]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
Merge branch 'next/spring-cleaning' into next/cleanup
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57
58 #include "e1000.h"
59
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63         struct ich8_hsfsts {
64                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
65                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
66                 u16 dael       :1; /* bit 2 Direct Access error Log */
67                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
68                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
69                 u16 reserved1  :2; /* bit 13:6 Reserved */
70                 u16 reserved2  :6; /* bit 13:6 Reserved */
71                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
72                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
73         } hsf_status;
74         u16 regval;
75 };
76
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80         struct ich8_hsflctl {
81                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
82                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
83                 u16 reserved   :5;   /* 7:3 Reserved  */
84                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
85                 u16 flockdn    :6;   /* 15:10 Reserved */
86         } hsf_ctrl;
87         u16 regval;
88 };
89
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92         struct ich8_flracc {
93                 u32 grra      :8; /* 0:7 GbE region Read Access */
94                 u32 grwa      :8; /* 8:15 GbE region Write Access */
95                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
96                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
97         } hsf_flregacc;
98         u16 regval;
99 };
100
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103         struct ich8_pr {
104                 u32 base:13;     /* 0:12 Protected Range Base */
105                 u32 reserved1:2; /* 13:14 Reserved */
106                 u32 rpe:1;       /* 15 Read Protection Enable */
107                 u32 limit:13;    /* 16:28 Protected Range Limit */
108                 u32 reserved2:2; /* 29:30 Reserved */
109                 u32 wpe:1;       /* 31 Write Protection Enable */
110         } range;
111         u32 regval;
112 };
113
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118                                                 u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120                                          u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122                                          u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124                                          u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145
146 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readw(hw->flash_address + reg);
149 }
150
151 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
152 {
153         return readl(hw->flash_address + reg);
154 }
155
156 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
157 {
158         writew(val, hw->flash_address + reg);
159 }
160
161 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
162 {
163         writel(val, hw->flash_address + reg);
164 }
165
166 #define er16flash(reg)          __er16flash(hw, (reg))
167 #define er32flash(reg)          __er32flash(hw, (reg))
168 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
169 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
170
171 /**
172  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
173  *  @hw: pointer to the HW structure
174  *
175  *  Test access to the PHY registers by reading the PHY ID registers.  If
176  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
177  *  otherwise assume the read PHY ID is correct if it is valid.
178  *
179  *  Assumes the sw/fw/hw semaphore is already acquired.
180  **/
181 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
182 {
183         u16 phy_reg = 0;
184         u32 phy_id = 0;
185         s32 ret_val;
186         u16 retry_count;
187
188         for (retry_count = 0; retry_count < 2; retry_count++) {
189                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
190                 if (ret_val || (phy_reg == 0xFFFF))
191                         continue;
192                 phy_id = (u32)(phy_reg << 16);
193
194                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
195                 if (ret_val || (phy_reg == 0xFFFF)) {
196                         phy_id = 0;
197                         continue;
198                 }
199                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
200                 break;
201         }
202
203         if (hw->phy.id) {
204                 if (hw->phy.id == phy_id)
205                         return true;
206         } else if (phy_id) {
207                 hw->phy.id = phy_id;
208                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
209                 return true;
210         }
211
212         /* In case the PHY needs to be in mdio slow mode,
213          * set slow mode and try to get the PHY id again.
214          */
215         hw->phy.ops.release(hw);
216         ret_val = e1000_set_mdio_slow_mode_hv(hw);
217         if (!ret_val)
218                 ret_val = e1000e_get_phy_id(hw);
219         hw->phy.ops.acquire(hw);
220
221         return !ret_val;
222 }
223
224 /**
225  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
226  *  @hw: pointer to the HW structure
227  *
228  *  Workarounds/flow necessary for PHY initialization during driver load
229  *  and resume paths.
230  **/
231 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
232 {
233         u32 mac_reg, fwsm = er32(FWSM);
234         s32 ret_val;
235         u16 phy_reg;
236
237         /* Gate automatic PHY configuration by hardware on managed and
238          * non-managed 82579 and newer adapters.
239          */
240         e1000_gate_hw_phy_config_ich8lan(hw, true);
241
242         ret_val = hw->phy.ops.acquire(hw);
243         if (ret_val) {
244                 e_dbg("Failed to initialize PHY flow\n");
245                 goto out;
246         }
247
248         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
249          * inaccessible and resetting the PHY is not blocked, toggle the
250          * LANPHYPC Value bit to force the interconnect to PCIe mode.
251          */
252         switch (hw->mac.type) {
253         case e1000_pch_lpt:
254                 if (e1000_phy_is_accessible_pchlan(hw))
255                         break;
256
257                 /* Before toggling LANPHYPC, see if PHY is accessible by
258                  * forcing MAC to SMBus mode first.
259                  */
260                 mac_reg = er32(CTRL_EXT);
261                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
262                 ew32(CTRL_EXT, mac_reg);
263
264                 /* fall-through */
265         case e1000_pch2lan:
266                 if (e1000_phy_is_accessible_pchlan(hw)) {
267                         if (hw->mac.type == e1000_pch_lpt) {
268                                 /* Unforce SMBus mode in PHY */
269                                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
270                                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
271                                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
272
273                                 /* Unforce SMBus mode in MAC */
274                                 mac_reg = er32(CTRL_EXT);
275                                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
276                                 ew32(CTRL_EXT, mac_reg);
277                         }
278                         break;
279                 }
280
281                 /* fall-through */
282         case e1000_pchlan:
283                 if ((hw->mac.type == e1000_pchlan) &&
284                     (fwsm & E1000_ICH_FWSM_FW_VALID))
285                         break;
286
287                 if (hw->phy.ops.check_reset_block(hw)) {
288                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
289                         break;
290                 }
291
292                 e_dbg("Toggling LANPHYPC\n");
293
294                 /* Set Phy Config Counter to 50msec */
295                 mac_reg = er32(FEXTNVM3);
296                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
297                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
298                 ew32(FEXTNVM3, mac_reg);
299
300                 if (hw->mac.type == e1000_pch_lpt) {
301                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
302                          * So ensure that the MAC is also out of SMBus mode
303                          */
304                         mac_reg = er32(CTRL_EXT);
305                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
306                         ew32(CTRL_EXT, mac_reg);
307                 }
308
309                 /* Toggle LANPHYPC Value bit */
310                 mac_reg = er32(CTRL);
311                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
312                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
313                 ew32(CTRL, mac_reg);
314                 e1e_flush();
315                 udelay(10);
316                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317                 ew32(CTRL, mac_reg);
318                 e1e_flush();
319                 if (hw->mac.type < e1000_pch_lpt) {
320                         msleep(50);
321                 } else {
322                         u16 count = 20;
323                         do {
324                                 usleep_range(5000, 10000);
325                         } while (!(er32(CTRL_EXT) &
326                                    E1000_CTRL_EXT_LPCD) && count--);
327                 }
328                 break;
329         default:
330                 break;
331         }
332
333         hw->phy.ops.release(hw);
334
335         /* Reset the PHY before any access to it.  Doing so, ensures
336          * that the PHY is in a known good state before we read/write
337          * PHY registers.  The generic reset is sufficient here,
338          * because we haven't determined the PHY type yet.
339          */
340         ret_val = e1000e_phy_hw_reset_generic(hw);
341
342 out:
343         /* Ungate automatic PHY configuration on non-managed 82579 */
344         if ((hw->mac.type == e1000_pch2lan) &&
345             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
346                 usleep_range(10000, 20000);
347                 e1000_gate_hw_phy_config_ich8lan(hw, false);
348         }
349
350         return ret_val;
351 }
352
353 /**
354  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
355  *  @hw: pointer to the HW structure
356  *
357  *  Initialize family-specific PHY parameters and function pointers.
358  **/
359 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
360 {
361         struct e1000_phy_info *phy = &hw->phy;
362         s32 ret_val;
363
364         phy->addr                     = 1;
365         phy->reset_delay_us           = 100;
366
367         phy->ops.set_page             = e1000_set_page_igp;
368         phy->ops.read_reg             = e1000_read_phy_reg_hv;
369         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
370         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
371         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
372         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
373         phy->ops.write_reg            = e1000_write_phy_reg_hv;
374         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
375         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
376         phy->ops.power_up             = e1000_power_up_phy_copper;
377         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
378         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
379
380         phy->id = e1000_phy_unknown;
381
382         ret_val = e1000_init_phy_workarounds_pchlan(hw);
383         if (ret_val)
384                 return ret_val;
385
386         if (phy->id == e1000_phy_unknown)
387                 switch (hw->mac.type) {
388                 default:
389                         ret_val = e1000e_get_phy_id(hw);
390                         if (ret_val)
391                                 return ret_val;
392                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
393                                 break;
394                         /* fall-through */
395                 case e1000_pch2lan:
396                 case e1000_pch_lpt:
397                         /* In case the PHY needs to be in mdio slow mode,
398                          * set slow mode and try to get the PHY id again.
399                          */
400                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
401                         if (ret_val)
402                                 return ret_val;
403                         ret_val = e1000e_get_phy_id(hw);
404                         if (ret_val)
405                                 return ret_val;
406                         break;
407                 }
408         phy->type = e1000e_get_phy_type_from_id(phy->id);
409
410         switch (phy->type) {
411         case e1000_phy_82577:
412         case e1000_phy_82579:
413         case e1000_phy_i217:
414                 phy->ops.check_polarity = e1000_check_polarity_82577;
415                 phy->ops.force_speed_duplex =
416                     e1000_phy_force_speed_duplex_82577;
417                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
418                 phy->ops.get_info = e1000_get_phy_info_82577;
419                 phy->ops.commit = e1000e_phy_sw_reset;
420                 break;
421         case e1000_phy_82578:
422                 phy->ops.check_polarity = e1000_check_polarity_m88;
423                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
424                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
425                 phy->ops.get_info = e1000e_get_phy_info_m88;
426                 break;
427         default:
428                 ret_val = -E1000_ERR_PHY;
429                 break;
430         }
431
432         return ret_val;
433 }
434
435 /**
436  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
437  *  @hw: pointer to the HW structure
438  *
439  *  Initialize family-specific PHY parameters and function pointers.
440  **/
441 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
442 {
443         struct e1000_phy_info *phy = &hw->phy;
444         s32 ret_val;
445         u16 i = 0;
446
447         phy->addr                       = 1;
448         phy->reset_delay_us             = 100;
449
450         phy->ops.power_up               = e1000_power_up_phy_copper;
451         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
452
453         /* We may need to do this twice - once for IGP and if that fails,
454          * we'll set BM func pointers and try again
455          */
456         ret_val = e1000e_determine_phy_address(hw);
457         if (ret_val) {
458                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
459                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
460                 ret_val = e1000e_determine_phy_address(hw);
461                 if (ret_val) {
462                         e_dbg("Cannot determine PHY addr. Erroring out\n");
463                         return ret_val;
464                 }
465         }
466
467         phy->id = 0;
468         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
469                (i++ < 100)) {
470                 usleep_range(1000, 2000);
471                 ret_val = e1000e_get_phy_id(hw);
472                 if (ret_val)
473                         return ret_val;
474         }
475
476         /* Verify phy id */
477         switch (phy->id) {
478         case IGP03E1000_E_PHY_ID:
479                 phy->type = e1000_phy_igp_3;
480                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
481                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
482                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
483                 phy->ops.get_info = e1000e_get_phy_info_igp;
484                 phy->ops.check_polarity = e1000_check_polarity_igp;
485                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
486                 break;
487         case IFE_E_PHY_ID:
488         case IFE_PLUS_E_PHY_ID:
489         case IFE_C_E_PHY_ID:
490                 phy->type = e1000_phy_ife;
491                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
492                 phy->ops.get_info = e1000_get_phy_info_ife;
493                 phy->ops.check_polarity = e1000_check_polarity_ife;
494                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
495                 break;
496         case BME1000_E_PHY_ID:
497                 phy->type = e1000_phy_bm;
498                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
500                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
501                 phy->ops.commit = e1000e_phy_sw_reset;
502                 phy->ops.get_info = e1000e_get_phy_info_m88;
503                 phy->ops.check_polarity = e1000_check_polarity_m88;
504                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
505                 break;
506         default:
507                 return -E1000_ERR_PHY;
508                 break;
509         }
510
511         return 0;
512 }
513
514 /**
515  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
516  *  @hw: pointer to the HW structure
517  *
518  *  Initialize family-specific NVM parameters and function
519  *  pointers.
520  **/
521 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
522 {
523         struct e1000_nvm_info *nvm = &hw->nvm;
524         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
525         u32 gfpreg, sector_base_addr, sector_end_addr;
526         u16 i;
527
528         /* Can't read flash registers if the register set isn't mapped. */
529         if (!hw->flash_address) {
530                 e_dbg("ERROR: Flash registers not mapped\n");
531                 return -E1000_ERR_CONFIG;
532         }
533
534         nvm->type = e1000_nvm_flash_sw;
535
536         gfpreg = er32flash(ICH_FLASH_GFPREG);
537
538         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
539          * Add 1 to sector_end_addr since this sector is included in
540          * the overall size.
541          */
542         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
543         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
544
545         /* flash_base_addr is byte-aligned */
546         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
547
548         /* find total size of the NVM, then cut in half since the total
549          * size represents two separate NVM banks.
550          */
551         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
552                                 << FLASH_SECTOR_ADDR_SHIFT;
553         nvm->flash_bank_size /= 2;
554         /* Adjust to word count */
555         nvm->flash_bank_size /= sizeof(u16);
556
557         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
558
559         /* Clear shadow ram */
560         for (i = 0; i < nvm->word_size; i++) {
561                 dev_spec->shadow_ram[i].modified = false;
562                 dev_spec->shadow_ram[i].value    = 0xFFFF;
563         }
564
565         return 0;
566 }
567
568 /**
569  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
570  *  @hw: pointer to the HW structure
571  *
572  *  Initialize family-specific MAC parameters and function
573  *  pointers.
574  **/
575 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
576 {
577         struct e1000_mac_info *mac = &hw->mac;
578
579         /* Set media type function pointer */
580         hw->phy.media_type = e1000_media_type_copper;
581
582         /* Set mta register count */
583         mac->mta_reg_count = 32;
584         /* Set rar entry count */
585         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
586         if (mac->type == e1000_ich8lan)
587                 mac->rar_entry_count--;
588         /* FWSM register */
589         mac->has_fwsm = true;
590         /* ARC subsystem not supported */
591         mac->arc_subsystem_valid = false;
592         /* Adaptive IFS supported */
593         mac->adaptive_ifs = true;
594
595         /* LED and other operations */
596         switch (mac->type) {
597         case e1000_ich8lan:
598         case e1000_ich9lan:
599         case e1000_ich10lan:
600                 /* check management mode */
601                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
602                 /* ID LED init */
603                 mac->ops.id_led_init = e1000e_id_led_init_generic;
604                 /* blink LED */
605                 mac->ops.blink_led = e1000e_blink_led_generic;
606                 /* setup LED */
607                 mac->ops.setup_led = e1000e_setup_led_generic;
608                 /* cleanup LED */
609                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
610                 /* turn on/off LED */
611                 mac->ops.led_on = e1000_led_on_ich8lan;
612                 mac->ops.led_off = e1000_led_off_ich8lan;
613                 break;
614         case e1000_pch2lan:
615                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
616                 mac->ops.rar_set = e1000_rar_set_pch2lan;
617                 /* fall-through */
618         case e1000_pch_lpt:
619         case e1000_pchlan:
620                 /* check management mode */
621                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
622                 /* ID LED init */
623                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
624                 /* setup LED */
625                 mac->ops.setup_led = e1000_setup_led_pchlan;
626                 /* cleanup LED */
627                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
628                 /* turn on/off LED */
629                 mac->ops.led_on = e1000_led_on_pchlan;
630                 mac->ops.led_off = e1000_led_off_pchlan;
631                 break;
632         default:
633                 break;
634         }
635
636         if (mac->type == e1000_pch_lpt) {
637                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
638                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
639         }
640
641         /* Enable PCS Lock-loss workaround for ICH8 */
642         if (mac->type == e1000_ich8lan)
643                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
644
645         return 0;
646 }
647
648 /**
649  *  __e1000_access_emi_reg_locked - Read/write EMI register
650  *  @hw: pointer to the HW structure
651  *  @addr: EMI address to program
652  *  @data: pointer to value to read/write from/to the EMI address
653  *  @read: boolean flag to indicate read or write
654  *
655  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
656  **/
657 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
658                                          u16 *data, bool read)
659 {
660         s32 ret_val;
661
662         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
663         if (ret_val)
664                 return ret_val;
665
666         if (read)
667                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
668         else
669                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
670
671         return ret_val;
672 }
673
674 /**
675  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
676  *  @hw: pointer to the HW structure
677  *  @addr: EMI address to program
678  *  @data: value to be read from the EMI address
679  *
680  *  Assumes the SW/FW/HW Semaphore is already acquired.
681  **/
682 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
683 {
684         return __e1000_access_emi_reg_locked(hw, addr, data, true);
685 }
686
687 /**
688  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
689  *  @hw: pointer to the HW structure
690  *  @addr: EMI address to program
691  *  @data: value to be written to the EMI address
692  *
693  *  Assumes the SW/FW/HW Semaphore is already acquired.
694  **/
695 static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
696 {
697         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
698 }
699
700 /**
701  *  e1000_set_eee_pchlan - Enable/disable EEE support
702  *  @hw: pointer to the HW structure
703  *
704  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
705  *  the link and the EEE capabilities of the link partner.  The LPI Control
706  *  register bits will remain set only if/when link is up.
707  **/
708 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
709 {
710         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
711         s32 ret_val;
712         u16 lpi_ctrl;
713
714         if ((hw->phy.type != e1000_phy_82579) &&
715             (hw->phy.type != e1000_phy_i217))
716                 return 0;
717
718         ret_val = hw->phy.ops.acquire(hw);
719         if (ret_val)
720                 return ret_val;
721
722         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
723         if (ret_val)
724                 goto release;
725
726         /* Clear bits that enable EEE in various speeds */
727         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
728
729         /* Enable EEE if not disabled by user */
730         if (!dev_spec->eee_disable) {
731                 u16 lpa, pcs_status, data;
732
733                 /* Save off link partner's EEE ability */
734                 switch (hw->phy.type) {
735                 case e1000_phy_82579:
736                         lpa = I82579_EEE_LP_ABILITY;
737                         pcs_status = I82579_EEE_PCS_STATUS;
738                         break;
739                 case e1000_phy_i217:
740                         lpa = I217_EEE_LP_ABILITY;
741                         pcs_status = I217_EEE_PCS_STATUS;
742                         break;
743                 default:
744                         ret_val = -E1000_ERR_PHY;
745                         goto release;
746                 }
747                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
748                                                     &dev_spec->eee_lp_ability);
749                 if (ret_val)
750                         goto release;
751
752                 /* Enable EEE only for speeds in which the link partner is
753                  * EEE capable.
754                  */
755                 if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
756                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
757
758                 if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
759                         e1e_rphy_locked(hw, MII_LPA, &data);
760                         if (data & LPA_100FULL)
761                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
762                         else
763                                 /* EEE is not supported in 100Half, so ignore
764                                  * partner's EEE in 100 ability if full-duplex
765                                  * is not advertised.
766                                  */
767                                 dev_spec->eee_lp_ability &=
768                                     ~I82579_EEE_100_SUPPORTED;
769                 }
770
771                 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
772                 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
773                 if (ret_val)
774                         goto release;
775         }
776
777         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
778 release:
779         hw->phy.ops.release(hw);
780
781         return ret_val;
782 }
783
784 /**
785  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
786  *  @hw:   pointer to the HW structure
787  *  @link: link up bool flag
788  *
789  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
790  *  preventing further DMA write requests.  Workaround the issue by disabling
791  *  the de-assertion of the clock request when in 1Gpbs mode.
792  **/
793 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
794 {
795         u32 fextnvm6 = er32(FEXTNVM6);
796         s32 ret_val = 0;
797
798         if (link && (er32(STATUS) & E1000_STATUS_SPEED_1000)) {
799                 u16 kmrn_reg;
800
801                 ret_val = hw->phy.ops.acquire(hw);
802                 if (ret_val)
803                         return ret_val;
804
805                 ret_val =
806                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
807                                                 &kmrn_reg);
808                 if (ret_val)
809                         goto release;
810
811                 ret_val =
812                     e1000e_write_kmrn_reg_locked(hw,
813                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
814                                                  kmrn_reg &
815                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
816                 if (ret_val)
817                         goto release;
818
819                 usleep_range(10, 20);
820
821                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
822
823                 ret_val =
824                     e1000e_write_kmrn_reg_locked(hw,
825                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
826                                                  kmrn_reg);
827 release:
828                 hw->phy.ops.release(hw);
829         } else {
830                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
831                 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
832         }
833
834         return ret_val;
835 }
836
837 /**
838  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
839  *  @hw: pointer to the HW structure
840  *
841  *  Checks to see of the link status of the hardware has changed.  If a
842  *  change in link status has been detected, then we read the PHY registers
843  *  to get the current speed/duplex if link exists.
844  **/
845 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
846 {
847         struct e1000_mac_info *mac = &hw->mac;
848         s32 ret_val;
849         bool link;
850         u16 phy_reg;
851
852         /* We only want to go out to the PHY registers to see if Auto-Neg
853          * has completed and/or if our link status has changed.  The
854          * get_link_status flag is set upon receiving a Link Status
855          * Change or Rx Sequence Error interrupt.
856          */
857         if (!mac->get_link_status)
858                 return 0;
859
860         /* First we want to see if the MII Status Register reports
861          * link.  If so, then we want to get the current speed/duplex
862          * of the PHY.
863          */
864         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
865         if (ret_val)
866                 return ret_val;
867
868         if (hw->mac.type == e1000_pchlan) {
869                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
870                 if (ret_val)
871                         return ret_val;
872         }
873
874         /* Work-around I218 hang issue */
875         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
876             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
877                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
878                 if (ret_val)
879                         return ret_val;
880         }
881
882         /* Clear link partner's EEE ability */
883         hw->dev_spec.ich8lan.eee_lp_ability = 0;
884
885         if (!link)
886                 return 0; /* No link detected */
887
888         mac->get_link_status = false;
889
890         switch (hw->mac.type) {
891         case e1000_pch2lan:
892                 ret_val = e1000_k1_workaround_lv(hw);
893                 if (ret_val)
894                         return ret_val;
895                 /* fall-thru */
896         case e1000_pchlan:
897                 if (hw->phy.type == e1000_phy_82578) {
898                         ret_val = e1000_link_stall_workaround_hv(hw);
899                         if (ret_val)
900                                 return ret_val;
901                 }
902
903                 /* Workaround for PCHx parts in half-duplex:
904                  * Set the number of preambles removed from the packet
905                  * when it is passed from the PHY to the MAC to prevent
906                  * the MAC from misinterpreting the packet type.
907                  */
908                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
909                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
910
911                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
912                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
913
914                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
915                 break;
916         default:
917                 break;
918         }
919
920         /* Check if there was DownShift, must be checked
921          * immediately after link-up
922          */
923         e1000e_check_downshift(hw);
924
925         /* Enable/Disable EEE after link up */
926         ret_val = e1000_set_eee_pchlan(hw);
927         if (ret_val)
928                 return ret_val;
929
930         /* If we are forcing speed/duplex, then we simply return since
931          * we have already determined whether we have link or not.
932          */
933         if (!mac->autoneg)
934                 return -E1000_ERR_CONFIG;
935
936         /* Auto-Neg is enabled.  Auto Speed Detection takes care
937          * of MAC speed/duplex configuration.  So we only need to
938          * configure Collision Distance in the MAC.
939          */
940         mac->ops.config_collision_dist(hw);
941
942         /* Configure Flow Control now that Auto-Neg has completed.
943          * First, we need to restore the desired flow control
944          * settings because we may have had to re-autoneg with a
945          * different link partner.
946          */
947         ret_val = e1000e_config_fc_after_link_up(hw);
948         if (ret_val)
949                 e_dbg("Error configuring flow control\n");
950
951         return ret_val;
952 }
953
954 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
955 {
956         struct e1000_hw *hw = &adapter->hw;
957         s32 rc;
958
959         rc = e1000_init_mac_params_ich8lan(hw);
960         if (rc)
961                 return rc;
962
963         rc = e1000_init_nvm_params_ich8lan(hw);
964         if (rc)
965                 return rc;
966
967         switch (hw->mac.type) {
968         case e1000_ich8lan:
969         case e1000_ich9lan:
970         case e1000_ich10lan:
971                 rc = e1000_init_phy_params_ich8lan(hw);
972                 break;
973         case e1000_pchlan:
974         case e1000_pch2lan:
975         case e1000_pch_lpt:
976                 rc = e1000_init_phy_params_pchlan(hw);
977                 break;
978         default:
979                 break;
980         }
981         if (rc)
982                 return rc;
983
984         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
985          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
986          */
987         if ((adapter->hw.phy.type == e1000_phy_ife) ||
988             ((adapter->hw.mac.type >= e1000_pch2lan) &&
989              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
990                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
991                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
992
993                 hw->mac.ops.blink_led = NULL;
994         }
995
996         if ((adapter->hw.mac.type == e1000_ich8lan) &&
997             (adapter->hw.phy.type != e1000_phy_ife))
998                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
999
1000         /* Enable workaround for 82579 w/ ME enabled */
1001         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1002             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1003                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1004
1005         /* Disable EEE by default until IEEE802.3az spec is finalized */
1006         if (adapter->flags2 & FLAG2_HAS_EEE)
1007                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1008
1009         return 0;
1010 }
1011
1012 static DEFINE_MUTEX(nvm_mutex);
1013
1014 /**
1015  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  Acquires the mutex for performing NVM operations.
1019  **/
1020 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1021 {
1022         mutex_lock(&nvm_mutex);
1023
1024         return 0;
1025 }
1026
1027 /**
1028  *  e1000_release_nvm_ich8lan - Release NVM mutex
1029  *  @hw: pointer to the HW structure
1030  *
1031  *  Releases the mutex used while performing NVM operations.
1032  **/
1033 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1034 {
1035         mutex_unlock(&nvm_mutex);
1036 }
1037
1038 /**
1039  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  Acquires the software control flag for performing PHY and select
1043  *  MAC CSR accesses.
1044  **/
1045 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1046 {
1047         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1048         s32 ret_val = 0;
1049
1050         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1051                              &hw->adapter->state)) {
1052                 e_dbg("contention for Phy access\n");
1053                 return -E1000_ERR_PHY;
1054         }
1055
1056         while (timeout) {
1057                 extcnf_ctrl = er32(EXTCNF_CTRL);
1058                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1059                         break;
1060
1061                 mdelay(1);
1062                 timeout--;
1063         }
1064
1065         if (!timeout) {
1066                 e_dbg("SW has already locked the resource.\n");
1067                 ret_val = -E1000_ERR_CONFIG;
1068                 goto out;
1069         }
1070
1071         timeout = SW_FLAG_TIMEOUT;
1072
1073         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1074         ew32(EXTCNF_CTRL, extcnf_ctrl);
1075
1076         while (timeout) {
1077                 extcnf_ctrl = er32(EXTCNF_CTRL);
1078                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1079                         break;
1080
1081                 mdelay(1);
1082                 timeout--;
1083         }
1084
1085         if (!timeout) {
1086                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1087                       er32(FWSM), extcnf_ctrl);
1088                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1089                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1090                 ret_val = -E1000_ERR_CONFIG;
1091                 goto out;
1092         }
1093
1094 out:
1095         if (ret_val)
1096                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1097
1098         return ret_val;
1099 }
1100
1101 /**
1102  *  e1000_release_swflag_ich8lan - Release software control flag
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Releases the software control flag for performing PHY and select
1106  *  MAC CSR accesses.
1107  **/
1108 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1109 {
1110         u32 extcnf_ctrl;
1111
1112         extcnf_ctrl = er32(EXTCNF_CTRL);
1113
1114         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1115                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1116                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1117         } else {
1118                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1119         }
1120
1121         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1122 }
1123
1124 /**
1125  *  e1000_check_mng_mode_ich8lan - Checks management mode
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  This checks if the adapter has any manageability enabled.
1129  *  This is a function pointer entry point only called by read/write
1130  *  routines for the PHY and NVM parts.
1131  **/
1132 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1133 {
1134         u32 fwsm;
1135
1136         fwsm = er32(FWSM);
1137         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1138                ((fwsm & E1000_FWSM_MODE_MASK) ==
1139                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1140 }
1141
1142 /**
1143  *  e1000_check_mng_mode_pchlan - Checks management mode
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  This checks if the adapter has iAMT enabled.
1147  *  This is a function pointer entry point only called by read/write
1148  *  routines for the PHY and NVM parts.
1149  **/
1150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1151 {
1152         u32 fwsm;
1153
1154         fwsm = er32(FWSM);
1155         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1156                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1157 }
1158
1159 /**
1160  *  e1000_rar_set_pch2lan - Set receive address register
1161  *  @hw: pointer to the HW structure
1162  *  @addr: pointer to the receive address
1163  *  @index: receive address array register
1164  *
1165  *  Sets the receive address array register at index to the address passed
1166  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1167  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1168  *  Use SHRA[0-3] in place of those reserved for ME.
1169  **/
1170 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1171 {
1172         u32 rar_low, rar_high;
1173
1174         /* HW expects these in little endian so we reverse the byte order
1175          * from network order (big endian) to little endian
1176          */
1177         rar_low = ((u32)addr[0] |
1178                    ((u32)addr[1] << 8) |
1179                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1180
1181         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1182
1183         /* If MAC address zero, no need to set the AV bit */
1184         if (rar_low || rar_high)
1185                 rar_high |= E1000_RAH_AV;
1186
1187         if (index == 0) {
1188                 ew32(RAL(index), rar_low);
1189                 e1e_flush();
1190                 ew32(RAH(index), rar_high);
1191                 e1e_flush();
1192                 return;
1193         }
1194
1195         if (index < hw->mac.rar_entry_count) {
1196                 s32 ret_val;
1197
1198                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1199                 if (ret_val)
1200                         goto out;
1201
1202                 ew32(SHRAL(index - 1), rar_low);
1203                 e1e_flush();
1204                 ew32(SHRAH(index - 1), rar_high);
1205                 e1e_flush();
1206
1207                 e1000_release_swflag_ich8lan(hw);
1208
1209                 /* verify the register updates */
1210                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1211                     (er32(SHRAH(index - 1)) == rar_high))
1212                         return;
1213
1214                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1215                       (index - 1), er32(FWSM));
1216         }
1217
1218 out:
1219         e_dbg("Failed to write receive address at index %d\n", index);
1220 }
1221
1222 /**
1223  *  e1000_rar_set_pch_lpt - Set receive address registers
1224  *  @hw: pointer to the HW structure
1225  *  @addr: pointer to the receive address
1226  *  @index: receive address array register
1227  *
1228  *  Sets the receive address register array at index to the address passed
1229  *  in by addr. For LPT, RAR[0] is the base address register that is to
1230  *  contain the MAC address. SHRA[0-10] are the shared receive address
1231  *  registers that are shared between the Host and manageability engine (ME).
1232  **/
1233 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1234 {
1235         u32 rar_low, rar_high;
1236         u32 wlock_mac;
1237
1238         /* HW expects these in little endian so we reverse the byte order
1239          * from network order (big endian) to little endian
1240          */
1241         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1242                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1243
1244         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1245
1246         /* If MAC address zero, no need to set the AV bit */
1247         if (rar_low || rar_high)
1248                 rar_high |= E1000_RAH_AV;
1249
1250         if (index == 0) {
1251                 ew32(RAL(index), rar_low);
1252                 e1e_flush();
1253                 ew32(RAH(index), rar_high);
1254                 e1e_flush();
1255                 return;
1256         }
1257
1258         /* The manageability engine (ME) can lock certain SHRAR registers that
1259          * it is using - those registers are unavailable for use.
1260          */
1261         if (index < hw->mac.rar_entry_count) {
1262                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1263                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1264
1265                 /* Check if all SHRAR registers are locked */
1266                 if (wlock_mac == 1)
1267                         goto out;
1268
1269                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1270                         s32 ret_val;
1271
1272                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1273
1274                         if (ret_val)
1275                                 goto out;
1276
1277                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1278                         e1e_flush();
1279                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1280                         e1e_flush();
1281
1282                         e1000_release_swflag_ich8lan(hw);
1283
1284                         /* verify the register updates */
1285                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1286                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1287                                 return;
1288                 }
1289         }
1290
1291 out:
1292         e_dbg("Failed to write receive address at index %d\n", index);
1293 }
1294
1295 /**
1296  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Checks if firmware is blocking the reset of the PHY.
1300  *  This is a function pointer entry point only called by
1301  *  reset routines.
1302  **/
1303 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1304 {
1305         u32 fwsm;
1306
1307         fwsm = er32(FWSM);
1308
1309         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1310 }
1311
1312 /**
1313  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Assumes semaphore already acquired.
1317  *
1318  **/
1319 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1320 {
1321         u16 phy_data;
1322         u32 strap = er32(STRAP);
1323         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1324             E1000_STRAP_SMT_FREQ_SHIFT;
1325         s32 ret_val;
1326
1327         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1328
1329         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1330         if (ret_val)
1331                 return ret_val;
1332
1333         phy_data &= ~HV_SMB_ADDR_MASK;
1334         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1335         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1336
1337         if (hw->phy.type == e1000_phy_i217) {
1338                 /* Restore SMBus frequency */
1339                 if (freq--) {
1340                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1341                         phy_data |= (freq & (1 << 0)) <<
1342                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1343                         phy_data |= (freq & (1 << 1)) <<
1344                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1345                 } else {
1346                         e_dbg("Unsupported SMB frequency in PHY\n");
1347                 }
1348         }
1349
1350         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1351 }
1352
1353 /**
1354  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1355  *  @hw:   pointer to the HW structure
1356  *
1357  *  SW should configure the LCD from the NVM extended configuration region
1358  *  as a workaround for certain parts.
1359  **/
1360 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1361 {
1362         struct e1000_phy_info *phy = &hw->phy;
1363         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1364         s32 ret_val = 0;
1365         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1366
1367         /* Initialize the PHY from the NVM on ICH platforms.  This
1368          * is needed due to an issue where the NVM configuration is
1369          * not properly autoloaded after power transitions.
1370          * Therefore, after each PHY reset, we will load the
1371          * configuration data out of the NVM manually.
1372          */
1373         switch (hw->mac.type) {
1374         case e1000_ich8lan:
1375                 if (phy->type != e1000_phy_igp_3)
1376                         return ret_val;
1377
1378                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1379                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1380                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1381                         break;
1382                 }
1383                 /* Fall-thru */
1384         case e1000_pchlan:
1385         case e1000_pch2lan:
1386         case e1000_pch_lpt:
1387                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1388                 break;
1389         default:
1390                 return ret_val;
1391         }
1392
1393         ret_val = hw->phy.ops.acquire(hw);
1394         if (ret_val)
1395                 return ret_val;
1396
1397         data = er32(FEXTNVM);
1398         if (!(data & sw_cfg_mask))
1399                 goto release;
1400
1401         /* Make sure HW does not configure LCD from PHY
1402          * extended configuration before SW configuration
1403          */
1404         data = er32(EXTCNF_CTRL);
1405         if ((hw->mac.type < e1000_pch2lan) &&
1406             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1407                 goto release;
1408
1409         cnf_size = er32(EXTCNF_SIZE);
1410         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1411         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1412         if (!cnf_size)
1413                 goto release;
1414
1415         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1416         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1417
1418         if (((hw->mac.type == e1000_pchlan) &&
1419              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1420             (hw->mac.type > e1000_pchlan)) {
1421                 /* HW configures the SMBus address and LEDs when the
1422                  * OEM and LCD Write Enable bits are set in the NVM.
1423                  * When both NVM bits are cleared, SW will configure
1424                  * them instead.
1425                  */
1426                 ret_val = e1000_write_smbus_addr(hw);
1427                 if (ret_val)
1428                         goto release;
1429
1430                 data = er32(LEDCTL);
1431                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1432                                                         (u16)data);
1433                 if (ret_val)
1434                         goto release;
1435         }
1436
1437         /* Configure LCD from extended configuration region. */
1438
1439         /* cnf_base_addr is in DWORD */
1440         word_addr = (u16)(cnf_base_addr << 1);
1441
1442         for (i = 0; i < cnf_size; i++) {
1443                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1444                                          &reg_data);
1445                 if (ret_val)
1446                         goto release;
1447
1448                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1449                                          1, &reg_addr);
1450                 if (ret_val)
1451                         goto release;
1452
1453                 /* Save off the PHY page for future writes. */
1454                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1455                         phy_page = reg_data;
1456                         continue;
1457                 }
1458
1459                 reg_addr &= PHY_REG_MASK;
1460                 reg_addr |= phy_page;
1461
1462                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1463                 if (ret_val)
1464                         goto release;
1465         }
1466
1467 release:
1468         hw->phy.ops.release(hw);
1469         return ret_val;
1470 }
1471
1472 /**
1473  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1474  *  @hw:   pointer to the HW structure
1475  *  @link: link up bool flag
1476  *
1477  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1478  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1479  *  If link is down, the function will restore the default K1 setting located
1480  *  in the NVM.
1481  **/
1482 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1483 {
1484         s32 ret_val = 0;
1485         u16 status_reg = 0;
1486         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1487
1488         if (hw->mac.type != e1000_pchlan)
1489                 return 0;
1490
1491         /* Wrap the whole flow with the sw flag */
1492         ret_val = hw->phy.ops.acquire(hw);
1493         if (ret_val)
1494                 return ret_val;
1495
1496         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1497         if (link) {
1498                 if (hw->phy.type == e1000_phy_82578) {
1499                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1500                                                   &status_reg);
1501                         if (ret_val)
1502                                 goto release;
1503
1504                         status_reg &= BM_CS_STATUS_LINK_UP |
1505                                       BM_CS_STATUS_RESOLVED |
1506                                       BM_CS_STATUS_SPEED_MASK;
1507
1508                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1509                                            BM_CS_STATUS_RESOLVED |
1510                                            BM_CS_STATUS_SPEED_1000))
1511                                 k1_enable = false;
1512                 }
1513
1514                 if (hw->phy.type == e1000_phy_82577) {
1515                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1516                         if (ret_val)
1517                                 goto release;
1518
1519                         status_reg &= HV_M_STATUS_LINK_UP |
1520                                       HV_M_STATUS_AUTONEG_COMPLETE |
1521                                       HV_M_STATUS_SPEED_MASK;
1522
1523                         if (status_reg == (HV_M_STATUS_LINK_UP |
1524                                            HV_M_STATUS_AUTONEG_COMPLETE |
1525                                            HV_M_STATUS_SPEED_1000))
1526                                 k1_enable = false;
1527                 }
1528
1529                 /* Link stall fix for link up */
1530                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1531                 if (ret_val)
1532                         goto release;
1533
1534         } else {
1535                 /* Link stall fix for link down */
1536                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1537                 if (ret_val)
1538                         goto release;
1539         }
1540
1541         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1542
1543 release:
1544         hw->phy.ops.release(hw);
1545
1546         return ret_val;
1547 }
1548
1549 /**
1550  *  e1000_configure_k1_ich8lan - Configure K1 power state
1551  *  @hw: pointer to the HW structure
1552  *  @enable: K1 state to configure
1553  *
1554  *  Configure the K1 power state based on the provided parameter.
1555  *  Assumes semaphore already acquired.
1556  *
1557  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1558  **/
1559 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1560 {
1561         s32 ret_val;
1562         u32 ctrl_reg = 0;
1563         u32 ctrl_ext = 0;
1564         u32 reg = 0;
1565         u16 kmrn_reg = 0;
1566
1567         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1568                                               &kmrn_reg);
1569         if (ret_val)
1570                 return ret_val;
1571
1572         if (k1_enable)
1573                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1574         else
1575                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1576
1577         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1578                                                kmrn_reg);
1579         if (ret_val)
1580                 return ret_val;
1581
1582         udelay(20);
1583         ctrl_ext = er32(CTRL_EXT);
1584         ctrl_reg = er32(CTRL);
1585
1586         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1587         reg |= E1000_CTRL_FRCSPD;
1588         ew32(CTRL, reg);
1589
1590         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1591         e1e_flush();
1592         udelay(20);
1593         ew32(CTRL, ctrl_reg);
1594         ew32(CTRL_EXT, ctrl_ext);
1595         e1e_flush();
1596         udelay(20);
1597
1598         return 0;
1599 }
1600
1601 /**
1602  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1603  *  @hw:       pointer to the HW structure
1604  *  @d0_state: boolean if entering d0 or d3 device state
1605  *
1606  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1607  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1608  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1609  **/
1610 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1611 {
1612         s32 ret_val = 0;
1613         u32 mac_reg;
1614         u16 oem_reg;
1615
1616         if (hw->mac.type < e1000_pchlan)
1617                 return ret_val;
1618
1619         ret_val = hw->phy.ops.acquire(hw);
1620         if (ret_val)
1621                 return ret_val;
1622
1623         if (hw->mac.type == e1000_pchlan) {
1624                 mac_reg = er32(EXTCNF_CTRL);
1625                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1626                         goto release;
1627         }
1628
1629         mac_reg = er32(FEXTNVM);
1630         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1631                 goto release;
1632
1633         mac_reg = er32(PHY_CTRL);
1634
1635         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1636         if (ret_val)
1637                 goto release;
1638
1639         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1640
1641         if (d0_state) {
1642                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1643                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1644
1645                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1646                         oem_reg |= HV_OEM_BITS_LPLU;
1647         } else {
1648                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1649                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1650                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1651
1652                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1653                                E1000_PHY_CTRL_NOND0A_LPLU))
1654                         oem_reg |= HV_OEM_BITS_LPLU;
1655         }
1656
1657         /* Set Restart auto-neg to activate the bits */
1658         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1659             !hw->phy.ops.check_reset_block(hw))
1660                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1661
1662         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1663
1664 release:
1665         hw->phy.ops.release(hw);
1666
1667         return ret_val;
1668 }
1669
1670
1671 /**
1672  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1673  *  @hw:   pointer to the HW structure
1674  **/
1675 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1676 {
1677         s32 ret_val;
1678         u16 data;
1679
1680         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1681         if (ret_val)
1682                 return ret_val;
1683
1684         data |= HV_KMRN_MDIO_SLOW;
1685
1686         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1687
1688         return ret_val;
1689 }
1690
1691 /**
1692  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1693  *  done after every PHY reset.
1694  **/
1695 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1696 {
1697         s32 ret_val = 0;
1698         u16 phy_data;
1699
1700         if (hw->mac.type != e1000_pchlan)
1701                 return 0;
1702
1703         /* Set MDIO slow mode before any other MDIO access */
1704         if (hw->phy.type == e1000_phy_82577) {
1705                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1706                 if (ret_val)
1707                         return ret_val;
1708         }
1709
1710         if (((hw->phy.type == e1000_phy_82577) &&
1711              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1712             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1713                 /* Disable generation of early preamble */
1714                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1715                 if (ret_val)
1716                         return ret_val;
1717
1718                 /* Preamble tuning for SSC */
1719                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1720                 if (ret_val)
1721                         return ret_val;
1722         }
1723
1724         if (hw->phy.type == e1000_phy_82578) {
1725                 /* Return registers to default by doing a soft reset then
1726                  * writing 0x3140 to the control register.
1727                  */
1728                 if (hw->phy.revision < 2) {
1729                         e1000e_phy_sw_reset(hw);
1730                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1731                 }
1732         }
1733
1734         /* Select page 0 */
1735         ret_val = hw->phy.ops.acquire(hw);
1736         if (ret_val)
1737                 return ret_val;
1738
1739         hw->phy.addr = 1;
1740         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1741         hw->phy.ops.release(hw);
1742         if (ret_val)
1743                 return ret_val;
1744
1745         /* Configure the K1 Si workaround during phy reset assuming there is
1746          * link so that it disables K1 if link is in 1Gbps.
1747          */
1748         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1749         if (ret_val)
1750                 return ret_val;
1751
1752         /* Workaround for link disconnects on a busy hub in half duplex */
1753         ret_val = hw->phy.ops.acquire(hw);
1754         if (ret_val)
1755                 return ret_val;
1756         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1757         if (ret_val)
1758                 goto release;
1759         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1760         if (ret_val)
1761                 goto release;
1762
1763         /* set MSE higher to enable link to stay up when noise is high */
1764         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1765 release:
1766         hw->phy.ops.release(hw);
1767
1768         return ret_val;
1769 }
1770
1771 /**
1772  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1773  *  @hw:   pointer to the HW structure
1774  **/
1775 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1776 {
1777         u32 mac_reg;
1778         u16 i, phy_reg = 0;
1779         s32 ret_val;
1780
1781         ret_val = hw->phy.ops.acquire(hw);
1782         if (ret_val)
1783                 return;
1784         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1785         if (ret_val)
1786                 goto release;
1787
1788         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1789         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1790                 mac_reg = er32(RAL(i));
1791                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1792                                            (u16)(mac_reg & 0xFFFF));
1793                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1794                                            (u16)((mac_reg >> 16) & 0xFFFF));
1795
1796                 mac_reg = er32(RAH(i));
1797                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1798                                            (u16)(mac_reg & 0xFFFF));
1799                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1800                                            (u16)((mac_reg & E1000_RAH_AV)
1801                                                  >> 16));
1802         }
1803
1804         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1805
1806 release:
1807         hw->phy.ops.release(hw);
1808 }
1809
1810 /**
1811  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1812  *  with 82579 PHY
1813  *  @hw: pointer to the HW structure
1814  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1815  **/
1816 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1817 {
1818         s32 ret_val = 0;
1819         u16 phy_reg, data;
1820         u32 mac_reg;
1821         u16 i;
1822
1823         if (hw->mac.type < e1000_pch2lan)
1824                 return 0;
1825
1826         /* disable Rx path while enabling/disabling workaround */
1827         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1828         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1829         if (ret_val)
1830                 return ret_val;
1831
1832         if (enable) {
1833                 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1834                  * SHRAL/H) and initial CRC values to the MAC
1835                  */
1836                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1837                         u8 mac_addr[ETH_ALEN] = {0};
1838                         u32 addr_high, addr_low;
1839
1840                         addr_high = er32(RAH(i));
1841                         if (!(addr_high & E1000_RAH_AV))
1842                                 continue;
1843                         addr_low = er32(RAL(i));
1844                         mac_addr[0] = (addr_low & 0xFF);
1845                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1846                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1847                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1848                         mac_addr[4] = (addr_high & 0xFF);
1849                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1850
1851                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1852                 }
1853
1854                 /* Write Rx addresses to the PHY */
1855                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1856
1857                 /* Enable jumbo frame workaround in the MAC */
1858                 mac_reg = er32(FFLT_DBG);
1859                 mac_reg &= ~(1 << 14);
1860                 mac_reg |= (7 << 15);
1861                 ew32(FFLT_DBG, mac_reg);
1862
1863                 mac_reg = er32(RCTL);
1864                 mac_reg |= E1000_RCTL_SECRC;
1865                 ew32(RCTL, mac_reg);
1866
1867                 ret_val = e1000e_read_kmrn_reg(hw,
1868                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1869                                                 &data);
1870                 if (ret_val)
1871                         return ret_val;
1872                 ret_val = e1000e_write_kmrn_reg(hw,
1873                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1874                                                 data | (1 << 0));
1875                 if (ret_val)
1876                         return ret_val;
1877                 ret_val = e1000e_read_kmrn_reg(hw,
1878                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1879                                                 &data);
1880                 if (ret_val)
1881                         return ret_val;
1882                 data &= ~(0xF << 8);
1883                 data |= (0xB << 8);
1884                 ret_val = e1000e_write_kmrn_reg(hw,
1885                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1886                                                 data);
1887                 if (ret_val)
1888                         return ret_val;
1889
1890                 /* Enable jumbo frame workaround in the PHY */
1891                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1892                 data &= ~(0x7F << 5);
1893                 data |= (0x37 << 5);
1894                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1895                 if (ret_val)
1896                         return ret_val;
1897                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1898                 data &= ~(1 << 13);
1899                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1900                 if (ret_val)
1901                         return ret_val;
1902                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1903                 data &= ~(0x3FF << 2);
1904                 data |= (0x1A << 2);
1905                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1906                 if (ret_val)
1907                         return ret_val;
1908                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1909                 if (ret_val)
1910                         return ret_val;
1911                 e1e_rphy(hw, HV_PM_CTRL, &data);
1912                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1913                 if (ret_val)
1914                         return ret_val;
1915         } else {
1916                 /* Write MAC register values back to h/w defaults */
1917                 mac_reg = er32(FFLT_DBG);
1918                 mac_reg &= ~(0xF << 14);
1919                 ew32(FFLT_DBG, mac_reg);
1920
1921                 mac_reg = er32(RCTL);
1922                 mac_reg &= ~E1000_RCTL_SECRC;
1923                 ew32(RCTL, mac_reg);
1924
1925                 ret_val = e1000e_read_kmrn_reg(hw,
1926                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1927                                                 &data);
1928                 if (ret_val)
1929                         return ret_val;
1930                 ret_val = e1000e_write_kmrn_reg(hw,
1931                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1932                                                 data & ~(1 << 0));
1933                 if (ret_val)
1934                         return ret_val;
1935                 ret_val = e1000e_read_kmrn_reg(hw,
1936                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1937                                                 &data);
1938                 if (ret_val)
1939                         return ret_val;
1940                 data &= ~(0xF << 8);
1941                 data |= (0xB << 8);
1942                 ret_val = e1000e_write_kmrn_reg(hw,
1943                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1944                                                 data);
1945                 if (ret_val)
1946                         return ret_val;
1947
1948                 /* Write PHY register values back to h/w defaults */
1949                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1950                 data &= ~(0x7F << 5);
1951                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1952                 if (ret_val)
1953                         return ret_val;
1954                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1955                 data |= (1 << 13);
1956                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1957                 if (ret_val)
1958                         return ret_val;
1959                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1960                 data &= ~(0x3FF << 2);
1961                 data |= (0x8 << 2);
1962                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1963                 if (ret_val)
1964                         return ret_val;
1965                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1966                 if (ret_val)
1967                         return ret_val;
1968                 e1e_rphy(hw, HV_PM_CTRL, &data);
1969                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1970                 if (ret_val)
1971                         return ret_val;
1972         }
1973
1974         /* re-enable Rx path after enabling/disabling workaround */
1975         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1976 }
1977
1978 /**
1979  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1980  *  done after every PHY reset.
1981  **/
1982 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1983 {
1984         s32 ret_val = 0;
1985
1986         if (hw->mac.type != e1000_pch2lan)
1987                 return 0;
1988
1989         /* Set MDIO slow mode before any other MDIO access */
1990         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1991         if (ret_val)
1992                 return ret_val;
1993
1994         ret_val = hw->phy.ops.acquire(hw);
1995         if (ret_val)
1996                 return ret_val;
1997         /* set MSE higher to enable link to stay up when noise is high */
1998         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
1999         if (ret_val)
2000                 goto release;
2001         /* drop link after 5 times MSE threshold was reached */
2002         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2003 release:
2004         hw->phy.ops.release(hw);
2005
2006         return ret_val;
2007 }
2008
2009 /**
2010  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2011  *  @hw:   pointer to the HW structure
2012  *
2013  *  Workaround to set the K1 beacon duration for 82579 parts
2014  **/
2015 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2016 {
2017         s32 ret_val = 0;
2018         u16 status_reg = 0;
2019         u32 mac_reg;
2020         u16 phy_reg;
2021
2022         if (hw->mac.type != e1000_pch2lan)
2023                 return 0;
2024
2025         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2026         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2027         if (ret_val)
2028                 return ret_val;
2029
2030         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2031             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2032                 mac_reg = er32(FEXTNVM4);
2033                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2034
2035                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2036                 if (ret_val)
2037                         return ret_val;
2038
2039                 if (status_reg & HV_M_STATUS_SPEED_1000) {
2040                         u16 pm_phy_reg;
2041
2042                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2043                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2044                         /* LV 1G Packet drop issue wa  */
2045                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2046                         if (ret_val)
2047                                 return ret_val;
2048                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2049                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2050                         if (ret_val)
2051                                 return ret_val;
2052                 } else {
2053                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2054                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2055                 }
2056                 ew32(FEXTNVM4, mac_reg);
2057                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2058         }
2059
2060         return ret_val;
2061 }
2062
2063 /**
2064  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2065  *  @hw:   pointer to the HW structure
2066  *  @gate: boolean set to true to gate, false to ungate
2067  *
2068  *  Gate/ungate the automatic PHY configuration via hardware; perform
2069  *  the configuration via software instead.
2070  **/
2071 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2072 {
2073         u32 extcnf_ctrl;
2074
2075         if (hw->mac.type < e1000_pch2lan)
2076                 return;
2077
2078         extcnf_ctrl = er32(EXTCNF_CTRL);
2079
2080         if (gate)
2081                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2082         else
2083                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2084
2085         ew32(EXTCNF_CTRL, extcnf_ctrl);
2086 }
2087
2088 /**
2089  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2090  *  @hw: pointer to the HW structure
2091  *
2092  *  Check the appropriate indication the MAC has finished configuring the
2093  *  PHY after a software reset.
2094  **/
2095 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2096 {
2097         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2098
2099         /* Wait for basic configuration completes before proceeding */
2100         do {
2101                 data = er32(STATUS);
2102                 data &= E1000_STATUS_LAN_INIT_DONE;
2103                 udelay(100);
2104         } while ((!data) && --loop);
2105
2106         /* If basic configuration is incomplete before the above loop
2107          * count reaches 0, loading the configuration from NVM will
2108          * leave the PHY in a bad state possibly resulting in no link.
2109          */
2110         if (loop == 0)
2111                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2112
2113         /* Clear the Init Done bit for the next init event */
2114         data = er32(STATUS);
2115         data &= ~E1000_STATUS_LAN_INIT_DONE;
2116         ew32(STATUS, data);
2117 }
2118
2119 /**
2120  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2121  *  @hw: pointer to the HW structure
2122  **/
2123 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2124 {
2125         s32 ret_val = 0;
2126         u16 reg;
2127
2128         if (hw->phy.ops.check_reset_block(hw))
2129                 return 0;
2130
2131         /* Allow time for h/w to get to quiescent state after reset */
2132         usleep_range(10000, 20000);
2133
2134         /* Perform any necessary post-reset workarounds */
2135         switch (hw->mac.type) {
2136         case e1000_pchlan:
2137                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2138                 if (ret_val)
2139                         return ret_val;
2140                 break;
2141         case e1000_pch2lan:
2142                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2143                 if (ret_val)
2144                         return ret_val;
2145                 break;
2146         default:
2147                 break;
2148         }
2149
2150         /* Clear the host wakeup bit after lcd reset */
2151         if (hw->mac.type >= e1000_pchlan) {
2152                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2153                 reg &= ~BM_WUC_HOST_WU_BIT;
2154                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2155         }
2156
2157         /* Configure the LCD with the extended configuration region in NVM */
2158         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2159         if (ret_val)
2160                 return ret_val;
2161
2162         /* Configure the LCD with the OEM bits in NVM */
2163         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2164
2165         if (hw->mac.type == e1000_pch2lan) {
2166                 /* Ungate automatic PHY configuration on non-managed 82579 */
2167                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2168                         usleep_range(10000, 20000);
2169                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2170                 }
2171
2172                 /* Set EEE LPI Update Timer to 200usec */
2173                 ret_val = hw->phy.ops.acquire(hw);
2174                 if (ret_val)
2175                         return ret_val;
2176                 ret_val = e1000_write_emi_reg_locked(hw,
2177                                                      I82579_LPI_UPDATE_TIMER,
2178                                                      0x1387);
2179                 hw->phy.ops.release(hw);
2180         }
2181
2182         return ret_val;
2183 }
2184
2185 /**
2186  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2187  *  @hw: pointer to the HW structure
2188  *
2189  *  Resets the PHY
2190  *  This is a function pointer entry point called by drivers
2191  *  or other shared routines.
2192  **/
2193 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2194 {
2195         s32 ret_val = 0;
2196
2197         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2198         if ((hw->mac.type == e1000_pch2lan) &&
2199             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2200                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2201
2202         ret_val = e1000e_phy_hw_reset_generic(hw);
2203         if (ret_val)
2204                 return ret_val;
2205
2206         return e1000_post_phy_reset_ich8lan(hw);
2207 }
2208
2209 /**
2210  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2211  *  @hw: pointer to the HW structure
2212  *  @active: true to enable LPLU, false to disable
2213  *
2214  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2215  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2216  *  the phy speed. This function will manually set the LPLU bit and restart
2217  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2218  *  since it configures the same bit.
2219  **/
2220 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2221 {
2222         s32 ret_val;
2223         u16 oem_reg;
2224
2225         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2226         if (ret_val)
2227                 return ret_val;
2228
2229         if (active)
2230                 oem_reg |= HV_OEM_BITS_LPLU;
2231         else
2232                 oem_reg &= ~HV_OEM_BITS_LPLU;
2233
2234         if (!hw->phy.ops.check_reset_block(hw))
2235                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2236
2237         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2238 }
2239
2240 /**
2241  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2242  *  @hw: pointer to the HW structure
2243  *  @active: true to enable LPLU, false to disable
2244  *
2245  *  Sets the LPLU D0 state according to the active flag.  When
2246  *  activating LPLU this function also disables smart speed
2247  *  and vice versa.  LPLU will not be activated unless the
2248  *  device autonegotiation advertisement meets standards of
2249  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2250  *  This is a function pointer entry point only called by
2251  *  PHY setup routines.
2252  **/
2253 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2254 {
2255         struct e1000_phy_info *phy = &hw->phy;
2256         u32 phy_ctrl;
2257         s32 ret_val = 0;
2258         u16 data;
2259
2260         if (phy->type == e1000_phy_ife)
2261                 return 0;
2262
2263         phy_ctrl = er32(PHY_CTRL);
2264
2265         if (active) {
2266                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2267                 ew32(PHY_CTRL, phy_ctrl);
2268
2269                 if (phy->type != e1000_phy_igp_3)
2270                         return 0;
2271
2272                 /* Call gig speed drop workaround on LPLU before accessing
2273                  * any PHY registers
2274                  */
2275                 if (hw->mac.type == e1000_ich8lan)
2276                         e1000e_gig_downshift_workaround_ich8lan(hw);
2277
2278                 /* When LPLU is enabled, we should disable SmartSpeed */
2279                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2280                 if (ret_val)
2281                         return ret_val;
2282                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2283                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2284                 if (ret_val)
2285                         return ret_val;
2286         } else {
2287                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2288                 ew32(PHY_CTRL, phy_ctrl);
2289
2290                 if (phy->type != e1000_phy_igp_3)
2291                         return 0;
2292
2293                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2294                  * during Dx states where the power conservation is most
2295                  * important.  During driver activity we should enable
2296                  * SmartSpeed, so performance is maintained.
2297                  */
2298                 if (phy->smart_speed == e1000_smart_speed_on) {
2299                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2300                                            &data);
2301                         if (ret_val)
2302                                 return ret_val;
2303
2304                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2305                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2306                                            data);
2307                         if (ret_val)
2308                                 return ret_val;
2309                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2310                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2311                                            &data);
2312                         if (ret_val)
2313                                 return ret_val;
2314
2315                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2316                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2317                                            data);
2318                         if (ret_val)
2319                                 return ret_val;
2320                 }
2321         }
2322
2323         return 0;
2324 }
2325
2326 /**
2327  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2328  *  @hw: pointer to the HW structure
2329  *  @active: true to enable LPLU, false to disable
2330  *
2331  *  Sets the LPLU D3 state according to the active flag.  When
2332  *  activating LPLU this function also disables smart speed
2333  *  and vice versa.  LPLU will not be activated unless the
2334  *  device autonegotiation advertisement meets standards of
2335  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2336  *  This is a function pointer entry point only called by
2337  *  PHY setup routines.
2338  **/
2339 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2340 {
2341         struct e1000_phy_info *phy = &hw->phy;
2342         u32 phy_ctrl;
2343         s32 ret_val = 0;
2344         u16 data;
2345
2346         phy_ctrl = er32(PHY_CTRL);
2347
2348         if (!active) {
2349                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2350                 ew32(PHY_CTRL, phy_ctrl);
2351
2352                 if (phy->type != e1000_phy_igp_3)
2353                         return 0;
2354
2355                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2356                  * during Dx states where the power conservation is most
2357                  * important.  During driver activity we should enable
2358                  * SmartSpeed, so performance is maintained.
2359                  */
2360                 if (phy->smart_speed == e1000_smart_speed_on) {
2361                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2362                                            &data);
2363                         if (ret_val)
2364                                 return ret_val;
2365
2366                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2367                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2368                                            data);
2369                         if (ret_val)
2370                                 return ret_val;
2371                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2372                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2373                                            &data);
2374                         if (ret_val)
2375                                 return ret_val;
2376
2377                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2378                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2379                                            data);
2380                         if (ret_val)
2381                                 return ret_val;
2382                 }
2383         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2384                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2385                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2386                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2387                 ew32(PHY_CTRL, phy_ctrl);
2388
2389                 if (phy->type != e1000_phy_igp_3)
2390                         return 0;
2391
2392                 /* Call gig speed drop workaround on LPLU before accessing
2393                  * any PHY registers
2394                  */
2395                 if (hw->mac.type == e1000_ich8lan)
2396                         e1000e_gig_downshift_workaround_ich8lan(hw);
2397
2398                 /* When LPLU is enabled, we should disable SmartSpeed */
2399                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2400                 if (ret_val)
2401                         return ret_val;
2402
2403                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2404                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2405         }
2406
2407         return ret_val;
2408 }
2409
2410 /**
2411  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2412  *  @hw: pointer to the HW structure
2413  *  @bank:  pointer to the variable that returns the active bank
2414  *
2415  *  Reads signature byte from the NVM using the flash access registers.
2416  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2417  **/
2418 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2419 {
2420         u32 eecd;
2421         struct e1000_nvm_info *nvm = &hw->nvm;
2422         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2423         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2424         u8 sig_byte = 0;
2425         s32 ret_val;
2426
2427         switch (hw->mac.type) {
2428         case e1000_ich8lan:
2429         case e1000_ich9lan:
2430                 eecd = er32(EECD);
2431                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2432                     E1000_EECD_SEC1VAL_VALID_MASK) {
2433                         if (eecd & E1000_EECD_SEC1VAL)
2434                                 *bank = 1;
2435                         else
2436                                 *bank = 0;
2437
2438                         return 0;
2439                 }
2440                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2441                 /* fall-thru */
2442         default:
2443                 /* set bank to 0 in case flash read fails */
2444                 *bank = 0;
2445
2446                 /* Check bank 0 */
2447                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2448                                                         &sig_byte);
2449                 if (ret_val)
2450                         return ret_val;
2451                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2452                     E1000_ICH_NVM_SIG_VALUE) {
2453                         *bank = 0;
2454                         return 0;
2455                 }
2456
2457                 /* Check bank 1 */
2458                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2459                                                         bank1_offset,
2460                                                         &sig_byte);
2461                 if (ret_val)
2462                         return ret_val;
2463                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2464                     E1000_ICH_NVM_SIG_VALUE) {
2465                         *bank = 1;
2466                         return 0;
2467                 }
2468
2469                 e_dbg("ERROR: No valid NVM bank present\n");
2470                 return -E1000_ERR_NVM;
2471         }
2472 }
2473
2474 /**
2475  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2476  *  @hw: pointer to the HW structure
2477  *  @offset: The offset (in bytes) of the word(s) to read.
2478  *  @words: Size of data to read in words
2479  *  @data: Pointer to the word(s) to read at offset.
2480  *
2481  *  Reads a word(s) from the NVM using the flash access registers.
2482  **/
2483 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2484                                   u16 *data)
2485 {
2486         struct e1000_nvm_info *nvm = &hw->nvm;
2487         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2488         u32 act_offset;
2489         s32 ret_val = 0;
2490         u32 bank = 0;
2491         u16 i, word;
2492
2493         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2494             (words == 0)) {
2495                 e_dbg("nvm parameter(s) out of bounds\n");
2496                 ret_val = -E1000_ERR_NVM;
2497                 goto out;
2498         }
2499
2500         nvm->ops.acquire(hw);
2501
2502         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2503         if (ret_val) {
2504                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2505                 bank = 0;
2506         }
2507
2508         act_offset = (bank) ? nvm->flash_bank_size : 0;
2509         act_offset += offset;
2510
2511         ret_val = 0;
2512         for (i = 0; i < words; i++) {
2513                 if (dev_spec->shadow_ram[offset+i].modified) {
2514                         data[i] = dev_spec->shadow_ram[offset+i].value;
2515                 } else {
2516                         ret_val = e1000_read_flash_word_ich8lan(hw,
2517                                                                 act_offset + i,
2518                                                                 &word);
2519                         if (ret_val)
2520                                 break;
2521                         data[i] = word;
2522                 }
2523         }
2524
2525         nvm->ops.release(hw);
2526
2527 out:
2528         if (ret_val)
2529                 e_dbg("NVM read error: %d\n", ret_val);
2530
2531         return ret_val;
2532 }
2533
2534 /**
2535  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2536  *  @hw: pointer to the HW structure
2537  *
2538  *  This function does initial flash setup so that a new read/write/erase cycle
2539  *  can be started.
2540  **/
2541 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2542 {
2543         union ich8_hws_flash_status hsfsts;
2544         s32 ret_val = -E1000_ERR_NVM;
2545
2546         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2547
2548         /* Check if the flash descriptor is valid */
2549         if (!hsfsts.hsf_status.fldesvalid) {
2550                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2551                 return -E1000_ERR_NVM;
2552         }
2553
2554         /* Clear FCERR and DAEL in hw status by writing 1 */
2555         hsfsts.hsf_status.flcerr = 1;
2556         hsfsts.hsf_status.dael = 1;
2557
2558         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2559
2560         /* Either we should have a hardware SPI cycle in progress
2561          * bit to check against, in order to start a new cycle or
2562          * FDONE bit should be changed in the hardware so that it
2563          * is 1 after hardware reset, which can then be used as an
2564          * indication whether a cycle is in progress or has been
2565          * completed.
2566          */
2567
2568         if (!hsfsts.hsf_status.flcinprog) {
2569                 /* There is no cycle running at present,
2570                  * so we can start a cycle.
2571                  * Begin by setting Flash Cycle Done.
2572                  */
2573                 hsfsts.hsf_status.flcdone = 1;
2574                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2575                 ret_val = 0;
2576         } else {
2577                 s32 i;
2578
2579                 /* Otherwise poll for sometime so the current
2580                  * cycle has a chance to end before giving up.
2581                  */
2582                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2583                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2584                         if (!hsfsts.hsf_status.flcinprog) {
2585                                 ret_val = 0;
2586                                 break;
2587                         }
2588                         udelay(1);
2589                 }
2590                 if (!ret_val) {
2591                         /* Successful in waiting for previous cycle to timeout,
2592                          * now set the Flash Cycle Done.
2593                          */
2594                         hsfsts.hsf_status.flcdone = 1;
2595                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2596                 } else {
2597                         e_dbg("Flash controller busy, cannot get access\n");
2598                 }
2599         }
2600
2601         return ret_val;
2602 }
2603
2604 /**
2605  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2606  *  @hw: pointer to the HW structure
2607  *  @timeout: maximum time to wait for completion
2608  *
2609  *  This function starts a flash cycle and waits for its completion.
2610  **/
2611 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2612 {
2613         union ich8_hws_flash_ctrl hsflctl;
2614         union ich8_hws_flash_status hsfsts;
2615         u32 i = 0;
2616
2617         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2618         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2619         hsflctl.hsf_ctrl.flcgo = 1;
2620         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2621
2622         /* wait till FDONE bit is set to 1 */
2623         do {
2624                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2625                 if (hsfsts.hsf_status.flcdone)
2626                         break;
2627                 udelay(1);
2628         } while (i++ < timeout);
2629
2630         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2631                 return 0;
2632
2633         return -E1000_ERR_NVM;
2634 }
2635
2636 /**
2637  *  e1000_read_flash_word_ich8lan - Read word from flash
2638  *  @hw: pointer to the HW structure
2639  *  @offset: offset to data location
2640  *  @data: pointer to the location for storing the data
2641  *
2642  *  Reads the flash word at offset into data.  Offset is converted
2643  *  to bytes before read.
2644  **/
2645 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2646                                          u16 *data)
2647 {
2648         /* Must convert offset into bytes. */
2649         offset <<= 1;
2650
2651         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2652 }
2653
2654 /**
2655  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2656  *  @hw: pointer to the HW structure
2657  *  @offset: The offset of the byte to read.
2658  *  @data: Pointer to a byte to store the value read.
2659  *
2660  *  Reads a single byte from the NVM using the flash access registers.
2661  **/
2662 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2663                                          u8 *data)
2664 {
2665         s32 ret_val;
2666         u16 word = 0;
2667
2668         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2669         if (ret_val)
2670                 return ret_val;
2671
2672         *data = (u8)word;
2673
2674         return 0;
2675 }
2676
2677 /**
2678  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2679  *  @hw: pointer to the HW structure
2680  *  @offset: The offset (in bytes) of the byte or word to read.
2681  *  @size: Size of data to read, 1=byte 2=word
2682  *  @data: Pointer to the word to store the value read.
2683  *
2684  *  Reads a byte or word from the NVM using the flash access registers.
2685  **/
2686 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2687                                          u8 size, u16 *data)
2688 {
2689         union ich8_hws_flash_status hsfsts;
2690         union ich8_hws_flash_ctrl hsflctl;
2691         u32 flash_linear_addr;
2692         u32 flash_data = 0;
2693         s32 ret_val = -E1000_ERR_NVM;
2694         u8 count = 0;
2695
2696         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2697                 return -E1000_ERR_NVM;
2698
2699         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2700                             hw->nvm.flash_base_addr;
2701
2702         do {
2703                 udelay(1);
2704                 /* Steps */
2705                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2706                 if (ret_val)
2707                         break;
2708
2709                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2710                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2711                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2712                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2713                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2714
2715                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2716
2717                 ret_val = e1000_flash_cycle_ich8lan(hw,
2718                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2719
2720                 /* Check if FCERR is set to 1, if set to 1, clear it
2721                  * and try the whole sequence a few more times, else
2722                  * read in (shift in) the Flash Data0, the order is
2723                  * least significant byte first msb to lsb
2724                  */
2725                 if (!ret_val) {
2726                         flash_data = er32flash(ICH_FLASH_FDATA0);
2727                         if (size == 1)
2728                                 *data = (u8)(flash_data & 0x000000FF);
2729                         else if (size == 2)
2730                                 *data = (u16)(flash_data & 0x0000FFFF);
2731                         break;
2732                 } else {
2733                         /* If we've gotten here, then things are probably
2734                          * completely hosed, but if the error condition is
2735                          * detected, it won't hurt to give it another try...
2736                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2737                          */
2738                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2739                         if (hsfsts.hsf_status.flcerr) {
2740                                 /* Repeat for some time before giving up. */
2741                                 continue;
2742                         } else if (!hsfsts.hsf_status.flcdone) {
2743                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2744                                 break;
2745                         }
2746                 }
2747         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2748
2749         return ret_val;
2750 }
2751
2752 /**
2753  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2754  *  @hw: pointer to the HW structure
2755  *  @offset: The offset (in bytes) of the word(s) to write.
2756  *  @words: Size of data to write in words
2757  *  @data: Pointer to the word(s) to write at offset.
2758  *
2759  *  Writes a byte or word to the NVM using the flash access registers.
2760  **/
2761 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2762                                    u16 *data)
2763 {
2764         struct e1000_nvm_info *nvm = &hw->nvm;
2765         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2766         u16 i;
2767
2768         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2769             (words == 0)) {
2770                 e_dbg("nvm parameter(s) out of bounds\n");
2771                 return -E1000_ERR_NVM;
2772         }
2773
2774         nvm->ops.acquire(hw);
2775
2776         for (i = 0; i < words; i++) {
2777                 dev_spec->shadow_ram[offset+i].modified = true;
2778                 dev_spec->shadow_ram[offset+i].value = data[i];
2779         }
2780
2781         nvm->ops.release(hw);
2782
2783         return 0;
2784 }
2785
2786 /**
2787  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2788  *  @hw: pointer to the HW structure
2789  *
2790  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2791  *  which writes the checksum to the shadow ram.  The changes in the shadow
2792  *  ram are then committed to the EEPROM by processing each bank at a time
2793  *  checking for the modified bit and writing only the pending changes.
2794  *  After a successful commit, the shadow ram is cleared and is ready for
2795  *  future writes.
2796  **/
2797 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2798 {
2799         struct e1000_nvm_info *nvm = &hw->nvm;
2800         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2801         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2802         s32 ret_val;
2803         u16 data;
2804
2805         ret_val = e1000e_update_nvm_checksum_generic(hw);
2806         if (ret_val)
2807                 goto out;
2808
2809         if (nvm->type != e1000_nvm_flash_sw)
2810                 goto out;
2811
2812         nvm->ops.acquire(hw);
2813
2814         /* We're writing to the opposite bank so if we're on bank 1,
2815          * write to bank 0 etc.  We also need to erase the segment that
2816          * is going to be written
2817          */
2818         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2819         if (ret_val) {
2820                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2821                 bank = 0;
2822         }
2823
2824         if (bank == 0) {
2825                 new_bank_offset = nvm->flash_bank_size;
2826                 old_bank_offset = 0;
2827                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2828                 if (ret_val)
2829                         goto release;
2830         } else {
2831                 old_bank_offset = nvm->flash_bank_size;
2832                 new_bank_offset = 0;
2833                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2834                 if (ret_val)
2835                         goto release;
2836         }
2837
2838         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2839                 /* Determine whether to write the value stored
2840                  * in the other NVM bank or a modified value stored
2841                  * in the shadow RAM
2842                  */
2843                 if (dev_spec->shadow_ram[i].modified) {
2844                         data = dev_spec->shadow_ram[i].value;
2845                 } else {
2846                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2847                                                                 old_bank_offset,
2848                                                                 &data);
2849                         if (ret_val)
2850                                 break;
2851                 }
2852
2853                 /* If the word is 0x13, then make sure the signature bits
2854                  * (15:14) are 11b until the commit has completed.
2855                  * This will allow us to write 10b which indicates the
2856                  * signature is valid.  We want to do this after the write
2857                  * has completed so that we don't mark the segment valid
2858                  * while the write is still in progress
2859                  */
2860                 if (i == E1000_ICH_NVM_SIG_WORD)
2861                         data |= E1000_ICH_NVM_SIG_MASK;
2862
2863                 /* Convert offset to bytes. */
2864                 act_offset = (i + new_bank_offset) << 1;
2865
2866                 udelay(100);
2867                 /* Write the bytes to the new bank. */
2868                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2869                                                                act_offset,
2870                                                                (u8)data);
2871                 if (ret_val)
2872                         break;
2873
2874                 udelay(100);
2875                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2876                                                           act_offset + 1,
2877                                                           (u8)(data >> 8));
2878                 if (ret_val)
2879                         break;
2880         }
2881
2882         /* Don't bother writing the segment valid bits if sector
2883          * programming failed.
2884          */
2885         if (ret_val) {
2886                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2887                 e_dbg("Flash commit failed.\n");
2888                 goto release;
2889         }
2890
2891         /* Finally validate the new segment by setting bit 15:14
2892          * to 10b in word 0x13 , this can be done without an
2893          * erase as well since these bits are 11 to start with
2894          * and we need to change bit 14 to 0b
2895          */
2896         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2897         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2898         if (ret_val)
2899                 goto release;
2900
2901         data &= 0xBFFF;
2902         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2903                                                        act_offset * 2 + 1,
2904                                                        (u8)(data >> 8));
2905         if (ret_val)
2906                 goto release;
2907
2908         /* And invalidate the previously valid segment by setting
2909          * its signature word (0x13) high_byte to 0b. This can be
2910          * done without an erase because flash erase sets all bits
2911          * to 1's. We can write 1's to 0's without an erase
2912          */
2913         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2914         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2915         if (ret_val)
2916                 goto release;
2917
2918         /* Great!  Everything worked, we can now clear the cached entries. */
2919         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2920                 dev_spec->shadow_ram[i].modified = false;
2921                 dev_spec->shadow_ram[i].value = 0xFFFF;
2922         }
2923
2924 release:
2925         nvm->ops.release(hw);
2926
2927         /* Reload the EEPROM, or else modifications will not appear
2928          * until after the next adapter reset.
2929          */
2930         if (!ret_val) {
2931                 nvm->ops.reload(hw);
2932                 usleep_range(10000, 20000);
2933         }
2934
2935 out:
2936         if (ret_val)
2937                 e_dbg("NVM update error: %d\n", ret_val);
2938
2939         return ret_val;
2940 }
2941
2942 /**
2943  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2944  *  @hw: pointer to the HW structure
2945  *
2946  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2947  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2948  *  calculated, in which case we need to calculate the checksum and set bit 6.
2949  **/
2950 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2951 {
2952         s32 ret_val;
2953         u16 data;
2954         u16 word;
2955         u16 valid_csum_mask;
2956
2957         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
2958          * the checksum needs to be fixed.  This bit is an indication that
2959          * the NVM was prepared by OEM software and did not calculate
2960          * the checksum...a likely scenario.
2961          */
2962         switch (hw->mac.type) {
2963         case e1000_pch_lpt:
2964                 word = NVM_COMPAT;
2965                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
2966                 break;
2967         default:
2968                 word = NVM_FUTURE_INIT_WORD1;
2969                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
2970                 break;
2971         }
2972
2973         ret_val = e1000_read_nvm(hw, word, 1, &data);
2974         if (ret_val)
2975                 return ret_val;
2976
2977         if (!(data & valid_csum_mask)) {
2978                 data |= valid_csum_mask;
2979                 ret_val = e1000_write_nvm(hw, word, 1, &data);
2980                 if (ret_val)
2981                         return ret_val;
2982                 ret_val = e1000e_update_nvm_checksum(hw);
2983                 if (ret_val)
2984                         return ret_val;
2985         }
2986
2987         return e1000e_validate_nvm_checksum_generic(hw);
2988 }
2989
2990 /**
2991  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2992  *  @hw: pointer to the HW structure
2993  *
2994  *  To prevent malicious write/erase of the NVM, set it to be read-only
2995  *  so that the hardware ignores all write/erase cycles of the NVM via
2996  *  the flash control registers.  The shadow-ram copy of the NVM will
2997  *  still be updated, however any updates to this copy will not stick
2998  *  across driver reloads.
2999  **/
3000 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3001 {
3002         struct e1000_nvm_info *nvm = &hw->nvm;
3003         union ich8_flash_protected_range pr0;
3004         union ich8_hws_flash_status hsfsts;
3005         u32 gfpreg;
3006
3007         nvm->ops.acquire(hw);
3008
3009         gfpreg = er32flash(ICH_FLASH_GFPREG);
3010
3011         /* Write-protect GbE Sector of NVM */
3012         pr0.regval = er32flash(ICH_FLASH_PR0);
3013         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3014         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3015         pr0.range.wpe = true;
3016         ew32flash(ICH_FLASH_PR0, pr0.regval);
3017
3018         /* Lock down a subset of GbE Flash Control Registers, e.g.
3019          * PR0 to prevent the write-protection from being lifted.
3020          * Once FLOCKDN is set, the registers protected by it cannot
3021          * be written until FLOCKDN is cleared by a hardware reset.
3022          */
3023         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3024         hsfsts.hsf_status.flockdn = true;
3025         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3026
3027         nvm->ops.release(hw);
3028 }
3029
3030 /**
3031  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3032  *  @hw: pointer to the HW structure
3033  *  @offset: The offset (in bytes) of the byte/word to read.
3034  *  @size: Size of data to read, 1=byte 2=word
3035  *  @data: The byte(s) to write to the NVM.
3036  *
3037  *  Writes one/two bytes to the NVM using the flash access registers.
3038  **/
3039 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3040                                           u8 size, u16 data)
3041 {
3042         union ich8_hws_flash_status hsfsts;
3043         union ich8_hws_flash_ctrl hsflctl;
3044         u32 flash_linear_addr;
3045         u32 flash_data = 0;
3046         s32 ret_val;
3047         u8 count = 0;
3048
3049         if (size < 1 || size > 2 || data > size * 0xff ||
3050             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3051                 return -E1000_ERR_NVM;
3052
3053         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3054                             hw->nvm.flash_base_addr;
3055
3056         do {
3057                 udelay(1);
3058                 /* Steps */
3059                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3060                 if (ret_val)
3061                         break;
3062
3063                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3064                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3065                 hsflctl.hsf_ctrl.fldbcount = size -1;
3066                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3067                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3068
3069                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3070
3071                 if (size == 1)
3072                         flash_data = (u32)data & 0x00FF;
3073                 else
3074                         flash_data = (u32)data;
3075
3076                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3077
3078                 /* check if FCERR is set to 1 , if set to 1, clear it
3079                  * and try the whole sequence a few more times else done
3080                  */
3081                 ret_val = e1000_flash_cycle_ich8lan(hw,
3082                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3083                 if (!ret_val)
3084                         break;
3085
3086                 /* If we're here, then things are most likely
3087                  * completely hosed, but if the error condition
3088                  * is detected, it won't hurt to give it another
3089                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3090                  */
3091                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3092                 if (hsfsts.hsf_status.flcerr)
3093                         /* Repeat for some time before giving up. */
3094                         continue;
3095                 if (!hsfsts.hsf_status.flcdone) {
3096                         e_dbg("Timeout error - flash cycle did not complete.\n");
3097                         break;
3098                 }
3099         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3100
3101         return ret_val;
3102 }
3103
3104 /**
3105  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3106  *  @hw: pointer to the HW structure
3107  *  @offset: The index of the byte to read.
3108  *  @data: The byte to write to the NVM.
3109  *
3110  *  Writes a single byte to the NVM using the flash access registers.
3111  **/
3112 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3113                                           u8 data)
3114 {
3115         u16 word = (u16)data;
3116
3117         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3118 }
3119
3120 /**
3121  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3122  *  @hw: pointer to the HW structure
3123  *  @offset: The offset of the byte to write.
3124  *  @byte: The byte to write to the NVM.
3125  *
3126  *  Writes a single byte to the NVM using the flash access registers.
3127  *  Goes through a retry algorithm before giving up.
3128  **/
3129 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3130                                                 u32 offset, u8 byte)
3131 {
3132         s32 ret_val;
3133         u16 program_retries;
3134
3135         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3136         if (!ret_val)
3137                 return ret_val;
3138
3139         for (program_retries = 0; program_retries < 100; program_retries++) {
3140                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3141                 udelay(100);
3142                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3143                 if (!ret_val)
3144                         break;
3145         }
3146         if (program_retries == 100)
3147                 return -E1000_ERR_NVM;
3148
3149         return 0;
3150 }
3151
3152 /**
3153  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3154  *  @hw: pointer to the HW structure
3155  *  @bank: 0 for first bank, 1 for second bank, etc.
3156  *
3157  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3158  *  bank N is 4096 * N + flash_reg_addr.
3159  **/
3160 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3161 {
3162         struct e1000_nvm_info *nvm = &hw->nvm;
3163         union ich8_hws_flash_status hsfsts;
3164         union ich8_hws_flash_ctrl hsflctl;
3165         u32 flash_linear_addr;
3166         /* bank size is in 16bit words - adjust to bytes */
3167         u32 flash_bank_size = nvm->flash_bank_size * 2;
3168         s32 ret_val;
3169         s32 count = 0;
3170         s32 j, iteration, sector_size;
3171
3172         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3173
3174         /* Determine HW Sector size: Read BERASE bits of hw flash status
3175          * register
3176          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3177          *     consecutive sectors.  The start index for the nth Hw sector
3178          *     can be calculated as = bank * 4096 + n * 256
3179          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3180          *     The start index for the nth Hw sector can be calculated
3181          *     as = bank * 4096
3182          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3183          *     (ich9 only, otherwise error condition)
3184          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3185          */
3186         switch (hsfsts.hsf_status.berasesz) {
3187         case 0:
3188                 /* Hw sector size 256 */
3189                 sector_size = ICH_FLASH_SEG_SIZE_256;
3190                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3191                 break;
3192         case 1:
3193                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3194                 iteration = 1;
3195                 break;
3196         case 2:
3197                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3198                 iteration = 1;
3199                 break;
3200         case 3:
3201                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3202                 iteration = 1;
3203                 break;
3204         default:
3205                 return -E1000_ERR_NVM;
3206         }
3207
3208         /* Start with the base address, then add the sector offset. */
3209         flash_linear_addr = hw->nvm.flash_base_addr;
3210         flash_linear_addr += (bank) ? flash_bank_size : 0;
3211
3212         for (j = 0; j < iteration ; j++) {
3213                 do {
3214                         /* Steps */
3215                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3216                         if (ret_val)
3217                                 return ret_val;
3218
3219                         /* Write a value 11 (block Erase) in Flash
3220                          * Cycle field in hw flash control
3221                          */
3222                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3223                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3224                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3225
3226                         /* Write the last 24 bits of an index within the
3227                          * block into Flash Linear address field in Flash
3228                          * Address.
3229                          */
3230                         flash_linear_addr += (j * sector_size);
3231                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3232
3233                         ret_val = e1000_flash_cycle_ich8lan(hw,
3234                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3235                         if (!ret_val)
3236                                 break;
3237
3238                         /* Check if FCERR is set to 1.  If 1,
3239                          * clear it and try the whole sequence
3240                          * a few more times else Done
3241                          */
3242                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3243                         if (hsfsts.hsf_status.flcerr)
3244                                 /* repeat for some time before giving up */
3245                                 continue;
3246                         else if (!hsfsts.hsf_status.flcdone)
3247                                 return ret_val;
3248                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3249         }
3250
3251         return 0;
3252 }
3253
3254 /**
3255  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3256  *  @hw: pointer to the HW structure
3257  *  @data: Pointer to the LED settings
3258  *
3259  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3260  *  settings is all 0's or F's, set the LED default to a valid LED default
3261  *  setting.
3262  **/
3263 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3264 {
3265         s32 ret_val;
3266
3267         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3268         if (ret_val) {
3269                 e_dbg("NVM Read Error\n");
3270                 return ret_val;
3271         }
3272
3273         if (*data == ID_LED_RESERVED_0000 ||
3274             *data == ID_LED_RESERVED_FFFF)
3275                 *data = ID_LED_DEFAULT_ICH8LAN;
3276
3277         return 0;
3278 }
3279
3280 /**
3281  *  e1000_id_led_init_pchlan - store LED configurations
3282  *  @hw: pointer to the HW structure
3283  *
3284  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3285  *  the PHY LED configuration register.
3286  *
3287  *  PCH also does not have an "always on" or "always off" mode which
3288  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3289  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3290  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3291  *  link based on logic in e1000_led_[on|off]_pchlan().
3292  **/
3293 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3294 {
3295         struct e1000_mac_info *mac = &hw->mac;
3296         s32 ret_val;
3297         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3298         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3299         u16 data, i, temp, shift;
3300
3301         /* Get default ID LED modes */
3302         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3303         if (ret_val)
3304                 return ret_val;
3305
3306         mac->ledctl_default = er32(LEDCTL);
3307         mac->ledctl_mode1 = mac->ledctl_default;
3308         mac->ledctl_mode2 = mac->ledctl_default;
3309
3310         for (i = 0; i < 4; i++) {
3311                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3312                 shift = (i * 5);
3313                 switch (temp) {
3314                 case ID_LED_ON1_DEF2:
3315                 case ID_LED_ON1_ON2:
3316                 case ID_LED_ON1_OFF2:
3317                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3318                         mac->ledctl_mode1 |= (ledctl_on << shift);
3319                         break;
3320                 case ID_LED_OFF1_DEF2:
3321                 case ID_LED_OFF1_ON2:
3322                 case ID_LED_OFF1_OFF2:
3323                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3324                         mac->ledctl_mode1 |= (ledctl_off << shift);
3325                         break;
3326                 default:
3327                         /* Do nothing */
3328                         break;
3329                 }
3330                 switch (temp) {
3331                 case ID_LED_DEF1_ON2:
3332                 case ID_LED_ON1_ON2:
3333                 case ID_LED_OFF1_ON2:
3334                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3335                         mac->ledctl_mode2 |= (ledctl_on << shift);
3336                         break;
3337                 case ID_LED_DEF1_OFF2:
3338                 case ID_LED_ON1_OFF2:
3339                 case ID_LED_OFF1_OFF2:
3340                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3341                         mac->ledctl_mode2 |= (ledctl_off << shift);
3342                         break;
3343                 default:
3344                         /* Do nothing */
3345                         break;
3346                 }
3347         }
3348
3349         return 0;
3350 }
3351
3352 /**
3353  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3354  *  @hw: pointer to the HW structure
3355  *
3356  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3357  *  register, so the the bus width is hard coded.
3358  **/
3359 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3360 {
3361         struct e1000_bus_info *bus = &hw->bus;
3362         s32 ret_val;
3363
3364         ret_val = e1000e_get_bus_info_pcie(hw);
3365
3366         /* ICH devices are "PCI Express"-ish.  They have
3367          * a configuration space, but do not contain
3368          * PCI Express Capability registers, so bus width
3369          * must be hardcoded.
3370          */
3371         if (bus->width == e1000_bus_width_unknown)
3372                 bus->width = e1000_bus_width_pcie_x1;
3373
3374         return ret_val;
3375 }
3376
3377 /**
3378  *  e1000_reset_hw_ich8lan - Reset the hardware
3379  *  @hw: pointer to the HW structure
3380  *
3381  *  Does a full reset of the hardware which includes a reset of the PHY and
3382  *  MAC.
3383  **/
3384 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3385 {
3386         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3387         u16 kum_cfg;
3388         u32 ctrl, reg;
3389         s32 ret_val;
3390
3391         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3392          * on the last TLP read/write transaction when MAC is reset.
3393          */
3394         ret_val = e1000e_disable_pcie_master(hw);
3395         if (ret_val)
3396                 e_dbg("PCI-E Master disable polling has failed.\n");
3397
3398         e_dbg("Masking off all interrupts\n");
3399         ew32(IMC, 0xffffffff);
3400
3401         /* Disable the Transmit and Receive units.  Then delay to allow
3402          * any pending transactions to complete before we hit the MAC
3403          * with the global reset.
3404          */
3405         ew32(RCTL, 0);
3406         ew32(TCTL, E1000_TCTL_PSP);
3407         e1e_flush();
3408
3409         usleep_range(10000, 20000);
3410
3411         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3412         if (hw->mac.type == e1000_ich8lan) {
3413                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3414                 ew32(PBA, E1000_PBA_8K);
3415                 /* Set Packet Buffer Size to 16k. */
3416                 ew32(PBS, E1000_PBS_16K);
3417         }
3418
3419         if (hw->mac.type == e1000_pchlan) {
3420                 /* Save the NVM K1 bit setting */
3421                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3422                 if (ret_val)
3423                         return ret_val;
3424
3425                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3426                         dev_spec->nvm_k1_enabled = true;
3427                 else
3428                         dev_spec->nvm_k1_enabled = false;
3429         }
3430
3431         ctrl = er32(CTRL);
3432
3433         if (!hw->phy.ops.check_reset_block(hw)) {
3434                 /* Full-chip reset requires MAC and PHY reset at the same
3435                  * time to make sure the interface between MAC and the
3436                  * external PHY is reset.
3437                  */
3438                 ctrl |= E1000_CTRL_PHY_RST;
3439
3440                 /* Gate automatic PHY configuration by hardware on
3441                  * non-managed 82579
3442                  */
3443                 if ((hw->mac.type == e1000_pch2lan) &&
3444                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3445                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3446         }
3447         ret_val = e1000_acquire_swflag_ich8lan(hw);
3448         e_dbg("Issuing a global reset to ich8lan\n");
3449         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3450         /* cannot issue a flush here because it hangs the hardware */
3451         msleep(20);
3452
3453         /* Set Phy Config Counter to 50msec */
3454         if (hw->mac.type == e1000_pch2lan) {
3455                 reg = er32(FEXTNVM3);
3456                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3457                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3458                 ew32(FEXTNVM3, reg);
3459         }
3460
3461         if (!ret_val)
3462                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3463
3464         if (ctrl & E1000_CTRL_PHY_RST) {
3465                 ret_val = hw->phy.ops.get_cfg_done(hw);
3466                 if (ret_val)
3467                         return ret_val;
3468
3469                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3470                 if (ret_val)
3471                         return ret_val;
3472         }
3473
3474         /* For PCH, this write will make sure that any noise
3475          * will be detected as a CRC error and be dropped rather than show up
3476          * as a bad packet to the DMA engine.
3477          */
3478         if (hw->mac.type == e1000_pchlan)
3479                 ew32(CRC_OFFSET, 0x65656565);
3480
3481         ew32(IMC, 0xffffffff);
3482         er32(ICR);
3483
3484         reg = er32(KABGTXD);
3485         reg |= E1000_KABGTXD_BGSQLBIAS;
3486         ew32(KABGTXD, reg);
3487
3488         return 0;
3489 }
3490
3491 /**
3492  *  e1000_init_hw_ich8lan - Initialize the hardware
3493  *  @hw: pointer to the HW structure
3494  *
3495  *  Prepares the hardware for transmit and receive by doing the following:
3496  *   - initialize hardware bits
3497  *   - initialize LED identification
3498  *   - setup receive address registers
3499  *   - setup flow control
3500  *   - setup transmit descriptors
3501  *   - clear statistics
3502  **/
3503 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3504 {
3505         struct e1000_mac_info *mac = &hw->mac;
3506         u32 ctrl_ext, txdctl, snoop;
3507         s32 ret_val;
3508         u16 i;
3509
3510         e1000_initialize_hw_bits_ich8lan(hw);
3511
3512         /* Initialize identification LED */
3513         ret_val = mac->ops.id_led_init(hw);
3514         if (ret_val)
3515                 e_dbg("Error initializing identification LED\n");
3516                 /* This is not fatal and we should not stop init due to this */
3517
3518         /* Setup the receive address. */
3519         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3520
3521         /* Zero out the Multicast HASH table */
3522         e_dbg("Zeroing the MTA\n");
3523         for (i = 0; i < mac->mta_reg_count; i++)
3524                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3525
3526         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3527          * the ME.  Disable wakeup by clearing the host wakeup bit.
3528          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3529          */
3530         if (hw->phy.type == e1000_phy_82578) {
3531                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3532                 i &= ~BM_WUC_HOST_WU_BIT;
3533                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3534                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3535                 if (ret_val)
3536                         return ret_val;
3537         }
3538
3539         /* Setup link and flow control */
3540         ret_val = mac->ops.setup_link(hw);
3541
3542         /* Set the transmit descriptor write-back policy for both queues */
3543         txdctl = er32(TXDCTL(0));
3544         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3545                  E1000_TXDCTL_FULL_TX_DESC_WB;
3546         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3547                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3548         ew32(TXDCTL(0), txdctl);
3549         txdctl = er32(TXDCTL(1));
3550         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3551                  E1000_TXDCTL_FULL_TX_DESC_WB;
3552         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3553                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3554         ew32(TXDCTL(1), txdctl);
3555
3556         /* ICH8 has opposite polarity of no_snoop bits.
3557          * By default, we should use snoop behavior.
3558          */
3559         if (mac->type == e1000_ich8lan)
3560                 snoop = PCIE_ICH8_SNOOP_ALL;
3561         else
3562                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3563         e1000e_set_pcie_no_snoop(hw, snoop);
3564
3565         ctrl_ext = er32(CTRL_EXT);
3566         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3567         ew32(CTRL_EXT, ctrl_ext);
3568
3569         /* Clear all of the statistics registers (clear on read).  It is
3570          * important that we do this after we have tried to establish link
3571          * because the symbol error count will increment wildly if there
3572          * is no link.
3573          */
3574         e1000_clear_hw_cntrs_ich8lan(hw);
3575
3576         return ret_val;
3577 }
3578 /**
3579  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3580  *  @hw: pointer to the HW structure
3581  *
3582  *  Sets/Clears required hardware bits necessary for correctly setting up the
3583  *  hardware for transmit and receive.
3584  **/
3585 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3586 {
3587         u32 reg;
3588
3589         /* Extended Device Control */
3590         reg = er32(CTRL_EXT);
3591         reg |= (1 << 22);
3592         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3593         if (hw->mac.type >= e1000_pchlan)
3594                 reg |= E1000_CTRL_EXT_PHYPDEN;
3595         ew32(CTRL_EXT, reg);
3596
3597         /* Transmit Descriptor Control 0 */
3598         reg = er32(TXDCTL(0));
3599         reg |= (1 << 22);
3600         ew32(TXDCTL(0), reg);
3601
3602         /* Transmit Descriptor Control 1 */
3603         reg = er32(TXDCTL(1));
3604         reg |= (1 << 22);
3605         ew32(TXDCTL(1), reg);
3606
3607         /* Transmit Arbitration Control 0 */
3608         reg = er32(TARC(0));
3609         if (hw->mac.type == e1000_ich8lan)
3610                 reg |= (1 << 28) | (1 << 29);
3611         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3612         ew32(TARC(0), reg);
3613
3614         /* Transmit Arbitration Control 1 */
3615         reg = er32(TARC(1));
3616         if (er32(TCTL) & E1000_TCTL_MULR)
3617                 reg &= ~(1 << 28);
3618         else
3619                 reg |= (1 << 28);
3620         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3621         ew32(TARC(1), reg);
3622
3623         /* Device Status */
3624         if (hw->mac.type == e1000_ich8lan) {
3625                 reg = er32(STATUS);
3626                 reg &= ~(1 << 31);
3627                 ew32(STATUS, reg);
3628         }
3629
3630         /* work-around descriptor data corruption issue during nfs v2 udp
3631          * traffic, just disable the nfs filtering capability
3632          */
3633         reg = er32(RFCTL);
3634         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3635
3636         /* Disable IPv6 extension header parsing because some malformed
3637          * IPv6 headers can hang the Rx.
3638          */
3639         if (hw->mac.type == e1000_ich8lan)
3640                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3641         ew32(RFCTL, reg);
3642
3643         /* Enable ECC on Lynxpoint */
3644         if (hw->mac.type == e1000_pch_lpt) {
3645                 reg = er32(PBECCSTS);
3646                 reg |= E1000_PBECCSTS_ECC_ENABLE;
3647                 ew32(PBECCSTS, reg);
3648
3649                 reg = er32(CTRL);
3650                 reg |= E1000_CTRL_MEHE;
3651                 ew32(CTRL, reg);
3652         }
3653 }
3654
3655 /**
3656  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3657  *  @hw: pointer to the HW structure
3658  *
3659  *  Determines which flow control settings to use, then configures flow
3660  *  control.  Calls the appropriate media-specific link configuration
3661  *  function.  Assuming the adapter has a valid link partner, a valid link
3662  *  should be established.  Assumes the hardware has previously been reset
3663  *  and the transmitter and receiver are not enabled.
3664  **/
3665 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3666 {
3667         s32 ret_val;
3668
3669         if (hw->phy.ops.check_reset_block(hw))
3670                 return 0;
3671
3672         /* ICH parts do not have a word in the NVM to determine
3673          * the default flow control setting, so we explicitly
3674          * set it to full.
3675          */
3676         if (hw->fc.requested_mode == e1000_fc_default) {
3677                 /* Workaround h/w hang when Tx flow control enabled */
3678                 if (hw->mac.type == e1000_pchlan)
3679                         hw->fc.requested_mode = e1000_fc_rx_pause;
3680                 else
3681                         hw->fc.requested_mode = e1000_fc_full;
3682         }
3683
3684         /* Save off the requested flow control mode for use later.  Depending
3685          * on the link partner's capabilities, we may or may not use this mode.
3686          */
3687         hw->fc.current_mode = hw->fc.requested_mode;
3688
3689         e_dbg("After fix-ups FlowControl is now = %x\n",
3690                 hw->fc.current_mode);
3691
3692         /* Continue to configure the copper link. */
3693         ret_val = hw->mac.ops.setup_physical_interface(hw);
3694         if (ret_val)
3695                 return ret_val;
3696
3697         ew32(FCTTV, hw->fc.pause_time);
3698         if ((hw->phy.type == e1000_phy_82578) ||
3699             (hw->phy.type == e1000_phy_82579) ||
3700             (hw->phy.type == e1000_phy_i217) ||
3701             (hw->phy.type == e1000_phy_82577)) {
3702                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3703
3704                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3705                                    hw->fc.pause_time);
3706                 if (ret_val)
3707                         return ret_val;
3708         }
3709
3710         return e1000e_set_fc_watermarks(hw);
3711 }
3712
3713 /**
3714  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3715  *  @hw: pointer to the HW structure
3716  *
3717  *  Configures the kumeran interface to the PHY to wait the appropriate time
3718  *  when polling the PHY, then call the generic setup_copper_link to finish
3719  *  configuring the copper link.
3720  **/
3721 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3722 {
3723         u32 ctrl;
3724         s32 ret_val;
3725         u16 reg_data;
3726
3727         ctrl = er32(CTRL);
3728         ctrl |= E1000_CTRL_SLU;
3729         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3730         ew32(CTRL, ctrl);
3731
3732         /* Set the mac to wait the maximum time between each iteration
3733          * and increase the max iterations when polling the phy;
3734          * this fixes erroneous timeouts at 10Mbps.
3735          */
3736         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3737         if (ret_val)
3738                 return ret_val;
3739         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3740                                        &reg_data);
3741         if (ret_val)
3742                 return ret_val;
3743         reg_data |= 0x3F;
3744         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3745                                         reg_data);
3746         if (ret_val)
3747                 return ret_val;
3748
3749         switch (hw->phy.type) {
3750         case e1000_phy_igp_3:
3751                 ret_val = e1000e_copper_link_setup_igp(hw);
3752                 if (ret_val)
3753                         return ret_val;
3754                 break;
3755         case e1000_phy_bm:
3756         case e1000_phy_82578:
3757                 ret_val = e1000e_copper_link_setup_m88(hw);
3758                 if (ret_val)
3759                         return ret_val;
3760                 break;
3761         case e1000_phy_82577:
3762         case e1000_phy_82579:
3763         case e1000_phy_i217:
3764                 ret_val = e1000_copper_link_setup_82577(hw);
3765                 if (ret_val)
3766                         return ret_val;
3767                 break;
3768         case e1000_phy_ife:
3769                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3770                 if (ret_val)
3771                         return ret_val;
3772
3773                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3774
3775                 switch (hw->phy.mdix) {
3776                 case 1:
3777                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3778                         break;
3779                 case 2:
3780                         reg_data |= IFE_PMC_FORCE_MDIX;
3781                         break;
3782                 case 0:
3783                 default:
3784                         reg_data |= IFE_PMC_AUTO_MDIX;
3785                         break;
3786                 }
3787                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3788                 if (ret_val)
3789                         return ret_val;
3790                 break;
3791         default:
3792                 break;
3793         }
3794
3795         return e1000e_setup_copper_link(hw);
3796 }
3797
3798 /**
3799  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3800  *  @hw: pointer to the HW structure
3801  *  @speed: pointer to store current link speed
3802  *  @duplex: pointer to store the current link duplex
3803  *
3804  *  Calls the generic get_speed_and_duplex to retrieve the current link
3805  *  information and then calls the Kumeran lock loss workaround for links at
3806  *  gigabit speeds.
3807  **/
3808 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3809                                           u16 *duplex)
3810 {
3811         s32 ret_val;
3812
3813         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3814         if (ret_val)
3815                 return ret_val;
3816
3817         if ((hw->mac.type == e1000_ich8lan) &&
3818             (hw->phy.type == e1000_phy_igp_3) &&
3819             (*speed == SPEED_1000)) {
3820                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3821         }
3822
3823         return ret_val;
3824 }
3825
3826 /**
3827  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3828  *  @hw: pointer to the HW structure
3829  *
3830  *  Work-around for 82566 Kumeran PCS lock loss:
3831  *  On link status change (i.e. PCI reset, speed change) and link is up and
3832  *  speed is gigabit-
3833  *    0) if workaround is optionally disabled do nothing
3834  *    1) wait 1ms for Kumeran link to come up
3835  *    2) check Kumeran Diagnostic register PCS lock loss bit
3836  *    3) if not set the link is locked (all is good), otherwise...
3837  *    4) reset the PHY
3838  *    5) repeat up to 10 times
3839  *  Note: this is only called for IGP3 copper when speed is 1gb.
3840  **/
3841 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3842 {
3843         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844         u32 phy_ctrl;
3845         s32 ret_val;
3846         u16 i, data;
3847         bool link;
3848
3849         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3850                 return 0;
3851
3852         /* Make sure link is up before proceeding.  If not just return.
3853          * Attempting this while link is negotiating fouled up link
3854          * stability
3855          */
3856         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3857         if (!link)
3858                 return 0;
3859
3860         for (i = 0; i < 10; i++) {
3861                 /* read once to clear */
3862                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3863                 if (ret_val)
3864                         return ret_val;
3865                 /* and again to get new status */
3866                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3867                 if (ret_val)
3868                         return ret_val;
3869
3870                 /* check for PCS lock */
3871                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3872                         return 0;
3873
3874                 /* Issue PHY reset */
3875                 e1000_phy_hw_reset(hw);
3876                 mdelay(5);
3877         }
3878         /* Disable GigE link negotiation */
3879         phy_ctrl = er32(PHY_CTRL);
3880         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3881                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3882         ew32(PHY_CTRL, phy_ctrl);
3883
3884         /* Call gig speed drop workaround on Gig disable before accessing
3885          * any PHY registers
3886          */
3887         e1000e_gig_downshift_workaround_ich8lan(hw);
3888
3889         /* unable to acquire PCS lock */
3890         return -E1000_ERR_PHY;
3891 }
3892
3893 /**
3894  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3895  *  @hw: pointer to the HW structure
3896  *  @state: boolean value used to set the current Kumeran workaround state
3897  *
3898  *  If ICH8, set the current Kumeran workaround state (enabled - true
3899  *  /disabled - false).
3900  **/
3901 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3902                                                  bool state)
3903 {
3904         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3905
3906         if (hw->mac.type != e1000_ich8lan) {
3907                 e_dbg("Workaround applies to ICH8 only.\n");
3908                 return;
3909         }
3910
3911         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3912 }
3913
3914 /**
3915  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3916  *  @hw: pointer to the HW structure
3917  *
3918  *  Workaround for 82566 power-down on D3 entry:
3919  *    1) disable gigabit link
3920  *    2) write VR power-down enable
3921  *    3) read it back
3922  *  Continue if successful, else issue LCD reset and repeat
3923  **/
3924 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3925 {
3926         u32 reg;
3927         u16 data;
3928         u8  retry = 0;
3929
3930         if (hw->phy.type != e1000_phy_igp_3)
3931                 return;
3932
3933         /* Try the workaround twice (if needed) */
3934         do {
3935                 /* Disable link */
3936                 reg = er32(PHY_CTRL);
3937                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3938                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3939                 ew32(PHY_CTRL, reg);
3940
3941                 /* Call gig speed drop workaround on Gig disable before
3942                  * accessing any PHY registers
3943                  */
3944                 if (hw->mac.type == e1000_ich8lan)
3945                         e1000e_gig_downshift_workaround_ich8lan(hw);
3946
3947                 /* Write VR power-down enable */
3948                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3949                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3950                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3951
3952                 /* Read it back and test */
3953                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3954                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3955                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3956                         break;
3957
3958                 /* Issue PHY reset and repeat at most one more time */
3959                 reg = er32(CTRL);
3960                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3961                 retry++;
3962         } while (retry);
3963 }
3964
3965 /**
3966  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3967  *  @hw: pointer to the HW structure
3968  *
3969  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3970  *  LPLU, Gig disable, MDIC PHY reset):
3971  *    1) Set Kumeran Near-end loopback
3972  *    2) Clear Kumeran Near-end loopback
3973  *  Should only be called for ICH8[m] devices with any 1G Phy.
3974  **/
3975 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3976 {
3977         s32 ret_val;
3978         u16 reg_data;
3979
3980         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3981                 return;
3982
3983         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3984                                       &reg_data);
3985         if (ret_val)
3986                 return;
3987         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3988         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3989                                        reg_data);
3990         if (ret_val)
3991                 return;
3992         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3993         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
3994 }
3995
3996 /**
3997  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3998  *  @hw: pointer to the HW structure
3999  *
4000  *  During S0 to Sx transition, it is possible the link remains at gig
4001  *  instead of negotiating to a lower speed.  Before going to Sx, set
4002  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4003  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4004  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4005  *  needs to be written.
4006  *  Parts that support (and are linked to a partner which support) EEE in
4007  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4008  *  than 10Mbps w/o EEE.
4009  **/
4010 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4011 {
4012         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4013         u32 phy_ctrl;
4014         s32 ret_val;
4015
4016         phy_ctrl = er32(PHY_CTRL);
4017         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4018
4019         if (hw->phy.type == e1000_phy_i217) {
4020                 u16 phy_reg, device_id = hw->adapter->pdev->device;
4021
4022                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4023                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
4024                         u32 fextnvm6 = er32(FEXTNVM6);
4025
4026                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4027                 }
4028
4029                 ret_val = hw->phy.ops.acquire(hw);
4030                 if (ret_val)
4031                         goto out;
4032
4033                 if (!dev_spec->eee_disable) {
4034                         u16 eee_advert;
4035
4036                         ret_val =
4037                             e1000_read_emi_reg_locked(hw,
4038                                                       I217_EEE_ADVERTISEMENT,
4039                                                       &eee_advert);
4040                         if (ret_val)
4041                                 goto release;
4042
4043                         /* Disable LPLU if both link partners support 100BaseT
4044                          * EEE and 100Full is advertised on both ends of the
4045                          * link.
4046                          */
4047                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4048                             (dev_spec->eee_lp_ability &
4049                              I82579_EEE_100_SUPPORTED) &&
4050                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4051                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4052                                               E1000_PHY_CTRL_NOND0A_LPLU);
4053                 }
4054
4055                 /* For i217 Intel Rapid Start Technology support,
4056                  * when the system is going into Sx and no manageability engine
4057                  * is present, the driver must configure proxy to reset only on
4058                  * power good.  LPI (Low Power Idle) state must also reset only
4059                  * on power good, as well as the MTA (Multicast table array).
4060                  * The SMBus release must also be disabled on LCD reset.
4061                  */
4062                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4063                         /* Enable proxy to reset only on power good. */
4064                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4065                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4066                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4067
4068                         /* Set bit enable LPI (EEE) to reset only on
4069                          * power good.
4070                          */
4071                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4072                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4073                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4074
4075                         /* Disable the SMB release on LCD reset. */
4076                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4077                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4078                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4079                 }
4080
4081                 /* Enable MTA to reset for Intel Rapid Start Technology
4082                  * Support
4083                  */
4084                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4085                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4086                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4087
4088 release:
4089                 hw->phy.ops.release(hw);
4090         }
4091 out:
4092         ew32(PHY_CTRL, phy_ctrl);
4093
4094         if (hw->mac.type == e1000_ich8lan)
4095                 e1000e_gig_downshift_workaround_ich8lan(hw);
4096
4097         if (hw->mac.type >= e1000_pchlan) {
4098                 e1000_oem_bits_config_ich8lan(hw, false);
4099
4100                 /* Reset PHY to activate OEM bits on 82577/8 */
4101                 if (hw->mac.type == e1000_pchlan)
4102                         e1000e_phy_hw_reset_generic(hw);
4103
4104                 ret_val = hw->phy.ops.acquire(hw);
4105                 if (ret_val)
4106                         return;
4107                 e1000_write_smbus_addr(hw);
4108                 hw->phy.ops.release(hw);
4109         }
4110 }
4111
4112 /**
4113  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4114  *  @hw: pointer to the HW structure
4115  *
4116  *  During Sx to S0 transitions on non-managed devices or managed devices
4117  *  on which PHY resets are not blocked, if the PHY registers cannot be
4118  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4119  *  the PHY.
4120  *  On i217, setup Intel Rapid Start Technology.
4121  **/
4122 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4123 {
4124         s32 ret_val;
4125
4126         if (hw->mac.type < e1000_pch2lan)
4127                 return;
4128
4129         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4130         if (ret_val) {
4131                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4132                 return;
4133         }
4134
4135         /* For i217 Intel Rapid Start Technology support when the system
4136          * is transitioning from Sx and no manageability engine is present
4137          * configure SMBus to restore on reset, disable proxy, and enable
4138          * the reset on MTA (Multicast table array).
4139          */
4140         if (hw->phy.type == e1000_phy_i217) {
4141                 u16 phy_reg;
4142
4143                 ret_val = hw->phy.ops.acquire(hw);
4144                 if (ret_val) {
4145                         e_dbg("Failed to setup iRST\n");
4146                         return;
4147                 }
4148
4149                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4150                         /* Restore clear on SMB if no manageability engine
4151                          * is present
4152                          */
4153                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4154                         if (ret_val)
4155                                 goto release;
4156                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4157                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4158
4159                         /* Disable Proxy */
4160                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4161                 }
4162                 /* Enable reset on MTA */
4163                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4164                 if (ret_val)
4165                         goto release;
4166                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4167                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4168 release:
4169                 if (ret_val)
4170                         e_dbg("Error %d in resume workarounds\n", ret_val);
4171                 hw->phy.ops.release(hw);
4172         }
4173 }
4174
4175 /**
4176  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4177  *  @hw: pointer to the HW structure
4178  *
4179  *  Return the LED back to the default configuration.
4180  **/
4181 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4182 {
4183         if (hw->phy.type == e1000_phy_ife)
4184                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4185
4186         ew32(LEDCTL, hw->mac.ledctl_default);
4187         return 0;
4188 }
4189
4190 /**
4191  *  e1000_led_on_ich8lan - Turn LEDs on
4192  *  @hw: pointer to the HW structure
4193  *
4194  *  Turn on the LEDs.
4195  **/
4196 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4197 {
4198         if (hw->phy.type == e1000_phy_ife)
4199                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4200                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4201
4202         ew32(LEDCTL, hw->mac.ledctl_mode2);
4203         return 0;
4204 }
4205
4206 /**
4207  *  e1000_led_off_ich8lan - Turn LEDs off
4208  *  @hw: pointer to the HW structure
4209  *
4210  *  Turn off the LEDs.
4211  **/
4212 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4213 {
4214         if (hw->phy.type == e1000_phy_ife)
4215                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4216                                 (IFE_PSCL_PROBE_MODE |
4217                                  IFE_PSCL_PROBE_LEDS_OFF));
4218
4219         ew32(LEDCTL, hw->mac.ledctl_mode1);
4220         return 0;
4221 }
4222
4223 /**
4224  *  e1000_setup_led_pchlan - Configures SW controllable LED
4225  *  @hw: pointer to the HW structure
4226  *
4227  *  This prepares the SW controllable LED for use.
4228  **/
4229 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4230 {
4231         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4232 }
4233
4234 /**
4235  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4236  *  @hw: pointer to the HW structure
4237  *
4238  *  Return the LED back to the default configuration.
4239  **/
4240 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4241 {
4242         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4243 }
4244
4245 /**
4246  *  e1000_led_on_pchlan - Turn LEDs on
4247  *  @hw: pointer to the HW structure
4248  *
4249  *  Turn on the LEDs.
4250  **/
4251 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4252 {
4253         u16 data = (u16)hw->mac.ledctl_mode2;
4254         u32 i, led;
4255
4256         /* If no link, then turn LED on by setting the invert bit
4257          * for each LED that's mode is "link_up" in ledctl_mode2.
4258          */
4259         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4260                 for (i = 0; i < 3; i++) {
4261                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4262                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4263                             E1000_LEDCTL_MODE_LINK_UP)
4264                                 continue;
4265                         if (led & E1000_PHY_LED0_IVRT)
4266                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4267                         else
4268                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4269                 }
4270         }
4271
4272         return e1e_wphy(hw, HV_LED_CONFIG, data);
4273 }
4274
4275 /**
4276  *  e1000_led_off_pchlan - Turn LEDs off
4277  *  @hw: pointer to the HW structure
4278  *
4279  *  Turn off the LEDs.
4280  **/
4281 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4282 {
4283         u16 data = (u16)hw->mac.ledctl_mode1;
4284         u32 i, led;
4285
4286         /* If no link, then turn LED off by clearing the invert bit
4287          * for each LED that's mode is "link_up" in ledctl_mode1.
4288          */
4289         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4290                 for (i = 0; i < 3; i++) {
4291                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4292                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4293                             E1000_LEDCTL_MODE_LINK_UP)
4294                                 continue;
4295                         if (led & E1000_PHY_LED0_IVRT)
4296                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4297                         else
4298                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4299                 }
4300         }
4301
4302         return e1e_wphy(hw, HV_LED_CONFIG, data);
4303 }
4304
4305 /**
4306  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4307  *  @hw: pointer to the HW structure
4308  *
4309  *  Read appropriate register for the config done bit for completion status
4310  *  and configure the PHY through s/w for EEPROM-less parts.
4311  *
4312  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4313  *  config done bit, so only an error is logged and continues.  If we were
4314  *  to return with error, EEPROM-less silicon would not be able to be reset
4315  *  or change link.
4316  **/
4317 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4318 {
4319         s32 ret_val = 0;
4320         u32 bank = 0;
4321         u32 status;
4322
4323         e1000e_get_cfg_done_generic(hw);
4324
4325         /* Wait for indication from h/w that it has completed basic config */
4326         if (hw->mac.type >= e1000_ich10lan) {
4327                 e1000_lan_init_done_ich8lan(hw);
4328         } else {
4329                 ret_val = e1000e_get_auto_rd_done(hw);
4330                 if (ret_val) {
4331                         /* When auto config read does not complete, do not
4332                          * return with an error. This can happen in situations
4333                          * where there is no eeprom and prevents getting link.
4334                          */
4335                         e_dbg("Auto Read Done did not complete\n");
4336                         ret_val = 0;
4337                 }
4338         }
4339
4340         /* Clear PHY Reset Asserted bit */
4341         status = er32(STATUS);
4342         if (status & E1000_STATUS_PHYRA)
4343                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4344         else
4345                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4346
4347         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4348         if (hw->mac.type <= e1000_ich9lan) {
4349                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4350                     (hw->phy.type == e1000_phy_igp_3)) {
4351                         e1000e_phy_init_script_igp3(hw);
4352                 }
4353         } else {
4354                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4355                         /* Maybe we should do a basic PHY config */
4356                         e_dbg("EEPROM not present\n");
4357                         ret_val = -E1000_ERR_CONFIG;
4358                 }
4359         }
4360
4361         return ret_val;
4362 }
4363
4364 /**
4365  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4366  * @hw: pointer to the HW structure
4367  *
4368  * In the case of a PHY power down to save power, or to turn off link during a
4369  * driver unload, or wake on lan is not enabled, remove the link.
4370  **/
4371 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4372 {
4373         /* If the management interface is not enabled, then power down */
4374         if (!(hw->mac.ops.check_mng_mode(hw) ||
4375               hw->phy.ops.check_reset_block(hw)))
4376                 e1000_power_down_phy_copper(hw);
4377 }
4378
4379 /**
4380  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4381  *  @hw: pointer to the HW structure
4382  *
4383  *  Clears hardware counters specific to the silicon family and calls
4384  *  clear_hw_cntrs_generic to clear all general purpose counters.
4385  **/
4386 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4387 {
4388         u16 phy_data;
4389         s32 ret_val;
4390
4391         e1000e_clear_hw_cntrs_base(hw);
4392
4393         er32(ALGNERRC);
4394         er32(RXERRC);
4395         er32(TNCRS);
4396         er32(CEXTERR);
4397         er32(TSCTC);
4398         er32(TSCTFC);
4399
4400         er32(MGTPRC);
4401         er32(MGTPDC);
4402         er32(MGTPTC);
4403
4404         er32(IAC);
4405         er32(ICRXOC);
4406
4407         /* Clear PHY statistics registers */
4408         if ((hw->phy.type == e1000_phy_82578) ||
4409             (hw->phy.type == e1000_phy_82579) ||
4410             (hw->phy.type == e1000_phy_i217) ||
4411             (hw->phy.type == e1000_phy_82577)) {
4412                 ret_val = hw->phy.ops.acquire(hw);
4413                 if (ret_val)
4414                         return;
4415                 ret_val = hw->phy.ops.set_page(hw,
4416                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4417                 if (ret_val)
4418                         goto release;
4419                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4420                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4421                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4422                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4423                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4424                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4425                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4426                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4427                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4428                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4429                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4430                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4431                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4432                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4433 release:
4434                 hw->phy.ops.release(hw);
4435         }
4436 }
4437
4438 static const struct e1000_mac_operations ich8_mac_ops = {
4439         /* check_mng_mode dependent on mac type */
4440         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4441         /* cleanup_led dependent on mac type */
4442         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4443         .get_bus_info           = e1000_get_bus_info_ich8lan,
4444         .set_lan_id             = e1000_set_lan_id_single_port,
4445         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4446         /* led_on dependent on mac type */
4447         /* led_off dependent on mac type */
4448         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4449         .reset_hw               = e1000_reset_hw_ich8lan,
4450         .init_hw                = e1000_init_hw_ich8lan,
4451         .setup_link             = e1000_setup_link_ich8lan,
4452         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4453         /* id_led_init dependent on mac type */
4454         .config_collision_dist  = e1000e_config_collision_dist_generic,
4455         .rar_set                = e1000e_rar_set_generic,
4456 };
4457
4458 static const struct e1000_phy_operations ich8_phy_ops = {
4459         .acquire                = e1000_acquire_swflag_ich8lan,
4460         .check_reset_block      = e1000_check_reset_block_ich8lan,
4461         .commit                 = NULL,
4462         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4463         .get_cable_length       = e1000e_get_cable_length_igp_2,
4464         .read_reg               = e1000e_read_phy_reg_igp,
4465         .release                = e1000_release_swflag_ich8lan,
4466         .reset                  = e1000_phy_hw_reset_ich8lan,
4467         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4468         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4469         .write_reg              = e1000e_write_phy_reg_igp,
4470 };
4471
4472 static const struct e1000_nvm_operations ich8_nvm_ops = {
4473         .acquire                = e1000_acquire_nvm_ich8lan,
4474         .read                   = e1000_read_nvm_ich8lan,
4475         .release                = e1000_release_nvm_ich8lan,
4476         .reload                 = e1000e_reload_nvm_generic,
4477         .update                 = e1000_update_nvm_checksum_ich8lan,
4478         .valid_led_default      = e1000_valid_led_default_ich8lan,
4479         .validate               = e1000_validate_nvm_checksum_ich8lan,
4480         .write                  = e1000_write_nvm_ich8lan,
4481 };
4482
4483 const struct e1000_info e1000_ich8_info = {
4484         .mac                    = e1000_ich8lan,
4485         .flags                  = FLAG_HAS_WOL
4486                                   | FLAG_IS_ICH
4487                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4488                                   | FLAG_HAS_AMT
4489                                   | FLAG_HAS_FLASH
4490                                   | FLAG_APME_IN_WUC,
4491         .pba                    = 8,
4492         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4493         .get_variants           = e1000_get_variants_ich8lan,
4494         .mac_ops                = &ich8_mac_ops,
4495         .phy_ops                = &ich8_phy_ops,
4496         .nvm_ops                = &ich8_nvm_ops,
4497 };
4498
4499 const struct e1000_info e1000_ich9_info = {
4500         .mac                    = e1000_ich9lan,
4501         .flags                  = FLAG_HAS_JUMBO_FRAMES
4502                                   | FLAG_IS_ICH
4503                                   | FLAG_HAS_WOL
4504                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4505                                   | FLAG_HAS_AMT
4506                                   | FLAG_HAS_FLASH
4507                                   | FLAG_APME_IN_WUC,
4508         .pba                    = 18,
4509         .max_hw_frame_size      = DEFAULT_JUMBO,
4510         .get_variants           = e1000_get_variants_ich8lan,
4511         .mac_ops                = &ich8_mac_ops,
4512         .phy_ops                = &ich8_phy_ops,
4513         .nvm_ops                = &ich8_nvm_ops,
4514 };
4515
4516 const struct e1000_info e1000_ich10_info = {
4517         .mac                    = e1000_ich10lan,
4518         .flags                  = FLAG_HAS_JUMBO_FRAMES
4519                                   | FLAG_IS_ICH
4520                                   | FLAG_HAS_WOL
4521                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4522                                   | FLAG_HAS_AMT
4523                                   | FLAG_HAS_FLASH
4524                                   | FLAG_APME_IN_WUC,
4525         .pba                    = 18,
4526         .max_hw_frame_size      = DEFAULT_JUMBO,
4527         .get_variants           = e1000_get_variants_ich8lan,
4528         .mac_ops                = &ich8_mac_ops,
4529         .phy_ops                = &ich8_phy_ops,
4530         .nvm_ops                = &ich8_nvm_ops,
4531 };
4532
4533 const struct e1000_info e1000_pch_info = {
4534         .mac                    = e1000_pchlan,
4535         .flags                  = FLAG_IS_ICH
4536                                   | FLAG_HAS_WOL
4537                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4538                                   | FLAG_HAS_AMT
4539                                   | FLAG_HAS_FLASH
4540                                   | FLAG_HAS_JUMBO_FRAMES
4541                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4542                                   | FLAG_APME_IN_WUC,
4543         .flags2                 = FLAG2_HAS_PHY_STATS,
4544         .pba                    = 26,
4545         .max_hw_frame_size      = 4096,
4546         .get_variants           = e1000_get_variants_ich8lan,
4547         .mac_ops                = &ich8_mac_ops,
4548         .phy_ops                = &ich8_phy_ops,
4549         .nvm_ops                = &ich8_nvm_ops,
4550 };
4551
4552 const struct e1000_info e1000_pch2_info = {
4553         .mac                    = e1000_pch2lan,
4554         .flags                  = FLAG_IS_ICH
4555                                   | FLAG_HAS_WOL
4556                                   | FLAG_HAS_HW_TIMESTAMP
4557                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4558                                   | FLAG_HAS_AMT
4559                                   | FLAG_HAS_FLASH
4560                                   | FLAG_HAS_JUMBO_FRAMES
4561                                   | FLAG_APME_IN_WUC,
4562         .flags2                 = FLAG2_HAS_PHY_STATS
4563                                   | FLAG2_HAS_EEE,
4564         .pba                    = 26,
4565         .max_hw_frame_size      = 9018,
4566         .get_variants           = e1000_get_variants_ich8lan,
4567         .mac_ops                = &ich8_mac_ops,
4568         .phy_ops                = &ich8_phy_ops,
4569         .nvm_ops                = &ich8_nvm_ops,
4570 };
4571
4572 const struct e1000_info e1000_pch_lpt_info = {
4573         .mac                    = e1000_pch_lpt,
4574         .flags                  = FLAG_IS_ICH
4575                                   | FLAG_HAS_WOL
4576                                   | FLAG_HAS_HW_TIMESTAMP
4577                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4578                                   | FLAG_HAS_AMT
4579                                   | FLAG_HAS_FLASH
4580                                   | FLAG_HAS_JUMBO_FRAMES
4581                                   | FLAG_APME_IN_WUC,
4582         .flags2                 = FLAG2_HAS_PHY_STATS
4583                                   | FLAG2_HAS_EEE,
4584         .pba                    = 26,
4585         .max_hw_frame_size      = 9018,
4586         .get_variants           = e1000_get_variants_ich8lan,
4587         .mac_ops                = &ich8_mac_ops,
4588         .phy_ops                = &ich8_phy_ops,
4589         .nvm_ops                = &ich8_nvm_ops,
4590 };