]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
2e2ddec04a50cca071353f2a75ca281e98e60eb5
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77         u32 ofs;
78         char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82         /* General Registers */
83         {E1000_CTRL, "CTRL"},
84         {E1000_STATUS, "STATUS"},
85         {E1000_CTRL_EXT, "CTRL_EXT"},
86
87         /* Interrupt Registers */
88         {E1000_ICR, "ICR"},
89
90         /* Rx Registers */
91         {E1000_RCTL, "RCTL"},
92         {E1000_RDLEN(0), "RDLEN"},
93         {E1000_RDH(0), "RDH"},
94         {E1000_RDT(0), "RDT"},
95         {E1000_RDTR, "RDTR"},
96         {E1000_RXDCTL(0), "RXDCTL"},
97         {E1000_ERT, "ERT"},
98         {E1000_RDBAL(0), "RDBAL"},
99         {E1000_RDBAH(0), "RDBAH"},
100         {E1000_RDFH, "RDFH"},
101         {E1000_RDFT, "RDFT"},
102         {E1000_RDFHS, "RDFHS"},
103         {E1000_RDFTS, "RDFTS"},
104         {E1000_RDFPC, "RDFPC"},
105
106         /* Tx Registers */
107         {E1000_TCTL, "TCTL"},
108         {E1000_TDBAL(0), "TDBAL"},
109         {E1000_TDBAH(0), "TDBAH"},
110         {E1000_TDLEN(0), "TDLEN"},
111         {E1000_TDH(0), "TDH"},
112         {E1000_TDT(0), "TDT"},
113         {E1000_TIDV, "TIDV"},
114         {E1000_TXDCTL(0), "TXDCTL"},
115         {E1000_TADV, "TADV"},
116         {E1000_TARC(0), "TARC"},
117         {E1000_TDFH, "TDFH"},
118         {E1000_TDFT, "TDFT"},
119         {E1000_TDFHS, "TDFHS"},
120         {E1000_TDFTS, "TDFTS"},
121         {E1000_TDFPC, "TDFPC"},
122
123         /* List Terminator */
124         {0, NULL}
125 };
126
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144                 udelay(50);
145
146         return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152                 __ew32_prepare(hw);
153
154         writel(val, hw->hw_addr + reg);
155 }
156
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164         int n = 0;
165         char rname[16];
166         u32 regs[8];
167
168         switch (reginfo->ofs) {
169         case E1000_RXDCTL(0):
170                 for (n = 0; n < 2; n++)
171                         regs[n] = __er32(hw, E1000_RXDCTL(n));
172                 break;
173         case E1000_TXDCTL(0):
174                 for (n = 0; n < 2; n++)
175                         regs[n] = __er32(hw, E1000_TXDCTL(n));
176                 break;
177         case E1000_TARC(0):
178                 for (n = 0; n < 2; n++)
179                         regs[n] = __er32(hw, E1000_TARC(n));
180                 break;
181         default:
182                 pr_info("%-15s %08x\n",
183                         reginfo->name, __er32(hw, reginfo->ofs));
184                 return;
185         }
186
187         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192                                  struct e1000_buffer *bi)
193 {
194         int i;
195         struct e1000_ps_page *ps_page;
196
197         for (i = 0; i < adapter->rx_ps_pages; i++) {
198                 ps_page = &bi->ps_pages[i];
199
200                 if (ps_page->page) {
201                         pr_info("packet dump for ps_page %d:\n", i);
202                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203                                        16, 1, page_address(ps_page->page),
204                                        PAGE_SIZE, true);
205                 }
206         }
207 }
208
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215         struct net_device *netdev = adapter->netdev;
216         struct e1000_hw *hw = &adapter->hw;
217         struct e1000_reg_info *reginfo;
218         struct e1000_ring *tx_ring = adapter->tx_ring;
219         struct e1000_tx_desc *tx_desc;
220         struct my_u0 {
221                 __le64 a;
222                 __le64 b;
223         } *u0;
224         struct e1000_buffer *buffer_info;
225         struct e1000_ring *rx_ring = adapter->rx_ring;
226         union e1000_rx_desc_packet_split *rx_desc_ps;
227         union e1000_rx_desc_extended *rx_desc;
228         struct my_u1 {
229                 __le64 a;
230                 __le64 b;
231                 __le64 c;
232                 __le64 d;
233         } *u1;
234         u32 staterr;
235         int i = 0;
236
237         if (!netif_msg_hw(adapter))
238                 return;
239
240         /* Print netdevice Info */
241         if (netdev) {
242                 dev_info(&adapter->pdev->dev, "Net device Info\n");
243                 pr_info("Device Name     state            trans_start      last_rx\n");
244                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245                         netdev->state, netdev->trans_start, netdev->last_rx);
246         }
247
248         /* Print Registers */
249         dev_info(&adapter->pdev->dev, "Register Dump\n");
250         pr_info(" Register Name   Value\n");
251         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252              reginfo->name; reginfo++) {
253                 e1000_regdump(hw, reginfo);
254         }
255
256         /* Print Tx Ring Summary */
257         if (!netdev || !netif_running(netdev))
258                 return;
259
260         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265                 (unsigned long long)buffer_info->dma,
266                 buffer_info->length,
267                 buffer_info->next_to_watch,
268                 (unsigned long long)buffer_info->time_stamp);
269
270         /* Print Tx Ring */
271         if (!netif_msg_tx_done(adapter))
272                 goto rx_ring_summary;
273
274         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277          *
278          * Legacy Transmit Descriptor
279          *   +--------------------------------------------------------------+
280          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281          *   +--------------------------------------------------------------+
282          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283          *   +--------------------------------------------------------------+
284          *   63       48 47        36 35    32 31     24 23    16 15        0
285          *
286          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287          *   63      48 47    40 39       32 31             16 15    8 7      0
288          *   +----------------------------------------------------------------+
289          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290          *   +----------------------------------------------------------------+
291          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292          *   +----------------------------------------------------------------+
293          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294          *
295          * Extended Data Descriptor (DTYP=0x1)
296          *   +----------------------------------------------------------------+
297          * 0 |                     Buffer Address [63:0]                      |
298          *   +----------------------------------------------------------------+
299          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300          *   +----------------------------------------------------------------+
301          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302          */
303         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307                 const char *next_desc;
308                 tx_desc = E1000_TX_DESC(*tx_ring, i);
309                 buffer_info = &tx_ring->buffer_info[i];
310                 u0 = (struct my_u0 *)tx_desc;
311                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312                         next_desc = " NTC/U";
313                 else if (i == tx_ring->next_to_use)
314                         next_desc = " NTU";
315                 else if (i == tx_ring->next_to_clean)
316                         next_desc = " NTC";
317                 else
318                         next_desc = "";
319                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322                         i,
323                         (unsigned long long)le64_to_cpu(u0->a),
324                         (unsigned long long)le64_to_cpu(u0->b),
325                         (unsigned long long)buffer_info->dma,
326                         buffer_info->length, buffer_info->next_to_watch,
327                         (unsigned long long)buffer_info->time_stamp,
328                         buffer_info->skb, next_desc);
329
330                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332                                        16, 1, buffer_info->skb->data,
333                                        buffer_info->skb->len, true);
334         }
335
336         /* Print Rx Ring Summary */
337 rx_ring_summary:
338         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339         pr_info("Queue [NTU] [NTC]\n");
340         pr_info(" %5d %5X %5X\n",
341                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343         /* Print Rx Ring */
344         if (!netif_msg_rx_status(adapter))
345                 return;
346
347         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348         switch (adapter->rx_ps_pages) {
349         case 1:
350         case 2:
351         case 3:
352                 /* [Extended] Packet Split Receive Descriptor Format
353                  *
354                  *    +-----------------------------------------------------+
355                  *  0 |                Buffer Address 0 [63:0]              |
356                  *    +-----------------------------------------------------+
357                  *  8 |                Buffer Address 1 [63:0]              |
358                  *    +-----------------------------------------------------+
359                  * 16 |                Buffer Address 2 [63:0]              |
360                  *    +-----------------------------------------------------+
361                  * 24 |                Buffer Address 3 [63:0]              |
362                  *    +-----------------------------------------------------+
363                  */
364                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365                 /* [Extended] Receive Descriptor (Write-Back) Format
366                  *
367                  *   63       48 47    32 31     13 12    8 7    4 3        0
368                  *   +------------------------------------------------------+
369                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370                  *   | Checksum | Ident  |         | Queue |      |  Type   |
371                  *   +------------------------------------------------------+
372                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373                  *   +------------------------------------------------------+
374                  *   63       48 47    32 31            20 19               0
375                  */
376                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377                 for (i = 0; i < rx_ring->count; i++) {
378                         const char *next_desc;
379                         buffer_info = &rx_ring->buffer_info[i];
380                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381                         u1 = (struct my_u1 *)rx_desc_ps;
382                         staterr =
383                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385                         if (i == rx_ring->next_to_use)
386                                 next_desc = " NTU";
387                         else if (i == rx_ring->next_to_clean)
388                                 next_desc = " NTC";
389                         else
390                                 next_desc = "";
391
392                         if (staterr & E1000_RXD_STAT_DD) {
393                                 /* Descriptor Done */
394                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395                                         "RWB", i,
396                                         (unsigned long long)le64_to_cpu(u1->a),
397                                         (unsigned long long)le64_to_cpu(u1->b),
398                                         (unsigned long long)le64_to_cpu(u1->c),
399                                         (unsigned long long)le64_to_cpu(u1->d),
400                                         buffer_info->skb, next_desc);
401                         } else {
402                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403                                         "R  ", i,
404                                         (unsigned long long)le64_to_cpu(u1->a),
405                                         (unsigned long long)le64_to_cpu(u1->b),
406                                         (unsigned long long)le64_to_cpu(u1->c),
407                                         (unsigned long long)le64_to_cpu(u1->d),
408                                         (unsigned long long)buffer_info->dma,
409                                         buffer_info->skb, next_desc);
410
411                                 if (netif_msg_pktdata(adapter))
412                                         e1000e_dump_ps_pages(adapter,
413                                                              buffer_info);
414                         }
415                 }
416                 break;
417         default:
418         case 0:
419                 /* Extended Receive Descriptor (Read) Format
420                  *
421                  *   +-----------------------------------------------------+
422                  * 0 |                Buffer Address [63:0]                |
423                  *   +-----------------------------------------------------+
424                  * 8 |                      Reserved                       |
425                  *   +-----------------------------------------------------+
426                  */
427                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428                 /* Extended Receive Descriptor (Write-Back) Format
429                  *
430                  *   63       48 47    32 31    24 23            4 3        0
431                  *   +------------------------------------------------------+
432                  *   |     RSS Hash      |        |               |         |
433                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434                  *   | Packet   | IP     |        |               |  Type   |
435                  *   | Checksum | Ident  |        |               |         |
436                  *   +------------------------------------------------------+
437                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438                  *   +------------------------------------------------------+
439                  *   63       48 47    32 31            20 19               0
440                  */
441                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443                 for (i = 0; i < rx_ring->count; i++) {
444                         const char *next_desc;
445
446                         buffer_info = &rx_ring->buffer_info[i];
447                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448                         u1 = (struct my_u1 *)rx_desc;
449                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451                         if (i == rx_ring->next_to_use)
452                                 next_desc = " NTU";
453                         else if (i == rx_ring->next_to_clean)
454                                 next_desc = " NTC";
455                         else
456                                 next_desc = "";
457
458                         if (staterr & E1000_RXD_STAT_DD) {
459                                 /* Descriptor Done */
460                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461                                         "RWB", i,
462                                         (unsigned long long)le64_to_cpu(u1->a),
463                                         (unsigned long long)le64_to_cpu(u1->b),
464                                         buffer_info->skb, next_desc);
465                         } else {
466                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467                                         "R  ", i,
468                                         (unsigned long long)le64_to_cpu(u1->a),
469                                         (unsigned long long)le64_to_cpu(u1->b),
470                                         (unsigned long long)buffer_info->dma,
471                                         buffer_info->skb, next_desc);
472
473                                 if (netif_msg_pktdata(adapter) &&
474                                     buffer_info->skb)
475                                         print_hex_dump(KERN_INFO, "",
476                                                        DUMP_PREFIX_ADDRESS, 16,
477                                                        1,
478                                                        buffer_info->skb->data,
479                                                        adapter->rx_buffer_len,
480                                                        true);
481                         }
482                 }
483         }
484 }
485
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491         if (ring->next_to_clean > ring->next_to_use)
492                 return ring->next_to_clean - ring->next_to_use - 1;
493
494         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512                                       struct skb_shared_hwtstamps *hwtstamps,
513                                       u64 systim)
514 {
515         u64 ns;
516         unsigned long flags;
517
518         spin_lock_irqsave(&adapter->systim_lock, flags);
519         ns = timecounter_cyc2time(&adapter->tc, systim);
520         spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522         memset(hwtstamps, 0, sizeof(*hwtstamps));
523         hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537                                struct sk_buff *skb)
538 {
539         struct e1000_hw *hw = &adapter->hw;
540         u64 rxstmp;
541
542         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543             !(status & E1000_RXDEXT_STATERR_TST) ||
544             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545                 return;
546
547         /* The Rx time stamp registers contain the time stamp.  No other
548          * received packet will be time stamped until the Rx time stamp
549          * registers are read.  Because only one packet can be time stamped
550          * at a time, the register values must belong to this packet and
551          * therefore none of the other additional attributes need to be
552          * compared.
553          */
554         rxstmp = (u64)er32(RXSTMPL);
555         rxstmp |= (u64)er32(RXSTMPH) << 32;
556         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569                               struct net_device *netdev, struct sk_buff *skb,
570                               u32 staterr, __le16 vlan)
571 {
572         u16 tag = le16_to_cpu(vlan);
573
574         e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576         skb->protocol = eth_type_trans(skb, netdev);
577
578         if (staterr & E1000_RXD_STAT_VP)
579                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581         napi_gro_receive(&adapter->napi, skb);
582 }
583
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592                               struct sk_buff *skb)
593 {
594         u16 status = (u16)status_err;
595         u8 errors = (u8)(status_err >> 24);
596
597         skb_checksum_none_assert(skb);
598
599         /* Rx checksum disabled */
600         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601                 return;
602
603         /* Ignore Checksum bit is set */
604         if (status & E1000_RXD_STAT_IXSM)
605                 return;
606
607         /* TCP/UDP checksum error bit or IP checksum error bit is set */
608         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609                 /* let the stack verify checksum errors */
610                 adapter->hw_csum_err++;
611                 return;
612         }
613
614         /* TCP/UDP Checksum has not been calculated */
615         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616                 return;
617
618         /* It must be a TCP or UDP packet with a valid checksum */
619         skb->ip_summed = CHECKSUM_UNNECESSARY;
620         adapter->hw_csum_good++;
621 }
622
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = rx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, rx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632                 u32 rctl = er32(RCTL);
633
634                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635                 e_err("ME firmware caused invalid RDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642         struct e1000_adapter *adapter = tx_ring->adapter;
643         struct e1000_hw *hw = &adapter->hw;
644         s32 ret_val = __ew32_prepare(hw);
645
646         writel(i, tx_ring->tail);
647
648         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649                 u32 tctl = er32(TCTL);
650
651                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652                 e_err("ME firmware caused invalid TDT - resetting\n");
653                 schedule_work(&adapter->reset_task);
654         }
655 }
656
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662                                    int cleaned_count, gfp_t gfp)
663 {
664         struct e1000_adapter *adapter = rx_ring->adapter;
665         struct net_device *netdev = adapter->netdev;
666         struct pci_dev *pdev = adapter->pdev;
667         union e1000_rx_desc_extended *rx_desc;
668         struct e1000_buffer *buffer_info;
669         struct sk_buff *skb;
670         unsigned int i;
671         unsigned int bufsz = adapter->rx_buffer_len;
672
673         i = rx_ring->next_to_use;
674         buffer_info = &rx_ring->buffer_info[i];
675
676         while (cleaned_count--) {
677                 skb = buffer_info->skb;
678                 if (skb) {
679                         skb_trim(skb, 0);
680                         goto map_skb;
681                 }
682
683                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684                 if (!skb) {
685                         /* Better luck next round */
686                         adapter->alloc_rx_buff_failed++;
687                         break;
688                 }
689
690                 buffer_info->skb = skb;
691 map_skb:
692                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693                                                   adapter->rx_buffer_len,
694                                                   DMA_FROM_DEVICE);
695                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696                         dev_err(&pdev->dev, "Rx DMA map failed\n");
697                         adapter->rx_dma_failed++;
698                         break;
699                 }
700
701                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705                         /* Force memory writes to complete before letting h/w
706                          * know there are new descriptors to fetch.  (Only
707                          * applicable for weak-ordered memory model archs,
708                          * such as IA-64).
709                          */
710                         wmb();
711                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712                                 e1000e_update_rdt_wa(rx_ring, i);
713                         else
714                                 writel(i, rx_ring->tail);
715                 }
716                 i++;
717                 if (i == rx_ring->count)
718                         i = 0;
719                 buffer_info = &rx_ring->buffer_info[i];
720         }
721
722         rx_ring->next_to_use = i;
723 }
724
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730                                       int cleaned_count, gfp_t gfp)
731 {
732         struct e1000_adapter *adapter = rx_ring->adapter;
733         struct net_device *netdev = adapter->netdev;
734         struct pci_dev *pdev = adapter->pdev;
735         union e1000_rx_desc_packet_split *rx_desc;
736         struct e1000_buffer *buffer_info;
737         struct e1000_ps_page *ps_page;
738         struct sk_buff *skb;
739         unsigned int i, j;
740
741         i = rx_ring->next_to_use;
742         buffer_info = &rx_ring->buffer_info[i];
743
744         while (cleaned_count--) {
745                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748                         ps_page = &buffer_info->ps_pages[j];
749                         if (j >= adapter->rx_ps_pages) {
750                                 /* all unused desc entries get hw null ptr */
751                                 rx_desc->read.buffer_addr[j + 1] =
752                                     ~cpu_to_le64(0);
753                                 continue;
754                         }
755                         if (!ps_page->page) {
756                                 ps_page->page = alloc_page(gfp);
757                                 if (!ps_page->page) {
758                                         adapter->alloc_rx_buff_failed++;
759                                         goto no_buffers;
760                                 }
761                                 ps_page->dma = dma_map_page(&pdev->dev,
762                                                             ps_page->page,
763                                                             0, PAGE_SIZE,
764                                                             DMA_FROM_DEVICE);
765                                 if (dma_mapping_error(&pdev->dev,
766                                                       ps_page->dma)) {
767                                         dev_err(&adapter->pdev->dev,
768                                                 "Rx DMA page map failed\n");
769                                         adapter->rx_dma_failed++;
770                                         goto no_buffers;
771                                 }
772                         }
773                         /* Refresh the desc even if buffer_addrs
774                          * didn't change because each write-back
775                          * erases this info.
776                          */
777                         rx_desc->read.buffer_addr[j + 1] =
778                             cpu_to_le64(ps_page->dma);
779                 }
780
781                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782                                                   gfp);
783
784                 if (!skb) {
785                         adapter->alloc_rx_buff_failed++;
786                         break;
787                 }
788
789                 buffer_info->skb = skb;
790                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791                                                   adapter->rx_ps_bsize0,
792                                                   DMA_FROM_DEVICE);
793                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794                         dev_err(&pdev->dev, "Rx DMA map failed\n");
795                         adapter->rx_dma_failed++;
796                         /* cleanup skb */
797                         dev_kfree_skb_any(skb);
798                         buffer_info->skb = NULL;
799                         break;
800                 }
801
802                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805                         /* Force memory writes to complete before letting h/w
806                          * know there are new descriptors to fetch.  (Only
807                          * applicable for weak-ordered memory model archs,
808                          * such as IA-64).
809                          */
810                         wmb();
811                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812                                 e1000e_update_rdt_wa(rx_ring, i << 1);
813                         else
814                                 writel(i << 1, rx_ring->tail);
815                 }
816
817                 i++;
818                 if (i == rx_ring->count)
819                         i = 0;
820                 buffer_info = &rx_ring->buffer_info[i];
821         }
822
823 no_buffers:
824         rx_ring->next_to_use = i;
825 }
826
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834                                          int cleaned_count, gfp_t gfp)
835 {
836         struct e1000_adapter *adapter = rx_ring->adapter;
837         struct net_device *netdev = adapter->netdev;
838         struct pci_dev *pdev = adapter->pdev;
839         union e1000_rx_desc_extended *rx_desc;
840         struct e1000_buffer *buffer_info;
841         struct sk_buff *skb;
842         unsigned int i;
843         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
844
845         i = rx_ring->next_to_use;
846         buffer_info = &rx_ring->buffer_info[i];
847
848         while (cleaned_count--) {
849                 skb = buffer_info->skb;
850                 if (skb) {
851                         skb_trim(skb, 0);
852                         goto check_page;
853                 }
854
855                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856                 if (unlikely(!skb)) {
857                         /* Better luck next round */
858                         adapter->alloc_rx_buff_failed++;
859                         break;
860                 }
861
862                 buffer_info->skb = skb;
863 check_page:
864                 /* allocate a new page if necessary */
865                 if (!buffer_info->page) {
866                         buffer_info->page = alloc_page(gfp);
867                         if (unlikely(!buffer_info->page)) {
868                                 adapter->alloc_rx_buff_failed++;
869                                 break;
870                         }
871                 }
872
873                 if (!buffer_info->dma) {
874                         buffer_info->dma = dma_map_page(&pdev->dev,
875                                                         buffer_info->page, 0,
876                                                         PAGE_SIZE,
877                                                         DMA_FROM_DEVICE);
878                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879                                 adapter->alloc_rx_buff_failed++;
880                                 break;
881                         }
882                 }
883
884                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887                 if (unlikely(++i == rx_ring->count))
888                         i = 0;
889                 buffer_info = &rx_ring->buffer_info[i];
890         }
891
892         if (likely(rx_ring->next_to_use != i)) {
893                 rx_ring->next_to_use = i;
894                 if (unlikely(i-- == 0))
895                         i = (rx_ring->count - 1);
896
897                 /* Force memory writes to complete before letting h/w
898                  * know there are new descriptors to fetch.  (Only
899                  * applicable for weak-ordered memory model archs,
900                  * such as IA-64).
901                  */
902                 wmb();
903                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904                         e1000e_update_rdt_wa(rx_ring, i);
905                 else
906                         writel(i, rx_ring->tail);
907         }
908 }
909
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911                                  struct sk_buff *skb)
912 {
913         if (netdev->features & NETIF_F_RXHASH)
914                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925                                int work_to_do)
926 {
927         struct e1000_adapter *adapter = rx_ring->adapter;
928         struct net_device *netdev = adapter->netdev;
929         struct pci_dev *pdev = adapter->pdev;
930         struct e1000_hw *hw = &adapter->hw;
931         union e1000_rx_desc_extended *rx_desc, *next_rxd;
932         struct e1000_buffer *buffer_info, *next_buffer;
933         u32 length, staterr;
934         unsigned int i;
935         int cleaned_count = 0;
936         bool cleaned = false;
937         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939         i = rx_ring->next_to_clean;
940         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942         buffer_info = &rx_ring->buffer_info[i];
943
944         while (staterr & E1000_RXD_STAT_DD) {
945                 struct sk_buff *skb;
946
947                 if (*work_done >= work_to_do)
948                         break;
949                 (*work_done)++;
950                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
951
952                 skb = buffer_info->skb;
953                 buffer_info->skb = NULL;
954
955                 prefetch(skb->data - NET_IP_ALIGN);
956
957                 i++;
958                 if (i == rx_ring->count)
959                         i = 0;
960                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961                 prefetch(next_rxd);
962
963                 next_buffer = &rx_ring->buffer_info[i];
964
965                 cleaned = true;
966                 cleaned_count++;
967                 dma_unmap_single(&pdev->dev, buffer_info->dma,
968                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
969                 buffer_info->dma = 0;
970
971                 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973                 /* !EOP means multiple descriptors were used to store a single
974                  * packet, if that's the case we need to toss it.  In fact, we
975                  * need to toss every packet with the EOP bit clear and the
976                  * next frame that _does_ have the EOP bit set, as it is by
977                  * definition only a frame fragment
978                  */
979                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980                         adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983                         /* All receives must fit into a single buffer */
984                         e_dbg("Receive packet consumed multiple buffers\n");
985                         /* recycle */
986                         buffer_info->skb = skb;
987                         if (staterr & E1000_RXD_STAT_EOP)
988                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989                         goto next_desc;
990                 }
991
992                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993                              !(netdev->features & NETIF_F_RXALL))) {
994                         /* recycle */
995                         buffer_info->skb = skb;
996                         goto next_desc;
997                 }
998
999                 /* adjust length to remove Ethernet CRC */
1000                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001                         /* If configured to store CRC, don't subtract FCS,
1002                          * but keep the FCS bytes out of the total_rx_bytes
1003                          * counter
1004                          */
1005                         if (netdev->features & NETIF_F_RXFCS)
1006                                 total_rx_bytes -= 4;
1007                         else
1008                                 length -= 4;
1009                 }
1010
1011                 total_rx_bytes += length;
1012                 total_rx_packets++;
1013
1014                 /* code added for copybreak, this should improve
1015                  * performance for small packets with large amounts
1016                  * of reassembly being done in the stack
1017                  */
1018                 if (length < copybreak) {
1019                         struct sk_buff *new_skb =
1020                                 napi_alloc_skb(&adapter->napi, length);
1021                         if (new_skb) {
1022                                 skb_copy_to_linear_data_offset(new_skb,
1023                                                                -NET_IP_ALIGN,
1024                                                                (skb->data -
1025                                                                 NET_IP_ALIGN),
1026                                                                (length +
1027                                                                 NET_IP_ALIGN));
1028                                 /* save the skb in buffer_info as good */
1029                                 buffer_info->skb = skb;
1030                                 skb = new_skb;
1031                         }
1032                         /* else just continue with the old one */
1033                 }
1034                 /* end copybreak code */
1035                 skb_put(skb, length);
1036
1037                 /* Receive Checksum Offload */
1038                 e1000_rx_checksum(adapter, staterr, skb);
1039
1040                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042                 e1000_receive_skb(adapter, netdev, skb, staterr,
1043                                   rx_desc->wb.upper.vlan);
1044
1045 next_desc:
1046                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048                 /* return some buffers to hardware, one at a time is too slow */
1049                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051                                               GFP_ATOMIC);
1052                         cleaned_count = 0;
1053                 }
1054
1055                 /* use prefetched values */
1056                 rx_desc = next_rxd;
1057                 buffer_info = next_buffer;
1058
1059                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060         }
1061         rx_ring->next_to_clean = i;
1062
1063         cleaned_count = e1000_desc_unused(rx_ring);
1064         if (cleaned_count)
1065                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067         adapter->total_rx_bytes += total_rx_bytes;
1068         adapter->total_rx_packets += total_rx_packets;
1069         return cleaned;
1070 }
1071
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073                             struct e1000_buffer *buffer_info)
1074 {
1075         struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077         if (buffer_info->dma) {
1078                 if (buffer_info->mapped_as_page)
1079                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080                                        buffer_info->length, DMA_TO_DEVICE);
1081                 else
1082                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083                                          buffer_info->length, DMA_TO_DEVICE);
1084                 buffer_info->dma = 0;
1085         }
1086         if (buffer_info->skb) {
1087                 dev_kfree_skb_any(buffer_info->skb);
1088                 buffer_info->skb = NULL;
1089         }
1090         buffer_info->time_stamp = 0;
1091 }
1092
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095         struct e1000_adapter *adapter = container_of(work,
1096                                                      struct e1000_adapter,
1097                                                      print_hang_task);
1098         struct net_device *netdev = adapter->netdev;
1099         struct e1000_ring *tx_ring = adapter->tx_ring;
1100         unsigned int i = tx_ring->next_to_clean;
1101         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103         struct e1000_hw *hw = &adapter->hw;
1104         u16 phy_status, phy_1000t_status, phy_ext_status;
1105         u16 pci_status;
1106
1107         if (test_bit(__E1000_DOWN, &adapter->state))
1108                 return;
1109
1110         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111                 /* May be block on write-back, flush and detect again
1112                  * flush pending descriptor writebacks to memory
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 /* Due to rare timing issues, write to TIDV again to ensure
1118                  * the write is successful
1119                  */
1120                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121                 /* execute the writes immediately */
1122                 e1e_flush();
1123                 adapter->tx_hang_recheck = true;
1124                 return;
1125         }
1126         adapter->tx_hang_recheck = false;
1127
1128         if (er32(TDH(0)) == er32(TDT(0))) {
1129                 e_dbg("false hang detected, ignoring\n");
1130                 return;
1131         }
1132
1133         /* Real hang detected */
1134         netif_stop_queue(netdev);
1135
1136         e1e_rphy(hw, MII_BMSR, &phy_status);
1137         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142         /* detected Hardware unit hang */
1143         e_err("Detected Hardware Unit Hang:\n"
1144               "  TDH                  <%x>\n"
1145               "  TDT                  <%x>\n"
1146               "  next_to_use          <%x>\n"
1147               "  next_to_clean        <%x>\n"
1148               "buffer_info[next_to_clean]:\n"
1149               "  time_stamp           <%lx>\n"
1150               "  next_to_watch        <%x>\n"
1151               "  jiffies              <%lx>\n"
1152               "  next_to_watch.status <%x>\n"
1153               "MAC Status             <%x>\n"
1154               "PHY Status             <%x>\n"
1155               "PHY 1000BASE-T Status  <%x>\n"
1156               "PHY Extended Status    <%x>\n"
1157               "PCI Status             <%x>\n",
1158               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163         e1000e_dump(adapter);
1164
1165         /* Suggest workaround for known h/w issue */
1166         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181                                                      tx_hwtstamp_work);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185                 struct skb_shared_hwtstamps shhwtstamps;
1186                 u64 txstmp;
1187
1188                 txstmp = er32(TXSTMPL);
1189                 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195                 adapter->tx_hwtstamp_skb = NULL;
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                   int work_to_do)
1310 {
1311         struct e1000_adapter *adapter = rx_ring->adapter;
1312         struct e1000_hw *hw = &adapter->hw;
1313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314         struct net_device *netdev = adapter->netdev;
1315         struct pci_dev *pdev = adapter->pdev;
1316         struct e1000_buffer *buffer_info, *next_buffer;
1317         struct e1000_ps_page *ps_page;
1318         struct sk_buff *skb;
1319         unsigned int i, j;
1320         u32 length, staterr;
1321         int cleaned_count = 0;
1322         bool cleaned = false;
1323         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325         i = rx_ring->next_to_clean;
1326         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328         buffer_info = &rx_ring->buffer_info[i];
1329
1330         while (staterr & E1000_RXD_STAT_DD) {
1331                 if (*work_done >= work_to_do)
1332                         break;
1333                 (*work_done)++;
1334                 skb = buffer_info->skb;
1335                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                 /* in the packet split case this is header only */
1338                 prefetch(skb->data - NET_IP_ALIGN);
1339
1340                 i++;
1341                 if (i == rx_ring->count)
1342                         i = 0;
1343                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                 prefetch(next_rxd);
1345
1346                 next_buffer = &rx_ring->buffer_info[i];
1347
1348                 cleaned = true;
1349                 cleaned_count++;
1350                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                 buffer_info->dma = 0;
1353
1354                 /* see !EOP comment in other Rx routine */
1355                 if (!(staterr & E1000_RXD_STAT_EOP))
1356                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                         dev_kfree_skb_irq(skb);
1361                         if (staterr & E1000_RXD_STAT_EOP)
1362                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                         goto next_desc;
1364                 }
1365
1366                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                              !(netdev->features & NETIF_F_RXALL))) {
1368                         dev_kfree_skb_irq(skb);
1369                         goto next_desc;
1370                 }
1371
1372                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                 if (!length) {
1375                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                         dev_kfree_skb_irq(skb);
1377                         goto next_desc;
1378                 }
1379
1380                 /* Good Receive */
1381                 skb_put(skb, length);
1382
1383                 {
1384                         /* this looks ugly, but it seems compiler issues make
1385                          * it more efficient than reusing j
1386                          */
1387                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                         /* page alloc/put takes too long and effects small
1390                          * packet throughput, so unsplit small packets and
1391                          * save the alloc/put only valid in softirq (napi)
1392                          * context to call kmap_*
1393                          */
1394                         if (l1 && (l1 <= copybreak) &&
1395                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                 u8 *vaddr;
1397
1398                                 ps_page = &buffer_info->ps_pages[0];
1399
1400                                 /* there is no documentation about how to call
1401                                  * kmap_atomic, so we can't hold the mapping
1402                                  * very long
1403                                  */
1404                                 dma_sync_single_for_cpu(&pdev->dev,
1405                                                         ps_page->dma,
1406                                                         PAGE_SIZE,
1407                                                         DMA_FROM_DEVICE);
1408                                 vaddr = kmap_atomic(ps_page->page);
1409                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                 kunmap_atomic(vaddr);
1411                                 dma_sync_single_for_device(&pdev->dev,
1412                                                            ps_page->dma,
1413                                                            PAGE_SIZE,
1414                                                            DMA_FROM_DEVICE);
1415
1416                                 /* remove the CRC */
1417                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                         if (!(netdev->features & NETIF_F_RXFCS))
1419                                                 l1 -= 4;
1420                                 }
1421
1422                                 skb_put(skb, l1);
1423                                 goto copydone;
1424                         }       /* if */
1425                 }
1426
1427                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                         if (!length)
1430                                 break;
1431
1432                         ps_page = &buffer_info->ps_pages[j];
1433                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                        DMA_FROM_DEVICE);
1435                         ps_page->dma = 0;
1436                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                         ps_page->page = NULL;
1438                         skb->len += length;
1439                         skb->data_len += length;
1440                         skb->truesize += PAGE_SIZE;
1441                 }
1442
1443                 /* strip the ethernet crc, problem is we're using pages now so
1444                  * this whole operation can get a little cpu intensive
1445                  */
1446                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                         if (!(netdev->features & NETIF_F_RXFCS))
1448                                 pskb_trim(skb, skb->len - 4);
1449                 }
1450
1451 copydone:
1452                 total_rx_bytes += skb->len;
1453                 total_rx_packets++;
1454
1455                 e1000_rx_checksum(adapter, staterr, skb);
1456
1457                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                 if (rx_desc->wb.upper.header_status &
1460                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                         adapter->rx_hdr_split++;
1462
1463                 e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                   rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                 buffer_info->skb = NULL;
1469
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                               GFP_ATOMIC);
1474                         cleaned_count = 0;
1475                 }
1476
1477                 /* use prefetched values */
1478                 rx_desc = next_rxd;
1479                 buffer_info = next_buffer;
1480
1481                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482         }
1483         rx_ring->next_to_clean = i;
1484
1485         cleaned_count = e1000_desc_unused(rx_ring);
1486         if (cleaned_count)
1487                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489         adapter->total_rx_bytes += total_rx_bytes;
1490         adapter->total_rx_packets += total_rx_packets;
1491         return cleaned;
1492 }
1493
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498                                u16 length)
1499 {
1500         bi->page = NULL;
1501         skb->len += length;
1502         skb->data_len += length;
1503         skb->truesize += PAGE_SIZE;
1504 }
1505
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514                                      int work_to_do)
1515 {
1516         struct e1000_adapter *adapter = rx_ring->adapter;
1517         struct net_device *netdev = adapter->netdev;
1518         struct pci_dev *pdev = adapter->pdev;
1519         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520         struct e1000_buffer *buffer_info, *next_buffer;
1521         u32 length, staterr;
1522         unsigned int i;
1523         int cleaned_count = 0;
1524         bool cleaned = false;
1525         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526         struct skb_shared_info *shinfo;
1527
1528         i = rx_ring->next_to_clean;
1529         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531         buffer_info = &rx_ring->buffer_info[i];
1532
1533         while (staterr & E1000_RXD_STAT_DD) {
1534                 struct sk_buff *skb;
1535
1536                 if (*work_done >= work_to_do)
1537                         break;
1538                 (*work_done)++;
1539                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1540
1541                 skb = buffer_info->skb;
1542                 buffer_info->skb = NULL;
1543
1544                 ++i;
1545                 if (i == rx_ring->count)
1546                         i = 0;
1547                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548                 prefetch(next_rxd);
1549
1550                 next_buffer = &rx_ring->buffer_info[i];
1551
1552                 cleaned = true;
1553                 cleaned_count++;
1554                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555                                DMA_FROM_DEVICE);
1556                 buffer_info->dma = 0;
1557
1558                 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560                 /* errors is only valid for DD + EOP descriptors */
1561                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563                               !(netdev->features & NETIF_F_RXALL)))) {
1564                         /* recycle both page and skb */
1565                         buffer_info->skb = skb;
1566                         /* an error means any chain goes out the window too */
1567                         if (rx_ring->rx_skb_top)
1568                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569                         rx_ring->rx_skb_top = NULL;
1570                         goto next_desc;
1571                 }
1572 #define rxtop (rx_ring->rx_skb_top)
1573                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574                         /* this descriptor is only the beginning (or middle) */
1575                         if (!rxtop) {
1576                                 /* this is the beginning of a chain */
1577                                 rxtop = skb;
1578                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579                                                    0, length);
1580                         } else {
1581                                 /* this is the middle of a chain */
1582                                 shinfo = skb_shinfo(rxtop);
1583                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584                                                    buffer_info->page, 0,
1585                                                    length);
1586                                 /* re-use the skb, only consumed the page */
1587                                 buffer_info->skb = skb;
1588                         }
1589                         e1000_consume_page(buffer_info, rxtop, length);
1590                         goto next_desc;
1591                 } else {
1592                         if (rxtop) {
1593                                 /* end of the chain */
1594                                 shinfo = skb_shinfo(rxtop);
1595                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596                                                    buffer_info->page, 0,
1597                                                    length);
1598                                 /* re-use the current skb, we only consumed the
1599                                  * page
1600                                  */
1601                                 buffer_info->skb = skb;
1602                                 skb = rxtop;
1603                                 rxtop = NULL;
1604                                 e1000_consume_page(buffer_info, skb, length);
1605                         } else {
1606                                 /* no chain, got EOP, this buf is the packet
1607                                  * copybreak to save the put_page/alloc_page
1608                                  */
1609                                 if (length <= copybreak &&
1610                                     skb_tailroom(skb) >= length) {
1611                                         u8 *vaddr;
1612                                         vaddr = kmap_atomic(buffer_info->page);
1613                                         memcpy(skb_tail_pointer(skb), vaddr,
1614                                                length);
1615                                         kunmap_atomic(vaddr);
1616                                         /* re-use the page, so don't erase
1617                                          * buffer_info->page
1618                                          */
1619                                         skb_put(skb, length);
1620                                 } else {
1621                                         skb_fill_page_desc(skb, 0,
1622                                                            buffer_info->page, 0,
1623                                                            length);
1624                                         e1000_consume_page(buffer_info, skb,
1625                                                            length);
1626                                 }
1627                         }
1628                 }
1629
1630                 /* Receive Checksum Offload */
1631                 e1000_rx_checksum(adapter, staterr, skb);
1632
1633                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635                 /* probably a little skewed due to removing CRC */
1636                 total_rx_bytes += skb->len;
1637                 total_rx_packets++;
1638
1639                 /* eth type trans needs skb->data to point to something */
1640                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641                         e_err("pskb_may_pull failed.\n");
1642                         dev_kfree_skb_irq(skb);
1643                         goto next_desc;
1644                 }
1645
1646                 e1000_receive_skb(adapter, netdev, skb, staterr,
1647                                   rx_desc->wb.upper.vlan);
1648
1649 next_desc:
1650                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652                 /* return some buffers to hardware, one at a time is too slow */
1653                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655                                               GFP_ATOMIC);
1656                         cleaned_count = 0;
1657                 }
1658
1659                 /* use prefetched values */
1660                 rx_desc = next_rxd;
1661                 buffer_info = next_buffer;
1662
1663                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664         }
1665         rx_ring->next_to_clean = i;
1666
1667         cleaned_count = e1000_desc_unused(rx_ring);
1668         if (cleaned_count)
1669                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671         adapter->total_rx_bytes += total_rx_bytes;
1672         adapter->total_rx_packets += total_rx_packets;
1673         return cleaned;
1674 }
1675
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682         struct e1000_adapter *adapter = rx_ring->adapter;
1683         struct e1000_buffer *buffer_info;
1684         struct e1000_ps_page *ps_page;
1685         struct pci_dev *pdev = adapter->pdev;
1686         unsigned int i, j;
1687
1688         /* Free all the Rx ring sk_buffs */
1689         for (i = 0; i < rx_ring->count; i++) {
1690                 buffer_info = &rx_ring->buffer_info[i];
1691                 if (buffer_info->dma) {
1692                         if (adapter->clean_rx == e1000_clean_rx_irq)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_buffer_len,
1695                                                  DMA_FROM_DEVICE);
1696                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698                                                PAGE_SIZE, DMA_FROM_DEVICE);
1699                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                  adapter->rx_ps_bsize0,
1702                                                  DMA_FROM_DEVICE);
1703                         buffer_info->dma = 0;
1704                 }
1705
1706                 if (buffer_info->page) {
1707                         put_page(buffer_info->page);
1708                         buffer_info->page = NULL;
1709                 }
1710
1711                 if (buffer_info->skb) {
1712                         dev_kfree_skb(buffer_info->skb);
1713                         buffer_info->skb = NULL;
1714                 }
1715
1716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717                         ps_page = &buffer_info->ps_pages[j];
1718                         if (!ps_page->page)
1719                                 break;
1720                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721                                        DMA_FROM_DEVICE);
1722                         ps_page->dma = 0;
1723                         put_page(ps_page->page);
1724                         ps_page->page = NULL;
1725                 }
1726         }
1727
1728         /* there also may be some cached data from a chained receive */
1729         if (rx_ring->rx_skb_top) {
1730                 dev_kfree_skb(rx_ring->rx_skb_top);
1731                 rx_ring->rx_skb_top = NULL;
1732         }
1733
1734         /* Zero out the descriptor ring */
1735         memset(rx_ring->desc, 0, rx_ring->size);
1736
1737         rx_ring->next_to_clean = 0;
1738         rx_ring->next_to_use = 0;
1739         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740 }
1741
1742 static void e1000e_downshift_workaround(struct work_struct *work)
1743 {
1744         struct e1000_adapter *adapter = container_of(work,
1745                                                      struct e1000_adapter,
1746                                                      downshift_task);
1747
1748         if (test_bit(__E1000_DOWN, &adapter->state))
1749                 return;
1750
1751         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752 }
1753
1754 /**
1755  * e1000_intr_msi - Interrupt Handler
1756  * @irq: interrupt number
1757  * @data: pointer to a network interface device structure
1758  **/
1759 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1760 {
1761         struct net_device *netdev = data;
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763         struct e1000_hw *hw = &adapter->hw;
1764         u32 icr = er32(ICR);
1765
1766         /* read ICR disables interrupts using IAM */
1767         if (icr & E1000_ICR_LSC) {
1768                 hw->mac.get_link_status = true;
1769                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770                  * disconnect (LSC) before accessing any PHY registers
1771                  */
1772                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773                     (!(er32(STATUS) & E1000_STATUS_LU)))
1774                         schedule_work(&adapter->downshift_task);
1775
1776                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777                  * link down event; disable receives here in the ISR and reset
1778                  * adapter in watchdog
1779                  */
1780                 if (netif_carrier_ok(netdev) &&
1781                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782                         /* disable receives */
1783                         u32 rctl = er32(RCTL);
1784
1785                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786                         adapter->flags |= FLAG_RESTART_NOW;
1787                 }
1788                 /* guard against interrupt when we're going down */
1789                 if (!test_bit(__E1000_DOWN, &adapter->state))
1790                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791         }
1792
1793         /* Reset on uncorrectable ECC error */
1794         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795                                         (hw->mac.type == e1000_pch_spt))) {
1796                 u32 pbeccsts = er32(PBECCSTS);
1797
1798                 adapter->corr_errors +=
1799                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800                 adapter->uncorr_errors +=
1801                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1803
1804                 /* Do the reset outside of interrupt context */
1805                 schedule_work(&adapter->reset_task);
1806
1807                 /* return immediately since reset is imminent */
1808                 return IRQ_HANDLED;
1809         }
1810
1811         if (napi_schedule_prep(&adapter->napi)) {
1812                 adapter->total_tx_bytes = 0;
1813                 adapter->total_tx_packets = 0;
1814                 adapter->total_rx_bytes = 0;
1815                 adapter->total_rx_packets = 0;
1816                 __napi_schedule(&adapter->napi);
1817         }
1818
1819         return IRQ_HANDLED;
1820 }
1821
1822 /**
1823  * e1000_intr - Interrupt Handler
1824  * @irq: interrupt number
1825  * @data: pointer to a network interface device structure
1826  **/
1827 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1828 {
1829         struct net_device *netdev = data;
1830         struct e1000_adapter *adapter = netdev_priv(netdev);
1831         struct e1000_hw *hw = &adapter->hw;
1832         u32 rctl, icr = er32(ICR);
1833
1834         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835                 return IRQ_NONE;        /* Not our interrupt */
1836
1837         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838          * not set, then the adapter didn't send an interrupt
1839          */
1840         if (!(icr & E1000_ICR_INT_ASSERTED))
1841                 return IRQ_NONE;
1842
1843         /* Interrupt Auto-Mask...upon reading ICR,
1844          * interrupts are masked.  No need for the
1845          * IMC write
1846          */
1847
1848         if (icr & E1000_ICR_LSC) {
1849                 hw->mac.get_link_status = true;
1850                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851                  * disconnect (LSC) before accessing any PHY registers
1852                  */
1853                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854                     (!(er32(STATUS) & E1000_STATUS_LU)))
1855                         schedule_work(&adapter->downshift_task);
1856
1857                 /* 80003ES2LAN workaround--
1858                  * For packet buffer work-around on link down event;
1859                  * disable receives here in the ISR and
1860                  * reset adapter in watchdog
1861                  */
1862                 if (netif_carrier_ok(netdev) &&
1863                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864                         /* disable receives */
1865                         rctl = er32(RCTL);
1866                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867                         adapter->flags |= FLAG_RESTART_NOW;
1868                 }
1869                 /* guard against interrupt when we're going down */
1870                 if (!test_bit(__E1000_DOWN, &adapter->state))
1871                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1872         }
1873
1874         /* Reset on uncorrectable ECC error */
1875         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876                                         (hw->mac.type == e1000_pch_spt))) {
1877                 u32 pbeccsts = er32(PBECCSTS);
1878
1879                 adapter->corr_errors +=
1880                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881                 adapter->uncorr_errors +=
1882                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1884
1885                 /* Do the reset outside of interrupt context */
1886                 schedule_work(&adapter->reset_task);
1887
1888                 /* return immediately since reset is imminent */
1889                 return IRQ_HANDLED;
1890         }
1891
1892         if (napi_schedule_prep(&adapter->napi)) {
1893                 adapter->total_tx_bytes = 0;
1894                 adapter->total_tx_packets = 0;
1895                 adapter->total_rx_bytes = 0;
1896                 adapter->total_rx_packets = 0;
1897                 __napi_schedule(&adapter->napi);
1898         }
1899
1900         return IRQ_HANDLED;
1901 }
1902
1903 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1904 {
1905         struct net_device *netdev = data;
1906         struct e1000_adapter *adapter = netdev_priv(netdev);
1907         struct e1000_hw *hw = &adapter->hw;
1908         u32 icr = er32(ICR);
1909
1910         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1911                 if (!test_bit(__E1000_DOWN, &adapter->state))
1912                         ew32(IMS, E1000_IMS_OTHER);
1913                 return IRQ_NONE;
1914         }
1915
1916         if (icr & adapter->eiac_mask)
1917                 ew32(ICS, (icr & adapter->eiac_mask));
1918
1919         if (icr & E1000_ICR_OTHER) {
1920                 if (!(icr & E1000_ICR_LSC))
1921                         goto no_link_interrupt;
1922                 hw->mac.get_link_status = true;
1923                 /* guard against interrupt when we're going down */
1924                 if (!test_bit(__E1000_DOWN, &adapter->state))
1925                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1926         }
1927
1928 no_link_interrupt:
1929         if (!test_bit(__E1000_DOWN, &adapter->state))
1930                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1931
1932         return IRQ_HANDLED;
1933 }
1934
1935 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1936 {
1937         struct net_device *netdev = data;
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939         struct e1000_hw *hw = &adapter->hw;
1940         struct e1000_ring *tx_ring = adapter->tx_ring;
1941
1942         adapter->total_tx_bytes = 0;
1943         adapter->total_tx_packets = 0;
1944
1945         if (!e1000_clean_tx_irq(tx_ring))
1946                 /* Ring was not completely cleaned, so fire another interrupt */
1947                 ew32(ICS, tx_ring->ims_val);
1948
1949         return IRQ_HANDLED;
1950 }
1951
1952 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1953 {
1954         struct net_device *netdev = data;
1955         struct e1000_adapter *adapter = netdev_priv(netdev);
1956         struct e1000_ring *rx_ring = adapter->rx_ring;
1957
1958         /* Write the ITR value calculated at the end of the
1959          * previous interrupt.
1960          */
1961         if (rx_ring->set_itr) {
1962                 writel(1000000000 / (rx_ring->itr_val * 256),
1963                        rx_ring->itr_register);
1964                 rx_ring->set_itr = 0;
1965         }
1966
1967         if (napi_schedule_prep(&adapter->napi)) {
1968                 adapter->total_rx_bytes = 0;
1969                 adapter->total_rx_packets = 0;
1970                 __napi_schedule(&adapter->napi);
1971         }
1972         return IRQ_HANDLED;
1973 }
1974
1975 /**
1976  * e1000_configure_msix - Configure MSI-X hardware
1977  *
1978  * e1000_configure_msix sets up the hardware to properly
1979  * generate MSI-X interrupts.
1980  **/
1981 static void e1000_configure_msix(struct e1000_adapter *adapter)
1982 {
1983         struct e1000_hw *hw = &adapter->hw;
1984         struct e1000_ring *rx_ring = adapter->rx_ring;
1985         struct e1000_ring *tx_ring = adapter->tx_ring;
1986         int vector = 0;
1987         u32 ctrl_ext, ivar = 0;
1988
1989         adapter->eiac_mask = 0;
1990
1991         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1992         if (hw->mac.type == e1000_82574) {
1993                 u32 rfctl = er32(RFCTL);
1994
1995                 rfctl |= E1000_RFCTL_ACK_DIS;
1996                 ew32(RFCTL, rfctl);
1997         }
1998
1999         /* Configure Rx vector */
2000         rx_ring->ims_val = E1000_IMS_RXQ0;
2001         adapter->eiac_mask |= rx_ring->ims_val;
2002         if (rx_ring->itr_val)
2003                 writel(1000000000 / (rx_ring->itr_val * 256),
2004                        rx_ring->itr_register);
2005         else
2006                 writel(1, rx_ring->itr_register);
2007         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2008
2009         /* Configure Tx vector */
2010         tx_ring->ims_val = E1000_IMS_TXQ0;
2011         vector++;
2012         if (tx_ring->itr_val)
2013                 writel(1000000000 / (tx_ring->itr_val * 256),
2014                        tx_ring->itr_register);
2015         else
2016                 writel(1, tx_ring->itr_register);
2017         adapter->eiac_mask |= tx_ring->ims_val;
2018         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2019
2020         /* set vector for Other Causes, e.g. link changes */
2021         vector++;
2022         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2023         if (rx_ring->itr_val)
2024                 writel(1000000000 / (rx_ring->itr_val * 256),
2025                        hw->hw_addr + E1000_EITR_82574(vector));
2026         else
2027                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2028
2029         /* Cause Tx interrupts on every write back */
2030         ivar |= (1 << 31);
2031
2032         ew32(IVAR, ivar);
2033
2034         /* enable MSI-X PBA support */
2035         ctrl_ext = er32(CTRL_EXT);
2036         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2037
2038         /* Auto-Mask Other interrupts upon ICR read */
2039         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2040         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2041         ew32(CTRL_EXT, ctrl_ext);
2042         e1e_flush();
2043 }
2044
2045 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2046 {
2047         if (adapter->msix_entries) {
2048                 pci_disable_msix(adapter->pdev);
2049                 kfree(adapter->msix_entries);
2050                 adapter->msix_entries = NULL;
2051         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2052                 pci_disable_msi(adapter->pdev);
2053                 adapter->flags &= ~FLAG_MSI_ENABLED;
2054         }
2055 }
2056
2057 /**
2058  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2059  *
2060  * Attempt to configure interrupts using the best available
2061  * capabilities of the hardware and kernel.
2062  **/
2063 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2064 {
2065         int err;
2066         int i;
2067
2068         switch (adapter->int_mode) {
2069         case E1000E_INT_MODE_MSIX:
2070                 if (adapter->flags & FLAG_HAS_MSIX) {
2071                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2072                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2073                                                         sizeof(struct
2074                                                                msix_entry),
2075                                                         GFP_KERNEL);
2076                         if (adapter->msix_entries) {
2077                                 struct e1000_adapter *a = adapter;
2078
2079                                 for (i = 0; i < adapter->num_vectors; i++)
2080                                         adapter->msix_entries[i].entry = i;
2081
2082                                 err = pci_enable_msix_range(a->pdev,
2083                                                             a->msix_entries,
2084                                                             a->num_vectors,
2085                                                             a->num_vectors);
2086                                 if (err > 0)
2087                                         return;
2088                         }
2089                         /* MSI-X failed, so fall through and try MSI */
2090                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2091                         e1000e_reset_interrupt_capability(adapter);
2092                 }
2093                 adapter->int_mode = E1000E_INT_MODE_MSI;
2094                 /* Fall through */
2095         case E1000E_INT_MODE_MSI:
2096                 if (!pci_enable_msi(adapter->pdev)) {
2097                         adapter->flags |= FLAG_MSI_ENABLED;
2098                 } else {
2099                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2100                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2101                 }
2102                 /* Fall through */
2103         case E1000E_INT_MODE_LEGACY:
2104                 /* Don't do anything; this is the system default */
2105                 break;
2106         }
2107
2108         /* store the number of vectors being used */
2109         adapter->num_vectors = 1;
2110 }
2111
2112 /**
2113  * e1000_request_msix - Initialize MSI-X interrupts
2114  *
2115  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2116  * kernel.
2117  **/
2118 static int e1000_request_msix(struct e1000_adapter *adapter)
2119 {
2120         struct net_device *netdev = adapter->netdev;
2121         int err = 0, vector = 0;
2122
2123         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2124                 snprintf(adapter->rx_ring->name,
2125                          sizeof(adapter->rx_ring->name) - 1,
2126                          "%s-rx-0", netdev->name);
2127         else
2128                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2129         err = request_irq(adapter->msix_entries[vector].vector,
2130                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2131                           netdev);
2132         if (err)
2133                 return err;
2134         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2135             E1000_EITR_82574(vector);
2136         adapter->rx_ring->itr_val = adapter->itr;
2137         vector++;
2138
2139         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2140                 snprintf(adapter->tx_ring->name,
2141                          sizeof(adapter->tx_ring->name) - 1,
2142                          "%s-tx-0", netdev->name);
2143         else
2144                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2145         err = request_irq(adapter->msix_entries[vector].vector,
2146                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2147                           netdev);
2148         if (err)
2149                 return err;
2150         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2151             E1000_EITR_82574(vector);
2152         adapter->tx_ring->itr_val = adapter->itr;
2153         vector++;
2154
2155         err = request_irq(adapter->msix_entries[vector].vector,
2156                           e1000_msix_other, 0, netdev->name, netdev);
2157         if (err)
2158                 return err;
2159
2160         e1000_configure_msix(adapter);
2161
2162         return 0;
2163 }
2164
2165 /**
2166  * e1000_request_irq - initialize interrupts
2167  *
2168  * Attempts to configure interrupts using the best available
2169  * capabilities of the hardware and kernel.
2170  **/
2171 static int e1000_request_irq(struct e1000_adapter *adapter)
2172 {
2173         struct net_device *netdev = adapter->netdev;
2174         int err;
2175
2176         if (adapter->msix_entries) {
2177                 err = e1000_request_msix(adapter);
2178                 if (!err)
2179                         return err;
2180                 /* fall back to MSI */
2181                 e1000e_reset_interrupt_capability(adapter);
2182                 adapter->int_mode = E1000E_INT_MODE_MSI;
2183                 e1000e_set_interrupt_capability(adapter);
2184         }
2185         if (adapter->flags & FLAG_MSI_ENABLED) {
2186                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2187                                   netdev->name, netdev);
2188                 if (!err)
2189                         return err;
2190
2191                 /* fall back to legacy interrupt */
2192                 e1000e_reset_interrupt_capability(adapter);
2193                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2194         }
2195
2196         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2197                           netdev->name, netdev);
2198         if (err)
2199                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2200
2201         return err;
2202 }
2203
2204 static void e1000_free_irq(struct e1000_adapter *adapter)
2205 {
2206         struct net_device *netdev = adapter->netdev;
2207
2208         if (adapter->msix_entries) {
2209                 int vector = 0;
2210
2211                 free_irq(adapter->msix_entries[vector].vector, netdev);
2212                 vector++;
2213
2214                 free_irq(adapter->msix_entries[vector].vector, netdev);
2215                 vector++;
2216
2217                 /* Other Causes interrupt vector */
2218                 free_irq(adapter->msix_entries[vector].vector, netdev);
2219                 return;
2220         }
2221
2222         free_irq(adapter->pdev->irq, netdev);
2223 }
2224
2225 /**
2226  * e1000_irq_disable - Mask off interrupt generation on the NIC
2227  **/
2228 static void e1000_irq_disable(struct e1000_adapter *adapter)
2229 {
2230         struct e1000_hw *hw = &adapter->hw;
2231
2232         ew32(IMC, ~0);
2233         if (adapter->msix_entries)
2234                 ew32(EIAC_82574, 0);
2235         e1e_flush();
2236
2237         if (adapter->msix_entries) {
2238                 int i;
2239
2240                 for (i = 0; i < adapter->num_vectors; i++)
2241                         synchronize_irq(adapter->msix_entries[i].vector);
2242         } else {
2243                 synchronize_irq(adapter->pdev->irq);
2244         }
2245 }
2246
2247 /**
2248  * e1000_irq_enable - Enable default interrupt generation settings
2249  **/
2250 static void e1000_irq_enable(struct e1000_adapter *adapter)
2251 {
2252         struct e1000_hw *hw = &adapter->hw;
2253
2254         if (adapter->msix_entries) {
2255                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2256                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2257         } else if ((hw->mac.type == e1000_pch_lpt) ||
2258                    (hw->mac.type == e1000_pch_spt)) {
2259                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2260         } else {
2261                 ew32(IMS, IMS_ENABLE_MASK);
2262         }
2263         e1e_flush();
2264 }
2265
2266 /**
2267  * e1000e_get_hw_control - get control of the h/w from f/w
2268  * @adapter: address of board private structure
2269  *
2270  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2271  * For ASF and Pass Through versions of f/w this means that
2272  * the driver is loaded. For AMT version (only with 82573)
2273  * of the f/w this means that the network i/f is open.
2274  **/
2275 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2276 {
2277         struct e1000_hw *hw = &adapter->hw;
2278         u32 ctrl_ext;
2279         u32 swsm;
2280
2281         /* Let firmware know the driver has taken over */
2282         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2283                 swsm = er32(SWSM);
2284                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2285         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2286                 ctrl_ext = er32(CTRL_EXT);
2287                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2288         }
2289 }
2290
2291 /**
2292  * e1000e_release_hw_control - release control of the h/w to f/w
2293  * @adapter: address of board private structure
2294  *
2295  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2296  * For ASF and Pass Through versions of f/w this means that the
2297  * driver is no longer loaded. For AMT version (only with 82573) i
2298  * of the f/w this means that the network i/f is closed.
2299  *
2300  **/
2301 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2302 {
2303         struct e1000_hw *hw = &adapter->hw;
2304         u32 ctrl_ext;
2305         u32 swsm;
2306
2307         /* Let firmware taken over control of h/w */
2308         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2309                 swsm = er32(SWSM);
2310                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2311         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2312                 ctrl_ext = er32(CTRL_EXT);
2313                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2314         }
2315 }
2316
2317 /**
2318  * e1000_alloc_ring_dma - allocate memory for a ring structure
2319  **/
2320 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2321                                 struct e1000_ring *ring)
2322 {
2323         struct pci_dev *pdev = adapter->pdev;
2324
2325         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2326                                         GFP_KERNEL);
2327         if (!ring->desc)
2328                 return -ENOMEM;
2329
2330         return 0;
2331 }
2332
2333 /**
2334  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2335  * @tx_ring: Tx descriptor ring
2336  *
2337  * Return 0 on success, negative on failure
2338  **/
2339 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2340 {
2341         struct e1000_adapter *adapter = tx_ring->adapter;
2342         int err = -ENOMEM, size;
2343
2344         size = sizeof(struct e1000_buffer) * tx_ring->count;
2345         tx_ring->buffer_info = vzalloc(size);
2346         if (!tx_ring->buffer_info)
2347                 goto err;
2348
2349         /* round up to nearest 4K */
2350         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2351         tx_ring->size = ALIGN(tx_ring->size, 4096);
2352
2353         err = e1000_alloc_ring_dma(adapter, tx_ring);
2354         if (err)
2355                 goto err;
2356
2357         tx_ring->next_to_use = 0;
2358         tx_ring->next_to_clean = 0;
2359
2360         return 0;
2361 err:
2362         vfree(tx_ring->buffer_info);
2363         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2364         return err;
2365 }
2366
2367 /**
2368  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2369  * @rx_ring: Rx descriptor ring
2370  *
2371  * Returns 0 on success, negative on failure
2372  **/
2373 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2374 {
2375         struct e1000_adapter *adapter = rx_ring->adapter;
2376         struct e1000_buffer *buffer_info;
2377         int i, size, desc_len, err = -ENOMEM;
2378
2379         size = sizeof(struct e1000_buffer) * rx_ring->count;
2380         rx_ring->buffer_info = vzalloc(size);
2381         if (!rx_ring->buffer_info)
2382                 goto err;
2383
2384         for (i = 0; i < rx_ring->count; i++) {
2385                 buffer_info = &rx_ring->buffer_info[i];
2386                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2387                                                 sizeof(struct e1000_ps_page),
2388                                                 GFP_KERNEL);
2389                 if (!buffer_info->ps_pages)
2390                         goto err_pages;
2391         }
2392
2393         desc_len = sizeof(union e1000_rx_desc_packet_split);
2394
2395         /* Round up to nearest 4K */
2396         rx_ring->size = rx_ring->count * desc_len;
2397         rx_ring->size = ALIGN(rx_ring->size, 4096);
2398
2399         err = e1000_alloc_ring_dma(adapter, rx_ring);
2400         if (err)
2401                 goto err_pages;
2402
2403         rx_ring->next_to_clean = 0;
2404         rx_ring->next_to_use = 0;
2405         rx_ring->rx_skb_top = NULL;
2406
2407         return 0;
2408
2409 err_pages:
2410         for (i = 0; i < rx_ring->count; i++) {
2411                 buffer_info = &rx_ring->buffer_info[i];
2412                 kfree(buffer_info->ps_pages);
2413         }
2414 err:
2415         vfree(rx_ring->buffer_info);
2416         e_err("Unable to allocate memory for the receive descriptor ring\n");
2417         return err;
2418 }
2419
2420 /**
2421  * e1000_clean_tx_ring - Free Tx Buffers
2422  * @tx_ring: Tx descriptor ring
2423  **/
2424 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2425 {
2426         struct e1000_adapter *adapter = tx_ring->adapter;
2427         struct e1000_buffer *buffer_info;
2428         unsigned long size;
2429         unsigned int i;
2430
2431         for (i = 0; i < tx_ring->count; i++) {
2432                 buffer_info = &tx_ring->buffer_info[i];
2433                 e1000_put_txbuf(tx_ring, buffer_info);
2434         }
2435
2436         netdev_reset_queue(adapter->netdev);
2437         size = sizeof(struct e1000_buffer) * tx_ring->count;
2438         memset(tx_ring->buffer_info, 0, size);
2439
2440         memset(tx_ring->desc, 0, tx_ring->size);
2441
2442         tx_ring->next_to_use = 0;
2443         tx_ring->next_to_clean = 0;
2444 }
2445
2446 /**
2447  * e1000e_free_tx_resources - Free Tx Resources per Queue
2448  * @tx_ring: Tx descriptor ring
2449  *
2450  * Free all transmit software resources
2451  **/
2452 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2453 {
2454         struct e1000_adapter *adapter = tx_ring->adapter;
2455         struct pci_dev *pdev = adapter->pdev;
2456
2457         e1000_clean_tx_ring(tx_ring);
2458
2459         vfree(tx_ring->buffer_info);
2460         tx_ring->buffer_info = NULL;
2461
2462         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2463                           tx_ring->dma);
2464         tx_ring->desc = NULL;
2465 }
2466
2467 /**
2468  * e1000e_free_rx_resources - Free Rx Resources
2469  * @rx_ring: Rx descriptor ring
2470  *
2471  * Free all receive software resources
2472  **/
2473 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2474 {
2475         struct e1000_adapter *adapter = rx_ring->adapter;
2476         struct pci_dev *pdev = adapter->pdev;
2477         int i;
2478
2479         e1000_clean_rx_ring(rx_ring);
2480
2481         for (i = 0; i < rx_ring->count; i++)
2482                 kfree(rx_ring->buffer_info[i].ps_pages);
2483
2484         vfree(rx_ring->buffer_info);
2485         rx_ring->buffer_info = NULL;
2486
2487         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2488                           rx_ring->dma);
2489         rx_ring->desc = NULL;
2490 }
2491
2492 /**
2493  * e1000_update_itr - update the dynamic ITR value based on statistics
2494  * @adapter: pointer to adapter
2495  * @itr_setting: current adapter->itr
2496  * @packets: the number of packets during this measurement interval
2497  * @bytes: the number of bytes during this measurement interval
2498  *
2499  *      Stores a new ITR value based on packets and byte
2500  *      counts during the last interrupt.  The advantage of per interrupt
2501  *      computation is faster updates and more accurate ITR for the current
2502  *      traffic pattern.  Constants in this function were computed
2503  *      based on theoretical maximum wire speed and thresholds were set based
2504  *      on testing data as well as attempting to minimize response time
2505  *      while increasing bulk throughput.  This functionality is controlled
2506  *      by the InterruptThrottleRate module parameter.
2507  **/
2508 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2509 {
2510         unsigned int retval = itr_setting;
2511
2512         if (packets == 0)
2513                 return itr_setting;
2514
2515         switch (itr_setting) {
2516         case lowest_latency:
2517                 /* handle TSO and jumbo frames */
2518                 if (bytes / packets > 8000)
2519                         retval = bulk_latency;
2520                 else if ((packets < 5) && (bytes > 512))
2521                         retval = low_latency;
2522                 break;
2523         case low_latency:       /* 50 usec aka 20000 ints/s */
2524                 if (bytes > 10000) {
2525                         /* this if handles the TSO accounting */
2526                         if (bytes / packets > 8000)
2527                                 retval = bulk_latency;
2528                         else if ((packets < 10) || ((bytes / packets) > 1200))
2529                                 retval = bulk_latency;
2530                         else if ((packets > 35))
2531                                 retval = lowest_latency;
2532                 } else if (bytes / packets > 2000) {
2533                         retval = bulk_latency;
2534                 } else if (packets <= 2 && bytes < 512) {
2535                         retval = lowest_latency;
2536                 }
2537                 break;
2538         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2539                 if (bytes > 25000) {
2540                         if (packets > 35)
2541                                 retval = low_latency;
2542                 } else if (bytes < 6000) {
2543                         retval = low_latency;
2544                 }
2545                 break;
2546         }
2547
2548         return retval;
2549 }
2550
2551 static void e1000_set_itr(struct e1000_adapter *adapter)
2552 {
2553         u16 current_itr;
2554         u32 new_itr = adapter->itr;
2555
2556         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2557         if (adapter->link_speed != SPEED_1000) {
2558                 current_itr = 0;
2559                 new_itr = 4000;
2560                 goto set_itr_now;
2561         }
2562
2563         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2564                 new_itr = 0;
2565                 goto set_itr_now;
2566         }
2567
2568         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2569                                            adapter->total_tx_packets,
2570                                            adapter->total_tx_bytes);
2571         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2572         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2573                 adapter->tx_itr = low_latency;
2574
2575         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2576                                            adapter->total_rx_packets,
2577                                            adapter->total_rx_bytes);
2578         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2579         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2580                 adapter->rx_itr = low_latency;
2581
2582         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2583
2584         /* counts and packets in update_itr are dependent on these numbers */
2585         switch (current_itr) {
2586         case lowest_latency:
2587                 new_itr = 70000;
2588                 break;
2589         case low_latency:
2590                 new_itr = 20000;        /* aka hwitr = ~200 */
2591                 break;
2592         case bulk_latency:
2593                 new_itr = 4000;
2594                 break;
2595         default:
2596                 break;
2597         }
2598
2599 set_itr_now:
2600         if (new_itr != adapter->itr) {
2601                 /* this attempts to bias the interrupt rate towards Bulk
2602                  * by adding intermediate steps when interrupt rate is
2603                  * increasing
2604                  */
2605                 new_itr = new_itr > adapter->itr ?
2606                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2607                 adapter->itr = new_itr;
2608                 adapter->rx_ring->itr_val = new_itr;
2609                 if (adapter->msix_entries)
2610                         adapter->rx_ring->set_itr = 1;
2611                 else
2612                         e1000e_write_itr(adapter, new_itr);
2613         }
2614 }
2615
2616 /**
2617  * e1000e_write_itr - write the ITR value to the appropriate registers
2618  * @adapter: address of board private structure
2619  * @itr: new ITR value to program
2620  *
2621  * e1000e_write_itr determines if the adapter is in MSI-X mode
2622  * and, if so, writes the EITR registers with the ITR value.
2623  * Otherwise, it writes the ITR value into the ITR register.
2624  **/
2625 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2626 {
2627         struct e1000_hw *hw = &adapter->hw;
2628         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2629
2630         if (adapter->msix_entries) {
2631                 int vector;
2632
2633                 for (vector = 0; vector < adapter->num_vectors; vector++)
2634                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2635         } else {
2636                 ew32(ITR, new_itr);
2637         }
2638 }
2639
2640 /**
2641  * e1000_alloc_queues - Allocate memory for all rings
2642  * @adapter: board private structure to initialize
2643  **/
2644 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2645 {
2646         int size = sizeof(struct e1000_ring);
2647
2648         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2649         if (!adapter->tx_ring)
2650                 goto err;
2651         adapter->tx_ring->count = adapter->tx_ring_count;
2652         adapter->tx_ring->adapter = adapter;
2653
2654         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2655         if (!adapter->rx_ring)
2656                 goto err;
2657         adapter->rx_ring->count = adapter->rx_ring_count;
2658         adapter->rx_ring->adapter = adapter;
2659
2660         return 0;
2661 err:
2662         e_err("Unable to allocate memory for queues\n");
2663         kfree(adapter->rx_ring);
2664         kfree(adapter->tx_ring);
2665         return -ENOMEM;
2666 }
2667
2668 /**
2669  * e1000e_poll - NAPI Rx polling callback
2670  * @napi: struct associated with this polling callback
2671  * @weight: number of packets driver is allowed to process this poll
2672  **/
2673 static int e1000e_poll(struct napi_struct *napi, int weight)
2674 {
2675         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2676                                                      napi);
2677         struct e1000_hw *hw = &adapter->hw;
2678         struct net_device *poll_dev = adapter->netdev;
2679         int tx_cleaned = 1, work_done = 0;
2680
2681         adapter = netdev_priv(poll_dev);
2682
2683         if (!adapter->msix_entries ||
2684             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2685                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2686
2687         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2688
2689         if (!tx_cleaned)
2690                 work_done = weight;
2691
2692         /* If weight not fully consumed, exit the polling mode */
2693         if (work_done < weight) {
2694                 if (adapter->itr_setting & 3)
2695                         e1000_set_itr(adapter);
2696                 napi_complete(napi);
2697                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2698                         if (adapter->msix_entries)
2699                                 ew32(IMS, adapter->rx_ring->ims_val);
2700                         else
2701                                 e1000_irq_enable(adapter);
2702                 }
2703         }
2704
2705         return work_done;
2706 }
2707
2708 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2709                                  __always_unused __be16 proto, u16 vid)
2710 {
2711         struct e1000_adapter *adapter = netdev_priv(netdev);
2712         struct e1000_hw *hw = &adapter->hw;
2713         u32 vfta, index;
2714
2715         /* don't update vlan cookie if already programmed */
2716         if ((adapter->hw.mng_cookie.status &
2717              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2718             (vid == adapter->mng_vlan_id))
2719                 return 0;
2720
2721         /* add VID to filter table */
2722         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2723                 index = (vid >> 5) & 0x7F;
2724                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2725                 vfta |= (1 << (vid & 0x1F));
2726                 hw->mac.ops.write_vfta(hw, index, vfta);
2727         }
2728
2729         set_bit(vid, adapter->active_vlans);
2730
2731         return 0;
2732 }
2733
2734 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2735                                   __always_unused __be16 proto, u16 vid)
2736 {
2737         struct e1000_adapter *adapter = netdev_priv(netdev);
2738         struct e1000_hw *hw = &adapter->hw;
2739         u32 vfta, index;
2740
2741         if ((adapter->hw.mng_cookie.status &
2742              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2743             (vid == adapter->mng_vlan_id)) {
2744                 /* release control to f/w */
2745                 e1000e_release_hw_control(adapter);
2746                 return 0;
2747         }
2748
2749         /* remove VID from filter table */
2750         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2751                 index = (vid >> 5) & 0x7F;
2752                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2753                 vfta &= ~(1 << (vid & 0x1F));
2754                 hw->mac.ops.write_vfta(hw, index, vfta);
2755         }
2756
2757         clear_bit(vid, adapter->active_vlans);
2758
2759         return 0;
2760 }
2761
2762 /**
2763  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2764  * @adapter: board private structure to initialize
2765  **/
2766 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2767 {
2768         struct net_device *netdev = adapter->netdev;
2769         struct e1000_hw *hw = &adapter->hw;
2770         u32 rctl;
2771
2772         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2773                 /* disable VLAN receive filtering */
2774                 rctl = er32(RCTL);
2775                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2776                 ew32(RCTL, rctl);
2777
2778                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2779                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2780                                                adapter->mng_vlan_id);
2781                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2782                 }
2783         }
2784 }
2785
2786 /**
2787  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2788  * @adapter: board private structure to initialize
2789  **/
2790 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2791 {
2792         struct e1000_hw *hw = &adapter->hw;
2793         u32 rctl;
2794
2795         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2796                 /* enable VLAN receive filtering */
2797                 rctl = er32(RCTL);
2798                 rctl |= E1000_RCTL_VFE;
2799                 rctl &= ~E1000_RCTL_CFIEN;
2800                 ew32(RCTL, rctl);
2801         }
2802 }
2803
2804 /**
2805  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2806  * @adapter: board private structure to initialize
2807  **/
2808 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2809 {
2810         struct e1000_hw *hw = &adapter->hw;
2811         u32 ctrl;
2812
2813         /* disable VLAN tag insert/strip */
2814         ctrl = er32(CTRL);
2815         ctrl &= ~E1000_CTRL_VME;
2816         ew32(CTRL, ctrl);
2817 }
2818
2819 /**
2820  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2821  * @adapter: board private structure to initialize
2822  **/
2823 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2824 {
2825         struct e1000_hw *hw = &adapter->hw;
2826         u32 ctrl;
2827
2828         /* enable VLAN tag insert/strip */
2829         ctrl = er32(CTRL);
2830         ctrl |= E1000_CTRL_VME;
2831         ew32(CTRL, ctrl);
2832 }
2833
2834 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2835 {
2836         struct net_device *netdev = adapter->netdev;
2837         u16 vid = adapter->hw.mng_cookie.vlan_id;
2838         u16 old_vid = adapter->mng_vlan_id;
2839
2840         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2841                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2842                 adapter->mng_vlan_id = vid;
2843         }
2844
2845         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2846                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2847 }
2848
2849 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2850 {
2851         u16 vid;
2852
2853         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2854
2855         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2856             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2857 }
2858
2859 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2860 {
2861         struct e1000_hw *hw = &adapter->hw;
2862         u32 manc, manc2h, mdef, i, j;
2863
2864         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2865                 return;
2866
2867         manc = er32(MANC);
2868
2869         /* enable receiving management packets to the host. this will probably
2870          * generate destination unreachable messages from the host OS, but
2871          * the packets will be handled on SMBUS
2872          */
2873         manc |= E1000_MANC_EN_MNG2HOST;
2874         manc2h = er32(MANC2H);
2875
2876         switch (hw->mac.type) {
2877         default:
2878                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2879                 break;
2880         case e1000_82574:
2881         case e1000_82583:
2882                 /* Check if IPMI pass-through decision filter already exists;
2883                  * if so, enable it.
2884                  */
2885                 for (i = 0, j = 0; i < 8; i++) {
2886                         mdef = er32(MDEF(i));
2887
2888                         /* Ignore filters with anything other than IPMI ports */
2889                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2890                                 continue;
2891
2892                         /* Enable this decision filter in MANC2H */
2893                         if (mdef)
2894                                 manc2h |= (1 << i);
2895
2896                         j |= mdef;
2897                 }
2898
2899                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2900                         break;
2901
2902                 /* Create new decision filter in an empty filter */
2903                 for (i = 0, j = 0; i < 8; i++)
2904                         if (er32(MDEF(i)) == 0) {
2905                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2906                                                E1000_MDEF_PORT_664));
2907                                 manc2h |= (1 << 1);
2908                                 j++;
2909                                 break;
2910                         }
2911
2912                 if (!j)
2913                         e_warn("Unable to create IPMI pass-through filter\n");
2914                 break;
2915         }
2916
2917         ew32(MANC2H, manc2h);
2918         ew32(MANC, manc);
2919 }
2920
2921 /**
2922  * e1000_configure_tx - Configure Transmit Unit after Reset
2923  * @adapter: board private structure
2924  *
2925  * Configure the Tx unit of the MAC after a reset.
2926  **/
2927 static void e1000_configure_tx(struct e1000_adapter *adapter)
2928 {
2929         struct e1000_hw *hw = &adapter->hw;
2930         struct e1000_ring *tx_ring = adapter->tx_ring;
2931         u64 tdba;
2932         u32 tdlen, tctl, tarc;
2933
2934         /* Setup the HW Tx Head and Tail descriptor pointers */
2935         tdba = tx_ring->dma;
2936         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2937         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2938         ew32(TDBAH(0), (tdba >> 32));
2939         ew32(TDLEN(0), tdlen);
2940         ew32(TDH(0), 0);
2941         ew32(TDT(0), 0);
2942         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2943         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2944
2945         writel(0, tx_ring->head);
2946         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2947                 e1000e_update_tdt_wa(tx_ring, 0);
2948         else
2949                 writel(0, tx_ring->tail);
2950
2951         /* Set the Tx Interrupt Delay register */
2952         ew32(TIDV, adapter->tx_int_delay);
2953         /* Tx irq moderation */
2954         ew32(TADV, adapter->tx_abs_int_delay);
2955
2956         if (adapter->flags2 & FLAG2_DMA_BURST) {
2957                 u32 txdctl = er32(TXDCTL(0));
2958
2959                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2960                             E1000_TXDCTL_WTHRESH);
2961                 /* set up some performance related parameters to encourage the
2962                  * hardware to use the bus more efficiently in bursts, depends
2963                  * on the tx_int_delay to be enabled,
2964                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2965                  * hthresh = 1 ==> prefetch when one or more available
2966                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2967                  * BEWARE: this seems to work but should be considered first if
2968                  * there are Tx hangs or other Tx related bugs
2969                  */
2970                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2971                 ew32(TXDCTL(0), txdctl);
2972         }
2973         /* erratum work around: set txdctl the same for both queues */
2974         ew32(TXDCTL(1), er32(TXDCTL(0)));
2975
2976         /* Program the Transmit Control Register */
2977         tctl = er32(TCTL);
2978         tctl &= ~E1000_TCTL_CT;
2979         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2980                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2981
2982         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2983                 tarc = er32(TARC(0));
2984                 /* set the speed mode bit, we'll clear it if we're not at
2985                  * gigabit link later
2986                  */
2987 #define SPEED_MODE_BIT (1 << 21)
2988                 tarc |= SPEED_MODE_BIT;
2989                 ew32(TARC(0), tarc);
2990         }
2991
2992         /* errata: program both queues to unweighted RR */
2993         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2994                 tarc = er32(TARC(0));
2995                 tarc |= 1;
2996                 ew32(TARC(0), tarc);
2997                 tarc = er32(TARC(1));
2998                 tarc |= 1;
2999                 ew32(TARC(1), tarc);
3000         }
3001
3002         /* Setup Transmit Descriptor Settings for eop descriptor */
3003         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3004
3005         /* only set IDE if we are delaying interrupts using the timers */
3006         if (adapter->tx_int_delay)
3007                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3008
3009         /* enable Report Status bit */
3010         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3011
3012         ew32(TCTL, tctl);
3013
3014         hw->mac.ops.config_collision_dist(hw);
3015
3016         /* SPT Si errata workaround to avoid data corruption */
3017         if (hw->mac.type == e1000_pch_spt) {
3018                 u32 reg_val;
3019
3020                 reg_val = er32(IOSFPC);
3021                 reg_val |= E1000_RCTL_RDMTS_HEX;
3022                 ew32(IOSFPC, reg_val);
3023
3024                 reg_val = er32(TARC(0));
3025                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3026                 ew32(TARC(0), reg_val);
3027         }
3028 }
3029
3030 /**
3031  * e1000_setup_rctl - configure the receive control registers
3032  * @adapter: Board private structure
3033  **/
3034 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3035                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3036 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3037 {
3038         struct e1000_hw *hw = &adapter->hw;
3039         u32 rctl, rfctl;
3040         u32 pages = 0;
3041
3042         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3043          * If jumbo frames not set, program related MAC/PHY registers
3044          * to h/w defaults
3045          */
3046         if (hw->mac.type >= e1000_pch2lan) {
3047                 s32 ret_val;
3048
3049                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3050                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3051                 else
3052                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3053
3054                 if (ret_val)
3055                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3056         }
3057
3058         /* Program MC offset vector base */
3059         rctl = er32(RCTL);
3060         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3061         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3062             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3063             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3064
3065         /* Do not Store bad packets */
3066         rctl &= ~E1000_RCTL_SBP;
3067
3068         /* Enable Long Packet receive */
3069         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3070                 rctl &= ~E1000_RCTL_LPE;
3071         else
3072                 rctl |= E1000_RCTL_LPE;
3073
3074         /* Some systems expect that the CRC is included in SMBUS traffic. The
3075          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076          * host memory when this is enabled
3077          */
3078         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3079                 rctl |= E1000_RCTL_SECRC;
3080
3081         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3083                 u16 phy_data;
3084
3085                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3086                 phy_data &= 0xfff8;
3087                 phy_data |= (1 << 2);
3088                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3089
3090                 e1e_rphy(hw, 22, &phy_data);
3091                 phy_data &= 0x0fff;
3092                 phy_data |= (1 << 14);
3093                 e1e_wphy(hw, 0x10, 0x2823);
3094                 e1e_wphy(hw, 0x11, 0x0003);
3095                 e1e_wphy(hw, 22, phy_data);
3096         }
3097
3098         /* Setup buffer sizes */
3099         rctl &= ~E1000_RCTL_SZ_4096;
3100         rctl |= E1000_RCTL_BSEX;
3101         switch (adapter->rx_buffer_len) {
3102         case 2048:
3103         default:
3104                 rctl |= E1000_RCTL_SZ_2048;
3105                 rctl &= ~E1000_RCTL_BSEX;
3106                 break;
3107         case 4096:
3108                 rctl |= E1000_RCTL_SZ_4096;
3109                 break;
3110         case 8192:
3111                 rctl |= E1000_RCTL_SZ_8192;
3112                 break;
3113         case 16384:
3114                 rctl |= E1000_RCTL_SZ_16384;
3115                 break;
3116         }
3117
3118         /* Enable Extended Status in all Receive Descriptors */
3119         rfctl = er32(RFCTL);
3120         rfctl |= E1000_RFCTL_EXTEN;
3121         ew32(RFCTL, rfctl);
3122
3123         /* 82571 and greater support packet-split where the protocol
3124          * header is placed in skb->data and the packet data is
3125          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126          * In the case of a non-split, skb->data is linearly filled,
3127          * followed by the page buffers.  Therefore, skb->data is
3128          * sized to hold the largest protocol header.
3129          *
3130          * allocations using alloc_page take too long for regular MTU
3131          * so only enable packet split for jumbo frames
3132          *
3133          * Using pages when the page size is greater than 16k wastes
3134          * a lot of memory, since we allocate 3 pages at all times
3135          * per packet.
3136          */
3137         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3138         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3139                 adapter->rx_ps_pages = pages;
3140         else
3141                 adapter->rx_ps_pages = 0;
3142
3143         if (adapter->rx_ps_pages) {
3144                 u32 psrctl = 0;
3145
3146                 /* Enable Packet split descriptors */
3147                 rctl |= E1000_RCTL_DTYP_PS;
3148
3149                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3150
3151                 switch (adapter->rx_ps_pages) {
3152                 case 3:
3153                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3154                         /* fall-through */
3155                 case 2:
3156                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3157                         /* fall-through */
3158                 case 1:
3159                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3160                         break;
3161                 }
3162
3163                 ew32(PSRCTL, psrctl);
3164         }
3165
3166         /* This is useful for sniffing bad packets. */
3167         if (adapter->netdev->features & NETIF_F_RXALL) {
3168                 /* UPE and MPE will be handled by normal PROMISC logic
3169                  * in e1000e_set_rx_mode
3170                  */
3171                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3172                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3173                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3174
3175                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3176                           E1000_RCTL_DPF |      /* Allow filtered pause */
3177                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3178                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179                  * and that breaks VLANs.
3180                  */
3181         }
3182
3183         ew32(RCTL, rctl);
3184         /* just started the receive unit, no need to restart */
3185         adapter->flags &= ~FLAG_RESTART_NOW;
3186 }
3187
3188 /**
3189  * e1000_configure_rx - Configure Receive Unit after Reset
3190  * @adapter: board private structure
3191  *
3192  * Configure the Rx unit of the MAC after a reset.
3193  **/
3194 static void e1000_configure_rx(struct e1000_adapter *adapter)
3195 {
3196         struct e1000_hw *hw = &adapter->hw;
3197         struct e1000_ring *rx_ring = adapter->rx_ring;
3198         u64 rdba;
3199         u32 rdlen, rctl, rxcsum, ctrl_ext;
3200
3201         if (adapter->rx_ps_pages) {
3202                 /* this is a 32 byte descriptor */
3203                 rdlen = rx_ring->count *
3204                     sizeof(union e1000_rx_desc_packet_split);
3205                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3206                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3207         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3208                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3209                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3210                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3211         } else {
3212                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3213                 adapter->clean_rx = e1000_clean_rx_irq;
3214                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3215         }
3216
3217         /* disable receives while setting up the descriptors */
3218         rctl = er32(RCTL);
3219         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3220                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3221         e1e_flush();
3222         usleep_range(10000, 20000);
3223
3224         if (adapter->flags2 & FLAG2_DMA_BURST) {
3225                 /* set the writeback threshold (only takes effect if the RDTR
3226                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3227                  * enable prefetching of 0x20 Rx descriptors
3228                  * granularity = 01
3229                  * wthresh = 04,
3230                  * hthresh = 04,
3231                  * pthresh = 0x20
3232                  */
3233                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3234                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3235
3236                 /* override the delay timers for enabling bursting, only if
3237                  * the value was not set by the user via module options
3238                  */
3239                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3240                         adapter->rx_int_delay = BURST_RDTR;
3241                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3242                         adapter->rx_abs_int_delay = BURST_RADV;
3243         }
3244
3245         /* set the Receive Delay Timer Register */
3246         ew32(RDTR, adapter->rx_int_delay);
3247
3248         /* irq moderation */
3249         ew32(RADV, adapter->rx_abs_int_delay);
3250         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3251                 e1000e_write_itr(adapter, adapter->itr);
3252
3253         ctrl_ext = er32(CTRL_EXT);
3254         /* Auto-Mask interrupts upon ICR access */
3255         ctrl_ext |= E1000_CTRL_EXT_IAME;
3256         ew32(IAM, 0xffffffff);
3257         ew32(CTRL_EXT, ctrl_ext);
3258         e1e_flush();
3259
3260         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3261          * the Base and Length of the Rx Descriptor Ring
3262          */
3263         rdba = rx_ring->dma;
3264         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3265         ew32(RDBAH(0), (rdba >> 32));
3266         ew32(RDLEN(0), rdlen);
3267         ew32(RDH(0), 0);
3268         ew32(RDT(0), 0);
3269         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3270         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3271
3272         writel(0, rx_ring->head);
3273         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3274                 e1000e_update_rdt_wa(rx_ring, 0);
3275         else
3276                 writel(0, rx_ring->tail);
3277
3278         /* Enable Receive Checksum Offload for TCP and UDP */
3279         rxcsum = er32(RXCSUM);
3280         if (adapter->netdev->features & NETIF_F_RXCSUM)
3281                 rxcsum |= E1000_RXCSUM_TUOFL;
3282         else
3283                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3284         ew32(RXCSUM, rxcsum);
3285
3286         /* With jumbo frames, excessive C-state transition latencies result
3287          * in dropped transactions.
3288          */
3289         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290                 u32 lat =
3291                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292                      adapter->max_frame_size) * 8 / 1000;
3293
3294                 if (adapter->flags & FLAG_IS_ICH) {
3295                         u32 rxdctl = er32(RXDCTL(0));
3296
3297                         ew32(RXDCTL(0), rxdctl | 0x3);
3298                 }
3299
3300                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3301         } else {
3302                 pm_qos_update_request(&adapter->pm_qos_req,
3303                                       PM_QOS_DEFAULT_VALUE);
3304         }
3305
3306         /* Enable Receives */
3307         ew32(RCTL, rctl);
3308 }
3309
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321         struct e1000_adapter *adapter = netdev_priv(netdev);
3322         struct e1000_hw *hw = &adapter->hw;
3323         struct netdev_hw_addr *ha;
3324         u8 *mta_list;
3325         int i;
3326
3327         if (netdev_mc_empty(netdev)) {
3328                 /* nothing to program, so clear mc list */
3329                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330                 return 0;
3331         }
3332
3333         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334         if (!mta_list)
3335                 return -ENOMEM;
3336
3337         /* update_mc_addr_list expects a packed array of only addresses. */
3338         i = 0;
3339         netdev_for_each_mc_addr(ha, netdev)
3340             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341
3342         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343         kfree(mta_list);
3344
3345         return netdev_mc_count(netdev);
3346 }
3347
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359         struct e1000_adapter *adapter = netdev_priv(netdev);
3360         struct e1000_hw *hw = &adapter->hw;
3361         unsigned int rar_entries;
3362         int count = 0;
3363
3364         rar_entries = hw->mac.ops.rar_get_count(hw);
3365
3366         /* save a rar entry for our hardware address */
3367         rar_entries--;
3368
3369         /* save a rar entry for the LAA workaround */
3370         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371                 rar_entries--;
3372
3373         /* return ENOMEM indicating insufficient memory for addresses */
3374         if (netdev_uc_count(netdev) > rar_entries)
3375                 return -ENOMEM;
3376
3377         if (!netdev_uc_empty(netdev) && rar_entries) {
3378                 struct netdev_hw_addr *ha;
3379
3380                 /* write the addresses in reverse order to avoid write
3381                  * combining
3382                  */
3383                 netdev_for_each_uc_addr(ha, netdev) {
3384                         int rval;
3385
3386                         if (!rar_entries)
3387                                 break;
3388                         rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389                         if (rval < 0)
3390                                 return -ENOMEM;
3391                         count++;
3392                 }
3393         }
3394
3395         /* zero out the remaining RAR entries not used above */
3396         for (; rar_entries > 0; rar_entries--) {
3397                 ew32(RAH(rar_entries), 0);
3398                 ew32(RAL(rar_entries), 0);
3399         }
3400         e1e_flush();
3401
3402         return count;
3403 }
3404
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416         struct e1000_adapter *adapter = netdev_priv(netdev);
3417         struct e1000_hw *hw = &adapter->hw;
3418         u32 rctl;
3419
3420         if (pm_runtime_suspended(netdev->dev.parent))
3421                 return;
3422
3423         /* Check for Promiscuous and All Multicast modes */
3424         rctl = er32(RCTL);
3425
3426         /* clear the affected bits */
3427         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
3429         if (netdev->flags & IFF_PROMISC) {
3430                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431                 /* Do not hardware filter VLANs in promisc mode */
3432                 e1000e_vlan_filter_disable(adapter);
3433         } else {
3434                 int count;
3435
3436                 if (netdev->flags & IFF_ALLMULTI) {
3437                         rctl |= E1000_RCTL_MPE;
3438                 } else {
3439                         /* Write addresses to the MTA, if the attempt fails
3440                          * then we should just turn on promiscuous mode so
3441                          * that we can at least receive multicast traffic
3442                          */
3443                         count = e1000e_write_mc_addr_list(netdev);
3444                         if (count < 0)
3445                                 rctl |= E1000_RCTL_MPE;
3446                 }
3447                 e1000e_vlan_filter_enable(adapter);
3448                 /* Write addresses to available RAR registers, if there is not
3449                  * sufficient space to store all the addresses then enable
3450                  * unicast promiscuous mode
3451                  */
3452                 count = e1000e_write_uc_addr_list(netdev);
3453                 if (count < 0)
3454                         rctl |= E1000_RCTL_UPE;
3455         }
3456
3457         ew32(RCTL, rctl);
3458
3459         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460                 e1000e_vlan_strip_enable(adapter);
3461         else
3462                 e1000e_vlan_strip_disable(adapter);
3463 }
3464
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467         struct e1000_hw *hw = &adapter->hw;
3468         u32 mrqc, rxcsum;
3469         u32 rss_key[10];
3470         int i;
3471
3472         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473         for (i = 0; i < 10; i++)
3474                 ew32(RSSRK(i), rss_key[i]);
3475
3476         /* Direct all traffic to queue 0 */
3477         for (i = 0; i < 32; i++)
3478                 ew32(RETA(i), 0);
3479
3480         /* Disable raw packet checksumming so that RSS hash is placed in
3481          * descriptor on writeback.
3482          */
3483         rxcsum = er32(RXCSUM);
3484         rxcsum |= E1000_RXCSUM_PCSD;
3485
3486         ew32(RXCSUM, rxcsum);
3487
3488         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490                 E1000_MRQC_RSS_FIELD_IPV6 |
3491                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494         ew32(MRQC, mrqc);
3495 }
3496
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507         struct e1000_hw *hw = &adapter->hw;
3508         u32 incvalue, incperiod, shift;
3509
3510         /* Make sure clock is enabled on I217/I218/I219  before checking
3511          * the frequency
3512          */
3513         if (((hw->mac.type == e1000_pch_lpt) ||
3514              (hw->mac.type == e1000_pch_spt)) &&
3515             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517                 u32 fextnvm7 = er32(FEXTNVM7);
3518
3519                 if (!(fextnvm7 & (1 << 0))) {
3520                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521                         e1e_flush();
3522                 }
3523         }
3524
3525         switch (hw->mac.type) {
3526         case e1000_pch2lan:
3527         case e1000_pch_lpt:
3528                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3529                         /* Stable 96MHz frequency */
3530                         incperiod = INCPERIOD_96MHz;
3531                         incvalue = INCVALUE_96MHz;
3532                         shift = INCVALUE_SHIFT_96MHz;
3533                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3534                 } else {
3535                         /* Stable 25MHz frequency */
3536                         incperiod = INCPERIOD_25MHz;
3537                         incvalue = INCVALUE_25MHz;
3538                         shift = INCVALUE_SHIFT_25MHz;
3539                         adapter->cc.shift = shift;
3540                 }
3541                 break;
3542         case e1000_pch_spt:
3543                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3544                         /* Stable 24MHz frequency */
3545                         incperiod = INCPERIOD_24MHz;
3546                         incvalue = INCVALUE_24MHz;
3547                         shift = INCVALUE_SHIFT_24MHz;
3548                         adapter->cc.shift = shift;
3549                         break;
3550                 }
3551                 return -EINVAL;
3552         case e1000_82574:
3553         case e1000_82583:
3554                 /* Stable 25MHz frequency */
3555                 incperiod = INCPERIOD_25MHz;
3556                 incvalue = INCVALUE_25MHz;
3557                 shift = INCVALUE_SHIFT_25MHz;
3558                 adapter->cc.shift = shift;
3559                 break;
3560         default:
3561                 return -EINVAL;
3562         }
3563
3564         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3565                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3566
3567         return 0;
3568 }
3569
3570 /**
3571  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572  * @adapter: board private structure
3573  *
3574  * Outgoing time stamping can be enabled and disabled. Play nice and
3575  * disable it when requested, although it shouldn't cause any overhead
3576  * when no packet needs it. At most one packet in the queue may be
3577  * marked for time stamping, otherwise it would be impossible to tell
3578  * for sure to which packet the hardware time stamp belongs.
3579  *
3580  * Incoming time stamping has to be configured via the hardware filters.
3581  * Not all combinations are supported, in particular event type has to be
3582  * specified. Matching the kind of event packet is not supported, with the
3583  * exception of "all V2 events regardless of level 2 or 4".
3584  **/
3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3586                                   struct hwtstamp_config *config)
3587 {
3588         struct e1000_hw *hw = &adapter->hw;
3589         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3590         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3591         u32 rxmtrl = 0;
3592         u16 rxudp = 0;
3593         bool is_l4 = false;
3594         bool is_l2 = false;
3595         u32 regval;
3596         s32 ret_val;
3597
3598         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3599                 return -EINVAL;
3600
3601         /* flags reserved for future extensions - must be zero */
3602         if (config->flags)
3603                 return -EINVAL;
3604
3605         switch (config->tx_type) {
3606         case HWTSTAMP_TX_OFF:
3607                 tsync_tx_ctl = 0;
3608                 break;
3609         case HWTSTAMP_TX_ON:
3610                 break;
3611         default:
3612                 return -ERANGE;
3613         }
3614
3615         switch (config->rx_filter) {
3616         case HWTSTAMP_FILTER_NONE:
3617                 tsync_rx_ctl = 0;
3618                 break;
3619         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3620                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3621                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3622                 is_l4 = true;
3623                 break;
3624         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3625                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3627                 is_l4 = true;
3628                 break;
3629         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3630                 /* Also time stamps V2 L2 Path Delay Request/Response */
3631                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3632                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3633                 is_l2 = true;
3634                 break;
3635         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3636                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3637                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3638                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3639                 is_l2 = true;
3640                 break;
3641         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3642                 /* Hardware cannot filter just V2 L4 Sync messages;
3643                  * fall-through to V2 (both L2 and L4) Sync.
3644                  */
3645         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3646                 /* Also time stamps V2 Path Delay Request/Response. */
3647                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3648                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3649                 is_l2 = true;
3650                 is_l4 = true;
3651                 break;
3652         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3653                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3654                  * fall-through to V2 (both L2 and L4) Delay Request.
3655                  */
3656         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3657                 /* Also time stamps V2 Path Delay Request/Response. */
3658                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3659                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3660                 is_l2 = true;
3661                 is_l4 = true;
3662                 break;
3663         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3664         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3665                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3666                  * fall-through to all V2 (both L2 and L4) Events.
3667                  */
3668         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3669                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3670                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3671                 is_l2 = true;
3672                 is_l4 = true;
3673                 break;
3674         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3675                 /* For V1, the hardware can only filter Sync messages or
3676                  * Delay Request messages but not both so fall-through to
3677                  * time stamp all packets.
3678                  */
3679         case HWTSTAMP_FILTER_ALL:
3680                 is_l2 = true;
3681                 is_l4 = true;
3682                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3683                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3684                 break;
3685         default:
3686                 return -ERANGE;
3687         }
3688
3689         adapter->hwtstamp_config = *config;
3690
3691         /* enable/disable Tx h/w time stamping */
3692         regval = er32(TSYNCTXCTL);
3693         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3694         regval |= tsync_tx_ctl;
3695         ew32(TSYNCTXCTL, regval);
3696         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3697             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3698                 e_err("Timesync Tx Control register not set as expected\n");
3699                 return -EAGAIN;
3700         }
3701
3702         /* enable/disable Rx h/w time stamping */
3703         regval = er32(TSYNCRXCTL);
3704         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3705         regval |= tsync_rx_ctl;
3706         ew32(TSYNCRXCTL, regval);
3707         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3708                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3709             (regval & (E1000_TSYNCRXCTL_ENABLED |
3710                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3711                 e_err("Timesync Rx Control register not set as expected\n");
3712                 return -EAGAIN;
3713         }
3714
3715         /* L2: define ethertype filter for time stamped packets */
3716         if (is_l2)
3717                 rxmtrl |= ETH_P_1588;
3718
3719         /* define which PTP packets get time stamped */
3720         ew32(RXMTRL, rxmtrl);
3721
3722         /* Filter by destination port */
3723         if (is_l4) {
3724                 rxudp = PTP_EV_PORT;
3725                 cpu_to_be16s(&rxudp);
3726         }
3727         ew32(RXUDP, rxudp);
3728
3729         e1e_flush();
3730
3731         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3732         er32(RXSTMPH);
3733         er32(TXSTMPH);
3734
3735         /* Get and set the System Time Register SYSTIM base frequency */
3736         ret_val = e1000e_get_base_timinca(adapter, &regval);
3737         if (ret_val)
3738                 return ret_val;
3739         ew32(TIMINCA, regval);
3740
3741         /* reset the ns time counter */
3742         timecounter_init(&adapter->tc, &adapter->cc,
3743                          ktime_to_ns(ktime_get_real()));
3744
3745         return 0;
3746 }
3747
3748 /**
3749  * e1000_configure - configure the hardware for Rx and Tx
3750  * @adapter: private board structure
3751  **/
3752 static void e1000_configure(struct e1000_adapter *adapter)
3753 {
3754         struct e1000_ring *rx_ring = adapter->rx_ring;
3755
3756         e1000e_set_rx_mode(adapter->netdev);
3757
3758         e1000_restore_vlan(adapter);
3759         e1000_init_manageability_pt(adapter);
3760
3761         e1000_configure_tx(adapter);
3762
3763         if (adapter->netdev->features & NETIF_F_RXHASH)
3764                 e1000e_setup_rss_hash(adapter);
3765         e1000_setup_rctl(adapter);
3766         e1000_configure_rx(adapter);
3767         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3768 }
3769
3770 /**
3771  * e1000e_power_up_phy - restore link in case the phy was powered down
3772  * @adapter: address of board private structure
3773  *
3774  * The phy may be powered down to save power and turn off link when the
3775  * driver is unloaded and wake on lan is not enabled (among others)
3776  * *** this routine MUST be followed by a call to e1000e_reset ***
3777  **/
3778 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3779 {
3780         if (adapter->hw.phy.ops.power_up)
3781                 adapter->hw.phy.ops.power_up(&adapter->hw);
3782
3783         adapter->hw.mac.ops.setup_link(&adapter->hw);
3784 }
3785
3786 /**
3787  * e1000_power_down_phy - Power down the PHY
3788  *
3789  * Power down the PHY so no link is implied when interface is down.
3790  * The PHY cannot be powered down if management or WoL is active.
3791  */
3792 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3793 {
3794         if (adapter->hw.phy.ops.power_down)
3795                 adapter->hw.phy.ops.power_down(&adapter->hw);
3796 }
3797
3798 /**
3799  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3800  *
3801  * We want to clear all pending descriptors from the TX ring.
3802  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3803  * the data of the next descriptor. We don't care about the data we are about
3804  * to reset the HW.
3805  */
3806 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3807 {
3808         struct e1000_hw *hw = &adapter->hw;
3809         struct e1000_ring *tx_ring = adapter->tx_ring;
3810         struct e1000_tx_desc *tx_desc = NULL;
3811         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3812         u16 size = 512;
3813
3814         tctl = er32(TCTL);
3815         ew32(TCTL, tctl | E1000_TCTL_EN);
3816         tdt = er32(TDT(0));
3817         BUG_ON(tdt != tx_ring->next_to_use);
3818         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3819         tx_desc->buffer_addr = tx_ring->dma;
3820
3821         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3822         tx_desc->upper.data = 0;
3823         /* flush descriptors to memory before notifying the HW */
3824         wmb();
3825         tx_ring->next_to_use++;
3826         if (tx_ring->next_to_use == tx_ring->count)
3827                 tx_ring->next_to_use = 0;
3828         ew32(TDT(0), tx_ring->next_to_use);
3829         mmiowb();
3830         usleep_range(200, 250);
3831 }
3832
3833 /**
3834  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3835  *
3836  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3837  */
3838 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3839 {
3840         u32 rctl, rxdctl;
3841         struct e1000_hw *hw = &adapter->hw;
3842
3843         rctl = er32(RCTL);
3844         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3845         e1e_flush();
3846         usleep_range(100, 150);
3847
3848         rxdctl = er32(RXDCTL(0));
3849         /* zero the lower 14 bits (prefetch and host thresholds) */
3850         rxdctl &= 0xffffc000;
3851
3852         /* update thresholds: prefetch threshold to 31, host threshold to 1
3853          * and make sure the granularity is "descriptors" and not "cache lines"
3854          */
3855         rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3856
3857         ew32(RXDCTL(0), rxdctl);
3858         /* momentarily enable the RX ring for the changes to take effect */
3859         ew32(RCTL, rctl | E1000_RCTL_EN);
3860         e1e_flush();
3861         usleep_range(100, 150);
3862         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3863 }
3864
3865 /**
3866  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3867  *
3868  * In i219, the descriptor rings must be emptied before resetting the HW
3869  * or before changing the device state to D3 during runtime (runtime PM).
3870  *
3871  * Failure to do this will cause the HW to enter a unit hang state which can
3872  * only be released by PCI reset on the device
3873  *
3874  */
3875
3876 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3877 {
3878         u16 hang_state;
3879         u32 fext_nvm11, tdlen;
3880         struct e1000_hw *hw = &adapter->hw;
3881
3882         /* First, disable MULR fix in FEXTNVM11 */
3883         fext_nvm11 = er32(FEXTNVM11);
3884         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3885         ew32(FEXTNVM11, fext_nvm11);
3886         /* do nothing if we're not in faulty state, or if the queue is empty */
3887         tdlen = er32(TDLEN(0));
3888         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3889                              &hang_state);
3890         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3891                 return;
3892         e1000_flush_tx_ring(adapter);
3893         /* recheck, maybe the fault is caused by the rx ring */
3894         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3895                              &hang_state);
3896         if (hang_state & FLUSH_DESC_REQUIRED)
3897                 e1000_flush_rx_ring(adapter);
3898 }
3899
3900 /**
3901  * e1000e_reset - bring the hardware into a known good state
3902  *
3903  * This function boots the hardware and enables some settings that
3904  * require a configuration cycle of the hardware - those cannot be
3905  * set/changed during runtime. After reset the device needs to be
3906  * properly configured for Rx, Tx etc.
3907  */
3908 void e1000e_reset(struct e1000_adapter *adapter)
3909 {
3910         struct e1000_mac_info *mac = &adapter->hw.mac;
3911         struct e1000_fc_info *fc = &adapter->hw.fc;
3912         struct e1000_hw *hw = &adapter->hw;
3913         u32 tx_space, min_tx_space, min_rx_space;
3914         u32 pba = adapter->pba;
3915         u16 hwm;
3916
3917         /* reset Packet Buffer Allocation to default */
3918         ew32(PBA, pba);
3919
3920         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3921                 /* To maintain wire speed transmits, the Tx FIFO should be
3922                  * large enough to accommodate two full transmit packets,
3923                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3924                  * the Rx FIFO should be large enough to accommodate at least
3925                  * one full receive packet and is similarly rounded up and
3926                  * expressed in KB.
3927                  */
3928                 pba = er32(PBA);
3929                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3930                 tx_space = pba >> 16;
3931                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3932                 pba &= 0xffff;
3933                 /* the Tx fifo also stores 16 bytes of information about the Tx
3934                  * but don't include ethernet FCS because hardware appends it
3935                  */
3936                 min_tx_space = (adapter->max_frame_size +
3937                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3938                 min_tx_space = ALIGN(min_tx_space, 1024);
3939                 min_tx_space >>= 10;
3940                 /* software strips receive CRC, so leave room for it */
3941                 min_rx_space = adapter->max_frame_size;
3942                 min_rx_space = ALIGN(min_rx_space, 1024);
3943                 min_rx_space >>= 10;
3944
3945                 /* If current Tx allocation is less than the min Tx FIFO size,
3946                  * and the min Tx FIFO size is less than the current Rx FIFO
3947                  * allocation, take space away from current Rx allocation
3948                  */
3949                 if ((tx_space < min_tx_space) &&
3950                     ((min_tx_space - tx_space) < pba)) {
3951                         pba -= min_tx_space - tx_space;
3952
3953                         /* if short on Rx space, Rx wins and must trump Tx
3954                          * adjustment
3955                          */
3956                         if (pba < min_rx_space)
3957                                 pba = min_rx_space;
3958                 }
3959
3960                 ew32(PBA, pba);
3961         }
3962
3963         /* flow control settings
3964          *
3965          * The high water mark must be low enough to fit one full frame
3966          * (or the size used for early receive) above it in the Rx FIFO.
3967          * Set it to the lower of:
3968          * - 90% of the Rx FIFO size, and
3969          * - the full Rx FIFO size minus one full frame
3970          */
3971         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3972                 fc->pause_time = 0xFFFF;
3973         else
3974                 fc->pause_time = E1000_FC_PAUSE_TIME;
3975         fc->send_xon = true;
3976         fc->current_mode = fc->requested_mode;
3977
3978         switch (hw->mac.type) {
3979         case e1000_ich9lan:
3980         case e1000_ich10lan:
3981                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3982                         pba = 14;
3983                         ew32(PBA, pba);
3984                         fc->high_water = 0x2800;
3985                         fc->low_water = fc->high_water - 8;
3986                         break;
3987                 }
3988                 /* fall-through */
3989         default:
3990                 hwm = min(((pba << 10) * 9 / 10),
3991                           ((pba << 10) - adapter->max_frame_size));
3992
3993                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3994                 fc->low_water = fc->high_water - 8;
3995                 break;
3996         case e1000_pchlan:
3997                 /* Workaround PCH LOM adapter hangs with certain network
3998                  * loads.  If hangs persist, try disabling Tx flow control.
3999                  */
4000                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4001                         fc->high_water = 0x3500;
4002                         fc->low_water = 0x1500;
4003                 } else {
4004                         fc->high_water = 0x5000;
4005                         fc->low_water = 0x3000;
4006                 }
4007                 fc->refresh_time = 0x1000;
4008                 break;
4009         case e1000_pch2lan:
4010         case e1000_pch_lpt:
4011         case e1000_pch_spt:
4012                 fc->refresh_time = 0x0400;
4013
4014                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4015                         fc->high_water = 0x05C20;
4016                         fc->low_water = 0x05048;
4017                         fc->pause_time = 0x0650;
4018                         break;
4019                 }
4020
4021                 pba = 14;
4022                 ew32(PBA, pba);
4023                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4024                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4025                 break;
4026         }
4027
4028         /* Alignment of Tx data is on an arbitrary byte boundary with the
4029          * maximum size per Tx descriptor limited only to the transmit
4030          * allocation of the packet buffer minus 96 bytes with an upper
4031          * limit of 24KB due to receive synchronization limitations.
4032          */
4033         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4034                                        24 << 10);
4035
4036         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4037          * fit in receive buffer.
4038          */
4039         if (adapter->itr_setting & 0x3) {
4040                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4041                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4042                                 dev_info(&adapter->pdev->dev,
4043                                          "Interrupt Throttle Rate off\n");
4044                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4045                                 e1000e_write_itr(adapter, 0);
4046                         }
4047                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4048                         dev_info(&adapter->pdev->dev,
4049                                  "Interrupt Throttle Rate on\n");
4050                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4051                         adapter->itr = 20000;
4052                         e1000e_write_itr(adapter, adapter->itr);
4053                 }
4054         }
4055
4056         if (hw->mac.type == e1000_pch_spt)
4057                 e1000_flush_desc_rings(adapter);
4058         /* Allow time for pending master requests to run */
4059         mac->ops.reset_hw(hw);
4060
4061         /* For parts with AMT enabled, let the firmware know
4062          * that the network interface is in control
4063          */
4064         if (adapter->flags & FLAG_HAS_AMT)
4065                 e1000e_get_hw_control(adapter);
4066
4067         ew32(WUC, 0);
4068
4069         if (mac->ops.init_hw(hw))
4070                 e_err("Hardware Error\n");
4071
4072         e1000_update_mng_vlan(adapter);
4073
4074         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4075         ew32(VET, ETH_P_8021Q);
4076
4077         e1000e_reset_adaptive(hw);
4078
4079         /* initialize systim and reset the ns time counter */
4080         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4081
4082         /* Set EEE advertisement as appropriate */
4083         if (adapter->flags2 & FLAG2_HAS_EEE) {
4084                 s32 ret_val;
4085                 u16 adv_addr;
4086
4087                 switch (hw->phy.type) {
4088                 case e1000_phy_82579:
4089                         adv_addr = I82579_EEE_ADVERTISEMENT;
4090                         break;
4091                 case e1000_phy_i217:
4092                         adv_addr = I217_EEE_ADVERTISEMENT;
4093                         break;
4094                 default:
4095                         dev_err(&adapter->pdev->dev,
4096                                 "Invalid PHY type setting EEE advertisement\n");
4097                         return;
4098                 }
4099
4100                 ret_val = hw->phy.ops.acquire(hw);
4101                 if (ret_val) {
4102                         dev_err(&adapter->pdev->dev,
4103                                 "EEE advertisement - unable to acquire PHY\n");
4104                         return;
4105                 }
4106
4107                 e1000_write_emi_reg_locked(hw, adv_addr,
4108                                            hw->dev_spec.ich8lan.eee_disable ?
4109                                            0 : adapter->eee_advert);
4110
4111                 hw->phy.ops.release(hw);
4112         }
4113
4114         if (!netif_running(adapter->netdev) &&
4115             !test_bit(__E1000_TESTING, &adapter->state))
4116                 e1000_power_down_phy(adapter);
4117
4118         e1000_get_phy_info(hw);
4119
4120         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4121             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4122                 u16 phy_data = 0;
4123                 /* speed up time to link by disabling smart power down, ignore
4124                  * the return value of this function because there is nothing
4125                  * different we would do if it failed
4126                  */
4127                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4128                 phy_data &= ~IGP02E1000_PM_SPD;
4129                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4130         }
4131         if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4132                 u32 reg;
4133
4134                 /* Fextnvm7 @ 0xe4[2] = 1 */
4135                 reg = er32(FEXTNVM7);
4136                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4137                 ew32(FEXTNVM7, reg);
4138                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4139                 reg = er32(FEXTNVM9);
4140                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4141                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4142                 ew32(FEXTNVM9, reg);
4143         }
4144
4145 }
4146
4147 int e1000e_up(struct e1000_adapter *adapter)
4148 {
4149         struct e1000_hw *hw = &adapter->hw;
4150
4151         /* hardware has been reset, we need to reload some things */
4152         e1000_configure(adapter);
4153
4154         clear_bit(__E1000_DOWN, &adapter->state);
4155
4156         if (adapter->msix_entries)
4157                 e1000_configure_msix(adapter);
4158         e1000_irq_enable(adapter);
4159
4160         netif_start_queue(adapter->netdev);
4161
4162         /* fire a link change interrupt to start the watchdog */
4163         if (adapter->msix_entries)
4164                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4165         else
4166                 ew32(ICS, E1000_ICS_LSC);
4167
4168         return 0;
4169 }
4170
4171 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4172 {
4173         struct e1000_hw *hw = &adapter->hw;
4174
4175         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4176                 return;
4177
4178         /* flush pending descriptor writebacks to memory */
4179         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4180         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4181
4182         /* execute the writes immediately */
4183         e1e_flush();
4184
4185         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4186          * write is successful
4187          */
4188         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4189         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4190
4191         /* execute the writes immediately */
4192         e1e_flush();
4193 }
4194
4195 static void e1000e_update_stats(struct e1000_adapter *adapter);
4196
4197 /**
4198  * e1000e_down - quiesce the device and optionally reset the hardware
4199  * @adapter: board private structure
4200  * @reset: boolean flag to reset the hardware or not
4201  */
4202 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4203 {
4204         struct net_device *netdev = adapter->netdev;
4205         struct e1000_hw *hw = &adapter->hw;
4206         u32 tctl, rctl;
4207
4208         /* signal that we're down so the interrupt handler does not
4209          * reschedule our watchdog timer
4210          */
4211         set_bit(__E1000_DOWN, &adapter->state);
4212
4213         netif_carrier_off(netdev);
4214
4215         /* disable receives in the hardware */
4216         rctl = er32(RCTL);
4217         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4218                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4219         /* flush and sleep below */
4220
4221         netif_stop_queue(netdev);
4222
4223         /* disable transmits in the hardware */
4224         tctl = er32(TCTL);
4225         tctl &= ~E1000_TCTL_EN;
4226         ew32(TCTL, tctl);
4227
4228         /* flush both disables and wait for them to finish */
4229         e1e_flush();
4230         usleep_range(10000, 20000);
4231
4232         e1000_irq_disable(adapter);
4233
4234         napi_synchronize(&adapter->napi);
4235
4236         del_timer_sync(&adapter->watchdog_timer);
4237         del_timer_sync(&adapter->phy_info_timer);
4238
4239         spin_lock(&adapter->stats64_lock);
4240         e1000e_update_stats(adapter);
4241         spin_unlock(&adapter->stats64_lock);
4242
4243         e1000e_flush_descriptors(adapter);
4244
4245         adapter->link_speed = 0;
4246         adapter->link_duplex = 0;
4247
4248         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4249         if ((hw->mac.type >= e1000_pch2lan) &&
4250             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4251             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4252                 e_dbg("failed to disable jumbo frame workaround mode\n");
4253
4254         if (!pci_channel_offline(adapter->pdev)) {
4255                 if (reset)
4256                         e1000e_reset(adapter);
4257                 else if (hw->mac.type == e1000_pch_spt)
4258                         e1000_flush_desc_rings(adapter);
4259         }
4260         e1000_clean_tx_ring(adapter->tx_ring);
4261         e1000_clean_rx_ring(adapter->rx_ring);
4262 }
4263
4264 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4265 {
4266         might_sleep();
4267         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4268                 usleep_range(1000, 2000);
4269         e1000e_down(adapter, true);
4270         e1000e_up(adapter);
4271         clear_bit(__E1000_RESETTING, &adapter->state);
4272 }
4273
4274 /**
4275  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4276  * @cc: cyclecounter structure
4277  **/
4278 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4279 {
4280         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4281                                                      cc);
4282         struct e1000_hw *hw = &adapter->hw;
4283         u32 systimel_1, systimel_2, systimeh;
4284         cycle_t systim, systim_next;
4285         /* SYSTIMH latching upon SYSTIML read does not work well.
4286          * This means that if SYSTIML overflows after we read it but before
4287          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4288          * will experience a huge non linear increment in the systime value
4289          * to fix that we test for overflow and if true, we re-read systime.
4290          */
4291         systimel_1 = er32(SYSTIML);
4292         systimeh = er32(SYSTIMH);
4293         systimel_2 = er32(SYSTIML);
4294         /* Check for overflow. If there was no overflow, use the values */
4295         if (systimel_1 < systimel_2) {
4296                 systim = (cycle_t)systimel_1;
4297                 systim |= (cycle_t)systimeh << 32;
4298         } else {
4299                 /* There was an overflow, read again SYSTIMH, and use
4300                  * systimel_2
4301                  */
4302                 systimeh = er32(SYSTIMH);
4303                 systim = (cycle_t)systimel_2;
4304                 systim |= (cycle_t)systimeh << 32;
4305         }
4306
4307         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4308                 u64 incvalue, time_delta, rem, temp;
4309                 int i;
4310
4311                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4312                  * check to see that the time is incrementing at a reasonable
4313                  * rate and is a multiple of incvalue
4314                  */
4315                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4316                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4317                         /* latch SYSTIMH on read of SYSTIML */
4318                         systim_next = (cycle_t)er32(SYSTIML);
4319                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4320
4321                         time_delta = systim_next - systim;
4322                         temp = time_delta;
4323                         rem = do_div(temp, incvalue);
4324
4325                         systim = systim_next;
4326
4327                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4328                             (rem == 0))
4329                                 break;
4330                 }
4331         }
4332         return systim;
4333 }
4334
4335 /**
4336  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4337  * @adapter: board private structure to initialize
4338  *
4339  * e1000_sw_init initializes the Adapter private data structure.
4340  * Fields are initialized based on PCI device information and
4341  * OS network device settings (MTU size).
4342  **/
4343 static int e1000_sw_init(struct e1000_adapter *adapter)
4344 {
4345         struct net_device *netdev = adapter->netdev;
4346
4347         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4348         adapter->rx_ps_bsize0 = 128;
4349         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4350         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4351         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4352         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4353
4354         spin_lock_init(&adapter->stats64_lock);
4355
4356         e1000e_set_interrupt_capability(adapter);
4357
4358         if (e1000_alloc_queues(adapter))
4359                 return -ENOMEM;
4360
4361         /* Setup hardware time stamping cyclecounter */
4362         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4363                 adapter->cc.read = e1000e_cyclecounter_read;
4364                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4365                 adapter->cc.mult = 1;
4366                 /* cc.shift set in e1000e_get_base_tininca() */
4367
4368                 spin_lock_init(&adapter->systim_lock);
4369                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4370         }
4371
4372         /* Explicitly disable IRQ since the NIC can be in any state. */
4373         e1000_irq_disable(adapter);
4374
4375         set_bit(__E1000_DOWN, &adapter->state);
4376         return 0;
4377 }
4378
4379 /**
4380  * e1000_intr_msi_test - Interrupt Handler
4381  * @irq: interrupt number
4382  * @data: pointer to a network interface device structure
4383  **/
4384 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4385 {
4386         struct net_device *netdev = data;
4387         struct e1000_adapter *adapter = netdev_priv(netdev);
4388         struct e1000_hw *hw = &adapter->hw;
4389         u32 icr = er32(ICR);
4390
4391         e_dbg("icr is %08X\n", icr);
4392         if (icr & E1000_ICR_RXSEQ) {
4393                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4394                 /* Force memory writes to complete before acknowledging the
4395                  * interrupt is handled.
4396                  */
4397                 wmb();
4398         }
4399
4400         return IRQ_HANDLED;
4401 }
4402
4403 /**
4404  * e1000_test_msi_interrupt - Returns 0 for successful test
4405  * @adapter: board private struct
4406  *
4407  * code flow taken from tg3.c
4408  **/
4409 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4410 {
4411         struct net_device *netdev = adapter->netdev;
4412         struct e1000_hw *hw = &adapter->hw;
4413         int err;
4414
4415         /* poll_enable hasn't been called yet, so don't need disable */
4416         /* clear any pending events */
4417         er32(ICR);
4418
4419         /* free the real vector and request a test handler */
4420         e1000_free_irq(adapter);
4421         e1000e_reset_interrupt_capability(adapter);
4422
4423         /* Assume that the test fails, if it succeeds then the test
4424          * MSI irq handler will unset this flag
4425          */
4426         adapter->flags |= FLAG_MSI_TEST_FAILED;
4427
4428         err = pci_enable_msi(adapter->pdev);
4429         if (err)
4430                 goto msi_test_failed;
4431
4432         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4433                           netdev->name, netdev);
4434         if (err) {
4435                 pci_disable_msi(adapter->pdev);
4436                 goto msi_test_failed;
4437         }
4438
4439         /* Force memory writes to complete before enabling and firing an
4440          * interrupt.
4441          */
4442         wmb();
4443
4444         e1000_irq_enable(adapter);
4445
4446         /* fire an unusual interrupt on the test handler */
4447         ew32(ICS, E1000_ICS_RXSEQ);
4448         e1e_flush();
4449         msleep(100);
4450
4451         e1000_irq_disable(adapter);
4452
4453         rmb();                  /* read flags after interrupt has been fired */
4454
4455         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4456                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4457                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4458         } else {
4459                 e_dbg("MSI interrupt test succeeded!\n");
4460         }
4461
4462         free_irq(adapter->pdev->irq, netdev);
4463         pci_disable_msi(adapter->pdev);
4464
4465 msi_test_failed:
4466         e1000e_set_interrupt_capability(adapter);
4467         return e1000_request_irq(adapter);
4468 }
4469
4470 /**
4471  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4472  * @adapter: board private struct
4473  *
4474  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4475  **/
4476 static int e1000_test_msi(struct e1000_adapter *adapter)
4477 {
4478         int err;
4479         u16 pci_cmd;
4480
4481         if (!(adapter->flags & FLAG_MSI_ENABLED))
4482                 return 0;
4483
4484         /* disable SERR in case the MSI write causes a master abort */
4485         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4486         if (pci_cmd & PCI_COMMAND_SERR)
4487                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4488                                       pci_cmd & ~PCI_COMMAND_SERR);
4489
4490         err = e1000_test_msi_interrupt(adapter);
4491
4492         /* re-enable SERR */
4493         if (pci_cmd & PCI_COMMAND_SERR) {
4494                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4495                 pci_cmd |= PCI_COMMAND_SERR;
4496                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4497         }
4498
4499         return err;
4500 }
4501
4502 /**
4503  * e1000_open - Called when a network interface is made active
4504  * @netdev: network interface device structure
4505  *
4506  * Returns 0 on success, negative value on failure
4507  *
4508  * The open entry point is called when a network interface is made
4509  * active by the system (IFF_UP).  At this point all resources needed
4510  * for transmit and receive operations are allocated, the interrupt
4511  * handler is registered with the OS, the watchdog timer is started,
4512  * and the stack is notified that the interface is ready.
4513  **/
4514 static int e1000_open(struct net_device *netdev)
4515 {
4516         struct e1000_adapter *adapter = netdev_priv(netdev);
4517         struct e1000_hw *hw = &adapter->hw;
4518         struct pci_dev *pdev = adapter->pdev;
4519         int err;
4520
4521         /* disallow open during test */
4522         if (test_bit(__E1000_TESTING, &adapter->state))
4523                 return -EBUSY;
4524
4525         pm_runtime_get_sync(&pdev->dev);
4526
4527         netif_carrier_off(netdev);
4528
4529         /* allocate transmit descriptors */
4530         err = e1000e_setup_tx_resources(adapter->tx_ring);
4531         if (err)
4532                 goto err_setup_tx;
4533
4534         /* allocate receive descriptors */
4535         err = e1000e_setup_rx_resources(adapter->rx_ring);
4536         if (err)
4537                 goto err_setup_rx;
4538
4539         /* If AMT is enabled, let the firmware know that the network
4540          * interface is now open and reset the part to a known state.
4541          */
4542         if (adapter->flags & FLAG_HAS_AMT) {
4543                 e1000e_get_hw_control(adapter);
4544                 e1000e_reset(adapter);
4545         }
4546
4547         e1000e_power_up_phy(adapter);
4548
4549         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4550         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4551                 e1000_update_mng_vlan(adapter);
4552
4553         /* DMA latency requirement to workaround jumbo issue */
4554         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4555                            PM_QOS_DEFAULT_VALUE);
4556
4557         /* before we allocate an interrupt, we must be ready to handle it.
4558          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4559          * as soon as we call pci_request_irq, so we have to setup our
4560          * clean_rx handler before we do so.
4561          */
4562         e1000_configure(adapter);
4563
4564         err = e1000_request_irq(adapter);
4565         if (err)
4566                 goto err_req_irq;
4567
4568         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4569          * ignore e1000e MSI messages, which means we need to test our MSI
4570          * interrupt now
4571          */
4572         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4573                 err = e1000_test_msi(adapter);
4574                 if (err) {
4575                         e_err("Interrupt allocation failed\n");
4576                         goto err_req_irq;
4577                 }
4578         }
4579
4580         /* From here on the code is the same as e1000e_up() */
4581         clear_bit(__E1000_DOWN, &adapter->state);
4582
4583         napi_enable(&adapter->napi);
4584
4585         e1000_irq_enable(adapter);
4586
4587         adapter->tx_hang_recheck = false;
4588         netif_start_queue(netdev);
4589
4590         hw->mac.get_link_status = true;
4591         pm_runtime_put(&pdev->dev);
4592
4593         /* fire a link status change interrupt to start the watchdog */
4594         if (adapter->msix_entries)
4595                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4596         else
4597                 ew32(ICS, E1000_ICS_LSC);
4598
4599         return 0;
4600
4601 err_req_irq:
4602         pm_qos_remove_request(&adapter->pm_qos_req);
4603         e1000e_release_hw_control(adapter);
4604         e1000_power_down_phy(adapter);
4605         e1000e_free_rx_resources(adapter->rx_ring);
4606 err_setup_rx:
4607         e1000e_free_tx_resources(adapter->tx_ring);
4608 err_setup_tx:
4609         e1000e_reset(adapter);
4610         pm_runtime_put_sync(&pdev->dev);
4611
4612         return err;
4613 }
4614
4615 /**
4616  * e1000_close - Disables a network interface
4617  * @netdev: network interface device structure
4618  *
4619  * Returns 0, this is not allowed to fail
4620  *
4621  * The close entry point is called when an interface is de-activated
4622  * by the OS.  The hardware is still under the drivers control, but
4623  * needs to be disabled.  A global MAC reset is issued to stop the
4624  * hardware, and all transmit and receive resources are freed.
4625  **/
4626 static int e1000_close(struct net_device *netdev)
4627 {
4628         struct e1000_adapter *adapter = netdev_priv(netdev);
4629         struct pci_dev *pdev = adapter->pdev;
4630         int count = E1000_CHECK_RESET_COUNT;
4631
4632         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4633                 usleep_range(10000, 20000);
4634
4635         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4636
4637         pm_runtime_get_sync(&pdev->dev);
4638
4639         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4640                 e1000e_down(adapter, true);
4641                 e1000_free_irq(adapter);
4642
4643                 /* Link status message must follow this format */
4644                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4645         }
4646
4647         napi_disable(&adapter->napi);
4648
4649         e1000e_free_tx_resources(adapter->tx_ring);
4650         e1000e_free_rx_resources(adapter->rx_ring);
4651
4652         /* kill manageability vlan ID if supported, but not if a vlan with
4653          * the same ID is registered on the host OS (let 8021q kill it)
4654          */
4655         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4656                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4657                                        adapter->mng_vlan_id);
4658
4659         /* If AMT is enabled, let the firmware know that the network
4660          * interface is now closed
4661          */
4662         if ((adapter->flags & FLAG_HAS_AMT) &&
4663             !test_bit(__E1000_TESTING, &adapter->state))
4664                 e1000e_release_hw_control(adapter);
4665
4666         pm_qos_remove_request(&adapter->pm_qos_req);
4667
4668         pm_runtime_put_sync(&pdev->dev);
4669
4670         return 0;
4671 }
4672
4673 /**
4674  * e1000_set_mac - Change the Ethernet Address of the NIC
4675  * @netdev: network interface device structure
4676  * @p: pointer to an address structure
4677  *
4678  * Returns 0 on success, negative on failure
4679  **/
4680 static int e1000_set_mac(struct net_device *netdev, void *p)
4681 {
4682         struct e1000_adapter *adapter = netdev_priv(netdev);
4683         struct e1000_hw *hw = &adapter->hw;
4684         struct sockaddr *addr = p;
4685
4686         if (!is_valid_ether_addr(addr->sa_data))
4687                 return -EADDRNOTAVAIL;
4688
4689         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4690         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4691
4692         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4693
4694         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4695                 /* activate the work around */
4696                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4697
4698                 /* Hold a copy of the LAA in RAR[14] This is done so that
4699                  * between the time RAR[0] gets clobbered  and the time it
4700                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4701                  * of the RARs and no incoming packets directed to this port
4702                  * are dropped. Eventually the LAA will be in RAR[0] and
4703                  * RAR[14]
4704                  */
4705                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4706                                     adapter->hw.mac.rar_entry_count - 1);
4707         }
4708
4709         return 0;
4710 }
4711
4712 /**
4713  * e1000e_update_phy_task - work thread to update phy
4714  * @work: pointer to our work struct
4715  *
4716  * this worker thread exists because we must acquire a
4717  * semaphore to read the phy, which we could msleep while
4718  * waiting for it, and we can't msleep in a timer.
4719  **/
4720 static void e1000e_update_phy_task(struct work_struct *work)
4721 {
4722         struct e1000_adapter *adapter = container_of(work,
4723                                                      struct e1000_adapter,
4724                                                      update_phy_task);
4725         struct e1000_hw *hw = &adapter->hw;
4726
4727         if (test_bit(__E1000_DOWN, &adapter->state))
4728                 return;
4729
4730         e1000_get_phy_info(hw);
4731
4732         /* Enable EEE on 82579 after link up */
4733         if (hw->phy.type >= e1000_phy_82579)
4734                 e1000_set_eee_pchlan(hw);
4735 }
4736
4737 /**
4738  * e1000_update_phy_info - timre call-back to update PHY info
4739  * @data: pointer to adapter cast into an unsigned long
4740  *
4741  * Need to wait a few seconds after link up to get diagnostic information from
4742  * the phy
4743  **/
4744 static void e1000_update_phy_info(unsigned long data)
4745 {
4746         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4747
4748         if (test_bit(__E1000_DOWN, &adapter->state))
4749                 return;
4750
4751         schedule_work(&adapter->update_phy_task);
4752 }
4753
4754 /**
4755  * e1000e_update_phy_stats - Update the PHY statistics counters
4756  * @adapter: board private structure
4757  *
4758  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4759  **/
4760 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4761 {
4762         struct e1000_hw *hw = &adapter->hw;
4763         s32 ret_val;
4764         u16 phy_data;
4765
4766         ret_val = hw->phy.ops.acquire(hw);
4767         if (ret_val)
4768                 return;
4769
4770         /* A page set is expensive so check if already on desired page.
4771          * If not, set to the page with the PHY status registers.
4772          */
4773         hw->phy.addr = 1;
4774         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4775                                            &phy_data);
4776         if (ret_val)
4777                 goto release;
4778         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4779                 ret_val = hw->phy.ops.set_page(hw,
4780                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4781                 if (ret_val)
4782                         goto release;
4783         }
4784
4785         /* Single Collision Count */
4786         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4787         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4788         if (!ret_val)
4789                 adapter->stats.scc += phy_data;
4790
4791         /* Excessive Collision Count */
4792         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4793         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4794         if (!ret_val)
4795                 adapter->stats.ecol += phy_data;
4796
4797         /* Multiple Collision Count */
4798         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4799         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4800         if (!ret_val)
4801                 adapter->stats.mcc += phy_data;
4802
4803         /* Late Collision Count */
4804         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4805         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4806         if (!ret_val)
4807                 adapter->stats.latecol += phy_data;
4808
4809         /* Collision Count - also used for adaptive IFS */
4810         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4811         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4812         if (!ret_val)
4813                 hw->mac.collision_delta = phy_data;
4814
4815         /* Defer Count */
4816         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4817         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4818         if (!ret_val)
4819                 adapter->stats.dc += phy_data;
4820
4821         /* Transmit with no CRS */
4822         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4823         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4824         if (!ret_val)
4825                 adapter->stats.tncrs += phy_data;
4826
4827 release:
4828         hw->phy.ops.release(hw);
4829 }
4830
4831 /**
4832  * e1000e_update_stats - Update the board statistics counters
4833  * @adapter: board private structure
4834  **/
4835 static void e1000e_update_stats(struct e1000_adapter *adapter)
4836 {
4837         struct net_device *netdev = adapter->netdev;
4838         struct e1000_hw *hw = &adapter->hw;
4839         struct pci_dev *pdev = adapter->pdev;
4840
4841         /* Prevent stats update while adapter is being reset, or if the pci
4842          * connection is down.
4843          */
4844         if (adapter->link_speed == 0)
4845                 return;
4846         if (pci_channel_offline(pdev))
4847                 return;
4848
4849         adapter->stats.crcerrs += er32(CRCERRS);
4850         adapter->stats.gprc += er32(GPRC);
4851         adapter->stats.gorc += er32(GORCL);
4852         er32(GORCH);            /* Clear gorc */
4853         adapter->stats.bprc += er32(BPRC);
4854         adapter->stats.mprc += er32(MPRC);
4855         adapter->stats.roc += er32(ROC);
4856
4857         adapter->stats.mpc += er32(MPC);
4858
4859         /* Half-duplex statistics */
4860         if (adapter->link_duplex == HALF_DUPLEX) {
4861                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4862                         e1000e_update_phy_stats(adapter);
4863                 } else {
4864                         adapter->stats.scc += er32(SCC);
4865                         adapter->stats.ecol += er32(ECOL);
4866                         adapter->stats.mcc += er32(MCC);
4867                         adapter->stats.latecol += er32(LATECOL);
4868                         adapter->stats.dc += er32(DC);
4869
4870                         hw->mac.collision_delta = er32(COLC);
4871
4872                         if ((hw->mac.type != e1000_82574) &&
4873                             (hw->mac.type != e1000_82583))
4874                                 adapter->stats.tncrs += er32(TNCRS);
4875                 }
4876                 adapter->stats.colc += hw->mac.collision_delta;
4877         }
4878
4879         adapter->stats.xonrxc += er32(XONRXC);
4880         adapter->stats.xontxc += er32(XONTXC);
4881         adapter->stats.xoffrxc += er32(XOFFRXC);
4882         adapter->stats.xofftxc += er32(XOFFTXC);
4883         adapter->stats.gptc += er32(GPTC);
4884         adapter->stats.gotc += er32(GOTCL);
4885         er32(GOTCH);            /* Clear gotc */
4886         adapter->stats.rnbc += er32(RNBC);
4887         adapter->stats.ruc += er32(RUC);
4888
4889         adapter->stats.mptc += er32(MPTC);
4890         adapter->stats.bptc += er32(BPTC);
4891
4892         /* used for adaptive IFS */
4893
4894         hw->mac.tx_packet_delta = er32(TPT);
4895         adapter->stats.tpt += hw->mac.tx_packet_delta;
4896
4897         adapter->stats.algnerrc += er32(ALGNERRC);
4898         adapter->stats.rxerrc += er32(RXERRC);
4899         adapter->stats.cexterr += er32(CEXTERR);
4900         adapter->stats.tsctc += er32(TSCTC);
4901         adapter->stats.tsctfc += er32(TSCTFC);
4902
4903         /* Fill out the OS statistics structure */
4904         netdev->stats.multicast = adapter->stats.mprc;
4905         netdev->stats.collisions = adapter->stats.colc;
4906
4907         /* Rx Errors */
4908
4909         /* RLEC on some newer hardware can be incorrect so build
4910          * our own version based on RUC and ROC
4911          */
4912         netdev->stats.rx_errors = adapter->stats.rxerrc +
4913             adapter->stats.crcerrs + adapter->stats.algnerrc +
4914             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4915         netdev->stats.rx_length_errors = adapter->stats.ruc +
4916             adapter->stats.roc;
4917         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4918         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4919         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4920
4921         /* Tx Errors */
4922         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4923         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4924         netdev->stats.tx_window_errors = adapter->stats.latecol;
4925         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4926
4927         /* Tx Dropped needs to be maintained elsewhere */
4928
4929         /* Management Stats */
4930         adapter->stats.mgptc += er32(MGTPTC);
4931         adapter->stats.mgprc += er32(MGTPRC);
4932         adapter->stats.mgpdc += er32(MGTPDC);
4933
4934         /* Correctable ECC Errors */
4935         if ((hw->mac.type == e1000_pch_lpt) ||
4936             (hw->mac.type == e1000_pch_spt)) {
4937                 u32 pbeccsts = er32(PBECCSTS);
4938
4939                 adapter->corr_errors +=
4940                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4941                 adapter->uncorr_errors +=
4942                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4943                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4944         }
4945 }
4946
4947 /**
4948  * e1000_phy_read_status - Update the PHY register status snapshot
4949  * @adapter: board private structure
4950  **/
4951 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4952 {
4953         struct e1000_hw *hw = &adapter->hw;
4954         struct e1000_phy_regs *phy = &adapter->phy_regs;
4955
4956         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4957             (er32(STATUS) & E1000_STATUS_LU) &&
4958             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4959                 int ret_val;
4960
4961                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4962                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4963                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4964                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4965                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4966                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4967                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4968                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4969                 if (ret_val)
4970                         e_warn("Error reading PHY register\n");
4971         } else {
4972                 /* Do not read PHY registers if link is not up
4973                  * Set values to typical power-on defaults
4974                  */
4975                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4976                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4977                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4978                              BMSR_ERCAP);
4979                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4980                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4981                 phy->lpa = 0;
4982                 phy->expansion = EXPANSION_ENABLENPAGE;
4983                 phy->ctrl1000 = ADVERTISE_1000FULL;
4984                 phy->stat1000 = 0;
4985                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4986         }
4987 }
4988
4989 static void e1000_print_link_info(struct e1000_adapter *adapter)
4990 {
4991         struct e1000_hw *hw = &adapter->hw;
4992         u32 ctrl = er32(CTRL);
4993
4994         /* Link status message must follow this format for user tools */
4995         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4996                 adapter->netdev->name, adapter->link_speed,
4997                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4998                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4999                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5000                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5001 }
5002
5003 static bool e1000e_has_link(struct e1000_adapter *adapter)
5004 {
5005         struct e1000_hw *hw = &adapter->hw;
5006         bool link_active = false;
5007         s32 ret_val = 0;
5008
5009         /* get_link_status is set on LSC (link status) interrupt or
5010          * Rx sequence error interrupt.  get_link_status will stay
5011          * false until the check_for_link establishes link
5012          * for copper adapters ONLY
5013          */
5014         switch (hw->phy.media_type) {
5015         case e1000_media_type_copper:
5016                 if (hw->mac.get_link_status) {
5017                         ret_val = hw->mac.ops.check_for_link(hw);
5018                         link_active = !hw->mac.get_link_status;
5019                 } else {
5020                         link_active = true;
5021                 }
5022                 break;
5023         case e1000_media_type_fiber:
5024                 ret_val = hw->mac.ops.check_for_link(hw);
5025                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5026                 break;
5027         case e1000_media_type_internal_serdes:
5028                 ret_val = hw->mac.ops.check_for_link(hw);
5029                 link_active = adapter->hw.mac.serdes_has_link;
5030                 break;
5031         default:
5032         case e1000_media_type_unknown:
5033                 break;
5034         }
5035
5036         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5037             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5038                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5039                 e_info("Gigabit has been disabled, downgrading speed\n");
5040         }
5041
5042         return link_active;
5043 }
5044
5045 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5046 {
5047         /* make sure the receive unit is started */
5048         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5049             (adapter->flags & FLAG_RESTART_NOW)) {
5050                 struct e1000_hw *hw = &adapter->hw;
5051                 u32 rctl = er32(RCTL);
5052
5053                 ew32(RCTL, rctl | E1000_RCTL_EN);
5054                 adapter->flags &= ~FLAG_RESTART_NOW;
5055         }
5056 }
5057
5058 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5059 {
5060         struct e1000_hw *hw = &adapter->hw;
5061
5062         /* With 82574 controllers, PHY needs to be checked periodically
5063          * for hung state and reset, if two calls return true
5064          */
5065         if (e1000_check_phy_82574(hw))
5066                 adapter->phy_hang_count++;
5067         else
5068                 adapter->phy_hang_count = 0;
5069
5070         if (adapter->phy_hang_count > 1) {
5071                 adapter->phy_hang_count = 0;
5072                 e_dbg("PHY appears hung - resetting\n");
5073                 schedule_work(&adapter->reset_task);
5074         }
5075 }
5076
5077 /**
5078  * e1000_watchdog - Timer Call-back
5079  * @data: pointer to adapter cast into an unsigned long
5080  **/
5081 static void e1000_watchdog(unsigned long data)
5082 {
5083         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5084
5085         /* Do the rest outside of interrupt context */
5086         schedule_work(&adapter->watchdog_task);
5087
5088         /* TODO: make this use queue_delayed_work() */
5089 }
5090
5091 static void e1000_watchdog_task(struct work_struct *work)
5092 {
5093         struct e1000_adapter *adapter = container_of(work,
5094                                                      struct e1000_adapter,
5095                                                      watchdog_task);
5096         struct net_device *netdev = adapter->netdev;
5097         struct e1000_mac_info *mac = &adapter->hw.mac;
5098         struct e1000_phy_info *phy = &adapter->hw.phy;
5099         struct e1000_ring *tx_ring = adapter->tx_ring;
5100         struct e1000_hw *hw = &adapter->hw;
5101         u32 link, tctl;
5102
5103         if (test_bit(__E1000_DOWN, &adapter->state))
5104                 return;
5105
5106         link = e1000e_has_link(adapter);
5107         if ((netif_carrier_ok(netdev)) && link) {
5108                 /* Cancel scheduled suspend requests. */
5109                 pm_runtime_resume(netdev->dev.parent);
5110
5111                 e1000e_enable_receives(adapter);
5112                 goto link_up;
5113         }
5114
5115         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5116             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5117                 e1000_update_mng_vlan(adapter);
5118
5119         if (link) {
5120                 if (!netif_carrier_ok(netdev)) {
5121                         bool txb2b = true;
5122
5123                         /* Cancel scheduled suspend requests. */
5124                         pm_runtime_resume(netdev->dev.parent);
5125
5126                         /* update snapshot of PHY registers on LSC */
5127                         e1000_phy_read_status(adapter);
5128                         mac->ops.get_link_up_info(&adapter->hw,
5129                                                   &adapter->link_speed,
5130                                                   &adapter->link_duplex);
5131                         e1000_print_link_info(adapter);
5132
5133                         /* check if SmartSpeed worked */
5134                         e1000e_check_downshift(hw);
5135                         if (phy->speed_downgraded)
5136                                 netdev_warn(netdev,
5137                                             "Link Speed was downgraded by SmartSpeed\n");
5138
5139                         /* On supported PHYs, check for duplex mismatch only
5140                          * if link has autonegotiated at 10/100 half
5141                          */
5142                         if ((hw->phy.type == e1000_phy_igp_3 ||
5143                              hw->phy.type == e1000_phy_bm) &&
5144                             hw->mac.autoneg &&
5145                             (adapter->link_speed == SPEED_10 ||
5146                              adapter->link_speed == SPEED_100) &&
5147                             (adapter->link_duplex == HALF_DUPLEX)) {
5148                                 u16 autoneg_exp;
5149
5150                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5151
5152                                 if (!(autoneg_exp & EXPANSION_NWAY))
5153                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5154                         }
5155
5156                         /* adjust timeout factor according to speed/duplex */
5157                         adapter->tx_timeout_factor = 1;
5158                         switch (adapter->link_speed) {
5159                         case SPEED_10:
5160                                 txb2b = false;
5161                                 adapter->tx_timeout_factor = 16;
5162                                 break;
5163                         case SPEED_100:
5164                                 txb2b = false;
5165                                 adapter->tx_timeout_factor = 10;
5166                                 break;
5167                         }
5168
5169                         /* workaround: re-program speed mode bit after
5170                          * link-up event
5171                          */
5172                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5173                             !txb2b) {
5174                                 u32 tarc0;
5175
5176                                 tarc0 = er32(TARC(0));
5177                                 tarc0 &= ~SPEED_MODE_BIT;
5178                                 ew32(TARC(0), tarc0);
5179                         }
5180
5181                         /* disable TSO for pcie and 10/100 speeds, to avoid
5182                          * some hardware issues
5183                          */
5184                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5185                                 switch (adapter->link_speed) {
5186                                 case SPEED_10:
5187                                 case SPEED_100:
5188                                         e_info("10/100 speed: disabling TSO\n");
5189                                         netdev->features &= ~NETIF_F_TSO;
5190                                         netdev->features &= ~NETIF_F_TSO6;
5191                                         break;
5192                                 case SPEED_1000:
5193                                         netdev->features |= NETIF_F_TSO;
5194                                         netdev->features |= NETIF_F_TSO6;
5195                                         break;
5196                                 default:
5197                                         /* oops */
5198                                         break;
5199                                 }
5200                         }
5201
5202                         /* enable transmits in the hardware, need to do this
5203                          * after setting TARC(0)
5204                          */
5205                         tctl = er32(TCTL);
5206                         tctl |= E1000_TCTL_EN;
5207                         ew32(TCTL, tctl);
5208
5209                         /* Perform any post-link-up configuration before
5210                          * reporting link up.
5211                          */
5212                         if (phy->ops.cfg_on_link_up)
5213                                 phy->ops.cfg_on_link_up(hw);
5214
5215                         netif_carrier_on(netdev);
5216
5217                         if (!test_bit(__E1000_DOWN, &adapter->state))
5218                                 mod_timer(&adapter->phy_info_timer,
5219                                           round_jiffies(jiffies + 2 * HZ));
5220                 }
5221         } else {
5222                 if (netif_carrier_ok(netdev)) {
5223                         adapter->link_speed = 0;
5224                         adapter->link_duplex = 0;
5225                         /* Link status message must follow this format */
5226                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5227                         netif_carrier_off(netdev);
5228                         if (!test_bit(__E1000_DOWN, &adapter->state))
5229                                 mod_timer(&adapter->phy_info_timer,
5230                                           round_jiffies(jiffies + 2 * HZ));
5231
5232                         /* 8000ES2LAN requires a Rx packet buffer work-around
5233                          * on link down event; reset the controller to flush
5234                          * the Rx packet buffer.
5235                          */
5236                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5237                                 adapter->flags |= FLAG_RESTART_NOW;
5238                         else
5239                                 pm_schedule_suspend(netdev->dev.parent,
5240                                                     LINK_TIMEOUT);
5241                 }
5242         }
5243
5244 link_up:
5245         spin_lock(&adapter->stats64_lock);
5246         e1000e_update_stats(adapter);
5247
5248         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5249         adapter->tpt_old = adapter->stats.tpt;
5250         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5251         adapter->colc_old = adapter->stats.colc;
5252
5253         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5254         adapter->gorc_old = adapter->stats.gorc;
5255         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5256         adapter->gotc_old = adapter->stats.gotc;
5257         spin_unlock(&adapter->stats64_lock);
5258
5259         /* If the link is lost the controller stops DMA, but
5260          * if there is queued Tx work it cannot be done.  So
5261          * reset the controller to flush the Tx packet buffers.
5262          */
5263         if (!netif_carrier_ok(netdev) &&
5264             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5265                 adapter->flags |= FLAG_RESTART_NOW;
5266
5267         /* If reset is necessary, do it outside of interrupt context. */
5268         if (adapter->flags & FLAG_RESTART_NOW) {
5269                 schedule_work(&adapter->reset_task);
5270                 /* return immediately since reset is imminent */
5271                 return;
5272         }
5273
5274         e1000e_update_adaptive(&adapter->hw);
5275
5276         /* Simple mode for Interrupt Throttle Rate (ITR) */
5277         if (adapter->itr_setting == 4) {
5278                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5279                  * Total asymmetrical Tx or Rx gets ITR=8000;
5280                  * everyone else is between 2000-8000.
5281                  */
5282                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5283                 u32 dif = (adapter->gotc > adapter->gorc ?
5284                            adapter->gotc - adapter->gorc :
5285                            adapter->gorc - adapter->gotc) / 10000;
5286                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5287
5288                 e1000e_write_itr(adapter, itr);
5289         }
5290
5291         /* Cause software interrupt to ensure Rx ring is cleaned */
5292         if (adapter->msix_entries)
5293                 ew32(ICS, adapter->rx_ring->ims_val);
5294         else
5295                 ew32(ICS, E1000_ICS_RXDMT0);
5296
5297         /* flush pending descriptors to memory before detecting Tx hang */
5298         e1000e_flush_descriptors(adapter);
5299
5300         /* Force detection of hung controller every watchdog period */
5301         adapter->detect_tx_hung = true;
5302
5303         /* With 82571 controllers, LAA may be overwritten due to controller
5304          * reset from the other port. Set the appropriate LAA in RAR[0]
5305          */
5306         if (e1000e_get_laa_state_82571(hw))
5307                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5308
5309         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5310                 e1000e_check_82574_phy_workaround(adapter);
5311
5312         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5313         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5314                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5315                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5316                         er32(RXSTMPH);
5317                         adapter->rx_hwtstamp_cleared++;
5318                 } else {
5319                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5320                 }
5321         }
5322
5323         /* Reset the timer */
5324         if (!test_bit(__E1000_DOWN, &adapter->state))
5325                 mod_timer(&adapter->watchdog_timer,
5326                           round_jiffies(jiffies + 2 * HZ));
5327 }
5328
5329 #define E1000_TX_FLAGS_CSUM             0x00000001
5330 #define E1000_TX_FLAGS_VLAN             0x00000002
5331 #define E1000_TX_FLAGS_TSO              0x00000004
5332 #define E1000_TX_FLAGS_IPV4             0x00000008
5333 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5334 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5335 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5336 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5337
5338 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5339                      __be16 protocol)
5340 {
5341         struct e1000_context_desc *context_desc;
5342         struct e1000_buffer *buffer_info;
5343         unsigned int i;
5344         u32 cmd_length = 0;
5345         u16 ipcse = 0, mss;
5346         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5347         int err;
5348
5349         if (!skb_is_gso(skb))
5350                 return 0;
5351
5352         err = skb_cow_head(skb, 0);
5353         if (err < 0)
5354                 return err;
5355
5356         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5357         mss = skb_shinfo(skb)->gso_size;
5358         if (protocol == htons(ETH_P_IP)) {
5359                 struct iphdr *iph = ip_hdr(skb);
5360                 iph->tot_len = 0;
5361                 iph->check = 0;
5362                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5363                                                          0, IPPROTO_TCP, 0);
5364                 cmd_length = E1000_TXD_CMD_IP;
5365                 ipcse = skb_transport_offset(skb) - 1;
5366         } else if (skb_is_gso_v6(skb)) {
5367                 ipv6_hdr(skb)->payload_len = 0;
5368                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5369                                                        &ipv6_hdr(skb)->daddr,
5370                                                        0, IPPROTO_TCP, 0);
5371                 ipcse = 0;
5372         }
5373         ipcss = skb_network_offset(skb);
5374         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5375         tucss = skb_transport_offset(skb);
5376         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5377
5378         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5379                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5380
5381         i = tx_ring->next_to_use;
5382         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5383         buffer_info = &tx_ring->buffer_info[i];
5384
5385         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5386         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5387         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5388         context_desc->upper_setup.tcp_fields.tucss = tucss;
5389         context_desc->upper_setup.tcp_fields.tucso = tucso;
5390         context_desc->upper_setup.tcp_fields.tucse = 0;
5391         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5392         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5393         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5394
5395         buffer_info->time_stamp = jiffies;
5396         buffer_info->next_to_watch = i;
5397
5398         i++;
5399         if (i == tx_ring->count)
5400                 i = 0;
5401         tx_ring->next_to_use = i;
5402
5403         return 1;
5404 }
5405
5406 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5407                           __be16 protocol)
5408 {
5409         struct e1000_adapter *adapter = tx_ring->adapter;
5410         struct e1000_context_desc *context_desc;
5411         struct e1000_buffer *buffer_info;
5412         unsigned int i;
5413         u8 css;
5414         u32 cmd_len = E1000_TXD_CMD_DEXT;
5415
5416         if (skb->ip_summed != CHECKSUM_PARTIAL)
5417                 return false;
5418
5419         switch (protocol) {
5420         case cpu_to_be16(ETH_P_IP):
5421                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5422                         cmd_len |= E1000_TXD_CMD_TCP;
5423                 break;
5424         case cpu_to_be16(ETH_P_IPV6):
5425                 /* XXX not handling all IPV6 headers */
5426                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5427                         cmd_len |= E1000_TXD_CMD_TCP;
5428                 break;
5429         default:
5430                 if (unlikely(net_ratelimit()))
5431                         e_warn("checksum_partial proto=%x!\n",
5432                                be16_to_cpu(protocol));
5433                 break;
5434         }
5435
5436         css = skb_checksum_start_offset(skb);
5437
5438         i = tx_ring->next_to_use;
5439         buffer_info = &tx_ring->buffer_info[i];
5440         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5441
5442         context_desc->lower_setup.ip_config = 0;
5443         context_desc->upper_setup.tcp_fields.tucss = css;
5444         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5445         context_desc->upper_setup.tcp_fields.tucse = 0;
5446         context_desc->tcp_seg_setup.data = 0;
5447         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5448
5449         buffer_info->time_stamp = jiffies;
5450         buffer_info->next_to_watch = i;
5451
5452         i++;
5453         if (i == tx_ring->count)
5454                 i = 0;
5455         tx_ring->next_to_use = i;
5456
5457         return true;
5458 }
5459
5460 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5461                         unsigned int first, unsigned int max_per_txd,
5462                         unsigned int nr_frags)
5463 {
5464         struct e1000_adapter *adapter = tx_ring->adapter;
5465         struct pci_dev *pdev = adapter->pdev;
5466         struct e1000_buffer *buffer_info;
5467         unsigned int len = skb_headlen(skb);
5468         unsigned int offset = 0, size, count = 0, i;
5469         unsigned int f, bytecount, segs;
5470
5471         i = tx_ring->next_to_use;
5472
5473         while (len) {
5474                 buffer_info = &tx_ring->buffer_info[i];
5475                 size = min(len, max_per_txd);
5476
5477                 buffer_info->length = size;
5478                 buffer_info->time_stamp = jiffies;
5479                 buffer_info->next_to_watch = i;
5480                 buffer_info->dma = dma_map_single(&pdev->dev,
5481                                                   skb->data + offset,
5482                                                   size, DMA_TO_DEVICE);
5483                 buffer_info->mapped_as_page = false;
5484                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5485                         goto dma_error;
5486
5487                 len -= size;
5488                 offset += size;
5489                 count++;
5490
5491                 if (len) {
5492                         i++;
5493                         if (i == tx_ring->count)
5494                                 i = 0;
5495                 }
5496         }
5497
5498         for (f = 0; f < nr_frags; f++) {
5499                 const struct skb_frag_struct *frag;
5500
5501                 frag = &skb_shinfo(skb)->frags[f];
5502                 len = skb_frag_size(frag);
5503                 offset = 0;
5504
5505                 while (len) {
5506                         i++;
5507                         if (i == tx_ring->count)
5508                                 i = 0;
5509
5510                         buffer_info = &tx_ring->buffer_info[i];
5511                         size = min(len, max_per_txd);
5512
5513                         buffer_info->length = size;
5514                         buffer_info->time_stamp = jiffies;
5515                         buffer_info->next_to_watch = i;
5516                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5517                                                             offset, size,
5518                                                             DMA_TO_DEVICE);
5519                         buffer_info->mapped_as_page = true;
5520                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5521                                 goto dma_error;
5522
5523                         len -= size;
5524                         offset += size;
5525                         count++;
5526                 }
5527         }
5528
5529         segs = skb_shinfo(skb)->gso_segs ? : 1;
5530         /* multiply data chunks by size of headers */
5531         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5532
5533         tx_ring->buffer_info[i].skb = skb;
5534         tx_ring->buffer_info[i].segs = segs;
5535         tx_ring->buffer_info[i].bytecount = bytecount;
5536         tx_ring->buffer_info[first].next_to_watch = i;
5537
5538         return count;
5539
5540 dma_error:
5541         dev_err(&pdev->dev, "Tx DMA map failed\n");
5542         buffer_info->dma = 0;
5543         if (count)
5544                 count--;
5545
5546         while (count--) {
5547                 if (i == 0)
5548                         i += tx_ring->count;
5549                 i--;
5550                 buffer_info = &tx_ring->buffer_info[i];
5551                 e1000_put_txbuf(tx_ring, buffer_info);
5552         }
5553
5554         return 0;
5555 }
5556
5557 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5558 {
5559         struct e1000_adapter *adapter = tx_ring->adapter;
5560         struct e1000_tx_desc *tx_desc = NULL;
5561         struct e1000_buffer *buffer_info;
5562         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5563         unsigned int i;
5564
5565         if (tx_flags & E1000_TX_FLAGS_TSO) {
5566                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5567                     E1000_TXD_CMD_TSE;
5568                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5569
5570                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5571                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5572         }
5573
5574         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5575                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5576                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5577         }
5578
5579         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5580                 txd_lower |= E1000_TXD_CMD_VLE;
5581                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5582         }
5583
5584         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5585                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5586
5587         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5588                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5589                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5590         }
5591
5592         i = tx_ring->next_to_use;
5593
5594         do {
5595                 buffer_info = &tx_ring->buffer_info[i];
5596                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5597                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5598                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5599                                                   buffer_info->length);
5600                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5601
5602                 i++;
5603                 if (i == tx_ring->count)
5604                         i = 0;
5605         } while (--count > 0);
5606
5607         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5608
5609         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5610         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5611                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5612
5613         /* Force memory writes to complete before letting h/w
5614          * know there are new descriptors to fetch.  (Only
5615          * applicable for weak-ordered memory model archs,
5616          * such as IA-64).
5617          */
5618         wmb();
5619
5620         tx_ring->next_to_use = i;
5621 }
5622
5623 #define MINIMUM_DHCP_PACKET_SIZE 282
5624 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5625                                     struct sk_buff *skb)
5626 {
5627         struct e1000_hw *hw = &adapter->hw;
5628         u16 length, offset;
5629
5630         if (skb_vlan_tag_present(skb) &&
5631             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5632               (adapter->hw.mng_cookie.status &
5633                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5634                 return 0;
5635
5636         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5637                 return 0;
5638
5639         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5640                 return 0;
5641
5642         {
5643                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5644                 struct udphdr *udp;
5645
5646                 if (ip->protocol != IPPROTO_UDP)
5647                         return 0;
5648
5649                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5650                 if (ntohs(udp->dest) != 67)
5651                         return 0;
5652
5653                 offset = (u8 *)udp + 8 - skb->data;
5654                 length = skb->len - offset;
5655                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5656         }
5657
5658         return 0;
5659 }
5660
5661 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5662 {
5663         struct e1000_adapter *adapter = tx_ring->adapter;
5664
5665         netif_stop_queue(adapter->netdev);
5666         /* Herbert's original patch had:
5667          *  smp_mb__after_netif_stop_queue();
5668          * but since that doesn't exist yet, just open code it.
5669          */
5670         smp_mb();
5671
5672         /* We need to check again in a case another CPU has just
5673          * made room available.
5674          */
5675         if (e1000_desc_unused(tx_ring) < size)
5676                 return -EBUSY;
5677
5678         /* A reprieve! */
5679         netif_start_queue(adapter->netdev);
5680         ++adapter->restart_queue;
5681         return 0;
5682 }
5683
5684 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5685 {
5686         BUG_ON(size > tx_ring->count);
5687
5688         if (e1000_desc_unused(tx_ring) >= size)
5689                 return 0;
5690         return __e1000_maybe_stop_tx(tx_ring, size);
5691 }
5692
5693 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5694                                     struct net_device *netdev)
5695 {
5696         struct e1000_adapter *adapter = netdev_priv(netdev);
5697         struct e1000_ring *tx_ring = adapter->tx_ring;
5698         unsigned int first;
5699         unsigned int tx_flags = 0;
5700         unsigned int len = skb_headlen(skb);
5701         unsigned int nr_frags;
5702         unsigned int mss;
5703         int count = 0;
5704         int tso;
5705         unsigned int f;
5706         __be16 protocol = vlan_get_protocol(skb);
5707
5708         if (test_bit(__E1000_DOWN, &adapter->state)) {
5709                 dev_kfree_skb_any(skb);
5710                 return NETDEV_TX_OK;
5711         }
5712
5713         if (skb->len <= 0) {
5714                 dev_kfree_skb_any(skb);
5715                 return NETDEV_TX_OK;
5716         }
5717
5718         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5719          * pad skb in order to meet this minimum size requirement
5720          */
5721         if (skb_put_padto(skb, 17))
5722                 return NETDEV_TX_OK;
5723
5724         mss = skb_shinfo(skb)->gso_size;
5725         if (mss) {
5726                 u8 hdr_len;
5727
5728                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5729                  * points to just header, pull a few bytes of payload from
5730                  * frags into skb->data
5731                  */
5732                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5733                 /* we do this workaround for ES2LAN, but it is un-necessary,
5734                  * avoiding it could save a lot of cycles
5735                  */
5736                 if (skb->data_len && (hdr_len == len)) {
5737                         unsigned int pull_size;
5738
5739                         pull_size = min_t(unsigned int, 4, skb->data_len);
5740                         if (!__pskb_pull_tail(skb, pull_size)) {
5741                                 e_err("__pskb_pull_tail failed.\n");
5742                                 dev_kfree_skb_any(skb);
5743                                 return NETDEV_TX_OK;
5744                         }
5745                         len = skb_headlen(skb);
5746                 }
5747         }
5748
5749         /* reserve a descriptor for the offload context */
5750         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5751                 count++;
5752         count++;
5753
5754         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5755
5756         nr_frags = skb_shinfo(skb)->nr_frags;
5757         for (f = 0; f < nr_frags; f++)
5758                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5759                                       adapter->tx_fifo_limit);
5760
5761         if (adapter->hw.mac.tx_pkt_filtering)
5762                 e1000_transfer_dhcp_info(adapter, skb);
5763
5764         /* need: count + 2 desc gap to keep tail from touching
5765          * head, otherwise try next time
5766          */
5767         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5768                 return NETDEV_TX_BUSY;
5769
5770         if (skb_vlan_tag_present(skb)) {
5771                 tx_flags |= E1000_TX_FLAGS_VLAN;
5772                 tx_flags |= (skb_vlan_tag_get(skb) <<
5773                              E1000_TX_FLAGS_VLAN_SHIFT);
5774         }
5775
5776         first = tx_ring->next_to_use;
5777
5778         tso = e1000_tso(tx_ring, skb, protocol);
5779         if (tso < 0) {
5780                 dev_kfree_skb_any(skb);
5781                 return NETDEV_TX_OK;
5782         }
5783
5784         if (tso)
5785                 tx_flags |= E1000_TX_FLAGS_TSO;
5786         else if (e1000_tx_csum(tx_ring, skb, protocol))
5787                 tx_flags |= E1000_TX_FLAGS_CSUM;
5788
5789         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5790          * 82571 hardware supports TSO capabilities for IPv6 as well...
5791          * no longer assume, we must.
5792          */
5793         if (protocol == htons(ETH_P_IP))
5794                 tx_flags |= E1000_TX_FLAGS_IPV4;
5795
5796         if (unlikely(skb->no_fcs))
5797                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5798
5799         /* if count is 0 then mapping error has occurred */
5800         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5801                              nr_frags);
5802         if (count) {
5803                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5804                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5805                     !adapter->tx_hwtstamp_skb) {
5806                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5807                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5808                         adapter->tx_hwtstamp_skb = skb_get(skb);
5809                         adapter->tx_hwtstamp_start = jiffies;
5810                         schedule_work(&adapter->tx_hwtstamp_work);
5811                 } else {
5812                         skb_tx_timestamp(skb);
5813                 }
5814
5815                 netdev_sent_queue(netdev, skb->len);
5816                 e1000_tx_queue(tx_ring, tx_flags, count);
5817                 /* Make sure there is space in the ring for the next send. */
5818                 e1000_maybe_stop_tx(tx_ring,
5819                                     (MAX_SKB_FRAGS *
5820                                      DIV_ROUND_UP(PAGE_SIZE,
5821                                                   adapter->tx_fifo_limit) + 2));
5822
5823                 if (!skb->xmit_more ||
5824                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5825                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5826                                 e1000e_update_tdt_wa(tx_ring,
5827                                                      tx_ring->next_to_use);
5828                         else
5829                                 writel(tx_ring->next_to_use, tx_ring->tail);
5830
5831                         /* we need this if more than one processor can write
5832                          * to our tail at a time, it synchronizes IO on
5833                          *IA64/Altix systems
5834                          */
5835                         mmiowb();
5836                 }
5837         } else {
5838                 dev_kfree_skb_any(skb);
5839                 tx_ring->buffer_info[first].time_stamp = 0;
5840                 tx_ring->next_to_use = first;
5841         }
5842
5843         return NETDEV_TX_OK;
5844 }
5845
5846 /**
5847  * e1000_tx_timeout - Respond to a Tx Hang
5848  * @netdev: network interface device structure
5849  **/
5850 static void e1000_tx_timeout(struct net_device *netdev)
5851 {
5852         struct e1000_adapter *adapter = netdev_priv(netdev);
5853
5854         /* Do the reset outside of interrupt context */
5855         adapter->tx_timeout_count++;
5856         schedule_work(&adapter->reset_task);
5857 }
5858
5859 static void e1000_reset_task(struct work_struct *work)
5860 {
5861         struct e1000_adapter *adapter;
5862         adapter = container_of(work, struct e1000_adapter, reset_task);
5863
5864         /* don't run the task if already down */
5865         if (test_bit(__E1000_DOWN, &adapter->state))
5866                 return;
5867
5868         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5869                 e1000e_dump(adapter);
5870                 e_err("Reset adapter unexpectedly\n");
5871         }
5872         e1000e_reinit_locked(adapter);
5873 }
5874
5875 /**
5876  * e1000_get_stats64 - Get System Network Statistics
5877  * @netdev: network interface device structure
5878  * @stats: rtnl_link_stats64 pointer
5879  *
5880  * Returns the address of the device statistics structure.
5881  **/
5882 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5883                                              struct rtnl_link_stats64 *stats)
5884 {
5885         struct e1000_adapter *adapter = netdev_priv(netdev);
5886
5887         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5888         spin_lock(&adapter->stats64_lock);
5889         e1000e_update_stats(adapter);
5890         /* Fill out the OS statistics structure */
5891         stats->rx_bytes = adapter->stats.gorc;
5892         stats->rx_packets = adapter->stats.gprc;
5893         stats->tx_bytes = adapter->stats.gotc;
5894         stats->tx_packets = adapter->stats.gptc;
5895         stats->multicast = adapter->stats.mprc;
5896         stats->collisions = adapter->stats.colc;
5897
5898         /* Rx Errors */
5899
5900         /* RLEC on some newer hardware can be incorrect so build
5901          * our own version based on RUC and ROC
5902          */
5903         stats->rx_errors = adapter->stats.rxerrc +
5904             adapter->stats.crcerrs + adapter->stats.algnerrc +
5905             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5906         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5907         stats->rx_crc_errors = adapter->stats.crcerrs;
5908         stats->rx_frame_errors = adapter->stats.algnerrc;
5909         stats->rx_missed_errors = adapter->stats.mpc;
5910
5911         /* Tx Errors */
5912         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5913         stats->tx_aborted_errors = adapter->stats.ecol;
5914         stats->tx_window_errors = adapter->stats.latecol;
5915         stats->tx_carrier_errors = adapter->stats.tncrs;
5916
5917         /* Tx Dropped needs to be maintained elsewhere */
5918
5919         spin_unlock(&adapter->stats64_lock);
5920         return stats;
5921 }
5922
5923 /**
5924  * e1000_change_mtu - Change the Maximum Transfer Unit
5925  * @netdev: network interface device structure
5926  * @new_mtu: new value for maximum frame size
5927  *
5928  * Returns 0 on success, negative on failure
5929  **/
5930 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5931 {
5932         struct e1000_adapter *adapter = netdev_priv(netdev);
5933         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5934
5935         /* Jumbo frame support */
5936         if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5937             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5938                 e_err("Jumbo Frames not supported.\n");
5939                 return -EINVAL;
5940         }
5941
5942         /* Supported frame sizes */
5943         if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5944             (max_frame > adapter->max_hw_frame_size)) {
5945                 e_err("Unsupported MTU setting\n");
5946                 return -EINVAL;
5947         }
5948
5949         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5950         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5951             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5952             (new_mtu > ETH_DATA_LEN)) {
5953                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5954                 return -EINVAL;
5955         }
5956
5957         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5958                 usleep_range(1000, 2000);
5959         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5960         adapter->max_frame_size = max_frame;
5961         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5962         netdev->mtu = new_mtu;
5963
5964         pm_runtime_get_sync(netdev->dev.parent);
5965
5966         if (netif_running(netdev))
5967                 e1000e_down(adapter, true);
5968
5969         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5970          * means we reserve 2 more, this pushes us to allocate from the next
5971          * larger slab size.
5972          * i.e. RXBUFFER_2048 --> size-4096 slab
5973          * However with the new *_jumbo_rx* routines, jumbo receives will use
5974          * fragmented skbs
5975          */
5976
5977         if (max_frame <= 2048)
5978                 adapter->rx_buffer_len = 2048;
5979         else
5980                 adapter->rx_buffer_len = 4096;
5981
5982         /* adjust allocation if LPE protects us, and we aren't using SBP */
5983         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5984                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5985
5986         if (netif_running(netdev))
5987                 e1000e_up(adapter);
5988         else
5989                 e1000e_reset(adapter);
5990
5991         pm_runtime_put_sync(netdev->dev.parent);
5992
5993         clear_bit(__E1000_RESETTING, &adapter->state);
5994
5995         return 0;
5996 }
5997
5998 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5999                            int cmd)
6000 {
6001         struct e1000_adapter *adapter = netdev_priv(netdev);
6002         struct mii_ioctl_data *data = if_mii(ifr);
6003
6004         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6005                 return -EOPNOTSUPP;
6006
6007         switch (cmd) {
6008         case SIOCGMIIPHY:
6009                 data->phy_id = adapter->hw.phy.addr;
6010                 break;
6011         case SIOCGMIIREG:
6012                 e1000_phy_read_status(adapter);
6013
6014                 switch (data->reg_num & 0x1F) {
6015                 case MII_BMCR:
6016                         data->val_out = adapter->phy_regs.bmcr;
6017                         break;
6018                 case MII_BMSR:
6019                         data->val_out = adapter->phy_regs.bmsr;
6020                         break;
6021                 case MII_PHYSID1:
6022                         data->val_out = (adapter->hw.phy.id >> 16);
6023                         break;
6024                 case MII_PHYSID2:
6025                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6026                         break;
6027                 case MII_ADVERTISE:
6028                         data->val_out = adapter->phy_regs.advertise;
6029                         break;
6030                 case MII_LPA:
6031                         data->val_out = adapter->phy_regs.lpa;
6032                         break;
6033                 case MII_EXPANSION:
6034                         data->val_out = adapter->phy_regs.expansion;
6035                         break;
6036                 case MII_CTRL1000:
6037                         data->val_out = adapter->phy_regs.ctrl1000;
6038                         break;
6039                 case MII_STAT1000:
6040                         data->val_out = adapter->phy_regs.stat1000;
6041                         break;
6042                 case MII_ESTATUS:
6043                         data->val_out = adapter->phy_regs.estatus;
6044                         break;
6045                 default:
6046                         return -EIO;
6047                 }
6048                 break;
6049         case SIOCSMIIREG:
6050         default:
6051                 return -EOPNOTSUPP;
6052         }
6053         return 0;
6054 }
6055
6056 /**
6057  * e1000e_hwtstamp_ioctl - control hardware time stamping
6058  * @netdev: network interface device structure
6059  * @ifreq: interface request
6060  *
6061  * Outgoing time stamping can be enabled and disabled. Play nice and
6062  * disable it when requested, although it shouldn't cause any overhead
6063  * when no packet needs it. At most one packet in the queue may be
6064  * marked for time stamping, otherwise it would be impossible to tell
6065  * for sure to which packet the hardware time stamp belongs.
6066  *
6067  * Incoming time stamping has to be configured via the hardware filters.
6068  * Not all combinations are supported, in particular event type has to be
6069  * specified. Matching the kind of event packet is not supported, with the
6070  * exception of "all V2 events regardless of level 2 or 4".
6071  **/
6072 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6073 {
6074         struct e1000_adapter *adapter = netdev_priv(netdev);
6075         struct hwtstamp_config config;
6076         int ret_val;
6077
6078         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6079                 return -EFAULT;
6080
6081         ret_val = e1000e_config_hwtstamp(adapter, &config);
6082         if (ret_val)
6083                 return ret_val;
6084
6085         switch (config.rx_filter) {
6086         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6087         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6088         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6089         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6090         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6091         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6092                 /* With V2 type filters which specify a Sync or Delay Request,
6093                  * Path Delay Request/Response messages are also time stamped
6094                  * by hardware so notify the caller the requested packets plus
6095                  * some others are time stamped.
6096                  */
6097                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6098                 break;
6099         default:
6100                 break;
6101         }
6102
6103         return copy_to_user(ifr->ifr_data, &config,
6104                             sizeof(config)) ? -EFAULT : 0;
6105 }
6106
6107 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6108 {
6109         struct e1000_adapter *adapter = netdev_priv(netdev);
6110
6111         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6112                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6113 }
6114
6115 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6116 {
6117         switch (cmd) {
6118         case SIOCGMIIPHY:
6119         case SIOCGMIIREG:
6120         case SIOCSMIIREG:
6121                 return e1000_mii_ioctl(netdev, ifr, cmd);
6122         case SIOCSHWTSTAMP:
6123                 return e1000e_hwtstamp_set(netdev, ifr);
6124         case SIOCGHWTSTAMP:
6125                 return e1000e_hwtstamp_get(netdev, ifr);
6126         default:
6127                 return -EOPNOTSUPP;
6128         }
6129 }
6130
6131 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6132 {
6133         struct e1000_hw *hw = &adapter->hw;
6134         u32 i, mac_reg, wuc;
6135         u16 phy_reg, wuc_enable;
6136         int retval;
6137
6138         /* copy MAC RARs to PHY RARs */
6139         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6140
6141         retval = hw->phy.ops.acquire(hw);
6142         if (retval) {
6143                 e_err("Could not acquire PHY\n");
6144                 return retval;
6145         }
6146
6147         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6148         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6149         if (retval)
6150                 goto release;
6151
6152         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6153         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6154                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6155                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6156                                            (u16)(mac_reg & 0xFFFF));
6157                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6158                                            (u16)((mac_reg >> 16) & 0xFFFF));
6159         }
6160
6161         /* configure PHY Rx Control register */
6162         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6163         mac_reg = er32(RCTL);
6164         if (mac_reg & E1000_RCTL_UPE)
6165                 phy_reg |= BM_RCTL_UPE;
6166         if (mac_reg & E1000_RCTL_MPE)
6167                 phy_reg |= BM_RCTL_MPE;
6168         phy_reg &= ~(BM_RCTL_MO_MASK);
6169         if (mac_reg & E1000_RCTL_MO_3)
6170                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6171                             << BM_RCTL_MO_SHIFT);
6172         if (mac_reg & E1000_RCTL_BAM)
6173                 phy_reg |= BM_RCTL_BAM;
6174         if (mac_reg & E1000_RCTL_PMCF)
6175                 phy_reg |= BM_RCTL_PMCF;
6176         mac_reg = er32(CTRL);
6177         if (mac_reg & E1000_CTRL_RFCE)
6178                 phy_reg |= BM_RCTL_RFCE;
6179         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6180
6181         wuc = E1000_WUC_PME_EN;
6182         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6183                 wuc |= E1000_WUC_APME;
6184
6185         /* enable PHY wakeup in MAC register */
6186         ew32(WUFC, wufc);
6187         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6188                    E1000_WUC_PME_STATUS | wuc));
6189
6190         /* configure and enable PHY wakeup in PHY registers */
6191         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6192         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6193
6194         /* activate PHY wakeup */
6195         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6196         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6197         if (retval)
6198                 e_err("Could not set PHY Host Wakeup bit\n");
6199 release:
6200         hw->phy.ops.release(hw);
6201
6202         return retval;
6203 }
6204
6205 static void e1000e_flush_lpic(struct pci_dev *pdev)
6206 {
6207         struct net_device *netdev = pci_get_drvdata(pdev);
6208         struct e1000_adapter *adapter = netdev_priv(netdev);
6209         struct e1000_hw *hw = &adapter->hw;
6210         u32 ret_val;
6211
6212         pm_runtime_get_sync(netdev->dev.parent);
6213
6214         ret_val = hw->phy.ops.acquire(hw);
6215         if (ret_val)
6216                 goto fl_out;
6217
6218         pr_info("EEE TX LPI TIMER: %08X\n",
6219                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6220
6221         hw->phy.ops.release(hw);
6222
6223 fl_out:
6224         pm_runtime_put_sync(netdev->dev.parent);
6225 }
6226
6227 static int e1000e_pm_freeze(struct device *dev)
6228 {
6229         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6230         struct e1000_adapter *adapter = netdev_priv(netdev);
6231
6232         netif_device_detach(netdev);
6233
6234         if (netif_running(netdev)) {
6235                 int count = E1000_CHECK_RESET_COUNT;
6236
6237                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6238                         usleep_range(10000, 20000);
6239
6240                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6241
6242                 /* Quiesce the device without resetting the hardware */
6243                 e1000e_down(adapter, false);
6244                 e1000_free_irq(adapter);
6245         }
6246         e1000e_reset_interrupt_capability(adapter);
6247
6248         /* Allow time for pending master requests to run */
6249         e1000e_disable_pcie_master(&adapter->hw);
6250
6251         return 0;
6252 }
6253
6254 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6255 {
6256         struct net_device *netdev = pci_get_drvdata(pdev);
6257         struct e1000_adapter *adapter = netdev_priv(netdev);
6258         struct e1000_hw *hw = &adapter->hw;
6259         u32 ctrl, ctrl_ext, rctl, status;
6260         /* Runtime suspend should only enable wakeup for link changes */
6261         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6262         int retval = 0;
6263
6264         status = er32(STATUS);
6265         if (status & E1000_STATUS_LU)
6266                 wufc &= ~E1000_WUFC_LNKC;
6267
6268         if (wufc) {
6269                 e1000_setup_rctl(adapter);
6270                 e1000e_set_rx_mode(netdev);
6271
6272                 /* turn on all-multi mode if wake on multicast is enabled */
6273                 if (wufc & E1000_WUFC_MC) {
6274                         rctl = er32(RCTL);
6275                         rctl |= E1000_RCTL_MPE;
6276                         ew32(RCTL, rctl);
6277                 }
6278
6279                 ctrl = er32(CTRL);
6280                 ctrl |= E1000_CTRL_ADVD3WUC;
6281                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6282                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6283                 ew32(CTRL, ctrl);
6284
6285                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6286                     adapter->hw.phy.media_type ==
6287                     e1000_media_type_internal_serdes) {
6288                         /* keep the laser running in D3 */
6289                         ctrl_ext = er32(CTRL_EXT);
6290                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6291                         ew32(CTRL_EXT, ctrl_ext);
6292                 }
6293
6294                 if (!runtime)
6295                         e1000e_power_up_phy(adapter);
6296
6297                 if (adapter->flags & FLAG_IS_ICH)
6298                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6299
6300                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6301                         /* enable wakeup by the PHY */
6302                         retval = e1000_init_phy_wakeup(adapter, wufc);
6303                         if (retval)
6304                                 return retval;
6305                 } else {
6306                         /* enable wakeup by the MAC */
6307                         ew32(WUFC, wufc);
6308                         ew32(WUC, E1000_WUC_PME_EN);
6309                 }
6310         } else {
6311                 ew32(WUC, 0);
6312                 ew32(WUFC, 0);
6313
6314                 e1000_power_down_phy(adapter);
6315         }
6316
6317         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6318                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6319         } else if ((hw->mac.type == e1000_pch_lpt) ||
6320                    (hw->mac.type == e1000_pch_spt)) {
6321                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6322                         /* ULP does not support wake from unicast, multicast
6323                          * or broadcast.
6324                          */
6325                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6326
6327                 if (retval)
6328                         return retval;
6329         }
6330
6331         /* Ensure that the appropriate bits are set in LPI_CTRL
6332          * for EEE in Sx
6333          */
6334         if ((hw->phy.type >= e1000_phy_i217) &&
6335             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6336                 u16 lpi_ctrl = 0;
6337
6338                 retval = hw->phy.ops.acquire(hw);
6339                 if (!retval) {
6340                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6341                                                  &lpi_ctrl);
6342                         if (!retval) {
6343                                 if (adapter->eee_advert &
6344                                     hw->dev_spec.ich8lan.eee_lp_ability &
6345                                     I82579_EEE_100_SUPPORTED)
6346                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6347                                 if (adapter->eee_advert &
6348                                     hw->dev_spec.ich8lan.eee_lp_ability &
6349                                     I82579_EEE_1000_SUPPORTED)
6350                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6351
6352                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6353                                                          lpi_ctrl);
6354                         }
6355                 }
6356                 hw->phy.ops.release(hw);
6357         }
6358
6359         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6360          * would have already happened in close and is redundant.
6361          */
6362         e1000e_release_hw_control(adapter);
6363
6364         pci_clear_master(pdev);
6365
6366         /* The pci-e switch on some quad port adapters will report a
6367          * correctable error when the MAC transitions from D0 to D3.  To
6368          * prevent this we need to mask off the correctable errors on the
6369          * downstream port of the pci-e switch.
6370          *
6371          * We don't have the associated upstream bridge while assigning
6372          * the PCI device into guest. For example, the KVM on power is
6373          * one of the cases.
6374          */
6375         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6376                 struct pci_dev *us_dev = pdev->bus->self;
6377                 u16 devctl;
6378
6379                 if (!us_dev)
6380                         return 0;
6381
6382                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6383                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6384                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6385
6386                 pci_save_state(pdev);
6387                 pci_prepare_to_sleep(pdev);
6388
6389                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6390         }
6391
6392         return 0;
6393 }
6394
6395 /**
6396  * __e1000e_disable_aspm - Disable ASPM states
6397  * @pdev: pointer to PCI device struct
6398  * @state: bit-mask of ASPM states to disable
6399  * @locked: indication if this context holds pci_bus_sem locked.
6400  *
6401  * Some devices *must* have certain ASPM states disabled per hardware errata.
6402  **/
6403 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6404 {
6405         struct pci_dev *parent = pdev->bus->self;
6406         u16 aspm_dis_mask = 0;
6407         u16 pdev_aspmc, parent_aspmc;
6408
6409         switch (state) {
6410         case PCIE_LINK_STATE_L0S:
6411         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6412                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6413                 /* fall-through - can't have L1 without L0s */
6414         case PCIE_LINK_STATE_L1:
6415                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6416                 break;
6417         default:
6418                 return;
6419         }
6420
6421         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6422         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6423
6424         if (parent) {
6425                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6426                                           &parent_aspmc);
6427                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6428         }
6429
6430         /* Nothing to do if the ASPM states to be disabled already are */
6431         if (!(pdev_aspmc & aspm_dis_mask) &&
6432             (!parent || !(parent_aspmc & aspm_dis_mask)))
6433                 return;
6434
6435         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6436                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6437                  "L0s" : "",
6438                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6439                  "L1" : "");
6440
6441 #ifdef CONFIG_PCIEASPM
6442         if (locked)
6443                 pci_disable_link_state_locked(pdev, state);
6444         else
6445                 pci_disable_link_state(pdev, state);
6446
6447         /* Double-check ASPM control.  If not disabled by the above, the
6448          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6449          * not enabled); override by writing PCI config space directly.
6450          */
6451         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6452         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6453
6454         if (!(aspm_dis_mask & pdev_aspmc))
6455                 return;
6456 #endif
6457
6458         /* Both device and parent should have the same ASPM setting.
6459          * Disable ASPM in downstream component first and then upstream.
6460          */
6461         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6462
6463         if (parent)
6464                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6465                                            aspm_dis_mask);
6466 }
6467
6468 /**
6469  * e1000e_disable_aspm - Disable ASPM states.
6470  * @pdev: pointer to PCI device struct
6471  * @state: bit-mask of ASPM states to disable
6472  *
6473  * This function acquires the pci_bus_sem!
6474  * Some devices *must* have certain ASPM states disabled per hardware errata.
6475  **/
6476 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6477 {
6478         __e1000e_disable_aspm(pdev, state, 0);
6479 }
6480
6481 /**
6482  * e1000e_disable_aspm_locked   Disable ASPM states.
6483  * @pdev: pointer to PCI device struct
6484  * @state: bit-mask of ASPM states to disable
6485  *
6486  * This function must be called with pci_bus_sem acquired!
6487  * Some devices *must* have certain ASPM states disabled per hardware errata.
6488  **/
6489 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6490 {
6491         __e1000e_disable_aspm(pdev, state, 1);
6492 }
6493
6494 #ifdef CONFIG_PM
6495 static int __e1000_resume(struct pci_dev *pdev)
6496 {
6497         struct net_device *netdev = pci_get_drvdata(pdev);
6498         struct e1000_adapter *adapter = netdev_priv(netdev);
6499         struct e1000_hw *hw = &adapter->hw;
6500         u16 aspm_disable_flag = 0;
6501
6502         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6503                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6504         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6505                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6506         if (aspm_disable_flag)
6507                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6508
6509         pci_set_master(pdev);
6510
6511         if (hw->mac.type >= e1000_pch2lan)
6512                 e1000_resume_workarounds_pchlan(&adapter->hw);
6513
6514         e1000e_power_up_phy(adapter);
6515
6516         /* report the system wakeup cause from S3/S4 */
6517         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6518                 u16 phy_data;
6519
6520                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6521                 if (phy_data) {
6522                         e_info("PHY Wakeup cause - %s\n",
6523                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6524                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6525                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6526                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6527                                phy_data & E1000_WUS_LNKC ?
6528                                "Link Status Change" : "other");
6529                 }
6530                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6531         } else {
6532                 u32 wus = er32(WUS);
6533
6534                 if (wus) {
6535                         e_info("MAC Wakeup cause - %s\n",
6536                                wus & E1000_WUS_EX ? "Unicast Packet" :
6537                                wus & E1000_WUS_MC ? "Multicast Packet" :
6538                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6539                                wus & E1000_WUS_MAG ? "Magic Packet" :
6540                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6541                                "other");
6542                 }
6543                 ew32(WUS, ~0);
6544         }
6545
6546         e1000e_reset(adapter);
6547
6548         e1000_init_manageability_pt(adapter);
6549
6550         /* If the controller has AMT, do not set DRV_LOAD until the interface
6551          * is up.  For all other cases, let the f/w know that the h/w is now
6552          * under the control of the driver.
6553          */
6554         if (!(adapter->flags & FLAG_HAS_AMT))
6555                 e1000e_get_hw_control(adapter);
6556
6557         return 0;
6558 }
6559
6560 #ifdef CONFIG_PM_SLEEP
6561 static int e1000e_pm_thaw(struct device *dev)
6562 {
6563         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6564         struct e1000_adapter *adapter = netdev_priv(netdev);
6565
6566         e1000e_set_interrupt_capability(adapter);
6567         if (netif_running(netdev)) {
6568                 u32 err = e1000_request_irq(adapter);
6569
6570                 if (err)
6571                         return err;
6572
6573                 e1000e_up(adapter);
6574         }
6575
6576         netif_device_attach(netdev);
6577
6578         return 0;
6579 }
6580
6581 static int e1000e_pm_suspend(struct device *dev)
6582 {
6583         struct pci_dev *pdev = to_pci_dev(dev);
6584
6585         e1000e_flush_lpic(pdev);
6586
6587         e1000e_pm_freeze(dev);
6588
6589         return __e1000_shutdown(pdev, false);
6590 }
6591
6592 static int e1000e_pm_resume(struct device *dev)
6593 {
6594         struct pci_dev *pdev = to_pci_dev(dev);
6595         int rc;
6596
6597         rc = __e1000_resume(pdev);
6598         if (rc)
6599                 return rc;
6600
6601         return e1000e_pm_thaw(dev);
6602 }
6603 #endif /* CONFIG_PM_SLEEP */
6604
6605 static int e1000e_pm_runtime_idle(struct device *dev)
6606 {
6607         struct pci_dev *pdev = to_pci_dev(dev);
6608         struct net_device *netdev = pci_get_drvdata(pdev);
6609         struct e1000_adapter *adapter = netdev_priv(netdev);
6610         u16 eee_lp;
6611
6612         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6613
6614         if (!e1000e_has_link(adapter)) {
6615                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6616                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6617         }
6618
6619         return -EBUSY;
6620 }
6621
6622 static int e1000e_pm_runtime_resume(struct device *dev)
6623 {
6624         struct pci_dev *pdev = to_pci_dev(dev);
6625         struct net_device *netdev = pci_get_drvdata(pdev);
6626         struct e1000_adapter *adapter = netdev_priv(netdev);
6627         int rc;
6628
6629         rc = __e1000_resume(pdev);
6630         if (rc)
6631                 return rc;
6632
6633         if (netdev->flags & IFF_UP)
6634                 rc = e1000e_up(adapter);
6635
6636         return rc;
6637 }
6638
6639 static int e1000e_pm_runtime_suspend(struct device *dev)
6640 {
6641         struct pci_dev *pdev = to_pci_dev(dev);
6642         struct net_device *netdev = pci_get_drvdata(pdev);
6643         struct e1000_adapter *adapter = netdev_priv(netdev);
6644
6645         if (netdev->flags & IFF_UP) {
6646                 int count = E1000_CHECK_RESET_COUNT;
6647
6648                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6649                         usleep_range(10000, 20000);
6650
6651                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6652
6653                 /* Down the device without resetting the hardware */
6654                 e1000e_down(adapter, false);
6655         }
6656
6657         if (__e1000_shutdown(pdev, true)) {
6658                 e1000e_pm_runtime_resume(dev);
6659                 return -EBUSY;
6660         }
6661
6662         return 0;
6663 }
6664 #endif /* CONFIG_PM */
6665
6666 static void e1000_shutdown(struct pci_dev *pdev)
6667 {
6668         e1000e_flush_lpic(pdev);
6669
6670         e1000e_pm_freeze(&pdev->dev);
6671
6672         __e1000_shutdown(pdev, false);
6673 }
6674
6675 #ifdef CONFIG_NET_POLL_CONTROLLER
6676
6677 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6678 {
6679         struct net_device *netdev = data;
6680         struct e1000_adapter *adapter = netdev_priv(netdev);
6681
6682         if (adapter->msix_entries) {
6683                 int vector, msix_irq;
6684
6685                 vector = 0;
6686                 msix_irq = adapter->msix_entries[vector].vector;
6687                 disable_irq(msix_irq);
6688                 e1000_intr_msix_rx(msix_irq, netdev);
6689                 enable_irq(msix_irq);
6690
6691                 vector++;
6692                 msix_irq = adapter->msix_entries[vector].vector;
6693                 disable_irq(msix_irq);
6694                 e1000_intr_msix_tx(msix_irq, netdev);
6695                 enable_irq(msix_irq);
6696
6697                 vector++;
6698                 msix_irq = adapter->msix_entries[vector].vector;
6699                 disable_irq(msix_irq);
6700                 e1000_msix_other(msix_irq, netdev);
6701                 enable_irq(msix_irq);
6702         }
6703
6704         return IRQ_HANDLED;
6705 }
6706
6707 /**
6708  * e1000_netpoll
6709  * @netdev: network interface device structure
6710  *
6711  * Polling 'interrupt' - used by things like netconsole to send skbs
6712  * without having to re-enable interrupts. It's not called while
6713  * the interrupt routine is executing.
6714  */
6715 static void e1000_netpoll(struct net_device *netdev)
6716 {
6717         struct e1000_adapter *adapter = netdev_priv(netdev);
6718
6719         switch (adapter->int_mode) {
6720         case E1000E_INT_MODE_MSIX:
6721                 e1000_intr_msix(adapter->pdev->irq, netdev);
6722                 break;
6723         case E1000E_INT_MODE_MSI:
6724                 disable_irq(adapter->pdev->irq);
6725                 e1000_intr_msi(adapter->pdev->irq, netdev);
6726                 enable_irq(adapter->pdev->irq);
6727                 break;
6728         default:                /* E1000E_INT_MODE_LEGACY */
6729                 disable_irq(adapter->pdev->irq);
6730                 e1000_intr(adapter->pdev->irq, netdev);
6731                 enable_irq(adapter->pdev->irq);
6732                 break;
6733         }
6734 }
6735 #endif
6736
6737 /**
6738  * e1000_io_error_detected - called when PCI error is detected
6739  * @pdev: Pointer to PCI device
6740  * @state: The current pci connection state
6741  *
6742  * This function is called after a PCI bus error affecting
6743  * this device has been detected.
6744  */
6745 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6746                                                 pci_channel_state_t state)
6747 {
6748         struct net_device *netdev = pci_get_drvdata(pdev);
6749         struct e1000_adapter *adapter = netdev_priv(netdev);
6750
6751         netif_device_detach(netdev);
6752
6753         if (state == pci_channel_io_perm_failure)
6754                 return PCI_ERS_RESULT_DISCONNECT;
6755
6756         if (netif_running(netdev))
6757                 e1000e_down(adapter, true);
6758         pci_disable_device(pdev);
6759
6760         /* Request a slot slot reset. */
6761         return PCI_ERS_RESULT_NEED_RESET;
6762 }
6763
6764 /**
6765  * e1000_io_slot_reset - called after the pci bus has been reset.
6766  * @pdev: Pointer to PCI device
6767  *
6768  * Restart the card from scratch, as if from a cold-boot. Implementation
6769  * resembles the first-half of the e1000e_pm_resume routine.
6770  */
6771 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6772 {
6773         struct net_device *netdev = pci_get_drvdata(pdev);
6774         struct e1000_adapter *adapter = netdev_priv(netdev);
6775         struct e1000_hw *hw = &adapter->hw;
6776         u16 aspm_disable_flag = 0;
6777         int err;
6778         pci_ers_result_t result;
6779
6780         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6781                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6782         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6783                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6784         if (aspm_disable_flag)
6785                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6786
6787         err = pci_enable_device_mem(pdev);
6788         if (err) {
6789                 dev_err(&pdev->dev,
6790                         "Cannot re-enable PCI device after reset.\n");
6791                 result = PCI_ERS_RESULT_DISCONNECT;
6792         } else {
6793                 pdev->state_saved = true;
6794                 pci_restore_state(pdev);
6795                 pci_set_master(pdev);
6796
6797                 pci_enable_wake(pdev, PCI_D3hot, 0);
6798                 pci_enable_wake(pdev, PCI_D3cold, 0);
6799
6800                 e1000e_reset(adapter);
6801                 ew32(WUS, ~0);
6802                 result = PCI_ERS_RESULT_RECOVERED;
6803         }
6804
6805         pci_cleanup_aer_uncorrect_error_status(pdev);
6806
6807         return result;
6808 }
6809
6810 /**
6811  * e1000_io_resume - called when traffic can start flowing again.
6812  * @pdev: Pointer to PCI device
6813  *
6814  * This callback is called when the error recovery driver tells us that
6815  * its OK to resume normal operation. Implementation resembles the
6816  * second-half of the e1000e_pm_resume routine.
6817  */
6818 static void e1000_io_resume(struct pci_dev *pdev)
6819 {
6820         struct net_device *netdev = pci_get_drvdata(pdev);
6821         struct e1000_adapter *adapter = netdev_priv(netdev);
6822
6823         e1000_init_manageability_pt(adapter);
6824
6825         if (netif_running(netdev)) {
6826                 if (e1000e_up(adapter)) {
6827                         dev_err(&pdev->dev,
6828                                 "can't bring device back up after reset\n");
6829                         return;
6830                 }
6831         }
6832
6833         netif_device_attach(netdev);
6834
6835         /* If the controller has AMT, do not set DRV_LOAD until the interface
6836          * is up.  For all other cases, let the f/w know that the h/w is now
6837          * under the control of the driver.
6838          */
6839         if (!(adapter->flags & FLAG_HAS_AMT))
6840                 e1000e_get_hw_control(adapter);
6841 }
6842
6843 static void e1000_print_device_info(struct e1000_adapter *adapter)
6844 {
6845         struct e1000_hw *hw = &adapter->hw;
6846         struct net_device *netdev = adapter->netdev;
6847         u32 ret_val;
6848         u8 pba_str[E1000_PBANUM_LENGTH];
6849
6850         /* print bus type/speed/width info */
6851         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6852                /* bus width */
6853                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6854                 "Width x1"),
6855                /* MAC address */
6856                netdev->dev_addr);
6857         e_info("Intel(R) PRO/%s Network Connection\n",
6858                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6859         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6860                                                 E1000_PBANUM_LENGTH);
6861         if (ret_val)
6862                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6863         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6864                hw->mac.type, hw->phy.type, pba_str);
6865 }
6866
6867 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6868 {
6869         struct e1000_hw *hw = &adapter->hw;
6870         int ret_val;
6871         u16 buf = 0;
6872
6873         if (hw->mac.type != e1000_82573)
6874                 return;
6875
6876         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6877         le16_to_cpus(&buf);
6878         if (!ret_val && (!(buf & (1 << 0)))) {
6879                 /* Deep Smart Power Down (DSPD) */
6880                 dev_warn(&adapter->pdev->dev,
6881                          "Warning: detected DSPD enabled in EEPROM\n");
6882         }
6883 }
6884
6885 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6886                                             netdev_features_t features)
6887 {
6888         struct e1000_adapter *adapter = netdev_priv(netdev);
6889         struct e1000_hw *hw = &adapter->hw;
6890
6891         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6892         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6893                 features &= ~NETIF_F_RXFCS;
6894
6895         return features;
6896 }
6897
6898 static int e1000_set_features(struct net_device *netdev,
6899                               netdev_features_t features)
6900 {
6901         struct e1000_adapter *adapter = netdev_priv(netdev);
6902         netdev_features_t changed = features ^ netdev->features;
6903
6904         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6905                 adapter->flags |= FLAG_TSO_FORCE;
6906
6907         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6908                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6909                          NETIF_F_RXALL)))
6910                 return 0;
6911
6912         if (changed & NETIF_F_RXFCS) {
6913                 if (features & NETIF_F_RXFCS) {
6914                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6915                 } else {
6916                         /* We need to take it back to defaults, which might mean
6917                          * stripping is still disabled at the adapter level.
6918                          */
6919                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6920                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6921                         else
6922                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6923                 }
6924         }
6925
6926         netdev->features = features;
6927
6928         if (netif_running(netdev))
6929                 e1000e_reinit_locked(adapter);
6930         else
6931                 e1000e_reset(adapter);
6932
6933         return 0;
6934 }
6935
6936 static const struct net_device_ops e1000e_netdev_ops = {
6937         .ndo_open               = e1000_open,
6938         .ndo_stop               = e1000_close,
6939         .ndo_start_xmit         = e1000_xmit_frame,
6940         .ndo_get_stats64        = e1000e_get_stats64,
6941         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6942         .ndo_set_mac_address    = e1000_set_mac,
6943         .ndo_change_mtu         = e1000_change_mtu,
6944         .ndo_do_ioctl           = e1000_ioctl,
6945         .ndo_tx_timeout         = e1000_tx_timeout,
6946         .ndo_validate_addr      = eth_validate_addr,
6947
6948         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6949         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6950 #ifdef CONFIG_NET_POLL_CONTROLLER
6951         .ndo_poll_controller    = e1000_netpoll,
6952 #endif
6953         .ndo_set_features = e1000_set_features,
6954         .ndo_fix_features = e1000_fix_features,
6955         .ndo_features_check     = passthru_features_check,
6956 };
6957
6958 /**
6959  * e1000_probe - Device Initialization Routine
6960  * @pdev: PCI device information struct
6961  * @ent: entry in e1000_pci_tbl
6962  *
6963  * Returns 0 on success, negative on failure
6964  *
6965  * e1000_probe initializes an adapter identified by a pci_dev structure.
6966  * The OS initialization, configuring of the adapter private structure,
6967  * and a hardware reset occur.
6968  **/
6969 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6970 {
6971         struct net_device *netdev;
6972         struct e1000_adapter *adapter;
6973         struct e1000_hw *hw;
6974         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6975         resource_size_t mmio_start, mmio_len;
6976         resource_size_t flash_start, flash_len;
6977         static int cards_found;
6978         u16 aspm_disable_flag = 0;
6979         int bars, i, err, pci_using_dac;
6980         u16 eeprom_data = 0;
6981         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6982         s32 rval = 0;
6983
6984         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6985                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6986         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6987                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6988         if (aspm_disable_flag)
6989                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6990
6991         err = pci_enable_device_mem(pdev);
6992         if (err)
6993                 return err;
6994
6995         pci_using_dac = 0;
6996         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6997         if (!err) {
6998                 pci_using_dac = 1;
6999         } else {
7000                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7001                 if (err) {
7002                         dev_err(&pdev->dev,
7003                                 "No usable DMA configuration, aborting\n");
7004                         goto err_dma;
7005                 }
7006         }
7007
7008         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7009         err = pci_request_selected_regions_exclusive(pdev, bars,
7010                                                      e1000e_driver_name);
7011         if (err)
7012                 goto err_pci_reg;
7013
7014         /* AER (Advanced Error Reporting) hooks */
7015         pci_enable_pcie_error_reporting(pdev);
7016
7017         pci_set_master(pdev);
7018         /* PCI config space info */
7019         err = pci_save_state(pdev);
7020         if (err)
7021                 goto err_alloc_etherdev;
7022
7023         err = -ENOMEM;
7024         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7025         if (!netdev)
7026                 goto err_alloc_etherdev;
7027
7028         SET_NETDEV_DEV(netdev, &pdev->dev);
7029
7030         netdev->irq = pdev->irq;
7031
7032         pci_set_drvdata(pdev, netdev);
7033         adapter = netdev_priv(netdev);
7034         hw = &adapter->hw;
7035         adapter->netdev = netdev;
7036         adapter->pdev = pdev;
7037         adapter->ei = ei;
7038         adapter->pba = ei->pba;
7039         adapter->flags = ei->flags;
7040         adapter->flags2 = ei->flags2;
7041         adapter->hw.adapter = adapter;
7042         adapter->hw.mac.type = ei->mac;
7043         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7044         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7045
7046         mmio_start = pci_resource_start(pdev, 0);
7047         mmio_len = pci_resource_len(pdev, 0);
7048
7049         err = -EIO;
7050         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7051         if (!adapter->hw.hw_addr)
7052                 goto err_ioremap;
7053
7054         if ((adapter->flags & FLAG_HAS_FLASH) &&
7055             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7056             (hw->mac.type < e1000_pch_spt)) {
7057                 flash_start = pci_resource_start(pdev, 1);
7058                 flash_len = pci_resource_len(pdev, 1);
7059                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7060                 if (!adapter->hw.flash_address)
7061                         goto err_flashmap;
7062         }
7063
7064         /* Set default EEE advertisement */
7065         if (adapter->flags2 & FLAG2_HAS_EEE)
7066                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7067
7068         /* construct the net_device struct */
7069         netdev->netdev_ops = &e1000e_netdev_ops;
7070         e1000e_set_ethtool_ops(netdev);
7071         netdev->watchdog_timeo = 5 * HZ;
7072         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7073         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7074
7075         netdev->mem_start = mmio_start;
7076         netdev->mem_end = mmio_start + mmio_len;
7077
7078         adapter->bd_number = cards_found++;
7079
7080         e1000e_check_options(adapter);
7081
7082         /* setup adapter struct */
7083         err = e1000_sw_init(adapter);
7084         if (err)
7085                 goto err_sw_init;
7086
7087         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7088         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7089         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7090
7091         err = ei->get_variants(adapter);
7092         if (err)
7093                 goto err_hw_init;
7094
7095         if ((adapter->flags & FLAG_IS_ICH) &&
7096             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7097             (hw->mac.type < e1000_pch_spt))
7098                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7099
7100         hw->mac.ops.get_bus_info(&adapter->hw);
7101
7102         adapter->hw.phy.autoneg_wait_to_complete = 0;
7103
7104         /* Copper options */
7105         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7106                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7107                 adapter->hw.phy.disable_polarity_correction = 0;
7108                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7109         }
7110
7111         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7112                 dev_info(&pdev->dev,
7113                          "PHY reset is blocked due to SOL/IDER session.\n");
7114
7115         /* Set initial default active device features */
7116         netdev->features = (NETIF_F_SG |
7117                             NETIF_F_HW_VLAN_CTAG_RX |
7118                             NETIF_F_HW_VLAN_CTAG_TX |
7119                             NETIF_F_TSO |
7120                             NETIF_F_TSO6 |
7121                             NETIF_F_RXHASH |
7122                             NETIF_F_RXCSUM |
7123                             NETIF_F_HW_CSUM);
7124
7125         /* Set user-changeable features (subset of all device features) */
7126         netdev->hw_features = netdev->features;
7127         netdev->hw_features |= NETIF_F_RXFCS;
7128         netdev->priv_flags |= IFF_SUPP_NOFCS;
7129         netdev->hw_features |= NETIF_F_RXALL;
7130
7131         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7132                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7133
7134         netdev->vlan_features |= (NETIF_F_SG |
7135                                   NETIF_F_TSO |
7136                                   NETIF_F_TSO6 |
7137                                   NETIF_F_HW_CSUM);
7138
7139         netdev->priv_flags |= IFF_UNICAST_FLT;
7140
7141         if (pci_using_dac) {
7142                 netdev->features |= NETIF_F_HIGHDMA;
7143                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7144         }
7145
7146         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7147                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7148
7149         /* before reading the NVM, reset the controller to
7150          * put the device in a known good starting state
7151          */
7152         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7153
7154         /* systems with ASPM and others may see the checksum fail on the first
7155          * attempt. Let's give it a few tries
7156          */
7157         for (i = 0;; i++) {
7158                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7159                         break;
7160                 if (i == 2) {
7161                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7162                         err = -EIO;
7163                         goto err_eeprom;
7164                 }
7165         }
7166
7167         e1000_eeprom_checks(adapter);
7168
7169         /* copy the MAC address */
7170         if (e1000e_read_mac_addr(&adapter->hw))
7171                 dev_err(&pdev->dev,
7172                         "NVM Read Error while reading MAC address\n");
7173
7174         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7175
7176         if (!is_valid_ether_addr(netdev->dev_addr)) {
7177                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7178                         netdev->dev_addr);
7179                 err = -EIO;
7180                 goto err_eeprom;
7181         }
7182
7183         init_timer(&adapter->watchdog_timer);
7184         adapter->watchdog_timer.function = e1000_watchdog;
7185         adapter->watchdog_timer.data = (unsigned long)adapter;
7186
7187         init_timer(&adapter->phy_info_timer);
7188         adapter->phy_info_timer.function = e1000_update_phy_info;
7189         adapter->phy_info_timer.data = (unsigned long)adapter;
7190
7191         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7192         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7193         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7194         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7195         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7196
7197         /* Initialize link parameters. User can change them with ethtool */
7198         adapter->hw.mac.autoneg = 1;
7199         adapter->fc_autoneg = true;
7200         adapter->hw.fc.requested_mode = e1000_fc_default;
7201         adapter->hw.fc.current_mode = e1000_fc_default;
7202         adapter->hw.phy.autoneg_advertised = 0x2f;
7203
7204         /* Initial Wake on LAN setting - If APM wake is enabled in
7205          * the EEPROM, enable the ACPI Magic Packet filter
7206          */
7207         if (adapter->flags & FLAG_APME_IN_WUC) {
7208                 /* APME bit in EEPROM is mapped to WUC.APME */
7209                 eeprom_data = er32(WUC);
7210                 eeprom_apme_mask = E1000_WUC_APME;
7211                 if ((hw->mac.type > e1000_ich10lan) &&
7212                     (eeprom_data & E1000_WUC_PHY_WAKE))
7213                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7214         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7215                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7216                     (adapter->hw.bus.func == 1))
7217                         rval = e1000_read_nvm(&adapter->hw,
7218                                               NVM_INIT_CONTROL3_PORT_B,
7219                                               1, &eeprom_data);
7220                 else
7221                         rval = e1000_read_nvm(&adapter->hw,
7222                                               NVM_INIT_CONTROL3_PORT_A,
7223                                               1, &eeprom_data);
7224         }
7225
7226         /* fetch WoL from EEPROM */
7227         if (rval)
7228                 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7229         else if (eeprom_data & eeprom_apme_mask)
7230                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7231
7232         /* now that we have the eeprom settings, apply the special cases
7233          * where the eeprom may be wrong or the board simply won't support
7234          * wake on lan on a particular port
7235          */
7236         if (!(adapter->flags & FLAG_HAS_WOL))
7237                 adapter->eeprom_wol = 0;
7238
7239         /* initialize the wol settings based on the eeprom settings */
7240         adapter->wol = adapter->eeprom_wol;
7241
7242         /* make sure adapter isn't asleep if manageability is enabled */
7243         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7244             (hw->mac.ops.check_mng_mode(hw)))
7245                 device_wakeup_enable(&pdev->dev);
7246
7247         /* save off EEPROM version number */
7248         rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7249
7250         if (rval) {
7251                 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7252                 adapter->eeprom_vers = 0;
7253         }
7254
7255         /* reset the hardware with the new settings */
7256         e1000e_reset(adapter);
7257
7258         /* If the controller has AMT, do not set DRV_LOAD until the interface
7259          * is up.  For all other cases, let the f/w know that the h/w is now
7260          * under the control of the driver.
7261          */
7262         if (!(adapter->flags & FLAG_HAS_AMT))
7263                 e1000e_get_hw_control(adapter);
7264
7265         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7266         err = register_netdev(netdev);
7267         if (err)
7268                 goto err_register;
7269
7270         /* carrier off reporting is important to ethtool even BEFORE open */
7271         netif_carrier_off(netdev);
7272
7273         /* init PTP hardware clock */
7274         e1000e_ptp_init(adapter);
7275
7276         e1000_print_device_info(adapter);
7277
7278         if (pci_dev_run_wake(pdev))
7279                 pm_runtime_put_noidle(&pdev->dev);
7280
7281         return 0;
7282
7283 err_register:
7284         if (!(adapter->flags & FLAG_HAS_AMT))
7285                 e1000e_release_hw_control(adapter);
7286 err_eeprom:
7287         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7288                 e1000_phy_hw_reset(&adapter->hw);
7289 err_hw_init:
7290         kfree(adapter->tx_ring);
7291         kfree(adapter->rx_ring);
7292 err_sw_init:
7293         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7294                 iounmap(adapter->hw.flash_address);
7295         e1000e_reset_interrupt_capability(adapter);
7296 err_flashmap:
7297         iounmap(adapter->hw.hw_addr);
7298 err_ioremap:
7299         free_netdev(netdev);
7300 err_alloc_etherdev:
7301         pci_release_selected_regions(pdev,
7302                                      pci_select_bars(pdev, IORESOURCE_MEM));
7303 err_pci_reg:
7304 err_dma:
7305         pci_disable_device(pdev);
7306         return err;
7307 }
7308
7309 /**
7310  * e1000_remove - Device Removal Routine
7311  * @pdev: PCI device information struct
7312  *
7313  * e1000_remove is called by the PCI subsystem to alert the driver
7314  * that it should release a PCI device.  The could be caused by a
7315  * Hot-Plug event, or because the driver is going to be removed from
7316  * memory.
7317  **/
7318 static void e1000_remove(struct pci_dev *pdev)
7319 {
7320         struct net_device *netdev = pci_get_drvdata(pdev);
7321         struct e1000_adapter *adapter = netdev_priv(netdev);
7322         bool down = test_bit(__E1000_DOWN, &adapter->state);
7323
7324         e1000e_ptp_remove(adapter);
7325
7326         /* The timers may be rescheduled, so explicitly disable them
7327          * from being rescheduled.
7328          */
7329         if (!down)
7330                 set_bit(__E1000_DOWN, &adapter->state);
7331         del_timer_sync(&adapter->watchdog_timer);
7332         del_timer_sync(&adapter->phy_info_timer);
7333
7334         cancel_work_sync(&adapter->reset_task);
7335         cancel_work_sync(&adapter->watchdog_task);
7336         cancel_work_sync(&adapter->downshift_task);
7337         cancel_work_sync(&adapter->update_phy_task);
7338         cancel_work_sync(&adapter->print_hang_task);
7339
7340         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7341                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7342                 if (adapter->tx_hwtstamp_skb) {
7343                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7344                         adapter->tx_hwtstamp_skb = NULL;
7345                 }
7346         }
7347
7348         /* Don't lie to e1000_close() down the road. */
7349         if (!down)
7350                 clear_bit(__E1000_DOWN, &adapter->state);
7351         unregister_netdev(netdev);
7352
7353         if (pci_dev_run_wake(pdev))
7354                 pm_runtime_get_noresume(&pdev->dev);
7355
7356         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7357          * would have already happened in close and is redundant.
7358          */
7359         e1000e_release_hw_control(adapter);
7360
7361         e1000e_reset_interrupt_capability(adapter);
7362         kfree(adapter->tx_ring);
7363         kfree(adapter->rx_ring);
7364
7365         iounmap(adapter->hw.hw_addr);
7366         if ((adapter->hw.flash_address) &&
7367             (adapter->hw.mac.type < e1000_pch_spt))
7368                 iounmap(adapter->hw.flash_address);
7369         pci_release_selected_regions(pdev,
7370                                      pci_select_bars(pdev, IORESOURCE_MEM));
7371
7372         free_netdev(netdev);
7373
7374         /* AER disable */
7375         pci_disable_pcie_error_reporting(pdev);
7376
7377         pci_disable_device(pdev);
7378 }
7379
7380 /* PCI Error Recovery (ERS) */
7381 static const struct pci_error_handlers e1000_err_handler = {
7382         .error_detected = e1000_io_error_detected,
7383         .slot_reset = e1000_io_slot_reset,
7384         .resume = e1000_io_resume,
7385 };
7386
7387 static const struct pci_device_id e1000_pci_tbl[] = {
7388         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7389         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7390         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7391         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7392           board_82571 },
7393         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7394         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7395         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7396         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7397         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7398
7399         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7400         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7401         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7402         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7403
7404         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7405         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7406         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7407
7408         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7409         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7410         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7411
7412         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7413           board_80003es2lan },
7414         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7415           board_80003es2lan },
7416         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7417           board_80003es2lan },
7418         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7419           board_80003es2lan },
7420
7421         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7422         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7423         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7424         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7425         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7426         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7427         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7428         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7429
7430         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7431         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7432         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7433         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7434         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7435         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7436         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7437         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7438         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7439
7440         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7441         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7442         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7443
7444         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7445         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7446         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7447
7448         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7449         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7450         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7451         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7452
7453         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7454         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7455
7456         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7457         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7460         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7466         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7468
7469         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7470 };
7471 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7472
7473 static const struct dev_pm_ops e1000_pm_ops = {
7474 #ifdef CONFIG_PM_SLEEP
7475         .suspend        = e1000e_pm_suspend,
7476         .resume         = e1000e_pm_resume,
7477         .freeze         = e1000e_pm_freeze,
7478         .thaw           = e1000e_pm_thaw,
7479         .poweroff       = e1000e_pm_suspend,
7480         .restore        = e1000e_pm_resume,
7481 #endif
7482         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7483                            e1000e_pm_runtime_idle)
7484 };
7485
7486 /* PCI Device API Driver */
7487 static struct pci_driver e1000_driver = {
7488         .name     = e1000e_driver_name,
7489         .id_table = e1000_pci_tbl,
7490         .probe    = e1000_probe,
7491         .remove   = e1000_remove,
7492         .driver   = {
7493                 .pm = &e1000_pm_ops,
7494         },
7495         .shutdown = e1000_shutdown,
7496         .err_handler = &e1000_err_handler
7497 };
7498
7499 /**
7500  * e1000_init_module - Driver Registration Routine
7501  *
7502  * e1000_init_module is the first routine called when the driver is
7503  * loaded. All it does is register with the PCI subsystem.
7504  **/
7505 static int __init e1000_init_module(void)
7506 {
7507         int ret;
7508
7509         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7510                 e1000e_driver_version);
7511         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7512         ret = pci_register_driver(&e1000_driver);
7513
7514         return ret;
7515 }
7516 module_init(e1000_init_module);
7517
7518 /**
7519  * e1000_exit_module - Driver Exit Cleanup Routine
7520  *
7521  * e1000_exit_module is called just before the driver is removed
7522  * from memory.
7523  **/
7524 static void __exit e1000_exit_module(void)
7525 {
7526         pci_unregister_driver(&e1000_driver);
7527 }
7528 module_exit(e1000_exit_module);
7529
7530 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7531 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7532 MODULE_LICENSE("GPL");
7533 MODULE_VERSION(DRV_VERSION);
7534
7535 /* netdev.c */