = e1000_io_resume,
202 };
203
204 static struct pci_driver e1000_driver = {
205         .name     = e1000_driver_name,
206         .id_table = e1000_pci_tbl,
207         .probe    = e1000_probe,
208         .remove   = __devexit_p(e1000_remove),
209 #ifdef CONFIG_PM
210         /* Power Management Hooks */
211         .suspend  = e1000_suspend,
212         .resume   = e1000_resume,
213 #endif
214         .shutdown = e1000_shutdown,
215         .err_handler = &e1000_err_handler
216 };
217
218 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
219 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
220 MODULE_LICENSE("GPL");
221 MODULE_VERSION(DRV_VERSION);
222
223 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234         struct e1000_adapter *adapter = hw->back;
235         return adapter->netdev;
236 }
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244
245 static int __init e1000_init_module(void)
246 {
247         int ret;
248         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
249
250         pr_info("%s\n", e1000_copyright);
251
252         ret = pci_register_driver(&e1000_driver);
253         if (copybreak != COPYBREAK_DEFAULT) {
254                 if (copybreak == 0)
255                         pr_info("copybreak disabled\n");
256                 else
257                         pr_info("copybreak enabled for "
258                                    "packets <= %u bytes\n", copybreak);
259         }
260         return ret;
261 }
262
263 module_init(e1000_init_module);
264
265 /**
266  * e1000_exit_module - Driver Exit Cleanup Routine
267  *
268  * e1000_exit_module is called just before the driver is removed
269  * from memory.
270  **/
271
272 static void __exit e1000_exit_module(void)
273 {
274         pci_unregister_driver(&e1000_driver);
275 }
276
277 module_exit(e1000_exit_module);
278
279 static int e1000_request_irq(struct e1000_adapter *adapter)
280 {
281         struct net_device *netdev = adapter->netdev;
282         irq_handler_t handler = e1000_intr;
283         int irq_flags = IRQF_SHARED;
284         int err;
285
286         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
287                           netdev);
288         if (err) {
289                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
290         }
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300 }
301
302 /**
303  * e1000_irq_disable - Mask off interrupt generation on the NIC
304  * @adapter: board private structure
305  **/
306
307 static void e1000_irq_disable(struct e1000_adapter *adapter)
308 {
309         struct e1000_hw *hw = &adapter->hw;
310
311         ew32(IMC, ~0);
312         E1000_WRITE_FLUSH();
313         synchronize_irq(adapter->pdev->irq);
314 }
315
316 /**
317  * e1000_irq_enable - Enable default interrupt generation settings
318  * @adapter: board private structure
319  **/
320
321 static void e1000_irq_enable(struct e1000_adapter *adapter)
322 {
323         struct e1000_hw *hw = &adapter->hw;
324
325         ew32(IMS, IMS_ENABLE_MASK);
326         E1000_WRITE_FLUSH();
327 }
328
329 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
330 {
331         struct e1000_hw *hw = &adapter->hw;
332         struct net_device *netdev = adapter->netdev;
333         u16 vid = hw->mng_cookie.vlan_id;
334         u16 old_vid = adapter->mng_vlan_id;
335
336         if (!e1000_vlan_used(adapter))
337                 return;
338
339         if (!test_bit(vid, adapter->active_vlans)) {
340                 if (hw->mng_cookie.status &
341                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
342                         e1000_vlan_rx_add_vid(netdev, vid);
343                         adapter->mng_vlan_id = vid;
344                 } else {
345                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
346                 }
347                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
348                     (vid != old_vid) &&
349                     !test_bit(old_vid, adapter->active_vlans))
350                         e1000_vlan_rx_kill_vid(netdev, old_vid);
351         } else {
352                 adapter->mng_vlan_id = vid;
353         }
354 }
355
356 static void e1000_init_manageability(struct e1000_adapter *adapter)
357 {
358         struct e1000_hw *hw = &adapter->hw;
359
360         if (adapter->en_mng_pt) {
361                 u32 manc = er32(MANC);
362
363                 /* disable hardware interception of ARP */
364                 manc &= ~(E1000_MANC_ARP_EN);
365
366                 ew32(MANC, manc);
367         }
368 }
369
370 static void e1000_release_manageability(struct e1000_adapter *adapter)
371 {
372         struct e1000_hw *hw = &adapter->hw;
373
374         if (adapter->en_mng_pt) {
375                 u32 manc = er32(MANC);
376
377                 /* re-enable hardware interception of ARP */
378                 manc |= E1000_MANC_ARP_EN;
379
380                 ew32(MANC, manc);
381         }
382 }
383
384 /**
385  * e1000_configure - configure the hardware for RX and TX
386  * @adapter = private board structure
387  **/
388 static void e1000_configure(struct e1000_adapter *adapter)
389 {
390         struct net_device *netdev = adapter->netdev;
391         int i;
392
393         e1000_set_rx_mode(netdev);
394
395         e1000_restore_vlan(adapter);
396         e1000_init_manageability(adapter);
397
398         e1000_configure_tx(adapter);
399         e1000_setup_rctl(adapter);
400         e1000_configure_rx(adapter);
401         /* call E1000_DESC_UNUSED which always leaves
402          * at least 1 descriptor unused to make sure
403          * next_to_use != next_to_clean */
404         for (i = 0; i < adapter->num_rx_queues; i++) {
405                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
406                 adapter->alloc_rx_buf(adapter, ring,
407                                       E1000_DESC_UNUSED(ring));
408         }
409 }
410
411 int e1000_up(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         /* hardware has been reset, we need to reload some things */
416         e1000_configure(adapter);
417
418         clear_bit(__E1000_DOWN, &adapter->flags);
419
420         napi_enable(&adapter->napi);
421
422         e1000_irq_enable(adapter);
423
424         netif_wake_queue(adapter->netdev);
425
426         /* fire a link change interrupt to start the watchdog */
427         ew32(ICS, E1000_ICS_LSC);
428         return 0;
429 }
430
431 /**
432  * e1000_power_up_phy - restore link in case the phy was powered down
433  * @adapter: address of board private structure
434  *
435  * The phy may be powered down to save power and turn off link when the
436  * driver is unloaded and wake on lan is not enabled (among others)
437  * *** this routine MUST be followed by a call to e1000_reset ***
438  *
439  **/
440
441 void e1000_power_up_phy(struct e1000_adapter *adapter)
442 {
443         struct e1000_hw *hw = &adapter->hw;
444         u16 mii_reg = 0;
445
446         /* Just clear the power down bit to wake the phy back up */
447         if (hw->media_type == e1000_media_type_copper) {
448                 /* according to the manual, the phy will retain its
449                  * settings across a power-down/up cycle */
450                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
451                 mii_reg &= ~MII_CR_POWER_DOWN;
452                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
453         }
454 }
455
456 static void e1000_power_down_phy(struct e1000_adapter *adapter)
457 {
458         struct e1000_hw *hw = &adapter->hw;
459
460         /* Power down the PHY so no link is implied when interface is down *
461          * The PHY cannot be powered down if any of the following is true *
462          * (a) WoL is enabled
463          * (b) AMT is active
464          * (c) SoL/IDER session is active */
465         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
466            hw->media_type == e1000_media_type_copper) {
467                 u16 mii_reg = 0;
468
469                 switch (hw->mac_type) {
470                 case e1000_82540:
471                 case e1000_82545:
472                 case e1000_82545_rev_3:
473                 case e1000_82546:
474                 case e1000_ce4100:
475                 case e1000_82546_rev_3:
476                 case e1000_82541:
477                 case e1000_82541_rev_2:
478                 case e1000_82547:
479                 case e1000_82547_rev_2:
480                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
481                                 goto out;
482                         break;
483                 default:
484                         goto out;
485                 }
486                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
487                 mii_reg |= MII_CR_POWER_DOWN;
488                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
489                 msleep(1);
490         }
491 out:
492         return;
493 }
494
495 static void e1000_down_and_stop(struct e1000_adapter *adapter)
496 {
497         set_bit(__E1000_DOWN, &adapter->flags);
498         cancel_work_sync(&adapter->reset_task);
499         cancel_delayed_work_sync(&adapter->watchdog_task);
500         cancel_delayed_work_sync(&adapter->phy_info_task);
501         cancel_delayed_work_sync(&adapter->fifo_stall_task);
502 }
503
504 void e1000_down(struct e1000_adapter *adapter)
505 {
506         struct e1000_hw *hw = &adapter->hw;
507         struct net_device *netdev = adapter->netdev;
508         u32 rctl, tctl;
509
510
511         /* disable receives in the hardware */
512         rctl = er32(RCTL);
513         ew32(RCTL, rctl & ~E1000_RCTL_EN);
514         /* flush and sleep below */
515
516         netif_tx_disable(netdev);
517
518         /* disable transmits in the hardware */
519         tctl = er32(TCTL);
520         tctl &= ~E1000_TCTL_EN;
521         ew32(TCTL, tctl);
522         /* flush both disables and wait for them to finish */
523         E1000_WRITE_FLUSH();
524         msleep(10);
525
526         napi_disable(&adapter->napi);
527
528         e1000_irq_disable(adapter);
529
530         /*
531          * Setting DOWN must be after irq_disable to prevent
532          * a screaming interrupt.  Setting DOWN also prevents
533          * tasks from rescheduling.
534          */
535         e1000_down_and_stop(adapter);
536
537         adapter->link_speed = 0;
538         adapter->link_duplex = 0;
539         netif_carrier_off(netdev);
540
541         e1000_reset(adapter);
542         e1000_clean_all_tx_rings(adapter);
543         e1000_clean_all_rx_rings(adapter);
544 }
545
546 static void e1000_reinit_safe(struct e1000_adapter *adapter)
547 {
548         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
549                 msleep(1);
550         mutex_lock(&adapter->mutex);
551         e1000_down(adapter);
552         e1000_up(adapter);
553         mutex_unlock(&adapter->mutex);
554         clear_bit(__E1000_RESETTING, &adapter->flags);
555 }
556
557 void e1000_reinit_locked(struct e1000_adapter *adapter)
558 {
559         /* if rtnl_lock is not held the call path is bogus */
560         ASSERT_RTNL();
561         WARN_ON(in_interrupt());
562         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563                 msleep(1);
564         e1000_down(adapter);
565         e1000_up(adapter);
566         clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571         struct e1000_hw *hw = &adapter->hw;
572         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573         bool legacy_pba_adjust = false;
574         u16 hwm;
575
576         /* Repartition Pba for greater than 9k mtu
577          * To take effect CTRL.RST is required.
578          */
579
580         switch (hw->mac_type) {
581         case e1000_82542_rev2_0:
582         case e1000_82542_rev2_1:
583         case e1000_82543:
584         case e1000_82544:
585         case e1000_82540:
586         case e1000_82541:
587         case e1000_82541_rev_2:
588                 legacy_pba_adjust = true;
589                 pba = E1000_PBA_48K;
590                 break;
591         case e1000_82545:
592         case e1000_82545_rev_3:
593         case e1000_82546:
594         case e1000_ce4100:
595         case e1000_82546_rev_3:
596                 pba = E1000_PBA_48K;
597                 break;
598         case e1000_82547:
599         case e1000_82547_rev_2:
600                 legacy_pba_adjust = true;
601                 pba = E1000_PBA_30K;
602                 break;
603         case e1000_undefined:
604         case e1000_num_macs:
605                 break;
606         }
607
608         if (legacy_pba_adjust) {
609                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610                         pba -= 8; /* allocate more FIFO for Tx */
611
612                 if (hw->mac_type == e1000_82547) {
613                         adapter->tx_fifo_head = 0;
614                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615                         adapter->tx_fifo_size =
616                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617                         atomic_set(&adapter->tx_fifo_stall, 0);
618                 }
619         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620                 /* adjust PBA for jumbo frames */
621                 ew32(PBA, pba);
622
623                 /* To maintain wire speed transmits, the Tx FIFO should be
624                  * large enough to accommodate two full transmit packets,
625                  * rounded up to the next 1KB and expressed in KB.  Likewise,
626                  * the Rx FIFO should be large enough to accommodate at least
627                  * one full receive packet and is similarly rounded up and
628                  * expressed in KB. */
629                 pba = er32(PBA);
630                 /* upper 16 bits has Tx packet buffer allocation size in KB */
631                 tx_space = pba >> 16;
632                 /* lower 16 bits has Rx packet buffer allocation size in KB */
633                 pba &= 0xffff;
634                 /*
635                  * the tx fifo also stores 16 bytes of information about the tx
636                  * but don't include ethernet FCS because hardware appends it
637                  */
638                 min_tx_space = (hw->max_frame_size +
639                                 sizeof(struct e1000_tx_desc) -
640                                 ETH_FCS_LEN) * 2;
641                 min_tx_space = ALIGN(min_tx_space, 1024);
642                 min_tx_space >>= 10;
643                 /* software strips receive CRC, so leave room for it */
644                 min_rx_space = hw->max_frame_size;
645                 min_rx_space = ALIGN(min_rx_space, 1024);
646                 min_rx_space >>= 10;
647
648                 /* If current Tx allocation is less than the min Tx FIFO size,
649                  * and the min Tx FIFO size is less than the current Rx FIFO
650                  * allocation, take space away from current Rx allocation */
651                 if (tx_space < min_tx_space &&
652                     ((min_tx_space - tx_space) < pba)) {
653                         pba = pba - (min_tx_space - tx_space);
654
655                         /* PCI/PCIx hardware has PBA alignment constraints */
656                         switch (hw->mac_type) {
657                         case e1000_82545 ... e1000_82546_rev_3:
658                                 pba &= ~(E1000_PBA_8K - 1);
659                                 break;
660                         default:
661                                 break;
662                         }
663
664                         /* if short on rx space, rx wins and must trump tx
665                          * adjustment or use Early Receive if available */
666                         if (pba < min_rx_space)
667                                 pba = min_rx_space;
668                 }
669         }
670
671         ew32(PBA, pba);
672
673         /*
674          * flow control settings:
675          * The high water mark must be low enough to fit one full frame
676          * (or the size used for early receive) above it in the Rx FIFO.
677          * Set it to the lower of:
678          * - 90% of the Rx FIFO size, and
679          * - the full Rx FIFO size minus the early receive size (for parts
680          *   with ERT support assuming ERT set to E1000_ERT_2048), or
681          * - the full Rx FIFO size minus one full frame
682          */
683         hwm = min(((pba << 10) * 9 / 10),
684                   ((pba << 10) - hw->max_frame_size));
685
686         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
687         hw->fc_low_water = hw->fc_high_water - 8;
688         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
689         hw->fc_send_xon = 1;
690         hw->fc = hw->original_fc;
691
692         /* Allow time for pending master requests to run */
693         e1000_reset_hw(hw);
694         if (hw->mac_type >= e1000_82544)
695                 ew32(WUC, 0);
696
697         if (e1000_init_hw(hw))
698                 e_dev_err("Hardware Error\n");
699         e1000_update_mng_vlan(adapter);
700
701         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
702         if (hw->mac_type >= e1000_82544 &&
703             hw->autoneg == 1 &&
704             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
705                 u32 ctrl = er32(CTRL);
706                 /* clear phy power management bit if we are in gig only mode,
707                  * which if enabled will attempt negotiation to 100Mb, which
708                  * can cause a loss of link at power off or driver unload */
709                 ctrl &= ~E1000_CTRL_SWDPIN3;
710                 ew32(CTRL, ctrl);
711         }
712
713         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
714         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
715
716         e1000_reset_adaptive(hw);
717         e1000_phy_get_info(hw, &adapter->phy_info);
718
719         e1000_release_manageability(adapter);
720 }
721
722 /**
723  *  Dump the eeprom for users having checksum issues
724  **/
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727         struct net_device *netdev = adapter->netdev;
728         struct ethtool_eeprom eeprom;
729         const struct ethtool_ops *ops = netdev->ethtool_ops;
730         u8 *data;
731         int i;
732         u16 csum_old, csum_new = 0;
733
734         eeprom.len = ops->get_eeprom_len(netdev);
735         eeprom.offset = 0;
736
737         data = kmalloc(eeprom.len, GFP_KERNEL);
738         if (!data) {
739                 pr_err("Unable to allocate memory to dump EEPROM data\n");
740                 return;
741         }
742
743         ops->get_eeprom(netdev, &eeprom, data);
744
745         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748                 csum_new += data[i] + (data[i + 1] << 8);
749         csum_new = EEPROM_SUM - csum_new;
750
751         pr_err("/*********************/\n");
752         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753         pr_err("Calculated              : 0x%04x\n", csum_new);
754
755         pr_err("Offset    Values\n");
756         pr_err("========  ======\n");
757         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759         pr_err("Include this output when contacting your support provider.\n");
760         pr_err("This is not a software error! Something bad happened to\n");
761         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762         pr_err("result in further problems, possibly loss of data,\n");
763         pr_err("corruption or system hangs!\n");
764         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765         pr_err("which is invalid and requires you to set the proper MAC\n");
766         pr_err("address manually before continuing to enable this network\n");
767         pr_err("device. Please inspect the EEPROM dump and report the\n");
768         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769         pr_err("/*********************/\n");
770
771         kfree(data);
772 }
773
774 /**
775  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776  * @pdev: PCI device information struct
777  *
778  * Return true if an adapter needs ioport resources
779  **/
780 static int e1000_is_need_ioport(struct pci_dev *pdev)
781 {
782         switch (pdev->device) {
783         case E1000_DEV_ID_82540EM:
784         case E1000_DEV_ID_82540EM_LOM:
785         case E1000_DEV_ID_82540EP:
786         case E1000_DEV_ID_82540EP_LOM:
787         case E1000_DEV_ID_82540EP_LP:
788         case E1000_DEV_ID_82541EI:
789         case E1000_DEV_ID_82541EI_MOBILE:
790         case E1000_DEV_ID_82541ER:
791         case E1000_DEV_ID_82541ER_LOM:
792         case E1000_DEV_ID_82541GI:
793         case E1000_DEV_ID_82541GI_LF:
794         case E1000_DEV_ID_82541GI_MOBILE:
795         case E1000_DEV_ID_82544EI_COPPER:
796         case E1000_DEV_ID_82544EI_FIBER:
797         case E1000_DEV_ID_82544GC_COPPER:
798         case E1000_DEV_ID_82544GC_LOM:
799         case E1000_DEV_ID_82545EM_COPPER:
800         case E1000_DEV_ID_82545EM_FIBER:
801         case E1000_DEV_ID_82546EB_COPPER:
802         case E1000_DEV_ID_82546EB_FIBER:
803         case E1000_DEV_ID_82546EB_QUAD_COPPER:
804                 return true;
805         default:
806                 return false;
807         }
808 }
809
810 static netdev_features_t e1000_fix_features(struct net_device *netdev,
811         netdev_features_t features)
812 {
813         /*
814          * Since there is no support for separate rx/tx vlan accel
815          * enable/disable make sure tx flag is always in same state as rx.
816          */
817         if (features & NETIF_F_HW_VLAN_RX)
818                 features |= NETIF_F_HW_VLAN_TX;
819         else
820                 features &= ~NETIF_F_HW_VLAN_TX;
821
822         return features;
823 }
824
825 static int e1000_set_features(struct net_device *netdev,
826         netdev_features_t features)
827 {
828         struct e1000_adapter *adapter = netdev_priv(netdev);
829         netdev_features_t changed = features ^ netdev->features;
830
831         if (changed & NETIF_F_HW_VLAN_RX)
832                 e1000_vlan_mode(netdev, features);
833
834         if (!(changed & NETIF_F_RXCSUM))
835                 return 0;
836
837         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
838
839         if (netif_running(netdev))
840                 e1000_reinit_locked(adapter);
841         else
842                 e1000_reset(adapter);
843
844         return 0;
845 }
846
847 static const struct net_device_ops e1000_netdev_ops = {
848         .ndo_open               = e1000_open,
849         .ndo_stop               = e1000_close,
850         .ndo_start_xmit         = e1000_xmit_frame,
851         .ndo_get_stats          = e1000_get_stats,
852         .ndo_set_rx_mode        = e1000_set_rx_mode,
853         .ndo_set_mac_address    = e1000_set_mac,
854         .ndo_tx_timeout         = e1000_tx_timeout,
855         .ndo_change_mtu         = e1000_change_mtu,
856         .ndo_do_ioctl           = e1000_ioctl,
857         .ndo_validate_addr      = eth_validate_addr,
858         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
859         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
860 #ifdef CONFIG_NET_POLL_CONTROLLER
861         .ndo_poll_controller    = e1000_netpoll,
862 #endif
863         .ndo_fix_features       = e1000_fix_features,
864         .ndo_set_features       = e1000_set_features,
865 };
866
867 /**
868  * e1000_init_hw_struct - initialize members of hw struct
869  * @adapter: board private struct
870  * @hw: structure used by e1000_hw.c
871  *
872  * Factors out initialization of the e1000_hw struct to its own function
873  * that can be called very early at init (just after struct allocation).
874  * Fields are initialized based on PCI device information and
875  * OS network device settings (MTU size).
876  * Returns negative error codes if MAC type setup fails.
877  */
878 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
879                                 struct e1000_hw *hw)
880 {
881         struct pci_dev *pdev = adapter->pdev;
882
883         /* PCI config space info */
884         hw->vendor_id = pdev->vendor;
885         hw->device_id = pdev->device;
886         hw->subsystem_vendor_id = pdev->subsystem_vendor;
887         hw->subsystem_id = pdev->subsystem_device;
888         hw->revision_id = pdev->revision;
889
890         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
891
892         hw->max_frame_size = adapter->netdev->mtu +
893                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
894         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
895
896         /* identify the MAC */
897         if (e1000_set_mac_type(hw)) {
898                 e_err(probe, "Unknown MAC Type\n");
899                 return -EIO;
900         }
901
902         switch (hw->mac_type) {
903         default:
904                 break;
905         case e1000_82541:
906         case e1000_82547:
907         case e1000_82541_rev_2:
908         case e1000_82547_rev_2:
909                 hw->phy_init_script = 1;
910                 break;
911         }
912
913         e1000_set_media_type(hw);
914         e1000_get_bus_info(hw);
915
916         hw->wait_autoneg_complete = false;
917         hw->tbi_compatibility_en = true;
918         hw->adaptive_ifs = true;
919
920         /* Copper options */
921
922         if (hw->media_type == e1000_media_type_copper) {
923                 hw->mdix = AUTO_ALL_MODES;
924                 hw->disable_polarity_correction = false;
925                 hw->master_slave = E1000_MASTER_SLAVE;
926         }
927
928         return 0;
929 }
930
931 /**
932  * e1000_probe - Device Initialization Routine
933  * @pdev: PCI device information struct
934  * @ent: entry in e1000_pci_tbl
935  *
936  * Returns 0 on success, negative on failure
937  *
938  * e1000_probe initializes an adapter identified by a pci_dev structure.
939  * The OS initialization, configuring of the adapter private structure,
940  * and a hardware reset occur.
941  **/
942 static int __devinit e1000_probe(struct pci_dev *pdev,
943                                  const struct pci_device_id *ent)
944 {
945         struct net_device *netdev;
946         struct e1000_adapter *adapter;
947         struct e1000_hw *hw;
948
949         static int cards_found = 0;
950         static int global_quad_port_a = 0; /* global ksp3 port a indication */
951         int i, err, pci_using_dac;
952         u16 eeprom_data = 0;
953         u16 tmp = 0;
954         u16 eeprom_apme_mask = E1000_EEPROM_APME;
955         int bars, need_ioport;
956
957         /* do not allocate ioport bars when not needed */
958         need_ioport = e1000_is_need_ioport(pdev);
959         if (need_ioport) {
960                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
961                 err = pci_enable_device(pdev);
962         } else {
963                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
964                 err = pci_enable_device_mem(pdev);
965         }
966         if (err)
967                 return err;
968
969         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
970         if (err)
971                 goto err_pci_reg;
972
973         pci_set_master(pdev);
974         err = pci_save_state(pdev);
975         if (err)
976                 goto err_alloc_etherdev;
977
978         err = -ENOMEM;
979         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
980         if (!netdev)
981                 goto err_alloc_etherdev;
982
983         SET_NETDEV_DEV(netdev, &pdev->dev);
984
985         pci_set_drvdata(pdev, netdev);
986         adapter = netdev_priv(netdev);
987         adapter->netdev = netdev;
988         adapter->pdev = pdev;
989         adapter->msg_enable = (1 << debug) - 1;
990         adapter->bars = bars;
991         adapter->need_ioport = need_ioport;
992
993         hw = &adapter->hw;
994         hw->back = adapter;
995
996         err = -EIO;
997         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
998         if (!hw->hw_addr)
999                 goto err_ioremap;
1000
1001         if (adapter->need_ioport) {
1002                 for (i = BAR_1; i <= BAR_5; i++) {
1003                         if (pci_resource_len(pdev, i) == 0)
1004                                 continue;
1005                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1006                                 hw->io_base = pci_resource_start(pdev, i);
1007                                 break;
1008                         }
1009                 }
1010         }
1011
1012         /* make ready for any if (hw->...) below */
1013         err = e1000_init_hw_struct(adapter, hw);
1014         if (err)
1015                 goto err_sw_init;
1016
1017         /*
1018          * there is a workaround being applied below that limits
1019          * 64-bit DMA addresses to 64-bit hardware.  There are some
1020          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1021          */
1022         pci_using_dac = 0;
1023         if ((hw->bus_type == e1000_bus_type_pcix) &&
1024             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1025                 /*
1026                  * according to DMA-API-HOWTO, coherent calls will always
1027                  * succeed if the set call did
1028                  */
1029                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1030                 pci_using_dac = 1;
1031         } else {
1032                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1033                 if (err) {
1034                         pr_err("No usable DMA config, aborting\n");
1035                         goto err_dma;
1036                 }
1037                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1038         }
1039
1040         netdev->netdev_ops = &e1000_netdev_ops;
1041         e1000_set_ethtool_ops(netdev);
1042         netdev->watchdog_timeo = 5 * HZ;
1043         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1044
1045         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1046
1047         adapter->bd_number = cards_found;
1048
1049         /* setup the private structure */
1050
1051         err = e1000_sw_init(adapter);
1052         if (err)
1053                 goto err_sw_init;
1054
1055         err = -EIO;
1056         if (hw->mac_type == e1000_ce4100) {
1057                 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1058                 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1059                                                 pci_resource_len(pdev, BAR_1));
1060
1061                 if (!ce4100_gbe_mdio_base_virt)
1062                         goto err_mdio_ioremap;
1063         }
1064
1065         if (hw->mac_type >= e1000_82543) {
1066                 netdev->hw_features = NETIF_F_SG |
1067                                    NETIF_F_HW_CSUM |
1068                                    NETIF_F_HW_VLAN_RX;
1069                 netdev->features = NETIF_F_HW_VLAN_TX |
1070                                    NETIF_F_HW_VLAN_FILTER;
1071         }
1072
1073         if ((hw->mac_type >= e1000_82544) &&
1074            (hw->mac_type != e1000_82547))
1075                 netdev->hw_features |= NETIF_F_TSO;
1076
1077         netdev->features |= netdev->hw_features;
1078         netdev->hw_features |= NETIF_F_RXCSUM;
1079
1080         if (pci_using_dac) {
1081                 netdev->features |= NETIF_F_HIGHDMA;
1082                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1083         }
1084
1085         netdev->vlan_features |= NETIF_F_TSO;
1086         netdev->vlan_features |= NETIF_F_HW_CSUM;
1087         netdev->vlan_features |= NETIF_F_SG;
1088
1089         netdev->priv_flags |= IFF_UNICAST_FLT;
1090
1091         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1092
1093         /* initialize eeprom parameters */
1094         if (e1000_init_eeprom_params(hw)) {
1095                 e_err(probe, "EEPROM initialization failed\n");
1096                 goto err_eeprom;
1097         }
1098
1099         /* before reading the EEPROM, reset the controller to
1100          * put the device in a known good starting state */
1101
1102         e1000_reset_hw(hw);
1103
1104         /* make sure the EEPROM is good */
1105         if (e1000_validate_eeprom_checksum(hw) < 0) {
1106                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1107                 e1000_dump_eeprom(adapter);
1108                 /*
1109                  * set MAC address to all zeroes to invalidate and temporary
1110                  * disable this device for the user. This blocks regular
1111                  * traffic while still permitting ethtool ioctls from reaching
1112                  * the hardware as well as allowing the user to run the
1113                  * interface after manually setting a hw addr using
1114                  * `ip set address`
1115                  */
1116                 memset(hw->mac_addr, 0, netdev->addr_len);
1117         } else {
1118                 /* copy the MAC address out of the EEPROM */
1119                 if (e1000_read_mac_addr(hw))
1120                         e_err(probe, "EEPROM Read Error\n");
1121         }
1122         /* don't block initalization here due to bad MAC address */
1123         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1124         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1125
1126         if (!is_valid_ether_addr(netdev->perm_addr))
1127                 e_err(probe, "Invalid MAC Address\n");
1128
1129
1130         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132                           e1000_82547_tx_fifo_stall_task);
1133         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135
1136         e1000_check_options(adapter);
1137
1138         /* Initial Wake on LAN setting
1139          * If APM wake is enabled in the EEPROM,
1140          * enable the ACPI Magic Packet filter
1141          */
1142
1143         switch (hw->mac_type) {
1144         case e1000_82542_rev2_0:
1145         case e1000_82542_rev2_1:
1146         case e1000_82543:
1147                 break;
1148         case e1000_82544:
1149                 e1000_read_eeprom(hw,
1150                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152                 break;
1153         case e1000_82546:
1154         case e1000_82546_rev_3:
1155                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1156                         e1000_read_eeprom(hw,
1157                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158                         break;
1159                 }
1160                 /* Fall Through */
1161         default:
1162                 e1000_read_eeprom(hw,
1163                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164                 break;
1165         }
1166         if (eeprom_data & eeprom_apme_mask)
1167                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169         /* now that we have the eeprom settings, apply the special cases
1170          * where the eeprom may be wrong or the board simply won't support
1171          * wake on lan on a particular port */
1172         switch (pdev->device) {
1173         case E1000_DEV_ID_82546GB_PCIE:
1174                 adapter->eeprom_wol = 0;
1175                 break;
1176         case E1000_DEV_ID_82546EB_FIBER:
1177         case E1000_DEV_ID_82546GB_FIBER:
1178                 /* Wake events only supported on port A for dual fiber
1179                  * regardless of eeprom setting */
1180                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1181                         adapter->eeprom_wol = 0;
1182                 break;
1183         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1184                 /* if quad port adapter, disable WoL on all but port A */
1185                 if (global_quad_port_a != 0)
1186                         adapter->eeprom_wol = 0;
1187                 else
1188                         adapter->quad_port_a = true;
1189                 /* Reset for multiple quad port adapters */
1190                 if (++global_quad_port_a == 4)
1191                         global_quad_port_a = 0;
1192                 break;
1193         }
1194
1195         /* initialize the wol settings based on the eeprom settings */
1196         adapter->wol = adapter->eeprom_wol;
1197         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1198
1199         /* Auto detect PHY address */
1200         if (hw->mac_type == e1000_ce4100) {
1201                 for (i = 0; i < 32; i++) {
1202                         hw->phy_addr = i;
1203                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1204                         if (tmp == 0 || tmp == 0xFF) {
1205                                 if (i == 31)
1206                                         goto err_eeprom;
1207                                 continue;
1208                         } else
1209                                 break;
1210                 }
1211         }
1212
1213         /* reset the hardware with the new settings */
1214         e1000_reset(adapter);
1215
1216         strcpy(netdev->name, "eth%d");
1217         err = register_netdev(netdev);
1218         if (err)
1219                 goto err_register;
1220
1221         e1000_vlan_mode(netdev, netdev->features);
1222
1223         /* print bus type/speed/width info */
1224         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1225                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1226                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1227                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1228                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1229                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1230                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1231                netdev->dev_addr);
1232
1233         /* carrier off reporting is important to ethtool even BEFORE open */
1234         netif_carrier_off(netdev);
1235
1236         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1237
1238         cards_found++;
1239         return 0;
1240
1241 err_register:
1242 err_eeprom:
1243         e1000_phy_hw_reset(hw);
1244
1245         if (hw->flash_address)
1246                 iounmap(hw->flash_address);
1247         kfree(adapter->tx_ring);
1248         kfree(adapter->rx_ring);
1249 err_dma:
1250 err_sw_init:
1251 err_mdio_ioremap:
1252         iounmap(ce4100_gbe_mdio_base_virt);
1253         iounmap(hw->hw_addr);
1254 err_ioremap:
1255         free_netdev(netdev);
1256 err_alloc_etherdev:
1257         pci_release_selected_regions(pdev, bars);
1258 err_pci_reg:
1259         pci_disable_device(pdev);
1260         return err;
1261 }
1262
1263 /**
1264  * e1000_remove - Device Removal Routine
1265  * @pdev: PCI device information struct
1266  *
1267  * e1000_remove is called by the PCI subsystem to alert the driver
1268  * that it should release a PCI device.  The could be caused by a
1269  * Hot-Plug event, or because the driver is going to be removed from
1270  * memory.
1271  **/
1272
1273 static void __devexit e1000_remove(struct pci_dev *pdev)
1274 {
1275         struct net_device *netdev = pci_get_drvdata(pdev);
1276         struct e1000_adapter *adapter = netdev_priv(netdev);
1277         struct e1000_hw *hw = &adapter->hw;
1278
1279         e1000_down_and_stop(adapter);
1280         e1000_release_manageability(adapter);
1281
1282         unregister_netdev(netdev);
1283
1284         e1000_phy_hw_reset(hw);
1285
1286         kfree(adapter->tx_ring);
1287         kfree(adapter->rx_ring);
1288
1289         if (hw->mac_type == e1000_ce4100)
1290                 iounmap(ce4100_gbe_mdio_base_virt);
1291         iounmap(hw->hw_addr);
1292         if (hw->flash_address)
1293                 iounmap(hw->flash_address);
1294         pci_release_selected_regions(pdev, adapter->bars);
1295
1296         free_netdev(netdev);
1297
1298         pci_disable_device(pdev);
1299 }
1300
1301 /**
1302  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1303  * @adapter: board private structure to initialize
1304  *
1305  * e1000_sw_init initializes the Adapter private data structure.
1306  * e1000_init_hw_struct MUST be called before this function
1307  **/
1308
1309 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1310 {
1311         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312
1313         adapter->num_tx_queues = 1;
1314         adapter->num_rx_queues = 1;
1315
1316         if (e1000_alloc_queues(adapter)) {
1317                 e_err(probe, "Unable to allocate memory for queues\n");
1318                 return -ENOMEM;
1319         }
1320
1321         /* Explicitly disable IRQ since the NIC can be in any state. */
1322         e1000_irq_disable(adapter);
1323
1324         spin_lock_init(&adapter->stats_lock);
1325         mutex_init(&adapter->mutex);
1326
1327         set_bit(__E1000_DOWN, &adapter->flags);
1328
1329         return 0;
1330 }
1331
1332 /**
1333  * e1000_alloc_queues - Allocate memory for all rings
1334  * @adapter: board private structure to initialize
1335  *
1336  * We allocate one ring per queue at run-time since we don't know the
1337  * number of queues at compile-time.
1338  **/
1339
1340 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1341 {
1342         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1343                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1344         if (!adapter->tx_ring)
1345                 return -ENOMEM;
1346
1347         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1348                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1349         if (!adapter->rx_ring) {
1350                 kfree(adapter->tx_ring);
1351                 return -ENOMEM;
1352         }
1353
1354         return E1000_SUCCESS;
1355 }
1356
1357 /**
1358  * e1000_open - Called when a network interface is made active
1359  * @netdev: network interface device structure
1360  *
1361  * Returns 0 on success, negative value on failure
1362  *
1363  * The open entry point is called when a network interface is made
1364  * active by the system (IFF_UP).  At this point all resources needed
1365  * for transmit and receive operations are allocated, the interrupt
1366  * handler is registered with the OS, the watchdog task is started,
1367  * and the stack is notified that the interface is ready.
1368  **/
1369
1370 static int e1000_open(struct net_device *netdev)
1371 {
1372         struct e1000_adapter *adapter = netdev_priv(netdev);
1373         struct e1000_hw *hw = &adapter->hw;
1374         int err;
1375
1376         /* disallow open during test */
1377         if (test_bit(__E1000_TESTING, &adapter->flags))
1378                 return -EBUSY;
1379
1380         netif_carrier_off(netdev);
1381
1382         /* allocate transmit descriptors */
1383         err = e1000_setup_all_tx_resources(adapter);
1384         if (err)
1385                 goto err_setup_tx;
1386
1387         /* allocate receive descriptors */
1388         err = e1000_setup_all_rx_resources(adapter);
1389         if (err)
1390                 goto err_setup_rx;
1391
1392         e1000_power_up_phy(adapter);
1393
1394         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1395         if ((hw->mng_cookie.status &
1396                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1397                 e1000_update_mng_vlan(adapter);
1398         }
1399
1400         /* before we allocate an interrupt, we must be ready to handle it.
1401          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1402          * as soon as we call pci_request_irq, so we have to setup our
1403          * clean_rx handler before we do so.  */
1404         e1000_configure(adapter);
1405
1406         err = e1000_request_irq(adapter);
1407         if (err)
1408                 goto err_req_irq;
1409
1410         /* From here on the code is the same as e1000_up() */
1411         clear_bit(__E1000_DOWN, &adapter->flags);
1412
1413         napi_enable(&adapter->napi);
1414
1415         e1000_irq_enable(adapter);
1416
1417         netif_start_queue(netdev);
1418
1419         /* fire a link status change interrupt to start the watchdog */
1420         ew32(ICS, E1000_ICS_LSC);
1421
1422         return E1000_SUCCESS;
1423
1424 err_req_irq:
1425         e1000_power_down_phy(adapter);
1426         e1000_free_all_rx_resources(adapter);
1427 err_setup_rx:
1428         e1000_free_all_tx_resources(adapter);
1429 err_setup_tx:
1430         e1000_reset(adapter);
1431
1432         return err;
1433 }
1434
1435 /**
1436  * e1000_close - Disables a network interface
1437  * @netdev: network interface device structure
1438  *
1439  * Returns 0, this is not allowed to fail
1440  *
1441  * The close entry point is called when an interface is de-activated
1442  * by the OS.  The hardware is still under the drivers control, but
1443  * needs to be disabled.  A global MAC reset is issued to stop the
1444  * hardware, and all transmit and receive resources are freed.
1445  **/
1446
1447 static int e1000_close(struct net_device *netdev)
1448 {
1449         struct e1000_adapter *adapter = netdev_priv(netdev);
1450         struct e1000_hw *hw = &adapter->hw;
1451
1452         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1453         e1000_down(adapter);
1454         e1000_power_down_phy(adapter);
1455         e1000_free_irq(adapter);
1456
1457         e1000_free_all_tx_resources(adapter);
1458         e1000_free_all_rx_resources(adapter);
1459
1460         /* kill manageability vlan ID if supported, but not if a vlan with
1461          * the same ID is registered on the host OS (let 8021q kill it) */
1462         if ((hw->mng_cookie.status &
1463                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1464              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1465                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1466         }
1467
1468         return 0;
1469 }
1470
1471 /**
1472  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1473  * @adapter: address of board private structure
1474  * @start: address of beginning of memory
1475  * @len: length of memory
1476  **/
1477 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1478                                   unsigned long len)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481         unsigned long begin = (unsigned long)start;
1482         unsigned long end = begin + len;
1483
1484         /* First rev 82545 and 82546 need to not allow any memory
1485          * write location to cross 64k boundary due to errata 23 */
1486         if (hw->mac_type == e1000_82545 ||
1487             hw->mac_type == e1000_ce4100 ||
1488             hw->mac_type == e1000_82546) {
1489                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490         }
1491
1492         return true;
1493 }
1494
1495 /**
1496  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497  * @adapter: board private structure
1498  * @txdr:    tx descriptor ring (for a specific queue) to setup
1499  *
1500  * Return 0 on success, negative on failure
1501  **/
1502
1503 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1504                                     struct e1000_tx_ring *txdr)
1505 {
1506         struct pci_dev *pdev = adapter->pdev;
1507         int size;
1508
1509         size = sizeof(struct e1000_buffer) * txdr->count;
1510         txdr->buffer_info = vzalloc(size);
1511         if (!txdr->buffer_info) {
1512                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1513                       "ring\n");
1514                 return -ENOMEM;
1515         }
1516
1517         /* round up to nearest 4K */
1518
1519         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520         txdr->size = ALIGN(txdr->size, 4096);
1521
1522         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523                                         GFP_KERNEL);
1524         if (!txdr->desc) {
1525 setup_tx_desc_die:
1526                 vfree(txdr->buffer_info);
1527                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1528                       "ring\n");
1529                 return -ENOMEM;
1530         }
1531
1532         /* Fix for errata 23, can't cross 64kB boundary */
1533         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1534                 void *olddesc = txdr->desc;
1535                 dma_addr_t olddma = txdr->dma;
1536                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1537                       txdr->size, txdr->desc);
1538                 /* Try again, without freeing the previous */
1539                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1540                                                 &txdr->dma, GFP_KERNEL);
1541                 /* Failed allocation, critical failure */
1542                 if (!txdr->desc) {
1543                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1544                                           olddma);
1545                         goto setup_tx_desc_die;
1546                 }
1547
1548                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1549                         /* give up */
1550                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1551                                           txdr->dma);
1552                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553                                           olddma);
1554                         e_err(probe, "Unable to allocate aligned memory "
1555                               "for the transmit descriptor ring\n");
1556                         vfree(txdr->buffer_info);
1557                         return -ENOMEM;
1558                 } else {
1559                         /* Free old allocation, new allocation was successful */
1560                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1561                                           olddma);
1562                 }
1563         }
1564         memset(txdr->desc, 0, txdr->size);
1565
1566         txdr->next_to_use = 0;
1567         txdr->next_to_clean = 0;
1568
1569         return 0;
1570 }
1571
1572 /**
1573  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1574  *                                (Descriptors) for all queues
1575  * @adapter: board private structure
1576  *
1577  * Return 0 on success, negative on failure
1578  **/
1579
1580 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1581 {
1582         int i, err = 0;
1583
1584         for (i = 0; i < adapter->num_tx_queues; i++) {
1585                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1586                 if (err) {
1587                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1588                         for (i-- ; i >= 0; i--)
1589                                 e1000_free_tx_resources(adapter,
1590                                                         &adapter->tx_ring[i]);
1591                         break;
1592                 }
1593         }
1594
1595         return err;
1596 }
1597
1598 /**
1599  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1600  * @adapter: board private structure
1601  *
1602  * Configure the Tx unit of the MAC after a reset.
1603  **/
1604
1605 static void e1000_configure_tx(struct e1000_adapter *adapter)
1606 {
1607         u64 tdba;
1608         struct e1000_hw *hw = &adapter->hw;
1609         u32 tdlen, tctl, tipg;
1610         u32 ipgr1, ipgr2;
1611
1612         /* Setup the HW Tx Head and Tail descriptor pointers */
1613
1614         switch (adapter->num_tx_queues) {
1615         case 1:
1616         default:
1617                 tdba = adapter->tx_ring[0].dma;
1618                 tdlen = adapter->tx_ring[0].count *
1619                         sizeof(struct e1000_tx_desc);
1620                 ew32(TDLEN, tdlen);
1621                 ew32(TDBAH, (tdba >> 32));
1622                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1623                 ew32(TDT, 0);
1624                 ew32(TDH, 0);
1625                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1626                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1627                 break;
1628         }
1629
1630         /* Set the default values for the Tx Inter Packet Gap timer */
1631         if ((hw->media_type == e1000_media_type_fiber ||
1632              hw->media_type == e1000_media_type_internal_serdes))
1633                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1634         else
1635                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1636
1637         switch (hw->mac_type) {
1638         case e1000_82542_rev2_0:
1639         case e1000_82542_rev2_1:
1640                 tipg = DEFAULT_82542_TIPG_IPGT;
1641                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1642                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1643                 break;
1644         default:
1645                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1646                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1647                 break;
1648         }
1649         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1650         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1651         ew32(TIPG, tipg);
1652
1653         /* Set the Tx Interrupt Delay register */
1654
1655         ew32(TIDV, adapter->tx_int_delay);
1656         if (hw->mac_type >= e1000_82540)
1657                 ew32(TADV, adapter->tx_abs_int_delay);
1658
1659         /* Program the Transmit Control Register */
1660
1661         tctl = er32(TCTL);
1662         tctl &= ~E1000_TCTL_CT;
1663         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1664                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1665
1666         e1000_config_collision_dist(hw);
1667
1668         /* Setup Transmit Descriptor Settings for eop descriptor */
1669         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1670
1671         /* only set IDE if we are delaying interrupts using the timers */
1672         if (adapter->tx_int_delay)
1673                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1674
1675         if (hw->mac_type < e1000_82543)
1676                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1677         else
1678                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1679
1680         /* Cache if we're 82544 running in PCI-X because we'll
1681          * need this to apply a workaround later in the send path. */
1682         if (hw->mac_type == e1000_82544 &&
1683             hw->bus_type == e1000_bus_type_pcix)
1684                 adapter->pcix_82544 = true;
1685
1686         ew32(TCTL, tctl);
1687
1688 }
1689
1690 /**
1691  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1692  * @adapter: board private structure
1693  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1694  *
1695  * Returns 0 on success, negative on failure
1696  **/
1697
1698 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1699                                     struct e1000_rx_ring *rxdr)
1700 {
1701         struct pci_dev *pdev = adapter->pdev;
1702         int size, desc_len;
1703
1704         size = sizeof(struct e1000_buffer) * rxdr->count;
1705         rxdr->buffer_info = vzalloc(size);
1706         if (!rxdr->buffer_info) {
1707                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1708                       "ring\n");
1709                 return -ENOMEM;
1710         }
1711
1712         desc_len = sizeof(struct e1000_rx_desc);
1713
1714         /* Round up to nearest 4K */
1715
1716         rxdr->size = rxdr->count * desc_len;
1717         rxdr->size = ALIGN(rxdr->size, 4096);
1718
1719         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1720                                         GFP_KERNEL);
1721
1722         if (!rxdr->desc) {
1723                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1724                       "ring\n");
1725 setup_rx_desc_die:
1726                 vfree(rxdr->buffer_info);
1727                 return -ENOMEM;
1728         }
1729
1730         /* Fix for errata 23, can't cross 64kB boundary */
1731         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1732                 void *olddesc = rxdr->desc;
1733                 dma_addr_t olddma = rxdr->dma;
1734                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1735                       rxdr->size, rxdr->desc);
1736                 /* Try again, without freeing the previous */
1737                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1738                                                 &rxdr->dma, GFP_KERNEL);
1739                 /* Failed allocation, critical failure */
1740                 if (!rxdr->desc) {
1741                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742                                           olddma);
1743                         e_err(probe, "Unable to allocate memory for the Rx "
1744                               "descriptor ring\n");
1745                         goto setup_rx_desc_die;
1746                 }
1747
1748                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1749                         /* give up */
1750                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1751                                           rxdr->dma);
1752                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1753                                           olddma);
1754                         e_err(probe, "Unable to allocate aligned memory for "
1755                               "the Rx descriptor ring\n");
1756                         goto setup_rx_desc_die;
1757                 } else {
1758                         /* Free old allocation, new allocation was successful */
1759                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1760                                           olddma);
1761                 }
1762         }
1763         memset(rxdr->desc, 0, rxdr->size);
1764
1765         rxdr->next_to_clean = 0;
1766         rxdr->next_to_use = 0;
1767         rxdr->rx_skb_top = NULL;
1768
1769         return 0;
1770 }
1771
1772 /**
1773  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1774  *                                (Descriptors) for all queues
1775  * @adapter: board private structure
1776  *
1777  * Return 0 on success, negative on failure
1778  **/
1779
1780 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1781 {
1782         int i, err = 0;
1783
1784         for (i = 0; i < adapter->num_rx_queues; i++) {
1785                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1786                 if (err) {
1787                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1788                         for (i-- ; i >= 0; i--)
1789                                 e1000_free_rx_resources(adapter,
1790                                                         &adapter->rx_ring[i]);
1791                         break;
1792                 }
1793         }
1794
1795         return err;
1796 }
1797
1798 /**
1799  * e1000_setup_rctl - configure the receive control registers
1800  * @adapter: Board private structure
1801  **/
1802 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1803 {
1804         struct e1000_hw *hw = &adapter->hw;
1805         u32 rctl;
1806
1807         rctl = er32(RCTL);
1808
1809         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1810
1811         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1812                 E1000_RCTL_RDMTS_HALF |
1813                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1814
1815         if (hw->tbi_compatibility_on == 1)
1816                 rctl |= E1000_RCTL_SBP;
1817         else
1818                 rctl &= ~E1000_RCTL_SBP;
1819
1820         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1821                 rctl &= ~E1000_RCTL_LPE;
1822         else
1823                 rctl |= E1000_RCTL_LPE;
1824
1825         /* Setup buffer sizes */
1826         rctl &= ~E1000_RCTL_SZ_4096;
1827         rctl |= E1000_RCTL_BSEX;
1828         switch (adapter->rx_buffer_len) {
1829                 case E1000_RXBUFFER_2048:
1830                 default:
1831                         rctl |= E1000_RCTL_SZ_2048;
1832                         rctl &= ~E1000_RCTL_BSEX;
1833                         break;
1834                 case E1000_RXBUFFER_4096:
1835                         rctl |= E1000_RCTL_SZ_4096;
1836                         break;
1837                 case E1000_RXBUFFER_8192:
1838                         rctl |= E1000_RCTL_SZ_8192;
1839                         break;
1840                 case E1000_RXBUFFER_16384:
1841                         rctl |= E1000_RCTL_SZ_16384;
1842                         break;
1843         }
1844
1845         ew32(RCTL, rctl);
1846 }
1847
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854
1855 static void e1000_configure_rx(struct e1000_adapter *adapter)
1856 {
1857         u64 rdba;
1858         struct e1000_hw *hw = &adapter->hw;
1859         u32 rdlen, rctl, rxcsum;
1860
1861         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1862                 rdlen = adapter->rx_ring[0].count *
1863                         sizeof(struct e1000_rx_desc);
1864                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1865                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1866         } else {
1867                 rdlen = adapter->rx_ring[0].count *
1868                         sizeof(struct e1000_rx_desc);
1869                 adapter->clean_rx = e1000_clean_rx_irq;
1870                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1871         }
1872
1873         /* disable receives while setting up the descriptors */
1874         rctl = er32(RCTL);
1875         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1876
1877         /* set the Receive Delay Timer Register */
1878         ew32(RDTR, adapter->rx_int_delay);
1879
1880         if (hw->mac_type >= e1000_82540) {
1881                 ew32(RADV, adapter->rx_abs_int_delay);
1882                 if (adapter->itr_setting != 0)
1883                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1884         }
1885
1886         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1887          * the Base and Length of the Rx Descriptor Ring */
1888         switch (adapter->num_rx_queues) {
1889         case 1:
1890         default:
1891                 rdba = adapter->rx_ring[0].dma;
1892                 ew32(RDLEN, rdlen);
1893                 ew32(RDBAH, (rdba >> 32));
1894                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895                 ew32(RDT, 0);
1896                 ew32(RDH, 0);
1897                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1898                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1899                 break;
1900         }
1901
1902         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903         if (hw->mac_type >= e1000_82543) {
1904                 rxcsum = er32(RXCSUM);
1905                 if (adapter->rx_csum)
1906                         rxcsum |= E1000_RXCSUM_TUOFL;
1907                 else
1908                         /* don't need to clear IPPCSE as it defaults to 0 */
1909                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1910                 ew32(RXCSUM, rxcsum);
1911         }
1912
1913         /* Enable Receives */
1914         ew32(RCTL, rctl | E1000_RCTL_EN);
1915 }
1916
1917 /**
1918  * e1000_free_tx_resources - Free Tx Resources per Queue
1919  * @adapter: board private structure
1920  * @tx_ring: Tx descriptor ring for a specific queue
1921  *
1922  * Free all transmit software resources
1923  **/
1924
1925 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1926                                     struct e1000_tx_ring *tx_ring)
1927 {
1928         struct pci_dev *pdev = adapter->pdev;
1929
1930         e1000_clean_tx_ring(adapter, tx_ring);
1931
1932         vfree(tx_ring->buffer_info);
1933         tx_ring->buffer_info = NULL;
1934
1935         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1936                           tx_ring->dma);
1937
1938         tx_ring->desc = NULL;
1939 }
1940
1941 /**
1942  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1943  * @adapter: board private structure
1944  *
1945  * Free all transmit software resources
1946  **/
1947
1948 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949 {
1950         int i;
1951
1952         for (i = 0; i < adapter->num_tx_queues; i++)
1953                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954 }
1955
1956 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1957                                              struct e1000_buffer *buffer_info)
1958 {
1959         if (buffer_info->dma) {
1960                 if (buffer_info->mapped_as_page)
1961                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962                                        buffer_info->length, DMA_TO_DEVICE);
1963                 else
1964                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965                                          buffer_info->length,
1966                                          DMA_TO_DEVICE);
1967                 buffer_info->dma = 0;
1968         }
1969         if (buffer_info->skb) {
1970                 dev_kfree_skb_any(buffer_info->skb);
1971                 buffer_info->skb = NULL;
1972         }
1973         buffer_info->time_stamp = 0;
1974         /* buffer_info must be completely set up in the transmit path */
1975 }
1976
1977 /**
1978  * e1000_clean_tx_ring - Free Tx Buffers
1979  * @adapter: board private structure
1980  * @tx_ring: ring to be cleaned
1981  **/
1982
1983 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1984                                 struct e1000_tx_ring *tx_ring)
1985 {
1986         struct e1000_hw *hw = &adapter->hw;
1987         struct e1000_buffer *buffer_info;
1988         unsigned long size;
1989         unsigned int i;
1990
1991         /* Free all the Tx ring sk_buffs */
1992
1993         for (i = 0; i < tx_ring->count; i++) {
1994                 buffer_info = &tx_ring->buffer_info[i];
1995                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1996         }
1997
1998         size = sizeof(struct e1000_buffer) * tx_ring->count;
1999         memset(tx_ring->buffer_info, 0, size);
2000
2001         /* Zero out the descriptor ring */
2002
2003         memset(tx_ring->desc, 0, tx_ring->size);
2004
2005         tx_ring->next_to_use = 0;
2006         tx_ring->next_to_clean = 0;
2007         tx_ring->last_tx_tso = false;
2008
2009         writel(0, hw->hw_addr + tx_ring->tdh);
2010         writel(0, hw->hw_addr + tx_ring->tdt);
2011 }
2012
2013 /**
2014  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015  * @adapter: board private structure
2016  **/
2017
2018 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2019 {
2020         int i;
2021
2022         for (i = 0; i < adapter->num_tx_queues; i++)
2023                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2024 }
2025
2026 /**
2027  * e1000_free_rx_resources - Free Rx Resources
2028  * @adapter: board private structure
2029  * @rx_ring: ring to clean the resources from
2030  *
2031  * Free all receive software resources
2032  **/
2033
2034 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035                                     struct e1000_rx_ring *rx_ring)
2036 {
2037         struct pci_dev *pdev = adapter->pdev;
2038
2039         e1000_clean_rx_ring(adapter, rx_ring);
2040
2041         vfree(rx_ring->buffer_info);
2042         rx_ring->buffer_info = NULL;
2043
2044         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045                           rx_ring->dma);
2046
2047         rx_ring->desc = NULL;
2048 }
2049
2050 /**
2051  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052  * @adapter: board private structure
2053  *
2054  * Free all receive software resources
2055  **/
2056
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059         int i;
2060
2061         for (i = 0; i < adapter->num_rx_queues; i++)
2062                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064
2065 /**
2066  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2067  * @adapter: board private structure
2068  * @rx_ring: ring to free buffers from
2069  **/
2070
2071 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2072                                 struct e1000_rx_ring *rx_ring)
2073 {
2074         struct e1000_hw *hw = &adapter->hw;
2075         struct e1000_buffer *buffer_info;
2076         struct pci_dev *pdev = adapter->pdev;
2077         unsigned long size;
2078         unsigned int i;
2079
2080         /* Free all the Rx ring sk_buffs */
2081         for (i = 0; i < rx_ring->count; i++) {
2082                 buffer_info = &rx_ring->buffer_info[i];
2083                 if (buffer_info->dma &&
2084                     adapter->clean_rx == e1000_clean_rx_irq) {
2085                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2086                                          buffer_info->length,
2087                                          DMA_FROM_DEVICE);
2088                 } else if (buffer_info->dma &&
2089                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2090                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2091                                        buffer_info->length,
2092                                        DMA_FROM_DEVICE);
2093                 }
2094
2095                 buffer_info->dma = 0;
2096                 if (buffer_info->page) {
2097                         put_page(buffer_info->page);
2098                         buffer_info->page = NULL;
2099                 }
2100                 if (buffer_info->skb) {
2101                         dev_kfree_skb(buffer_info->skb);
2102                         buffer_info->skb = NULL;
2103                 }
2104         }
2105
2106         /* there also may be some cached data from a chained receive */
2107         if (rx_ring->rx_skb_top) {
2108                 dev_kfree_skb(rx_ring->rx_skb_top);
2109                 rx_ring->rx_skb_top = NULL;
2110         }
2111
2112         size = sizeof(struct e1000_buffer) * rx_ring->count;
2113         memset(rx_ring->buffer_info, 0, size);
2114
2115         /* Zero out the descriptor ring */
2116         memset(rx_ring->desc, 0, rx_ring->size);
2117
2118         rx_ring->next_to_clean = 0;
2119         rx_ring->next_to_use = 0;
2120
2121         writel(0, hw->hw_addr + rx_ring->rdh);
2122         writel(0, hw->hw_addr + rx_ring->rdt);
2123 }
2124
2125 /**
2126  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2127  * @adapter: board private structure
2128  **/
2129
2130 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2131 {
2132         int i;
2133
2134         for (i = 0; i < adapter->num_rx_queues; i++)
2135                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2136 }
2137
2138 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2139  * and memory write and invalidate disabled for certain operations
2140  */
2141 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2142 {
2143         struct e1000_hw *hw = &adapter->hw;
2144         struct net_device *netdev = adapter->netdev;
2145         u32 rctl;
2146
2147         e1000_pci_clear_mwi(hw);
2148
2149         rctl = er32(RCTL);
2150         rctl |= E1000_RCTL_RST;
2151         ew32(RCTL, rctl);
2152         E1000_WRITE_FLUSH();
2153         mdelay(5);
2154
2155         if (netif_running(netdev))
2156                 e1000_clean_all_rx_rings(adapter);
2157 }
2158
2159 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2160 {
2161         struct e1000_hw *hw = &adapter->hw;
2162         struct net_device *netdev = adapter->netdev;
2163         u32 rctl;
2164
2165         rctl = er32(RCTL);
2166         rctl &= ~E1000_RCTL_RST;
2167         ew32(RCTL, rctl);
2168         E1000_WRITE_FLUSH();
2169         mdelay(5);
2170
2171         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2172                 e1000_pci_set_mwi(hw);
2173
2174         if (netif_running(netdev)) {
2175                 /* No need to loop, because 82542 supports only 1 queue */
2176                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2177                 e1000_configure_rx(adapter);
2178                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2179         }
2180 }
2181
2182 /**
2183  * e1000_set_mac - Change the Ethernet Address of the NIC
2184  * @netdev: network interface device structure
2185  * @p: pointer to an address structure
2186  *
2187  * Returns 0 on success, negative on failure
2188  **/
2189
2190 static int e1000_set_mac(struct net_device *netdev, void *p)
2191 {
2192         struct e1000_adapter *adapter = netdev_priv(netdev);
2193         struct e1000_hw *hw = &adapter->hw;
2194         struct sockaddr *addr = p;
2195
2196         if (!is_valid_ether_addr(addr->sa_data))
2197                 return -EADDRNOTAVAIL;
2198
2199         /* 82542 2.0 needs to be in reset to write receive address registers */
2200
2201         if (hw->mac_type == e1000_82542_rev2_0)
2202                 e1000_enter_82542_rst(adapter);
2203
2204         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2205         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2206
2207         e1000_rar_set(hw, hw->mac_addr, 0);
2208
2209         if (hw->mac_type == e1000_82542_rev2_0)
2210                 e1000_leave_82542_rst(adapter);
2211
2212         return 0;
2213 }
2214
2215 /**
2216  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2217  * @netdev: network interface device structure
2218  *
2219  * The set_rx_mode entry point is called whenever the unicast or multicast
2220  * address lists or the network interface flags are updated. This routine is
2221  * responsible for configuring the hardware for proper unicast, multicast,
2222  * promiscuous mode, and all-multi behavior.
2223  **/
2224
2225 static void e1000_set_rx_mode(struct net_device *netdev)
2226 {
2227         struct e1000_adapter *adapter = netdev_priv(netdev);
2228         struct e1000_hw *hw = &adapter->hw;
2229         struct netdev_hw_addr *ha;
2230         bool use_uc = false;
2231         u32 rctl;
2232         u32 hash_value;
2233         int i, rar_entries = E1000_RAR_ENTRIES;
2234         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2235         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2236
2237         if (!mcarray) {
2238                 e_err(probe, "memory allocation failed\n");
2239                 return;
2240         }
2241
2242         /* Check for Promiscuous and All Multicast modes */
2243
2244         rctl = er32(RCTL);
2245
2246         if (netdev->flags & IFF_PROMISC) {
2247                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2248                 rctl &= ~E1000_RCTL_VFE;
2249         } else {
2250                 if (netdev->flags & IFF_ALLMULTI)
2251                         rctl |= E1000_RCTL_MPE;
2252                 else
2253                         rctl &= ~E1000_RCTL_MPE;
2254                 /* Enable VLAN filter if there is a VLAN */
2255                 if (e1000_vlan_used(adapter))
2256                         rctl |= E1000_RCTL_VFE;
2257         }
2258
2259         if (netdev_uc_count(netdev) > rar_entries - 1) {
2260                 rctl |= E1000_RCTL_UPE;
2261         } else if (!(netdev->flags & IFF_PROMISC)) {
2262                 rctl &= ~E1000_RCTL_UPE;
2263                 use_uc = true;
2264         }
2265
2266         ew32(RCTL, rctl);
2267
2268         /* 82542 2.0 needs to be in reset to write receive address registers */
2269
2270         if (hw->mac_type == e1000_82542_rev2_0)
2271                 e1000_enter_82542_rst(adapter);
2272
2273         /* load the first 14 addresses into the exact filters 1-14. Unicast
2274          * addresses take precedence to avoid disabling unicast filtering
2275          * when possible.
2276          *
2277          * RAR 0 is used for the station MAC address
2278          * if there are not 14 addresses, go ahead and clear the filters
2279          */
2280         i = 1;
2281         if (use_uc)
2282                 netdev_for_each_uc_addr(ha, netdev) {
2283                         if (i == rar_entries)
2284                                 break;
2285                         e1000_rar_set(hw, ha->addr, i++);
2286                 }
2287
2288         netdev_for_each_mc_addr(ha, netdev) {
2289                 if (i == rar_entries) {
2290                         /* load any remaining addresses into the hash table */
2291                         u32 hash_reg, hash_bit, mta;
2292                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2293                         hash_reg = (hash_value >> 5) & 0x7F;
2294                         hash_bit = hash_value & 0x1F;
2295                         mta = (1 << hash_bit);
2296                         mcarray[hash_reg] |= mta;
2297                 } else {
2298                         e1000_rar_set(hw, ha->addr, i++);
2299                 }
2300         }
2301
2302         for (; i < rar_entries; i++) {
2303                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2304                 E1000_WRITE_FLUSH();
2305                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2306                 E1000_WRITE_FLUSH();
2307         }
2308
2309         /* write the hash table completely, write from bottom to avoid
2310          * both stupid write combining chipsets, and flushing each write */
2311         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2312                 /*
2313                  * If we are on an 82544 has an errata where writing odd
2314                  * offsets overwrites the previous even offset, but writing
2315                  * backwards over the range solves the issue by always
2316                  * writing the odd offset first
2317                  */
2318                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2319         }
2320         E1000_WRITE_FLUSH();
2321
2322         if (hw->mac_type == e1000_82542_rev2_0)
2323                 e1000_leave_82542_rst(adapter);
2324
2325         kfree(mcarray);
2326 }
2327
2328 /**
2329  * e1000_update_phy_info_task - get phy info
2330  * @work: work struct contained inside adapter struct
2331  *
2332  * Need to wait a few seconds after link up to get diagnostic information from
2333  * the phy
2334  */
2335 static void e1000_update_phy_info_task(struct work_struct *work)
2336 {
2337         struct e1000_adapter *adapter = container_of(work,
2338                                                      struct e1000_adapter,
2339                                                      phy_info_task.work);
2340         if (test_bit(__E1000_DOWN, &adapter->flags))
2341                 return;
2342         mutex_lock(&adapter->mutex);
2343         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2344         mutex_unlock(&adapter->mutex);
2345 }
2346
2347 /**
2348  * e1000_82547_tx_fifo_stall_task - task to complete work
2349  * @work: work struct contained inside adapter struct
2350  **/
2351 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2352 {
2353         struct e1000_adapter *adapter = container_of(work,
2354                                                      struct e1000_adapter,
2355                                                      fifo_stall_task.work);
2356         struct e1000_hw *hw = &adapter->hw;
2357         struct net_device *netdev = adapter->netdev;
2358         u32 tctl;
2359
2360         if (test_bit(__E1000_DOWN, &adapter->flags))
2361                 return;
2362         mutex_lock(&adapter->mutex);
2363         if (atomic_read(&adapter->tx_fifo_stall)) {
2364                 if ((er32(TDT) == er32(TDH)) &&
2365                    (er32(TDFT) == er32(TDFH)) &&
2366                    (er32(TDFTS) == er32(TDFHS))) {
2367                         tctl = er32(TCTL);
2368                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369                         ew32(TDFT, adapter->tx_head_addr);
2370                         ew32(TDFH, adapter->tx_head_addr);
2371                         ew32(TDFTS, adapter->tx_head_addr);
2372                         ew32(TDFHS, adapter->tx_head_addr);
2373                         ew32(TCTL, tctl);
2374                         E1000_WRITE_FLUSH();
2375
2376                         adapter->tx_fifo_head = 0;
2377                         atomic_set(&adapter->tx_fifo_stall, 0);
2378                         netif_wake_queue(netdev);
2379                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381                 }
2382         }
2383         mutex_unlock(&adapter->mutex);
2384 }
2385
2386 bool e1000_has_link(struct e1000_adapter *adapter)
2387 {
2388         struct e1000_hw *hw = &adapter->hw;
2389         bool link_active = false;
2390
2391         /* get_link_status is set on LSC (link status) interrupt or rx
2392          * sequence error interrupt (except on intel ce4100).
2393          * get_link_status will stay false until the
2394          * e1000_check_for_link establishes link for copper adapters
2395          * ONLY
2396          */
2397         switch (hw->media_type) {
2398         case e1000_media_type_copper:
2399                 if (hw->mac_type == e1000_ce4100)
2400                         hw->get_link_status = 1;
2401                 if (hw->get_link_status) {
2402                         e1000_check_for_link(hw);
2403                         link_active = !hw->get_link_status;
2404                 } else {
2405                         link_active = true;
2406                 }
2407                 break;
2408         case e1000_media_type_fiber:
2409                 e1000_check_for_link(hw);
2410                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2411                 break;
2412         case e1000_media_type_internal_serdes:
2413                 e1000_check_for_link(hw);
2414                 link_active = hw->serdes_has_link;
2415                 break;
2416         default:
2417                 break;
2418         }
2419
2420         return link_active;
2421 }
2422
2423 /**
2424  * e1000_watchdog - work function
2425  * @work: work struct contained inside adapter struct
2426  **/
2427 static void e1000_watchdog(struct work_struct *work)
2428 {
2429         struct e1000_adapter *adapter = container_of(work,
2430                                                      struct e1000_adapter,
2431                                                      watchdog_task.work);
2432         struct e1000_hw *hw = &adapter->hw;
2433         struct net_device *netdev = adapter->netdev;
2434         struct e1000_tx_ring *txdr = adapter->tx_ring;
2435         u32 link, tctl;
2436
2437         if (test_bit(__E1000_DOWN, &adapter->flags))
2438                 return;
2439
2440         mutex_lock(&adapter->mutex);
2441         link = e1000_has_link(adapter);
2442         if ((netif_carrier_ok(netdev)) && link)
2443                 goto link_up;
2444
2445         if (link) {
2446                 if (!netif_carrier_ok(netdev)) {
2447                         u32 ctrl;
2448                         bool txb2b = true;
2449                         /* update snapshot of PHY registers on LSC */
2450                         e1000_get_speed_and_duplex(hw,
2451                                                    &adapter->link_speed,
2452                                                    &adapter->link_duplex);
2453
2454                         ctrl = er32(CTRL);
2455                         pr_info("%s NIC Link is Up %d Mbps %s, "
2456                                 "Flow Control: %s\n",
2457                                 netdev->name,
2458                                 adapter->link_speed,
2459                                 adapter->link_duplex == FULL_DUPLEX ?
2460                                 "Full Duplex" : "Half Duplex",
2461                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2462                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2463                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2464                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2465
2466                         /* adjust timeout factor according to speed/duplex */
2467                         adapter->tx_timeout_factor = 1;
2468                         switch (adapter->link_speed) {
2469                         case SPEED_10:
2470                                 txb2b = false;
2471                                 adapter->tx_timeout_factor = 16;
2472                                 break;
2473                         case SPEED_100:
2474                                 txb2b = false;
2475                                 /* maybe add some timeout factor ? */
2476                                 break;
2477                         }
2478
2479                         /* enable transmits in the hardware */
2480                         tctl = er32(TCTL);
2481                         tctl |= E1000_TCTL_EN;
2482                         ew32(TCTL, tctl);
2483
2484                         netif_carrier_on(netdev);
2485                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2486                                 schedule_delayed_work(&adapter->phy_info_task,
2487                                                       2 * HZ);
2488                         adapter->smartspeed = 0;
2489                 }
2490         } else {
2491                 if (netif_carrier_ok(netdev)) {
2492                         adapter->link_speed = 0;
2493                         adapter->link_duplex = 0;
2494                         pr_info("%s NIC Link is Down\n",
2495                                 netdev->name);
2496                         netif_carrier_off(netdev);
2497
2498                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2499                                 schedule_delayed_work(&adapter->phy_info_task,
2500                                                       2 * HZ);
2501                 }
2502
2503                 e1000_smartspeed(adapter);
2504         }
2505
2506 link_up:
2507         e1000_update_stats(adapter);
2508
2509         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2510         adapter->tpt_old = adapter->stats.tpt;
2511         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2512         adapter->colc_old = adapter->stats.colc;
2513
2514         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2515         adapter->gorcl_old = adapter->stats.gorcl;
2516         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2517         adapter->gotcl_old = adapter->stats.gotcl;
2518
2519         e1000_update_adaptive(hw);
2520
2521         if (!netif_carrier_ok(netdev)) {
2522                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2523                         /* We've lost link, so the controller stops DMA,
2524                          * but we've got queued Tx work that's never going
2525                          * to get done, so reset controller to flush Tx.
2526                          * (Do the reset outside of interrupt context). */
2527                         adapter->tx_timeout_count++;
2528                         schedule_work(&adapter->reset_task);
2529                         /* exit immediately since reset is imminent */
2530                         goto unlock;
2531                 }
2532         }
2533
2534         /* Simple mode for Interrupt Throttle Rate (ITR) */
2535         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2536                 /*
2537                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2538                  * Total asymmetrical Tx or Rx gets ITR=8000;
2539                  * everyone else is between 2000-8000.
2540                  */
2541                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2542                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2543                             adapter->gotcl - adapter->gorcl :
2544                             adapter->gorcl - adapter->gotcl) / 10000;
2545                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2546
2547                 ew32(ITR, 1000000000 / (itr * 256));
2548         }
2549
2550         /* Cause software interrupt to ensure rx ring is cleaned */
2551         ew32(ICS, E1000_ICS_RXDMT0);
2552
2553         /* Force detection of hung controller every watchdog period */
2554         adapter->detect_tx_hung = true;
2555
2556         /* Reschedule the task */
2557         if (!test_bit(__E1000_DOWN, &adapter->flags))
2558                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2559
2560 unlock:
2561         mutex_unlock(&adapter->mutex);
2562 }
2563
2564 enum latency_range {
2565         lowest_latency = 0,
2566         low_latency = 1,
2567         bulk_latency = 2,
2568         latency_invalid = 255
2569 };
2570
2571 /**
2572  * e1000_update_itr - update the dynamic ITR value based on statistics
2573  * @adapter: pointer to adapter
2574  * @itr_setting: current adapter->itr
2575  * @packets: the number of packets during this measurement interval
2576  * @bytes: the number of bytes during this measurement interval
2577  *
2578  *      Stores a new ITR value based on packets and byte
2579  *      counts during the last interrupt.  The advantage of per interrupt
2580  *      computation is faster updates and more accurate ITR for the current
2581  *      traffic pattern.  Constants in this function were computed
2582  *      based on theoretical maximum wire speed and thresholds were set based
2583  *      on testing data as well as attempting to minimize response time
2584  *      while increasing bulk throughput.
2585  *      this functionality is controlled by the InterruptThrottleRate module
2586  *      parameter (see e1000_param.c)
2587  **/
2588 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2589                                      u16 itr_setting, int packets, int bytes)
2590 {
2591         unsigned int retval = itr_setting;
2592         struct e1000_hw *hw = &adapter->hw;
2593
2594         if (unlikely(hw->mac_type < e1000_82540))
2595                 goto update_itr_done;
2596
2597         if (packets == 0)
2598                 goto update_itr_done;
2599
2600         switch (itr_setting) {
2601         case lowest_latency:
2602                 /* jumbo frames get bulk treatment*/
2603                 if (bytes/packets > 8000)
2604                         retval = bulk_latency;
2605                 else if ((packets < 5) && (bytes > 512))
2606                         retval = low_latency;
2607                 break;
2608         case low_latency:  /* 50 usec aka 20000 ints/s */
2609                 if (bytes > 10000) {
2610                         /* jumbo frames need bulk latency setting */
2611                         if (bytes/packets > 8000)
2612                                 retval = bulk_latency;
2613                         else if ((packets < 10) || ((bytes/packets) > 1200))
2614                                 retval = bulk_latency;
2615                         else if ((packets > 35))
2616                                 retval = lowest_latency;
2617                 } else if (bytes/packets > 2000)
2618                         retval = bulk_latency;
2619                 else if (packets <= 2 && bytes < 512)
2620                         retval = lowest_latency;
2621                 break;
2622         case bulk_latency: /* 250 usec aka 4000 ints/s */
2623                 if (bytes > 25000) {
2624                         if (packets > 35)
2625                                 retval = low_latency;
2626                 } else if (bytes < 6000) {
2627                         retval = low_latency;
2628                 }
2629                 break;
2630         }
2631
2632 update_itr_done:
2633         return retval;
2634 }
2635
2636 static void e1000_set_itr(struct e1000_adapter *adapter)
2637 {
2638         struct e1000_hw *hw = &adapter->hw;
2639         u16 current_itr;
2640         u32 new_itr = adapter->itr;
2641
2642         if (unlikely(hw->mac_type < e1000_82540))
2643                 return;
2644
2645         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2646         if (unlikely(adapter->link_speed != SPEED_1000)) {
2647                 current_itr = 0;
2648                 new_itr = 4000;
2649                 goto set_itr_now;
2650         }
2651
2652         adapter->tx_itr = e1000_update_itr(adapter,
2653                                     adapter->tx_itr,
2654                                     adapter->total_tx_packets,
2655                                     adapter->total_tx_bytes);
2656         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2657         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2658                 adapter->tx_itr = low_latency;
2659
2660         adapter->rx_itr = e1000_update_itr(adapter,
2661                                     adapter->rx_itr,
2662                                     adapter->total_rx_packets,
2663                                     adapter->total_rx_bytes);
2664         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2665         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2666                 adapter->rx_itr = low_latency;
2667
2668         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2669
2670         switch (current_itr) {
2671         /* counts and packets in update_itr are dependent on these numbers */
2672         case lowest_latency:
2673                 new_itr = 70000;
2674                 break;
2675         case low_latency:
2676                 new_itr = 20000; /* aka hwitr = ~200 */
2677                 break;
2678         case bulk_latency:
2679                 new_itr = 4000;
2680                 break;
2681         default:
2682                 break;
2683         }
2684
2685 set_itr_now:
2686         if (new_itr != adapter->itr) {
2687                 /* this attempts to bias the interrupt rate towards Bulk
2688                  * by adding intermediate steps when interrupt rate is
2689                  * increasing */
2690                 new_itr = new_itr > adapter->itr ?
2691                              min(adapter->itr + (new_itr >> 2), new_itr) :
2692                              new_itr;
2693                 adapter->itr = new_itr;
2694                 ew32(ITR, 1000000000 / (new_itr * 256));
2695         }
2696 }
2697
2698 #define E1000_TX_FLAGS_CSUM             0x00000001
2699 #define E1000_TX_FLAGS_VLAN             0x00000002
2700 #define E1000_TX_FLAGS_TSO              0x00000004
2701 #define E1000_TX_FLAGS_IPV4             0x00000008
2702 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2703 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2704
2705 static int e1000_tso(struct e1000_adapter *adapter,
2706                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2707 {
2708         struct e1000_context_desc *context_desc;
2709         struct e1000_buffer *buffer_info;
2710         unsigned int i;
2711         u32 cmd_length = 0;
2712         u16 ipcse = 0, tucse, mss;
2713         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714         int err;
2715
2716         if (skb_is_gso(skb)) {
2717                 if (skb_header_cloned(skb)) {
2718                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2719                         if (err)
2720                                 return err;
2721                 }
2722
2723                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2724                 mss = skb_shinfo(skb)->gso_size;
2725                 if (skb->protocol == htons(ETH_P_IP)) {
2726                         struct iphdr *iph = ip_hdr(skb);
2727                         iph->tot_len = 0;
2728                         iph->check = 0;
2729                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2730                                                                  iph->daddr, 0,
2731                                                                  IPPROTO_TCP,
2732                                                                  0);
2733                         cmd_length = E1000_TXD_CMD_IP;
2734                         ipcse = skb_transport_offset(skb) - 1;
2735                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2736                         ipv6_hdr(skb)->payload_len = 0;
2737                         tcp_hdr(skb)->check =
2738                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2739                                                  &ipv6_hdr(skb)->daddr,
2740                                                  0, IPPROTO_TCP, 0);
2741                         ipcse = 0;
2742                 }
2743                 ipcss = skb_network_offset(skb);
2744                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2745                 tucss = skb_transport_offset(skb);
2746                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2747                 tucse = 0;
2748
2749                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2750                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2751
2752                 i = tx_ring->next_to_use;
2753                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2754                 buffer_info = &tx_ring->buffer_info[i];
2755
2756                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2757                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2758                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2759                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2760                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2761                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2762                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2763                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2764                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2765
2766                 buffer_info->time_stamp = jiffies;
2767                 buffer_info->next_to_watch = i;
2768
2769                 if (++i == tx_ring->count) i = 0;
2770                 tx_ring->next_to_use = i;
2771
2772                 return true;
2773         }
2774         return false;
2775 }
2776
2777 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2778                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2779 {
2780         struct e1000_context_desc *context_desc;
2781         struct e1000_buffer *buffer_info;
2782         unsigned int i;
2783         u8 css;
2784         u32 cmd_len = E1000_TXD_CMD_DEXT;
2785
2786         if (skb->ip_summed != CHECKSUM_PARTIAL)
2787                 return false;
2788
2789         switch (skb->protocol) {
2790         case cpu_to_be16(ETH_P_IP):
2791                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2792                         cmd_len |= E1000_TXD_CMD_TCP;
2793                 break;
2794         case cpu_to_be16(ETH_P_IPV6):
2795                 /* XXX not handling all IPV6 headers */
2796                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2797                         cmd_len |= E1000_TXD_CMD_TCP;
2798                 break;
2799         default:
2800                 if (unlikely(net_ratelimit()))
2801                         e_warn(drv, "checksum_partial proto=%x!\n",
2802                                skb->protocol);
2803                 break;
2804         }
2805
2806         css = skb_checksum_start_offset(skb);
2807
2808         i = tx_ring->next_to_use;
2809         buffer_info = &tx_ring->buffer_info[i];
2810         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2811
2812         context_desc->lower_setup.ip_config = 0;
2813         context_desc->upper_setup.tcp_fields.tucss = css;
2814         context_desc->upper_setup.tcp_fields.tucso =
2815                 css + skb->csum_offset;
2816         context_desc->upper_setup.tcp_fields.tucse = 0;
2817         context_desc->tcp_seg_setup.data = 0;
2818         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2819
2820         buffer_info->time_stamp = jiffies;
2821         buffer_info->next_to_watch = i;
2822
2823         if (unlikely(++i == tx_ring->count)) i = 0;
2824         tx_ring->next_to_use = i;
2825
2826         return true;
2827 }
2828
2829 #define E1000_MAX_TXD_PWR       12
2830 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2831
2832 static int e1000_tx_map(struct e1000_adapter *adapter,
2833                         struct e1000_tx_ring *tx_ring,
2834                         struct sk_buff *skb, unsigned int first,
2835                         unsigned int max_per_txd, unsigned int nr_frags,
2836                         unsigned int mss)
2837 {
2838         struct e1000_hw *hw = &adapter->hw;
2839         struct pci_dev *pdev = adapter->pdev;
2840         struct e1000_buffer *buffer_info;
2841         unsigned int len = skb_headlen(skb);
2842         unsigned int offset = 0, size, count = 0, i;
2843         unsigned int f, bytecount, segs;
2844
2845         i = tx_ring->next_to_use;
2846
2847         while (len) {
2848                 buffer_info = &tx_ring->buffer_info[i];
2849                 size = min(len, max_per_txd);
2850                 /* Workaround for Controller erratum --
2851                  * descriptor for non-tso packet in a linear SKB that follows a
2852                  * tso gets written back prematurely before the data is fully
2853                  * DMA'd to the controller */
2854                 if (!skb->data_len && tx_ring->last_tx_tso &&
2855                     !skb_is_gso(skb)) {
2856                         tx_ring->last_tx_tso = false;
2857                         size -= 4;
2858                 }
2859
2860                 /* Workaround for premature desc write-backs
2861                  * in TSO mode.  Append 4-byte sentinel desc */
2862                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2863                         size -= 4;
2864                 /* work-around for errata 10 and it applies
2865                  * to all controllers in PCI-X mode
2866                  * The fix is to make sure that the first descriptor of a
2867                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2868                  */
2869                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2870                                 (size > 2015) && count == 0))
2871                         size = 2015;
2872
2873                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2874                  * terminating buffers within evenly-aligned dwords. */
2875                 if (unlikely(adapter->pcix_82544 &&
2876                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2877                    size > 4))
2878                         size -= 4;
2879
2880                 buffer_info->length = size;
2881                 /* set time_stamp *before* dma to help avoid a possible race */
2882                 buffer_info->time_stamp = jiffies;
2883                 buffer_info->mapped_as_page = false;
2884                 buffer_info->dma = dma_map_single(&pdev->dev,
2885                                                   skb->data + offset,
2886                                                   size, DMA_TO_DEVICE);
2887                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2888                         goto dma_error;
2889                 buffer_info->next_to_watch = i;
2890
2891                 len -= size;
2892                 offset += size;
2893                 count++;
2894                 if (len) {
2895                         i++;
2896                         if (unlikely(i == tx_ring->count))
2897                                 i = 0;
2898                 }
2899         }
2900
2901         for (f = 0; f < nr_frags; f++) {
2902                 const struct skb_frag_struct *frag;
2903
2904                 frag = &skb_shinfo(skb)->frags[f];
2905                 len = skb_frag_size(frag);
2906                 offset = 0;
2907
2908                 while (len) {
2909                         unsigned long bufend;
2910                         i++;
2911                         if (unlikely(i == tx_ring->count))
2912                                 i = 0;
2913
2914                         buffer_info = &tx_ring->buffer_info[i];
2915                         size = min(len, max_per_txd);
2916                         /* Workaround for premature desc write-backs
2917                          * in TSO mode.  Append 4-byte sentinel desc */
2918                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2919                                 size -= 4;
2920                         /* Workaround for potential 82544 hang in PCI-X.
2921                          * Avoid terminating buffers within evenly-aligned
2922                          * dwords. */
2923                         bufend = (unsigned long)
2924                                 page_to_phys(skb_frag_page(frag));
2925                         bufend += offset + size - 1;
2926                         if (unlikely(adapter->pcix_82544 &&
2927                                      !(bufend & 4) &&
2928                                      size > 4))
2929                                 size -= 4;
2930
2931                         buffer_info->length = size;
2932                         buffer_info->time_stamp = jiffies;
2933                         buffer_info->mapped_as_page = true;
2934                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2935                                                 offset, size, DMA_TO_DEVICE);
2936                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2937                                 goto dma_error;
2938                         buffer_info->next_to_watch = i;
2939
2940                         len -= size;
2941                         offset += size;
2942                         count++;
2943                 }
2944         }
2945
2946         segs = skb_shinfo(skb)->gso_segs ?: 1;
2947         /* multiply data chunks by size of headers */
2948         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2949
2950         tx_ring->buffer_info[i].skb = skb;
2951         tx_ring->buffer_info[i].segs = segs;
2952         tx_ring->buffer_info[i].bytecount = bytecount;
2953         tx_ring->buffer_info[first].next_to_watch = i;
2954
2955         return count;
2956
2957 dma_error:
2958         dev_err(&pdev->dev, "TX DMA map failed\n");
2959         buffer_info->dma = 0;
2960         if (count)
2961                 count--;
2962
2963         while (count--) {
2964                 if (i==0)
2965                         i += tx_ring->count;
2966                 i--;
2967                 buffer_info = &tx_ring->buffer_info[i];
2968                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2969         }
2970
2971         return 0;
2972 }
2973
2974 static void e1000_tx_queue(struct e1000_adapter *adapter,
2975                            struct e1000_tx_ring *tx_ring, int tx_flags,
2976                            int count)
2977 {
2978         struct e1000_hw *hw = &adapter->hw;
2979         struct e1000_tx_desc *tx_desc = NULL;
2980         struct e1000_buffer *buffer_info;
2981         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2982         unsigned int i;
2983
2984         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2985                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2986                              E1000_TXD_CMD_TSE;
2987                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988
2989                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2990                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2991         }
2992
2993         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2994                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2995                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2996         }
2997
2998         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2999                 txd_lower |= E1000_TXD_CMD_VLE;
3000                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3001         }
3002
3003         i = tx_ring->next_to_use;
3004
3005         while (count--) {
3006                 buffer_info = &tx_ring->buffer_info[i];
3007                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3008                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3009                 tx_desc->lower.data =
3010                         cpu_to_le32(txd_lower | buffer_info->length);
3011                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3012                 if (unlikely(++i == tx_ring->count)) i = 0;
3013         }
3014
3015         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3016
3017         /* Force memory writes to complete before letting h/w
3018          * know there are new descriptors to fetch.  (Only
3019          * applicable for weak-ordered memory model archs,
3020          * such as IA-64). */
3021         wmb();
3022
3023         tx_ring->next_to_use = i;
3024         writel(i, hw->hw_addr + tx_ring->tdt);
3025         /* we need this if more than one processor can write to our tail
3026          * at a time, it syncronizes IO on IA64/Altix systems */
3027         mmiowb();
3028 }
3029
3030 /**
3031  * 82547 workaround to avoid controller hang in half-duplex environment.
3032  * The workaround is to avoid queuing a large packet that would span
3033  * the internal Tx FIFO ring boundary by notifying the stack to resend
3034  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3035  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3036  * to the beginning of the Tx FIFO.
3037  **/
3038
3039 #define E1000_FIFO_HDR                  0x10
3040 #define E1000_82547_PAD_LEN             0x3E0
3041
3042 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3043                                        struct sk_buff *skb)
3044 {
3045         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3046         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3047
3048         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3049
3050         if (adapter->link_duplex != HALF_DUPLEX)
3051                 goto no_fifo_stall_required;
3052
3053         if (atomic_read(&adapter->tx_fifo_stall))
3054                 return 1;
3055
3056         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3057                 atomic_set(&adapter->tx_fifo_stall, 1);
3058                 return 1;
3059         }
3060
3061 no_fifo_stall_required:
3062         adapter->tx_fifo_head += skb_fifo_len;
3063         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3064                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3065         return 0;
3066 }
3067
3068 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3069 {
3070         struct e1000_adapter *adapter = netdev_priv(netdev);
3071         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3072
3073         netif_stop_queue(netdev);
3074         /* Herbert's original patch had:
3075          *  smp_mb__after_netif_stop_queue();
3076          * but since that doesn't exist yet, just open code it. */
3077         smp_mb();
3078
3079         /* We need to check again in a case another CPU has just
3080          * made room available. */
3081         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3082                 return -EBUSY;
3083
3084         /* A reprieve! */
3085         netif_start_queue(netdev);
3086         ++adapter->restart_queue;
3087         return 0;
3088 }
3089
3090 static int e1000_maybe_stop_tx(struct net_device *netdev,
3091                                struct e1000_tx_ring *tx_ring, int size)
3092 {
3093         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3094                 return 0;
3095         return __e1000_maybe_stop_tx(netdev, size);
3096 }
3097
3098 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3099 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3100                                     struct net_device *netdev)
3101 {
3102         struct e1000_adapter *adapter = netdev_priv(netdev);
3103         struct e1000_hw *hw = &adapter->hw;
3104         struct e1000_tx_ring *tx_ring;
3105         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3106         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3107         unsigned int tx_flags = 0;
3108         unsigned int len = skb_headlen(skb);
3109         unsigned int nr_frags;
3110         unsigned int mss;
3111         int count = 0;
3112         int tso;
3113         unsigned int f;
3114
3115         /* This goes back to the question of how to logically map a tx queue
3116          * to a flow.  Right now, performance is impacted slightly negatively
3117          * if using multiple tx queues.  If the stack breaks away from a
3118          * single qdisc implementation, we can look at this again. */
3119         tx_ring = adapter->tx_ring;
3120
3121         if (unlikely(skb->len <= 0)) {
3122                 dev_kfree_skb_any(skb);
3123                 return NETDEV_TX_OK;
3124         }
3125
3126         mss = skb_shinfo(skb)->gso_size;
3127         /* The controller does a simple calculation to
3128          * make sure there is enough room in the FIFO before
3129          * initiating the DMA for each buffer.  The calc is:
3130          * 4 = ceil(buffer len/mss).  To make sure we don't
3131          * overrun the FIFO, adjust the max buffer len if mss
3132          * drops. */
3133         if (mss) {
3134                 u8 hdr_len;
3135                 max_per_txd = min(mss << 2, max_per_txd);
3136                 max_txd_pwr = fls(max_per_txd) - 1;
3137
3138                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3139                 if (skb->data_len && hdr_len == len) {
3140                         switch (hw->mac_type) {
3141                                 unsigned int pull_size;
3142                         case e1000_82544:
3143                                 /* Make sure we have room to chop off 4 bytes,
3144                                  * and that the end alignment will work out to
3145                                  * this hardware's requirements
3146                                  * NOTE: this is a TSO only workaround
3147                                  * if end byte alignment not correct move us
3148                                  * into the next dword */
3149                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3150                                         break;
3151                                 /* fall through */
3152                                 pull_size = min((unsigned int)4, skb->data_len);
3153                                 if (!__pskb_pull_tail(skb, pull_size)) {
3154                                         e_err(drv, "__pskb_pull_tail "
3155                                               "failed.\n");
3156                                         dev_kfree_skb_any(skb);
3157                                         return NETDEV_TX_OK;
3158                                 }
3159                                 len = skb_headlen(skb);
3160                                 break;
3161                         default:
3162                                 /* do nothing */
3163                                 break;
3164                         }
3165                 }
3166         }
3167
3168         /* reserve a descriptor for the offload context */
3169         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3170                 count++;
3171         count++;
3172
3173         /* Controller Erratum workaround */
3174         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3175                 count++;
3176
3177         count += TXD_USE_COUNT(len, max_txd_pwr);
3178
3179         if (adapter->pcix_82544)
3180                 count++;
3181
3182         /* work-around for errata 10 and it applies to all controllers
3183          * in PCI-X mode, so add one more descriptor to the count
3184          */
3185         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3186                         (len > 2015)))
3187                 count++;
3188
3189         nr_frags = skb_shinfo(skb)->nr_frags;
3190         for (f = 0; f < nr_frags; f++)
3191                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3192                                        max_txd_pwr);
3193         if (adapter->pcix_82544)
3194                 count += nr_frags;
3195
3196         /* need: count + 2 desc gap to keep tail from touching
3197          * head, otherwise try next time */
3198         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3199                 return NETDEV_TX_BUSY;
3200
3201         if (unlikely((hw->mac_type == e1000_82547) &&
3202                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3203                 netif_stop_queue(netdev);
3204                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3205                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3206                 return NETDEV_TX_BUSY;
3207         }
3208
3209         if (vlan_tx_tag_present(skb)) {
3210                 tx_flags |= E1000_TX_FLAGS_VLAN;
3211                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212         }
3213
3214         first = tx_ring->next_to_use;
3215
3216         tso = e1000_tso(adapter, tx_ring, skb);
3217         if (tso < 0) {
3218                 dev_kfree_skb_any(skb);
3219                 return NETDEV_TX_OK;
3220         }
3221
3222         if (likely(tso)) {
3223                 if (likely(hw->mac_type != e1000_82544))
3224                         tx_ring->last_tx_tso = true;
3225                 tx_flags |= E1000_TX_FLAGS_TSO;
3226         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3227                 tx_flags |= E1000_TX_FLAGS_CSUM;
3228
3229         if (likely(skb->protocol == htons(ETH_P_IP)))
3230                 tx_flags |= E1000_TX_FLAGS_IPV4;
3231
3232         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3233                              nr_frags, mss);
3234
3235         if (count) {
3236                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3237                 /* Make sure there is space in the ring for the next send. */
3238                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3239
3240         } else {
3241                 dev_kfree_skb_any(skb);
3242                 tx_ring->buffer_info[first].time_stamp = 0;
3243                 tx_ring->next_to_use = first;
3244         }
3245
3246         return NETDEV_TX_OK;
3247 }
3248
3249 /**
3250  * e1000_tx_timeout - Respond to a Tx Hang
3251  * @netdev: network interface device structure
3252  **/
3253
3254 static void e1000_tx_timeout(struct net_device *netdev)
3255 {
3256         struct e1000_adapter *adapter = netdev_priv(netdev);
3257
3258         /* Do the reset outside of interrupt context */
3259         adapter->tx_timeout_count++;
3260         schedule_work(&adapter->reset_task);
3261 }
3262
3263 static void e1000_reset_task(struct work_struct *work)
3264 {
3265         struct e1000_adapter *adapter =
3266                 container_of(work, struct e1000_adapter, reset_task);
3267
3268         if (test_bit(__E1000_DOWN, &adapter->flags))
3269                 return;
3270         e1000_reinit_safe(adapter);
3271 }
3272
3273 /**
3274  * e1000_get_stats - Get System Network Statistics
3275  * @netdev: network interface device structure
3276  *
3277  * Returns the address of the device statistics structure.
3278  * The statistics are actually updated from the watchdog.
3279  **/
3280
3281 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3282 {
3283         /* only return the current stats */
3284         return &netdev->stats;
3285 }
3286
3287 /**
3288  * e1000_change_mtu - Change the Maximum Transfer Unit
3289  * @netdev: network interface device structure
3290  * @new_mtu: new value for maximum frame size
3291  *
3292  * Returns 0 on success, negative on failure
3293  **/
3294
3295 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3296 {
3297         struct e1000_adapter *adapter = netdev_priv(netdev);
3298         struct e1000_hw *hw = &adapter->hw;
3299         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3300
3301         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3302             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3303                 e_err(probe, "Invalid MTU setting\n");
3304                 return -EINVAL;
3305         }
3306
3307         /* Adapter-specific max frame size limits. */
3308         switch (hw->mac_type) {
3309         case e1000_undefined ... e1000_82542_rev2_1:
3310                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3311                         e_err(probe, "Jumbo Frames not supported.\n");
3312                         return -EINVAL;
3313                 }
3314                 break;
3315         default:
3316                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3317                 break;
3318         }
3319
3320         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3321                 msleep(1);
3322         /* e1000_down has a dependency on max_frame_size */
3323         hw->max_frame_size = max_frame;
3324         if (netif_running(netdev))
3325                 e1000_down(adapter);
3326
3327         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3328          * means we reserve 2 more, this pushes us to allocate from the next
3329          * larger slab size.
3330          * i.e. RXBUFFER_2048 --> size-4096 slab
3331          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3332          *  fragmented skbs */
3333
3334         if (max_frame <= E1000_RXBUFFER_2048)
3335                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3336         else
3337 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3338                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3339 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3340                 adapter->rx_buffer_len = PAGE_SIZE;
3341 #endif
3342
3343         /* adjust allocation if LPE protects us, and we aren't using SBP */
3344         if (!hw->tbi_compatibility_on &&
3345             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3346              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3347                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3348
3349         pr_info("%s changing MTU from %d to %d\n",
3350                 netdev->name, netdev->mtu, new_mtu);
3351         netdev->mtu = new_mtu;
3352
3353         if (netif_running(netdev))
3354                 e1000_up(adapter);
3355         else
3356                 e1000_reset(adapter);
3357
3358         clear_bit(__E1000_RESETTING, &adapter->flags);
3359
3360         return 0;
3361 }
3362
3363 /**
3364  * e1000_update_stats - Update the board statistics counters
3365  * @adapter: board private structure
3366  **/
3367
3368 void e1000_update_stats(struct e1000_adapter *adapter)
3369 {
3370         struct net_device *netdev = adapter->netdev;
3371         struct e1000_hw *hw = &adapter->hw;
3372         struct pci_dev *pdev = adapter->pdev;
3373         unsigned long flags;
3374         u16 phy_tmp;
3375
3376 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3377
3378         /*
3379          * Prevent stats update while adapter is being reset, or if the pci
3380          * connection is down.
3381          */
3382         if (adapter->link_speed == 0)
3383                 return;
3384         if (pci_channel_offline(pdev))
3385                 return;
3386
3387         spin_lock_irqsave(&adapter->stats_lock, flags);
3388
3389         /* these counters are modified from e1000_tbi_adjust_stats,
3390          * called from the interrupt context, so they must only
3391          * be written while holding adapter->stats_lock
3392          */
3393
3394         adapter->stats.crcerrs += er32(CRCERRS);
3395         adapter->stats.gprc += er32(GPRC);
3396         adapter->stats.gorcl += er32(GORCL);
3397         adapter->stats.gorch += er32(GORCH);
3398         adapter->stats.bprc += er32(BPRC);
3399         adapter->stats.mprc += er32(MPRC);
3400         adapter->stats.roc += er32(ROC);
3401
3402         adapter->stats.prc64 += er32(PRC64);
3403         adapter->stats.prc127 += er32(PRC127);
3404         adapter->stats.prc255 += er32(PRC255);
3405         adapter->stats.prc511 += er32(PRC511);
3406         adapter->stats.prc1023 += er32(PRC1023);
3407         adapter->stats.prc1522 += er32(PRC1522);
3408
3409         adapter->stats.symerrs += er32(SYMERRS);
3410         adapter->stats.mpc += er32(MPC);
3411         adapter->stats.scc += er32(SCC);
3412         adapter->stats.ecol += er32(ECOL);
3413         adapter->stats.mcc += er32(MCC);
3414         adapter->stats.latecol += er32(LATECOL);
3415         adapter->stats.dc += er32(DC);
3416         adapter->stats.sec += er32(SEC);
3417         adapter->stats.rlec += er32(RLEC);
3418         adapter->stats.xonrxc += er32(XONRXC);
3419         adapter->stats.xontxc += er32(XONTXC);
3420         adapter->stats.xoffrxc += er32(XOFFRXC);
3421         adapter->stats.xofftxc += er32(XOFFTXC);
3422         adapter->stats.fcruc += er32(FCRUC);
3423         adapter->stats.gptc += er32(GPTC);
3424         adapter->stats.gotcl += er32(GOTCL);
3425         adapter->stats.gotch += er32(GOTCH);
3426         adapter->stats.rnbc += er32(RNBC);
3427         adapter->stats.ruc += er32(RUC);
3428         adapter->stats.rfc += er32(RFC);
3429         adapter->stats.rjc += er32(RJC);
3430         adapter->stats.torl += er32(TORL);
3431         adapter->stats.torh += er32(TORH);
3432         adapter->stats.totl += er32(TOTL);
3433         adapter->stats.toth += er32(TOTH);
3434         adapter->stats.tpr += er32(TPR);
3435
3436         adapter->stats.ptc64 += er32(PTC64);
3437         adapter->stats.ptc127 += er32(PTC127);
3438         adapter->stats.ptc255 += er32(PTC255);
3439         adapter->stats.ptc511 += er32(PTC511);
3440         adapter->stats.ptc1023 += er32(PTC1023);
3441         adapter->stats.ptc1522 += er32(PTC1522);
3442
3443         adapter->stats.mptc += er32(MPTC);
3444         adapter->stats.bptc += er32(BPTC);
3445
3446         /* used for adaptive IFS */
3447
3448         hw->tx_packet_delta = er32(TPT);
3449         adapter->stats.tpt += hw->tx_packet_delta;
3450         hw->collision_delta = er32(COLC);
3451         adapter->stats.colc += hw->collision_delta;
3452
3453         if (hw->mac_type >= e1000_82543) {
3454                 adapter->stats.algnerrc += er32(ALGNERRC);
3455                 adapter->stats.rxerrc += er32(RXERRC);
3456                 adapter->stats.tncrs += er32(TNCRS);
3457                 adapter->stats.cexterr += er32(CEXTERR);
3458                 adapter->stats.tsctc += er32(TSCTC);
3459                 adapter->stats.tsctfc += er32(TSCTFC);
3460         }
3461
3462         /* Fill out the OS statistics structure */
3463         netdev->stats.multicast = adapter->stats.mprc;
3464         netdev->stats.collisions = adapter->stats.colc;
3465
3466         /* Rx Errors */
3467
3468         /* RLEC on some newer hardware can be incorrect so build
3469         * our own version based on RUC and ROC */
3470         netdev->stats.rx_errors = adapter->stats.rxerrc +
3471                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3472                 adapter->stats.ruc + adapter->stats.roc +
3473                 adapter->stats.cexterr;
3474         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3475         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3476         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3477         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3478         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3479
3480         /* Tx Errors */
3481         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3482         netdev->stats.tx_errors = adapter->stats.txerrc;
3483         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3484         netdev->stats.tx_window_errors = adapter->stats.latecol;
3485         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3486         if (hw->bad_tx_carr_stats_fd &&
3487             adapter->link_duplex == FULL_DUPLEX) {
3488                 netdev->stats.tx_carrier_errors = 0;
3489                 adapter->stats.tncrs = 0;
3490         }
3491
3492         /* Tx Dropped needs to be maintained elsewhere */
3493
3494         /* Phy Stats */
3495         if (hw->media_type == e1000_media_type_copper) {
3496                 if ((adapter->link_speed == SPEED_1000) &&
3497                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3498                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3499                         adapter->phy_stats.idle_errors += phy_tmp;
3500                 }
3501
3502                 if ((hw->mac_type <= e1000_82546) &&
3503                    (hw->phy_type == e1000_phy_m88) &&
3504                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3505                         adapter->phy_stats.receive_errors += phy_tmp;
3506         }
3507
3508         /* Management Stats */
3509         if (hw->has_smbus) {
3510                 adapter->stats.mgptc += er32(MGTPTC);
3511                 adapter->stats.mgprc += er32(MGTPRC);
3512                 adapter->stats.mgpdc += er32(MGTPDC);
3513         }
3514
3515         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3516 }
3517
3518 /**
3519  * e1000_intr - Interrupt Handler
3520  * @irq: interrupt number
3521  * @data: pointer to a network interface device structure
3522  **/
3523
3524 static irqreturn_t e1000_intr(int irq, void *data)
3525 {
3526         struct net_device *netdev = data;
3527         struct e1000_adapter *adapter = netdev_priv(netdev);
3528         struct e1000_hw *hw = &adapter->hw;
3529         u32 icr = er32(ICR);
3530
3531         if (unlikely((!icr)))
3532                 return IRQ_NONE;  /* Not our interrupt */
3533
3534         /*
3535          * we might have caused the interrupt, but the above
3536          * read cleared it, and just in case the driver is
3537          * down there is nothing to do so return handled
3538          */
3539         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3540                 return IRQ_HANDLED;
3541
3542         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3543                 hw->get_link_status = 1;
3544                 /* guard against interrupt when we're going down */
3545                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3546                         schedule_delayed_work(&adapter->watchdog_task, 1);
3547         }
3548
3549         /* disable interrupts, without the synchronize_irq bit */
3550         ew32(IMC, ~0);
3551         E1000_WRITE_FLUSH();
3552
3553         if (likely(napi_schedule_prep(&adapter->napi))) {
3554                 adapter->total_tx_bytes = 0;
3555                 adapter->total_tx_packets = 0;
3556                 adapter->total_rx_bytes = 0;
3557                 adapter->total_rx_packets = 0;
3558                 __napi_schedule(&adapter->napi);
3559         } else {
3560                 /* this really should not happen! if it does it is basically a
3561                  * bug, but not a hard error, so enable ints and continue */
3562                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3563                         e1000_irq_enable(adapter);
3564         }
3565
3566         return IRQ_HANDLED;
3567 }
3568
3569 /**
3570  * e1000_clean - NAPI Rx polling callback
3571  * @adapter: board private structure
3572  **/
3573 static int e1000_clean(struct napi_struct *napi, int budget)
3574 {
3575         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3576         int tx_clean_complete = 0, work_done = 0;
3577
3578         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3579
3580         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3581
3582         if (!tx_clean_complete)
3583                 work_done = budget;
3584
3585         /* If budget not fully consumed, exit the polling mode */
3586         if (work_done < budget) {
3587                 if (likely(adapter->itr_setting & 3))
3588                         e1000_set_itr(adapter);
3589                 napi_complete(napi);
3590                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3591                         e1000_irq_enable(adapter);
3592         }
3593
3594         return work_done;
3595 }
3596
3597 /**
3598  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3599  * @adapter: board private structure
3600  **/
3601 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3602                                struct e1000_tx_ring *tx_ring)
3603 {
3604         struct e1000_hw *hw = &adapter->hw;
3605         struct net_device *netdev = adapter->netdev;
3606         struct e1000_tx_desc *tx_desc, *eop_desc;
3607         struct e1000_buffer *buffer_info;
3608         unsigned int i, eop;
3609         unsigned int count = 0;
3610         unsigned int total_tx_bytes=0, total_tx_packets=0;
3611
3612         i = tx_ring->next_to_clean;
3613         eop = tx_ring->buffer_info[i].next_to_watch;
3614         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3615
3616         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3617                (count < tx_ring->count)) {
3618                 bool cleaned = false;
3619                 rmb();  /* read buffer_info after eop_desc */
3620                 for ( ; !cleaned; count++) {
3621                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3622                         buffer_info = &tx_ring->buffer_info[i];
3623                         cleaned = (i == eop);
3624
3625                         if (cleaned) {
3626                                 total_tx_packets += buffer_info->segs;
3627                                 total_tx_bytes += buffer_info->bytecount;
3628                         }
3629                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3630                         tx_desc->upper.data = 0;
3631
3632                         if (unlikely(++i == tx_ring->count)) i = 0;
3633                 }
3634
3635                 eop = tx_ring->buffer_info[i].next_to_watch;
3636                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3637         }
3638
3639         tx_ring->next_to_clean = i;
3640
3641 #define TX_WAKE_THRESHOLD 32
3642         if (unlikely(count && netif_carrier_ok(netdev) &&
3643                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3644                 /* Make sure that anybody stopping the queue after this
3645                  * sees the new next_to_clean.
3646                  */
3647                 smp_mb();
3648
3649                 if (netif_queue_stopped(netdev) &&
3650                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3651                         netif_wake_queue(netdev);
3652                         ++adapter->restart_queue;
3653                 }
3654         }
3655
3656         if (adapter->detect_tx_hung) {
3657                 /* Detect a transmit hang in hardware, this serializes the
3658                  * check with the clearing of time_stamp and movement of i */
3659                 adapter->detect_tx_hung = false;
3660                 if (tx_ring->buffer_info[eop].time_stamp &&
3661                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3662                                (adapter->tx_timeout_factor * HZ)) &&
3663                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3664
3665                         /* detected Tx unit hang */
3666                         e_err(drv, "Detected Tx Unit Hang\n"
3667                               "  Tx Queue             <%lu>\n"
3668                               "  TDH                  <%x>\n"
3669                               "  TDT                  <%x>\n"
3670                               "  next_to_use          <%x>\n"
3671                               "  next_to_clean        <%x>\n"
3672                               "buffer_info[next_to_clean]\n"
3673                               "  time_stamp           <%lx>\n"
3674                               "  next_to_watch        <%x>\n"
3675                               "  jiffies              <%lx>\n"
3676                               "  next_to_watch.status <%x>\n",
3677                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3678                                         sizeof(struct e1000_tx_ring)),
3679                                 readl(hw->hw_addr + tx_ring->tdh),
3680                                 readl(hw->hw_addr + tx_ring->tdt),
3681                                 tx_ring->next_to_use,
3682                                 tx_ring->next_to_clean,
3683                                 tx_ring->buffer_info[eop].time_stamp,
3684                                 eop,
3685                                 jiffies,
3686                                 eop_desc->upper.fields.status);
3687                         netif_stop_queue(netdev);
3688                 }
3689         }
3690         adapter->total_tx_bytes += total_tx_bytes;
3691         adapter->total_tx_packets += total_tx_packets;
3692         netdev->stats.tx_bytes += total_tx_bytes;
3693         netdev->stats.tx_packets += total_tx_packets;
3694         return count < tx_ring->count;
3695 }
3696
3697 /**
3698  * e1000_rx_checksum - Receive Checksum Offload for 82543
3699  * @adapter:     board private structure
3700  * @status_err:  receive descriptor status and error fields
3701  * @csum:        receive descriptor csum field
3702  * @sk_buff:     socket buffer with received data
3703  **/
3704
3705 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3706                               u32 csum, struct sk_buff *skb)
3707 {
3708         struct e1000_hw *hw = &adapter->hw;
3709         u16 status = (u16)status_err;
3710         u8 errors = (u8)(status_err >> 24);
3711
3712         skb_checksum_none_assert(skb);
3713
3714         /* 82543 or newer only */
3715         if (unlikely(hw->mac_type < e1000_82543)) return;
3716         /* Ignore Checksum bit is set */
3717         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3718         /* TCP/UDP checksum error bit is set */
3719         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3720                 /* let the stack verify checksum errors */
3721                 adapter->hw_csum_err++;
3722                 return;
3723         }
3724         /* TCP/UDP Checksum has not been calculated */
3725         if (!(status & E1000_RXD_STAT_TCPCS))
3726                 return;
3727
3728         /* It must be a TCP or UDP packet with a valid checksum */
3729         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3730                 /* TCP checksum is good */
3731                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3732         }
3733         adapter->hw_csum_good++;
3734 }
3735
3736 /**
3737  * e1000_consume_page - helper function
3738  **/
3739 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3740                                u16 length)
3741 {
3742         bi->page = NULL;
3743         skb->len += length;
3744         skb->data_len += length;
3745         skb->truesize += PAGE_SIZE;
3746 }
3747
3748 /**
3749  * e1000_receive_skb - helper function to handle rx indications
3750  * @adapter: board private structure
3751  * @status: descriptor status field as written by hardware
3752  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3753  * @skb: pointer to sk_buff to be indicated to stack
3754  */
3755 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3756                               __le16 vlan, struct sk_buff *skb)
3757 {
3758         skb->protocol = eth_type_trans(skb, adapter->netdev);
3759
3760         if (status & E1000_RXD_STAT_VP) {
3761                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3762
3763                 __vlan_hwaccel_put_tag(skb, vid);
3764         }
3765         napi_gro_receive(&adapter->napi, skb);
3766 }
3767
3768 /**
3769  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3770  * @adapter: board private structure
3771  * @rx_ring: ring to clean
3772  * @work_done: amount of napi work completed this call
3773  * @work_to_do: max amount of work allowed for this call to do
3774  *
3775  * the return value indicates whether actual cleaning was done, there
3776  * is no guarantee that everything was cleaned
3777  */
3778 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3779                                      struct e1000_rx_ring *rx_ring,
3780                                      int *work_done, int work_to_do)
3781 {
3782         struct e1000_hw *hw = &adapter->hw;
3783         struct net_device *netdev = adapter->netdev;
3784         struct pci_dev *pdev = adapter->pdev;
3785         struct e1000_rx_desc *rx_desc, *next_rxd;
3786         struct e1000_buffer *buffer_info, *next_buffer;
3787         unsigned long irq_flags;
3788         u32 length;
3789         unsigned int i;
3790         int cleaned_count = 0;
3791         bool cleaned = false;
3792         unsigned int total_rx_bytes=0, total_rx_packets=0;
3793
3794         i = rx_ring->next_to_clean;
3795         rx_desc = E1000_RX_DESC(*rx_ring, i);
3796         buffer_info = &rx_ring->buffer_info[i];
3797
3798         while (rx_desc->status & E1000_RXD_STAT_DD) {
3799                 struct sk_buff *skb;
3800                 u8 status;
3801
3802                 if (*work_done >= work_to_do)
3803                         break;
3804                 (*work_done)++;
3805                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3806
3807                 status = rx_desc->status;
3808                 skb = buffer_info->skb;
3809                 buffer_info->skb = NULL;
3810
3811                 if (++i == rx_ring->count) i = 0;
3812                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3813                 prefetch(next_rxd);
3814
3815                 next_buffer = &rx_ring->buffer_info[i];
3816
3817                 cleaned = true;
3818                 cleaned_count++;
3819                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3820                                buffer_info->length, DMA_FROM_DEVICE);
3821                 buffer_info->dma = 0;
3822
3823                 length = le16_to_cpu(rx_desc->length);
3824
3825                 /* errors is only valid for DD + EOP descriptors */
3826                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3827                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3828                         u8 last_byte = *(skb->data + length - 1);
3829                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3830                                        last_byte)) {
3831                                 spin_lock_irqsave(&adapter->stats_lock,
3832                                                   irq_flags);
3833                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3834                                                        length, skb->data);
3835                                 spin_unlock_irqrestore(&adapter->stats_lock,
3836                                                        irq_flags);
3837                                 length--;
3838                         } else {
3839                                 /* recycle both page and skb */
3840                                 buffer_info->skb = skb;
3841                                 /* an error means any chain goes out the window
3842                                  * too */
3843                                 if (rx_ring->rx_skb_top)
3844                                         dev_kfree_skb(rx_ring->rx_skb_top);
3845                                 rx_ring->rx_skb_top = NULL;
3846                                 goto next_desc;
3847                         }
3848                 }
3849
3850 #define rxtop rx_ring->rx_skb_top
3851                 if (!(status & E1000_RXD_STAT_EOP)) {
3852                         /* this descriptor is only the beginning (or middle) */
3853                         if (!rxtop) {
3854                                 /* this is the beginning of a chain */
3855                                 rxtop = skb;
3856                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3857                                                    0, length);
3858                         } else {
3859                                 /* this is the middle of a chain */
3860                                 skb_fill_page_desc(rxtop,
3861                                     skb_shinfo(rxtop)->nr_frags,
3862                                     buffer_info->page, 0, length);
3863                                 /* re-use the skb, only consumed the page */
3864                                 buffer_info->skb = skb;
3865                         }
3866                         e1000_consume_page(buffer_info, rxtop, length);
3867                         goto next_desc;
3868                 } else {
3869                         if (rxtop) {
3870                                 /* end of the chain */
3871                                 skb_fill_page_desc(rxtop,
3872                                     skb_shinfo(rxtop)->nr_frags,
3873                                     buffer_info->page, 0, length);
3874                                 /* re-use the current skb, we only consumed the
3875                                  * page */
3876                                 buffer_info->skb = skb;
3877                                 skb = rxtop;
3878                                 rxtop = NULL;
3879                                 e1000_consume_page(buffer_info, skb, length);
3880                         } else {
3881                                 /* no chain, got EOP, this buf is the packet
3882                                  * copybreak to save the put_page/alloc_page */
3883                                 if (length <= copybreak &&
3884                                     skb_tailroom(skb) >= length) {
3885                                         u8 *vaddr;
3886                                         vaddr = kmap_atomic(buffer_info->page,
3887                                                             KM_SKB_DATA_SOFTIRQ);
3888                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3889                                         kunmap_atomic(vaddr,
3890                                                       KM_SKB_DATA_SOFTIRQ);
3891                                         /* re-use the page, so don't erase
3892                                          * buffer_info->page */
3893                                         skb_put(skb, length);
3894                                 } else {
3895                                         skb_fill_page_desc(skb, 0,
3896                                                            buffer_info->page, 0,
3897                                                            length);
3898                                         e1000_consume_page(buffer_info, skb,
3899                                                            length);
3900                                 }
3901                         }
3902                 }
3903
3904                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3905                 e1000_rx_checksum(adapter,
3906                                   (u32)(status) |
3907                                   ((u32)(rx_desc->errors) << 24),
3908                                   le16_to_cpu(rx_desc->csum), skb);
3909
3910                 pskb_trim(skb, skb->len - 4);
3911
3912                 /* probably a little skewed due to removing CRC */
3913                 total_rx_bytes += skb->len;
3914                 total_rx_packets++;
3915
3916                 /* eth type trans needs skb->data to point to something */
3917                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3918                         e_err(drv, "pskb_may_pull failed.\n");
3919                         dev_kfree_skb(skb);
3920                         goto next_desc;
3921                 }
3922
3923                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3924
3925 next_desc:
3926                 rx_desc->status = 0;
3927
3928                 /* return some buffers to hardware, one at a time is too slow */
3929                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3930                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3931                         cleaned_count = 0;
3932                 }
3933
3934                 /* use prefetched values */
3935                 rx_desc = next_rxd;
3936                 buffer_info = next_buffer;
3937         }
3938         rx_ring->next_to_clean = i;
3939
3940         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3941         if (cleaned_count)
3942                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3943
3944         adapter->total_rx_packets += total_rx_packets;
3945         adapter->total_rx_bytes += total_rx_bytes;
3946         netdev->stats.rx_bytes += total_rx_bytes;
3947         netdev->stats.rx_packets += total_rx_packets;
3948         return cleaned;
3949 }
3950
3951 /*
3952  * this should improve performance for small packets with large amounts
3953  * of reassembly being done in the stack
3954  */
3955 static void e1000_check_copybreak(struct net_device *netdev,
3956                                  struct e1000_buffer *buffer_info,
3957                                  u32 length, struct sk_buff **skb)
3958 {
3959         struct sk_buff *new_skb;
3960
3961         if (length > copybreak)
3962                 return;
3963
3964         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3965         if (!new_skb)
3966                 return;
3967
3968         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3969                                        (*skb)->data - NET_IP_ALIGN,
3970                                        length + NET_IP_ALIGN);
3971         /* save the skb in buffer_info as good */
3972         buffer_info->skb = *skb;
3973         *skb = new_skb;
3974 }
3975
3976 /**
3977  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3978  * @adapter: board private structure
3979  * @rx_ring: ring to clean
3980  * @work_done: amount of napi work completed this call
3981  * @work_to_do: max amount of work allowed for this call to do
3982  */
3983 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3984                                struct e1000_rx_ring *rx_ring,
3985                                int *work_done, int work_to_do)
3986 {
3987         struct e1000_hw *hw = &adapter->hw;
3988         struct net_device *netdev = adapter->netdev;
3989         struct pci_dev *pdev = adapter->pdev;
3990         struct e1000_rx_desc *rx_desc, *next_rxd;
3991         struct e1000_buffer *buffer_info, *next_buffer;
3992         unsigned long flags;
3993         u32 length;
3994         unsigned int i;
3995         int cleaned_count = 0;
3996         bool cleaned = false;
3997         unsigned int total_rx_bytes=0, total_rx_packets=0;
3998
3999         i = rx_ring->next_to_clean;
4000         rx_desc = E1000_RX_DESC(*rx_ring, i);
4001         buffer_info = &rx_ring->buffer_info[i];
4002
4003         while (rx_desc->status & E1000_RXD_STAT_DD) {
4004                 struct sk_buff *skb;
4005                 u8 status;
4006
4007                 if (*work_done >= work_to_do)
4008                         break;
4009                 (*work_done)++;
4010                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4011
4012                 status = rx_desc->status;
4013                 skb = buffer_info->skb;
4014                 buffer_info->skb = NULL;
4015
4016                 prefetch(skb->data - NET_IP_ALIGN);
4017
4018                 if (++i == rx_ring->count) i = 0;
4019                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4020                 prefetch(next_rxd);
4021
4022                 next_buffer = &rx_ring->buffer_info[i];
4023
4024                 cleaned = true;
4025                 cleaned_count++;
4026                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4027                                  buffer_info->length, DMA_FROM_DEVICE);
4028                 buffer_info->dma = 0;
4029
4030                 length = le16_to_cpu(rx_desc->length);
4031                 /* !EOP means multiple descriptors were used to store a single
4032                  * packet, if thats the case we need to toss it.  In fact, we
4033                  * to toss every packet with the EOP bit clear and the next
4034                  * frame that _does_ have the EOP bit set, as it is by
4035                  * definition only a frame fragment
4036                  */
4037                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4038                         adapter->discarding = true;
4039
4040                 if (adapter->discarding) {
4041                         /* All receives must fit into a single buffer */
4042                         e_dbg("Receive packet consumed multiple buffers\n");
4043                         /* recycle */
4044                         buffer_info->skb = skb;
4045                         if (status & E1000_RXD_STAT_EOP)
4046                                 adapter->discarding = false;
4047                         goto next_desc;
4048                 }
4049
4050                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4051                         u8 last_byte = *(skb->data + length - 1);
4052                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4053                                        last_byte)) {
4054                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4055                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4056                                                        length, skb->data);
4057                                 spin_unlock_irqrestore(&adapter->stats_lock,
4058                                                        flags);
4059                                 length--;
4060                         } else {
4061                                 /* recycle */
4062                                 buffer_info->skb = skb;
4063                                 goto next_desc;
4064                         }
4065                 }
4066
4067                 /* adjust length to remove Ethernet CRC, this must be
4068                  * done after the TBI_ACCEPT workaround above */
4069                 length -= 4;
4070
4071                 /* probably a little skewed due to removing CRC */
4072                 total_rx_bytes += length;
4073                 total_rx_packets++;
4074
4075                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4076
4077                 skb_put(skb, length);
4078
4079                 /* Receive Checksum Offload */
4080                 e1000_rx_checksum(adapter,
4081                                   (u32)(status) |
4082                                   ((u32)(rx_desc->errors) << 24),
4083                                   le16_to_cpu(rx_desc->csum), skb);
4084
4085                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4086
4087 next_desc:
4088                 rx_desc->status = 0;
4089
4090                 /* return some buffers to hardware, one at a time is too slow */
4091                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4092                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4093                         cleaned_count = 0;
4094                 }
4095
4096                 /* use prefetched values */
4097                 rx_desc = next_rxd;
4098                 buffer_info = next_buffer;
4099         }
4100         rx_ring->next_to_clean = i;
4101
4102         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4103         if (cleaned_count)
4104                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4105
4106         adapter->total_rx_packets += total_rx_packets;
4107         adapter->total_rx_bytes += total_rx_bytes;
4108         netdev->stats.rx_bytes += total_rx_bytes;
4109         netdev->stats.rx_packets += total_rx_packets;
4110         return cleaned;
4111 }
4112
4113 /**
4114  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4115  * @adapter: address of board private structure
4116  * @rx_ring: pointer to receive ring structure
4117  * @cleaned_count: number of buffers to allocate this pass
4118  **/
4119
4120 static void
4121 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4122                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4123 {
4124         struct net_device *netdev = adapter->netdev;
4125         struct pci_dev *pdev = adapter->pdev;
4126         struct e1000_rx_desc *rx_desc;
4127         struct e1000_buffer *buffer_info;
4128         struct sk_buff *skb;
4129         unsigned int i;
4130         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4131
4132         i = rx_ring->next_to_use;
4133         buffer_info = &rx_ring->buffer_info[i];
4134
4135         while (cleaned_count--) {
4136                 skb = buffer_info->skb;
4137                 if (skb) {
4138                         skb_trim(skb, 0);
4139                         goto check_page;
4140                 }
4141
4142                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4143                 if (unlikely(!skb)) {
4144                         /* Better luck next round */
4145                         adapter->alloc_rx_buff_failed++;
4146                         break;
4147                 }
4148
4149                 /* Fix for errata 23, can't cross 64kB boundary */
4150                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4151                         struct sk_buff *oldskb = skb;
4152                         e_err(rx_err, "skb align check failed: %u bytes at "
4153                               "%p\n", bufsz, skb->data);
4154                         /* Try again, without freeing the previous */
4155                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4156                         /* Failed allocation, critical failure */
4157                         if (!skb) {
4158                                 dev_kfree_skb(oldskb);
4159                                 adapter->alloc_rx_buff_failed++;
4160                                 break;
4161                         }
4162
4163                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4164                                 /* give up */
4165                                 dev_kfree_skb(skb);
4166                                 dev_kfree_skb(oldskb);
4167                                 break; /* while (cleaned_count--) */
4168                         }
4169
4170                         /* Use new allocation */
4171                         dev_kfree_skb(oldskb);
4172                 }
4173                 buffer_info->skb = skb;
4174                 buffer_info->length = adapter->rx_buffer_len;
4175 check_page:
4176                 /* allocate a new page if necessary */
4177                 if (!buffer_info->page) {
4178                         buffer_info->page = alloc_page(GFP_ATOMIC);
4179                         if (unlikely(!buffer_info->page)) {
4180                                 adapter->alloc_rx_buff_failed++;
4181                                 break;
4182                         }
4183                 }
4184
4185                 if (!buffer_info->dma) {
4186                         buffer_info->dma = dma_map_page(&pdev->dev,
4187                                                         buffer_info->page, 0,
4188                                                         buffer_info->length,
4189                                                         DMA_FROM_DEVICE);
4190                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4191                                 put_page(buffer_info->page);
4192                                 dev_kfree_skb(skb);
4193                                 buffer_info->page = NULL;
4194                                 buffer_info->skb = NULL;
4195                                 buffer_info->dma = 0;
4196                                 adapter->alloc_rx_buff_failed++;
4197                                 break; /* while !buffer_info->skb */
4198                         }
4199                 }
4200
4201                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4202                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4203
4204                 if (unlikely(++i == rx_ring->count))
4205                         i = 0;
4206                 buffer_info = &rx_ring->buffer_info[i];
4207         }
4208
4209         if (likely(rx_ring->next_to_use != i)) {
4210                 rx_ring->next_to_use = i;
4211                 if (unlikely(i-- == 0))
4212                         i = (rx_ring->count - 1);
4213
4214                 /* Force memory writes to complete before letting h/w
4215                  * know there are new descriptors to fetch.  (Only
4216                  * applicable for weak-ordered memory model archs,
4217                  * such as IA-64). */
4218                 wmb();
4219                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4220         }
4221 }
4222
4223 /**
4224  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4225  * @adapter: address of board private structure
4226  **/
4227
4228 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4229                                    struct e1000_rx_ring *rx_ring,
4230                                    int cleaned_count)
4231 {
4232         struct e1000_hw *hw = &adapter->hw;
4233         struct net_device *netdev = adapter->netdev;
4234         struct pci_dev *pdev = adapter->pdev;
4235         struct e1000_rx_desc *rx_desc;
4236         struct e1000_buffer *buffer_info;
4237         struct sk_buff *skb;
4238         unsigned int i;
4239         unsigned int bufsz = adapter->rx_buffer_len;
4240
4241         i = rx_ring->next_to_use;
4242         buffer_info = &rx_ring->buffer_info[i];
4243
4244         while (cleaned_count--) {
4245                 skb = buffer_info->skb;
4246                 if (skb) {
4247                         skb_trim(skb, 0);
4248                         goto map_skb;
4249                 }
4250
4251                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4252                 if (unlikely(!skb)) {
4253                         /* Better luck next round */
4254                         adapter->alloc_rx_buff_failed++;
4255                         break;
4256                 }
4257
4258                 /* Fix for errata 23, can't cross 64kB boundary */
4259                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4260                         struct sk_buff *oldskb = skb;
4261                         e_err(rx_err, "skb align check failed: %u bytes at "
4262                               "%p\n", bufsz, skb->data);
4263                         /* Try again, without freeing the previous */
4264                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4265                         /* Failed allocation, critical failure */
4266                         if (!skb) {
4267                                 dev_kfree_skb(oldskb);
4268                                 adapter->alloc_rx_buff_failed++;
4269                                 break;
4270                         }
4271
4272                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4273                                 /* give up */
4274                                 dev_kfree_skb(skb);
4275                                 dev_kfree_skb(oldskb);
4276                                 adapter->alloc_rx_buff_failed++;
4277                                 break; /* while !buffer_info->skb */
4278                         }
4279
4280                         /* Use new allocation */
4281                         dev_kfree_skb(oldskb);
4282                 }
4283                 buffer_info->skb = skb;
4284                 buffer_info->length = adapter->rx_buffer_len;
4285 map_skb:
4286                 buffer_info->dma = dma_map_single(&pdev->dev,
4287                                                   skb->data,
4288                                                   buffer_info->length,
4289                                                   DMA_FROM_DEVICE);
4290                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4291                         dev_kfree_skb(skb);
4292                         buffer_info->skb = NULL;
4293                         buffer_info->dma = 0;
4294                         adapter->alloc_rx_buff_failed++;
4295                         break; /* while !buffer_info->skb */
4296                 }
4297
4298                 /*
4299                  * XXX if it was allocated cleanly it will never map to a
4300                  * boundary crossing
4301                  */
4302
4303                 /* Fix for errata 23, can't cross 64kB boundary */
4304                 if (!e1000_check_64k_bound(adapter,
4305                                         (void *)(unsigned long)buffer_info->dma,
4306                                         adapter->rx_buffer_len)) {
4307                         e_err(rx_err, "dma align check failed: %u bytes at "
4308                               "%p\n", adapter->rx_buffer_len,
4309                               (void *)(unsigned long)buffer_info->dma);
4310                         dev_kfree_skb(skb);
4311                         buffer_info->skb = NULL;
4312
4313                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4314                                          adapter->rx_buffer_len,
4315                                          DMA_FROM_DEVICE);
4316                         buffer_info->dma = 0;
4317
4318                         adapter->alloc_rx_buff_failed++;
4319                         break; /* while !buffer_info->skb */
4320                 }
4321                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4322                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4323
4324                 if (unlikely(++i == rx_ring->count))
4325                         i = 0;
4326                 buffer_info = &rx_ring->buffer_info[i];
4327         }
4328
4329         if (likely(rx_ring->next_to_use != i)) {
4330                 rx_ring->next_to_use = i;
4331                 if (unlikely(i-- == 0))
4332                         i = (rx_ring->count - 1);
4333
4334                 /* Force memory writes to complete before letting h/w
4335                  * know there are new descriptors to fetch.  (Only
4336                  * applicable for weak-ordered memory model archs,
4337                  * such as IA-64). */
4338                 wmb();
4339                 writel(i, hw->hw_addr + rx_ring->rdt);
4340         }
4341 }
4342
4343 /**
4344  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4345  * @adapter:
4346  **/
4347
4348 static void e1000_smartspeed(struct e1000_adapter *adapter)
4349 {
4350         struct e1000_hw *hw = &adapter->hw;
4351         u16 phy_status;
4352         u16 phy_ctrl;
4353
4354         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4355            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4356                 return;
4357
4358         if (adapter->smartspeed == 0) {
4359                 /* If Master/Slave config fault is asserted twice,
4360                  * we assume back-to-back */
4361                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4362                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4363                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4364                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4365                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4366                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4367                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4368                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4369                                             phy_ctrl);
4370                         adapter->smartspeed++;
4371                         if (!e1000_phy_setup_autoneg(hw) &&
4372                            !e1000_read_phy_reg(hw, PHY_CTRL,
4373                                                &phy_ctrl)) {
4374                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4375                                              MII_CR_RESTART_AUTO_NEG);
4376                                 e1000_write_phy_reg(hw, PHY_CTRL,
4377                                                     phy_ctrl);
4378                         }
4379                 }
4380                 return;
4381         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4382                 /* If still no link, perhaps using 2/3 pair cable */
4383                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4384                 phy_ctrl |= CR_1000T_MS_ENABLE;
4385                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4386                 if (!e1000_phy_setup_autoneg(hw) &&
4387                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4388                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4389                                      MII_CR_RESTART_AUTO_NEG);
4390                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4391                 }
4392         }
4393         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4394         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4395                 adapter->smartspeed = 0;
4396 }
4397
4398 /**
4399  * e1000_ioctl -
4400  * @netdev:
4401  * @ifreq:
4402  * @cmd:
4403  **/
4404
4405 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4406 {
4407         switch (cmd) {
4408         case SIOCGMIIPHY:
4409         case SIOCGMIIREG:
4410         case SIOCSMIIREG:
4411                 return e1000_mii_ioctl(netdev, ifr, cmd);
4412         default:
4413                 return -EOPNOTSUPP;
4414         }
4415 }
4416
4417 /**
4418  * e1000_mii_ioctl -
4419  * @netdev:
4420  * @ifreq:
4421  * @cmd:
4422  **/
4423
4424 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4425                            int cmd)
4426 {
4427         struct e1000_adapter *adapter = netdev_priv(netdev);
4428         struct e1000_hw *hw = &adapter->hw;
4429         struct mii_ioctl_data *data = if_mii(ifr);
4430         int retval;
4431         u16 mii_reg;
4432         unsigned long flags;
4433
4434         if (hw->media_type != e1000_media_type_copper)
4435                 return -EOPNOTSUPP;
4436
4437         switch (cmd) {
4438         case SIOCGMIIPHY:
4439                 data->phy_id = hw->phy_addr;
4440                 break;
4441         case SIOCGMIIREG:
4442                 spin_lock_irqsave(&adapter->stats_lock, flags);
4443                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4444                                    &data->val_out)) {
4445                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4446                         return -EIO;
4447                 }
4448                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4449                 break;
4450         case SIOCSMIIREG:
4451                 if (data->reg_num & ~(0x1F))
4452                         return -EFAULT;
4453                 mii_reg = data->val_in;
4454                 spin_lock_irqsave(&adapter->stats_lock, flags);
4455                 if (e1000_write_phy_reg(hw, data->reg_num,
4456                                         mii_reg)) {
4457                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4458                         return -EIO;
4459                 }
4460                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4461                 if (hw->media_type == e1000_media_type_copper) {
4462                         switch (data->reg_num) {
4463                         case PHY_CTRL:
4464                                 if (mii_reg & MII_CR_POWER_DOWN)
4465                                         break;
4466                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4467                                         hw->autoneg = 1;
4468                                         hw->autoneg_advertised = 0x2F;
4469                                 } else {
4470                                         u32 speed;
4471                                         if (mii_reg & 0x40)
4472                                                 speed = SPEED_1000;
4473                                         else if (mii_reg & 0x2000)
4474                                                 speed = SPEED_100;
4475                                         else
4476                                                 speed = SPEED_10;
4477                                         retval = e1000_set_spd_dplx(
4478                                                 adapter, speed,
4479                                                 ((mii_reg & 0x100)
4480                                                  ? DUPLEX_FULL :
4481                                                  DUPLEX_HALF));
4482                                         if (retval)
4483                                                 return retval;
4484                                 }
4485                                 if (netif_running(adapter->netdev))
4486                                         e1000_reinit_locked(adapter);
4487                                 else
4488                                         e1000_reset(adapter);
4489                                 break;
4490                         case M88E1000_PHY_SPEC_CTRL:
4491                         case M88E1000_EXT_PHY_SPEC_CTRL:
4492                                 if (e1000_phy_reset(hw))
4493                                         return -EIO;
4494                                 break;
4495                         }
4496                 } else {
4497                         switch (data->reg_num) {
4498                         case PHY_CTRL:
4499                                 if (mii_reg & MII_CR_POWER_DOWN)
4500                                         break;
4501                                 if (netif_running(adapter->netdev))
4502                                         e1000_reinit_locked(adapter);
4503                                 else
4504                                         e1000_reset(adapter);
4505                                 break;
4506                         }
4507                 }
4508                 break;
4509         default:
4510                 return -EOPNOTSUPP;
4511         }
4512         return E1000_SUCCESS;
4513 }
4514
4515 void e1000_pci_set_mwi(struct e1000_hw *hw)
4516 {
4517         struct e1000_adapter *adapter = hw->back;
4518         int ret_val = pci_set_mwi(adapter->pdev);
4519
4520         if (ret_val)
4521                 e_err(probe, "Error in setting MWI\n");
4522 }
4523
4524 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4525 {
4526         struct e1000_adapter *adapter = hw->back;
4527
4528         pci_clear_mwi(adapter->pdev);
4529 }
4530
4531 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4532 {
4533         struct e1000_adapter *adapter = hw->back;
4534         return pcix_get_mmrbc(adapter->pdev);
4535 }
4536
4537 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4538 {
4539         struct e1000_adapter *adapter = hw->back;
4540         pcix_set_mmrbc(adapter->pdev, mmrbc);
4541 }
4542
4543 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4544 {
4545         outl(value, port);
4546 }
4547
4548 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4549 {
4550         u16 vid;
4551
4552         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4553                 return true;
4554         return false;
4555 }
4556
4557 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4558                                      bool filter_on)
4559 {
4560         struct e1000_hw *hw = &adapter->hw;
4561         u32 rctl;
4562
4563         if (!test_bit(__E1000_DOWN, &adapter->flags))
4564                 e1000_irq_disable(adapter);
4565
4566         if (filter_on) {
4567                 /* enable VLAN receive filtering */
4568                 rctl = er32(RCTL);
4569                 rctl &= ~E1000_RCTL_CFIEN;
4570                 if (!(adapter->netdev->flags & IFF_PROMISC))
4571                         rctl |= E1000_RCTL_VFE;
4572                 ew32(RCTL, rctl);
4573                 e1000_update_mng_vlan(adapter);
4574         } else {
4575                 /* disable VLAN receive filtering */
4576                 rctl = er32(RCTL);
4577                 rctl &= ~E1000_RCTL_VFE;
4578                 ew32(RCTL, rctl);
4579         }
4580
4581         if (!test_bit(__E1000_DOWN, &adapter->flags))
4582                 e1000_irq_enable(adapter);
4583 }
4584
4585 static void e1000_vlan_mode(struct net_device *netdev,
4586         netdev_features_t features)
4587 {
4588         struct e1000_adapter *adapter = netdev_priv(netdev);
4589         struct e1000_hw *hw = &adapter->hw;
4590         u32 ctrl;
4591
4592         if (!test_bit(__E1000_DOWN, &adapter->flags))
4593                 e1000_irq_disable(adapter);
4594
4595         ctrl = er32(CTRL);
4596         if (features & NETIF_F_HW_VLAN_RX) {
4597                 /* enable VLAN tag insert/strip */
4598                 ctrl |= E1000_CTRL_VME;
4599         } else {
4600                 /* disable VLAN tag insert/strip */
4601                 ctrl &= ~E1000_CTRL_VME;
4602         }
4603         ew32(CTRL, ctrl);
4604
4605         if (!test_bit(__E1000_DOWN, &adapter->flags))
4606                 e1000_irq_enable(adapter);
4607 }
4608
4609 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4610 {
4611         struct e1000_adapter *adapter = netdev_priv(netdev);
4612         struct e1000_hw *hw = &adapter->hw;
4613         u32 vfta, index;
4614
4615         if ((hw->mng_cookie.status &
4616              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4617             (vid == adapter->mng_vlan_id))
4618                 return 0;
4619
4620         if (!e1000_vlan_used(adapter))
4621                 e1000_vlan_filter_on_off(adapter, true);
4622
4623         /* add VID to filter table */
4624         index = (vid >> 5) & 0x7F;
4625         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4626         vfta |= (1 << (vid & 0x1F));
4627         e1000_write_vfta(hw, index, vfta);
4628
4629         set_bit(vid, adapter->active_vlans);
4630
4631         return 0;
4632 }
4633
4634 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4635 {
4636         struct e1000_adapter *adapter = netdev_priv(netdev);
4637         struct e1000_hw *hw = &adapter->hw;
4638         u32 vfta, index;
4639
4640         if (!test_bit(__E1000_DOWN, &adapter->flags))
4641                 e1000_irq_disable(adapter);
4642         if (!test_bit(__E1000_DOWN, &adapter->flags))
4643                 e1000_irq_enable(adapter);
4644
4645         /* remove VID from filter table */
4646         index = (vid >> 5) & 0x7F;
4647         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4648         vfta &= ~(1 << (vid & 0x1F));
4649         e1000_write_vfta(hw, index, vfta);
4650
4651         clear_bit(vid, adapter->active_vlans);
4652
4653         if (!e1000_vlan_used(adapter))
4654                 e1000_vlan_filter_on_off(adapter, false);
4655
4656         return 0;
4657 }
4658
4659 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4660 {
4661         u16 vid;
4662
4663         if (!e1000_vlan_used(adapter))
4664                 return;
4665
4666         e1000_vlan_filter_on_off(adapter, true);
4667         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4668                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4669 }
4670
4671 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4672 {
4673         struct e1000_hw *hw = &adapter->hw;
4674
4675         hw->autoneg = 0;
4676
4677         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4678          * for the switch() below to work */
4679         if ((spd & 1) || (dplx & ~1))
4680                 goto err_inval;
4681
4682         /* Fiber NICs only allow 1000 gbps Full duplex */
4683         if ((hw->media_type == e1000_media_type_fiber) &&
4684             spd != SPEED_1000 &&
4685             dplx != DUPLEX_FULL)
4686                 goto err_inval;
4687
4688         switch (spd + dplx) {
4689         case SPEED_10 + DUPLEX_HALF:
4690                 hw->forced_speed_duplex = e1000_10_half;
4691                 break;
4692         case SPEED_10 + DUPLEX_FULL:
4693                 hw->forced_speed_duplex = e1000_10_full;
4694                 break;
4695         case SPEED_100 + DUPLEX_HALF:
4696                 hw->forced_speed_duplex = e1000_100_half;
4697                 break;
4698         case SPEED_100 + DUPLEX_FULL:
4699                 hw->forced_speed_duplex = e1000_100_full;
4700                 break;
4701         case SPEED_1000 + DUPLEX_FULL:
4702                 hw->autoneg = 1;
4703                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4704                 break;
4705         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4706         default:
4707                 goto err_inval;
4708         }
4709         return 0;
4710
4711 err_inval:
4712         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4713         return -EINVAL;
4714 }
4715
4716 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4717 {
4718         struct net_device *netdev = pci_get_drvdata(pdev);
4719         struct e1000_adapter *adapter = netdev_priv(netdev);
4720         struct e1000_hw *hw = &adapter->hw;
4721         u32 ctrl, ctrl_ext, rctl, status;
4722         u32 wufc = adapter->wol;
4723 #ifdef CONFIG_PM
4724         int retval = 0;
4725 #endif
4726
4727         netif_device_detach(netdev);
4728
4729         if (netif_running(netdev)) {
4730                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4731                 e1000_down(adapter);
4732         }
4733
4734 #ifdef CONFIG_PM
4735         retval = pci_save_state(pdev);
4736         if (retval)
4737                 return retval;
4738 #endif
4739
4740         status = er32(STATUS);
4741         if (status & E1000_STATUS_LU)
4742                 wufc &= ~E1000_WUFC_LNKC;
4743
4744         if (wufc) {
4745                 e1000_setup_rctl(adapter);
4746                 e1000_set_rx_mode(netdev);
4747
4748                 /* turn on all-multi mode if wake on multicast is enabled */
4749                 if (wufc & E1000_WUFC_MC) {
4750                         rctl = er32(RCTL);
4751                         rctl |= E1000_RCTL_MPE;
4752                         ew32(RCTL, rctl);
4753                 }
4754
4755                 if (hw->mac_type >= e1000_82540) {
4756                         ctrl = er32(CTRL);
4757                         /* advertise wake from D3Cold */
4758                         #define E1000_CTRL_ADVD3WUC 0x00100000
4759                         /* phy power management enable */
4760                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4761                         ctrl |= E1000_CTRL_ADVD3WUC |
4762                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4763                         ew32(CTRL, ctrl);
4764                 }
4765
4766                 if (hw->media_type == e1000_media_type_fiber ||
4767                     hw->media_type == e1000_media_type_internal_serdes) {
4768                         /* keep the laser running in D3 */
4769                         ctrl_ext = er32(CTRL_EXT);
4770                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4771                         ew32(CTRL_EXT, ctrl_ext);
4772                 }
4773
4774                 ew32(WUC, E1000_WUC_PME_EN);
4775                 ew32(WUFC, wufc);
4776         } else {
4777                 ew32(WUC, 0);
4778                 ew32(WUFC, 0);
4779         }
4780
4781         e1000_release_manageability(adapter);
4782
4783         *enable_wake = !!wufc;
4784
4785         /* make sure adapter isn't asleep if manageability is enabled */
4786         if (adapter->en_mng_pt)
4787                 *enable_wake = true;
4788
4789         if (netif_running(netdev))
4790                 e1000_free_irq(adapter);
4791
4792         pci_disable_device(pdev);
4793
4794         return 0;
4795 }
4796
4797 #ifdef CONFIG_PM
4798 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4799 {
4800         int retval;
4801         bool wake;
4802
4803         retval = __e1000_shutdown(pdev, &wake);
4804         if (retval)
4805                 return retval;
4806
4807         if (wake) {
4808                 pci_prepare_to_sleep(pdev);
4809         } else {
4810                 pci_wake_from_d3(pdev, false);
4811                 pci_set_power_state(pdev, PCI_D3hot);
4812         }
4813
4814         return 0;
4815 }
4816
4817 static int e1000_resume(struct pci_dev *pdev)
4818 {
4819         struct net_device *netdev = pci_get_drvdata(pdev);
4820         struct e1000_adapter *adapter = netdev_priv(netdev);
4821         struct e1000_hw *hw = &adapter->hw;
4822         u32 err;
4823
4824         pci_set_power_state(pdev, PCI_D0);
4825         pci_restore_state(pdev);
4826         pci_save_state(pdev);
4827
4828         if (adapter->need_ioport)
4829                 err = pci_enable_device(pdev);
4830         else
4831                 err = pci_enable_device_mem(pdev);
4832         if (err) {
4833                 pr_err("Cannot enable PCI device from suspend\n");
4834                 return err;
4835         }
4836         pci_set_master(pdev);
4837
4838         pci_enable_wake(pdev, PCI_D3hot, 0);
4839         pci_enable_wake(pdev, PCI_D3cold, 0);
4840
4841         if (netif_running(netdev)) {
4842                 err = e1000_request_irq(adapter);
4843                 if (err)
4844                         return err;
4845         }
4846
4847         e1000_power_up_phy(adapter);
4848         e1000_reset(adapter);
4849         ew32(WUS, ~0);
4850
4851         e1000_init_manageability(adapter);
4852
4853         if (netif_running(netdev))
4854                 e1000_up(adapter);
4855
4856         netif_device_attach(netdev);
4857
4858         return 0;
4859 }
4860 #endif
4861
4862 static void e1000_shutdown(struct pci_dev *pdev)
4863 {
4864         bool wake;
4865
4866         __e1000_shutdown(pdev, &wake);
4867
4868         if (system_state == SYSTEM_POWER_OFF) {
4869                 pci_wake_from_d3(pdev, wake);
4870                 pci_set_power_state(pdev, PCI_D3hot);
4871         }
4872 }
4873
4874 #ifdef CONFIG_NET_POLL_CONTROLLER
4875 /*
4876  * Polling 'interrupt' - used by things like netconsole to send skbs
4877  * without having to re-enable interrupts. It's not called while
4878  * the interrupt routine is executing.
4879  */
4880 static void e1000_netpoll(struct net_device *netdev)
4881 {
4882         struct e1000_adapter *adapter = netdev_priv(netdev);
4883
4884         disable_irq(adapter->pdev->irq);
4885         e1000_intr(adapter->pdev->irq, netdev);
4886         enable_irq(adapter->pdev->irq);
4887 }
4888 #endif
4889
4890 /**
4891  * e1000_io_error_detected - called when PCI error is detected
4892  * @pdev: Pointer to PCI device
4893  * @state: The current pci connection state
4894  *
4895  * This function is called after a PCI bus error affecting
4896  * this device has been detected.
4897  */
4898 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4899                                                 pci_channel_state_t state)
4900 {
4901         struct net_device *netdev = pci_get_drvdata(pdev);
4902         struct e1000_adapter *adapter = netdev_priv(netdev);
4903
4904         netif_device_detach(netdev);
4905
4906         if (state == pci_channel_io_perm_failure)
4907                 return PCI_ERS_RESULT_DISCONNECT;
4908
4909         if (netif_running(netdev))
4910                 e1000_down(adapter);
4911         pci_disable_device(pdev);
4912
4913         /* Request a slot slot reset. */
4914         return PCI_ERS_RESULT_NEED_RESET;
4915 }
4916
4917 /**
4918  * e1000_io_slot_reset - called after the pci bus has been reset.
4919  * @pdev: Pointer to PCI device
4920  *
4921  * Restart the card from scratch, as if from a cold-boot. Implementation
4922  * resembles the first-half of the e1000_resume routine.
4923  */
4924 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4925 {
4926         struct net_device *netdev = pci_get_drvdata(pdev);
4927         struct e1000_adapter *adapter = netdev_priv(netdev);
4928         struct e1000_hw *hw = &adapter->hw;
4929         int err;
4930
4931         if (adapter->need_ioport)
4932                 err = pci_enable_device(pdev);
4933         else
4934                 err = pci_enable_device_mem(pdev);
4935         if (err) {
4936                 pr_err("Cannot re-enable PCI device after reset.\n");
4937                 return PCI_ERS_RESULT_DISCONNECT;
4938         }
4939         pci_set_master(pdev);
4940
4941         pci_enable_wake(pdev, PCI_D3hot, 0);
4942         pci_enable_wake(pdev, PCI_D3cold, 0);
4943
4944         e1000_reset(adapter);
4945         ew32(WUS, ~0);
4946
4947         return PCI_ERS_RESULT_RECOVERED;
4948 }
4949
4950 /**
4951  * e1000_io_resume - called when traffic can start flowing again.
4952  * @pdev: Pointer to PCI device
4953  *
4954  * This callback is called when the error recovery driver tells us that
4955  * its OK to resume normal operation. Implementation resembles the
4956  * second-half of the e1000_resume routine.
4957  */
4958 static void e1000_io_resume(struct pci_dev *pdev)
4959 {
4960         struct net_device *netdev = pci_get_drvdata(pdev);
4961         struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963         e1000_init_manageability(adapter);
4964
4965         if (netif_running(netdev)) {
4966                 if (e1000_up(adapter)) {
4967                         pr_info("can't bring device back up after reset\n");
4968                         return;
4969                 }
4970         }
4971
4972         netif_device_attach(netdev);
4973 }
4974
4975 /* e1000_main.c */