]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
e1000e: Undo e1000e_pm_freeze if __e1000_shutdown fails
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74         [board_pch_cnp]         = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78         u32 ofs;
79         char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83         /* General Registers */
84         {E1000_CTRL, "CTRL"},
85         {E1000_STATUS, "STATUS"},
86         {E1000_CTRL_EXT, "CTRL_EXT"},
87
88         /* Interrupt Registers */
89         {E1000_ICR, "ICR"},
90
91         /* Rx Registers */
92         {E1000_RCTL, "RCTL"},
93         {E1000_RDLEN(0), "RDLEN"},
94         {E1000_RDH(0), "RDH"},
95         {E1000_RDT(0), "RDT"},
96         {E1000_RDTR, "RDTR"},
97         {E1000_RXDCTL(0), "RXDCTL"},
98         {E1000_ERT, "ERT"},
99         {E1000_RDBAL(0), "RDBAL"},
100         {E1000_RDBAH(0), "RDBAH"},
101         {E1000_RDFH, "RDFH"},
102         {E1000_RDFT, "RDFT"},
103         {E1000_RDFHS, "RDFHS"},
104         {E1000_RDFTS, "RDFTS"},
105         {E1000_RDFPC, "RDFPC"},
106
107         /* Tx Registers */
108         {E1000_TCTL, "TCTL"},
109         {E1000_TDBAL(0), "TDBAL"},
110         {E1000_TDBAH(0), "TDBAH"},
111         {E1000_TDLEN(0), "TDLEN"},
112         {E1000_TDH(0), "TDH"},
113         {E1000_TDT(0), "TDT"},
114         {E1000_TIDV, "TIDV"},
115         {E1000_TXDCTL(0), "TXDCTL"},
116         {E1000_TADV, "TADV"},
117         {E1000_TARC(0), "TARC"},
118         {E1000_TDFH, "TDFH"},
119         {E1000_TDFT, "TDFT"},
120         {E1000_TDFHS, "TDFHS"},
121         {E1000_TDFTS, "TDFTS"},
122         {E1000_TDFPC, "TDFPC"},
123
124         /* List Terminator */
125         {0, NULL}
126 };
127
128 /**
129  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130  * @hw: pointer to the HW structure
131  *
132  * When updating the MAC CSR registers, the Manageability Engine (ME) could
133  * be accessing the registers at the same time.  Normally, this is handled in
134  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135  * accesses later than it should which could result in the register to have
136  * an incorrect value.  Workaround this by checking the FWSM register which
137  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138  * and try again a number of times.
139  **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145                 udelay(50);
146
147         return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153                 __ew32_prepare(hw);
154
155         writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159  * e1000_regdump - register printout routine
160  * @hw: pointer to the HW structure
161  * @reginfo: pointer to the register info table
162  **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165         int n = 0;
166         char rname[16];
167         u32 regs[8];
168
169         switch (reginfo->ofs) {
170         case E1000_RXDCTL(0):
171                 for (n = 0; n < 2; n++)
172                         regs[n] = __er32(hw, E1000_RXDCTL(n));
173                 break;
174         case E1000_TXDCTL(0):
175                 for (n = 0; n < 2; n++)
176                         regs[n] = __er32(hw, E1000_TXDCTL(n));
177                 break;
178         case E1000_TARC(0):
179                 for (n = 0; n < 2; n++)
180                         regs[n] = __er32(hw, E1000_TARC(n));
181                 break;
182         default:
183                 pr_info("%-15s %08x\n",
184                         reginfo->name, __er32(hw, reginfo->ofs));
185                 return;
186         }
187
188         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193                                  struct e1000_buffer *bi)
194 {
195         int i;
196         struct e1000_ps_page *ps_page;
197
198         for (i = 0; i < adapter->rx_ps_pages; i++) {
199                 ps_page = &bi->ps_pages[i];
200
201                 if (ps_page->page) {
202                         pr_info("packet dump for ps_page %d:\n", i);
203                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204                                        16, 1, page_address(ps_page->page),
205                                        PAGE_SIZE, true);
206                 }
207         }
208 }
209
210 /**
211  * e1000e_dump - Print registers, Tx-ring and Rx-ring
212  * @adapter: board private structure
213  **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216         struct net_device *netdev = adapter->netdev;
217         struct e1000_hw *hw = &adapter->hw;
218         struct e1000_reg_info *reginfo;
219         struct e1000_ring *tx_ring = adapter->tx_ring;
220         struct e1000_tx_desc *tx_desc;
221         struct my_u0 {
222                 __le64 a;
223                 __le64 b;
224         } *u0;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ring *rx_ring = adapter->rx_ring;
227         union e1000_rx_desc_packet_split *rx_desc_ps;
228         union e1000_rx_desc_extended *rx_desc;
229         struct my_u1 {
230                 __le64 a;
231                 __le64 b;
232                 __le64 c;
233                 __le64 d;
234         } *u1;
235         u32 staterr;
236         int i = 0;
237
238         if (!netif_msg_hw(adapter))
239                 return;
240
241         /* Print netdevice Info */
242         if (netdev) {
243                 dev_info(&adapter->pdev->dev, "Net device Info\n");
244                 pr_info("Device Name     state            trans_start\n");
245                 pr_info("%-15s %016lX %016lX\n", netdev->name,
246                         netdev->state, dev_trans_start(netdev));
247         }
248
249         /* Print Registers */
250         dev_info(&adapter->pdev->dev, "Register Dump\n");
251         pr_info(" Register Name   Value\n");
252         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253              reginfo->name; reginfo++) {
254                 e1000_regdump(hw, reginfo);
255         }
256
257         /* Print Tx Ring Summary */
258         if (!netdev || !netif_running(netdev))
259                 return;
260
261         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
263         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266                 (unsigned long long)buffer_info->dma,
267                 buffer_info->length,
268                 buffer_info->next_to_watch,
269                 (unsigned long long)buffer_info->time_stamp);
270
271         /* Print Tx Ring */
272         if (!netif_msg_tx_done(adapter))
273                 goto rx_ring_summary;
274
275         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278          *
279          * Legacy Transmit Descriptor
280          *   +--------------------------------------------------------------+
281          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
282          *   +--------------------------------------------------------------+
283          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
284          *   +--------------------------------------------------------------+
285          *   63       48 47        36 35    32 31     24 23    16 15        0
286          *
287          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288          *   63      48 47    40 39       32 31             16 15    8 7      0
289          *   +----------------------------------------------------------------+
290          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
291          *   +----------------------------------------------------------------+
292          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
293          *   +----------------------------------------------------------------+
294          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
295          *
296          * Extended Data Descriptor (DTYP=0x1)
297          *   +----------------------------------------------------------------+
298          * 0 |                     Buffer Address [63:0]                      |
299          *   +----------------------------------------------------------------+
300          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
301          *   +----------------------------------------------------------------+
302          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
303          */
304         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
305         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
306         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
307         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308                 const char *next_desc;
309                 tx_desc = E1000_TX_DESC(*tx_ring, i);
310                 buffer_info = &tx_ring->buffer_info[i];
311                 u0 = (struct my_u0 *)tx_desc;
312                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313                         next_desc = " NTC/U";
314                 else if (i == tx_ring->next_to_use)
315                         next_desc = " NTU";
316                 else if (i == tx_ring->next_to_clean)
317                         next_desc = " NTC";
318                 else
319                         next_desc = "";
320                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
321                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323                         i,
324                         (unsigned long long)le64_to_cpu(u0->a),
325                         (unsigned long long)le64_to_cpu(u0->b),
326                         (unsigned long long)buffer_info->dma,
327                         buffer_info->length, buffer_info->next_to_watch,
328                         (unsigned long long)buffer_info->time_stamp,
329                         buffer_info->skb, next_desc);
330
331                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333                                        16, 1, buffer_info->skb->data,
334                                        buffer_info->skb->len, true);
335         }
336
337         /* Print Rx Ring Summary */
338 rx_ring_summary:
339         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340         pr_info("Queue [NTU] [NTC]\n");
341         pr_info(" %5d %5X %5X\n",
342                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344         /* Print Rx Ring */
345         if (!netif_msg_rx_status(adapter))
346                 return;
347
348         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349         switch (adapter->rx_ps_pages) {
350         case 1:
351         case 2:
352         case 3:
353                 /* [Extended] Packet Split Receive Descriptor Format
354                  *
355                  *    +-----------------------------------------------------+
356                  *  0 |                Buffer Address 0 [63:0]              |
357                  *    +-----------------------------------------------------+
358                  *  8 |                Buffer Address 1 [63:0]              |
359                  *    +-----------------------------------------------------+
360                  * 16 |                Buffer Address 2 [63:0]              |
361                  *    +-----------------------------------------------------+
362                  * 24 |                Buffer Address 3 [63:0]              |
363                  *    +-----------------------------------------------------+
364                  */
365                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
366                 /* [Extended] Receive Descriptor (Write-Back) Format
367                  *
368                  *   63       48 47    32 31     13 12    8 7    4 3        0
369                  *   +------------------------------------------------------+
370                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
371                  *   | Checksum | Ident  |         | Queue |      |  Type   |
372                  *   +------------------------------------------------------+
373                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374                  *   +------------------------------------------------------+
375                  *   63       48 47    32 31            20 19               0
376                  */
377                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378                 for (i = 0; i < rx_ring->count; i++) {
379                         const char *next_desc;
380                         buffer_info = &rx_ring->buffer_info[i];
381                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382                         u1 = (struct my_u1 *)rx_desc_ps;
383                         staterr =
384                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386                         if (i == rx_ring->next_to_use)
387                                 next_desc = " NTU";
388                         else if (i == rx_ring->next_to_clean)
389                                 next_desc = " NTC";
390                         else
391                                 next_desc = "";
392
393                         if (staterr & E1000_RXD_STAT_DD) {
394                                 /* Descriptor Done */
395                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396                                         "RWB", i,
397                                         (unsigned long long)le64_to_cpu(u1->a),
398                                         (unsigned long long)le64_to_cpu(u1->b),
399                                         (unsigned long long)le64_to_cpu(u1->c),
400                                         (unsigned long long)le64_to_cpu(u1->d),
401                                         buffer_info->skb, next_desc);
402                         } else {
403                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
404                                         "R  ", i,
405                                         (unsigned long long)le64_to_cpu(u1->a),
406                                         (unsigned long long)le64_to_cpu(u1->b),
407                                         (unsigned long long)le64_to_cpu(u1->c),
408                                         (unsigned long long)le64_to_cpu(u1->d),
409                                         (unsigned long long)buffer_info->dma,
410                                         buffer_info->skb, next_desc);
411
412                                 if (netif_msg_pktdata(adapter))
413                                         e1000e_dump_ps_pages(adapter,
414                                                              buffer_info);
415                         }
416                 }
417                 break;
418         default:
419         case 0:
420                 /* Extended Receive Descriptor (Read) Format
421                  *
422                  *   +-----------------------------------------------------+
423                  * 0 |                Buffer Address [63:0]                |
424                  *   +-----------------------------------------------------+
425                  * 8 |                      Reserved                       |
426                  *   +-----------------------------------------------------+
427                  */
428                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
429                 /* Extended Receive Descriptor (Write-Back) Format
430                  *
431                  *   63       48 47    32 31    24 23            4 3        0
432                  *   +------------------------------------------------------+
433                  *   |     RSS Hash      |        |               |         |
434                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
435                  *   | Packet   | IP     |        |               |  Type   |
436                  *   | Checksum | Ident  |        |               |         |
437                  *   +------------------------------------------------------+
438                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439                  *   +------------------------------------------------------+
440                  *   63       48 47    32 31            20 19               0
441                  */
442                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444                 for (i = 0; i < rx_ring->count; i++) {
445                         const char *next_desc;
446
447                         buffer_info = &rx_ring->buffer_info[i];
448                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449                         u1 = (struct my_u1 *)rx_desc;
450                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452                         if (i == rx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == rx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         if (staterr & E1000_RXD_STAT_DD) {
460                                 /* Descriptor Done */
461                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
462                                         "RWB", i,
463                                         (unsigned long long)le64_to_cpu(u1->a),
464                                         (unsigned long long)le64_to_cpu(u1->b),
465                                         buffer_info->skb, next_desc);
466                         } else {
467                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
468                                         "R  ", i,
469                                         (unsigned long long)le64_to_cpu(u1->a),
470                                         (unsigned long long)le64_to_cpu(u1->b),
471                                         (unsigned long long)buffer_info->dma,
472                                         buffer_info->skb, next_desc);
473
474                                 if (netif_msg_pktdata(adapter) &&
475                                     buffer_info->skb)
476                                         print_hex_dump(KERN_INFO, "",
477                                                        DUMP_PREFIX_ADDRESS, 16,
478                                                        1,
479                                                        buffer_info->skb->data,
480                                                        adapter->rx_buffer_len,
481                                                        true);
482                         }
483                 }
484         }
485 }
486
487 /**
488  * e1000_desc_unused - calculate if we have unused descriptors
489  **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492         if (ring->next_to_clean > ring->next_to_use)
493                 return ring->next_to_clean - ring->next_to_use - 1;
494
495         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500  * @adapter: board private structure
501  * @hwtstamps: time stamp structure to update
502  * @systim: unsigned 64bit system time value.
503  *
504  * Convert the system time value stored in the RX/TXSTMP registers into a
505  * hwtstamp which can be used by the upper level time stamping functions.
506  *
507  * The 'systim_lock' spinlock is used to protect the consistency of the
508  * system time value. This is needed because reading the 64 bit time
509  * value involves reading two 32 bit registers. The first read latches the
510  * value.
511  **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513                                       struct skb_shared_hwtstamps *hwtstamps,
514                                       u64 systim)
515 {
516         u64 ns;
517         unsigned long flags;
518
519         spin_lock_irqsave(&adapter->systim_lock, flags);
520         ns = timecounter_cyc2time(&adapter->tc, systim);
521         spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523         memset(hwtstamps, 0, sizeof(*hwtstamps));
524         hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529  * @adapter: board private structure
530  * @status: descriptor extended error and status field
531  * @skb: particular skb to include time stamp
532  *
533  * If the time stamp is valid, convert it into the timecounter ns value
534  * and store that result into the shhwtstamps structure which is passed
535  * up the network stack.
536  **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538                                struct sk_buff *skb)
539 {
540         struct e1000_hw *hw = &adapter->hw;
541         u64 rxstmp;
542
543         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544             !(status & E1000_RXDEXT_STATERR_TST) ||
545             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546                 return;
547
548         /* The Rx time stamp registers contain the time stamp.  No other
549          * received packet will be time stamped until the Rx time stamp
550          * registers are read.  Because only one packet can be time stamped
551          * at a time, the register values must belong to this packet and
552          * therefore none of the other additional attributes need to be
553          * compared.
554          */
555         rxstmp = (u64)er32(RXSTMPL);
556         rxstmp |= (u64)er32(RXSTMPH) << 32;
557         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563  * e1000_receive_skb - helper function to handle Rx indications
564  * @adapter: board private structure
565  * @staterr: descriptor extended error and status field as written by hardware
566  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567  * @skb: pointer to sk_buff to be indicated to stack
568  **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570                               struct net_device *netdev, struct sk_buff *skb,
571                               u32 staterr, __le16 vlan)
572 {
573         u16 tag = le16_to_cpu(vlan);
574
575         e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577         skb->protocol = eth_type_trans(skb, netdev);
578
579         if (staterr & E1000_RXD_STAT_VP)
580                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582         napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586  * e1000_rx_checksum - Receive Checksum Offload
587  * @adapter: board private structure
588  * @status_err: receive descriptor status and error fields
589  * @csum: receive descriptor csum field
590  * @sk_buff: socket buffer with received data
591  **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593                               struct sk_buff *skb)
594 {
595         u16 status = (u16)status_err;
596         u8 errors = (u8)(status_err >> 24);
597
598         skb_checksum_none_assert(skb);
599
600         /* Rx checksum disabled */
601         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602                 return;
603
604         /* Ignore Checksum bit is set */
605         if (status & E1000_RXD_STAT_IXSM)
606                 return;
607
608         /* TCP/UDP checksum error bit or IP checksum error bit is set */
609         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610                 /* let the stack verify checksum errors */
611                 adapter->hw_csum_err++;
612                 return;
613         }
614
615         /* TCP/UDP Checksum has not been calculated */
616         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617                 return;
618
619         /* It must be a TCP or UDP packet with a valid checksum */
620         skb->ip_summed = CHECKSUM_UNNECESSARY;
621         adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626         struct e1000_adapter *adapter = rx_ring->adapter;
627         struct e1000_hw *hw = &adapter->hw;
628         s32 ret_val = __ew32_prepare(hw);
629
630         writel(i, rx_ring->tail);
631
632         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633                 u32 rctl = er32(RCTL);
634
635                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636                 e_err("ME firmware caused invalid RDT - resetting\n");
637                 schedule_work(&adapter->reset_task);
638         }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643         struct e1000_adapter *adapter = tx_ring->adapter;
644         struct e1000_hw *hw = &adapter->hw;
645         s32 ret_val = __ew32_prepare(hw);
646
647         writel(i, tx_ring->tail);
648
649         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650                 u32 tctl = er32(TCTL);
651
652                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653                 e_err("ME firmware caused invalid TDT - resetting\n");
654                 schedule_work(&adapter->reset_task);
655         }
656 }
657
658 /**
659  * e1000_alloc_rx_buffers - Replace used receive buffers
660  * @rx_ring: Rx descriptor ring
661  **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663                                    int cleaned_count, gfp_t gfp)
664 {
665         struct e1000_adapter *adapter = rx_ring->adapter;
666         struct net_device *netdev = adapter->netdev;
667         struct pci_dev *pdev = adapter->pdev;
668         union e1000_rx_desc_extended *rx_desc;
669         struct e1000_buffer *buffer_info;
670         struct sk_buff *skb;
671         unsigned int i;
672         unsigned int bufsz = adapter->rx_buffer_len;
673
674         i = rx_ring->next_to_use;
675         buffer_info = &rx_ring->buffer_info[i];
676
677         while (cleaned_count--) {
678                 skb = buffer_info->skb;
679                 if (skb) {
680                         skb_trim(skb, 0);
681                         goto map_skb;
682                 }
683
684                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685                 if (!skb) {
686                         /* Better luck next round */
687                         adapter->alloc_rx_buff_failed++;
688                         break;
689                 }
690
691                 buffer_info->skb = skb;
692 map_skb:
693                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694                                                   adapter->rx_buffer_len,
695                                                   DMA_FROM_DEVICE);
696                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697                         dev_err(&pdev->dev, "Rx DMA map failed\n");
698                         adapter->rx_dma_failed++;
699                         break;
700                 }
701
702                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706                         /* Force memory writes to complete before letting h/w
707                          * know there are new descriptors to fetch.  (Only
708                          * applicable for weak-ordered memory model archs,
709                          * such as IA-64).
710                          */
711                         wmb();
712                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713                                 e1000e_update_rdt_wa(rx_ring, i);
714                         else
715                                 writel(i, rx_ring->tail);
716                 }
717                 i++;
718                 if (i == rx_ring->count)
719                         i = 0;
720                 buffer_info = &rx_ring->buffer_info[i];
721         }
722
723         rx_ring->next_to_use = i;
724 }
725
726 /**
727  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728  * @rx_ring: Rx descriptor ring
729  **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731                                       int cleaned_count, gfp_t gfp)
732 {
733         struct e1000_adapter *adapter = rx_ring->adapter;
734         struct net_device *netdev = adapter->netdev;
735         struct pci_dev *pdev = adapter->pdev;
736         union e1000_rx_desc_packet_split *rx_desc;
737         struct e1000_buffer *buffer_info;
738         struct e1000_ps_page *ps_page;
739         struct sk_buff *skb;
740         unsigned int i, j;
741
742         i = rx_ring->next_to_use;
743         buffer_info = &rx_ring->buffer_info[i];
744
745         while (cleaned_count--) {
746                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749                         ps_page = &buffer_info->ps_pages[j];
750                         if (j >= adapter->rx_ps_pages) {
751                                 /* all unused desc entries get hw null ptr */
752                                 rx_desc->read.buffer_addr[j + 1] =
753                                     ~cpu_to_le64(0);
754                                 continue;
755                         }
756                         if (!ps_page->page) {
757                                 ps_page->page = alloc_page(gfp);
758                                 if (!ps_page->page) {
759                                         adapter->alloc_rx_buff_failed++;
760                                         goto no_buffers;
761                                 }
762                                 ps_page->dma = dma_map_page(&pdev->dev,
763                                                             ps_page->page,
764                                                             0, PAGE_SIZE,
765                                                             DMA_FROM_DEVICE);
766                                 if (dma_mapping_error(&pdev->dev,
767                                                       ps_page->dma)) {
768                                         dev_err(&adapter->pdev->dev,
769                                                 "Rx DMA page map failed\n");
770                                         adapter->rx_dma_failed++;
771                                         goto no_buffers;
772                                 }
773                         }
774                         /* Refresh the desc even if buffer_addrs
775                          * didn't change because each write-back
776                          * erases this info.
777                          */
778                         rx_desc->read.buffer_addr[j + 1] =
779                             cpu_to_le64(ps_page->dma);
780                 }
781
782                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783                                                   gfp);
784
785                 if (!skb) {
786                         adapter->alloc_rx_buff_failed++;
787                         break;
788                 }
789
790                 buffer_info->skb = skb;
791                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792                                                   adapter->rx_ps_bsize0,
793                                                   DMA_FROM_DEVICE);
794                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795                         dev_err(&pdev->dev, "Rx DMA map failed\n");
796                         adapter->rx_dma_failed++;
797                         /* cleanup skb */
798                         dev_kfree_skb_any(skb);
799                         buffer_info->skb = NULL;
800                         break;
801                 }
802
803                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806                         /* Force memory writes to complete before letting h/w
807                          * know there are new descriptors to fetch.  (Only
808                          * applicable for weak-ordered memory model archs,
809                          * such as IA-64).
810                          */
811                         wmb();
812                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813                                 e1000e_update_rdt_wa(rx_ring, i << 1);
814                         else
815                                 writel(i << 1, rx_ring->tail);
816                 }
817
818                 i++;
819                 if (i == rx_ring->count)
820                         i = 0;
821                 buffer_info = &rx_ring->buffer_info[i];
822         }
823
824 no_buffers:
825         rx_ring->next_to_use = i;
826 }
827
828 /**
829  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830  * @rx_ring: Rx descriptor ring
831  * @cleaned_count: number of buffers to allocate this pass
832  **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835                                          int cleaned_count, gfp_t gfp)
836 {
837         struct e1000_adapter *adapter = rx_ring->adapter;
838         struct net_device *netdev = adapter->netdev;
839         struct pci_dev *pdev = adapter->pdev;
840         union e1000_rx_desc_extended *rx_desc;
841         struct e1000_buffer *buffer_info;
842         struct sk_buff *skb;
843         unsigned int i;
844         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
845
846         i = rx_ring->next_to_use;
847         buffer_info = &rx_ring->buffer_info[i];
848
849         while (cleaned_count--) {
850                 skb = buffer_info->skb;
851                 if (skb) {
852                         skb_trim(skb, 0);
853                         goto check_page;
854                 }
855
856                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857                 if (unlikely(!skb)) {
858                         /* Better luck next round */
859                         adapter->alloc_rx_buff_failed++;
860                         break;
861                 }
862
863                 buffer_info->skb = skb;
864 check_page:
865                 /* allocate a new page if necessary */
866                 if (!buffer_info->page) {
867                         buffer_info->page = alloc_page(gfp);
868                         if (unlikely(!buffer_info->page)) {
869                                 adapter->alloc_rx_buff_failed++;
870                                 break;
871                         }
872                 }
873
874                 if (!buffer_info->dma) {
875                         buffer_info->dma = dma_map_page(&pdev->dev,
876                                                         buffer_info->page, 0,
877                                                         PAGE_SIZE,
878                                                         DMA_FROM_DEVICE);
879                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880                                 adapter->alloc_rx_buff_failed++;
881                                 break;
882                         }
883                 }
884
885                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888                 if (unlikely(++i == rx_ring->count))
889                         i = 0;
890                 buffer_info = &rx_ring->buffer_info[i];
891         }
892
893         if (likely(rx_ring->next_to_use != i)) {
894                 rx_ring->next_to_use = i;
895                 if (unlikely(i-- == 0))
896                         i = (rx_ring->count - 1);
897
898                 /* Force memory writes to complete before letting h/w
899                  * know there are new descriptors to fetch.  (Only
900                  * applicable for weak-ordered memory model archs,
901                  * such as IA-64).
902                  */
903                 wmb();
904                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905                         e1000e_update_rdt_wa(rx_ring, i);
906                 else
907                         writel(i, rx_ring->tail);
908         }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912                                  struct sk_buff *skb)
913 {
914         if (netdev->features & NETIF_F_RXHASH)
915                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919  * e1000_clean_rx_irq - Send received data up the network stack
920  * @rx_ring: Rx descriptor ring
921  *
922  * the return value indicates whether actual cleaning was done, there
923  * is no guarantee that everything was cleaned
924  **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926                                int work_to_do)
927 {
928         struct e1000_adapter *adapter = rx_ring->adapter;
929         struct net_device *netdev = adapter->netdev;
930         struct pci_dev *pdev = adapter->pdev;
931         struct e1000_hw *hw = &adapter->hw;
932         union e1000_rx_desc_extended *rx_desc, *next_rxd;
933         struct e1000_buffer *buffer_info, *next_buffer;
934         u32 length, staterr;
935         unsigned int i;
936         int cleaned_count = 0;
937         bool cleaned = false;
938         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940         i = rx_ring->next_to_clean;
941         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943         buffer_info = &rx_ring->buffer_info[i];
944
945         while (staterr & E1000_RXD_STAT_DD) {
946                 struct sk_buff *skb;
947
948                 if (*work_done >= work_to_do)
949                         break;
950                 (*work_done)++;
951                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
952
953                 skb = buffer_info->skb;
954                 buffer_info->skb = NULL;
955
956                 prefetch(skb->data - NET_IP_ALIGN);
957
958                 i++;
959                 if (i == rx_ring->count)
960                         i = 0;
961                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962                 prefetch(next_rxd);
963
964                 next_buffer = &rx_ring->buffer_info[i];
965
966                 cleaned = true;
967                 cleaned_count++;
968                 dma_unmap_single(&pdev->dev, buffer_info->dma,
969                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
970                 buffer_info->dma = 0;
971
972                 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974                 /* !EOP means multiple descriptors were used to store a single
975                  * packet, if that's the case we need to toss it.  In fact, we
976                  * need to toss every packet with the EOP bit clear and the
977                  * next frame that _does_ have the EOP bit set, as it is by
978                  * definition only a frame fragment
979                  */
980                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981                         adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984                         /* All receives must fit into a single buffer */
985                         e_dbg("Receive packet consumed multiple buffers\n");
986                         /* recycle */
987                         buffer_info->skb = skb;
988                         if (staterr & E1000_RXD_STAT_EOP)
989                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990                         goto next_desc;
991                 }
992
993                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994                              !(netdev->features & NETIF_F_RXALL))) {
995                         /* recycle */
996                         buffer_info->skb = skb;
997                         goto next_desc;
998                 }
999
1000                 /* adjust length to remove Ethernet CRC */
1001                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002                         /* If configured to store CRC, don't subtract FCS,
1003                          * but keep the FCS bytes out of the total_rx_bytes
1004                          * counter
1005                          */
1006                         if (netdev->features & NETIF_F_RXFCS)
1007                                 total_rx_bytes -= 4;
1008                         else
1009                                 length -= 4;
1010                 }
1011
1012                 total_rx_bytes += length;
1013                 total_rx_packets++;
1014
1015                 /* code added for copybreak, this should improve
1016                  * performance for small packets with large amounts
1017                  * of reassembly being done in the stack
1018                  */
1019                 if (length < copybreak) {
1020                         struct sk_buff *new_skb =
1021                                 napi_alloc_skb(&adapter->napi, length);
1022                         if (new_skb) {
1023                                 skb_copy_to_linear_data_offset(new_skb,
1024                                                                -NET_IP_ALIGN,
1025                                                                (skb->data -
1026                                                                 NET_IP_ALIGN),
1027                                                                (length +
1028                                                                 NET_IP_ALIGN));
1029                                 /* save the skb in buffer_info as good */
1030                                 buffer_info->skb = skb;
1031                                 skb = new_skb;
1032                         }
1033                         /* else just continue with the old one */
1034                 }
1035                 /* end copybreak code */
1036                 skb_put(skb, length);
1037
1038                 /* Receive Checksum Offload */
1039                 e1000_rx_checksum(adapter, staterr, skb);
1040
1041                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043                 e1000_receive_skb(adapter, netdev, skb, staterr,
1044                                   rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049                 /* return some buffers to hardware, one at a time is too slow */
1050                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052                                               GFP_ATOMIC);
1053                         cleaned_count = 0;
1054                 }
1055
1056                 /* use prefetched values */
1057                 rx_desc = next_rxd;
1058                 buffer_info = next_buffer;
1059
1060                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061         }
1062         rx_ring->next_to_clean = i;
1063
1064         cleaned_count = e1000_desc_unused(rx_ring);
1065         if (cleaned_count)
1066                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068         adapter->total_rx_bytes += total_rx_bytes;
1069         adapter->total_rx_packets += total_rx_packets;
1070         return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074                             struct e1000_buffer *buffer_info)
1075 {
1076         struct e1000_adapter *adapter = tx_ring->adapter;
1077
1078         if (buffer_info->dma) {
1079                 if (buffer_info->mapped_as_page)
1080                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1081                                        buffer_info->length, DMA_TO_DEVICE);
1082                 else
1083                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1084                                          buffer_info->length, DMA_TO_DEVICE);
1085                 buffer_info->dma = 0;
1086         }
1087         if (buffer_info->skb) {
1088                 dev_kfree_skb_any(buffer_info->skb);
1089                 buffer_info->skb = NULL;
1090         }
1091         buffer_info->time_stamp = 0;
1092 }
1093
1094 static void e1000_print_hw_hang(struct work_struct *work)
1095 {
1096         struct e1000_adapter *adapter = container_of(work,
1097                                                      struct e1000_adapter,
1098                                                      print_hang_task);
1099         struct net_device *netdev = adapter->netdev;
1100         struct e1000_ring *tx_ring = adapter->tx_ring;
1101         unsigned int i = tx_ring->next_to_clean;
1102         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1103         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1104         struct e1000_hw *hw = &adapter->hw;
1105         u16 phy_status, phy_1000t_status, phy_ext_status;
1106         u16 pci_status;
1107
1108         if (test_bit(__E1000_DOWN, &adapter->state))
1109                 return;
1110
1111         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1112                 /* May be block on write-back, flush and detect again
1113                  * flush pending descriptor writebacks to memory
1114                  */
1115                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1116                 /* execute the writes immediately */
1117                 e1e_flush();
1118                 /* Due to rare timing issues, write to TIDV again to ensure
1119                  * the write is successful
1120                  */
1121                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1122                 /* execute the writes immediately */
1123                 e1e_flush();
1124                 adapter->tx_hang_recheck = true;
1125                 return;
1126         }
1127         adapter->tx_hang_recheck = false;
1128
1129         if (er32(TDH(0)) == er32(TDT(0))) {
1130                 e_dbg("false hang detected, ignoring\n");
1131                 return;
1132         }
1133
1134         /* Real hang detected */
1135         netif_stop_queue(netdev);
1136
1137         e1e_rphy(hw, MII_BMSR, &phy_status);
1138         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1139         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1140
1141         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1142
1143         /* detected Hardware unit hang */
1144         e_err("Detected Hardware Unit Hang:\n"
1145               "  TDH                  <%x>\n"
1146               "  TDT                  <%x>\n"
1147               "  next_to_use          <%x>\n"
1148               "  next_to_clean        <%x>\n"
1149               "buffer_info[next_to_clean]:\n"
1150               "  time_stamp           <%lx>\n"
1151               "  next_to_watch        <%x>\n"
1152               "  jiffies              <%lx>\n"
1153               "  next_to_watch.status <%x>\n"
1154               "MAC Status             <%x>\n"
1155               "PHY Status             <%x>\n"
1156               "PHY 1000BASE-T Status  <%x>\n"
1157               "PHY Extended Status    <%x>\n"
1158               "PCI Status             <%x>\n",
1159               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1160               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1161               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1162               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1163
1164         e1000e_dump(adapter);
1165
1166         /* Suggest workaround for known h/w issue */
1167         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1168                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1169 }
1170
1171 /**
1172  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1173  * @work: pointer to work struct
1174  *
1175  * This work function polls the TSYNCTXCTL valid bit to determine when a
1176  * timestamp has been taken for the current stored skb.  The timestamp must
1177  * be for this skb because only one such packet is allowed in the queue.
1178  */
1179 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1180 {
1181         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1182                                                      tx_hwtstamp_work);
1183         struct e1000_hw *hw = &adapter->hw;
1184
1185         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1186                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1187                 struct skb_shared_hwtstamps shhwtstamps;
1188                 u64 txstmp;
1189
1190                 txstmp = er32(TXSTMPL);
1191                 txstmp |= (u64)er32(TXSTMPH) << 32;
1192
1193                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1194
1195                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1196                  * prior to notifying the stack of a Tx timestamp.
1197                  */
1198                 adapter->tx_hwtstamp_skb = NULL;
1199                 wmb(); /* force write prior to skb_tstamp_tx */
1200
1201                 skb_tstamp_tx(skb, &shhwtstamps);
1202                 dev_kfree_skb_any(skb);
1203         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1204                               + adapter->tx_timeout_factor * HZ)) {
1205                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1206                 adapter->tx_hwtstamp_skb = NULL;
1207                 adapter->tx_hwtstamp_timeouts++;
1208                 e_warn("clearing Tx timestamp hang\n");
1209         } else {
1210                 /* reschedule to check later */
1211                 schedule_work(&adapter->tx_hwtstamp_work);
1212         }
1213 }
1214
1215 /**
1216  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1217  * @tx_ring: Tx descriptor ring
1218  *
1219  * the return value indicates whether actual cleaning was done, there
1220  * is no guarantee that everything was cleaned
1221  **/
1222 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1223 {
1224         struct e1000_adapter *adapter = tx_ring->adapter;
1225         struct net_device *netdev = adapter->netdev;
1226         struct e1000_hw *hw = &adapter->hw;
1227         struct e1000_tx_desc *tx_desc, *eop_desc;
1228         struct e1000_buffer *buffer_info;
1229         unsigned int i, eop;
1230         unsigned int count = 0;
1231         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1232         unsigned int bytes_compl = 0, pkts_compl = 0;
1233
1234         i = tx_ring->next_to_clean;
1235         eop = tx_ring->buffer_info[i].next_to_watch;
1236         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1237
1238         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1239                (count < tx_ring->count)) {
1240                 bool cleaned = false;
1241
1242                 dma_rmb();              /* read buffer_info after eop_desc */
1243                 for (; !cleaned; count++) {
1244                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1245                         buffer_info = &tx_ring->buffer_info[i];
1246                         cleaned = (i == eop);
1247
1248                         if (cleaned) {
1249                                 total_tx_packets += buffer_info->segs;
1250                                 total_tx_bytes += buffer_info->bytecount;
1251                                 if (buffer_info->skb) {
1252                                         bytes_compl += buffer_info->skb->len;
1253                                         pkts_compl++;
1254                                 }
1255                         }
1256
1257                         e1000_put_txbuf(tx_ring, buffer_info);
1258                         tx_desc->upper.data = 0;
1259
1260                         i++;
1261                         if (i == tx_ring->count)
1262                                 i = 0;
1263                 }
1264
1265                 if (i == tx_ring->next_to_use)
1266                         break;
1267                 eop = tx_ring->buffer_info[i].next_to_watch;
1268                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1269         }
1270
1271         tx_ring->next_to_clean = i;
1272
1273         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1274
1275 #define TX_WAKE_THRESHOLD 32
1276         if (count && netif_carrier_ok(netdev) &&
1277             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1278                 /* Make sure that anybody stopping the queue after this
1279                  * sees the new next_to_clean.
1280                  */
1281                 smp_mb();
1282
1283                 if (netif_queue_stopped(netdev) &&
1284                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1285                         netif_wake_queue(netdev);
1286                         ++adapter->restart_queue;
1287                 }
1288         }
1289
1290         if (adapter->detect_tx_hung) {
1291                 /* Detect a transmit hang in hardware, this serializes the
1292                  * check with the clearing of time_stamp and movement of i
1293                  */
1294                 adapter->detect_tx_hung = false;
1295                 if (tx_ring->buffer_info[i].time_stamp &&
1296                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1297                                + (adapter->tx_timeout_factor * HZ)) &&
1298                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1299                         schedule_work(&adapter->print_hang_task);
1300                 else
1301                         adapter->tx_hang_recheck = false;
1302         }
1303         adapter->total_tx_bytes += total_tx_bytes;
1304         adapter->total_tx_packets += total_tx_packets;
1305         return count < tx_ring->count;
1306 }
1307
1308 /**
1309  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1310  * @rx_ring: Rx descriptor ring
1311  *
1312  * the return value indicates whether actual cleaning was done, there
1313  * is no guarantee that everything was cleaned
1314  **/
1315 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1316                                   int work_to_do)
1317 {
1318         struct e1000_adapter *adapter = rx_ring->adapter;
1319         struct e1000_hw *hw = &adapter->hw;
1320         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1321         struct net_device *netdev = adapter->netdev;
1322         struct pci_dev *pdev = adapter->pdev;
1323         struct e1000_buffer *buffer_info, *next_buffer;
1324         struct e1000_ps_page *ps_page;
1325         struct sk_buff *skb;
1326         unsigned int i, j;
1327         u32 length, staterr;
1328         int cleaned_count = 0;
1329         bool cleaned = false;
1330         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1331
1332         i = rx_ring->next_to_clean;
1333         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1334         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1335         buffer_info = &rx_ring->buffer_info[i];
1336
1337         while (staterr & E1000_RXD_STAT_DD) {
1338                 if (*work_done >= work_to_do)
1339                         break;
1340                 (*work_done)++;
1341                 skb = buffer_info->skb;
1342                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1343
1344                 /* in the packet split case this is header only */
1345                 prefetch(skb->data - NET_IP_ALIGN);
1346
1347                 i++;
1348                 if (i == rx_ring->count)
1349                         i = 0;
1350                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1351                 prefetch(next_rxd);
1352
1353                 next_buffer = &rx_ring->buffer_info[i];
1354
1355                 cleaned = true;
1356                 cleaned_count++;
1357                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1358                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1359                 buffer_info->dma = 0;
1360
1361                 /* see !EOP comment in other Rx routine */
1362                 if (!(staterr & E1000_RXD_STAT_EOP))
1363                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1364
1365                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1366                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1367                         dev_kfree_skb_irq(skb);
1368                         if (staterr & E1000_RXD_STAT_EOP)
1369                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1370                         goto next_desc;
1371                 }
1372
1373                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1374                              !(netdev->features & NETIF_F_RXALL))) {
1375                         dev_kfree_skb_irq(skb);
1376                         goto next_desc;
1377                 }
1378
1379                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1380
1381                 if (!length) {
1382                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1383                         dev_kfree_skb_irq(skb);
1384                         goto next_desc;
1385                 }
1386
1387                 /* Good Receive */
1388                 skb_put(skb, length);
1389
1390                 {
1391                         /* this looks ugly, but it seems compiler issues make
1392                          * it more efficient than reusing j
1393                          */
1394                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1395
1396                         /* page alloc/put takes too long and effects small
1397                          * packet throughput, so unsplit small packets and
1398                          * save the alloc/put only valid in softirq (napi)
1399                          * context to call kmap_*
1400                          */
1401                         if (l1 && (l1 <= copybreak) &&
1402                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1403                                 u8 *vaddr;
1404
1405                                 ps_page = &buffer_info->ps_pages[0];
1406
1407                                 /* there is no documentation about how to call
1408                                  * kmap_atomic, so we can't hold the mapping
1409                                  * very long
1410                                  */
1411                                 dma_sync_single_for_cpu(&pdev->dev,
1412                                                         ps_page->dma,
1413                                                         PAGE_SIZE,
1414                                                         DMA_FROM_DEVICE);
1415                                 vaddr = kmap_atomic(ps_page->page);
1416                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1417                                 kunmap_atomic(vaddr);
1418                                 dma_sync_single_for_device(&pdev->dev,
1419                                                            ps_page->dma,
1420                                                            PAGE_SIZE,
1421                                                            DMA_FROM_DEVICE);
1422
1423                                 /* remove the CRC */
1424                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1425                                         if (!(netdev->features & NETIF_F_RXFCS))
1426                                                 l1 -= 4;
1427                                 }
1428
1429                                 skb_put(skb, l1);
1430                                 goto copydone;
1431                         }       /* if */
1432                 }
1433
1434                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1435                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1436                         if (!length)
1437                                 break;
1438
1439                         ps_page = &buffer_info->ps_pages[j];
1440                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1441                                        DMA_FROM_DEVICE);
1442                         ps_page->dma = 0;
1443                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1444                         ps_page->page = NULL;
1445                         skb->len += length;
1446                         skb->data_len += length;
1447                         skb->truesize += PAGE_SIZE;
1448                 }
1449
1450                 /* strip the ethernet crc, problem is we're using pages now so
1451                  * this whole operation can get a little cpu intensive
1452                  */
1453                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1454                         if (!(netdev->features & NETIF_F_RXFCS))
1455                                 pskb_trim(skb, skb->len - 4);
1456                 }
1457
1458 copydone:
1459                 total_rx_bytes += skb->len;
1460                 total_rx_packets++;
1461
1462                 e1000_rx_checksum(adapter, staterr, skb);
1463
1464                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1465
1466                 if (rx_desc->wb.upper.header_status &
1467                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1468                         adapter->rx_hdr_split++;
1469
1470                 e1000_receive_skb(adapter, netdev, skb, staterr,
1471                                   rx_desc->wb.middle.vlan);
1472
1473 next_desc:
1474                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1475                 buffer_info->skb = NULL;
1476
1477                 /* return some buffers to hardware, one at a time is too slow */
1478                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1479                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1480                                               GFP_ATOMIC);
1481                         cleaned_count = 0;
1482                 }
1483
1484                 /* use prefetched values */
1485                 rx_desc = next_rxd;
1486                 buffer_info = next_buffer;
1487
1488                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1489         }
1490         rx_ring->next_to_clean = i;
1491
1492         cleaned_count = e1000_desc_unused(rx_ring);
1493         if (cleaned_count)
1494                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1495
1496         adapter->total_rx_bytes += total_rx_bytes;
1497         adapter->total_rx_packets += total_rx_packets;
1498         return cleaned;
1499 }
1500
1501 /**
1502  * e1000_consume_page - helper function
1503  **/
1504 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1505                                u16 length)
1506 {
1507         bi->page = NULL;
1508         skb->len += length;
1509         skb->data_len += length;
1510         skb->truesize += PAGE_SIZE;
1511 }
1512
1513 /**
1514  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1515  * @adapter: board private structure
1516  *
1517  * the return value indicates whether actual cleaning was done, there
1518  * is no guarantee that everything was cleaned
1519  **/
1520 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1521                                      int work_to_do)
1522 {
1523         struct e1000_adapter *adapter = rx_ring->adapter;
1524         struct net_device *netdev = adapter->netdev;
1525         struct pci_dev *pdev = adapter->pdev;
1526         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1527         struct e1000_buffer *buffer_info, *next_buffer;
1528         u32 length, staterr;
1529         unsigned int i;
1530         int cleaned_count = 0;
1531         bool cleaned = false;
1532         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1533         struct skb_shared_info *shinfo;
1534
1535         i = rx_ring->next_to_clean;
1536         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1537         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1538         buffer_info = &rx_ring->buffer_info[i];
1539
1540         while (staterr & E1000_RXD_STAT_DD) {
1541                 struct sk_buff *skb;
1542
1543                 if (*work_done >= work_to_do)
1544                         break;
1545                 (*work_done)++;
1546                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1547
1548                 skb = buffer_info->skb;
1549                 buffer_info->skb = NULL;
1550
1551                 ++i;
1552                 if (i == rx_ring->count)
1553                         i = 0;
1554                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1555                 prefetch(next_rxd);
1556
1557                 next_buffer = &rx_ring->buffer_info[i];
1558
1559                 cleaned = true;
1560                 cleaned_count++;
1561                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1562                                DMA_FROM_DEVICE);
1563                 buffer_info->dma = 0;
1564
1565                 length = le16_to_cpu(rx_desc->wb.upper.length);
1566
1567                 /* errors is only valid for DD + EOP descriptors */
1568                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1569                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1570                               !(netdev->features & NETIF_F_RXALL)))) {
1571                         /* recycle both page and skb */
1572                         buffer_info->skb = skb;
1573                         /* an error means any chain goes out the window too */
1574                         if (rx_ring->rx_skb_top)
1575                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1576                         rx_ring->rx_skb_top = NULL;
1577                         goto next_desc;
1578                 }
1579 #define rxtop (rx_ring->rx_skb_top)
1580                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1581                         /* this descriptor is only the beginning (or middle) */
1582                         if (!rxtop) {
1583                                 /* this is the beginning of a chain */
1584                                 rxtop = skb;
1585                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1586                                                    0, length);
1587                         } else {
1588                                 /* this is the middle of a chain */
1589                                 shinfo = skb_shinfo(rxtop);
1590                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1591                                                    buffer_info->page, 0,
1592                                                    length);
1593                                 /* re-use the skb, only consumed the page */
1594                                 buffer_info->skb = skb;
1595                         }
1596                         e1000_consume_page(buffer_info, rxtop, length);
1597                         goto next_desc;
1598                 } else {
1599                         if (rxtop) {
1600                                 /* end of the chain */
1601                                 shinfo = skb_shinfo(rxtop);
1602                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1603                                                    buffer_info->page, 0,
1604                                                    length);
1605                                 /* re-use the current skb, we only consumed the
1606                                  * page
1607                                  */
1608                                 buffer_info->skb = skb;
1609                                 skb = rxtop;
1610                                 rxtop = NULL;
1611                                 e1000_consume_page(buffer_info, skb, length);
1612                         } else {
1613                                 /* no chain, got EOP, this buf is the packet
1614                                  * copybreak to save the put_page/alloc_page
1615                                  */
1616                                 if (length <= copybreak &&
1617                                     skb_tailroom(skb) >= length) {
1618                                         u8 *vaddr;
1619                                         vaddr = kmap_atomic(buffer_info->page);
1620                                         memcpy(skb_tail_pointer(skb), vaddr,
1621                                                length);
1622                                         kunmap_atomic(vaddr);
1623                                         /* re-use the page, so don't erase
1624                                          * buffer_info->page
1625                                          */
1626                                         skb_put(skb, length);
1627                                 } else {
1628                                         skb_fill_page_desc(skb, 0,
1629                                                            buffer_info->page, 0,
1630                                                            length);
1631                                         e1000_consume_page(buffer_info, skb,
1632                                                            length);
1633                                 }
1634                         }
1635                 }
1636
1637                 /* Receive Checksum Offload */
1638                 e1000_rx_checksum(adapter, staterr, skb);
1639
1640                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1641
1642                 /* probably a little skewed due to removing CRC */
1643                 total_rx_bytes += skb->len;
1644                 total_rx_packets++;
1645
1646                 /* eth type trans needs skb->data to point to something */
1647                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1648                         e_err("pskb_may_pull failed.\n");
1649                         dev_kfree_skb_irq(skb);
1650                         goto next_desc;
1651                 }
1652
1653                 e1000_receive_skb(adapter, netdev, skb, staterr,
1654                                   rx_desc->wb.upper.vlan);
1655
1656 next_desc:
1657                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1658
1659                 /* return some buffers to hardware, one at a time is too slow */
1660                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1661                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1662                                               GFP_ATOMIC);
1663                         cleaned_count = 0;
1664                 }
1665
1666                 /* use prefetched values */
1667                 rx_desc = next_rxd;
1668                 buffer_info = next_buffer;
1669
1670                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1671         }
1672         rx_ring->next_to_clean = i;
1673
1674         cleaned_count = e1000_desc_unused(rx_ring);
1675         if (cleaned_count)
1676                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1677
1678         adapter->total_rx_bytes += total_rx_bytes;
1679         adapter->total_rx_packets += total_rx_packets;
1680         return cleaned;
1681 }
1682
1683 /**
1684  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1685  * @rx_ring: Rx descriptor ring
1686  **/
1687 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1688 {
1689         struct e1000_adapter *adapter = rx_ring->adapter;
1690         struct e1000_buffer *buffer_info;
1691         struct e1000_ps_page *ps_page;
1692         struct pci_dev *pdev = adapter->pdev;
1693         unsigned int i, j;
1694
1695         /* Free all the Rx ring sk_buffs */
1696         for (i = 0; i < rx_ring->count; i++) {
1697                 buffer_info = &rx_ring->buffer_info[i];
1698                 if (buffer_info->dma) {
1699                         if (adapter->clean_rx == e1000_clean_rx_irq)
1700                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                  adapter->rx_buffer_len,
1702                                                  DMA_FROM_DEVICE);
1703                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1704                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1705                                                PAGE_SIZE, DMA_FROM_DEVICE);
1706                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1707                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1708                                                  adapter->rx_ps_bsize0,
1709                                                  DMA_FROM_DEVICE);
1710                         buffer_info->dma = 0;
1711                 }
1712
1713                 if (buffer_info->page) {
1714                         put_page(buffer_info->page);
1715                         buffer_info->page = NULL;
1716                 }
1717
1718                 if (buffer_info->skb) {
1719                         dev_kfree_skb(buffer_info->skb);
1720                         buffer_info->skb = NULL;
1721                 }
1722
1723                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1724                         ps_page = &buffer_info->ps_pages[j];
1725                         if (!ps_page->page)
1726                                 break;
1727                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1728                                        DMA_FROM_DEVICE);
1729                         ps_page->dma = 0;
1730                         put_page(ps_page->page);
1731                         ps_page->page = NULL;
1732                 }
1733         }
1734
1735         /* there also may be some cached data from a chained receive */
1736         if (rx_ring->rx_skb_top) {
1737                 dev_kfree_skb(rx_ring->rx_skb_top);
1738                 rx_ring->rx_skb_top = NULL;
1739         }
1740
1741         /* Zero out the descriptor ring */
1742         memset(rx_ring->desc, 0, rx_ring->size);
1743
1744         rx_ring->next_to_clean = 0;
1745         rx_ring->next_to_use = 0;
1746         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1747 }
1748
1749 static void e1000e_downshift_workaround(struct work_struct *work)
1750 {
1751         struct e1000_adapter *adapter = container_of(work,
1752                                                      struct e1000_adapter,
1753                                                      downshift_task);
1754
1755         if (test_bit(__E1000_DOWN, &adapter->state))
1756                 return;
1757
1758         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1759 }
1760
1761 /**
1762  * e1000_intr_msi - Interrupt Handler
1763  * @irq: interrupt number
1764  * @data: pointer to a network interface device structure
1765  **/
1766 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1767 {
1768         struct net_device *netdev = data;
1769         struct e1000_adapter *adapter = netdev_priv(netdev);
1770         struct e1000_hw *hw = &adapter->hw;
1771         u32 icr = er32(ICR);
1772
1773         /* read ICR disables interrupts using IAM */
1774         if (icr & E1000_ICR_LSC) {
1775                 hw->mac.get_link_status = true;
1776                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1777                  * disconnect (LSC) before accessing any PHY registers
1778                  */
1779                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1780                     (!(er32(STATUS) & E1000_STATUS_LU)))
1781                         schedule_work(&adapter->downshift_task);
1782
1783                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1784                  * link down event; disable receives here in the ISR and reset
1785                  * adapter in watchdog
1786                  */
1787                 if (netif_carrier_ok(netdev) &&
1788                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1789                         /* disable receives */
1790                         u32 rctl = er32(RCTL);
1791
1792                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1793                         adapter->flags |= FLAG_RESTART_NOW;
1794                 }
1795                 /* guard against interrupt when we're going down */
1796                 if (!test_bit(__E1000_DOWN, &adapter->state))
1797                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1798         }
1799
1800         /* Reset on uncorrectable ECC error */
1801         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1802                 u32 pbeccsts = er32(PBECCSTS);
1803
1804                 adapter->corr_errors +=
1805                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806                 adapter->uncorr_errors +=
1807                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809
1810                 /* Do the reset outside of interrupt context */
1811                 schedule_work(&adapter->reset_task);
1812
1813                 /* return immediately since reset is imminent */
1814                 return IRQ_HANDLED;
1815         }
1816
1817         if (napi_schedule_prep(&adapter->napi)) {
1818                 adapter->total_tx_bytes = 0;
1819                 adapter->total_tx_packets = 0;
1820                 adapter->total_rx_bytes = 0;
1821                 adapter->total_rx_packets = 0;
1822                 __napi_schedule(&adapter->napi);
1823         }
1824
1825         return IRQ_HANDLED;
1826 }
1827
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835         struct net_device *netdev = data;
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         struct e1000_hw *hw = &adapter->hw;
1838         u32 rctl, icr = er32(ICR);
1839
1840         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841                 return IRQ_NONE;        /* Not our interrupt */
1842
1843         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844          * not set, then the adapter didn't send an interrupt
1845          */
1846         if (!(icr & E1000_ICR_INT_ASSERTED))
1847                 return IRQ_NONE;
1848
1849         /* Interrupt Auto-Mask...upon reading ICR,
1850          * interrupts are masked.  No need for the
1851          * IMC write
1852          */
1853
1854         if (icr & E1000_ICR_LSC) {
1855                 hw->mac.get_link_status = true;
1856                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1857                  * disconnect (LSC) before accessing any PHY registers
1858                  */
1859                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860                     (!(er32(STATUS) & E1000_STATUS_LU)))
1861                         schedule_work(&adapter->downshift_task);
1862
1863                 /* 80003ES2LAN workaround--
1864                  * For packet buffer work-around on link down event;
1865                  * disable receives here in the ISR and
1866                  * reset adapter in watchdog
1867                  */
1868                 if (netif_carrier_ok(netdev) &&
1869                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870                         /* disable receives */
1871                         rctl = er32(RCTL);
1872                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873                         adapter->flags |= FLAG_RESTART_NOW;
1874                 }
1875                 /* guard against interrupt when we're going down */
1876                 if (!test_bit(__E1000_DOWN, &adapter->state))
1877                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878         }
1879
1880         /* Reset on uncorrectable ECC error */
1881         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1882                 u32 pbeccsts = er32(PBECCSTS);
1883
1884                 adapter->corr_errors +=
1885                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1886                 adapter->uncorr_errors +=
1887                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1888                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1889
1890                 /* Do the reset outside of interrupt context */
1891                 schedule_work(&adapter->reset_task);
1892
1893                 /* return immediately since reset is imminent */
1894                 return IRQ_HANDLED;
1895         }
1896
1897         if (napi_schedule_prep(&adapter->napi)) {
1898                 adapter->total_tx_bytes = 0;
1899                 adapter->total_tx_packets = 0;
1900                 adapter->total_rx_bytes = 0;
1901                 adapter->total_rx_packets = 0;
1902                 __napi_schedule(&adapter->napi);
1903         }
1904
1905         return IRQ_HANDLED;
1906 }
1907
1908 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1909 {
1910         struct net_device *netdev = data;
1911         struct e1000_adapter *adapter = netdev_priv(netdev);
1912         struct e1000_hw *hw = &adapter->hw;
1913
1914         hw->mac.get_link_status = true;
1915
1916         /* guard against interrupt when we're going down */
1917         if (!test_bit(__E1000_DOWN, &adapter->state)) {
1918                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1919                 ew32(IMS, E1000_IMS_OTHER);
1920         }
1921
1922         return IRQ_HANDLED;
1923 }
1924
1925 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1926 {
1927         struct net_device *netdev = data;
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929         struct e1000_hw *hw = &adapter->hw;
1930         struct e1000_ring *tx_ring = adapter->tx_ring;
1931
1932         adapter->total_tx_bytes = 0;
1933         adapter->total_tx_packets = 0;
1934
1935         if (!e1000_clean_tx_irq(tx_ring))
1936                 /* Ring was not completely cleaned, so fire another interrupt */
1937                 ew32(ICS, tx_ring->ims_val);
1938
1939         if (!test_bit(__E1000_DOWN, &adapter->state))
1940                 ew32(IMS, adapter->tx_ring->ims_val);
1941
1942         return IRQ_HANDLED;
1943 }
1944
1945 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1946 {
1947         struct net_device *netdev = data;
1948         struct e1000_adapter *adapter = netdev_priv(netdev);
1949         struct e1000_ring *rx_ring = adapter->rx_ring;
1950
1951         /* Write the ITR value calculated at the end of the
1952          * previous interrupt.
1953          */
1954         if (rx_ring->set_itr) {
1955                 u32 itr = rx_ring->itr_val ?
1956                           1000000000 / (rx_ring->itr_val * 256) : 0;
1957
1958                 writel(itr, rx_ring->itr_register);
1959                 rx_ring->set_itr = 0;
1960         }
1961
1962         if (napi_schedule_prep(&adapter->napi)) {
1963                 adapter->total_rx_bytes = 0;
1964                 adapter->total_rx_packets = 0;
1965                 __napi_schedule(&adapter->napi);
1966         }
1967         return IRQ_HANDLED;
1968 }
1969
1970 /**
1971  * e1000_configure_msix - Configure MSI-X hardware
1972  *
1973  * e1000_configure_msix sets up the hardware to properly
1974  * generate MSI-X interrupts.
1975  **/
1976 static void e1000_configure_msix(struct e1000_adapter *adapter)
1977 {
1978         struct e1000_hw *hw = &adapter->hw;
1979         struct e1000_ring *rx_ring = adapter->rx_ring;
1980         struct e1000_ring *tx_ring = adapter->tx_ring;
1981         int vector = 0;
1982         u32 ctrl_ext, ivar = 0;
1983
1984         adapter->eiac_mask = 0;
1985
1986         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1987         if (hw->mac.type == e1000_82574) {
1988                 u32 rfctl = er32(RFCTL);
1989
1990                 rfctl |= E1000_RFCTL_ACK_DIS;
1991                 ew32(RFCTL, rfctl);
1992         }
1993
1994         /* Configure Rx vector */
1995         rx_ring->ims_val = E1000_IMS_RXQ0;
1996         adapter->eiac_mask |= rx_ring->ims_val;
1997         if (rx_ring->itr_val)
1998                 writel(1000000000 / (rx_ring->itr_val * 256),
1999                        rx_ring->itr_register);
2000         else
2001                 writel(1, rx_ring->itr_register);
2002         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2003
2004         /* Configure Tx vector */
2005         tx_ring->ims_val = E1000_IMS_TXQ0;
2006         vector++;
2007         if (tx_ring->itr_val)
2008                 writel(1000000000 / (tx_ring->itr_val * 256),
2009                        tx_ring->itr_register);
2010         else
2011                 writel(1, tx_ring->itr_register);
2012         adapter->eiac_mask |= tx_ring->ims_val;
2013         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2014
2015         /* set vector for Other Causes, e.g. link changes */
2016         vector++;
2017         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2018         if (rx_ring->itr_val)
2019                 writel(1000000000 / (rx_ring->itr_val * 256),
2020                        hw->hw_addr + E1000_EITR_82574(vector));
2021         else
2022                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2023         adapter->eiac_mask |= E1000_IMS_OTHER;
2024
2025         /* Cause Tx interrupts on every write back */
2026         ivar |= BIT(31);
2027
2028         ew32(IVAR, ivar);
2029
2030         /* enable MSI-X PBA support */
2031         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2032         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2033         ew32(CTRL_EXT, ctrl_ext);
2034         e1e_flush();
2035 }
2036
2037 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2038 {
2039         if (adapter->msix_entries) {
2040                 pci_disable_msix(adapter->pdev);
2041                 kfree(adapter->msix_entries);
2042                 adapter->msix_entries = NULL;
2043         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2044                 pci_disable_msi(adapter->pdev);
2045                 adapter->flags &= ~FLAG_MSI_ENABLED;
2046         }
2047 }
2048
2049 /**
2050  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2051  *
2052  * Attempt to configure interrupts using the best available
2053  * capabilities of the hardware and kernel.
2054  **/
2055 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2056 {
2057         int err;
2058         int i;
2059
2060         switch (adapter->int_mode) {
2061         case E1000E_INT_MODE_MSIX:
2062                 if (adapter->flags & FLAG_HAS_MSIX) {
2063                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2064                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2065                                                         sizeof(struct
2066                                                                msix_entry),
2067                                                         GFP_KERNEL);
2068                         if (adapter->msix_entries) {
2069                                 struct e1000_adapter *a = adapter;
2070
2071                                 for (i = 0; i < adapter->num_vectors; i++)
2072                                         adapter->msix_entries[i].entry = i;
2073
2074                                 err = pci_enable_msix_range(a->pdev,
2075                                                             a->msix_entries,
2076                                                             a->num_vectors,
2077                                                             a->num_vectors);
2078                                 if (err > 0)
2079                                         return;
2080                         }
2081                         /* MSI-X failed, so fall through and try MSI */
2082                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2083                         e1000e_reset_interrupt_capability(adapter);
2084                 }
2085                 adapter->int_mode = E1000E_INT_MODE_MSI;
2086                 /* Fall through */
2087         case E1000E_INT_MODE_MSI:
2088                 if (!pci_enable_msi(adapter->pdev)) {
2089                         adapter->flags |= FLAG_MSI_ENABLED;
2090                 } else {
2091                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2092                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2093                 }
2094                 /* Fall through */
2095         case E1000E_INT_MODE_LEGACY:
2096                 /* Don't do anything; this is the system default */
2097                 break;
2098         }
2099
2100         /* store the number of vectors being used */
2101         adapter->num_vectors = 1;
2102 }
2103
2104 /**
2105  * e1000_request_msix - Initialize MSI-X interrupts
2106  *
2107  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108  * kernel.
2109  **/
2110 static int e1000_request_msix(struct e1000_adapter *adapter)
2111 {
2112         struct net_device *netdev = adapter->netdev;
2113         int err = 0, vector = 0;
2114
2115         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116                 snprintf(adapter->rx_ring->name,
2117                          sizeof(adapter->rx_ring->name) - 1,
2118                          "%s-rx-0", netdev->name);
2119         else
2120                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121         err = request_irq(adapter->msix_entries[vector].vector,
2122                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2123                           netdev);
2124         if (err)
2125                 return err;
2126         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127             E1000_EITR_82574(vector);
2128         adapter->rx_ring->itr_val = adapter->itr;
2129         vector++;
2130
2131         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2132                 snprintf(adapter->tx_ring->name,
2133                          sizeof(adapter->tx_ring->name) - 1,
2134                          "%s-tx-0", netdev->name);
2135         else
2136                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137         err = request_irq(adapter->msix_entries[vector].vector,
2138                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2139                           netdev);
2140         if (err)
2141                 return err;
2142         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143             E1000_EITR_82574(vector);
2144         adapter->tx_ring->itr_val = adapter->itr;
2145         vector++;
2146
2147         err = request_irq(adapter->msix_entries[vector].vector,
2148                           e1000_msix_other, 0, netdev->name, netdev);
2149         if (err)
2150                 return err;
2151
2152         e1000_configure_msix(adapter);
2153
2154         return 0;
2155 }
2156
2157 /**
2158  * e1000_request_irq - initialize interrupts
2159  *
2160  * Attempts to configure interrupts using the best available
2161  * capabilities of the hardware and kernel.
2162  **/
2163 static int e1000_request_irq(struct e1000_adapter *adapter)
2164 {
2165         struct net_device *netdev = adapter->netdev;
2166         int err;
2167
2168         if (adapter->msix_entries) {
2169                 err = e1000_request_msix(adapter);
2170                 if (!err)
2171                         return err;
2172                 /* fall back to MSI */
2173                 e1000e_reset_interrupt_capability(adapter);
2174                 adapter->int_mode = E1000E_INT_MODE_MSI;
2175                 e1000e_set_interrupt_capability(adapter);
2176         }
2177         if (adapter->flags & FLAG_MSI_ENABLED) {
2178                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2179                                   netdev->name, netdev);
2180                 if (!err)
2181                         return err;
2182
2183                 /* fall back to legacy interrupt */
2184                 e1000e_reset_interrupt_capability(adapter);
2185                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186         }
2187
2188         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2189                           netdev->name, netdev);
2190         if (err)
2191                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2192
2193         return err;
2194 }
2195
2196 static void e1000_free_irq(struct e1000_adapter *adapter)
2197 {
2198         struct net_device *netdev = adapter->netdev;
2199
2200         if (adapter->msix_entries) {
2201                 int vector = 0;
2202
2203                 free_irq(adapter->msix_entries[vector].vector, netdev);
2204                 vector++;
2205
2206                 free_irq(adapter->msix_entries[vector].vector, netdev);
2207                 vector++;
2208
2209                 /* Other Causes interrupt vector */
2210                 free_irq(adapter->msix_entries[vector].vector, netdev);
2211                 return;
2212         }
2213
2214         free_irq(adapter->pdev->irq, netdev);
2215 }
2216
2217 /**
2218  * e1000_irq_disable - Mask off interrupt generation on the NIC
2219  **/
2220 static void e1000_irq_disable(struct e1000_adapter *adapter)
2221 {
2222         struct e1000_hw *hw = &adapter->hw;
2223
2224         ew32(IMC, ~0);
2225         if (adapter->msix_entries)
2226                 ew32(EIAC_82574, 0);
2227         e1e_flush();
2228
2229         if (adapter->msix_entries) {
2230                 int i;
2231
2232                 for (i = 0; i < adapter->num_vectors; i++)
2233                         synchronize_irq(adapter->msix_entries[i].vector);
2234         } else {
2235                 synchronize_irq(adapter->pdev->irq);
2236         }
2237 }
2238
2239 /**
2240  * e1000_irq_enable - Enable default interrupt generation settings
2241  **/
2242 static void e1000_irq_enable(struct e1000_adapter *adapter)
2243 {
2244         struct e1000_hw *hw = &adapter->hw;
2245
2246         if (adapter->msix_entries) {
2247                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2248                 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2249         } else if (hw->mac.type >= e1000_pch_lpt) {
2250                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2251         } else {
2252                 ew32(IMS, IMS_ENABLE_MASK);
2253         }
2254         e1e_flush();
2255 }
2256
2257 /**
2258  * e1000e_get_hw_control - get control of the h/w from f/w
2259  * @adapter: address of board private structure
2260  *
2261  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2262  * For ASF and Pass Through versions of f/w this means that
2263  * the driver is loaded. For AMT version (only with 82573)
2264  * of the f/w this means that the network i/f is open.
2265  **/
2266 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2267 {
2268         struct e1000_hw *hw = &adapter->hw;
2269         u32 ctrl_ext;
2270         u32 swsm;
2271
2272         /* Let firmware know the driver has taken over */
2273         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2274                 swsm = er32(SWSM);
2275                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2276         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2277                 ctrl_ext = er32(CTRL_EXT);
2278                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2279         }
2280 }
2281
2282 /**
2283  * e1000e_release_hw_control - release control of the h/w to f/w
2284  * @adapter: address of board private structure
2285  *
2286  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2287  * For ASF and Pass Through versions of f/w this means that the
2288  * driver is no longer loaded. For AMT version (only with 82573) i
2289  * of the f/w this means that the network i/f is closed.
2290  *
2291  **/
2292 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2293 {
2294         struct e1000_hw *hw = &adapter->hw;
2295         u32 ctrl_ext;
2296         u32 swsm;
2297
2298         /* Let firmware taken over control of h/w */
2299         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2300                 swsm = er32(SWSM);
2301                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2302         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2303                 ctrl_ext = er32(CTRL_EXT);
2304                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2305         }
2306 }
2307
2308 /**
2309  * e1000_alloc_ring_dma - allocate memory for a ring structure
2310  **/
2311 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2312                                 struct e1000_ring *ring)
2313 {
2314         struct pci_dev *pdev = adapter->pdev;
2315
2316         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2317                                         GFP_KERNEL);
2318         if (!ring->desc)
2319                 return -ENOMEM;
2320
2321         return 0;
2322 }
2323
2324 /**
2325  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2326  * @tx_ring: Tx descriptor ring
2327  *
2328  * Return 0 on success, negative on failure
2329  **/
2330 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2331 {
2332         struct e1000_adapter *adapter = tx_ring->adapter;
2333         int err = -ENOMEM, size;
2334
2335         size = sizeof(struct e1000_buffer) * tx_ring->count;
2336         tx_ring->buffer_info = vzalloc(size);
2337         if (!tx_ring->buffer_info)
2338                 goto err;
2339
2340         /* round up to nearest 4K */
2341         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2342         tx_ring->size = ALIGN(tx_ring->size, 4096);
2343
2344         err = e1000_alloc_ring_dma(adapter, tx_ring);
2345         if (err)
2346                 goto err;
2347
2348         tx_ring->next_to_use = 0;
2349         tx_ring->next_to_clean = 0;
2350
2351         return 0;
2352 err:
2353         vfree(tx_ring->buffer_info);
2354         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2355         return err;
2356 }
2357
2358 /**
2359  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2360  * @rx_ring: Rx descriptor ring
2361  *
2362  * Returns 0 on success, negative on failure
2363  **/
2364 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2365 {
2366         struct e1000_adapter *adapter = rx_ring->adapter;
2367         struct e1000_buffer *buffer_info;
2368         int i, size, desc_len, err = -ENOMEM;
2369
2370         size = sizeof(struct e1000_buffer) * rx_ring->count;
2371         rx_ring->buffer_info = vzalloc(size);
2372         if (!rx_ring->buffer_info)
2373                 goto err;
2374
2375         for (i = 0; i < rx_ring->count; i++) {
2376                 buffer_info = &rx_ring->buffer_info[i];
2377                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2378                                                 sizeof(struct e1000_ps_page),
2379                                                 GFP_KERNEL);
2380                 if (!buffer_info->ps_pages)
2381                         goto err_pages;
2382         }
2383
2384         desc_len = sizeof(union e1000_rx_desc_packet_split);
2385
2386         /* Round up to nearest 4K */
2387         rx_ring->size = rx_ring->count * desc_len;
2388         rx_ring->size = ALIGN(rx_ring->size, 4096);
2389
2390         err = e1000_alloc_ring_dma(adapter, rx_ring);
2391         if (err)
2392                 goto err_pages;
2393
2394         rx_ring->next_to_clean = 0;
2395         rx_ring->next_to_use = 0;
2396         rx_ring->rx_skb_top = NULL;
2397
2398         return 0;
2399
2400 err_pages:
2401         for (i = 0; i < rx_ring->count; i++) {
2402                 buffer_info = &rx_ring->buffer_info[i];
2403                 kfree(buffer_info->ps_pages);
2404         }
2405 err:
2406         vfree(rx_ring->buffer_info);
2407         e_err("Unable to allocate memory for the receive descriptor ring\n");
2408         return err;
2409 }
2410
2411 /**
2412  * e1000_clean_tx_ring - Free Tx Buffers
2413  * @tx_ring: Tx descriptor ring
2414  **/
2415 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2416 {
2417         struct e1000_adapter *adapter = tx_ring->adapter;
2418         struct e1000_buffer *buffer_info;
2419         unsigned long size;
2420         unsigned int i;
2421
2422         for (i = 0; i < tx_ring->count; i++) {
2423                 buffer_info = &tx_ring->buffer_info[i];
2424                 e1000_put_txbuf(tx_ring, buffer_info);
2425         }
2426
2427         netdev_reset_queue(adapter->netdev);
2428         size = sizeof(struct e1000_buffer) * tx_ring->count;
2429         memset(tx_ring->buffer_info, 0, size);
2430
2431         memset(tx_ring->desc, 0, tx_ring->size);
2432
2433         tx_ring->next_to_use = 0;
2434         tx_ring->next_to_clean = 0;
2435 }
2436
2437 /**
2438  * e1000e_free_tx_resources - Free Tx Resources per Queue
2439  * @tx_ring: Tx descriptor ring
2440  *
2441  * Free all transmit software resources
2442  **/
2443 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2444 {
2445         struct e1000_adapter *adapter = tx_ring->adapter;
2446         struct pci_dev *pdev = adapter->pdev;
2447
2448         e1000_clean_tx_ring(tx_ring);
2449
2450         vfree(tx_ring->buffer_info);
2451         tx_ring->buffer_info = NULL;
2452
2453         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2454                           tx_ring->dma);
2455         tx_ring->desc = NULL;
2456 }
2457
2458 /**
2459  * e1000e_free_rx_resources - Free Rx Resources
2460  * @rx_ring: Rx descriptor ring
2461  *
2462  * Free all receive software resources
2463  **/
2464 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2465 {
2466         struct e1000_adapter *adapter = rx_ring->adapter;
2467         struct pci_dev *pdev = adapter->pdev;
2468         int i;
2469
2470         e1000_clean_rx_ring(rx_ring);
2471
2472         for (i = 0; i < rx_ring->count; i++)
2473                 kfree(rx_ring->buffer_info[i].ps_pages);
2474
2475         vfree(rx_ring->buffer_info);
2476         rx_ring->buffer_info = NULL;
2477
2478         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2479                           rx_ring->dma);
2480         rx_ring->desc = NULL;
2481 }
2482
2483 /**
2484  * e1000_update_itr - update the dynamic ITR value based on statistics
2485  * @adapter: pointer to adapter
2486  * @itr_setting: current adapter->itr
2487  * @packets: the number of packets during this measurement interval
2488  * @bytes: the number of bytes during this measurement interval
2489  *
2490  *      Stores a new ITR value based on packets and byte
2491  *      counts during the last interrupt.  The advantage of per interrupt
2492  *      computation is faster updates and more accurate ITR for the current
2493  *      traffic pattern.  Constants in this function were computed
2494  *      based on theoretical maximum wire speed and thresholds were set based
2495  *      on testing data as well as attempting to minimize response time
2496  *      while increasing bulk throughput.  This functionality is controlled
2497  *      by the InterruptThrottleRate module parameter.
2498  **/
2499 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2500 {
2501         unsigned int retval = itr_setting;
2502
2503         if (packets == 0)
2504                 return itr_setting;
2505
2506         switch (itr_setting) {
2507         case lowest_latency:
2508                 /* handle TSO and jumbo frames */
2509                 if (bytes / packets > 8000)
2510                         retval = bulk_latency;
2511                 else if ((packets < 5) && (bytes > 512))
2512                         retval = low_latency;
2513                 break;
2514         case low_latency:       /* 50 usec aka 20000 ints/s */
2515                 if (bytes > 10000) {
2516                         /* this if handles the TSO accounting */
2517                         if (bytes / packets > 8000)
2518                                 retval = bulk_latency;
2519                         else if ((packets < 10) || ((bytes / packets) > 1200))
2520                                 retval = bulk_latency;
2521                         else if ((packets > 35))
2522                                 retval = lowest_latency;
2523                 } else if (bytes / packets > 2000) {
2524                         retval = bulk_latency;
2525                 } else if (packets <= 2 && bytes < 512) {
2526                         retval = lowest_latency;
2527                 }
2528                 break;
2529         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2530                 if (bytes > 25000) {
2531                         if (packets > 35)
2532                                 retval = low_latency;
2533                 } else if (bytes < 6000) {
2534                         retval = low_latency;
2535                 }
2536                 break;
2537         }
2538
2539         return retval;
2540 }
2541
2542 static void e1000_set_itr(struct e1000_adapter *adapter)
2543 {
2544         u16 current_itr;
2545         u32 new_itr = adapter->itr;
2546
2547         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2548         if (adapter->link_speed != SPEED_1000) {
2549                 current_itr = 0;
2550                 new_itr = 4000;
2551                 goto set_itr_now;
2552         }
2553
2554         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2555                 new_itr = 0;
2556                 goto set_itr_now;
2557         }
2558
2559         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2560                                            adapter->total_tx_packets,
2561                                            adapter->total_tx_bytes);
2562         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2563         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2564                 adapter->tx_itr = low_latency;
2565
2566         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2567                                            adapter->total_rx_packets,
2568                                            adapter->total_rx_bytes);
2569         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2570         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2571                 adapter->rx_itr = low_latency;
2572
2573         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2574
2575         /* counts and packets in update_itr are dependent on these numbers */
2576         switch (current_itr) {
2577         case lowest_latency:
2578                 new_itr = 70000;
2579                 break;
2580         case low_latency:
2581                 new_itr = 20000;        /* aka hwitr = ~200 */
2582                 break;
2583         case bulk_latency:
2584                 new_itr = 4000;
2585                 break;
2586         default:
2587                 break;
2588         }
2589
2590 set_itr_now:
2591         if (new_itr != adapter->itr) {
2592                 /* this attempts to bias the interrupt rate towards Bulk
2593                  * by adding intermediate steps when interrupt rate is
2594                  * increasing
2595                  */
2596                 new_itr = new_itr > adapter->itr ?
2597                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2598                 adapter->itr = new_itr;
2599                 adapter->rx_ring->itr_val = new_itr;
2600                 if (adapter->msix_entries)
2601                         adapter->rx_ring->set_itr = 1;
2602                 else
2603                         e1000e_write_itr(adapter, new_itr);
2604         }
2605 }
2606
2607 /**
2608  * e1000e_write_itr - write the ITR value to the appropriate registers
2609  * @adapter: address of board private structure
2610  * @itr: new ITR value to program
2611  *
2612  * e1000e_write_itr determines if the adapter is in MSI-X mode
2613  * and, if so, writes the EITR registers with the ITR value.
2614  * Otherwise, it writes the ITR value into the ITR register.
2615  **/
2616 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2617 {
2618         struct e1000_hw *hw = &adapter->hw;
2619         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2620
2621         if (adapter->msix_entries) {
2622                 int vector;
2623
2624                 for (vector = 0; vector < adapter->num_vectors; vector++)
2625                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2626         } else {
2627                 ew32(ITR, new_itr);
2628         }
2629 }
2630
2631 /**
2632  * e1000_alloc_queues - Allocate memory for all rings
2633  * @adapter: board private structure to initialize
2634  **/
2635 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2636 {
2637         int size = sizeof(struct e1000_ring);
2638
2639         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2640         if (!adapter->tx_ring)
2641                 goto err;
2642         adapter->tx_ring->count = adapter->tx_ring_count;
2643         adapter->tx_ring->adapter = adapter;
2644
2645         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2646         if (!adapter->rx_ring)
2647                 goto err;
2648         adapter->rx_ring->count = adapter->rx_ring_count;
2649         adapter->rx_ring->adapter = adapter;
2650
2651         return 0;
2652 err:
2653         e_err("Unable to allocate memory for queues\n");
2654         kfree(adapter->rx_ring);
2655         kfree(adapter->tx_ring);
2656         return -ENOMEM;
2657 }
2658
2659 /**
2660  * e1000e_poll - NAPI Rx polling callback
2661  * @napi: struct associated with this polling callback
2662  * @weight: number of packets driver is allowed to process this poll
2663  **/
2664 static int e1000e_poll(struct napi_struct *napi, int weight)
2665 {
2666         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2667                                                      napi);
2668         struct e1000_hw *hw = &adapter->hw;
2669         struct net_device *poll_dev = adapter->netdev;
2670         int tx_cleaned = 1, work_done = 0;
2671
2672         adapter = netdev_priv(poll_dev);
2673
2674         if (!adapter->msix_entries ||
2675             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2676                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2677
2678         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2679
2680         if (!tx_cleaned)
2681                 work_done = weight;
2682
2683         /* If weight not fully consumed, exit the polling mode */
2684         if (work_done < weight) {
2685                 if (adapter->itr_setting & 3)
2686                         e1000_set_itr(adapter);
2687                 napi_complete_done(napi, work_done);
2688                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2689                         if (adapter->msix_entries)
2690                                 ew32(IMS, adapter->rx_ring->ims_val);
2691                         else
2692                                 e1000_irq_enable(adapter);
2693                 }
2694         }
2695
2696         return work_done;
2697 }
2698
2699 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2700                                  __always_unused __be16 proto, u16 vid)
2701 {
2702         struct e1000_adapter *adapter = netdev_priv(netdev);
2703         struct e1000_hw *hw = &adapter->hw;
2704         u32 vfta, index;
2705
2706         /* don't update vlan cookie if already programmed */
2707         if ((adapter->hw.mng_cookie.status &
2708              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2709             (vid == adapter->mng_vlan_id))
2710                 return 0;
2711
2712         /* add VID to filter table */
2713         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2714                 index = (vid >> 5) & 0x7F;
2715                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2716                 vfta |= BIT((vid & 0x1F));
2717                 hw->mac.ops.write_vfta(hw, index, vfta);
2718         }
2719
2720         set_bit(vid, adapter->active_vlans);
2721
2722         return 0;
2723 }
2724
2725 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2726                                   __always_unused __be16 proto, u16 vid)
2727 {
2728         struct e1000_adapter *adapter = netdev_priv(netdev);
2729         struct e1000_hw *hw = &adapter->hw;
2730         u32 vfta, index;
2731
2732         if ((adapter->hw.mng_cookie.status &
2733              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2734             (vid == adapter->mng_vlan_id)) {
2735                 /* release control to f/w */
2736                 e1000e_release_hw_control(adapter);
2737                 return 0;
2738         }
2739
2740         /* remove VID from filter table */
2741         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2742                 index = (vid >> 5) & 0x7F;
2743                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2744                 vfta &= ~BIT((vid & 0x1F));
2745                 hw->mac.ops.write_vfta(hw, index, vfta);
2746         }
2747
2748         clear_bit(vid, adapter->active_vlans);
2749
2750         return 0;
2751 }
2752
2753 /**
2754  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2755  * @adapter: board private structure to initialize
2756  **/
2757 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2758 {
2759         struct net_device *netdev = adapter->netdev;
2760         struct e1000_hw *hw = &adapter->hw;
2761         u32 rctl;
2762
2763         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2764                 /* disable VLAN receive filtering */
2765                 rctl = er32(RCTL);
2766                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2767                 ew32(RCTL, rctl);
2768
2769                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2770                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2771                                                adapter->mng_vlan_id);
2772                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2773                 }
2774         }
2775 }
2776
2777 /**
2778  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2779  * @adapter: board private structure to initialize
2780  **/
2781 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         u32 rctl;
2785
2786         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2787                 /* enable VLAN receive filtering */
2788                 rctl = er32(RCTL);
2789                 rctl |= E1000_RCTL_VFE;
2790                 rctl &= ~E1000_RCTL_CFIEN;
2791                 ew32(RCTL, rctl);
2792         }
2793 }
2794
2795 /**
2796  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2797  * @adapter: board private structure to initialize
2798  **/
2799 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2800 {
2801         struct e1000_hw *hw = &adapter->hw;
2802         u32 ctrl;
2803
2804         /* disable VLAN tag insert/strip */
2805         ctrl = er32(CTRL);
2806         ctrl &= ~E1000_CTRL_VME;
2807         ew32(CTRL, ctrl);
2808 }
2809
2810 /**
2811  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2812  * @adapter: board private structure to initialize
2813  **/
2814 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2815 {
2816         struct e1000_hw *hw = &adapter->hw;
2817         u32 ctrl;
2818
2819         /* enable VLAN tag insert/strip */
2820         ctrl = er32(CTRL);
2821         ctrl |= E1000_CTRL_VME;
2822         ew32(CTRL, ctrl);
2823 }
2824
2825 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2826 {
2827         struct net_device *netdev = adapter->netdev;
2828         u16 vid = adapter->hw.mng_cookie.vlan_id;
2829         u16 old_vid = adapter->mng_vlan_id;
2830
2831         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2832                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2833                 adapter->mng_vlan_id = vid;
2834         }
2835
2836         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2837                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2838 }
2839
2840 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2841 {
2842         u16 vid;
2843
2844         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2845
2846         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2847             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2848 }
2849
2850 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2851 {
2852         struct e1000_hw *hw = &adapter->hw;
2853         u32 manc, manc2h, mdef, i, j;
2854
2855         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2856                 return;
2857
2858         manc = er32(MANC);
2859
2860         /* enable receiving management packets to the host. this will probably
2861          * generate destination unreachable messages from the host OS, but
2862          * the packets will be handled on SMBUS
2863          */
2864         manc |= E1000_MANC_EN_MNG2HOST;
2865         manc2h = er32(MANC2H);
2866
2867         switch (hw->mac.type) {
2868         default:
2869                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2870                 break;
2871         case e1000_82574:
2872         case e1000_82583:
2873                 /* Check if IPMI pass-through decision filter already exists;
2874                  * if so, enable it.
2875                  */
2876                 for (i = 0, j = 0; i < 8; i++) {
2877                         mdef = er32(MDEF(i));
2878
2879                         /* Ignore filters with anything other than IPMI ports */
2880                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2881                                 continue;
2882
2883                         /* Enable this decision filter in MANC2H */
2884                         if (mdef)
2885                                 manc2h |= BIT(i);
2886
2887                         j |= mdef;
2888                 }
2889
2890                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2891                         break;
2892
2893                 /* Create new decision filter in an empty filter */
2894                 for (i = 0, j = 0; i < 8; i++)
2895                         if (er32(MDEF(i)) == 0) {
2896                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2897                                                E1000_MDEF_PORT_664));
2898                                 manc2h |= BIT(1);
2899                                 j++;
2900                                 break;
2901                         }
2902
2903                 if (!j)
2904                         e_warn("Unable to create IPMI pass-through filter\n");
2905                 break;
2906         }
2907
2908         ew32(MANC2H, manc2h);
2909         ew32(MANC, manc);
2910 }
2911
2912 /**
2913  * e1000_configure_tx - Configure Transmit Unit after Reset
2914  * @adapter: board private structure
2915  *
2916  * Configure the Tx unit of the MAC after a reset.
2917  **/
2918 static void e1000_configure_tx(struct e1000_adapter *adapter)
2919 {
2920         struct e1000_hw *hw = &adapter->hw;
2921         struct e1000_ring *tx_ring = adapter->tx_ring;
2922         u64 tdba;
2923         u32 tdlen, tctl, tarc;
2924
2925         /* Setup the HW Tx Head and Tail descriptor pointers */
2926         tdba = tx_ring->dma;
2927         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2928         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2929         ew32(TDBAH(0), (tdba >> 32));
2930         ew32(TDLEN(0), tdlen);
2931         ew32(TDH(0), 0);
2932         ew32(TDT(0), 0);
2933         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2934         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2935
2936         writel(0, tx_ring->head);
2937         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2938                 e1000e_update_tdt_wa(tx_ring, 0);
2939         else
2940                 writel(0, tx_ring->tail);
2941
2942         /* Set the Tx Interrupt Delay register */
2943         ew32(TIDV, adapter->tx_int_delay);
2944         /* Tx irq moderation */
2945         ew32(TADV, adapter->tx_abs_int_delay);
2946
2947         if (adapter->flags2 & FLAG2_DMA_BURST) {
2948                 u32 txdctl = er32(TXDCTL(0));
2949
2950                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2951                             E1000_TXDCTL_WTHRESH);
2952                 /* set up some performance related parameters to encourage the
2953                  * hardware to use the bus more efficiently in bursts, depends
2954                  * on the tx_int_delay to be enabled,
2955                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2956                  * hthresh = 1 ==> prefetch when one or more available
2957                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2958                  * BEWARE: this seems to work but should be considered first if
2959                  * there are Tx hangs or other Tx related bugs
2960                  */
2961                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2962                 ew32(TXDCTL(0), txdctl);
2963         }
2964         /* erratum work around: set txdctl the same for both queues */
2965         ew32(TXDCTL(1), er32(TXDCTL(0)));
2966
2967         /* Program the Transmit Control Register */
2968         tctl = er32(TCTL);
2969         tctl &= ~E1000_TCTL_CT;
2970         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2971                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2972
2973         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2974                 tarc = er32(TARC(0));
2975                 /* set the speed mode bit, we'll clear it if we're not at
2976                  * gigabit link later
2977                  */
2978 #define SPEED_MODE_BIT BIT(21)
2979                 tarc |= SPEED_MODE_BIT;
2980                 ew32(TARC(0), tarc);
2981         }
2982
2983         /* errata: program both queues to unweighted RR */
2984         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2985                 tarc = er32(TARC(0));
2986                 tarc |= 1;
2987                 ew32(TARC(0), tarc);
2988                 tarc = er32(TARC(1));
2989                 tarc |= 1;
2990                 ew32(TARC(1), tarc);
2991         }
2992
2993         /* Setup Transmit Descriptor Settings for eop descriptor */
2994         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2995
2996         /* only set IDE if we are delaying interrupts using the timers */
2997         if (adapter->tx_int_delay)
2998                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2999
3000         /* enable Report Status bit */
3001         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3002
3003         ew32(TCTL, tctl);
3004
3005         hw->mac.ops.config_collision_dist(hw);
3006
3007         /* SPT and CNP Si errata workaround to avoid data corruption */
3008         if (hw->mac.type >= e1000_pch_spt) {
3009                 u32 reg_val;
3010
3011                 reg_val = er32(IOSFPC);
3012                 reg_val |= E1000_RCTL_RDMTS_HEX;
3013                 ew32(IOSFPC, reg_val);
3014
3015                 reg_val = er32(TARC(0));
3016                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3017                 ew32(TARC(0), reg_val);
3018         }
3019 }
3020
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
3025 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3026                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3027 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3028 {
3029         struct e1000_hw *hw = &adapter->hw;
3030         u32 rctl, rfctl;
3031         u32 pages = 0;
3032
3033         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3034          * If jumbo frames not set, program related MAC/PHY registers
3035          * to h/w defaults
3036          */
3037         if (hw->mac.type >= e1000_pch2lan) {
3038                 s32 ret_val;
3039
3040                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3042                 else
3043                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3044
3045                 if (ret_val)
3046                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3047         }
3048
3049         /* Program MC offset vector base */
3050         rctl = er32(RCTL);
3051         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3052         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3053             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3054             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3055
3056         /* Do not Store bad packets */
3057         rctl &= ~E1000_RCTL_SBP;
3058
3059         /* Enable Long Packet receive */
3060         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3061                 rctl &= ~E1000_RCTL_LPE;
3062         else
3063                 rctl |= E1000_RCTL_LPE;
3064
3065         /* Some systems expect that the CRC is included in SMBUS traffic. The
3066          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3067          * host memory when this is enabled
3068          */
3069         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3070                 rctl |= E1000_RCTL_SECRC;
3071
3072         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3073         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3074                 u16 phy_data;
3075
3076                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3077                 phy_data &= 0xfff8;
3078                 phy_data |= BIT(2);
3079                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3080
3081                 e1e_rphy(hw, 22, &phy_data);
3082                 phy_data &= 0x0fff;
3083                 phy_data |= BIT(14);
3084                 e1e_wphy(hw, 0x10, 0x2823);
3085                 e1e_wphy(hw, 0x11, 0x0003);
3086                 e1e_wphy(hw, 22, phy_data);
3087         }
3088
3089         /* Setup buffer sizes */
3090         rctl &= ~E1000_RCTL_SZ_4096;
3091         rctl |= E1000_RCTL_BSEX;
3092         switch (adapter->rx_buffer_len) {
3093         case 2048:
3094         default:
3095                 rctl |= E1000_RCTL_SZ_2048;
3096                 rctl &= ~E1000_RCTL_BSEX;
3097                 break;
3098         case 4096:
3099                 rctl |= E1000_RCTL_SZ_4096;
3100                 break;
3101         case 8192:
3102                 rctl |= E1000_RCTL_SZ_8192;
3103                 break;
3104         case 16384:
3105                 rctl |= E1000_RCTL_SZ_16384;
3106                 break;
3107         }
3108
3109         /* Enable Extended Status in all Receive Descriptors */
3110         rfctl = er32(RFCTL);
3111         rfctl |= E1000_RFCTL_EXTEN;
3112         ew32(RFCTL, rfctl);
3113
3114         /* 82571 and greater support packet-split where the protocol
3115          * header is placed in skb->data and the packet data is
3116          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3117          * In the case of a non-split, skb->data is linearly filled,
3118          * followed by the page buffers.  Therefore, skb->data is
3119          * sized to hold the largest protocol header.
3120          *
3121          * allocations using alloc_page take too long for regular MTU
3122          * so only enable packet split for jumbo frames
3123          *
3124          * Using pages when the page size is greater than 16k wastes
3125          * a lot of memory, since we allocate 3 pages at all times
3126          * per packet.
3127          */
3128         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3129         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3130                 adapter->rx_ps_pages = pages;
3131         else
3132                 adapter->rx_ps_pages = 0;
3133
3134         if (adapter->rx_ps_pages) {
3135                 u32 psrctl = 0;
3136
3137                 /* Enable Packet split descriptors */
3138                 rctl |= E1000_RCTL_DTYP_PS;
3139
3140                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3141
3142                 switch (adapter->rx_ps_pages) {
3143                 case 3:
3144                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3145                         /* fall-through */
3146                 case 2:
3147                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3148                         /* fall-through */
3149                 case 1:
3150                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3151                         break;
3152                 }
3153
3154                 ew32(PSRCTL, psrctl);
3155         }
3156
3157         /* This is useful for sniffing bad packets. */
3158         if (adapter->netdev->features & NETIF_F_RXALL) {
3159                 /* UPE and MPE will be handled by normal PROMISC logic
3160                  * in e1000e_set_rx_mode
3161                  */
3162                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3163                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3164                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3165
3166                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3167                           E1000_RCTL_DPF |      /* Allow filtered pause */
3168                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3169                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3170                  * and that breaks VLANs.
3171                  */
3172         }
3173
3174         ew32(RCTL, rctl);
3175         /* just started the receive unit, no need to restart */
3176         adapter->flags &= ~FLAG_RESTART_NOW;
3177 }
3178
3179 /**
3180  * e1000_configure_rx - Configure Receive Unit after Reset
3181  * @adapter: board private structure
3182  *
3183  * Configure the Rx unit of the MAC after a reset.
3184  **/
3185 static void e1000_configure_rx(struct e1000_adapter *adapter)
3186 {
3187         struct e1000_hw *hw = &adapter->hw;
3188         struct e1000_ring *rx_ring = adapter->rx_ring;
3189         u64 rdba;
3190         u32 rdlen, rctl, rxcsum, ctrl_ext;
3191
3192         if (adapter->rx_ps_pages) {
3193                 /* this is a 32 byte descriptor */
3194                 rdlen = rx_ring->count *
3195                     sizeof(union e1000_rx_desc_packet_split);
3196                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3197                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3198         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3199                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3200                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3201                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3202         } else {
3203                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3204                 adapter->clean_rx = e1000_clean_rx_irq;
3205                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3206         }
3207
3208         /* disable receives while setting up the descriptors */
3209         rctl = er32(RCTL);
3210         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3211                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3212         e1e_flush();
3213         usleep_range(10000, 20000);
3214
3215         if (adapter->flags2 & FLAG2_DMA_BURST) {
3216                 /* set the writeback threshold (only takes effect if the RDTR
3217                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3218                  * enable prefetching of 0x20 Rx descriptors
3219                  * granularity = 01
3220                  * wthresh = 04,
3221                  * hthresh = 04,
3222                  * pthresh = 0x20
3223                  */
3224                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3225                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3226
3227                 /* override the delay timers for enabling bursting, only if
3228                  * the value was not set by the user via module options
3229                  */
3230                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3231                         adapter->rx_int_delay = BURST_RDTR;
3232                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3233                         adapter->rx_abs_int_delay = BURST_RADV;
3234         }
3235
3236         /* set the Receive Delay Timer Register */
3237         ew32(RDTR, adapter->rx_int_delay);
3238
3239         /* irq moderation */
3240         ew32(RADV, adapter->rx_abs_int_delay);
3241         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3242                 e1000e_write_itr(adapter, adapter->itr);
3243
3244         ctrl_ext = er32(CTRL_EXT);
3245         /* Auto-Mask interrupts upon ICR access */
3246         ctrl_ext |= E1000_CTRL_EXT_IAME;
3247         ew32(IAM, 0xffffffff);
3248         ew32(CTRL_EXT, ctrl_ext);
3249         e1e_flush();
3250
3251         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3252          * the Base and Length of the Rx Descriptor Ring
3253          */
3254         rdba = rx_ring->dma;
3255         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3256         ew32(RDBAH(0), (rdba >> 32));
3257         ew32(RDLEN(0), rdlen);
3258         ew32(RDH(0), 0);
3259         ew32(RDT(0), 0);
3260         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3261         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3262
3263         writel(0, rx_ring->head);
3264         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3265                 e1000e_update_rdt_wa(rx_ring, 0);
3266         else
3267                 writel(0, rx_ring->tail);
3268
3269         /* Enable Receive Checksum Offload for TCP and UDP */
3270         rxcsum = er32(RXCSUM);
3271         if (adapter->netdev->features & NETIF_F_RXCSUM)
3272                 rxcsum |= E1000_RXCSUM_TUOFL;
3273         else
3274                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3275         ew32(RXCSUM, rxcsum);
3276
3277         /* With jumbo frames, excessive C-state transition latencies result
3278          * in dropped transactions.
3279          */
3280         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3281                 u32 lat =
3282                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3283                      adapter->max_frame_size) * 8 / 1000;
3284
3285                 if (adapter->flags & FLAG_IS_ICH) {
3286                         u32 rxdctl = er32(RXDCTL(0));
3287
3288                         ew32(RXDCTL(0), rxdctl | 0x3);
3289                 }
3290
3291                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3292         } else {
3293                 pm_qos_update_request(&adapter->pm_qos_req,
3294                                       PM_QOS_DEFAULT_VALUE);
3295         }
3296
3297         /* Enable Receives */
3298         ew32(RCTL, rctl);
3299 }
3300
3301 /**
3302  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3303  * @netdev: network interface device structure
3304  *
3305  * Writes multicast address list to the MTA hash table.
3306  * Returns: -ENOMEM on failure
3307  *                0 on no addresses written
3308  *                X on writing X addresses to MTA
3309  */
3310 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3311 {
3312         struct e1000_adapter *adapter = netdev_priv(netdev);
3313         struct e1000_hw *hw = &adapter->hw;
3314         struct netdev_hw_addr *ha;
3315         u8 *mta_list;
3316         int i;
3317
3318         if (netdev_mc_empty(netdev)) {
3319                 /* nothing to program, so clear mc list */
3320                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3321                 return 0;
3322         }
3323
3324         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3325         if (!mta_list)
3326                 return -ENOMEM;
3327
3328         /* update_mc_addr_list expects a packed array of only addresses. */
3329         i = 0;
3330         netdev_for_each_mc_addr(ha, netdev)
3331             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3332
3333         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3334         kfree(mta_list);
3335
3336         return netdev_mc_count(netdev);
3337 }
3338
3339 /**
3340  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3341  * @netdev: network interface device structure
3342  *
3343  * Writes unicast address list to the RAR table.
3344  * Returns: -ENOMEM on failure/insufficient address space
3345  *                0 on no addresses written
3346  *                X on writing X addresses to the RAR table
3347  **/
3348 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3349 {
3350         struct e1000_adapter *adapter = netdev_priv(netdev);
3351         struct e1000_hw *hw = &adapter->hw;
3352         unsigned int rar_entries;
3353         int count = 0;
3354
3355         rar_entries = hw->mac.ops.rar_get_count(hw);
3356
3357         /* save a rar entry for our hardware address */
3358         rar_entries--;
3359
3360         /* save a rar entry for the LAA workaround */
3361         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3362                 rar_entries--;
3363
3364         /* return ENOMEM indicating insufficient memory for addresses */
3365         if (netdev_uc_count(netdev) > rar_entries)
3366                 return -ENOMEM;
3367
3368         if (!netdev_uc_empty(netdev) && rar_entries) {
3369                 struct netdev_hw_addr *ha;
3370
3371                 /* write the addresses in reverse order to avoid write
3372                  * combining
3373                  */
3374                 netdev_for_each_uc_addr(ha, netdev) {
3375                         int ret_val;
3376
3377                         if (!rar_entries)
3378                                 break;
3379                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3380                         if (ret_val < 0)
3381                                 return -ENOMEM;
3382                         count++;
3383                 }
3384         }
3385
3386         /* zero out the remaining RAR entries not used above */
3387         for (; rar_entries > 0; rar_entries--) {
3388                 ew32(RAH(rar_entries), 0);
3389                 ew32(RAL(rar_entries), 0);
3390         }
3391         e1e_flush();
3392
3393         return count;
3394 }
3395
3396 /**
3397  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3398  * @netdev: network interface device structure
3399  *
3400  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3401  * address list or the network interface flags are updated.  This routine is
3402  * responsible for configuring the hardware for proper unicast, multicast,
3403  * promiscuous mode, and all-multi behavior.
3404  **/
3405 static void e1000e_set_rx_mode(struct net_device *netdev)
3406 {
3407         struct e1000_adapter *adapter = netdev_priv(netdev);
3408         struct e1000_hw *hw = &adapter->hw;
3409         u32 rctl;
3410
3411         if (pm_runtime_suspended(netdev->dev.parent))
3412                 return;
3413
3414         /* Check for Promiscuous and All Multicast modes */
3415         rctl = er32(RCTL);
3416
3417         /* clear the affected bits */
3418         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3419
3420         if (netdev->flags & IFF_PROMISC) {
3421                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3422                 /* Do not hardware filter VLANs in promisc mode */
3423                 e1000e_vlan_filter_disable(adapter);
3424         } else {
3425                 int count;
3426
3427                 if (netdev->flags & IFF_ALLMULTI) {
3428                         rctl |= E1000_RCTL_MPE;
3429                 } else {
3430                         /* Write addresses to the MTA, if the attempt fails
3431                          * then we should just turn on promiscuous mode so
3432                          * that we can at least receive multicast traffic
3433                          */
3434                         count = e1000e_write_mc_addr_list(netdev);
3435                         if (count < 0)
3436                                 rctl |= E1000_RCTL_MPE;
3437                 }
3438                 e1000e_vlan_filter_enable(adapter);
3439                 /* Write addresses to available RAR registers, if there is not
3440                  * sufficient space to store all the addresses then enable
3441                  * unicast promiscuous mode
3442                  */
3443                 count = e1000e_write_uc_addr_list(netdev);
3444                 if (count < 0)
3445                         rctl |= E1000_RCTL_UPE;
3446         }
3447
3448         ew32(RCTL, rctl);
3449
3450         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3451                 e1000e_vlan_strip_enable(adapter);
3452         else
3453                 e1000e_vlan_strip_disable(adapter);
3454 }
3455
3456 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3457 {
3458         struct e1000_hw *hw = &adapter->hw;
3459         u32 mrqc, rxcsum;
3460         u32 rss_key[10];
3461         int i;
3462
3463         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3464         for (i = 0; i < 10; i++)
3465                 ew32(RSSRK(i), rss_key[i]);
3466
3467         /* Direct all traffic to queue 0 */
3468         for (i = 0; i < 32; i++)
3469                 ew32(RETA(i), 0);
3470
3471         /* Disable raw packet checksumming so that RSS hash is placed in
3472          * descriptor on writeback.
3473          */
3474         rxcsum = er32(RXCSUM);
3475         rxcsum |= E1000_RXCSUM_PCSD;
3476
3477         ew32(RXCSUM, rxcsum);
3478
3479         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3480                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3481                 E1000_MRQC_RSS_FIELD_IPV6 |
3482                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3483                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3484
3485         ew32(MRQC, mrqc);
3486 }
3487
3488 /**
3489  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3490  * @adapter: board private structure
3491  * @timinca: pointer to returned time increment attributes
3492  *
3493  * Get attributes for incrementing the System Time Register SYSTIML/H at
3494  * the default base frequency, and set the cyclecounter shift value.
3495  **/
3496 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3497 {
3498         struct e1000_hw *hw = &adapter->hw;
3499         u32 incvalue, incperiod, shift;
3500
3501         /* Make sure clock is enabled on I217/I218/I219  before checking
3502          * the frequency
3503          */
3504         if ((hw->mac.type >= e1000_pch_lpt) &&
3505             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3506             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3507                 u32 fextnvm7 = er32(FEXTNVM7);
3508
3509                 if (!(fextnvm7 & BIT(0))) {
3510                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3511                         e1e_flush();
3512                 }
3513         }
3514
3515         switch (hw->mac.type) {
3516         case e1000_pch2lan:
3517                 /* Stable 96MHz frequency */
3518                 incperiod = INCPERIOD_96MHZ;
3519                 incvalue = INCVALUE_96MHZ;
3520                 shift = INCVALUE_SHIFT_96MHZ;
3521                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3522                 break;
3523         case e1000_pch_lpt:
3524                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3525                         /* Stable 96MHz frequency */
3526                         incperiod = INCPERIOD_96MHZ;
3527                         incvalue = INCVALUE_96MHZ;
3528                         shift = INCVALUE_SHIFT_96MHZ;
3529                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3530                 } else {
3531                         /* Stable 25MHz frequency */
3532                         incperiod = INCPERIOD_25MHZ;
3533                         incvalue = INCVALUE_25MHZ;
3534                         shift = INCVALUE_SHIFT_25MHZ;
3535                         adapter->cc.shift = shift;
3536                 }
3537                 break;
3538         case e1000_pch_spt:
3539                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3540                         /* Stable 24MHz frequency */
3541                         incperiod = INCPERIOD_24MHZ;
3542                         incvalue = INCVALUE_24MHZ;
3543                         shift = INCVALUE_SHIFT_24MHZ;
3544                         adapter->cc.shift = shift;
3545                         break;
3546                 }
3547                 return -EINVAL;
3548         case e1000_pch_cnp:
3549                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550                         /* Stable 24MHz frequency */
3551                         incperiod = INCPERIOD_24MHZ;
3552                         incvalue = INCVALUE_24MHZ;
3553                         shift = INCVALUE_SHIFT_24MHZ;
3554                         adapter->cc.shift = shift;
3555                 } else {
3556                         /* Stable 38400KHz frequency */
3557                         incperiod = INCPERIOD_38400KHZ;
3558                         incvalue = INCVALUE_38400KHZ;
3559                         shift = INCVALUE_SHIFT_38400KHZ;
3560                         adapter->cc.shift = shift;
3561                 }
3562                 break;
3563         case e1000_82574:
3564         case e1000_82583:
3565                 /* Stable 25MHz frequency */
3566                 incperiod = INCPERIOD_25MHZ;
3567                 incvalue = INCVALUE_25MHZ;
3568                 shift = INCVALUE_SHIFT_25MHZ;
3569                 adapter->cc.shift = shift;
3570                 break;
3571         default:
3572                 return -EINVAL;
3573         }
3574
3575         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577
3578         return 0;
3579 }
3580
3581 /**
3582  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583  * @adapter: board private structure
3584  *
3585  * Outgoing time stamping can be enabled and disabled. Play nice and
3586  * disable it when requested, although it shouldn't cause any overhead
3587  * when no packet needs it. At most one packet in the queue may be
3588  * marked for time stamping, otherwise it would be impossible to tell
3589  * for sure to which packet the hardware time stamp belongs.
3590  *
3591  * Incoming time stamping has to be configured via the hardware filters.
3592  * Not all combinations are supported, in particular event type has to be
3593  * specified. Matching the kind of event packet is not supported, with the
3594  * exception of "all V2 events regardless of level 2 or 4".
3595  **/
3596 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3597                                   struct hwtstamp_config *config)
3598 {
3599         struct e1000_hw *hw = &adapter->hw;
3600         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3601         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3602         u32 rxmtrl = 0;
3603         u16 rxudp = 0;
3604         bool is_l4 = false;
3605         bool is_l2 = false;
3606         u32 regval;
3607
3608         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3609                 return -EINVAL;
3610
3611         /* flags reserved for future extensions - must be zero */
3612         if (config->flags)
3613                 return -EINVAL;
3614
3615         switch (config->tx_type) {
3616         case HWTSTAMP_TX_OFF:
3617                 tsync_tx_ctl = 0;
3618                 break;
3619         case HWTSTAMP_TX_ON:
3620                 break;
3621         default:
3622                 return -ERANGE;
3623         }
3624
3625         switch (config->rx_filter) {
3626         case HWTSTAMP_FILTER_NONE:
3627                 tsync_rx_ctl = 0;
3628                 break;
3629         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3632                 is_l4 = true;
3633                 break;
3634         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3635                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3636                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3637                 is_l4 = true;
3638                 break;
3639         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3640                 /* Also time stamps V2 L2 Path Delay Request/Response */
3641                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3642                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3643                 is_l2 = true;
3644                 break;
3645         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3646                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3647                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3648                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3649                 is_l2 = true;
3650                 break;
3651         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3652                 /* Hardware cannot filter just V2 L4 Sync messages;
3653                  * fall-through to V2 (both L2 and L4) Sync.
3654                  */
3655         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3656                 /* Also time stamps V2 Path Delay Request/Response. */
3657                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3658                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3659                 is_l2 = true;
3660                 is_l4 = true;
3661                 break;
3662         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3663                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3664                  * fall-through to V2 (both L2 and L4) Delay Request.
3665                  */
3666         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3667                 /* Also time stamps V2 Path Delay Request/Response. */
3668                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3669                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3670                 is_l2 = true;
3671                 is_l4 = true;
3672                 break;
3673         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3674         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3675                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3676                  * fall-through to all V2 (both L2 and L4) Events.
3677                  */
3678         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3679                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3680                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3681                 is_l2 = true;
3682                 is_l4 = true;
3683                 break;
3684         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3685                 /* For V1, the hardware can only filter Sync messages or
3686                  * Delay Request messages but not both so fall-through to
3687                  * time stamp all packets.
3688                  */
3689         case HWTSTAMP_FILTER_NTP_ALL:
3690         case HWTSTAMP_FILTER_ALL:
3691                 is_l2 = true;
3692                 is_l4 = true;
3693                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3694                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3695                 break;
3696         default:
3697                 return -ERANGE;
3698         }
3699
3700         adapter->hwtstamp_config = *config;
3701
3702         /* enable/disable Tx h/w time stamping */
3703         regval = er32(TSYNCTXCTL);
3704         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3705         regval |= tsync_tx_ctl;
3706         ew32(TSYNCTXCTL, regval);
3707         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3708             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3709                 e_err("Timesync Tx Control register not set as expected\n");
3710                 return -EAGAIN;
3711         }
3712
3713         /* enable/disable Rx h/w time stamping */
3714         regval = er32(TSYNCRXCTL);
3715         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3716         regval |= tsync_rx_ctl;
3717         ew32(TSYNCRXCTL, regval);
3718         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3719                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3720             (regval & (E1000_TSYNCRXCTL_ENABLED |
3721                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3722                 e_err("Timesync Rx Control register not set as expected\n");
3723                 return -EAGAIN;
3724         }
3725
3726         /* L2: define ethertype filter for time stamped packets */
3727         if (is_l2)
3728                 rxmtrl |= ETH_P_1588;
3729
3730         /* define which PTP packets get time stamped */
3731         ew32(RXMTRL, rxmtrl);
3732
3733         /* Filter by destination port */
3734         if (is_l4) {
3735                 rxudp = PTP_EV_PORT;
3736                 cpu_to_be16s(&rxudp);
3737         }
3738         ew32(RXUDP, rxudp);
3739
3740         e1e_flush();
3741
3742         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3743         er32(RXSTMPH);
3744         er32(TXSTMPH);
3745
3746         return 0;
3747 }
3748
3749 /**
3750  * e1000_configure - configure the hardware for Rx and Tx
3751  * @adapter: private board structure
3752  **/
3753 static void e1000_configure(struct e1000_adapter *adapter)
3754 {
3755         struct e1000_ring *rx_ring = adapter->rx_ring;
3756
3757         e1000e_set_rx_mode(adapter->netdev);
3758
3759         e1000_restore_vlan(adapter);
3760         e1000_init_manageability_pt(adapter);
3761
3762         e1000_configure_tx(adapter);
3763
3764         if (adapter->netdev->features & NETIF_F_RXHASH)
3765                 e1000e_setup_rss_hash(adapter);
3766         e1000_setup_rctl(adapter);
3767         e1000_configure_rx(adapter);
3768         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3769 }
3770
3771 /**
3772  * e1000e_power_up_phy - restore link in case the phy was powered down
3773  * @adapter: address of board private structure
3774  *
3775  * The phy may be powered down to save power and turn off link when the
3776  * driver is unloaded and wake on lan is not enabled (among others)
3777  * *** this routine MUST be followed by a call to e1000e_reset ***
3778  **/
3779 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3780 {
3781         if (adapter->hw.phy.ops.power_up)
3782                 adapter->hw.phy.ops.power_up(&adapter->hw);
3783
3784         adapter->hw.mac.ops.setup_link(&adapter->hw);
3785 }
3786
3787 /**
3788  * e1000_power_down_phy - Power down the PHY
3789  *
3790  * Power down the PHY so no link is implied when interface is down.
3791  * The PHY cannot be powered down if management or WoL is active.
3792  */
3793 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3794 {
3795         if (adapter->hw.phy.ops.power_down)
3796                 adapter->hw.phy.ops.power_down(&adapter->hw);
3797 }
3798
3799 /**
3800  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3801  *
3802  * We want to clear all pending descriptors from the TX ring.
3803  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3804  * the data of the next descriptor. We don't care about the data we are about
3805  * to reset the HW.
3806  */
3807 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3808 {
3809         struct e1000_hw *hw = &adapter->hw;
3810         struct e1000_ring *tx_ring = adapter->tx_ring;
3811         struct e1000_tx_desc *tx_desc = NULL;
3812         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3813         u16 size = 512;
3814
3815         tctl = er32(TCTL);
3816         ew32(TCTL, tctl | E1000_TCTL_EN);
3817         tdt = er32(TDT(0));
3818         BUG_ON(tdt != tx_ring->next_to_use);
3819         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3820         tx_desc->buffer_addr = tx_ring->dma;
3821
3822         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3823         tx_desc->upper.data = 0;
3824         /* flush descriptors to memory before notifying the HW */
3825         wmb();
3826         tx_ring->next_to_use++;
3827         if (tx_ring->next_to_use == tx_ring->count)
3828                 tx_ring->next_to_use = 0;
3829         ew32(TDT(0), tx_ring->next_to_use);
3830         mmiowb();
3831         usleep_range(200, 250);
3832 }
3833
3834 /**
3835  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3836  *
3837  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3838  */
3839 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3840 {
3841         u32 rctl, rxdctl;
3842         struct e1000_hw *hw = &adapter->hw;
3843
3844         rctl = er32(RCTL);
3845         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3846         e1e_flush();
3847         usleep_range(100, 150);
3848
3849         rxdctl = er32(RXDCTL(0));
3850         /* zero the lower 14 bits (prefetch and host thresholds) */
3851         rxdctl &= 0xffffc000;
3852
3853         /* update thresholds: prefetch threshold to 31, host threshold to 1
3854          * and make sure the granularity is "descriptors" and not "cache lines"
3855          */
3856         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3857
3858         ew32(RXDCTL(0), rxdctl);
3859         /* momentarily enable the RX ring for the changes to take effect */
3860         ew32(RCTL, rctl | E1000_RCTL_EN);
3861         e1e_flush();
3862         usleep_range(100, 150);
3863         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3864 }
3865
3866 /**
3867  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3868  *
3869  * In i219, the descriptor rings must be emptied before resetting the HW
3870  * or before changing the device state to D3 during runtime (runtime PM).
3871  *
3872  * Failure to do this will cause the HW to enter a unit hang state which can
3873  * only be released by PCI reset on the device
3874  *
3875  */
3876
3877 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3878 {
3879         u16 hang_state;
3880         u32 fext_nvm11, tdlen;
3881         struct e1000_hw *hw = &adapter->hw;
3882
3883         /* First, disable MULR fix in FEXTNVM11 */
3884         fext_nvm11 = er32(FEXTNVM11);
3885         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3886         ew32(FEXTNVM11, fext_nvm11);
3887         /* do nothing if we're not in faulty state, or if the queue is empty */
3888         tdlen = er32(TDLEN(0));
3889         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3890                              &hang_state);
3891         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3892                 return;
3893         e1000_flush_tx_ring(adapter);
3894         /* recheck, maybe the fault is caused by the rx ring */
3895         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896                              &hang_state);
3897         if (hang_state & FLUSH_DESC_REQUIRED)
3898                 e1000_flush_rx_ring(adapter);
3899 }
3900
3901 /**
3902  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3903  * @adapter: board private structure
3904  *
3905  * When the MAC is reset, all hardware bits for timesync will be reset to the
3906  * default values. This function will restore the settings last in place.
3907  * Since the clock SYSTIME registers are reset, we will simply restore the
3908  * cyclecounter to the kernel real clock time.
3909  **/
3910 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3911 {
3912         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3913         struct e1000_hw *hw = &adapter->hw;
3914         unsigned long flags;
3915         u32 timinca;
3916         s32 ret_val;
3917
3918         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3919                 return;
3920
3921         if (info->adjfreq) {
3922                 /* restore the previous ptp frequency delta */
3923                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3924         } else {
3925                 /* set the default base frequency if no adjustment possible */
3926                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3927                 if (!ret_val)
3928                         ew32(TIMINCA, timinca);
3929         }
3930
3931         if (ret_val) {
3932                 dev_warn(&adapter->pdev->dev,
3933                          "Failed to restore TIMINCA clock rate delta: %d\n",
3934                          ret_val);
3935                 return;
3936         }
3937
3938         /* reset the systim ns time counter */
3939         spin_lock_irqsave(&adapter->systim_lock, flags);
3940         timecounter_init(&adapter->tc, &adapter->cc,
3941                          ktime_to_ns(ktime_get_real()));
3942         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3943
3944         /* restore the previous hwtstamp configuration settings */
3945         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3946 }
3947
3948 /**
3949  * e1000e_reset - bring the hardware into a known good state
3950  *
3951  * This function boots the hardware and enables some settings that
3952  * require a configuration cycle of the hardware - those cannot be
3953  * set/changed during runtime. After reset the device needs to be
3954  * properly configured for Rx, Tx etc.
3955  */
3956 void e1000e_reset(struct e1000_adapter *adapter)
3957 {
3958         struct e1000_mac_info *mac = &adapter->hw.mac;
3959         struct e1000_fc_info *fc = &adapter->hw.fc;
3960         struct e1000_hw *hw = &adapter->hw;
3961         u32 tx_space, min_tx_space, min_rx_space;
3962         u32 pba = adapter->pba;
3963         u16 hwm;
3964
3965         /* reset Packet Buffer Allocation to default */
3966         ew32(PBA, pba);
3967
3968         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3969                 /* To maintain wire speed transmits, the Tx FIFO should be
3970                  * large enough to accommodate two full transmit packets,
3971                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3972                  * the Rx FIFO should be large enough to accommodate at least
3973                  * one full receive packet and is similarly rounded up and
3974                  * expressed in KB.
3975                  */
3976                 pba = er32(PBA);
3977                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3978                 tx_space = pba >> 16;
3979                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3980                 pba &= 0xffff;
3981                 /* the Tx fifo also stores 16 bytes of information about the Tx
3982                  * but don't include ethernet FCS because hardware appends it
3983                  */
3984                 min_tx_space = (adapter->max_frame_size +
3985                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3986                 min_tx_space = ALIGN(min_tx_space, 1024);
3987                 min_tx_space >>= 10;
3988                 /* software strips receive CRC, so leave room for it */
3989                 min_rx_space = adapter->max_frame_size;
3990                 min_rx_space = ALIGN(min_rx_space, 1024);
3991                 min_rx_space >>= 10;
3992
3993                 /* If current Tx allocation is less than the min Tx FIFO size,
3994                  * and the min Tx FIFO size is less than the current Rx FIFO
3995                  * allocation, take space away from current Rx allocation
3996                  */
3997                 if ((tx_space < min_tx_space) &&
3998                     ((min_tx_space - tx_space) < pba)) {
3999                         pba -= min_tx_space - tx_space;
4000
4001                         /* if short on Rx space, Rx wins and must trump Tx
4002                          * adjustment
4003                          */
4004                         if (pba < min_rx_space)
4005                                 pba = min_rx_space;
4006                 }
4007
4008                 ew32(PBA, pba);
4009         }
4010
4011         /* flow control settings
4012          *
4013          * The high water mark must be low enough to fit one full frame
4014          * (or the size used for early receive) above it in the Rx FIFO.
4015          * Set it to the lower of:
4016          * - 90% of the Rx FIFO size, and
4017          * - the full Rx FIFO size minus one full frame
4018          */
4019         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4020                 fc->pause_time = 0xFFFF;
4021         else
4022                 fc->pause_time = E1000_FC_PAUSE_TIME;
4023         fc->send_xon = true;
4024         fc->current_mode = fc->requested_mode;
4025
4026         switch (hw->mac.type) {
4027         case e1000_ich9lan:
4028         case e1000_ich10lan:
4029                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4030                         pba = 14;
4031                         ew32(PBA, pba);
4032                         fc->high_water = 0x2800;
4033                         fc->low_water = fc->high_water - 8;
4034                         break;
4035                 }
4036                 /* fall-through */
4037         default:
4038                 hwm = min(((pba << 10) * 9 / 10),
4039                           ((pba << 10) - adapter->max_frame_size));
4040
4041                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4042                 fc->low_water = fc->high_water - 8;
4043                 break;
4044         case e1000_pchlan:
4045                 /* Workaround PCH LOM adapter hangs with certain network
4046                  * loads.  If hangs persist, try disabling Tx flow control.
4047                  */
4048                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4049                         fc->high_water = 0x3500;
4050                         fc->low_water = 0x1500;
4051                 } else {
4052                         fc->high_water = 0x5000;
4053                         fc->low_water = 0x3000;
4054                 }
4055                 fc->refresh_time = 0x1000;
4056                 break;
4057         case e1000_pch2lan:
4058         case e1000_pch_lpt:
4059         case e1000_pch_spt:
4060         case e1000_pch_cnp:
4061                 fc->refresh_time = 0x0400;
4062
4063                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4064                         fc->high_water = 0x05C20;
4065                         fc->low_water = 0x05048;
4066                         fc->pause_time = 0x0650;
4067                         break;
4068                 }
4069
4070                 pba = 14;
4071                 ew32(PBA, pba);
4072                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4073                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4074                 break;
4075         }
4076
4077         /* Alignment of Tx data is on an arbitrary byte boundary with the
4078          * maximum size per Tx descriptor limited only to the transmit
4079          * allocation of the packet buffer minus 96 bytes with an upper
4080          * limit of 24KB due to receive synchronization limitations.
4081          */
4082         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4083                                        24 << 10);
4084
4085         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4086          * fit in receive buffer.
4087          */
4088         if (adapter->itr_setting & 0x3) {
4089                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4090                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4091                                 dev_info(&adapter->pdev->dev,
4092                                          "Interrupt Throttle Rate off\n");
4093                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4094                                 e1000e_write_itr(adapter, 0);
4095                         }
4096                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4097                         dev_info(&adapter->pdev->dev,
4098                                  "Interrupt Throttle Rate on\n");
4099                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4100                         adapter->itr = 20000;
4101                         e1000e_write_itr(adapter, adapter->itr);
4102                 }
4103         }
4104
4105         if (hw->mac.type >= e1000_pch_spt)
4106                 e1000_flush_desc_rings(adapter);
4107         /* Allow time for pending master requests to run */
4108         mac->ops.reset_hw(hw);
4109
4110         /* For parts with AMT enabled, let the firmware know
4111          * that the network interface is in control
4112          */
4113         if (adapter->flags & FLAG_HAS_AMT)
4114                 e1000e_get_hw_control(adapter);
4115
4116         ew32(WUC, 0);
4117
4118         if (mac->ops.init_hw(hw))
4119                 e_err("Hardware Error\n");
4120
4121         e1000_update_mng_vlan(adapter);
4122
4123         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4124         ew32(VET, ETH_P_8021Q);
4125
4126         e1000e_reset_adaptive(hw);
4127
4128         /* restore systim and hwtstamp settings */
4129         e1000e_systim_reset(adapter);
4130
4131         /* Set EEE advertisement as appropriate */
4132         if (adapter->flags2 & FLAG2_HAS_EEE) {
4133                 s32 ret_val;
4134                 u16 adv_addr;
4135
4136                 switch (hw->phy.type) {
4137                 case e1000_phy_82579:
4138                         adv_addr = I82579_EEE_ADVERTISEMENT;
4139                         break;
4140                 case e1000_phy_i217:
4141                         adv_addr = I217_EEE_ADVERTISEMENT;
4142                         break;
4143                 default:
4144                         dev_err(&adapter->pdev->dev,
4145                                 "Invalid PHY type setting EEE advertisement\n");
4146                         return;
4147                 }
4148
4149                 ret_val = hw->phy.ops.acquire(hw);
4150                 if (ret_val) {
4151                         dev_err(&adapter->pdev->dev,
4152                                 "EEE advertisement - unable to acquire PHY\n");
4153                         return;
4154                 }
4155
4156                 e1000_write_emi_reg_locked(hw, adv_addr,
4157                                            hw->dev_spec.ich8lan.eee_disable ?
4158                                            0 : adapter->eee_advert);
4159
4160                 hw->phy.ops.release(hw);
4161         }
4162
4163         if (!netif_running(adapter->netdev) &&
4164             !test_bit(__E1000_TESTING, &adapter->state))
4165                 e1000_power_down_phy(adapter);
4166
4167         e1000_get_phy_info(hw);
4168
4169         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4170             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4171                 u16 phy_data = 0;
4172                 /* speed up time to link by disabling smart power down, ignore
4173                  * the return value of this function because there is nothing
4174                  * different we would do if it failed
4175                  */
4176                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4177                 phy_data &= ~IGP02E1000_PM_SPD;
4178                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4179         }
4180         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4181                 u32 reg;
4182
4183                 /* Fextnvm7 @ 0xe4[2] = 1 */
4184                 reg = er32(FEXTNVM7);
4185                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4186                 ew32(FEXTNVM7, reg);
4187                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4188                 reg = er32(FEXTNVM9);
4189                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4190                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4191                 ew32(FEXTNVM9, reg);
4192         }
4193
4194 }
4195
4196 /**
4197  * e1000e_trigger_lsc - trigger an LSC interrupt
4198  * @adapter: 
4199  *
4200  * Fire a link status change interrupt to start the watchdog.
4201  **/
4202 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4203 {
4204         struct e1000_hw *hw = &adapter->hw;
4205
4206         if (adapter->msix_entries)
4207                 ew32(ICS, E1000_ICS_OTHER);
4208         else
4209                 ew32(ICS, E1000_ICS_LSC);
4210 }
4211
4212 void e1000e_up(struct e1000_adapter *adapter)
4213 {
4214         /* hardware has been reset, we need to reload some things */
4215         e1000_configure(adapter);
4216
4217         clear_bit(__E1000_DOWN, &adapter->state);
4218
4219         if (adapter->msix_entries)
4220                 e1000_configure_msix(adapter);
4221         e1000_irq_enable(adapter);
4222
4223         netif_start_queue(adapter->netdev);
4224
4225         e1000e_trigger_lsc(adapter);
4226 }
4227
4228 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4229 {
4230         struct e1000_hw *hw = &adapter->hw;
4231
4232         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4233                 return;
4234
4235         /* flush pending descriptor writebacks to memory */
4236         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4237         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4238
4239         /* execute the writes immediately */
4240         e1e_flush();
4241
4242         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4243          * write is successful
4244          */
4245         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247
4248         /* execute the writes immediately */
4249         e1e_flush();
4250 }
4251
4252 static void e1000e_update_stats(struct e1000_adapter *adapter);
4253
4254 /**
4255  * e1000e_down - quiesce the device and optionally reset the hardware
4256  * @adapter: board private structure
4257  * @reset: boolean flag to reset the hardware or not
4258  */
4259 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4260 {
4261         struct net_device *netdev = adapter->netdev;
4262         struct e1000_hw *hw = &adapter->hw;
4263         u32 tctl, rctl;
4264
4265         /* signal that we're down so the interrupt handler does not
4266          * reschedule our watchdog timer
4267          */
4268         set_bit(__E1000_DOWN, &adapter->state);
4269
4270         netif_carrier_off(netdev);
4271
4272         /* disable receives in the hardware */
4273         rctl = er32(RCTL);
4274         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4275                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4276         /* flush and sleep below */
4277
4278         netif_stop_queue(netdev);
4279
4280         /* disable transmits in the hardware */
4281         tctl = er32(TCTL);
4282         tctl &= ~E1000_TCTL_EN;
4283         ew32(TCTL, tctl);
4284
4285         /* flush both disables and wait for them to finish */
4286         e1e_flush();
4287         usleep_range(10000, 20000);
4288
4289         e1000_irq_disable(adapter);
4290
4291         napi_synchronize(&adapter->napi);
4292
4293         del_timer_sync(&adapter->watchdog_timer);
4294         del_timer_sync(&adapter->phy_info_timer);
4295
4296         spin_lock(&adapter->stats64_lock);
4297         e1000e_update_stats(adapter);
4298         spin_unlock(&adapter->stats64_lock);
4299
4300         e1000e_flush_descriptors(adapter);
4301
4302         adapter->link_speed = 0;
4303         adapter->link_duplex = 0;
4304
4305         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4306         if ((hw->mac.type >= e1000_pch2lan) &&
4307             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4308             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4309                 e_dbg("failed to disable jumbo frame workaround mode\n");
4310
4311         if (!pci_channel_offline(adapter->pdev)) {
4312                 if (reset)
4313                         e1000e_reset(adapter);
4314                 else if (hw->mac.type >= e1000_pch_spt)
4315                         e1000_flush_desc_rings(adapter);
4316         }
4317         e1000_clean_tx_ring(adapter->tx_ring);
4318         e1000_clean_rx_ring(adapter->rx_ring);
4319 }
4320
4321 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4322 {
4323         might_sleep();
4324         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4325                 usleep_range(1000, 2000);
4326         e1000e_down(adapter, true);
4327         e1000e_up(adapter);
4328         clear_bit(__E1000_RESETTING, &adapter->state);
4329 }
4330
4331 /**
4332  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4333  * @hw: pointer to the HW structure
4334  * @systim: time value read, sanitized and returned
4335  *
4336  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4337  * check to see that the time is incrementing at a reasonable
4338  * rate and is a multiple of incvalue.
4339  **/
4340 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4341 {
4342         u64 time_delta, rem, temp;
4343         u64 systim_next;
4344         u32 incvalue;
4345         int i;
4346
4347         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349                 /* latch SYSTIMH on read of SYSTIML */
4350                 systim_next = (u64)er32(SYSTIML);
4351                 systim_next |= (u64)er32(SYSTIMH) << 32;
4352
4353                 time_delta = systim_next - systim;
4354                 temp = time_delta;
4355                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4356                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4357
4358                 systim = systim_next;
4359
4360                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4361                         break;
4362         }
4363
4364         return systim;
4365 }
4366
4367 /**
4368  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4369  * @cc: cyclecounter structure
4370  **/
4371 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4372 {
4373         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4374                                                      cc);
4375         struct e1000_hw *hw = &adapter->hw;
4376         u32 systimel, systimeh;
4377         u64 systim;
4378         /* SYSTIMH latching upon SYSTIML read does not work well.
4379          * This means that if SYSTIML overflows after we read it but before
4380          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4381          * will experience a huge non linear increment in the systime value
4382          * to fix that we test for overflow and if true, we re-read systime.
4383          */
4384         systimel = er32(SYSTIML);
4385         systimeh = er32(SYSTIMH);
4386         /* Is systimel is so large that overflow is possible? */
4387         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4388                 u32 systimel_2 = er32(SYSTIML);
4389                 if (systimel > systimel_2) {
4390                         /* There was an overflow, read again SYSTIMH, and use
4391                          * systimel_2
4392                          */
4393                         systimeh = er32(SYSTIMH);
4394                         systimel = systimel_2;
4395                 }
4396         }
4397         systim = (u64)systimel;
4398         systim |= (u64)systimeh << 32;
4399
4400         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4401                 systim = e1000e_sanitize_systim(hw, systim);
4402
4403         return systim;
4404 }
4405
4406 /**
4407  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4408  * @adapter: board private structure to initialize
4409  *
4410  * e1000_sw_init initializes the Adapter private data structure.
4411  * Fields are initialized based on PCI device information and
4412  * OS network device settings (MTU size).
4413  **/
4414 static int e1000_sw_init(struct e1000_adapter *adapter)
4415 {
4416         struct net_device *netdev = adapter->netdev;
4417
4418         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4419         adapter->rx_ps_bsize0 = 128;
4420         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4421         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4422         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4423         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4424
4425         spin_lock_init(&adapter->stats64_lock);
4426
4427         e1000e_set_interrupt_capability(adapter);
4428
4429         if (e1000_alloc_queues(adapter))
4430                 return -ENOMEM;
4431
4432         /* Setup hardware time stamping cyclecounter */
4433         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4434                 adapter->cc.read = e1000e_cyclecounter_read;
4435                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4436                 adapter->cc.mult = 1;
4437                 /* cc.shift set in e1000e_get_base_tininca() */
4438
4439                 spin_lock_init(&adapter->systim_lock);
4440                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4441         }
4442
4443         /* Explicitly disable IRQ since the NIC can be in any state. */
4444         e1000_irq_disable(adapter);
4445
4446         set_bit(__E1000_DOWN, &adapter->state);
4447         return 0;
4448 }
4449
4450 /**
4451  * e1000_intr_msi_test - Interrupt Handler
4452  * @irq: interrupt number
4453  * @data: pointer to a network interface device structure
4454  **/
4455 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4456 {
4457         struct net_device *netdev = data;
4458         struct e1000_adapter *adapter = netdev_priv(netdev);
4459         struct e1000_hw *hw = &adapter->hw;
4460         u32 icr = er32(ICR);
4461
4462         e_dbg("icr is %08X\n", icr);
4463         if (icr & E1000_ICR_RXSEQ) {
4464                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4465                 /* Force memory writes to complete before acknowledging the
4466                  * interrupt is handled.
4467                  */
4468                 wmb();
4469         }
4470
4471         return IRQ_HANDLED;
4472 }
4473
4474 /**
4475  * e1000_test_msi_interrupt - Returns 0 for successful test
4476  * @adapter: board private struct
4477  *
4478  * code flow taken from tg3.c
4479  **/
4480 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4481 {
4482         struct net_device *netdev = adapter->netdev;
4483         struct e1000_hw *hw = &adapter->hw;
4484         int err;
4485
4486         /* poll_enable hasn't been called yet, so don't need disable */
4487         /* clear any pending events */
4488         er32(ICR);
4489
4490         /* free the real vector and request a test handler */
4491         e1000_free_irq(adapter);
4492         e1000e_reset_interrupt_capability(adapter);
4493
4494         /* Assume that the test fails, if it succeeds then the test
4495          * MSI irq handler will unset this flag
4496          */
4497         adapter->flags |= FLAG_MSI_TEST_FAILED;
4498
4499         err = pci_enable_msi(adapter->pdev);
4500         if (err)
4501                 goto msi_test_failed;
4502
4503         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4504                           netdev->name, netdev);
4505         if (err) {
4506                 pci_disable_msi(adapter->pdev);
4507                 goto msi_test_failed;
4508         }
4509
4510         /* Force memory writes to complete before enabling and firing an
4511          * interrupt.
4512          */
4513         wmb();
4514
4515         e1000_irq_enable(adapter);
4516
4517         /* fire an unusual interrupt on the test handler */
4518         ew32(ICS, E1000_ICS_RXSEQ);
4519         e1e_flush();
4520         msleep(100);
4521
4522         e1000_irq_disable(adapter);
4523
4524         rmb();                  /* read flags after interrupt has been fired */
4525
4526         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4527                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4528                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4529         } else {
4530                 e_dbg("MSI interrupt test succeeded!\n");
4531         }
4532
4533         free_irq(adapter->pdev->irq, netdev);
4534         pci_disable_msi(adapter->pdev);
4535
4536 msi_test_failed:
4537         e1000e_set_interrupt_capability(adapter);
4538         return e1000_request_irq(adapter);
4539 }
4540
4541 /**
4542  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4543  * @adapter: board private struct
4544  *
4545  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4546  **/
4547 static int e1000_test_msi(struct e1000_adapter *adapter)
4548 {
4549         int err;
4550         u16 pci_cmd;
4551
4552         if (!(adapter->flags & FLAG_MSI_ENABLED))
4553                 return 0;
4554
4555         /* disable SERR in case the MSI write causes a master abort */
4556         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4557         if (pci_cmd & PCI_COMMAND_SERR)
4558                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4559                                       pci_cmd & ~PCI_COMMAND_SERR);
4560
4561         err = e1000_test_msi_interrupt(adapter);
4562
4563         /* re-enable SERR */
4564         if (pci_cmd & PCI_COMMAND_SERR) {
4565                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4566                 pci_cmd |= PCI_COMMAND_SERR;
4567                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4568         }
4569
4570         return err;
4571 }
4572
4573 /**
4574  * e1000e_open - Called when a network interface is made active
4575  * @netdev: network interface device structure
4576  *
4577  * Returns 0 on success, negative value on failure
4578  *
4579  * The open entry point is called when a network interface is made
4580  * active by the system (IFF_UP).  At this point all resources needed
4581  * for transmit and receive operations are allocated, the interrupt
4582  * handler is registered with the OS, the watchdog timer is started,
4583  * and the stack is notified that the interface is ready.
4584  **/
4585 int e1000e_open(struct net_device *netdev)
4586 {
4587         struct e1000_adapter *adapter = netdev_priv(netdev);
4588         struct e1000_hw *hw = &adapter->hw;
4589         struct pci_dev *pdev = adapter->pdev;
4590         int err;
4591
4592         /* disallow open during test */
4593         if (test_bit(__E1000_TESTING, &adapter->state))
4594                 return -EBUSY;
4595
4596         pm_runtime_get_sync(&pdev->dev);
4597
4598         netif_carrier_off(netdev);
4599
4600         /* allocate transmit descriptors */
4601         err = e1000e_setup_tx_resources(adapter->tx_ring);
4602         if (err)
4603                 goto err_setup_tx;
4604
4605         /* allocate receive descriptors */
4606         err = e1000e_setup_rx_resources(adapter->rx_ring);
4607         if (err)
4608                 goto err_setup_rx;
4609
4610         /* If AMT is enabled, let the firmware know that the network
4611          * interface is now open and reset the part to a known state.
4612          */
4613         if (adapter->flags & FLAG_HAS_AMT) {
4614                 e1000e_get_hw_control(adapter);
4615                 e1000e_reset(adapter);
4616         }
4617
4618         e1000e_power_up_phy(adapter);
4619
4620         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4621         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4622                 e1000_update_mng_vlan(adapter);
4623
4624         /* DMA latency requirement to workaround jumbo issue */
4625         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4626                            PM_QOS_DEFAULT_VALUE);
4627
4628         /* before we allocate an interrupt, we must be ready to handle it.
4629          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4630          * as soon as we call pci_request_irq, so we have to setup our
4631          * clean_rx handler before we do so.
4632          */
4633         e1000_configure(adapter);
4634
4635         err = e1000_request_irq(adapter);
4636         if (err)
4637                 goto err_req_irq;
4638
4639         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4640          * ignore e1000e MSI messages, which means we need to test our MSI
4641          * interrupt now
4642          */
4643         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4644                 err = e1000_test_msi(adapter);
4645                 if (err) {
4646                         e_err("Interrupt allocation failed\n");
4647                         goto err_req_irq;
4648                 }
4649         }
4650
4651         /* From here on the code is the same as e1000e_up() */
4652         clear_bit(__E1000_DOWN, &adapter->state);
4653
4654         napi_enable(&adapter->napi);
4655
4656         e1000_irq_enable(adapter);
4657
4658         adapter->tx_hang_recheck = false;
4659         netif_start_queue(netdev);
4660
4661         hw->mac.get_link_status = true;
4662         pm_runtime_put(&pdev->dev);
4663
4664         e1000e_trigger_lsc(adapter);
4665
4666         return 0;
4667
4668 err_req_irq:
4669         pm_qos_remove_request(&adapter->pm_qos_req);
4670         e1000e_release_hw_control(adapter);
4671         e1000_power_down_phy(adapter);
4672         e1000e_free_rx_resources(adapter->rx_ring);
4673 err_setup_rx:
4674         e1000e_free_tx_resources(adapter->tx_ring);
4675 err_setup_tx:
4676         e1000e_reset(adapter);
4677         pm_runtime_put_sync(&pdev->dev);
4678
4679         return err;
4680 }
4681
4682 /**
4683  * e1000e_close - Disables a network interface
4684  * @netdev: network interface device structure
4685  *
4686  * Returns 0, this is not allowed to fail
4687  *
4688  * The close entry point is called when an interface is de-activated
4689  * by the OS.  The hardware is still under the drivers control, but
4690  * needs to be disabled.  A global MAC reset is issued to stop the
4691  * hardware, and all transmit and receive resources are freed.
4692  **/
4693 int e1000e_close(struct net_device *netdev)
4694 {
4695         struct e1000_adapter *adapter = netdev_priv(netdev);
4696         struct pci_dev *pdev = adapter->pdev;
4697         int count = E1000_CHECK_RESET_COUNT;
4698
4699         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4700                 usleep_range(10000, 20000);
4701
4702         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4703
4704         pm_runtime_get_sync(&pdev->dev);
4705
4706         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4707                 e1000e_down(adapter, true);
4708                 e1000_free_irq(adapter);
4709
4710                 /* Link status message must follow this format */
4711                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4712         }
4713
4714         napi_disable(&adapter->napi);
4715
4716         e1000e_free_tx_resources(adapter->tx_ring);
4717         e1000e_free_rx_resources(adapter->rx_ring);
4718
4719         /* kill manageability vlan ID if supported, but not if a vlan with
4720          * the same ID is registered on the host OS (let 8021q kill it)
4721          */
4722         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4723                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4724                                        adapter->mng_vlan_id);
4725
4726         /* If AMT is enabled, let the firmware know that the network
4727          * interface is now closed
4728          */
4729         if ((adapter->flags & FLAG_HAS_AMT) &&
4730             !test_bit(__E1000_TESTING, &adapter->state))
4731                 e1000e_release_hw_control(adapter);
4732
4733         pm_qos_remove_request(&adapter->pm_qos_req);
4734
4735         pm_runtime_put_sync(&pdev->dev);
4736
4737         return 0;
4738 }
4739
4740 /**
4741  * e1000_set_mac - Change the Ethernet Address of the NIC
4742  * @netdev: network interface device structure
4743  * @p: pointer to an address structure
4744  *
4745  * Returns 0 on success, negative on failure
4746  **/
4747 static int e1000_set_mac(struct net_device *netdev, void *p)
4748 {
4749         struct e1000_adapter *adapter = netdev_priv(netdev);
4750         struct e1000_hw *hw = &adapter->hw;
4751         struct sockaddr *addr = p;
4752
4753         if (!is_valid_ether_addr(addr->sa_data))
4754                 return -EADDRNOTAVAIL;
4755
4756         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4757         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4758
4759         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4760
4761         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4762                 /* activate the work around */
4763                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4764
4765                 /* Hold a copy of the LAA in RAR[14] This is done so that
4766                  * between the time RAR[0] gets clobbered  and the time it
4767                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4768                  * of the RARs and no incoming packets directed to this port
4769                  * are dropped. Eventually the LAA will be in RAR[0] and
4770                  * RAR[14]
4771                  */
4772                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4773                                     adapter->hw.mac.rar_entry_count - 1);
4774         }
4775
4776         return 0;
4777 }
4778
4779 /**
4780  * e1000e_update_phy_task - work thread to update phy
4781  * @work: pointer to our work struct
4782  *
4783  * this worker thread exists because we must acquire a
4784  * semaphore to read the phy, which we could msleep while
4785  * waiting for it, and we can't msleep in a timer.
4786  **/
4787 static void e1000e_update_phy_task(struct work_struct *work)
4788 {
4789         struct e1000_adapter *adapter = container_of(work,
4790                                                      struct e1000_adapter,
4791                                                      update_phy_task);
4792         struct e1000_hw *hw = &adapter->hw;
4793
4794         if (test_bit(__E1000_DOWN, &adapter->state))
4795                 return;
4796
4797         e1000_get_phy_info(hw);
4798
4799         /* Enable EEE on 82579 after link up */
4800         if (hw->phy.type >= e1000_phy_82579)
4801                 e1000_set_eee_pchlan(hw);
4802 }
4803
4804 /**
4805  * e1000_update_phy_info - timre call-back to update PHY info
4806  * @data: pointer to adapter cast into an unsigned long
4807  *
4808  * Need to wait a few seconds after link up to get diagnostic information from
4809  * the phy
4810  **/
4811 static void e1000_update_phy_info(unsigned long data)
4812 {
4813         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4814
4815         if (test_bit(__E1000_DOWN, &adapter->state))
4816                 return;
4817
4818         schedule_work(&adapter->update_phy_task);
4819 }
4820
4821 /**
4822  * e1000e_update_phy_stats - Update the PHY statistics counters
4823  * @adapter: board private structure
4824  *
4825  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4826  **/
4827 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4828 {
4829         struct e1000_hw *hw = &adapter->hw;
4830         s32 ret_val;
4831         u16 phy_data;
4832
4833         ret_val = hw->phy.ops.acquire(hw);
4834         if (ret_val)
4835                 return;
4836
4837         /* A page set is expensive so check if already on desired page.
4838          * If not, set to the page with the PHY status registers.
4839          */
4840         hw->phy.addr = 1;
4841         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4842                                            &phy_data);
4843         if (ret_val)
4844                 goto release;
4845         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4846                 ret_val = hw->phy.ops.set_page(hw,
4847                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4848                 if (ret_val)
4849                         goto release;
4850         }
4851
4852         /* Single Collision Count */
4853         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4854         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4855         if (!ret_val)
4856                 adapter->stats.scc += phy_data;
4857
4858         /* Excessive Collision Count */
4859         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4860         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4861         if (!ret_val)
4862                 adapter->stats.ecol += phy_data;
4863
4864         /* Multiple Collision Count */
4865         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4866         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4867         if (!ret_val)
4868                 adapter->stats.mcc += phy_data;
4869
4870         /* Late Collision Count */
4871         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4872         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4873         if (!ret_val)
4874                 adapter->stats.latecol += phy_data;
4875
4876         /* Collision Count - also used for adaptive IFS */
4877         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4878         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4879         if (!ret_val)
4880                 hw->mac.collision_delta = phy_data;
4881
4882         /* Defer Count */
4883         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4884         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4885         if (!ret_val)
4886                 adapter->stats.dc += phy_data;
4887
4888         /* Transmit with no CRS */
4889         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4890         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4891         if (!ret_val)
4892                 adapter->stats.tncrs += phy_data;
4893
4894 release:
4895         hw->phy.ops.release(hw);
4896 }
4897
4898 /**
4899  * e1000e_update_stats - Update the board statistics counters
4900  * @adapter: board private structure
4901  **/
4902 static void e1000e_update_stats(struct e1000_adapter *adapter)
4903 {
4904         struct net_device *netdev = adapter->netdev;
4905         struct e1000_hw *hw = &adapter->hw;
4906         struct pci_dev *pdev = adapter->pdev;
4907
4908         /* Prevent stats update while adapter is being reset, or if the pci
4909          * connection is down.
4910          */
4911         if (adapter->link_speed == 0)
4912                 return;
4913         if (pci_channel_offline(pdev))
4914                 return;
4915
4916         adapter->stats.crcerrs += er32(CRCERRS);
4917         adapter->stats.gprc += er32(GPRC);
4918         adapter->stats.gorc += er32(GORCL);
4919         er32(GORCH);            /* Clear gorc */
4920         adapter->stats.bprc += er32(BPRC);
4921         adapter->stats.mprc += er32(MPRC);
4922         adapter->stats.roc += er32(ROC);
4923
4924         adapter->stats.mpc += er32(MPC);
4925
4926         /* Half-duplex statistics */
4927         if (adapter->link_duplex == HALF_DUPLEX) {
4928                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4929                         e1000e_update_phy_stats(adapter);
4930                 } else {
4931                         adapter->stats.scc += er32(SCC);
4932                         adapter->stats.ecol += er32(ECOL);
4933                         adapter->stats.mcc += er32(MCC);
4934                         adapter->stats.latecol += er32(LATECOL);
4935                         adapter->stats.dc += er32(DC);
4936
4937                         hw->mac.collision_delta = er32(COLC);
4938
4939                         if ((hw->mac.type != e1000_82574) &&
4940                             (hw->mac.type != e1000_82583))
4941                                 adapter->stats.tncrs += er32(TNCRS);
4942                 }
4943                 adapter->stats.colc += hw->mac.collision_delta;
4944         }
4945
4946         adapter->stats.xonrxc += er32(XONRXC);
4947         adapter->stats.xontxc += er32(XONTXC);
4948         adapter->stats.xoffrxc += er32(XOFFRXC);
4949         adapter->stats.xofftxc += er32(XOFFTXC);
4950         adapter->stats.gptc += er32(GPTC);
4951         adapter->stats.gotc += er32(GOTCL);
4952         er32(GOTCH);            /* Clear gotc */
4953         adapter->stats.rnbc += er32(RNBC);
4954         adapter->stats.ruc += er32(RUC);
4955
4956         adapter->stats.mptc += er32(MPTC);
4957         adapter->stats.bptc += er32(BPTC);
4958
4959         /* used for adaptive IFS */
4960
4961         hw->mac.tx_packet_delta = er32(TPT);
4962         adapter->stats.tpt += hw->mac.tx_packet_delta;
4963
4964         adapter->stats.algnerrc += er32(ALGNERRC);
4965         adapter->stats.rxerrc += er32(RXERRC);
4966         adapter->stats.cexterr += er32(CEXTERR);
4967         adapter->stats.tsctc += er32(TSCTC);
4968         adapter->stats.tsctfc += er32(TSCTFC);
4969
4970         /* Fill out the OS statistics structure */
4971         netdev->stats.multicast = adapter->stats.mprc;
4972         netdev->stats.collisions = adapter->stats.colc;
4973
4974         /* Rx Errors */
4975
4976         /* RLEC on some newer hardware can be incorrect so build
4977          * our own version based on RUC and ROC
4978          */
4979         netdev->stats.rx_errors = adapter->stats.rxerrc +
4980             adapter->stats.crcerrs + adapter->stats.algnerrc +
4981             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4982         netdev->stats.rx_length_errors = adapter->stats.ruc +
4983             adapter->stats.roc;
4984         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4985         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4986         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4987
4988         /* Tx Errors */
4989         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4990         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4991         netdev->stats.tx_window_errors = adapter->stats.latecol;
4992         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4993
4994         /* Tx Dropped needs to be maintained elsewhere */
4995
4996         /* Management Stats */
4997         adapter->stats.mgptc += er32(MGTPTC);
4998         adapter->stats.mgprc += er32(MGTPRC);
4999         adapter->stats.mgpdc += er32(MGTPDC);
5000
5001         /* Correctable ECC Errors */
5002         if (hw->mac.type >= e1000_pch_lpt) {
5003                 u32 pbeccsts = er32(PBECCSTS);
5004
5005                 adapter->corr_errors +=
5006                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5007                 adapter->uncorr_errors +=
5008                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5009                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5010         }
5011 }
5012
5013 /**
5014  * e1000_phy_read_status - Update the PHY register status snapshot
5015  * @adapter: board private structure
5016  **/
5017 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5018 {
5019         struct e1000_hw *hw = &adapter->hw;
5020         struct e1000_phy_regs *phy = &adapter->phy_regs;
5021
5022         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5023             (er32(STATUS) & E1000_STATUS_LU) &&
5024             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5025                 int ret_val;
5026
5027                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5028                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5029                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5030                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5031                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5032                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5033                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5034                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5035                 if (ret_val)
5036                         e_warn("Error reading PHY register\n");
5037         } else {
5038                 /* Do not read PHY registers if link is not up
5039                  * Set values to typical power-on defaults
5040                  */
5041                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5042                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5043                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5044                              BMSR_ERCAP);
5045                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5046                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5047                 phy->lpa = 0;
5048                 phy->expansion = EXPANSION_ENABLENPAGE;
5049                 phy->ctrl1000 = ADVERTISE_1000FULL;
5050                 phy->stat1000 = 0;
5051                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5052         }
5053 }
5054
5055 static void e1000_print_link_info(struct e1000_adapter *adapter)
5056 {
5057         struct e1000_hw *hw = &adapter->hw;
5058         u32 ctrl = er32(CTRL);
5059
5060         /* Link status message must follow this format for user tools */
5061         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5062                 adapter->netdev->name, adapter->link_speed,
5063                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5064                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5065                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5066                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5067 }
5068
5069 static bool e1000e_has_link(struct e1000_adapter *adapter)
5070 {
5071         struct e1000_hw *hw = &adapter->hw;
5072         bool link_active = false;
5073         s32 ret_val = 0;
5074
5075         /* get_link_status is set on LSC (link status) interrupt or
5076          * Rx sequence error interrupt.  get_link_status will stay
5077          * false until the check_for_link establishes link
5078          * for copper adapters ONLY
5079          */
5080         switch (hw->phy.media_type) {
5081         case e1000_media_type_copper:
5082                 if (hw->mac.get_link_status) {
5083                         ret_val = hw->mac.ops.check_for_link(hw);
5084                         link_active = !hw->mac.get_link_status;
5085                 } else {
5086                         link_active = true;
5087                 }
5088                 break;
5089         case e1000_media_type_fiber:
5090                 ret_val = hw->mac.ops.check_for_link(hw);
5091                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5092                 break;
5093         case e1000_media_type_internal_serdes:
5094                 ret_val = hw->mac.ops.check_for_link(hw);
5095                 link_active = adapter->hw.mac.serdes_has_link;
5096                 break;
5097         default:
5098         case e1000_media_type_unknown:
5099                 break;
5100         }
5101
5102         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5103             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5104                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5105                 e_info("Gigabit has been disabled, downgrading speed\n");
5106         }
5107
5108         return link_active;
5109 }
5110
5111 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5112 {
5113         /* make sure the receive unit is started */
5114         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5115             (adapter->flags & FLAG_RESTART_NOW)) {
5116                 struct e1000_hw *hw = &adapter->hw;
5117                 u32 rctl = er32(RCTL);
5118
5119                 ew32(RCTL, rctl | E1000_RCTL_EN);
5120                 adapter->flags &= ~FLAG_RESTART_NOW;
5121         }
5122 }
5123
5124 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5125 {
5126         struct e1000_hw *hw = &adapter->hw;
5127
5128         /* With 82574 controllers, PHY needs to be checked periodically
5129          * for hung state and reset, if two calls return true
5130          */
5131         if (e1000_check_phy_82574(hw))
5132                 adapter->phy_hang_count++;
5133         else
5134                 adapter->phy_hang_count = 0;
5135
5136         if (adapter->phy_hang_count > 1) {
5137                 adapter->phy_hang_count = 0;
5138                 e_dbg("PHY appears hung - resetting\n");
5139                 schedule_work(&adapter->reset_task);
5140         }
5141 }
5142
5143 /**
5144  * e1000_watchdog - Timer Call-back
5145  * @data: pointer to adapter cast into an unsigned long
5146  **/
5147 static void e1000_watchdog(unsigned long data)
5148 {
5149         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5150
5151         /* Do the rest outside of interrupt context */
5152         schedule_work(&adapter->watchdog_task);
5153
5154         /* TODO: make this use queue_delayed_work() */
5155 }
5156
5157 static void e1000_watchdog_task(struct work_struct *work)
5158 {
5159         struct e1000_adapter *adapter = container_of(work,
5160                                                      struct e1000_adapter,
5161                                                      watchdog_task);
5162         struct net_device *netdev = adapter->netdev;
5163         struct e1000_mac_info *mac = &adapter->hw.mac;
5164         struct e1000_phy_info *phy = &adapter->hw.phy;
5165         struct e1000_ring *tx_ring = adapter->tx_ring;
5166         struct e1000_hw *hw = &adapter->hw;
5167         u32 link, tctl;
5168
5169         if (test_bit(__E1000_DOWN, &adapter->state))
5170                 return;
5171
5172         link = e1000e_has_link(adapter);
5173         if ((netif_carrier_ok(netdev)) && link) {
5174                 /* Cancel scheduled suspend requests. */
5175                 pm_runtime_resume(netdev->dev.parent);
5176
5177                 e1000e_enable_receives(adapter);
5178                 goto link_up;
5179         }
5180
5181         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5182             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5183                 e1000_update_mng_vlan(adapter);
5184
5185         if (link) {
5186                 if (!netif_carrier_ok(netdev)) {
5187                         bool txb2b = true;
5188
5189                         /* Cancel scheduled suspend requests. */
5190                         pm_runtime_resume(netdev->dev.parent);
5191
5192                         /* update snapshot of PHY registers on LSC */
5193                         e1000_phy_read_status(adapter);
5194                         mac->ops.get_link_up_info(&adapter->hw,
5195                                                   &adapter->link_speed,
5196                                                   &adapter->link_duplex);
5197                         e1000_print_link_info(adapter);
5198
5199                         /* check if SmartSpeed worked */
5200                         e1000e_check_downshift(hw);
5201                         if (phy->speed_downgraded)
5202                                 netdev_warn(netdev,
5203                                             "Link Speed was downgraded by SmartSpeed\n");
5204
5205                         /* On supported PHYs, check for duplex mismatch only
5206                          * if link has autonegotiated at 10/100 half
5207                          */
5208                         if ((hw->phy.type == e1000_phy_igp_3 ||
5209                              hw->phy.type == e1000_phy_bm) &&
5210                             hw->mac.autoneg &&
5211                             (adapter->link_speed == SPEED_10 ||
5212                              adapter->link_speed == SPEED_100) &&
5213                             (adapter->link_duplex == HALF_DUPLEX)) {
5214                                 u16 autoneg_exp;
5215
5216                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5217
5218                                 if (!(autoneg_exp & EXPANSION_NWAY))
5219                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5220                         }
5221
5222                         /* adjust timeout factor according to speed/duplex */
5223                         adapter->tx_timeout_factor = 1;
5224                         switch (adapter->link_speed) {
5225                         case SPEED_10:
5226                                 txb2b = false;
5227                                 adapter->tx_timeout_factor = 16;
5228                                 break;
5229                         case SPEED_100:
5230                                 txb2b = false;
5231                                 adapter->tx_timeout_factor = 10;
5232                                 break;
5233                         }
5234
5235                         /* workaround: re-program speed mode bit after
5236                          * link-up event
5237                          */
5238                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5239                             !txb2b) {
5240                                 u32 tarc0;
5241
5242                                 tarc0 = er32(TARC(0));
5243                                 tarc0 &= ~SPEED_MODE_BIT;
5244                                 ew32(TARC(0), tarc0);
5245                         }
5246
5247                         /* disable TSO for pcie and 10/100 speeds, to avoid
5248                          * some hardware issues
5249                          */
5250                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5251                                 switch (adapter->link_speed) {
5252                                 case SPEED_10:
5253                                 case SPEED_100:
5254                                         e_info("10/100 speed: disabling TSO\n");
5255                                         netdev->features &= ~NETIF_F_TSO;
5256                                         netdev->features &= ~NETIF_F_TSO6;
5257                                         break;
5258                                 case SPEED_1000:
5259                                         netdev->features |= NETIF_F_TSO;
5260                                         netdev->features |= NETIF_F_TSO6;
5261                                         break;
5262                                 default:
5263                                         /* oops */
5264                                         break;
5265                                 }
5266                         }
5267
5268                         /* enable transmits in the hardware, need to do this
5269                          * after setting TARC(0)
5270                          */
5271                         tctl = er32(TCTL);
5272                         tctl |= E1000_TCTL_EN;
5273                         ew32(TCTL, tctl);
5274
5275                         /* Perform any post-link-up configuration before
5276                          * reporting link up.
5277                          */
5278                         if (phy->ops.cfg_on_link_up)
5279                                 phy->ops.cfg_on_link_up(hw);
5280
5281                         netif_carrier_on(netdev);
5282
5283                         if (!test_bit(__E1000_DOWN, &adapter->state))
5284                                 mod_timer(&adapter->phy_info_timer,
5285                                           round_jiffies(jiffies + 2 * HZ));
5286                 }
5287         } else {
5288                 if (netif_carrier_ok(netdev)) {
5289                         adapter->link_speed = 0;
5290                         adapter->link_duplex = 0;
5291                         /* Link status message must follow this format */
5292                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5293                         netif_carrier_off(netdev);
5294                         if (!test_bit(__E1000_DOWN, &adapter->state))
5295                                 mod_timer(&adapter->phy_info_timer,
5296                                           round_jiffies(jiffies + 2 * HZ));
5297
5298                         /* 8000ES2LAN requires a Rx packet buffer work-around
5299                          * on link down event; reset the controller to flush
5300                          * the Rx packet buffer.
5301                          */
5302                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5303                                 adapter->flags |= FLAG_RESTART_NOW;
5304                         else
5305                                 pm_schedule_suspend(netdev->dev.parent,
5306                                                     LINK_TIMEOUT);
5307                 }
5308         }
5309
5310 link_up:
5311         spin_lock(&adapter->stats64_lock);
5312         e1000e_update_stats(adapter);
5313
5314         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5315         adapter->tpt_old = adapter->stats.tpt;
5316         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5317         adapter->colc_old = adapter->stats.colc;
5318
5319         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5320         adapter->gorc_old = adapter->stats.gorc;
5321         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5322         adapter->gotc_old = adapter->stats.gotc;
5323         spin_unlock(&adapter->stats64_lock);
5324
5325         /* If the link is lost the controller stops DMA, but
5326          * if there is queued Tx work it cannot be done.  So
5327          * reset the controller to flush the Tx packet buffers.
5328          */
5329         if (!netif_carrier_ok(netdev) &&
5330             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5331                 adapter->flags |= FLAG_RESTART_NOW;
5332
5333         /* If reset is necessary, do it outside of interrupt context. */
5334         if (adapter->flags & FLAG_RESTART_NOW) {
5335                 schedule_work(&adapter->reset_task);
5336                 /* return immediately since reset is imminent */
5337                 return;
5338         }
5339
5340         e1000e_update_adaptive(&adapter->hw);
5341
5342         /* Simple mode for Interrupt Throttle Rate (ITR) */
5343         if (adapter->itr_setting == 4) {
5344                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5345                  * Total asymmetrical Tx or Rx gets ITR=8000;
5346                  * everyone else is between 2000-8000.
5347                  */
5348                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5349                 u32 dif = (adapter->gotc > adapter->gorc ?
5350                            adapter->gotc - adapter->gorc :
5351                            adapter->gorc - adapter->gotc) / 10000;
5352                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5353
5354                 e1000e_write_itr(adapter, itr);
5355         }
5356
5357         /* Cause software interrupt to ensure Rx ring is cleaned */
5358         if (adapter->msix_entries)
5359                 ew32(ICS, adapter->rx_ring->ims_val);
5360         else
5361                 ew32(ICS, E1000_ICS_RXDMT0);
5362
5363         /* flush pending descriptors to memory before detecting Tx hang */
5364         e1000e_flush_descriptors(adapter);
5365
5366         /* Force detection of hung controller every watchdog period */
5367         adapter->detect_tx_hung = true;
5368
5369         /* With 82571 controllers, LAA may be overwritten due to controller
5370          * reset from the other port. Set the appropriate LAA in RAR[0]
5371          */
5372         if (e1000e_get_laa_state_82571(hw))
5373                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5374
5375         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5376                 e1000e_check_82574_phy_workaround(adapter);
5377
5378         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5379         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5380                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5381                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5382                         er32(RXSTMPH);
5383                         adapter->rx_hwtstamp_cleared++;
5384                 } else {
5385                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5386                 }
5387         }
5388
5389         /* Reset the timer */
5390         if (!test_bit(__E1000_DOWN, &adapter->state))
5391                 mod_timer(&adapter->watchdog_timer,
5392                           round_jiffies(jiffies + 2 * HZ));
5393 }
5394
5395 #define E1000_TX_FLAGS_CSUM             0x00000001
5396 #define E1000_TX_FLAGS_VLAN             0x00000002
5397 #define E1000_TX_FLAGS_TSO              0x00000004
5398 #define E1000_TX_FLAGS_IPV4             0x00000008
5399 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5400 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5401 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5402 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5403
5404 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5405                      __be16 protocol)
5406 {
5407         struct e1000_context_desc *context_desc;
5408         struct e1000_buffer *buffer_info;
5409         unsigned int i;
5410         u32 cmd_length = 0;
5411         u16 ipcse = 0, mss;
5412         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5413         int err;
5414
5415         if (!skb_is_gso(skb))
5416                 return 0;
5417
5418         err = skb_cow_head(skb, 0);
5419         if (err < 0)
5420                 return err;
5421
5422         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5423         mss = skb_shinfo(skb)->gso_size;
5424         if (protocol == htons(ETH_P_IP)) {
5425                 struct iphdr *iph = ip_hdr(skb);
5426                 iph->tot_len = 0;
5427                 iph->check = 0;
5428                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5429                                                          0, IPPROTO_TCP, 0);
5430                 cmd_length = E1000_TXD_CMD_IP;
5431                 ipcse = skb_transport_offset(skb) - 1;
5432         } else if (skb_is_gso_v6(skb)) {
5433                 ipv6_hdr(skb)->payload_len = 0;
5434                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5435                                                        &ipv6_hdr(skb)->daddr,
5436                                                        0, IPPROTO_TCP, 0);
5437                 ipcse = 0;
5438         }
5439         ipcss = skb_network_offset(skb);
5440         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5441         tucss = skb_transport_offset(skb);
5442         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5443
5444         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5445                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5446
5447         i = tx_ring->next_to_use;
5448         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5449         buffer_info = &tx_ring->buffer_info[i];
5450
5451         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5452         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5453         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5454         context_desc->upper_setup.tcp_fields.tucss = tucss;
5455         context_desc->upper_setup.tcp_fields.tucso = tucso;
5456         context_desc->upper_setup.tcp_fields.tucse = 0;
5457         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5458         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5459         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5460
5461         buffer_info->time_stamp = jiffies;
5462         buffer_info->next_to_watch = i;
5463
5464         i++;
5465         if (i == tx_ring->count)
5466                 i = 0;
5467         tx_ring->next_to_use = i;
5468
5469         return 1;
5470 }
5471
5472 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5473                           __be16 protocol)
5474 {
5475         struct e1000_adapter *adapter = tx_ring->adapter;
5476         struct e1000_context_desc *context_desc;
5477         struct e1000_buffer *buffer_info;
5478         unsigned int i;
5479         u8 css;
5480         u32 cmd_len = E1000_TXD_CMD_DEXT;
5481
5482         if (skb->ip_summed != CHECKSUM_PARTIAL)
5483                 return false;
5484
5485         switch (protocol) {
5486         case cpu_to_be16(ETH_P_IP):
5487                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5488                         cmd_len |= E1000_TXD_CMD_TCP;
5489                 break;
5490         case cpu_to_be16(ETH_P_IPV6):
5491                 /* XXX not handling all IPV6 headers */
5492                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5493                         cmd_len |= E1000_TXD_CMD_TCP;
5494                 break;
5495         default:
5496                 if (unlikely(net_ratelimit()))
5497                         e_warn("checksum_partial proto=%x!\n",
5498                                be16_to_cpu(protocol));
5499                 break;
5500         }
5501
5502         css = skb_checksum_start_offset(skb);
5503
5504         i = tx_ring->next_to_use;
5505         buffer_info = &tx_ring->buffer_info[i];
5506         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5507
5508         context_desc->lower_setup.ip_config = 0;
5509         context_desc->upper_setup.tcp_fields.tucss = css;
5510         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5511         context_desc->upper_setup.tcp_fields.tucse = 0;
5512         context_desc->tcp_seg_setup.data = 0;
5513         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5514
5515         buffer_info->time_stamp = jiffies;
5516         buffer_info->next_to_watch = i;
5517
5518         i++;
5519         if (i == tx_ring->count)
5520                 i = 0;
5521         tx_ring->next_to_use = i;
5522
5523         return true;
5524 }
5525
5526 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5527                         unsigned int first, unsigned int max_per_txd,
5528                         unsigned int nr_frags)
5529 {
5530         struct e1000_adapter *adapter = tx_ring->adapter;
5531         struct pci_dev *pdev = adapter->pdev;
5532         struct e1000_buffer *buffer_info;
5533         unsigned int len = skb_headlen(skb);
5534         unsigned int offset = 0, size, count = 0, i;
5535         unsigned int f, bytecount, segs;
5536
5537         i = tx_ring->next_to_use;
5538
5539         while (len) {
5540                 buffer_info = &tx_ring->buffer_info[i];
5541                 size = min(len, max_per_txd);
5542
5543                 buffer_info->length = size;
5544                 buffer_info->time_stamp = jiffies;
5545                 buffer_info->next_to_watch = i;
5546                 buffer_info->dma = dma_map_single(&pdev->dev,
5547                                                   skb->data + offset,
5548                                                   size, DMA_TO_DEVICE);
5549                 buffer_info->mapped_as_page = false;
5550                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5551                         goto dma_error;
5552
5553                 len -= size;
5554                 offset += size;
5555                 count++;
5556
5557                 if (len) {
5558                         i++;
5559                         if (i == tx_ring->count)
5560                                 i = 0;
5561                 }
5562         }
5563
5564         for (f = 0; f < nr_frags; f++) {
5565                 const struct skb_frag_struct *frag;
5566
5567                 frag = &skb_shinfo(skb)->frags[f];
5568                 len = skb_frag_size(frag);
5569                 offset = 0;
5570
5571                 while (len) {
5572                         i++;
5573                         if (i == tx_ring->count)
5574                                 i = 0;
5575
5576                         buffer_info = &tx_ring->buffer_info[i];
5577                         size = min(len, max_per_txd);
5578
5579                         buffer_info->length = size;
5580                         buffer_info->time_stamp = jiffies;
5581                         buffer_info->next_to_watch = i;
5582                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5583                                                             offset, size,
5584                                                             DMA_TO_DEVICE);
5585                         buffer_info->mapped_as_page = true;
5586                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5587                                 goto dma_error;
5588
5589                         len -= size;
5590                         offset += size;
5591                         count++;
5592                 }
5593         }
5594
5595         segs = skb_shinfo(skb)->gso_segs ? : 1;
5596         /* multiply data chunks by size of headers */
5597         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5598
5599         tx_ring->buffer_info[i].skb = skb;
5600         tx_ring->buffer_info[i].segs = segs;
5601         tx_ring->buffer_info[i].bytecount = bytecount;
5602         tx_ring->buffer_info[first].next_to_watch = i;
5603
5604         return count;
5605
5606 dma_error:
5607         dev_err(&pdev->dev, "Tx DMA map failed\n");
5608         buffer_info->dma = 0;
5609         if (count)
5610                 count--;
5611
5612         while (count--) {
5613                 if (i == 0)
5614                         i += tx_ring->count;
5615                 i--;
5616                 buffer_info = &tx_ring->buffer_info[i];
5617                 e1000_put_txbuf(tx_ring, buffer_info);
5618         }
5619
5620         return 0;
5621 }
5622
5623 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5624 {
5625         struct e1000_adapter *adapter = tx_ring->adapter;
5626         struct e1000_tx_desc *tx_desc = NULL;
5627         struct e1000_buffer *buffer_info;
5628         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5629         unsigned int i;
5630
5631         if (tx_flags & E1000_TX_FLAGS_TSO) {
5632                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5633                     E1000_TXD_CMD_TSE;
5634                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5635
5636                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5637                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5638         }
5639
5640         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5641                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5642                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5643         }
5644
5645         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5646                 txd_lower |= E1000_TXD_CMD_VLE;
5647                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5648         }
5649
5650         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5651                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5652
5653         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5654                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5655                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5656         }
5657
5658         i = tx_ring->next_to_use;
5659
5660         do {
5661                 buffer_info = &tx_ring->buffer_info[i];
5662                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5663                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5664                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5665                                                   buffer_info->length);
5666                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5667
5668                 i++;
5669                 if (i == tx_ring->count)
5670                         i = 0;
5671         } while (--count > 0);
5672
5673         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5674
5675         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5676         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5677                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5678
5679         /* Force memory writes to complete before letting h/w
5680          * know there are new descriptors to fetch.  (Only
5681          * applicable for weak-ordered memory model archs,
5682          * such as IA-64).
5683          */
5684         wmb();
5685
5686         tx_ring->next_to_use = i;
5687 }
5688
5689 #define MINIMUM_DHCP_PACKET_SIZE 282
5690 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5691                                     struct sk_buff *skb)
5692 {
5693         struct e1000_hw *hw = &adapter->hw;
5694         u16 length, offset;
5695
5696         if (skb_vlan_tag_present(skb) &&
5697             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5698               (adapter->hw.mng_cookie.status &
5699                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5700                 return 0;
5701
5702         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5703                 return 0;
5704
5705         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5706                 return 0;
5707
5708         {
5709                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5710                 struct udphdr *udp;
5711
5712                 if (ip->protocol != IPPROTO_UDP)
5713                         return 0;
5714
5715                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5716                 if (ntohs(udp->dest) != 67)
5717                         return 0;
5718
5719                 offset = (u8 *)udp + 8 - skb->data;
5720                 length = skb->len - offset;
5721                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5722         }
5723
5724         return 0;
5725 }
5726
5727 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5728 {
5729         struct e1000_adapter *adapter = tx_ring->adapter;
5730
5731         netif_stop_queue(adapter->netdev);
5732         /* Herbert's original patch had:
5733          *  smp_mb__after_netif_stop_queue();
5734          * but since that doesn't exist yet, just open code it.
5735          */
5736         smp_mb();
5737
5738         /* We need to check again in a case another CPU has just
5739          * made room available.
5740          */
5741         if (e1000_desc_unused(tx_ring) < size)
5742                 return -EBUSY;
5743
5744         /* A reprieve! */
5745         netif_start_queue(adapter->netdev);
5746         ++adapter->restart_queue;
5747         return 0;
5748 }
5749
5750 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5751 {
5752         BUG_ON(size > tx_ring->count);
5753
5754         if (e1000_desc_unused(tx_ring) >= size)
5755                 return 0;
5756         return __e1000_maybe_stop_tx(tx_ring, size);
5757 }
5758
5759 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5760                                     struct net_device *netdev)
5761 {
5762         struct e1000_adapter *adapter = netdev_priv(netdev);
5763         struct e1000_ring *tx_ring = adapter->tx_ring;
5764         unsigned int first;
5765         unsigned int tx_flags = 0;
5766         unsigned int len = skb_headlen(skb);
5767         unsigned int nr_frags;
5768         unsigned int mss;
5769         int count = 0;
5770         int tso;
5771         unsigned int f;
5772         __be16 protocol = vlan_get_protocol(skb);
5773
5774         if (test_bit(__E1000_DOWN, &adapter->state)) {
5775                 dev_kfree_skb_any(skb);
5776                 return NETDEV_TX_OK;
5777         }
5778
5779         if (skb->len <= 0) {
5780                 dev_kfree_skb_any(skb);
5781                 return NETDEV_TX_OK;
5782         }
5783
5784         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5785          * pad skb in order to meet this minimum size requirement
5786          */
5787         if (skb_put_padto(skb, 17))
5788                 return NETDEV_TX_OK;
5789
5790         mss = skb_shinfo(skb)->gso_size;
5791         if (mss) {
5792                 u8 hdr_len;
5793
5794                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5795                  * points to just header, pull a few bytes of payload from
5796                  * frags into skb->data
5797                  */
5798                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5799                 /* we do this workaround for ES2LAN, but it is un-necessary,
5800                  * avoiding it could save a lot of cycles
5801                  */
5802                 if (skb->data_len && (hdr_len == len)) {
5803                         unsigned int pull_size;
5804
5805                         pull_size = min_t(unsigned int, 4, skb->data_len);
5806                         if (!__pskb_pull_tail(skb, pull_size)) {
5807                                 e_err("__pskb_pull_tail failed.\n");
5808                                 dev_kfree_skb_any(skb);
5809                                 return NETDEV_TX_OK;
5810                         }
5811                         len = skb_headlen(skb);
5812                 }
5813         }
5814
5815         /* reserve a descriptor for the offload context */
5816         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5817                 count++;
5818         count++;
5819
5820         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5821
5822         nr_frags = skb_shinfo(skb)->nr_frags;
5823         for (f = 0; f < nr_frags; f++)
5824                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5825                                       adapter->tx_fifo_limit);
5826
5827         if (adapter->hw.mac.tx_pkt_filtering)
5828                 e1000_transfer_dhcp_info(adapter, skb);
5829
5830         /* need: count + 2 desc gap to keep tail from touching
5831          * head, otherwise try next time
5832          */
5833         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5834                 return NETDEV_TX_BUSY;
5835
5836         if (skb_vlan_tag_present(skb)) {
5837                 tx_flags |= E1000_TX_FLAGS_VLAN;
5838                 tx_flags |= (skb_vlan_tag_get(skb) <<
5839                              E1000_TX_FLAGS_VLAN_SHIFT);
5840         }
5841
5842         first = tx_ring->next_to_use;
5843
5844         tso = e1000_tso(tx_ring, skb, protocol);
5845         if (tso < 0) {
5846                 dev_kfree_skb_any(skb);
5847                 return NETDEV_TX_OK;
5848         }
5849
5850         if (tso)
5851                 tx_flags |= E1000_TX_FLAGS_TSO;
5852         else if (e1000_tx_csum(tx_ring, skb, protocol))
5853                 tx_flags |= E1000_TX_FLAGS_CSUM;
5854
5855         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5856          * 82571 hardware supports TSO capabilities for IPv6 as well...
5857          * no longer assume, we must.
5858          */
5859         if (protocol == htons(ETH_P_IP))
5860                 tx_flags |= E1000_TX_FLAGS_IPV4;
5861
5862         if (unlikely(skb->no_fcs))
5863                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5864
5865         /* if count is 0 then mapping error has occurred */
5866         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5867                              nr_frags);
5868         if (count) {
5869                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5870                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5871                         if (!adapter->tx_hwtstamp_skb) {
5872                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5873                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5874                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5875                                 adapter->tx_hwtstamp_start = jiffies;
5876                                 schedule_work(&adapter->tx_hwtstamp_work);
5877                         } else {
5878                                 adapter->tx_hwtstamp_skipped++;
5879                         }
5880                 }
5881
5882                 skb_tx_timestamp(skb);
5883
5884                 netdev_sent_queue(netdev, skb->len);
5885                 e1000_tx_queue(tx_ring, tx_flags, count);
5886                 /* Make sure there is space in the ring for the next send. */
5887                 e1000_maybe_stop_tx(tx_ring,
5888                                     (MAX_SKB_FRAGS *
5889                                      DIV_ROUND_UP(PAGE_SIZE,
5890                                                   adapter->tx_fifo_limit) + 2));
5891
5892                 if (!skb->xmit_more ||
5893                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5894                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5895                                 e1000e_update_tdt_wa(tx_ring,
5896                                                      tx_ring->next_to_use);
5897                         else
5898                                 writel(tx_ring->next_to_use, tx_ring->tail);
5899
5900                         /* we need this if more than one processor can write
5901                          * to our tail at a time, it synchronizes IO on
5902                          *IA64/Altix systems
5903                          */
5904                         mmiowb();
5905                 }
5906         } else {
5907                 dev_kfree_skb_any(skb);
5908                 tx_ring->buffer_info[first].time_stamp = 0;
5909                 tx_ring->next_to_use = first;
5910         }
5911
5912         return NETDEV_TX_OK;
5913 }
5914
5915 /**
5916  * e1000_tx_timeout - Respond to a Tx Hang
5917  * @netdev: network interface device structure
5918  **/
5919 static void e1000_tx_timeout(struct net_device *netdev)
5920 {
5921         struct e1000_adapter *adapter = netdev_priv(netdev);
5922
5923         /* Do the reset outside of interrupt context */
5924         adapter->tx_timeout_count++;
5925         schedule_work(&adapter->reset_task);
5926 }
5927
5928 static void e1000_reset_task(struct work_struct *work)
5929 {
5930         struct e1000_adapter *adapter;
5931         adapter = container_of(work, struct e1000_adapter, reset_task);
5932
5933         /* don't run the task if already down */
5934         if (test_bit(__E1000_DOWN, &adapter->state))
5935                 return;
5936
5937         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5938                 e1000e_dump(adapter);
5939                 e_err("Reset adapter unexpectedly\n");
5940         }
5941         e1000e_reinit_locked(adapter);
5942 }
5943
5944 /**
5945  * e1000_get_stats64 - Get System Network Statistics
5946  * @netdev: network interface device structure
5947  * @stats: rtnl_link_stats64 pointer
5948  *
5949  * Returns the address of the device statistics structure.
5950  **/
5951 void e1000e_get_stats64(struct net_device *netdev,
5952                         struct rtnl_link_stats64 *stats)
5953 {
5954         struct e1000_adapter *adapter = netdev_priv(netdev);
5955
5956         spin_lock(&adapter->stats64_lock);
5957         e1000e_update_stats(adapter);
5958         /* Fill out the OS statistics structure */
5959         stats->rx_bytes = adapter->stats.gorc;
5960         stats->rx_packets = adapter->stats.gprc;
5961         stats->tx_bytes = adapter->stats.gotc;
5962         stats->tx_packets = adapter->stats.gptc;
5963         stats->multicast = adapter->stats.mprc;
5964         stats->collisions = adapter->stats.colc;
5965
5966         /* Rx Errors */
5967
5968         /* RLEC on some newer hardware can be incorrect so build
5969          * our own version based on RUC and ROC
5970          */
5971         stats->rx_errors = adapter->stats.rxerrc +
5972             adapter->stats.crcerrs + adapter->stats.algnerrc +
5973             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5974         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5975         stats->rx_crc_errors = adapter->stats.crcerrs;
5976         stats->rx_frame_errors = adapter->stats.algnerrc;
5977         stats->rx_missed_errors = adapter->stats.mpc;
5978
5979         /* Tx Errors */
5980         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5981         stats->tx_aborted_errors = adapter->stats.ecol;
5982         stats->tx_window_errors = adapter->stats.latecol;
5983         stats->tx_carrier_errors = adapter->stats.tncrs;
5984
5985         /* Tx Dropped needs to be maintained elsewhere */
5986
5987         spin_unlock(&adapter->stats64_lock);
5988 }
5989
5990 /**
5991  * e1000_change_mtu - Change the Maximum Transfer Unit
5992  * @netdev: network interface device structure
5993  * @new_mtu: new value for maximum frame size
5994  *
5995  * Returns 0 on success, negative on failure
5996  **/
5997 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5998 {
5999         struct e1000_adapter *adapter = netdev_priv(netdev);
6000         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6001
6002         /* Jumbo frame support */
6003         if ((new_mtu > ETH_DATA_LEN) &&
6004             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6005                 e_err("Jumbo Frames not supported.\n");
6006                 return -EINVAL;
6007         }
6008
6009         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6010         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6011             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6012             (new_mtu > ETH_DATA_LEN)) {
6013                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6014                 return -EINVAL;
6015         }
6016
6017         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6018                 usleep_range(1000, 2000);
6019         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6020         adapter->max_frame_size = max_frame;
6021         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6022         netdev->mtu = new_mtu;
6023
6024         pm_runtime_get_sync(netdev->dev.parent);
6025
6026         if (netif_running(netdev))
6027                 e1000e_down(adapter, true);
6028
6029         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6030          * means we reserve 2 more, this pushes us to allocate from the next
6031          * larger slab size.
6032          * i.e. RXBUFFER_2048 --> size-4096 slab
6033          * However with the new *_jumbo_rx* routines, jumbo receives will use
6034          * fragmented skbs
6035          */
6036
6037         if (max_frame <= 2048)
6038                 adapter->rx_buffer_len = 2048;
6039         else
6040                 adapter->rx_buffer_len = 4096;
6041
6042         /* adjust allocation if LPE protects us, and we aren't using SBP */
6043         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6044                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6045
6046         if (netif_running(netdev))
6047                 e1000e_up(adapter);
6048         else
6049                 e1000e_reset(adapter);
6050
6051         pm_runtime_put_sync(netdev->dev.parent);
6052
6053         clear_bit(__E1000_RESETTING, &adapter->state);
6054
6055         return 0;
6056 }
6057
6058 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6059                            int cmd)
6060 {
6061         struct e1000_adapter *adapter = netdev_priv(netdev);
6062         struct mii_ioctl_data *data = if_mii(ifr);
6063
6064         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6065                 return -EOPNOTSUPP;
6066
6067         switch (cmd) {
6068         case SIOCGMIIPHY:
6069                 data->phy_id = adapter->hw.phy.addr;
6070                 break;
6071         case SIOCGMIIREG:
6072                 e1000_phy_read_status(adapter);
6073
6074                 switch (data->reg_num & 0x1F) {
6075                 case MII_BMCR:
6076                         data->val_out = adapter->phy_regs.bmcr;
6077                         break;
6078                 case MII_BMSR:
6079                         data->val_out = adapter->phy_regs.bmsr;
6080                         break;
6081                 case MII_PHYSID1:
6082                         data->val_out = (adapter->hw.phy.id >> 16);
6083                         break;
6084                 case MII_PHYSID2:
6085                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6086                         break;
6087                 case MII_ADVERTISE:
6088                         data->val_out = adapter->phy_regs.advertise;
6089                         break;
6090                 case MII_LPA:
6091                         data->val_out = adapter->phy_regs.lpa;
6092                         break;
6093                 case MII_EXPANSION:
6094                         data->val_out = adapter->phy_regs.expansion;
6095                         break;
6096                 case MII_CTRL1000:
6097                         data->val_out = adapter->phy_regs.ctrl1000;
6098                         break;
6099                 case MII_STAT1000:
6100                         data->val_out = adapter->phy_regs.stat1000;
6101                         break;
6102                 case MII_ESTATUS:
6103                         data->val_out = adapter->phy_regs.estatus;
6104                         break;
6105                 default:
6106                         return -EIO;
6107                 }
6108                 break;
6109         case SIOCSMIIREG:
6110         default:
6111                 return -EOPNOTSUPP;
6112         }
6113         return 0;
6114 }
6115
6116 /**
6117  * e1000e_hwtstamp_ioctl - control hardware time stamping
6118  * @netdev: network interface device structure
6119  * @ifreq: interface request
6120  *
6121  * Outgoing time stamping can be enabled and disabled. Play nice and
6122  * disable it when requested, although it shouldn't cause any overhead
6123  * when no packet needs it. At most one packet in the queue may be
6124  * marked for time stamping, otherwise it would be impossible to tell
6125  * for sure to which packet the hardware time stamp belongs.
6126  *
6127  * Incoming time stamping has to be configured via the hardware filters.
6128  * Not all combinations are supported, in particular event type has to be
6129  * specified. Matching the kind of event packet is not supported, with the
6130  * exception of "all V2 events regardless of level 2 or 4".
6131  **/
6132 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6133 {
6134         struct e1000_adapter *adapter = netdev_priv(netdev);
6135         struct hwtstamp_config config;
6136         int ret_val;
6137
6138         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6139                 return -EFAULT;
6140
6141         ret_val = e1000e_config_hwtstamp(adapter, &config);
6142         if (ret_val)
6143                 return ret_val;
6144
6145         switch (config.rx_filter) {
6146         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6147         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6148         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6149         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6150         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6151         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6152                 /* With V2 type filters which specify a Sync or Delay Request,
6153                  * Path Delay Request/Response messages are also time stamped
6154                  * by hardware so notify the caller the requested packets plus
6155                  * some others are time stamped.
6156                  */
6157                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6158                 break;
6159         default:
6160                 break;
6161         }
6162
6163         return copy_to_user(ifr->ifr_data, &config,
6164                             sizeof(config)) ? -EFAULT : 0;
6165 }
6166
6167 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6168 {
6169         struct e1000_adapter *adapter = netdev_priv(netdev);
6170
6171         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6172                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6173 }
6174
6175 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6176 {
6177         switch (cmd) {
6178         case SIOCGMIIPHY:
6179         case SIOCGMIIREG:
6180         case SIOCSMIIREG:
6181                 return e1000_mii_ioctl(netdev, ifr, cmd);
6182         case SIOCSHWTSTAMP:
6183                 return e1000e_hwtstamp_set(netdev, ifr);
6184         case SIOCGHWTSTAMP:
6185                 return e1000e_hwtstamp_get(netdev, ifr);
6186         default:
6187                 return -EOPNOTSUPP;
6188         }
6189 }
6190
6191 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6192 {
6193         struct e1000_hw *hw = &adapter->hw;
6194         u32 i, mac_reg, wuc;
6195         u16 phy_reg, wuc_enable;
6196         int retval;
6197
6198         /* copy MAC RARs to PHY RARs */
6199         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6200
6201         retval = hw->phy.ops.acquire(hw);
6202         if (retval) {
6203                 e_err("Could not acquire PHY\n");
6204                 return retval;
6205         }
6206
6207         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6208         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6209         if (retval)
6210                 goto release;
6211
6212         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6213         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6214                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6215                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6216                                            (u16)(mac_reg & 0xFFFF));
6217                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6218                                            (u16)((mac_reg >> 16) & 0xFFFF));
6219         }
6220
6221         /* configure PHY Rx Control register */
6222         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6223         mac_reg = er32(RCTL);
6224         if (mac_reg & E1000_RCTL_UPE)
6225                 phy_reg |= BM_RCTL_UPE;
6226         if (mac_reg & E1000_RCTL_MPE)
6227                 phy_reg |= BM_RCTL_MPE;
6228         phy_reg &= ~(BM_RCTL_MO_MASK);
6229         if (mac_reg & E1000_RCTL_MO_3)
6230                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6231                             << BM_RCTL_MO_SHIFT);
6232         if (mac_reg & E1000_RCTL_BAM)
6233                 phy_reg |= BM_RCTL_BAM;
6234         if (mac_reg & E1000_RCTL_PMCF)
6235                 phy_reg |= BM_RCTL_PMCF;
6236         mac_reg = er32(CTRL);
6237         if (mac_reg & E1000_CTRL_RFCE)
6238                 phy_reg |= BM_RCTL_RFCE;
6239         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6240
6241         wuc = E1000_WUC_PME_EN;
6242         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6243                 wuc |= E1000_WUC_APME;
6244
6245         /* enable PHY wakeup in MAC register */
6246         ew32(WUFC, wufc);
6247         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6248                    E1000_WUC_PME_STATUS | wuc));
6249
6250         /* configure and enable PHY wakeup in PHY registers */
6251         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6252         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6253
6254         /* activate PHY wakeup */
6255         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6256         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6257         if (retval)
6258                 e_err("Could not set PHY Host Wakeup bit\n");
6259 release:
6260         hw->phy.ops.release(hw);
6261
6262         return retval;
6263 }
6264
6265 static void e1000e_flush_lpic(struct pci_dev *pdev)
6266 {
6267         struct net_device *netdev = pci_get_drvdata(pdev);
6268         struct e1000_adapter *adapter = netdev_priv(netdev);
6269         struct e1000_hw *hw = &adapter->hw;
6270         u32 ret_val;
6271
6272         pm_runtime_get_sync(netdev->dev.parent);
6273
6274         ret_val = hw->phy.ops.acquire(hw);
6275         if (ret_val)
6276                 goto fl_out;
6277
6278         pr_info("EEE TX LPI TIMER: %08X\n",
6279                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6280
6281         hw->phy.ops.release(hw);
6282
6283 fl_out:
6284         pm_runtime_put_sync(netdev->dev.parent);
6285 }
6286
6287 static int e1000e_pm_freeze(struct device *dev)
6288 {
6289         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6290         struct e1000_adapter *adapter = netdev_priv(netdev);
6291
6292         netif_device_detach(netdev);
6293
6294         if (netif_running(netdev)) {
6295                 int count = E1000_CHECK_RESET_COUNT;
6296
6297                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6298                         usleep_range(10000, 20000);
6299
6300                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6301
6302                 /* Quiesce the device without resetting the hardware */
6303                 e1000e_down(adapter, false);
6304                 e1000_free_irq(adapter);
6305         }
6306         e1000e_reset_interrupt_capability(adapter);
6307
6308         /* Allow time for pending master requests to run */
6309         e1000e_disable_pcie_master(&adapter->hw);
6310
6311         return 0;
6312 }
6313
6314 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6315 {
6316         struct net_device *netdev = pci_get_drvdata(pdev);
6317         struct e1000_adapter *adapter = netdev_priv(netdev);
6318         struct e1000_hw *hw = &adapter->hw;
6319         u32 ctrl, ctrl_ext, rctl, status;
6320         /* Runtime suspend should only enable wakeup for link changes */
6321         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6322         int retval = 0;
6323
6324         status = er32(STATUS);
6325         if (status & E1000_STATUS_LU)
6326                 wufc &= ~E1000_WUFC_LNKC;
6327
6328         if (wufc) {
6329                 e1000_setup_rctl(adapter);
6330                 e1000e_set_rx_mode(netdev);
6331
6332                 /* turn on all-multi mode if wake on multicast is enabled */
6333                 if (wufc & E1000_WUFC_MC) {
6334                         rctl = er32(RCTL);
6335                         rctl |= E1000_RCTL_MPE;
6336                         ew32(RCTL, rctl);
6337                 }
6338
6339                 ctrl = er32(CTRL);
6340                 ctrl |= E1000_CTRL_ADVD3WUC;
6341                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6342                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6343                 ew32(CTRL, ctrl);
6344
6345                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6346                     adapter->hw.phy.media_type ==
6347                     e1000_media_type_internal_serdes) {
6348                         /* keep the laser running in D3 */
6349                         ctrl_ext = er32(CTRL_EXT);
6350                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6351                         ew32(CTRL_EXT, ctrl_ext);
6352                 }
6353
6354                 if (!runtime)
6355                         e1000e_power_up_phy(adapter);
6356
6357                 if (adapter->flags & FLAG_IS_ICH)
6358                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6359
6360                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6361                         /* enable wakeup by the PHY */
6362                         retval = e1000_init_phy_wakeup(adapter, wufc);
6363                         if (retval)
6364                                 return retval;
6365                 } else {
6366                         /* enable wakeup by the MAC */
6367                         ew32(WUFC, wufc);
6368                         ew32(WUC, E1000_WUC_PME_EN);
6369                 }
6370         } else {
6371                 ew32(WUC, 0);
6372                 ew32(WUFC, 0);
6373
6374                 e1000_power_down_phy(adapter);
6375         }
6376
6377         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6378                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6379         } else if (hw->mac.type >= e1000_pch_lpt) {
6380                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6381                         /* ULP does not support wake from unicast, multicast
6382                          * or broadcast.
6383                          */
6384                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6385
6386                 if (retval)
6387                         return retval;
6388         }
6389
6390         /* Ensure that the appropriate bits are set in LPI_CTRL
6391          * for EEE in Sx
6392          */
6393         if ((hw->phy.type >= e1000_phy_i217) &&
6394             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6395                 u16 lpi_ctrl = 0;
6396
6397                 retval = hw->phy.ops.acquire(hw);
6398                 if (!retval) {
6399                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6400                                                  &lpi_ctrl);
6401                         if (!retval) {
6402                                 if (adapter->eee_advert &
6403                                     hw->dev_spec.ich8lan.eee_lp_ability &
6404                                     I82579_EEE_100_SUPPORTED)
6405                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6406                                 if (adapter->eee_advert &
6407                                     hw->dev_spec.ich8lan.eee_lp_ability &
6408                                     I82579_EEE_1000_SUPPORTED)
6409                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6410
6411                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6412                                                          lpi_ctrl);
6413                         }
6414                 }
6415                 hw->phy.ops.release(hw);
6416         }
6417
6418         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6419          * would have already happened in close and is redundant.
6420          */
6421         e1000e_release_hw_control(adapter);
6422
6423         pci_clear_master(pdev);
6424
6425         /* The pci-e switch on some quad port adapters will report a
6426          * correctable error when the MAC transitions from D0 to D3.  To
6427          * prevent this we need to mask off the correctable errors on the
6428          * downstream port of the pci-e switch.
6429          *
6430          * We don't have the associated upstream bridge while assigning
6431          * the PCI device into guest. For example, the KVM on power is
6432          * one of the cases.
6433          */
6434         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6435                 struct pci_dev *us_dev = pdev->bus->self;
6436                 u16 devctl;
6437
6438                 if (!us_dev)
6439                         return 0;
6440
6441                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6442                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6443                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6444
6445                 pci_save_state(pdev);
6446                 pci_prepare_to_sleep(pdev);
6447
6448                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6449         }
6450
6451         return 0;
6452 }
6453
6454 /**
6455  * __e1000e_disable_aspm - Disable ASPM states
6456  * @pdev: pointer to PCI device struct
6457  * @state: bit-mask of ASPM states to disable
6458  * @locked: indication if this context holds pci_bus_sem locked.
6459  *
6460  * Some devices *must* have certain ASPM states disabled per hardware errata.
6461  **/
6462 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6463 {
6464         struct pci_dev *parent = pdev->bus->self;
6465         u16 aspm_dis_mask = 0;
6466         u16 pdev_aspmc, parent_aspmc;
6467
6468         switch (state) {
6469         case PCIE_LINK_STATE_L0S:
6470         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6471                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6472                 /* fall-through - can't have L1 without L0s */
6473         case PCIE_LINK_STATE_L1:
6474                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6475                 break;
6476         default:
6477                 return;
6478         }
6479
6480         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6481         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6482
6483         if (parent) {
6484                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6485                                           &parent_aspmc);
6486                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6487         }
6488
6489         /* Nothing to do if the ASPM states to be disabled already are */
6490         if (!(pdev_aspmc & aspm_dis_mask) &&
6491             (!parent || !(parent_aspmc & aspm_dis_mask)))
6492                 return;
6493
6494         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6495                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6496                  "L0s" : "",
6497                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6498                  "L1" : "");
6499
6500 #ifdef CONFIG_PCIEASPM
6501         if (locked)
6502                 pci_disable_link_state_locked(pdev, state);
6503         else
6504                 pci_disable_link_state(pdev, state);
6505
6506         /* Double-check ASPM control.  If not disabled by the above, the
6507          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6508          * not enabled); override by writing PCI config space directly.
6509          */
6510         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6511         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6512
6513         if (!(aspm_dis_mask & pdev_aspmc))
6514                 return;
6515 #endif
6516
6517         /* Both device and parent should have the same ASPM setting.
6518          * Disable ASPM in downstream component first and then upstream.
6519          */
6520         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6521
6522         if (parent)
6523                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6524                                            aspm_dis_mask);
6525 }
6526
6527 /**
6528  * e1000e_disable_aspm - Disable ASPM states.
6529  * @pdev: pointer to PCI device struct
6530  * @state: bit-mask of ASPM states to disable
6531  *
6532  * This function acquires the pci_bus_sem!
6533  * Some devices *must* have certain ASPM states disabled per hardware errata.
6534  **/
6535 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6536 {
6537         __e1000e_disable_aspm(pdev, state, 0);
6538 }
6539
6540 /**
6541  * e1000e_disable_aspm_locked   Disable ASPM states.
6542  * @pdev: pointer to PCI device struct
6543  * @state: bit-mask of ASPM states to disable
6544  *
6545  * This function must be called with pci_bus_sem acquired!
6546  * Some devices *must* have certain ASPM states disabled per hardware errata.
6547  **/
6548 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6549 {
6550         __e1000e_disable_aspm(pdev, state, 1);
6551 }
6552
6553 #ifdef CONFIG_PM
6554 static int __e1000_resume(struct pci_dev *pdev)
6555 {
6556         struct net_device *netdev = pci_get_drvdata(pdev);
6557         struct e1000_adapter *adapter = netdev_priv(netdev);
6558         struct e1000_hw *hw = &adapter->hw;
6559         u16 aspm_disable_flag = 0;
6560
6561         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6562                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6563         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6564                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6565         if (aspm_disable_flag)
6566                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6567
6568         pci_set_master(pdev);
6569
6570         if (hw->mac.type >= e1000_pch2lan)
6571                 e1000_resume_workarounds_pchlan(&adapter->hw);
6572
6573         e1000e_power_up_phy(adapter);
6574
6575         /* report the system wakeup cause from S3/S4 */
6576         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6577                 u16 phy_data;
6578
6579                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6580                 if (phy_data) {
6581                         e_info("PHY Wakeup cause - %s\n",
6582                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6583                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6584                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6585                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6586                                phy_data & E1000_WUS_LNKC ?
6587                                "Link Status Change" : "other");
6588                 }
6589                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6590         } else {
6591                 u32 wus = er32(WUS);
6592
6593                 if (wus) {
6594                         e_info("MAC Wakeup cause - %s\n",
6595                                wus & E1000_WUS_EX ? "Unicast Packet" :
6596                                wus & E1000_WUS_MC ? "Multicast Packet" :
6597                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6598                                wus & E1000_WUS_MAG ? "Magic Packet" :
6599                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6600                                "other");
6601                 }
6602                 ew32(WUS, ~0);
6603         }
6604
6605         e1000e_reset(adapter);
6606
6607         e1000_init_manageability_pt(adapter);
6608
6609         /* If the controller has AMT, do not set DRV_LOAD until the interface
6610          * is up.  For all other cases, let the f/w know that the h/w is now
6611          * under the control of the driver.
6612          */
6613         if (!(adapter->flags & FLAG_HAS_AMT))
6614                 e1000e_get_hw_control(adapter);
6615
6616         return 0;
6617 }
6618
6619 #ifdef CONFIG_PM_SLEEP
6620 static int e1000e_pm_thaw(struct device *dev)
6621 {
6622         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6623         struct e1000_adapter *adapter = netdev_priv(netdev);
6624
6625         e1000e_set_interrupt_capability(adapter);
6626         if (netif_running(netdev)) {
6627                 u32 err = e1000_request_irq(adapter);
6628
6629                 if (err)
6630                         return err;
6631
6632                 e1000e_up(adapter);
6633         }
6634
6635         netif_device_attach(netdev);
6636
6637         return 0;
6638 }
6639
6640 static int e1000e_pm_suspend(struct device *dev)
6641 {
6642         struct pci_dev *pdev = to_pci_dev(dev);
6643         int rc;
6644
6645         e1000e_flush_lpic(pdev);
6646
6647         e1000e_pm_freeze(dev);
6648
6649         rc = __e1000_shutdown(pdev, false);
6650         if (rc)
6651                 e1000e_pm_thaw(dev);
6652
6653         return rc;
6654 }
6655
6656 static int e1000e_pm_resume(struct device *dev)
6657 {
6658         struct pci_dev *pdev = to_pci_dev(dev);
6659         int rc;
6660
6661         rc = __e1000_resume(pdev);
6662         if (rc)
6663                 return rc;
6664
6665         return e1000e_pm_thaw(dev);
6666 }
6667 #endif /* CONFIG_PM_SLEEP */
6668
6669 static int e1000e_pm_runtime_idle(struct device *dev)
6670 {
6671         struct pci_dev *pdev = to_pci_dev(dev);
6672         struct net_device *netdev = pci_get_drvdata(pdev);
6673         struct e1000_adapter *adapter = netdev_priv(netdev);
6674         u16 eee_lp;
6675
6676         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6677
6678         if (!e1000e_has_link(adapter)) {
6679                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6680                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6681         }
6682
6683         return -EBUSY;
6684 }
6685
6686 static int e1000e_pm_runtime_resume(struct device *dev)
6687 {
6688         struct pci_dev *pdev = to_pci_dev(dev);
6689         struct net_device *netdev = pci_get_drvdata(pdev);
6690         struct e1000_adapter *adapter = netdev_priv(netdev);
6691         int rc;
6692
6693         rc = __e1000_resume(pdev);
6694         if (rc)
6695                 return rc;
6696
6697         if (netdev->flags & IFF_UP)
6698                 e1000e_up(adapter);
6699
6700         return rc;
6701 }
6702
6703 static int e1000e_pm_runtime_suspend(struct device *dev)
6704 {
6705         struct pci_dev *pdev = to_pci_dev(dev);
6706         struct net_device *netdev = pci_get_drvdata(pdev);
6707         struct e1000_adapter *adapter = netdev_priv(netdev);
6708
6709         if (netdev->flags & IFF_UP) {
6710                 int count = E1000_CHECK_RESET_COUNT;
6711
6712                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6713                         usleep_range(10000, 20000);
6714
6715                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6716
6717                 /* Down the device without resetting the hardware */
6718                 e1000e_down(adapter, false);
6719         }
6720
6721         if (__e1000_shutdown(pdev, true)) {
6722                 e1000e_pm_runtime_resume(dev);
6723                 return -EBUSY;
6724         }
6725
6726         return 0;
6727 }
6728 #endif /* CONFIG_PM */
6729
6730 static void e1000_shutdown(struct pci_dev *pdev)
6731 {
6732         e1000e_flush_lpic(pdev);
6733
6734         e1000e_pm_freeze(&pdev->dev);
6735
6736         __e1000_shutdown(pdev, false);
6737 }
6738
6739 #ifdef CONFIG_NET_POLL_CONTROLLER
6740
6741 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6742 {
6743         struct net_device *netdev = data;
6744         struct e1000_adapter *adapter = netdev_priv(netdev);
6745
6746         if (adapter->msix_entries) {
6747                 int vector, msix_irq;
6748
6749                 vector = 0;
6750                 msix_irq = adapter->msix_entries[vector].vector;
6751                 if (disable_hardirq(msix_irq))
6752                         e1000_intr_msix_rx(msix_irq, netdev);
6753                 enable_irq(msix_irq);
6754
6755                 vector++;
6756                 msix_irq = adapter->msix_entries[vector].vector;
6757                 if (disable_hardirq(msix_irq))
6758                         e1000_intr_msix_tx(msix_irq, netdev);
6759                 enable_irq(msix_irq);
6760
6761                 vector++;
6762                 msix_irq = adapter->msix_entries[vector].vector;
6763                 if (disable_hardirq(msix_irq))
6764                         e1000_msix_other(msix_irq, netdev);
6765                 enable_irq(msix_irq);
6766         }
6767
6768         return IRQ_HANDLED;
6769 }
6770
6771 /**
6772  * e1000_netpoll
6773  * @netdev: network interface device structure
6774  *
6775  * Polling 'interrupt' - used by things like netconsole to send skbs
6776  * without having to re-enable interrupts. It's not called while
6777  * the interrupt routine is executing.
6778  */
6779 static void e1000_netpoll(struct net_device *netdev)
6780 {
6781         struct e1000_adapter *adapter = netdev_priv(netdev);
6782
6783         switch (adapter->int_mode) {
6784         case E1000E_INT_MODE_MSIX:
6785                 e1000_intr_msix(adapter->pdev->irq, netdev);
6786                 break;
6787         case E1000E_INT_MODE_MSI:
6788                 if (disable_hardirq(adapter->pdev->irq))
6789                         e1000_intr_msi(adapter->pdev->irq, netdev);
6790                 enable_irq(adapter->pdev->irq);
6791                 break;
6792         default:                /* E1000E_INT_MODE_LEGACY */
6793                 if (disable_hardirq(adapter->pdev->irq))
6794                         e1000_intr(adapter->pdev->irq, netdev);
6795                 enable_irq(adapter->pdev->irq);
6796                 break;
6797         }
6798 }
6799 #endif
6800
6801 /**
6802  * e1000_io_error_detected - called when PCI error is detected
6803  * @pdev: Pointer to PCI device
6804  * @state: The current pci connection state
6805  *
6806  * This function is called after a PCI bus error affecting
6807  * this device has been detected.
6808  */
6809 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6810                                                 pci_channel_state_t state)
6811 {
6812         struct net_device *netdev = pci_get_drvdata(pdev);
6813         struct e1000_adapter *adapter = netdev_priv(netdev);
6814
6815         netif_device_detach(netdev);
6816
6817         if (state == pci_channel_io_perm_failure)
6818                 return PCI_ERS_RESULT_DISCONNECT;
6819
6820         if (netif_running(netdev))
6821                 e1000e_down(adapter, true);
6822         pci_disable_device(pdev);
6823
6824         /* Request a slot slot reset. */
6825         return PCI_ERS_RESULT_NEED_RESET;
6826 }
6827
6828 /**
6829  * e1000_io_slot_reset - called after the pci bus has been reset.
6830  * @pdev: Pointer to PCI device
6831  *
6832  * Restart the card from scratch, as if from a cold-boot. Implementation
6833  * resembles the first-half of the e1000e_pm_resume routine.
6834  */
6835 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6836 {
6837         struct net_device *netdev = pci_get_drvdata(pdev);
6838         struct e1000_adapter *adapter = netdev_priv(netdev);
6839         struct e1000_hw *hw = &adapter->hw;
6840         u16 aspm_disable_flag = 0;
6841         int err;
6842         pci_ers_result_t result;
6843
6844         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6845                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6846         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6847                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6848         if (aspm_disable_flag)
6849                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6850
6851         err = pci_enable_device_mem(pdev);
6852         if (err) {
6853                 dev_err(&pdev->dev,
6854                         "Cannot re-enable PCI device after reset.\n");
6855                 result = PCI_ERS_RESULT_DISCONNECT;
6856         } else {
6857                 pdev->state_saved = true;
6858                 pci_restore_state(pdev);
6859                 pci_set_master(pdev);
6860
6861                 pci_enable_wake(pdev, PCI_D3hot, 0);
6862                 pci_enable_wake(pdev, PCI_D3cold, 0);
6863
6864                 e1000e_reset(adapter);
6865                 ew32(WUS, ~0);
6866                 result = PCI_ERS_RESULT_RECOVERED;
6867         }
6868
6869         pci_cleanup_aer_uncorrect_error_status(pdev);
6870
6871         return result;
6872 }
6873
6874 /**
6875  * e1000_io_resume - called when traffic can start flowing again.
6876  * @pdev: Pointer to PCI device
6877  *
6878  * This callback is called when the error recovery driver tells us that
6879  * its OK to resume normal operation. Implementation resembles the
6880  * second-half of the e1000e_pm_resume routine.
6881  */
6882 static void e1000_io_resume(struct pci_dev *pdev)
6883 {
6884         struct net_device *netdev = pci_get_drvdata(pdev);
6885         struct e1000_adapter *adapter = netdev_priv(netdev);
6886
6887         e1000_init_manageability_pt(adapter);
6888
6889         if (netif_running(netdev))
6890                 e1000e_up(adapter);
6891
6892         netif_device_attach(netdev);
6893
6894         /* If the controller has AMT, do not set DRV_LOAD until the interface
6895          * is up.  For all other cases, let the f/w know that the h/w is now
6896          * under the control of the driver.
6897          */
6898         if (!(adapter->flags & FLAG_HAS_AMT))
6899                 e1000e_get_hw_control(adapter);
6900 }
6901
6902 static void e1000_print_device_info(struct e1000_adapter *adapter)
6903 {
6904         struct e1000_hw *hw = &adapter->hw;
6905         struct net_device *netdev = adapter->netdev;
6906         u32 ret_val;
6907         u8 pba_str[E1000_PBANUM_LENGTH];
6908
6909         /* print bus type/speed/width info */
6910         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6911                /* bus width */
6912                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6913                 "Width x1"),
6914                /* MAC address */
6915                netdev->dev_addr);
6916         e_info("Intel(R) PRO/%s Network Connection\n",
6917                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6918         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6919                                                 E1000_PBANUM_LENGTH);
6920         if (ret_val)
6921                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6922         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6923                hw->mac.type, hw->phy.type, pba_str);
6924 }
6925
6926 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6927 {
6928         struct e1000_hw *hw = &adapter->hw;
6929         int ret_val;
6930         u16 buf = 0;
6931
6932         if (hw->mac.type != e1000_82573)
6933                 return;
6934
6935         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6936         le16_to_cpus(&buf);
6937         if (!ret_val && (!(buf & BIT(0)))) {
6938                 /* Deep Smart Power Down (DSPD) */
6939                 dev_warn(&adapter->pdev->dev,
6940                          "Warning: detected DSPD enabled in EEPROM\n");
6941         }
6942 }
6943
6944 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6945                                             netdev_features_t features)
6946 {
6947         struct e1000_adapter *adapter = netdev_priv(netdev);
6948         struct e1000_hw *hw = &adapter->hw;
6949
6950         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6951         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6952                 features &= ~NETIF_F_RXFCS;
6953
6954         /* Since there is no support for separate Rx/Tx vlan accel
6955          * enable/disable make sure Tx flag is always in same state as Rx.
6956          */
6957         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6958                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6959         else
6960                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6961
6962         return features;
6963 }
6964
6965 static int e1000_set_features(struct net_device *netdev,
6966                               netdev_features_t features)
6967 {
6968         struct e1000_adapter *adapter = netdev_priv(netdev);
6969         netdev_features_t changed = features ^ netdev->features;
6970
6971         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6972                 adapter->flags |= FLAG_TSO_FORCE;
6973
6974         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6975                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6976                          NETIF_F_RXALL)))
6977                 return 0;
6978
6979         if (changed & NETIF_F_RXFCS) {
6980                 if (features & NETIF_F_RXFCS) {
6981                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6982                 } else {
6983                         /* We need to take it back to defaults, which might mean
6984                          * stripping is still disabled at the adapter level.
6985                          */
6986                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6987                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6988                         else
6989                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6990                 }
6991         }
6992
6993         netdev->features = features;
6994
6995         if (netif_running(netdev))
6996                 e1000e_reinit_locked(adapter);
6997         else
6998                 e1000e_reset(adapter);
6999
7000         return 0;
7001 }
7002
7003 static const struct net_device_ops e1000e_netdev_ops = {
7004         .ndo_open               = e1000e_open,
7005         .ndo_stop               = e1000e_close,
7006         .ndo_start_xmit         = e1000_xmit_frame,
7007         .ndo_get_stats64        = e1000e_get_stats64,
7008         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7009         .ndo_set_mac_address    = e1000_set_mac,
7010         .ndo_change_mtu         = e1000_change_mtu,
7011         .ndo_do_ioctl           = e1000_ioctl,
7012         .ndo_tx_timeout         = e1000_tx_timeout,
7013         .ndo_validate_addr      = eth_validate_addr,
7014
7015         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7016         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7017 #ifdef CONFIG_NET_POLL_CONTROLLER
7018         .ndo_poll_controller    = e1000_netpoll,
7019 #endif
7020         .ndo_set_features = e1000_set_features,
7021         .ndo_fix_features = e1000_fix_features,
7022         .ndo_features_check     = passthru_features_check,
7023 };
7024
7025 /**
7026  * e1000_probe - Device Initialization Routine
7027  * @pdev: PCI device information struct
7028  * @ent: entry in e1000_pci_tbl
7029  *
7030  * Returns 0 on success, negative on failure
7031  *
7032  * e1000_probe initializes an adapter identified by a pci_dev structure.
7033  * The OS initialization, configuring of the adapter private structure,
7034  * and a hardware reset occur.
7035  **/
7036 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7037 {
7038         struct net_device *netdev;
7039         struct e1000_adapter *adapter;
7040         struct e1000_hw *hw;
7041         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7042         resource_size_t mmio_start, mmio_len;
7043         resource_size_t flash_start, flash_len;
7044         static int cards_found;
7045         u16 aspm_disable_flag = 0;
7046         int bars, i, err, pci_using_dac;
7047         u16 eeprom_data = 0;
7048         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7049         s32 ret_val = 0;
7050
7051         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7052                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7053         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7054                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7055         if (aspm_disable_flag)
7056                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7057
7058         err = pci_enable_device_mem(pdev);
7059         if (err)
7060                 return err;
7061
7062         pci_using_dac = 0;
7063         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7064         if (!err) {
7065                 pci_using_dac = 1;
7066         } else {
7067                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7068                 if (err) {
7069                         dev_err(&pdev->dev,
7070                                 "No usable DMA configuration, aborting\n");
7071                         goto err_dma;
7072                 }
7073         }
7074
7075         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7076         err = pci_request_selected_regions_exclusive(pdev, bars,
7077                                                      e1000e_driver_name);
7078         if (err)
7079                 goto err_pci_reg;
7080
7081         /* AER (Advanced Error Reporting) hooks */
7082         pci_enable_pcie_error_reporting(pdev);
7083
7084         pci_set_master(pdev);
7085         /* PCI config space info */
7086         err = pci_save_state(pdev);
7087         if (err)
7088                 goto err_alloc_etherdev;
7089
7090         err = -ENOMEM;
7091         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7092         if (!netdev)
7093                 goto err_alloc_etherdev;
7094
7095         SET_NETDEV_DEV(netdev, &pdev->dev);
7096
7097         netdev->irq = pdev->irq;
7098
7099         pci_set_drvdata(pdev, netdev);
7100         adapter = netdev_priv(netdev);
7101         hw = &adapter->hw;
7102         adapter->netdev = netdev;
7103         adapter->pdev = pdev;
7104         adapter->ei = ei;
7105         adapter->pba = ei->pba;
7106         adapter->flags = ei->flags;
7107         adapter->flags2 = ei->flags2;
7108         adapter->hw.adapter = adapter;
7109         adapter->hw.mac.type = ei->mac;
7110         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7111         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7112
7113         mmio_start = pci_resource_start(pdev, 0);
7114         mmio_len = pci_resource_len(pdev, 0);
7115
7116         err = -EIO;
7117         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7118         if (!adapter->hw.hw_addr)
7119                 goto err_ioremap;
7120
7121         if ((adapter->flags & FLAG_HAS_FLASH) &&
7122             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7123             (hw->mac.type < e1000_pch_spt)) {
7124                 flash_start = pci_resource_start(pdev, 1);
7125                 flash_len = pci_resource_len(pdev, 1);
7126                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7127                 if (!adapter->hw.flash_address)
7128                         goto err_flashmap;
7129         }
7130
7131         /* Set default EEE advertisement */
7132         if (adapter->flags2 & FLAG2_HAS_EEE)
7133                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7134
7135         /* construct the net_device struct */
7136         netdev->netdev_ops = &e1000e_netdev_ops;
7137         e1000e_set_ethtool_ops(netdev);
7138         netdev->watchdog_timeo = 5 * HZ;
7139         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7140         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7141
7142         netdev->mem_start = mmio_start;
7143         netdev->mem_end = mmio_start + mmio_len;
7144
7145         adapter->bd_number = cards_found++;
7146
7147         e1000e_check_options(adapter);
7148
7149         /* setup adapter struct */
7150         err = e1000_sw_init(adapter);
7151         if (err)
7152                 goto err_sw_init;
7153
7154         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7155         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7156         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7157
7158         err = ei->get_variants(adapter);
7159         if (err)
7160                 goto err_hw_init;
7161
7162         if ((adapter->flags & FLAG_IS_ICH) &&
7163             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7164             (hw->mac.type < e1000_pch_spt))
7165                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7166
7167         hw->mac.ops.get_bus_info(&adapter->hw);
7168
7169         adapter->hw.phy.autoneg_wait_to_complete = 0;
7170
7171         /* Copper options */
7172         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7173                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7174                 adapter->hw.phy.disable_polarity_correction = 0;
7175                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7176         }
7177
7178         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7179                 dev_info(&pdev->dev,
7180                          "PHY reset is blocked due to SOL/IDER session.\n");
7181
7182         /* Set initial default active device features */
7183         netdev->features = (NETIF_F_SG |
7184                             NETIF_F_HW_VLAN_CTAG_RX |
7185                             NETIF_F_HW_VLAN_CTAG_TX |
7186                             NETIF_F_TSO |
7187                             NETIF_F_TSO6 |
7188                             NETIF_F_RXHASH |
7189                             NETIF_F_RXCSUM |
7190                             NETIF_F_HW_CSUM);
7191
7192         /* Set user-changeable features (subset of all device features) */
7193         netdev->hw_features = netdev->features;
7194         netdev->hw_features |= NETIF_F_RXFCS;
7195         netdev->priv_flags |= IFF_SUPP_NOFCS;
7196         netdev->hw_features |= NETIF_F_RXALL;
7197
7198         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7199                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7200
7201         netdev->vlan_features |= (NETIF_F_SG |
7202                                   NETIF_F_TSO |
7203                                   NETIF_F_TSO6 |
7204                                   NETIF_F_HW_CSUM);
7205
7206         netdev->priv_flags |= IFF_UNICAST_FLT;
7207
7208         if (pci_using_dac) {
7209                 netdev->features |= NETIF_F_HIGHDMA;
7210                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7211         }
7212
7213         /* MTU range: 68 - max_hw_frame_size */
7214         netdev->min_mtu = ETH_MIN_MTU;
7215         netdev->max_mtu = adapter->max_hw_frame_size -
7216                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7217
7218         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7219                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7220
7221         /* before reading the NVM, reset the controller to
7222          * put the device in a known good starting state
7223          */
7224         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7225
7226         /* systems with ASPM and others may see the checksum fail on the first
7227          * attempt. Let's give it a few tries
7228          */
7229         for (i = 0;; i++) {
7230                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7231                         break;
7232                 if (i == 2) {
7233                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7234                         err = -EIO;
7235                         goto err_eeprom;
7236                 }
7237         }
7238
7239         e1000_eeprom_checks(adapter);
7240
7241         /* copy the MAC address */
7242         if (e1000e_read_mac_addr(&adapter->hw))
7243                 dev_err(&pdev->dev,
7244                         "NVM Read Error while reading MAC address\n");
7245
7246         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7247
7248         if (!is_valid_ether_addr(netdev->dev_addr)) {
7249                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7250                         netdev->dev_addr);
7251                 err = -EIO;
7252                 goto err_eeprom;
7253         }
7254
7255         init_timer(&adapter->watchdog_timer);
7256         adapter->watchdog_timer.function = e1000_watchdog;
7257         adapter->watchdog_timer.data = (unsigned long)adapter;
7258
7259         init_timer(&adapter->phy_info_timer);
7260         adapter->phy_info_timer.function = e1000_update_phy_info;
7261         adapter->phy_info_timer.data = (unsigned long)adapter;
7262
7263         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7264         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7265         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7266         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7267         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7268
7269         /* Initialize link parameters. User can change them with ethtool */
7270         adapter->hw.mac.autoneg = 1;
7271         adapter->fc_autoneg = true;
7272         adapter->hw.fc.requested_mode = e1000_fc_default;
7273         adapter->hw.fc.current_mode = e1000_fc_default;
7274         adapter->hw.phy.autoneg_advertised = 0x2f;
7275
7276         /* Initial Wake on LAN setting - If APM wake is enabled in
7277          * the EEPROM, enable the ACPI Magic Packet filter
7278          */
7279         if (adapter->flags & FLAG_APME_IN_WUC) {
7280                 /* APME bit in EEPROM is mapped to WUC.APME */
7281                 eeprom_data = er32(WUC);
7282                 eeprom_apme_mask = E1000_WUC_APME;
7283                 if ((hw->mac.type > e1000_ich10lan) &&
7284                     (eeprom_data & E1000_WUC_PHY_WAKE))
7285                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7286         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7287                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7288                     (adapter->hw.bus.func == 1))
7289                         ret_val = e1000_read_nvm(&adapter->hw,
7290                                               NVM_INIT_CONTROL3_PORT_B,
7291                                               1, &eeprom_data);
7292                 else
7293                         ret_val = e1000_read_nvm(&adapter->hw,
7294                                               NVM_INIT_CONTROL3_PORT_A,
7295                                               1, &eeprom_data);
7296         }
7297
7298         /* fetch WoL from EEPROM */
7299         if (ret_val)
7300                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7301         else if (eeprom_data & eeprom_apme_mask)
7302                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7303
7304         /* now that we have the eeprom settings, apply the special cases
7305          * where the eeprom may be wrong or the board simply won't support
7306          * wake on lan on a particular port
7307          */
7308         if (!(adapter->flags & FLAG_HAS_WOL))
7309                 adapter->eeprom_wol = 0;
7310
7311         /* initialize the wol settings based on the eeprom settings */
7312         adapter->wol = adapter->eeprom_wol;
7313
7314         /* make sure adapter isn't asleep if manageability is enabled */
7315         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7316             (hw->mac.ops.check_mng_mode(hw)))
7317                 device_wakeup_enable(&pdev->dev);
7318
7319         /* save off EEPROM version number */
7320         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7321
7322         if (ret_val) {
7323                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7324                 adapter->eeprom_vers = 0;
7325         }
7326
7327         /* init PTP hardware clock */
7328         e1000e_ptp_init(adapter);
7329
7330         /* reset the hardware with the new settings */
7331         e1000e_reset(adapter);
7332
7333         /* If the controller has AMT, do not set DRV_LOAD until the interface
7334          * is up.  For all other cases, let the f/w know that the h/w is now
7335          * under the control of the driver.
7336          */
7337         if (!(adapter->flags & FLAG_HAS_AMT))
7338                 e1000e_get_hw_control(adapter);
7339
7340         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7341         err = register_netdev(netdev);
7342         if (err)
7343                 goto err_register;
7344
7345         /* carrier off reporting is important to ethtool even BEFORE open */
7346         netif_carrier_off(netdev);
7347
7348         e1000_print_device_info(adapter);
7349
7350         if (pci_dev_run_wake(pdev))
7351                 pm_runtime_put_noidle(&pdev->dev);
7352
7353         return 0;
7354
7355 err_register:
7356         if (!(adapter->flags & FLAG_HAS_AMT))
7357                 e1000e_release_hw_control(adapter);
7358 err_eeprom:
7359         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7360                 e1000_phy_hw_reset(&adapter->hw);
7361 err_hw_init:
7362         kfree(adapter->tx_ring);
7363         kfree(adapter->rx_ring);
7364 err_sw_init:
7365         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7366                 iounmap(adapter->hw.flash_address);
7367         e1000e_reset_interrupt_capability(adapter);
7368 err_flashmap:
7369         iounmap(adapter->hw.hw_addr);
7370 err_ioremap:
7371         free_netdev(netdev);
7372 err_alloc_etherdev:
7373         pci_release_mem_regions(pdev);
7374 err_pci_reg:
7375 err_dma:
7376         pci_disable_device(pdev);
7377         return err;
7378 }
7379
7380 /**
7381  * e1000_remove - Device Removal Routine
7382  * @pdev: PCI device information struct
7383  *
7384  * e1000_remove is called by the PCI subsystem to alert the driver
7385  * that it should release a PCI device.  The could be caused by a
7386  * Hot-Plug event, or because the driver is going to be removed from
7387  * memory.
7388  **/
7389 static void e1000_remove(struct pci_dev *pdev)
7390 {
7391         struct net_device *netdev = pci_get_drvdata(pdev);
7392         struct e1000_adapter *adapter = netdev_priv(netdev);
7393         bool down = test_bit(__E1000_DOWN, &adapter->state);
7394
7395         e1000e_ptp_remove(adapter);
7396
7397         /* The timers may be rescheduled, so explicitly disable them
7398          * from being rescheduled.
7399          */
7400         if (!down)
7401                 set_bit(__E1000_DOWN, &adapter->state);
7402         del_timer_sync(&adapter->watchdog_timer);
7403         del_timer_sync(&adapter->phy_info_timer);
7404
7405         cancel_work_sync(&adapter->reset_task);
7406         cancel_work_sync(&adapter->watchdog_task);
7407         cancel_work_sync(&adapter->downshift_task);
7408         cancel_work_sync(&adapter->update_phy_task);
7409         cancel_work_sync(&adapter->print_hang_task);
7410
7411         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7412                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7413                 if (adapter->tx_hwtstamp_skb) {
7414                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7415                         adapter->tx_hwtstamp_skb = NULL;
7416                 }
7417         }
7418
7419         /* Don't lie to e1000_close() down the road. */
7420         if (!down)
7421                 clear_bit(__E1000_DOWN, &adapter->state);
7422         unregister_netdev(netdev);
7423
7424         if (pci_dev_run_wake(pdev))
7425                 pm_runtime_get_noresume(&pdev->dev);
7426
7427         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7428          * would have already happened in close and is redundant.
7429          */
7430         e1000e_release_hw_control(adapter);
7431
7432         e1000e_reset_interrupt_capability(adapter);
7433         kfree(adapter->tx_ring);
7434         kfree(adapter->rx_ring);
7435
7436         iounmap(adapter->hw.hw_addr);
7437         if ((adapter->hw.flash_address) &&
7438             (adapter->hw.mac.type < e1000_pch_spt))
7439                 iounmap(adapter->hw.flash_address);
7440         pci_release_mem_regions(pdev);
7441
7442         free_netdev(netdev);
7443
7444         /* AER disable */
7445         pci_disable_pcie_error_reporting(pdev);
7446
7447         pci_disable_device(pdev);
7448 }
7449
7450 /* PCI Error Recovery (ERS) */
7451 static const struct pci_error_handlers e1000_err_handler = {
7452         .error_detected = e1000_io_error_detected,
7453         .slot_reset = e1000_io_slot_reset,
7454         .resume = e1000_io_resume,
7455 };
7456
7457 static const struct pci_device_id e1000_pci_tbl[] = {
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7460         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7462           board_82571 },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7466         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7468
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7473
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7477
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7483           board_80003es2lan },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7485           board_80003es2lan },
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7487           board_80003es2lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7489           board_80003es2lan },
7490
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7499
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7509
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7513
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7517
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7522
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7525
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7547
7548         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7549 };
7550 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7551
7552 static const struct dev_pm_ops e1000_pm_ops = {
7553 #ifdef CONFIG_PM_SLEEP
7554         .suspend        = e1000e_pm_suspend,
7555         .resume         = e1000e_pm_resume,
7556         .freeze         = e1000e_pm_freeze,
7557         .thaw           = e1000e_pm_thaw,
7558         .poweroff       = e1000e_pm_suspend,
7559         .restore        = e1000e_pm_resume,
7560 #endif
7561         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7562                            e1000e_pm_runtime_idle)
7563 };
7564
7565 /* PCI Device API Driver */
7566 static struct pci_driver e1000_driver = {
7567         .name     = e1000e_driver_name,
7568         .id_table = e1000_pci_tbl,
7569         .probe    = e1000_probe,
7570         .remove   = e1000_remove,
7571         .driver   = {
7572                 .pm = &e1000_pm_ops,
7573         },
7574         .shutdown = e1000_shutdown,
7575         .err_handler = &e1000_err_handler
7576 };
7577
7578 /**
7579  * e1000_init_module - Driver Registration Routine
7580  *
7581  * e1000_init_module is the first routine called when the driver is
7582  * loaded. All it does is register with the PCI subsystem.
7583  **/
7584 static int __init e1000_init_module(void)
7585 {
7586         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7587                 e1000e_driver_version);
7588         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7589
7590         return pci_register_driver(&e1000_driver);
7591 }
7592 module_init(e1000_init_module);
7593
7594 /**
7595  * e1000_exit_module - Driver Exit Cleanup Routine
7596  *
7597  * e1000_exit_module is called just before the driver is removed
7598  * from memory.
7599  **/
7600 static void __exit e1000_exit_module(void)
7601 {
7602         pci_unregister_driver(&e1000_driver);
7603 }
7604 module_exit(e1000_exit_module);
7605
7606 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7607 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7608 MODULE_LICENSE("GPL");
7609 MODULE_VERSION(DRV_VERSION);
7610
7611 /* netdev.c */