]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
ARM: sa11x0/assabet: ensure CS2 is configured appropriately
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
39
40 #include "e1000.h"
41
42 enum { NETDEV_STATS, E1000_STATS };
43
44 struct e1000_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int type;
47         int sizeof_stat;
48         int stat_offset;
49 };
50
51 #define E1000_STAT(str, m) { \
52                 .stat_string = str, \
53                 .type = E1000_STATS, \
54                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55                 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57                 .stat_string = str, \
58                 .type = NETDEV_STATS, \
59                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
61
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63         E1000_STAT("rx_packets", stats.gprc),
64         E1000_STAT("tx_packets", stats.gptc),
65         E1000_STAT("rx_bytes", stats.gorc),
66         E1000_STAT("tx_bytes", stats.gotc),
67         E1000_STAT("rx_broadcast", stats.bprc),
68         E1000_STAT("tx_broadcast", stats.bptc),
69         E1000_STAT("rx_multicast", stats.mprc),
70         E1000_STAT("tx_multicast", stats.mptc),
71         E1000_NETDEV_STAT("rx_errors", rx_errors),
72         E1000_NETDEV_STAT("tx_errors", tx_errors),
73         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74         E1000_STAT("multicast", stats.mprc),
75         E1000_STAT("collisions", stats.colc),
76         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78         E1000_STAT("rx_crc_errors", stats.crcerrs),
79         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80         E1000_STAT("rx_no_buffer_count", stats.rnbc),
81         E1000_STAT("rx_missed_errors", stats.mpc),
82         E1000_STAT("tx_aborted_errors", stats.ecol),
83         E1000_STAT("tx_carrier_errors", stats.tncrs),
84         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86         E1000_STAT("tx_window_errors", stats.latecol),
87         E1000_STAT("tx_abort_late_coll", stats.latecol),
88         E1000_STAT("tx_deferred_ok", stats.dc),
89         E1000_STAT("tx_single_coll_ok", stats.scc),
90         E1000_STAT("tx_multi_coll_ok", stats.mcc),
91         E1000_STAT("tx_timeout_count", tx_timeout_count),
92         E1000_STAT("tx_restart_queue", restart_queue),
93         E1000_STAT("rx_long_length_errors", stats.roc),
94         E1000_STAT("rx_short_length_errors", stats.ruc),
95         E1000_STAT("rx_align_errors", stats.algnerrc),
96         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100         E1000_STAT("tx_flow_control_xon", stats.xontxc),
101         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113         E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115
116 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119         "Register test  (offline)", "Eeprom test    (offline)",
120         "Interrupt test (offline)", "Loopback test  (offline)",
121         "Link test   (on/offline)"
122 };
123
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125
126 static int e1000_get_settings(struct net_device *netdev,
127                               struct ethtool_cmd *ecmd)
128 {
129         struct e1000_adapter *adapter = netdev_priv(netdev);
130         struct e1000_hw *hw = &adapter->hw;
131         u32 speed;
132
133         if (hw->phy.media_type == e1000_media_type_copper) {
134                 ecmd->supported = (SUPPORTED_10baseT_Half |
135                                    SUPPORTED_10baseT_Full |
136                                    SUPPORTED_100baseT_Half |
137                                    SUPPORTED_100baseT_Full |
138                                    SUPPORTED_1000baseT_Full |
139                                    SUPPORTED_Autoneg |
140                                    SUPPORTED_TP);
141                 if (hw->phy.type == e1000_phy_ife)
142                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143                 ecmd->advertising = ADVERTISED_TP;
144
145                 if (hw->mac.autoneg == 1) {
146                         ecmd->advertising |= ADVERTISED_Autoneg;
147                         /* the e1000 autoneg seems to match ethtool nicely */
148                         ecmd->advertising |= hw->phy.autoneg_advertised;
149                 }
150
151                 ecmd->port = PORT_TP;
152                 ecmd->phy_address = hw->phy.addr;
153                 ecmd->transceiver = XCVR_INTERNAL;
154
155         } else {
156                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
157                                      SUPPORTED_FIBRE |
158                                      SUPPORTED_Autoneg);
159
160                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161                                      ADVERTISED_FIBRE |
162                                      ADVERTISED_Autoneg);
163
164                 ecmd->port = PORT_FIBRE;
165                 ecmd->transceiver = XCVR_EXTERNAL;
166         }
167
168         speed = -1;
169         ecmd->duplex = -1;
170
171         if (netif_running(netdev)) {
172                 if (netif_carrier_ok(netdev)) {
173                         speed = adapter->link_speed;
174                         ecmd->duplex = adapter->link_duplex - 1;
175                 }
176         } else if (!pm_runtime_suspended(netdev->dev.parent)) {
177                 u32 status = er32(STATUS);
178                 if (status & E1000_STATUS_LU) {
179                         if (status & E1000_STATUS_SPEED_1000)
180                                 speed = SPEED_1000;
181                         else if (status & E1000_STATUS_SPEED_100)
182                                 speed = SPEED_100;
183                         else
184                                 speed = SPEED_10;
185
186                         if (status & E1000_STATUS_FD)
187                                 ecmd->duplex = DUPLEX_FULL;
188                         else
189                                 ecmd->duplex = DUPLEX_HALF;
190                 }
191         }
192
193         ethtool_cmd_speed_set(ecmd, speed);
194         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196
197         /* MDI-X => 2; MDI =>1; Invalid =>0 */
198         if ((hw->phy.media_type == e1000_media_type_copper) &&
199             netif_carrier_ok(netdev))
200                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201         else
202                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203
204         if (hw->phy.mdix == AUTO_ALL_MODES)
205                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206         else
207                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208
209         return 0;
210 }
211
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214         struct e1000_mac_info *mac = &adapter->hw.mac;
215
216         mac->autoneg = 0;
217
218         /* Make sure dplx is at most 1 bit and lsb of speed is not set
219          * for the switch() below to work
220          */
221         if ((spd & 1) || (dplx & ~1))
222                 goto err_inval;
223
224         /* Fiber NICs only allow 1000 gbps Full duplex */
225         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227                 goto err_inval;
228         }
229
230         switch (spd + dplx) {
231         case SPEED_10 + DUPLEX_HALF:
232                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
233                 break;
234         case SPEED_10 + DUPLEX_FULL:
235                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
236                 break;
237         case SPEED_100 + DUPLEX_HALF:
238                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
239                 break;
240         case SPEED_100 + DUPLEX_FULL:
241                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
242                 break;
243         case SPEED_1000 + DUPLEX_FULL:
244                 mac->autoneg = 1;
245                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246                 break;
247         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
248         default:
249                 goto err_inval;
250         }
251
252         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253         adapter->hw.phy.mdix = AUTO_ALL_MODES;
254
255         return 0;
256
257 err_inval:
258         e_err("Unsupported Speed/Duplex configuration\n");
259         return -EINVAL;
260 }
261
262 static int e1000_set_settings(struct net_device *netdev,
263                               struct ethtool_cmd *ecmd)
264 {
265         struct e1000_adapter *adapter = netdev_priv(netdev);
266         struct e1000_hw *hw = &adapter->hw;
267         int ret_val = 0;
268
269         pm_runtime_get_sync(netdev->dev.parent);
270
271         /* When SoL/IDER sessions are active, autoneg/speed/duplex
272          * cannot be changed
273          */
274         if (hw->phy.ops.check_reset_block &&
275             hw->phy.ops.check_reset_block(hw)) {
276                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277                 ret_val = -EINVAL;
278                 goto out;
279         }
280
281         /* MDI setting is only allowed when autoneg enabled because
282          * some hardware doesn't allow MDI setting when speed or
283          * duplex is forced.
284          */
285         if (ecmd->eth_tp_mdix_ctrl) {
286                 if (hw->phy.media_type != e1000_media_type_copper) {
287                         ret_val = -EOPNOTSUPP;
288                         goto out;
289                 }
290
291                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292                     (ecmd->autoneg != AUTONEG_ENABLE)) {
293                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294                         ret_val = -EINVAL;
295                         goto out;
296                 }
297         }
298
299         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300                 usleep_range(1000, 2000);
301
302         if (ecmd->autoneg == AUTONEG_ENABLE) {
303                 hw->mac.autoneg = 1;
304                 if (hw->phy.media_type == e1000_media_type_fiber)
305                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307                 else
308                         hw->phy.autoneg_advertised = ecmd->advertising |
309                             ADVERTISED_TP | ADVERTISED_Autoneg;
310                 ecmd->advertising = hw->phy.autoneg_advertised;
311                 if (adapter->fc_autoneg)
312                         hw->fc.requested_mode = e1000_fc_default;
313         } else {
314                 u32 speed = ethtool_cmd_speed(ecmd);
315                 /* calling this overrides forced MDI setting */
316                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
317                         ret_val = -EINVAL;
318                         goto out;
319                 }
320         }
321
322         /* MDI-X => 2; MDI => 1; Auto => 3 */
323         if (ecmd->eth_tp_mdix_ctrl) {
324                 /* fix up the value for auto (3 => 0) as zero is mapped
325                  * internally to auto
326                  */
327                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328                         hw->phy.mdix = AUTO_ALL_MODES;
329                 else
330                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
331         }
332
333         /* reset the link */
334         if (netif_running(adapter->netdev)) {
335                 e1000e_down(adapter);
336                 e1000e_up(adapter);
337         } else {
338                 e1000e_reset(adapter);
339         }
340
341 out:
342         pm_runtime_put_sync(netdev->dev.parent);
343         clear_bit(__E1000_RESETTING, &adapter->state);
344         return ret_val;
345 }
346
347 static void e1000_get_pauseparam(struct net_device *netdev,
348                                  struct ethtool_pauseparam *pause)
349 {
350         struct e1000_adapter *adapter = netdev_priv(netdev);
351         struct e1000_hw *hw = &adapter->hw;
352
353         pause->autoneg =
354             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355
356         if (hw->fc.current_mode == e1000_fc_rx_pause) {
357                 pause->rx_pause = 1;
358         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359                 pause->tx_pause = 1;
360         } else if (hw->fc.current_mode == e1000_fc_full) {
361                 pause->rx_pause = 1;
362                 pause->tx_pause = 1;
363         }
364 }
365
366 static int e1000_set_pauseparam(struct net_device *netdev,
367                                 struct ethtool_pauseparam *pause)
368 {
369         struct e1000_adapter *adapter = netdev_priv(netdev);
370         struct e1000_hw *hw = &adapter->hw;
371         int retval = 0;
372
373         adapter->fc_autoneg = pause->autoneg;
374
375         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376                 usleep_range(1000, 2000);
377
378         pm_runtime_get_sync(netdev->dev.parent);
379
380         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381                 hw->fc.requested_mode = e1000_fc_default;
382                 if (netif_running(adapter->netdev)) {
383                         e1000e_down(adapter);
384                         e1000e_up(adapter);
385                 } else {
386                         e1000e_reset(adapter);
387                 }
388         } else {
389                 if (pause->rx_pause && pause->tx_pause)
390                         hw->fc.requested_mode = e1000_fc_full;
391                 else if (pause->rx_pause && !pause->tx_pause)
392                         hw->fc.requested_mode = e1000_fc_rx_pause;
393                 else if (!pause->rx_pause && pause->tx_pause)
394                         hw->fc.requested_mode = e1000_fc_tx_pause;
395                 else if (!pause->rx_pause && !pause->tx_pause)
396                         hw->fc.requested_mode = e1000_fc_none;
397
398                 hw->fc.current_mode = hw->fc.requested_mode;
399
400                 if (hw->phy.media_type == e1000_media_type_fiber) {
401                         retval = hw->mac.ops.setup_link(hw);
402                         /* implicit goto out */
403                 } else {
404                         retval = e1000e_force_mac_fc(hw);
405                         if (retval)
406                                 goto out;
407                         e1000e_set_fc_watermarks(hw);
408                 }
409         }
410
411 out:
412         pm_runtime_put_sync(netdev->dev.parent);
413         clear_bit(__E1000_RESETTING, &adapter->state);
414         return retval;
415 }
416
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419         struct e1000_adapter *adapter = netdev_priv(netdev);
420         return adapter->msg_enable;
421 }
422
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425         struct e1000_adapter *adapter = netdev_priv(netdev);
426         adapter->msg_enable = data;
427 }
428
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32       /* overestimate */
432         return E1000_REGS_LEN * sizeof(u32);
433 }
434
435 static void e1000_get_regs(struct net_device *netdev,
436                            struct ethtool_regs *regs, void *p)
437 {
438         struct e1000_adapter *adapter = netdev_priv(netdev);
439         struct e1000_hw *hw = &adapter->hw;
440         u32 *regs_buff = p;
441         u16 phy_data;
442
443         pm_runtime_get_sync(netdev->dev.parent);
444
445         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446
447         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
448             adapter->pdev->device;
449
450         regs_buff[0] = er32(CTRL);
451         regs_buff[1] = er32(STATUS);
452
453         regs_buff[2] = er32(RCTL);
454         regs_buff[3] = er32(RDLEN(0));
455         regs_buff[4] = er32(RDH(0));
456         regs_buff[5] = er32(RDT(0));
457         regs_buff[6] = er32(RDTR);
458
459         regs_buff[7] = er32(TCTL);
460         regs_buff[8] = er32(TDLEN(0));
461         regs_buff[9] = er32(TDH(0));
462         regs_buff[10] = er32(TDT(0));
463         regs_buff[11] = er32(TIDV);
464
465         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
466
467         /* ethtool doesn't use anything past this point, so all this
468          * code is likely legacy junk for apps that may or may not exist
469          */
470         if (hw->phy.type == e1000_phy_m88) {
471                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
472                 regs_buff[13] = (u32)phy_data; /* cable length */
473                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
477                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
478                 regs_buff[18] = regs_buff[13]; /* cable polarity */
479                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480                 regs_buff[20] = regs_buff[17]; /* polarity correction */
481                 /* phy receive errors */
482                 regs_buff[22] = adapter->phy_stats.receive_errors;
483                 regs_buff[23] = regs_buff[13]; /* mdix mode */
484         }
485         regs_buff[21] = 0;      /* was idle_errors */
486         e1e_rphy(hw, MII_STAT1000, &phy_data);
487         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
488         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
489
490         pm_runtime_put_sync(netdev->dev.parent);
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495         struct e1000_adapter *adapter = netdev_priv(netdev);
496         return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500                             struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         u16 *eeprom_buff;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EINVAL;
512
513         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518         eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
519                               GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         pm_runtime_get_sync(netdev->dev.parent);
524
525         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526                 ret_val = e1000_read_nvm(hw, first_word,
527                                          last_word - first_word + 1,
528                                          eeprom_buff);
529         } else {
530                 for (i = 0; i < last_word - first_word + 1; i++) {
531                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
532                                                  &eeprom_buff[i]);
533                         if (ret_val)
534                                 break;
535                 }
536         }
537
538         pm_runtime_put_sync(netdev->dev.parent);
539
540         if (ret_val) {
541                 /* a read error occurred, throw away the result */
542                 memset(eeprom_buff, 0xff, sizeof(u16) *
543                        (last_word - first_word + 1));
544         } else {
545                 /* Device's eeprom is always little-endian, word addressable */
546                 for (i = 0; i < last_word - first_word + 1; i++)
547                         le16_to_cpus(&eeprom_buff[i]);
548         }
549
550         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
551         kfree(eeprom_buff);
552
553         return ret_val;
554 }
555
556 static int e1000_set_eeprom(struct net_device *netdev,
557                             struct ethtool_eeprom *eeprom, u8 *bytes)
558 {
559         struct e1000_adapter *adapter = netdev_priv(netdev);
560         struct e1000_hw *hw = &adapter->hw;
561         u16 *eeprom_buff;
562         void *ptr;
563         int max_len;
564         int first_word;
565         int last_word;
566         int ret_val = 0;
567         u16 i;
568
569         if (eeprom->len == 0)
570                 return -EOPNOTSUPP;
571
572         if (eeprom->magic !=
573             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
574                 return -EFAULT;
575
576         if (adapter->flags & FLAG_READ_ONLY_NVM)
577                 return -EINVAL;
578
579         max_len = hw->nvm.word_size * 2;
580
581         first_word = eeprom->offset >> 1;
582         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
583         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
584         if (!eeprom_buff)
585                 return -ENOMEM;
586
587         ptr = (void *)eeprom_buff;
588
589         pm_runtime_get_sync(netdev->dev.parent);
590
591         if (eeprom->offset & 1) {
592                 /* need read/modify/write of first changed EEPROM word */
593                 /* only the second byte of the word is being modified */
594                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
595                 ptr++;
596         }
597         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
598                 /* need read/modify/write of last changed EEPROM word */
599                 /* only the first byte of the word is being modified */
600                 ret_val = e1000_read_nvm(hw, last_word, 1,
601                                          &eeprom_buff[last_word - first_word]);
602
603         if (ret_val)
604                 goto out;
605
606         /* Device's eeprom is always little-endian, word addressable */
607         for (i = 0; i < last_word - first_word + 1; i++)
608                 le16_to_cpus(&eeprom_buff[i]);
609
610         memcpy(ptr, bytes, eeprom->len);
611
612         for (i = 0; i < last_word - first_word + 1; i++)
613                 cpu_to_le16s(&eeprom_buff[i]);
614
615         ret_val = e1000_write_nvm(hw, first_word,
616                                   last_word - first_word + 1, eeprom_buff);
617
618         if (ret_val)
619                 goto out;
620
621         /* Update the checksum over the first part of the EEPROM if needed
622          * and flush shadow RAM for applicable controllers
623          */
624         if ((first_word <= NVM_CHECKSUM_REG) ||
625             (hw->mac.type == e1000_82583) ||
626             (hw->mac.type == e1000_82574) ||
627             (hw->mac.type == e1000_82573))
628                 ret_val = e1000e_update_nvm_checksum(hw);
629
630 out:
631         pm_runtime_put_sync(netdev->dev.parent);
632         kfree(eeprom_buff);
633         return ret_val;
634 }
635
636 static void e1000_get_drvinfo(struct net_device *netdev,
637                               struct ethtool_drvinfo *drvinfo)
638 {
639         struct e1000_adapter *adapter = netdev_priv(netdev);
640
641         strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
642         strlcpy(drvinfo->version, e1000e_driver_version,
643                 sizeof(drvinfo->version));
644
645         /* EEPROM image version # is reported as firmware version # for
646          * PCI-E controllers
647          */
648         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
649                  "%d.%d-%d",
650                  (adapter->eeprom_vers & 0xF000) >> 12,
651                  (adapter->eeprom_vers & 0x0FF0) >> 4,
652                  (adapter->eeprom_vers & 0x000F));
653
654         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
655                 sizeof(drvinfo->bus_info));
656         drvinfo->regdump_len = e1000_get_regs_len(netdev);
657         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
658 }
659
660 static void e1000_get_ringparam(struct net_device *netdev,
661                                 struct ethtool_ringparam *ring)
662 {
663         struct e1000_adapter *adapter = netdev_priv(netdev);
664
665         ring->rx_max_pending = E1000_MAX_RXD;
666         ring->tx_max_pending = E1000_MAX_TXD;
667         ring->rx_pending = adapter->rx_ring_count;
668         ring->tx_pending = adapter->tx_ring_count;
669 }
670
671 static int e1000_set_ringparam(struct net_device *netdev,
672                                struct ethtool_ringparam *ring)
673 {
674         struct e1000_adapter *adapter = netdev_priv(netdev);
675         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
676         int err = 0, size = sizeof(struct e1000_ring);
677         bool set_tx = false, set_rx = false;
678         u16 new_rx_count, new_tx_count;
679
680         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681                 return -EINVAL;
682
683         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
684                                E1000_MAX_RXD);
685         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
686
687         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
688                                E1000_MAX_TXD);
689         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
690
691         if ((new_tx_count == adapter->tx_ring_count) &&
692             (new_rx_count == adapter->rx_ring_count))
693                 /* nothing to do */
694                 return 0;
695
696         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
697                 usleep_range(1000, 2000);
698
699         if (!netif_running(adapter->netdev)) {
700                 /* Set counts now and allocate resources during open() */
701                 adapter->tx_ring->count = new_tx_count;
702                 adapter->rx_ring->count = new_rx_count;
703                 adapter->tx_ring_count = new_tx_count;
704                 adapter->rx_ring_count = new_rx_count;
705                 goto clear_reset;
706         }
707
708         set_tx = (new_tx_count != adapter->tx_ring_count);
709         set_rx = (new_rx_count != adapter->rx_ring_count);
710
711         /* Allocate temporary storage for ring updates */
712         if (set_tx) {
713                 temp_tx = vmalloc(size);
714                 if (!temp_tx) {
715                         err = -ENOMEM;
716                         goto free_temp;
717                 }
718         }
719         if (set_rx) {
720                 temp_rx = vmalloc(size);
721                 if (!temp_rx) {
722                         err = -ENOMEM;
723                         goto free_temp;
724                 }
725         }
726
727         pm_runtime_get_sync(netdev->dev.parent);
728
729         e1000e_down(adapter);
730
731         /* We can't just free everything and then setup again, because the
732          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
733          * structs.  First, attempt to allocate new resources...
734          */
735         if (set_tx) {
736                 memcpy(temp_tx, adapter->tx_ring, size);
737                 temp_tx->count = new_tx_count;
738                 err = e1000e_setup_tx_resources(temp_tx);
739                 if (err)
740                         goto err_setup;
741         }
742         if (set_rx) {
743                 memcpy(temp_rx, adapter->rx_ring, size);
744                 temp_rx->count = new_rx_count;
745                 err = e1000e_setup_rx_resources(temp_rx);
746                 if (err)
747                         goto err_setup_rx;
748         }
749
750         /* ...then free the old resources and copy back any new ring data */
751         if (set_tx) {
752                 e1000e_free_tx_resources(adapter->tx_ring);
753                 memcpy(adapter->tx_ring, temp_tx, size);
754                 adapter->tx_ring_count = new_tx_count;
755         }
756         if (set_rx) {
757                 e1000e_free_rx_resources(adapter->rx_ring);
758                 memcpy(adapter->rx_ring, temp_rx, size);
759                 adapter->rx_ring_count = new_rx_count;
760         }
761
762 err_setup_rx:
763         if (err && set_tx)
764                 e1000e_free_tx_resources(temp_tx);
765 err_setup:
766         e1000e_up(adapter);
767         pm_runtime_put_sync(netdev->dev.parent);
768 free_temp:
769         vfree(temp_tx);
770         vfree(temp_rx);
771 clear_reset:
772         clear_bit(__E1000_RESETTING, &adapter->state);
773         return err;
774 }
775
776 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
777                              int reg, int offset, u32 mask, u32 write)
778 {
779         u32 pat, val;
780         static const u32 test[] = {
781                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
782         };
783         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
784                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
785                                       (test[pat] & write));
786                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
787                 if (val != (test[pat] & write & mask)) {
788                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
789                               reg + (offset << 2), val,
790                               (test[pat] & write & mask));
791                         *data = reg;
792                         return 1;
793                 }
794         }
795         return 0;
796 }
797
798 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
799                               int reg, u32 mask, u32 write)
800 {
801         u32 val;
802         __ew32(&adapter->hw, reg, write & mask);
803         val = __er32(&adapter->hw, reg);
804         if ((write & mask) != (val & mask)) {
805                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
806                       reg, (val & mask), (write & mask));
807                 *data = reg;
808                 return 1;
809         }
810         return 0;
811 }
812
813 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
814         do {                                                                   \
815                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
816                         return 1;                                              \
817         } while (0)
818 #define REG_PATTERN_TEST(reg, mask, write)                                     \
819         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
820
821 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
822         do {                                                                   \
823                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
824                         return 1;                                              \
825         } while (0)
826
827 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
828 {
829         struct e1000_hw *hw = &adapter->hw;
830         struct e1000_mac_info *mac = &adapter->hw.mac;
831         u32 value;
832         u32 before;
833         u32 after;
834         u32 i;
835         u32 toggle;
836         u32 mask;
837         u32 wlock_mac = 0;
838
839         /* The status register is Read Only, so a write should fail.
840          * Some bits that get toggled are ignored.  There are several bits
841          * on newer hardware that are r/w.
842          */
843         switch (mac->type) {
844         case e1000_82571:
845         case e1000_82572:
846         case e1000_80003es2lan:
847                 toggle = 0x7FFFF3FF;
848                 break;
849         default:
850                 toggle = 0x7FFFF033;
851                 break;
852         }
853
854         before = er32(STATUS);
855         value = (er32(STATUS) & toggle);
856         ew32(STATUS, toggle);
857         after = er32(STATUS) & toggle;
858         if (value != after) {
859                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
860                       after, value);
861                 *data = 1;
862                 return 1;
863         }
864         /* restore previous status */
865         ew32(STATUS, before);
866
867         if (!(adapter->flags & FLAG_IS_ICH)) {
868                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
869                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
870                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
871                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
872         }
873
874         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
875         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
877         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
878         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
879         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
880         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
881         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
882         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
883         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
884
885         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
886
887         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
888         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
889         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
890
891         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
892         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
893         if (!(adapter->flags & FLAG_IS_ICH))
894                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
895         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
897         mask = 0x8003FFFF;
898         switch (mac->type) {
899         case e1000_ich10lan:
900         case e1000_pchlan:
901         case e1000_pch2lan:
902         case e1000_pch_lpt:
903                 mask |= (1 << 18);
904                 break;
905         default:
906                 break;
907         }
908
909         if (mac->type == e1000_pch_lpt)
910                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
911                     E1000_FWSM_WLOCK_MAC_SHIFT;
912
913         for (i = 0; i < mac->rar_entry_count; i++) {
914                 if (mac->type == e1000_pch_lpt) {
915                         /* Cannot test write-protected SHRAL[n] registers */
916                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
917                                 continue;
918
919                         /* SHRAH[9] different than the others */
920                         if (i == 10)
921                                 mask |= (1 << 30);
922                         else
923                                 mask &= ~(1 << 30);
924                 }
925
926                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
927                                        0xFFFFFFFF);
928         }
929
930         for (i = 0; i < mac->mta_reg_count; i++)
931                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
932
933         *data = 0;
934
935         return 0;
936 }
937
938 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
939 {
940         u16 temp;
941         u16 checksum = 0;
942         u16 i;
943
944         *data = 0;
945         /* Read and add up the contents of the EEPROM */
946         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
947                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
948                         *data = 1;
949                         return *data;
950                 }
951                 checksum += temp;
952         }
953
954         /* If Checksum is not Correct return error else test passed */
955         if ((checksum != (u16)NVM_SUM) && !(*data))
956                 *data = 2;
957
958         return *data;
959 }
960
961 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
962 {
963         struct net_device *netdev = (struct net_device *)data;
964         struct e1000_adapter *adapter = netdev_priv(netdev);
965         struct e1000_hw *hw = &adapter->hw;
966
967         adapter->test_icr |= er32(ICR);
968
969         return IRQ_HANDLED;
970 }
971
972 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
973 {
974         struct net_device *netdev = adapter->netdev;
975         struct e1000_hw *hw = &adapter->hw;
976         u32 mask;
977         u32 shared_int = 1;
978         u32 irq = adapter->pdev->irq;
979         int i;
980         int ret_val = 0;
981         int int_mode = E1000E_INT_MODE_LEGACY;
982
983         *data = 0;
984
985         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
986         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
987                 int_mode = adapter->int_mode;
988                 e1000e_reset_interrupt_capability(adapter);
989                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
990                 e1000e_set_interrupt_capability(adapter);
991         }
992         /* Hook up test interrupt handler just for this test */
993         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
994                          netdev)) {
995                 shared_int = 0;
996         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
997                                netdev)) {
998                 *data = 1;
999                 ret_val = -1;
1000                 goto out;
1001         }
1002         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1003
1004         /* Disable all the interrupts */
1005         ew32(IMC, 0xFFFFFFFF);
1006         e1e_flush();
1007         usleep_range(10000, 20000);
1008
1009         /* Test each interrupt */
1010         for (i = 0; i < 10; i++) {
1011                 /* Interrupt to test */
1012                 mask = 1 << i;
1013
1014                 if (adapter->flags & FLAG_IS_ICH) {
1015                         switch (mask) {
1016                         case E1000_ICR_RXSEQ:
1017                                 continue;
1018                         case 0x00000100:
1019                                 if (adapter->hw.mac.type == e1000_ich8lan ||
1020                                     adapter->hw.mac.type == e1000_ich9lan)
1021                                         continue;
1022                                 break;
1023                         default:
1024                                 break;
1025                         }
1026                 }
1027
1028                 if (!shared_int) {
1029                         /* Disable the interrupt to be reported in
1030                          * the cause register and then force the same
1031                          * interrupt and see if one gets posted.  If
1032                          * an interrupt was posted to the bus, the
1033                          * test failed.
1034                          */
1035                         adapter->test_icr = 0;
1036                         ew32(IMC, mask);
1037                         ew32(ICS, mask);
1038                         e1e_flush();
1039                         usleep_range(10000, 20000);
1040
1041                         if (adapter->test_icr & mask) {
1042                                 *data = 3;
1043                                 break;
1044                         }
1045                 }
1046
1047                 /* Enable the interrupt to be reported in
1048                  * the cause register and then force the same
1049                  * interrupt and see if one gets posted.  If
1050                  * an interrupt was not posted to the bus, the
1051                  * test failed.
1052                  */
1053                 adapter->test_icr = 0;
1054                 ew32(IMS, mask);
1055                 ew32(ICS, mask);
1056                 e1e_flush();
1057                 usleep_range(10000, 20000);
1058
1059                 if (!(adapter->test_icr & mask)) {
1060                         *data = 4;
1061                         break;
1062                 }
1063
1064                 if (!shared_int) {
1065                         /* Disable the other interrupts to be reported in
1066                          * the cause register and then force the other
1067                          * interrupts and see if any get posted.  If
1068                          * an interrupt was posted to the bus, the
1069                          * test failed.
1070                          */
1071                         adapter->test_icr = 0;
1072                         ew32(IMC, ~mask & 0x00007FFF);
1073                         ew32(ICS, ~mask & 0x00007FFF);
1074                         e1e_flush();
1075                         usleep_range(10000, 20000);
1076
1077                         if (adapter->test_icr) {
1078                                 *data = 5;
1079                                 break;
1080                         }
1081                 }
1082         }
1083
1084         /* Disable all the interrupts */
1085         ew32(IMC, 0xFFFFFFFF);
1086         e1e_flush();
1087         usleep_range(10000, 20000);
1088
1089         /* Unhook test interrupt handler */
1090         free_irq(irq, netdev);
1091
1092 out:
1093         if (int_mode == E1000E_INT_MODE_MSIX) {
1094                 e1000e_reset_interrupt_capability(adapter);
1095                 adapter->int_mode = int_mode;
1096                 e1000e_set_interrupt_capability(adapter);
1097         }
1098
1099         return ret_val;
1100 }
1101
1102 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1103 {
1104         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1105         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1106         struct pci_dev *pdev = adapter->pdev;
1107         struct e1000_buffer *buffer_info;
1108         int i;
1109
1110         if (tx_ring->desc && tx_ring->buffer_info) {
1111                 for (i = 0; i < tx_ring->count; i++) {
1112                         buffer_info = &tx_ring->buffer_info[i];
1113
1114                         if (buffer_info->dma)
1115                                 dma_unmap_single(&pdev->dev,
1116                                                  buffer_info->dma,
1117                                                  buffer_info->length,
1118                                                  DMA_TO_DEVICE);
1119                         if (buffer_info->skb)
1120                                 dev_kfree_skb(buffer_info->skb);
1121                 }
1122         }
1123
1124         if (rx_ring->desc && rx_ring->buffer_info) {
1125                 for (i = 0; i < rx_ring->count; i++) {
1126                         buffer_info = &rx_ring->buffer_info[i];
1127
1128                         if (buffer_info->dma)
1129                                 dma_unmap_single(&pdev->dev,
1130                                                  buffer_info->dma,
1131                                                  2048, DMA_FROM_DEVICE);
1132                         if (buffer_info->skb)
1133                                 dev_kfree_skb(buffer_info->skb);
1134                 }
1135         }
1136
1137         if (tx_ring->desc) {
1138                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1139                                   tx_ring->dma);
1140                 tx_ring->desc = NULL;
1141         }
1142         if (rx_ring->desc) {
1143                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1144                                   rx_ring->dma);
1145                 rx_ring->desc = NULL;
1146         }
1147
1148         kfree(tx_ring->buffer_info);
1149         tx_ring->buffer_info = NULL;
1150         kfree(rx_ring->buffer_info);
1151         rx_ring->buffer_info = NULL;
1152 }
1153
1154 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1155 {
1156         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1157         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1158         struct pci_dev *pdev = adapter->pdev;
1159         struct e1000_hw *hw = &adapter->hw;
1160         u32 rctl;
1161         int i;
1162         int ret_val;
1163
1164         /* Setup Tx descriptor ring and Tx buffers */
1165
1166         if (!tx_ring->count)
1167                 tx_ring->count = E1000_DEFAULT_TXD;
1168
1169         tx_ring->buffer_info = kcalloc(tx_ring->count,
1170                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1171         if (!tx_ring->buffer_info) {
1172                 ret_val = 1;
1173                 goto err_nomem;
1174         }
1175
1176         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1177         tx_ring->size = ALIGN(tx_ring->size, 4096);
1178         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1179                                            &tx_ring->dma, GFP_KERNEL);
1180         if (!tx_ring->desc) {
1181                 ret_val = 2;
1182                 goto err_nomem;
1183         }
1184         tx_ring->next_to_use = 0;
1185         tx_ring->next_to_clean = 0;
1186
1187         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1188         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1189         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1190         ew32(TDH(0), 0);
1191         ew32(TDT(0), 0);
1192         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1193              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1194              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1195
1196         for (i = 0; i < tx_ring->count; i++) {
1197                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1198                 struct sk_buff *skb;
1199                 unsigned int skb_size = 1024;
1200
1201                 skb = alloc_skb(skb_size, GFP_KERNEL);
1202                 if (!skb) {
1203                         ret_val = 3;
1204                         goto err_nomem;
1205                 }
1206                 skb_put(skb, skb_size);
1207                 tx_ring->buffer_info[i].skb = skb;
1208                 tx_ring->buffer_info[i].length = skb->len;
1209                 tx_ring->buffer_info[i].dma =
1210                     dma_map_single(&pdev->dev, skb->data, skb->len,
1211                                    DMA_TO_DEVICE);
1212                 if (dma_mapping_error(&pdev->dev,
1213                                       tx_ring->buffer_info[i].dma)) {
1214                         ret_val = 4;
1215                         goto err_nomem;
1216                 }
1217                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1218                 tx_desc->lower.data = cpu_to_le32(skb->len);
1219                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1220                                                    E1000_TXD_CMD_IFCS |
1221                                                    E1000_TXD_CMD_RS);
1222                 tx_desc->upper.data = 0;
1223         }
1224
1225         /* Setup Rx descriptor ring and Rx buffers */
1226
1227         if (!rx_ring->count)
1228                 rx_ring->count = E1000_DEFAULT_RXD;
1229
1230         rx_ring->buffer_info = kcalloc(rx_ring->count,
1231                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1232         if (!rx_ring->buffer_info) {
1233                 ret_val = 5;
1234                 goto err_nomem;
1235         }
1236
1237         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1238         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1239                                            &rx_ring->dma, GFP_KERNEL);
1240         if (!rx_ring->desc) {
1241                 ret_val = 6;
1242                 goto err_nomem;
1243         }
1244         rx_ring->next_to_use = 0;
1245         rx_ring->next_to_clean = 0;
1246
1247         rctl = er32(RCTL);
1248         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1249                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1250         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1251         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1252         ew32(RDLEN(0), rx_ring->size);
1253         ew32(RDH(0), 0);
1254         ew32(RDT(0), 0);
1255         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1256             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1257             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1258             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1259             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1260         ew32(RCTL, rctl);
1261
1262         for (i = 0; i < rx_ring->count; i++) {
1263                 union e1000_rx_desc_extended *rx_desc;
1264                 struct sk_buff *skb;
1265
1266                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1267                 if (!skb) {
1268                         ret_val = 7;
1269                         goto err_nomem;
1270                 }
1271                 skb_reserve(skb, NET_IP_ALIGN);
1272                 rx_ring->buffer_info[i].skb = skb;
1273                 rx_ring->buffer_info[i].dma =
1274                     dma_map_single(&pdev->dev, skb->data, 2048,
1275                                    DMA_FROM_DEVICE);
1276                 if (dma_mapping_error(&pdev->dev,
1277                                       rx_ring->buffer_info[i].dma)) {
1278                         ret_val = 8;
1279                         goto err_nomem;
1280                 }
1281                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1282                 rx_desc->read.buffer_addr =
1283                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1284                 memset(skb->data, 0x00, skb->len);
1285         }
1286
1287         return 0;
1288
1289 err_nomem:
1290         e1000_free_desc_rings(adapter);
1291         return ret_val;
1292 }
1293
1294 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1295 {
1296         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1297         e1e_wphy(&adapter->hw, 29, 0x001F);
1298         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1299         e1e_wphy(&adapter->hw, 29, 0x001A);
1300         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1301 }
1302
1303 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1304 {
1305         struct e1000_hw *hw = &adapter->hw;
1306         u32 ctrl_reg = 0;
1307         u16 phy_reg = 0;
1308         s32 ret_val = 0;
1309
1310         hw->mac.autoneg = 0;
1311
1312         if (hw->phy.type == e1000_phy_ife) {
1313                 /* force 100, set loopback */
1314                 e1e_wphy(hw, MII_BMCR, 0x6100);
1315
1316                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1317                 ctrl_reg = er32(CTRL);
1318                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1319                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1320                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1321                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1322                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1323
1324                 ew32(CTRL, ctrl_reg);
1325                 e1e_flush();
1326                 usleep_range(500, 1000);
1327
1328                 return 0;
1329         }
1330
1331         /* Specific PHY configuration for loopback */
1332         switch (hw->phy.type) {
1333         case e1000_phy_m88:
1334                 /* Auto-MDI/MDIX Off */
1335                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1336                 /* reset to update Auto-MDI/MDIX */
1337                 e1e_wphy(hw, MII_BMCR, 0x9140);
1338                 /* autoneg off */
1339                 e1e_wphy(hw, MII_BMCR, 0x8140);
1340                 break;
1341         case e1000_phy_gg82563:
1342                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1343                 break;
1344         case e1000_phy_bm:
1345                 /* Set Default MAC Interface speed to 1GB */
1346                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1347                 phy_reg &= ~0x0007;
1348                 phy_reg |= 0x006;
1349                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1350                 /* Assert SW reset for above settings to take effect */
1351                 hw->phy.ops.commit(hw);
1352                 usleep_range(1000, 2000);
1353                 /* Force Full Duplex */
1354                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1355                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1356                 /* Set Link Up (in force link) */
1357                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1358                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1359                 /* Force Link */
1360                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1361                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1362                 /* Set Early Link Enable */
1363                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1364                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1365                 break;
1366         case e1000_phy_82577:
1367         case e1000_phy_82578:
1368                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1369                 ret_val = hw->phy.ops.acquire(hw);
1370                 if (ret_val) {
1371                         e_err("Cannot setup 1Gbps loopback.\n");
1372                         return ret_val;
1373                 }
1374                 e1000_configure_k1_ich8lan(hw, false);
1375                 hw->phy.ops.release(hw);
1376                 break;
1377         case e1000_phy_82579:
1378                 /* Disable PHY energy detect power down */
1379                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1380                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1381                 /* Disable full chip energy detect */
1382                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1383                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1384                 /* Enable loopback on the PHY */
1385                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1386                 break;
1387         default:
1388                 break;
1389         }
1390
1391         /* force 1000, set loopback */
1392         e1e_wphy(hw, MII_BMCR, 0x4140);
1393         msleep(250);
1394
1395         /* Now set up the MAC to the same speed/duplex as the PHY. */
1396         ctrl_reg = er32(CTRL);
1397         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1398         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1399                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1400                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1401                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1402
1403         if (adapter->flags & FLAG_IS_ICH)
1404                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1405
1406         if (hw->phy.media_type == e1000_media_type_copper &&
1407             hw->phy.type == e1000_phy_m88) {
1408                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1409         } else {
1410                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1411                  * detected.
1412                  */
1413                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1414                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1415         }
1416
1417         ew32(CTRL, ctrl_reg);
1418
1419         /* Disable the receiver on the PHY so when a cable is plugged in, the
1420          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1421          */
1422         if (hw->phy.type == e1000_phy_m88)
1423                 e1000_phy_disable_receiver(adapter);
1424
1425         usleep_range(500, 1000);
1426
1427         return 0;
1428 }
1429
1430 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1431 {
1432         struct e1000_hw *hw = &adapter->hw;
1433         u32 ctrl = er32(CTRL);
1434         int link;
1435
1436         /* special requirements for 82571/82572 fiber adapters */
1437
1438         /* jump through hoops to make sure link is up because serdes
1439          * link is hardwired up
1440          */
1441         ctrl |= E1000_CTRL_SLU;
1442         ew32(CTRL, ctrl);
1443
1444         /* disable autoneg */
1445         ctrl = er32(TXCW);
1446         ctrl &= ~(1 << 31);
1447         ew32(TXCW, ctrl);
1448
1449         link = (er32(STATUS) & E1000_STATUS_LU);
1450
1451         if (!link) {
1452                 /* set invert loss of signal */
1453                 ctrl = er32(CTRL);
1454                 ctrl |= E1000_CTRL_ILOS;
1455                 ew32(CTRL, ctrl);
1456         }
1457
1458         /* special write to serdes control register to enable SerDes analog
1459          * loopback
1460          */
1461         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1462         e1e_flush();
1463         usleep_range(10000, 20000);
1464
1465         return 0;
1466 }
1467
1468 /* only call this for fiber/serdes connections to es2lan */
1469 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472         u32 ctrlext = er32(CTRL_EXT);
1473         u32 ctrl = er32(CTRL);
1474
1475         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1476          * on mac_type 80003es2lan)
1477          */
1478         adapter->tx_fifo_head = ctrlext;
1479
1480         /* clear the serdes mode bits, putting the device into mac loopback */
1481         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1482         ew32(CTRL_EXT, ctrlext);
1483
1484         /* force speed to 1000/FD, link up */
1485         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1486         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1487                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1488         ew32(CTRL, ctrl);
1489
1490         /* set mac loopback */
1491         ctrl = er32(RCTL);
1492         ctrl |= E1000_RCTL_LBM_MAC;
1493         ew32(RCTL, ctrl);
1494
1495         /* set testing mode parameters (no need to reset later) */
1496 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1497 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1498         ew32(KMRNCTRLSTA,
1499              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1500
1501         return 0;
1502 }
1503
1504 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1505 {
1506         struct e1000_hw *hw = &adapter->hw;
1507         u32 rctl;
1508
1509         if (hw->phy.media_type == e1000_media_type_fiber ||
1510             hw->phy.media_type == e1000_media_type_internal_serdes) {
1511                 switch (hw->mac.type) {
1512                 case e1000_80003es2lan:
1513                         return e1000_set_es2lan_mac_loopback(adapter);
1514                         break;
1515                 case e1000_82571:
1516                 case e1000_82572:
1517                         return e1000_set_82571_fiber_loopback(adapter);
1518                         break;
1519                 default:
1520                         rctl = er32(RCTL);
1521                         rctl |= E1000_RCTL_LBM_TCVR;
1522                         ew32(RCTL, rctl);
1523                         return 0;
1524                 }
1525         } else if (hw->phy.media_type == e1000_media_type_copper) {
1526                 return e1000_integrated_phy_loopback(adapter);
1527         }
1528
1529         return 7;
1530 }
1531
1532 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1533 {
1534         struct e1000_hw *hw = &adapter->hw;
1535         u32 rctl;
1536         u16 phy_reg;
1537
1538         rctl = er32(RCTL);
1539         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1540         ew32(RCTL, rctl);
1541
1542         switch (hw->mac.type) {
1543         case e1000_80003es2lan:
1544                 if (hw->phy.media_type == e1000_media_type_fiber ||
1545                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1546                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1547                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1548                         adapter->tx_fifo_head = 0;
1549                 }
1550                 /* fall through */
1551         case e1000_82571:
1552         case e1000_82572:
1553                 if (hw->phy.media_type == e1000_media_type_fiber ||
1554                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1555                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1556                         e1e_flush();
1557                         usleep_range(10000, 20000);
1558                         break;
1559                 }
1560                 /* Fall Through */
1561         default:
1562                 hw->mac.autoneg = 1;
1563                 if (hw->phy.type == e1000_phy_gg82563)
1564                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1565                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1566                 if (phy_reg & BMCR_LOOPBACK) {
1567                         phy_reg &= ~BMCR_LOOPBACK;
1568                         e1e_wphy(hw, MII_BMCR, phy_reg);
1569                         if (hw->phy.ops.commit)
1570                                 hw->phy.ops.commit(hw);
1571                 }
1572                 break;
1573         }
1574 }
1575
1576 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1577                                       unsigned int frame_size)
1578 {
1579         memset(skb->data, 0xFF, frame_size);
1580         frame_size &= ~1;
1581         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1582         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1583         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1584 }
1585
1586 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1587                                     unsigned int frame_size)
1588 {
1589         frame_size &= ~1;
1590         if (*(skb->data + 3) == 0xFF)
1591                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1592                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1593                         return 0;
1594         return 13;
1595 }
1596
1597 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1598 {
1599         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1600         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1601         struct pci_dev *pdev = adapter->pdev;
1602         struct e1000_hw *hw = &adapter->hw;
1603         struct e1000_buffer *buffer_info;
1604         int i, j, k, l;
1605         int lc;
1606         int good_cnt;
1607         int ret_val = 0;
1608         unsigned long time;
1609
1610         ew32(RDT(0), rx_ring->count - 1);
1611
1612         /* Calculate the loop count based on the largest descriptor ring
1613          * The idea is to wrap the largest ring a number of times using 64
1614          * send/receive pairs during each loop
1615          */
1616
1617         if (rx_ring->count <= tx_ring->count)
1618                 lc = ((tx_ring->count / 64) * 2) + 1;
1619         else
1620                 lc = ((rx_ring->count / 64) * 2) + 1;
1621
1622         k = 0;
1623         l = 0;
1624         /* loop count loop */
1625         for (j = 0; j <= lc; j++) {
1626                 /* send the packets */
1627                 for (i = 0; i < 64; i++) {
1628                         buffer_info = &tx_ring->buffer_info[k];
1629
1630                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1631                         dma_sync_single_for_device(&pdev->dev,
1632                                                    buffer_info->dma,
1633                                                    buffer_info->length,
1634                                                    DMA_TO_DEVICE);
1635                         k++;
1636                         if (k == tx_ring->count)
1637                                 k = 0;
1638                 }
1639                 ew32(TDT(0), k);
1640                 e1e_flush();
1641                 msleep(200);
1642                 time = jiffies; /* set the start time for the receive */
1643                 good_cnt = 0;
1644                 /* receive the sent packets */
1645                 do {
1646                         buffer_info = &rx_ring->buffer_info[l];
1647
1648                         dma_sync_single_for_cpu(&pdev->dev,
1649                                                 buffer_info->dma, 2048,
1650                                                 DMA_FROM_DEVICE);
1651
1652                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1653                                                            1024);
1654                         if (!ret_val)
1655                                 good_cnt++;
1656                         l++;
1657                         if (l == rx_ring->count)
1658                                 l = 0;
1659                         /* time + 20 msecs (200 msecs on 2.4) is more than
1660                          * enough time to complete the receives, if it's
1661                          * exceeded, break and error off
1662                          */
1663                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1664                 if (good_cnt != 64) {
1665                         ret_val = 13;   /* ret_val is the same as mis-compare */
1666                         break;
1667                 }
1668                 if (time_after(jiffies, time + 20)) {
1669                         ret_val = 14;   /* error code for time out error */
1670                         break;
1671                 }
1672         }
1673         return ret_val;
1674 }
1675
1676 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1677 {
1678         struct e1000_hw *hw = &adapter->hw;
1679
1680         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1681         if (hw->phy.ops.check_reset_block &&
1682             hw->phy.ops.check_reset_block(hw)) {
1683                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1684                 *data = 0;
1685                 goto out;
1686         }
1687
1688         *data = e1000_setup_desc_rings(adapter);
1689         if (*data)
1690                 goto out;
1691
1692         *data = e1000_setup_loopback_test(adapter);
1693         if (*data)
1694                 goto err_loopback;
1695
1696         *data = e1000_run_loopback_test(adapter);
1697         e1000_loopback_cleanup(adapter);
1698
1699 err_loopback:
1700         e1000_free_desc_rings(adapter);
1701 out:
1702         return *data;
1703 }
1704
1705 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1706 {
1707         struct e1000_hw *hw = &adapter->hw;
1708
1709         *data = 0;
1710         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1711                 int i = 0;
1712                 hw->mac.serdes_has_link = false;
1713
1714                 /* On some blade server designs, link establishment
1715                  * could take as long as 2-3 minutes
1716                  */
1717                 do {
1718                         hw->mac.ops.check_for_link(hw);
1719                         if (hw->mac.serdes_has_link)
1720                                 return *data;
1721                         msleep(20);
1722                 } while (i++ < 3750);
1723
1724                 *data = 1;
1725         } else {
1726                 hw->mac.ops.check_for_link(hw);
1727                 if (hw->mac.autoneg)
1728                         /* On some Phy/switch combinations, link establishment
1729                          * can take a few seconds more than expected.
1730                          */
1731                         msleep_interruptible(5000);
1732
1733                 if (!(er32(STATUS) & E1000_STATUS_LU))
1734                         *data = 1;
1735         }
1736         return *data;
1737 }
1738
1739 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1740                                  int sset)
1741 {
1742         switch (sset) {
1743         case ETH_SS_TEST:
1744                 return E1000_TEST_LEN;
1745         case ETH_SS_STATS:
1746                 return E1000_STATS_LEN;
1747         default:
1748                 return -EOPNOTSUPP;
1749         }
1750 }
1751
1752 static void e1000_diag_test(struct net_device *netdev,
1753                             struct ethtool_test *eth_test, u64 *data)
1754 {
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         u16 autoneg_advertised;
1757         u8 forced_speed_duplex;
1758         u8 autoneg;
1759         bool if_running = netif_running(netdev);
1760
1761         pm_runtime_get_sync(netdev->dev.parent);
1762
1763         set_bit(__E1000_TESTING, &adapter->state);
1764
1765         if (!if_running) {
1766                 /* Get control of and reset hardware */
1767                 if (adapter->flags & FLAG_HAS_AMT)
1768                         e1000e_get_hw_control(adapter);
1769
1770                 e1000e_power_up_phy(adapter);
1771
1772                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1773                 e1000e_reset(adapter);
1774                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1775         }
1776
1777         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1778                 /* Offline tests */
1779
1780                 /* save speed, duplex, autoneg settings */
1781                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1782                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1783                 autoneg = adapter->hw.mac.autoneg;
1784
1785                 e_info("offline testing starting\n");
1786
1787                 if (if_running)
1788                         /* indicate we're in test mode */
1789                         dev_close(netdev);
1790
1791                 if (e1000_reg_test(adapter, &data[0]))
1792                         eth_test->flags |= ETH_TEST_FL_FAILED;
1793
1794                 e1000e_reset(adapter);
1795                 if (e1000_eeprom_test(adapter, &data[1]))
1796                         eth_test->flags |= ETH_TEST_FL_FAILED;
1797
1798                 e1000e_reset(adapter);
1799                 if (e1000_intr_test(adapter, &data[2]))
1800                         eth_test->flags |= ETH_TEST_FL_FAILED;
1801
1802                 e1000e_reset(adapter);
1803                 if (e1000_loopback_test(adapter, &data[3]))
1804                         eth_test->flags |= ETH_TEST_FL_FAILED;
1805
1806                 /* force this routine to wait until autoneg complete/timeout */
1807                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1808                 e1000e_reset(adapter);
1809                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1810
1811                 if (e1000_link_test(adapter, &data[4]))
1812                         eth_test->flags |= ETH_TEST_FL_FAILED;
1813
1814                 /* restore speed, duplex, autoneg settings */
1815                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1816                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1817                 adapter->hw.mac.autoneg = autoneg;
1818                 e1000e_reset(adapter);
1819
1820                 clear_bit(__E1000_TESTING, &adapter->state);
1821                 if (if_running)
1822                         dev_open(netdev);
1823         } else {
1824                 /* Online tests */
1825
1826                 e_info("online testing starting\n");
1827
1828                 /* register, eeprom, intr and loopback tests not run online */
1829                 data[0] = 0;
1830                 data[1] = 0;
1831                 data[2] = 0;
1832                 data[3] = 0;
1833
1834                 if (e1000_link_test(adapter, &data[4]))
1835                         eth_test->flags |= ETH_TEST_FL_FAILED;
1836
1837                 clear_bit(__E1000_TESTING, &adapter->state);
1838         }
1839
1840         if (!if_running) {
1841                 e1000e_reset(adapter);
1842
1843                 if (adapter->flags & FLAG_HAS_AMT)
1844                         e1000e_release_hw_control(adapter);
1845         }
1846
1847         msleep_interruptible(4 * 1000);
1848
1849         pm_runtime_put_sync(netdev->dev.parent);
1850 }
1851
1852 static void e1000_get_wol(struct net_device *netdev,
1853                           struct ethtool_wolinfo *wol)
1854 {
1855         struct e1000_adapter *adapter = netdev_priv(netdev);
1856
1857         wol->supported = 0;
1858         wol->wolopts = 0;
1859
1860         if (!(adapter->flags & FLAG_HAS_WOL) ||
1861             !device_can_wakeup(&adapter->pdev->dev))
1862                 return;
1863
1864         wol->supported = WAKE_UCAST | WAKE_MCAST |
1865             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1866
1867         /* apply any specific unsupported masks here */
1868         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1869                 wol->supported &= ~WAKE_UCAST;
1870
1871                 if (adapter->wol & E1000_WUFC_EX)
1872                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1873         }
1874
1875         if (adapter->wol & E1000_WUFC_EX)
1876                 wol->wolopts |= WAKE_UCAST;
1877         if (adapter->wol & E1000_WUFC_MC)
1878                 wol->wolopts |= WAKE_MCAST;
1879         if (adapter->wol & E1000_WUFC_BC)
1880                 wol->wolopts |= WAKE_BCAST;
1881         if (adapter->wol & E1000_WUFC_MAG)
1882                 wol->wolopts |= WAKE_MAGIC;
1883         if (adapter->wol & E1000_WUFC_LNKC)
1884                 wol->wolopts |= WAKE_PHY;
1885 }
1886
1887 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1888 {
1889         struct e1000_adapter *adapter = netdev_priv(netdev);
1890
1891         if (!(adapter->flags & FLAG_HAS_WOL) ||
1892             !device_can_wakeup(&adapter->pdev->dev) ||
1893             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1894                               WAKE_MAGIC | WAKE_PHY)))
1895                 return -EOPNOTSUPP;
1896
1897         /* these settings will always override what we currently have */
1898         adapter->wol = 0;
1899
1900         if (wol->wolopts & WAKE_UCAST)
1901                 adapter->wol |= E1000_WUFC_EX;
1902         if (wol->wolopts & WAKE_MCAST)
1903                 adapter->wol |= E1000_WUFC_MC;
1904         if (wol->wolopts & WAKE_BCAST)
1905                 adapter->wol |= E1000_WUFC_BC;
1906         if (wol->wolopts & WAKE_MAGIC)
1907                 adapter->wol |= E1000_WUFC_MAG;
1908         if (wol->wolopts & WAKE_PHY)
1909                 adapter->wol |= E1000_WUFC_LNKC;
1910
1911         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1912
1913         return 0;
1914 }
1915
1916 static int e1000_set_phys_id(struct net_device *netdev,
1917                              enum ethtool_phys_id_state state)
1918 {
1919         struct e1000_adapter *adapter = netdev_priv(netdev);
1920         struct e1000_hw *hw = &adapter->hw;
1921
1922         switch (state) {
1923         case ETHTOOL_ID_ACTIVE:
1924                 pm_runtime_get_sync(netdev->dev.parent);
1925
1926                 if (!hw->mac.ops.blink_led)
1927                         return 2;       /* cycle on/off twice per second */
1928
1929                 hw->mac.ops.blink_led(hw);
1930                 break;
1931
1932         case ETHTOOL_ID_INACTIVE:
1933                 if (hw->phy.type == e1000_phy_ife)
1934                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1935                 hw->mac.ops.led_off(hw);
1936                 hw->mac.ops.cleanup_led(hw);
1937                 pm_runtime_put_sync(netdev->dev.parent);
1938                 break;
1939
1940         case ETHTOOL_ID_ON:
1941                 hw->mac.ops.led_on(hw);
1942                 break;
1943
1944         case ETHTOOL_ID_OFF:
1945                 hw->mac.ops.led_off(hw);
1946                 break;
1947         }
1948
1949         return 0;
1950 }
1951
1952 static int e1000_get_coalesce(struct net_device *netdev,
1953                               struct ethtool_coalesce *ec)
1954 {
1955         struct e1000_adapter *adapter = netdev_priv(netdev);
1956
1957         if (adapter->itr_setting <= 4)
1958                 ec->rx_coalesce_usecs = adapter->itr_setting;
1959         else
1960                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1961
1962         return 0;
1963 }
1964
1965 static int e1000_set_coalesce(struct net_device *netdev,
1966                               struct ethtool_coalesce *ec)
1967 {
1968         struct e1000_adapter *adapter = netdev_priv(netdev);
1969
1970         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1971             ((ec->rx_coalesce_usecs > 4) &&
1972              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1973             (ec->rx_coalesce_usecs == 2))
1974                 return -EINVAL;
1975
1976         if (ec->rx_coalesce_usecs == 4) {
1977                 adapter->itr_setting = 4;
1978                 adapter->itr = adapter->itr_setting;
1979         } else if (ec->rx_coalesce_usecs <= 3) {
1980                 adapter->itr = 20000;
1981                 adapter->itr_setting = ec->rx_coalesce_usecs;
1982         } else {
1983                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1984                 adapter->itr_setting = adapter->itr & ~3;
1985         }
1986
1987         pm_runtime_get_sync(netdev->dev.parent);
1988
1989         if (adapter->itr_setting != 0)
1990                 e1000e_write_itr(adapter, adapter->itr);
1991         else
1992                 e1000e_write_itr(adapter, 0);
1993
1994         pm_runtime_put_sync(netdev->dev.parent);
1995
1996         return 0;
1997 }
1998
1999 static int e1000_nway_reset(struct net_device *netdev)
2000 {
2001         struct e1000_adapter *adapter = netdev_priv(netdev);
2002
2003         if (!netif_running(netdev))
2004                 return -EAGAIN;
2005
2006         if (!adapter->hw.mac.autoneg)
2007                 return -EINVAL;
2008
2009         pm_runtime_get_sync(netdev->dev.parent);
2010         e1000e_reinit_locked(adapter);
2011         pm_runtime_put_sync(netdev->dev.parent);
2012
2013         return 0;
2014 }
2015
2016 static void e1000_get_ethtool_stats(struct net_device *netdev,
2017                                     struct ethtool_stats __always_unused *stats,
2018                                     u64 *data)
2019 {
2020         struct e1000_adapter *adapter = netdev_priv(netdev);
2021         struct rtnl_link_stats64 net_stats;
2022         int i;
2023         char *p = NULL;
2024
2025         pm_runtime_get_sync(netdev->dev.parent);
2026
2027         e1000e_get_stats64(netdev, &net_stats);
2028
2029         pm_runtime_put_sync(netdev->dev.parent);
2030
2031         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2032                 switch (e1000_gstrings_stats[i].type) {
2033                 case NETDEV_STATS:
2034                         p = (char *)&net_stats +
2035                             e1000_gstrings_stats[i].stat_offset;
2036                         break;
2037                 case E1000_STATS:
2038                         p = (char *)adapter +
2039                             e1000_gstrings_stats[i].stat_offset;
2040                         break;
2041                 default:
2042                         data[i] = 0;
2043                         continue;
2044                 }
2045
2046                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2047                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2048         }
2049 }
2050
2051 static void e1000_get_strings(struct net_device __always_unused *netdev,
2052                               u32 stringset, u8 *data)
2053 {
2054         u8 *p = data;
2055         int i;
2056
2057         switch (stringset) {
2058         case ETH_SS_TEST:
2059                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2060                 break;
2061         case ETH_SS_STATS:
2062                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2063                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2064                                ETH_GSTRING_LEN);
2065                         p += ETH_GSTRING_LEN;
2066                 }
2067                 break;
2068         }
2069 }
2070
2071 static int e1000_get_rxnfc(struct net_device *netdev,
2072                            struct ethtool_rxnfc *info,
2073                            u32 __always_unused *rule_locs)
2074 {
2075         info->data = 0;
2076
2077         switch (info->cmd) {
2078         case ETHTOOL_GRXFH: {
2079                 struct e1000_adapter *adapter = netdev_priv(netdev);
2080                 struct e1000_hw *hw = &adapter->hw;
2081                 u32 mrqc;
2082
2083                 pm_runtime_get_sync(netdev->dev.parent);
2084                 mrqc = er32(MRQC);
2085                 pm_runtime_put_sync(netdev->dev.parent);
2086
2087                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2088                         return 0;
2089
2090                 switch (info->flow_type) {
2091                 case TCP_V4_FLOW:
2092                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2093                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2094                         /* fall through */
2095                 case UDP_V4_FLOW:
2096                 case SCTP_V4_FLOW:
2097                 case AH_ESP_V4_FLOW:
2098                 case IPV4_FLOW:
2099                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2100                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2101                         break;
2102                 case TCP_V6_FLOW:
2103                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2104                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2105                         /* fall through */
2106                 case UDP_V6_FLOW:
2107                 case SCTP_V6_FLOW:
2108                 case AH_ESP_V6_FLOW:
2109                 case IPV6_FLOW:
2110                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2111                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2112                         break;
2113                 default:
2114                         break;
2115                 }
2116                 return 0;
2117         }
2118         default:
2119                 return -EOPNOTSUPP;
2120         }
2121 }
2122
2123 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2124 {
2125         struct e1000_adapter *adapter = netdev_priv(netdev);
2126         struct e1000_hw *hw = &adapter->hw;
2127         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2128         u32 ret_val;
2129
2130         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2131                 return -EOPNOTSUPP;
2132
2133         switch (hw->phy.type) {
2134         case e1000_phy_82579:
2135                 cap_addr = I82579_EEE_CAPABILITY;
2136                 lpa_addr = I82579_EEE_LP_ABILITY;
2137                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2138                 break;
2139         case e1000_phy_i217:
2140                 cap_addr = I217_EEE_CAPABILITY;
2141                 lpa_addr = I217_EEE_LP_ABILITY;
2142                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2143                 break;
2144         default:
2145                 return -EOPNOTSUPP;
2146         }
2147
2148         pm_runtime_get_sync(netdev->dev.parent);
2149
2150         ret_val = hw->phy.ops.acquire(hw);
2151         if (ret_val) {
2152                 pm_runtime_put_sync(netdev->dev.parent);
2153                 return -EBUSY;
2154         }
2155
2156         /* EEE Capability */
2157         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2158         if (ret_val)
2159                 goto release;
2160         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2161
2162         /* EEE Advertised */
2163         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2164
2165         /* EEE Link Partner Advertised */
2166         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2167         if (ret_val)
2168                 goto release;
2169         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2170
2171         /* EEE PCS Status */
2172         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2173         if (ret_val)
2174                 goto release;
2175         if (hw->phy.type == e1000_phy_82579)
2176                 phy_data <<= 8;
2177
2178         /* Result of the EEE auto negotiation - there is no register that
2179          * has the status of the EEE negotiation so do a best-guess based
2180          * on whether Tx or Rx LPI indications have been received.
2181          */
2182         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2183                 edata->eee_active = true;
2184
2185         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2186         edata->tx_lpi_enabled = true;
2187         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2188
2189 release:
2190         hw->phy.ops.release(hw);
2191         if (ret_val)
2192                 ret_val = -ENODATA;
2193
2194         pm_runtime_put_sync(netdev->dev.parent);
2195
2196         return ret_val;
2197 }
2198
2199 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2200 {
2201         struct e1000_adapter *adapter = netdev_priv(netdev);
2202         struct e1000_hw *hw = &adapter->hw;
2203         struct ethtool_eee eee_curr;
2204         s32 ret_val;
2205
2206         ret_val = e1000e_get_eee(netdev, &eee_curr);
2207         if (ret_val)
2208                 return ret_val;
2209
2210         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2211                 e_err("Setting EEE tx-lpi is not supported\n");
2212                 return -EINVAL;
2213         }
2214
2215         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2216                 e_err("Setting EEE Tx LPI timer is not supported\n");
2217                 return -EINVAL;
2218         }
2219
2220         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2221                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2222                 return -EINVAL;
2223         }
2224
2225         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2226
2227         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2228
2229         pm_runtime_get_sync(netdev->dev.parent);
2230
2231         /* reset the link */
2232         if (netif_running(netdev))
2233                 e1000e_reinit_locked(adapter);
2234         else
2235                 e1000e_reset(adapter);
2236
2237         pm_runtime_put_sync(netdev->dev.parent);
2238
2239         return 0;
2240 }
2241
2242 static int e1000e_get_ts_info(struct net_device *netdev,
2243                               struct ethtool_ts_info *info)
2244 {
2245         struct e1000_adapter *adapter = netdev_priv(netdev);
2246
2247         ethtool_op_get_ts_info(netdev, info);
2248
2249         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2250                 return 0;
2251
2252         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2253                                   SOF_TIMESTAMPING_RX_HARDWARE |
2254                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2255
2256         info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2257
2258         info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2259                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2260                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2261                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2262                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2263                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2264                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2265                             (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2266                             (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2267                             (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2268                             (1 << HWTSTAMP_FILTER_ALL));
2269
2270         if (adapter->ptp_clock)
2271                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2272
2273         return 0;
2274 }
2275
2276 static const struct ethtool_ops e1000_ethtool_ops = {
2277         .get_settings           = e1000_get_settings,
2278         .set_settings           = e1000_set_settings,
2279         .get_drvinfo            = e1000_get_drvinfo,
2280         .get_regs_len           = e1000_get_regs_len,
2281         .get_regs               = e1000_get_regs,
2282         .get_wol                = e1000_get_wol,
2283         .set_wol                = e1000_set_wol,
2284         .get_msglevel           = e1000_get_msglevel,
2285         .set_msglevel           = e1000_set_msglevel,
2286         .nway_reset             = e1000_nway_reset,
2287         .get_link               = ethtool_op_get_link,
2288         .get_eeprom_len         = e1000_get_eeprom_len,
2289         .get_eeprom             = e1000_get_eeprom,
2290         .set_eeprom             = e1000_set_eeprom,
2291         .get_ringparam          = e1000_get_ringparam,
2292         .set_ringparam          = e1000_set_ringparam,
2293         .get_pauseparam         = e1000_get_pauseparam,
2294         .set_pauseparam         = e1000_set_pauseparam,
2295         .self_test              = e1000_diag_test,
2296         .get_strings            = e1000_get_strings,
2297         .set_phys_id            = e1000_set_phys_id,
2298         .get_ethtool_stats      = e1000_get_ethtool_stats,
2299         .get_sset_count         = e1000e_get_sset_count,
2300         .get_coalesce           = e1000_get_coalesce,
2301         .set_coalesce           = e1000_set_coalesce,
2302         .get_rxnfc              = e1000_get_rxnfc,
2303         .get_ts_info            = e1000e_get_ts_info,
2304         .get_eee                = e1000e_get_eee,
2305         .set_eee                = e1000e_set_eee,
2306 };
2307
2308 void e1000e_set_ethtool_ops(struct net_device *netdev)
2309 {
2310         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2311 }