1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
76 struct e1000_reg_info {
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 /* General Registers */
84 {E1000_STATUS, "STATUS"},
85 {E1000_CTRL_EXT, "CTRL_EXT"},
87 /* Interrupt Registers */
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
96 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH, "RDFH"},
101 {E1000_RDFT, "RDFT"},
102 {E1000_RDFHS, "RDFHS"},
103 {E1000_RDFTS, "RDFTS"},
104 {E1000_RDFPC, "RDFPC"},
107 {E1000_TCTL, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH, "TDFH"},
118 {E1000_TDFT, "TDFT"},
119 {E1000_TDFHS, "TDFHS"},
120 {E1000_TDFTS, "TDFTS"},
121 {E1000_TDFPC, "TDFPC"},
123 /* List Terminator */
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
139 s32 __ew32_prepare(struct e1000_hw *hw)
141 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
154 writel(val, hw->hw_addr + reg);
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
168 switch (reginfo->ofs) {
169 case E1000_RXDCTL(0):
170 for (n = 0; n < 2; n++)
171 regs[n] = __er32(hw, E1000_RXDCTL(n));
173 case E1000_TXDCTL(0):
174 for (n = 0; n < 2; n++)
175 regs[n] = __er32(hw, E1000_TXDCTL(n));
178 for (n = 0; n < 2; n++)
179 regs[n] = __er32(hw, E1000_TARC(n));
182 pr_info("%-15s %08x\n",
183 reginfo->name, __er32(hw, reginfo->ofs));
187 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 struct e1000_buffer *bi)
195 struct e1000_ps_page *ps_page;
197 for (i = 0; i < adapter->rx_ps_pages; i++) {
198 ps_page = &bi->ps_pages[i];
201 pr_info("packet dump for ps_page %d:\n", i);
202 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 16, 1, page_address(ps_page->page),
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
213 static void e1000e_dump(struct e1000_adapter *adapter)
215 struct net_device *netdev = adapter->netdev;
216 struct e1000_hw *hw = &adapter->hw;
217 struct e1000_reg_info *reginfo;
218 struct e1000_ring *tx_ring = adapter->tx_ring;
219 struct e1000_tx_desc *tx_desc;
224 struct e1000_buffer *buffer_info;
225 struct e1000_ring *rx_ring = adapter->rx_ring;
226 union e1000_rx_desc_packet_split *rx_desc_ps;
227 union e1000_rx_desc_extended *rx_desc;
237 if (!netif_msg_hw(adapter))
240 /* Print netdevice Info */
242 dev_info(&adapter->pdev->dev, "Net device Info\n");
243 pr_info("Device Name state trans_start last_rx\n");
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 netdev->state, netdev->trans_start, netdev->last_rx);
248 /* Print Registers */
249 dev_info(&adapter->pdev->dev, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 reginfo->name; reginfo++) {
253 e1000_regdump(hw, reginfo);
256 /* Print Tx Ring Summary */
257 if (!netdev || !netif_running(netdev))
260 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 (unsigned long long)buffer_info->dma,
267 buffer_info->next_to_watch,
268 (unsigned long long)buffer_info->time_stamp);
271 if (!netif_msg_tx_done(adapter))
272 goto rx_ring_summary;
274 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307 const char *next_desc;
308 tx_desc = E1000_TX_DESC(*tx_ring, i);
309 buffer_info = &tx_ring->buffer_info[i];
310 u0 = (struct my_u0 *)tx_desc;
311 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312 next_desc = " NTC/U";
313 else if (i == tx_ring->next_to_use)
315 else if (i == tx_ring->next_to_clean)
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
323 (unsigned long long)le64_to_cpu(u0->a),
324 (unsigned long long)le64_to_cpu(u0->b),
325 (unsigned long long)buffer_info->dma,
326 buffer_info->length, buffer_info->next_to_watch,
327 (unsigned long long)buffer_info->time_stamp,
328 buffer_info->skb, next_desc);
330 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332 16, 1, buffer_info->skb->data,
333 buffer_info->skb->len, true);
336 /* Print Rx Ring Summary */
338 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring->next_to_use, rx_ring->next_to_clean);
344 if (!netif_msg_rx_status(adapter))
347 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348 switch (adapter->rx_ps_pages) {
352 /* [Extended] Packet Split Receive Descriptor Format
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i = 0; i < rx_ring->count; i++) {
378 const char *next_desc;
379 buffer_info = &rx_ring->buffer_info[i];
380 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 u1 = (struct my_u1 *)rx_desc_ps;
383 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385 if (i == rx_ring->next_to_use)
387 else if (i == rx_ring->next_to_clean)
392 if (staterr & E1000_RXD_STAT_DD) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 (unsigned long long)le64_to_cpu(u1->a),
397 (unsigned long long)le64_to_cpu(u1->b),
398 (unsigned long long)le64_to_cpu(u1->c),
399 (unsigned long long)le64_to_cpu(u1->d),
400 buffer_info->skb, next_desc);
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 (unsigned long long)le64_to_cpu(u1->a),
405 (unsigned long long)le64_to_cpu(u1->b),
406 (unsigned long long)le64_to_cpu(u1->c),
407 (unsigned long long)le64_to_cpu(u1->d),
408 (unsigned long long)buffer_info->dma,
409 buffer_info->skb, next_desc);
411 if (netif_msg_pktdata(adapter))
412 e1000e_dump_ps_pages(adapter,
419 /* Extended Receive Descriptor (Read) Format
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
425 * +-----------------------------------------------------+
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443 for (i = 0; i < rx_ring->count; i++) {
444 const char *next_desc;
446 buffer_info = &rx_ring->buffer_info[i];
447 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 u1 = (struct my_u1 *)rx_desc;
449 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451 if (i == rx_ring->next_to_use)
453 else if (i == rx_ring->next_to_clean)
458 if (staterr & E1000_RXD_STAT_DD) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 (unsigned long long)le64_to_cpu(u1->a),
463 (unsigned long long)le64_to_cpu(u1->b),
464 buffer_info->skb, next_desc);
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 (unsigned long long)le64_to_cpu(u1->a),
469 (unsigned long long)le64_to_cpu(u1->b),
470 (unsigned long long)buffer_info->dma,
471 buffer_info->skb, next_desc);
473 if (netif_msg_pktdata(adapter) &&
475 print_hex_dump(KERN_INFO, "",
476 DUMP_PREFIX_ADDRESS, 16,
478 buffer_info->skb->data,
479 adapter->rx_buffer_len,
487 * e1000_desc_unused - calculate if we have unused descriptors
489 static int e1000_desc_unused(struct e1000_ring *ring)
491 if (ring->next_to_clean > ring->next_to_use)
492 return ring->next_to_clean - ring->next_to_use - 1;
494 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 struct skb_shared_hwtstamps *hwtstamps,
518 spin_lock_irqsave(&adapter->systim_lock, flags);
519 ns = timecounter_cyc2time(&adapter->tc, systim);
520 spin_unlock_irqrestore(&adapter->systim_lock, flags);
522 memset(hwtstamps, 0, sizeof(*hwtstamps));
523 hwtstamps->hwtstamp = ns_to_ktime(ns);
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
539 struct e1000_hw *hw = &adapter->hw;
542 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 !(status & E1000_RXDEXT_STATERR_TST) ||
544 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
554 rxstmp = (u64)er32(RXSTMPL);
555 rxstmp |= (u64)er32(RXSTMPH) << 32;
556 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569 struct net_device *netdev, struct sk_buff *skb,
570 u32 staterr, __le16 vlan)
572 u16 tag = le16_to_cpu(vlan);
574 e1000e_rx_hwtstamp(adapter, staterr, skb);
576 skb->protocol = eth_type_trans(skb, netdev);
578 if (staterr & E1000_RXD_STAT_VP)
579 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581 napi_gro_receive(&adapter->napi, skb);
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
594 u16 status = (u16)status_err;
595 u8 errors = (u8)(status_err >> 24);
597 skb_checksum_none_assert(skb);
599 /* Rx checksum disabled */
600 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
603 /* Ignore Checksum bit is set */
604 if (status & E1000_RXD_STAT_IXSM)
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609 /* let the stack verify checksum errors */
610 adapter->hw_csum_err++;
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb->ip_summed = CHECKSUM_UNNECESSARY;
620 adapter->hw_csum_good++;
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 struct e1000_adapter *adapter = rx_ring->adapter;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 ret_val = __ew32_prepare(hw);
629 writel(i, rx_ring->tail);
631 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632 u32 rctl = er32(RCTL);
634 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter->reset_task);
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 struct e1000_adapter *adapter = tx_ring->adapter;
643 struct e1000_hw *hw = &adapter->hw;
644 s32 ret_val = __ew32_prepare(hw);
646 writel(i, tx_ring->tail);
648 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649 u32 tctl = er32(TCTL);
651 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter->reset_task);
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662 int cleaned_count, gfp_t gfp)
664 struct e1000_adapter *adapter = rx_ring->adapter;
665 struct net_device *netdev = adapter->netdev;
666 struct pci_dev *pdev = adapter->pdev;
667 union e1000_rx_desc_extended *rx_desc;
668 struct e1000_buffer *buffer_info;
671 unsigned int bufsz = adapter->rx_buffer_len;
673 i = rx_ring->next_to_use;
674 buffer_info = &rx_ring->buffer_info[i];
676 while (cleaned_count--) {
677 skb = buffer_info->skb;
683 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685 /* Better luck next round */
686 adapter->alloc_rx_buff_failed++;
690 buffer_info->skb = skb;
692 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693 adapter->rx_buffer_len,
695 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696 dev_err(&pdev->dev, "Rx DMA map failed\n");
697 adapter->rx_dma_failed++;
701 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
711 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712 e1000e_update_rdt_wa(rx_ring, i);
714 writel(i, rx_ring->tail);
717 if (i == rx_ring->count)
719 buffer_info = &rx_ring->buffer_info[i];
722 rx_ring->next_to_use = i;
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730 int cleaned_count, gfp_t gfp)
732 struct e1000_adapter *adapter = rx_ring->adapter;
733 struct net_device *netdev = adapter->netdev;
734 struct pci_dev *pdev = adapter->pdev;
735 union e1000_rx_desc_packet_split *rx_desc;
736 struct e1000_buffer *buffer_info;
737 struct e1000_ps_page *ps_page;
741 i = rx_ring->next_to_use;
742 buffer_info = &rx_ring->buffer_info[i];
744 while (cleaned_count--) {
745 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748 ps_page = &buffer_info->ps_pages[j];
749 if (j >= adapter->rx_ps_pages) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc->read.buffer_addr[j + 1] =
755 if (!ps_page->page) {
756 ps_page->page = alloc_page(gfp);
757 if (!ps_page->page) {
758 adapter->alloc_rx_buff_failed++;
761 ps_page->dma = dma_map_page(&pdev->dev,
765 if (dma_mapping_error(&pdev->dev,
767 dev_err(&adapter->pdev->dev,
768 "Rx DMA page map failed\n");
769 adapter->rx_dma_failed++;
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
777 rx_desc->read.buffer_addr[j + 1] =
778 cpu_to_le64(ps_page->dma);
781 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
785 adapter->alloc_rx_buff_failed++;
789 buffer_info->skb = skb;
790 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791 adapter->rx_ps_bsize0,
793 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794 dev_err(&pdev->dev, "Rx DMA map failed\n");
795 adapter->rx_dma_failed++;
797 dev_kfree_skb_any(skb);
798 buffer_info->skb = NULL;
802 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
811 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812 e1000e_update_rdt_wa(rx_ring, i << 1);
814 writel(i << 1, rx_ring->tail);
818 if (i == rx_ring->count)
820 buffer_info = &rx_ring->buffer_info[i];
824 rx_ring->next_to_use = i;
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834 int cleaned_count, gfp_t gfp)
836 struct e1000_adapter *adapter = rx_ring->adapter;
837 struct net_device *netdev = adapter->netdev;
838 struct pci_dev *pdev = adapter->pdev;
839 union e1000_rx_desc_extended *rx_desc;
840 struct e1000_buffer *buffer_info;
843 unsigned int bufsz = 256 - 16; /* for skb_reserve */
845 i = rx_ring->next_to_use;
846 buffer_info = &rx_ring->buffer_info[i];
848 while (cleaned_count--) {
849 skb = buffer_info->skb;
855 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856 if (unlikely(!skb)) {
857 /* Better luck next round */
858 adapter->alloc_rx_buff_failed++;
862 buffer_info->skb = skb;
864 /* allocate a new page if necessary */
865 if (!buffer_info->page) {
866 buffer_info->page = alloc_page(gfp);
867 if (unlikely(!buffer_info->page)) {
868 adapter->alloc_rx_buff_failed++;
873 if (!buffer_info->dma) {
874 buffer_info->dma = dma_map_page(&pdev->dev,
875 buffer_info->page, 0,
878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 adapter->alloc_rx_buff_failed++;
884 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887 if (unlikely(++i == rx_ring->count))
889 buffer_info = &rx_ring->buffer_info[i];
892 if (likely(rx_ring->next_to_use != i)) {
893 rx_ring->next_to_use = i;
894 if (unlikely(i-- == 0))
895 i = (rx_ring->count - 1);
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
903 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904 e1000e_update_rdt_wa(rx_ring, i);
906 writel(i, rx_ring->tail);
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
913 if (netdev->features & NETIF_F_RXHASH)
914 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
927 struct e1000_adapter *adapter = rx_ring->adapter;
928 struct net_device *netdev = adapter->netdev;
929 struct pci_dev *pdev = adapter->pdev;
930 struct e1000_hw *hw = &adapter->hw;
931 union e1000_rx_desc_extended *rx_desc, *next_rxd;
932 struct e1000_buffer *buffer_info, *next_buffer;
935 int cleaned_count = 0;
936 bool cleaned = false;
937 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939 i = rx_ring->next_to_clean;
940 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942 buffer_info = &rx_ring->buffer_info[i];
944 while (staterr & E1000_RXD_STAT_DD) {
947 if (*work_done >= work_to_do)
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952 skb = buffer_info->skb;
953 buffer_info->skb = NULL;
955 prefetch(skb->data - NET_IP_ALIGN);
958 if (i == rx_ring->count)
960 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
963 next_buffer = &rx_ring->buffer_info[i];
967 dma_unmap_single(&pdev->dev, buffer_info->dma,
968 adapter->rx_buffer_len, DMA_FROM_DEVICE);
969 buffer_info->dma = 0;
971 length = le16_to_cpu(rx_desc->wb.upper.length);
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
979 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980 adapter->flags2 |= FLAG2_IS_DISCARDING;
982 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
986 buffer_info->skb = skb;
987 if (staterr & E1000_RXD_STAT_EOP)
988 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
992 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 !(netdev->features & NETIF_F_RXALL))) {
995 buffer_info->skb = skb;
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1005 if (netdev->features & NETIF_F_RXFCS)
1006 total_rx_bytes -= 4;
1011 total_rx_bytes += length;
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1018 if (length < copybreak) {
1019 struct sk_buff *new_skb =
1020 napi_alloc_skb(&adapter->napi, length);
1022 skb_copy_to_linear_data_offset(new_skb,
1028 /* save the skb in buffer_info as good */
1029 buffer_info->skb = skb;
1032 /* else just continue with the old one */
1034 /* end copybreak code */
1035 skb_put(skb, length);
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter, staterr, skb);
1040 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042 e1000_receive_skb(adapter, netdev, skb, staterr,
1043 rx_desc->wb.upper.vlan);
1046 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1055 /* use prefetched values */
1057 buffer_info = next_buffer;
1059 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061 rx_ring->next_to_clean = i;
1063 cleaned_count = e1000_desc_unused(rx_ring);
1065 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067 adapter->total_rx_bytes += total_rx_bytes;
1068 adapter->total_rx_packets += total_rx_packets;
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 struct e1000_buffer *buffer_info)
1075 struct e1000_adapter *adapter = tx_ring->adapter;
1077 if (buffer_info->dma) {
1078 if (buffer_info->mapped_as_page)
1079 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 buffer_info->length, DMA_TO_DEVICE);
1082 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 buffer_info->length, DMA_TO_DEVICE);
1084 buffer_info->dma = 0;
1086 if (buffer_info->skb) {
1087 dev_kfree_skb_any(buffer_info->skb);
1088 buffer_info->skb = NULL;
1090 buffer_info->time_stamp = 0;
1093 static void e1000_print_hw_hang(struct work_struct *work)
1095 struct e1000_adapter *adapter = container_of(work,
1096 struct e1000_adapter,
1098 struct net_device *netdev = adapter->netdev;
1099 struct e1000_ring *tx_ring = adapter->tx_ring;
1100 unsigned int i = tx_ring->next_to_clean;
1101 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 struct e1000_hw *hw = &adapter->hw;
1104 u16 phy_status, phy_1000t_status, phy_ext_status;
1107 if (test_bit(__E1000_DOWN, &adapter->state))
1110 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 /* execute the writes immediately */
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1120 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 /* execute the writes immediately */
1123 adapter->tx_hang_recheck = true;
1126 adapter->tx_hang_recheck = false;
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1133 /* Real hang detected */
1134 netif_stop_queue(netdev);
1136 e1e_rphy(hw, MII_BMSR, &phy_status);
1137 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1140 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1152 " next_to_watch.status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1163 e1000e_dump(adapter);
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1180 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1182 struct e1000_hw *hw = &adapter->hw;
1184 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 struct skb_shared_hwtstamps shhwtstamps;
1188 txstmp = er32(TXSTMPL);
1189 txstmp |= (u64)er32(TXSTMPH) << 32;
1191 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1193 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 adapter->tx_hwtstamp_skb = NULL;
1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 + adapter->tx_timeout_factor * HZ)) {
1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 adapter->tx_hwtstamp_skb = NULL;
1200 adapter->tx_hwtstamp_timeouts++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter->tx_hwtstamp_work);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1217 struct e1000_adapter *adapter = tx_ring->adapter;
1218 struct net_device *netdev = adapter->netdev;
1219 struct e1000_hw *hw = &adapter->hw;
1220 struct e1000_tx_desc *tx_desc, *eop_desc;
1221 struct e1000_buffer *buffer_info;
1222 unsigned int i, eop;
1223 unsigned int count = 0;
1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 unsigned int bytes_compl = 0, pkts_compl = 0;
1227 i = tx_ring->next_to_clean;
1228 eop = tx_ring->buffer_info[i].next_to_watch;
1229 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 (count < tx_ring->count)) {
1233 bool cleaned = false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned; count++) {
1237 tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 buffer_info = &tx_ring->buffer_info[i];
1239 cleaned = (i == eop);
1242 total_tx_packets += buffer_info->segs;
1243 total_tx_bytes += buffer_info->bytecount;
1244 if (buffer_info->skb) {
1245 bytes_compl += buffer_info->skb->len;
1250 e1000_put_txbuf(tx_ring, buffer_info);
1251 tx_desc->upper.data = 0;
1254 if (i == tx_ring->count)
1258 if (i == tx_ring->next_to_use)
1260 eop = tx_ring->buffer_info[i].next_to_watch;
1261 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1264 tx_ring->next_to_clean = i;
1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count && netif_carrier_ok(netdev) &&
1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev) &&
1277 !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 netif_wake_queue(netdev);
1279 ++adapter->restart_queue;
1283 if (adapter->detect_tx_hung) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter->detect_tx_hung = false;
1288 if (tx_ring->buffer_info[i].time_stamp &&
1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 + (adapter->tx_timeout_factor * HZ)) &&
1291 !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 schedule_work(&adapter->print_hang_task);
1294 adapter->tx_hang_recheck = false;
1296 adapter->total_tx_bytes += total_tx_bytes;
1297 adapter->total_tx_packets += total_tx_packets;
1298 return count < tx_ring->count;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311 struct e1000_adapter *adapter = rx_ring->adapter;
1312 struct e1000_hw *hw = &adapter->hw;
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
1322 bool cleaned = false;
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1334 skb = buffer_info->skb;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1341 if (i == rx_ring->count)
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346 next_buffer = &rx_ring->buffer_info[i];
1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 buffer_info->dma = 0;
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb);
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
1368 dev_kfree_skb_irq(skb);
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb);
1381 skb_put(skb, length);
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1398 ps_page = &buffer_info->ps_pages[0];
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1404 dma_sync_single_for_cpu(&pdev->dev,
1408 vaddr = kmap_atomic(ps_page->page);
1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 kunmap_atomic(vaddr);
1411 dma_sync_single_for_device(&pdev->dev,
1416 /* remove the CRC */
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1432 ps_page = &buffer_info->ps_pages[j];
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1439 skb->data_len += length;
1440 skb->truesize += PAGE_SIZE;
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1452 total_rx_bytes += skb->len;
1455 e1000_rx_checksum(adapter, staterr, skb);
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1459 if (rx_desc->wb.upper.header_status &
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 adapter->rx_hdr_split++;
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1477 /* use prefetched values */
1479 buffer_info = next_buffer;
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1483 rx_ring->next_to_clean = i;
1485 cleaned_count = e1000_desc_unused(rx_ring);
1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1489 adapter->total_rx_bytes += total_rx_bytes;
1490 adapter->total_rx_packets += total_rx_packets;
1495 * e1000_consume_page - helper function
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1502 skb->data_len += length;
1503 skb->truesize += PAGE_SIZE;
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1516 struct e1000_adapter *adapter = rx_ring->adapter;
1517 struct net_device *netdev = adapter->netdev;
1518 struct pci_dev *pdev = adapter->pdev;
1519 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520 struct e1000_buffer *buffer_info, *next_buffer;
1521 u32 length, staterr;
1523 int cleaned_count = 0;
1524 bool cleaned = false;
1525 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526 struct skb_shared_info *shinfo;
1528 i = rx_ring->next_to_clean;
1529 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531 buffer_info = &rx_ring->buffer_info[i];
1533 while (staterr & E1000_RXD_STAT_DD) {
1534 struct sk_buff *skb;
1536 if (*work_done >= work_to_do)
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1541 skb = buffer_info->skb;
1542 buffer_info->skb = NULL;
1545 if (i == rx_ring->count)
1547 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1550 next_buffer = &rx_ring->buffer_info[i];
1554 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1556 buffer_info->dma = 0;
1558 length = le16_to_cpu(rx_desc->wb.upper.length);
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 !(netdev->features & NETIF_F_RXALL)))) {
1564 /* recycle both page and skb */
1565 buffer_info->skb = skb;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring->rx_skb_top)
1568 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 rx_ring->rx_skb_top = NULL;
1572 #define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574 /* this descriptor is only the beginning (or middle) */
1576 /* this is the beginning of a chain */
1578 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1581 /* this is the middle of a chain */
1582 shinfo = skb_shinfo(rxtop);
1583 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 buffer_info->page, 0,
1586 /* re-use the skb, only consumed the page */
1587 buffer_info->skb = skb;
1589 e1000_consume_page(buffer_info, rxtop, length);
1593 /* end of the chain */
1594 shinfo = skb_shinfo(rxtop);
1595 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 buffer_info->page, 0,
1598 /* re-use the current skb, we only consumed the
1601 buffer_info->skb = skb;
1604 e1000_consume_page(buffer_info, skb, length);
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1609 if (length <= copybreak &&
1610 skb_tailroom(skb) >= length) {
1612 vaddr = kmap_atomic(buffer_info->page);
1613 memcpy(skb_tail_pointer(skb), vaddr,
1615 kunmap_atomic(vaddr);
1616 /* re-use the page, so don't erase
1619 skb_put(skb, length);
1621 skb_fill_page_desc(skb, 0,
1622 buffer_info->page, 0,
1624 e1000_consume_page(buffer_info, skb,
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter, staterr, skb);
1633 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes += skb->len;
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb);
1646 e1000_receive_skb(adapter, netdev, skb, staterr,
1647 rx_desc->wb.upper.vlan);
1650 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1659 /* use prefetched values */
1661 buffer_info = next_buffer;
1663 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1665 rx_ring->next_to_clean = i;
1667 cleaned_count = e1000_desc_unused(rx_ring);
1669 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1671 adapter->total_rx_bytes += total_rx_bytes;
1672 adapter->total_rx_packets += total_rx_packets;
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1682 struct e1000_adapter *adapter = rx_ring->adapter;
1683 struct e1000_buffer *buffer_info;
1684 struct e1000_ps_page *ps_page;
1685 struct pci_dev *pdev = adapter->pdev;
1688 /* Free all the Rx ring sk_buffs */
1689 for (i = 0; i < rx_ring->count; i++) {
1690 buffer_info = &rx_ring->buffer_info[i];
1691 if (buffer_info->dma) {
1692 if (adapter->clean_rx == e1000_clean_rx_irq)
1693 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 adapter->rx_buffer_len,
1696 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698 PAGE_SIZE, DMA_FROM_DEVICE);
1699 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 adapter->rx_ps_bsize0,
1703 buffer_info->dma = 0;
1706 if (buffer_info->page) {
1707 put_page(buffer_info->page);
1708 buffer_info->page = NULL;
1711 if (buffer_info->skb) {
1712 dev_kfree_skb(buffer_info->skb);
1713 buffer_info->skb = NULL;
1716 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717 ps_page = &buffer_info->ps_pages[j];
1720 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1723 put_page(ps_page->page);
1724 ps_page->page = NULL;
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring->rx_skb_top) {
1730 dev_kfree_skb(rx_ring->rx_skb_top);
1731 rx_ring->rx_skb_top = NULL;
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring->desc, 0, rx_ring->size);
1737 rx_ring->next_to_clean = 0;
1738 rx_ring->next_to_use = 0;
1739 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1742 static void e1000e_downshift_workaround(struct work_struct *work)
1744 struct e1000_adapter *adapter = container_of(work,
1745 struct e1000_adapter,
1748 if (test_bit(__E1000_DOWN, &adapter->state))
1751 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1759 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1761 struct net_device *netdev = data;
1762 struct e1000_adapter *adapter = netdev_priv(netdev);
1763 struct e1000_hw *hw = &adapter->hw;
1764 u32 icr = er32(ICR);
1766 /* read ICR disables interrupts using IAM */
1767 if (icr & E1000_ICR_LSC) {
1768 hw->mac.get_link_status = true;
1769 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770 * disconnect (LSC) before accessing any PHY registers
1772 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773 (!(er32(STATUS) & E1000_STATUS_LU)))
1774 schedule_work(&adapter->downshift_task);
1776 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777 * link down event; disable receives here in the ISR and reset
1778 * adapter in watchdog
1780 if (netif_carrier_ok(netdev) &&
1781 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782 /* disable receives */
1783 u32 rctl = er32(RCTL);
1785 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786 adapter->flags |= FLAG_RESTART_NOW;
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN, &adapter->state))
1790 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1793 /* Reset on uncorrectable ECC error */
1794 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795 (hw->mac.type == e1000_pch_spt))) {
1796 u32 pbeccsts = er32(PBECCSTS);
1798 adapter->corr_errors +=
1799 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800 adapter->uncorr_errors +=
1801 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1804 /* Do the reset outside of interrupt context */
1805 schedule_work(&adapter->reset_task);
1807 /* return immediately since reset is imminent */
1811 if (napi_schedule_prep(&adapter->napi)) {
1812 adapter->total_tx_bytes = 0;
1813 adapter->total_tx_packets = 0;
1814 adapter->total_rx_bytes = 0;
1815 adapter->total_rx_packets = 0;
1816 __napi_schedule(&adapter->napi);
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1827 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1829 struct net_device *netdev = data;
1830 struct e1000_adapter *adapter = netdev_priv(netdev);
1831 struct e1000_hw *hw = &adapter->hw;
1832 u32 rctl, icr = er32(ICR);
1834 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835 return IRQ_NONE; /* Not our interrupt */
1837 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838 * not set, then the adapter didn't send an interrupt
1840 if (!(icr & E1000_ICR_INT_ASSERTED))
1843 /* Interrupt Auto-Mask...upon reading ICR,
1844 * interrupts are masked. No need for the
1848 if (icr & E1000_ICR_LSC) {
1849 hw->mac.get_link_status = true;
1850 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851 * disconnect (LSC) before accessing any PHY registers
1853 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854 (!(er32(STATUS) & E1000_STATUS_LU)))
1855 schedule_work(&adapter->downshift_task);
1857 /* 80003ES2LAN workaround--
1858 * For packet buffer work-around on link down event;
1859 * disable receives here in the ISR and
1860 * reset adapter in watchdog
1862 if (netif_carrier_ok(netdev) &&
1863 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864 /* disable receives */
1866 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867 adapter->flags |= FLAG_RESTART_NOW;
1869 /* guard against interrupt when we're going down */
1870 if (!test_bit(__E1000_DOWN, &adapter->state))
1871 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1874 /* Reset on uncorrectable ECC error */
1875 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876 (hw->mac.type == e1000_pch_spt))) {
1877 u32 pbeccsts = er32(PBECCSTS);
1879 adapter->corr_errors +=
1880 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881 adapter->uncorr_errors +=
1882 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1885 /* Do the reset outside of interrupt context */
1886 schedule_work(&adapter->reset_task);
1888 /* return immediately since reset is imminent */
1892 if (napi_schedule_prep(&adapter->napi)) {
1893 adapter->total_tx_bytes = 0;
1894 adapter->total_tx_packets = 0;
1895 adapter->total_rx_bytes = 0;
1896 adapter->total_rx_packets = 0;
1897 __napi_schedule(&adapter->napi);
1903 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1905 struct net_device *netdev = data;
1906 struct e1000_adapter *adapter = netdev_priv(netdev);
1907 struct e1000_hw *hw = &adapter->hw;
1908 u32 icr = er32(ICR);
1910 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1911 if (!test_bit(__E1000_DOWN, &adapter->state))
1912 ew32(IMS, E1000_IMS_OTHER);
1916 if (icr & adapter->eiac_mask)
1917 ew32(ICS, (icr & adapter->eiac_mask));
1919 if (icr & E1000_ICR_OTHER) {
1920 if (!(icr & E1000_ICR_LSC))
1921 goto no_link_interrupt;
1922 hw->mac.get_link_status = true;
1923 /* guard against interrupt when we're going down */
1924 if (!test_bit(__E1000_DOWN, &adapter->state))
1925 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1929 if (!test_bit(__E1000_DOWN, &adapter->state))
1930 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1935 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1937 struct net_device *netdev = data;
1938 struct e1000_adapter *adapter = netdev_priv(netdev);
1939 struct e1000_hw *hw = &adapter->hw;
1940 struct e1000_ring *tx_ring = adapter->tx_ring;
1942 adapter->total_tx_bytes = 0;
1943 adapter->total_tx_packets = 0;
1945 if (!e1000_clean_tx_irq(tx_ring))
1946 /* Ring was not completely cleaned, so fire another interrupt */
1947 ew32(ICS, tx_ring->ims_val);
1952 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1954 struct net_device *netdev = data;
1955 struct e1000_adapter *adapter = netdev_priv(netdev);
1956 struct e1000_ring *rx_ring = adapter->rx_ring;
1958 /* Write the ITR value calculated at the end of the
1959 * previous interrupt.
1961 if (rx_ring->set_itr) {
1962 writel(1000000000 / (rx_ring->itr_val * 256),
1963 rx_ring->itr_register);
1964 rx_ring->set_itr = 0;
1967 if (napi_schedule_prep(&adapter->napi)) {
1968 adapter->total_rx_bytes = 0;
1969 adapter->total_rx_packets = 0;
1970 __napi_schedule(&adapter->napi);
1976 * e1000_configure_msix - Configure MSI-X hardware
1978 * e1000_configure_msix sets up the hardware to properly
1979 * generate MSI-X interrupts.
1981 static void e1000_configure_msix(struct e1000_adapter *adapter)
1983 struct e1000_hw *hw = &adapter->hw;
1984 struct e1000_ring *rx_ring = adapter->rx_ring;
1985 struct e1000_ring *tx_ring = adapter->tx_ring;
1987 u32 ctrl_ext, ivar = 0;
1989 adapter->eiac_mask = 0;
1991 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1992 if (hw->mac.type == e1000_82574) {
1993 u32 rfctl = er32(RFCTL);
1995 rfctl |= E1000_RFCTL_ACK_DIS;
1999 /* Configure Rx vector */
2000 rx_ring->ims_val = E1000_IMS_RXQ0;
2001 adapter->eiac_mask |= rx_ring->ims_val;
2002 if (rx_ring->itr_val)
2003 writel(1000000000 / (rx_ring->itr_val * 256),
2004 rx_ring->itr_register);
2006 writel(1, rx_ring->itr_register);
2007 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2009 /* Configure Tx vector */
2010 tx_ring->ims_val = E1000_IMS_TXQ0;
2012 if (tx_ring->itr_val)
2013 writel(1000000000 / (tx_ring->itr_val * 256),
2014 tx_ring->itr_register);
2016 writel(1, tx_ring->itr_register);
2017 adapter->eiac_mask |= tx_ring->ims_val;
2018 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2020 /* set vector for Other Causes, e.g. link changes */
2022 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2023 if (rx_ring->itr_val)
2024 writel(1000000000 / (rx_ring->itr_val * 256),
2025 hw->hw_addr + E1000_EITR_82574(vector));
2027 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2029 /* Cause Tx interrupts on every write back */
2034 /* enable MSI-X PBA support */
2035 ctrl_ext = er32(CTRL_EXT);
2036 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2038 /* Auto-Mask Other interrupts upon ICR read */
2039 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2040 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2041 ew32(CTRL_EXT, ctrl_ext);
2045 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2047 if (adapter->msix_entries) {
2048 pci_disable_msix(adapter->pdev);
2049 kfree(adapter->msix_entries);
2050 adapter->msix_entries = NULL;
2051 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2052 pci_disable_msi(adapter->pdev);
2053 adapter->flags &= ~FLAG_MSI_ENABLED;
2058 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2060 * Attempt to configure interrupts using the best available
2061 * capabilities of the hardware and kernel.
2063 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2068 switch (adapter->int_mode) {
2069 case E1000E_INT_MODE_MSIX:
2070 if (adapter->flags & FLAG_HAS_MSIX) {
2071 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2072 adapter->msix_entries = kcalloc(adapter->num_vectors,
2076 if (adapter->msix_entries) {
2077 struct e1000_adapter *a = adapter;
2079 for (i = 0; i < adapter->num_vectors; i++)
2080 adapter->msix_entries[i].entry = i;
2082 err = pci_enable_msix_range(a->pdev,
2089 /* MSI-X failed, so fall through and try MSI */
2090 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2091 e1000e_reset_interrupt_capability(adapter);
2093 adapter->int_mode = E1000E_INT_MODE_MSI;
2095 case E1000E_INT_MODE_MSI:
2096 if (!pci_enable_msi(adapter->pdev)) {
2097 adapter->flags |= FLAG_MSI_ENABLED;
2099 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2100 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2103 case E1000E_INT_MODE_LEGACY:
2104 /* Don't do anything; this is the system default */
2108 /* store the number of vectors being used */
2109 adapter->num_vectors = 1;
2113 * e1000_request_msix - Initialize MSI-X interrupts
2115 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 static int e1000_request_msix(struct e1000_adapter *adapter)
2120 struct net_device *netdev = adapter->netdev;
2121 int err = 0, vector = 0;
2123 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2124 snprintf(adapter->rx_ring->name,
2125 sizeof(adapter->rx_ring->name) - 1,
2126 "%s-rx-0", netdev->name);
2128 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2129 err = request_irq(adapter->msix_entries[vector].vector,
2130 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2134 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2135 E1000_EITR_82574(vector);
2136 adapter->rx_ring->itr_val = adapter->itr;
2139 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2140 snprintf(adapter->tx_ring->name,
2141 sizeof(adapter->tx_ring->name) - 1,
2142 "%s-tx-0", netdev->name);
2144 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2145 err = request_irq(adapter->msix_entries[vector].vector,
2146 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2150 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2151 E1000_EITR_82574(vector);
2152 adapter->tx_ring->itr_val = adapter->itr;
2155 err = request_irq(adapter->msix_entries[vector].vector,
2156 e1000_msix_other, 0, netdev->name, netdev);
2160 e1000_configure_msix(adapter);
2166 * e1000_request_irq - initialize interrupts
2168 * Attempts to configure interrupts using the best available
2169 * capabilities of the hardware and kernel.
2171 static int e1000_request_irq(struct e1000_adapter *adapter)
2173 struct net_device *netdev = adapter->netdev;
2176 if (adapter->msix_entries) {
2177 err = e1000_request_msix(adapter);
2180 /* fall back to MSI */
2181 e1000e_reset_interrupt_capability(adapter);
2182 adapter->int_mode = E1000E_INT_MODE_MSI;
2183 e1000e_set_interrupt_capability(adapter);
2185 if (adapter->flags & FLAG_MSI_ENABLED) {
2186 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2187 netdev->name, netdev);
2191 /* fall back to legacy interrupt */
2192 e1000e_reset_interrupt_capability(adapter);
2193 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2196 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2197 netdev->name, netdev);
2199 e_err("Unable to allocate interrupt, Error: %d\n", err);
2204 static void e1000_free_irq(struct e1000_adapter *adapter)
2206 struct net_device *netdev = adapter->netdev;
2208 if (adapter->msix_entries) {
2211 free_irq(adapter->msix_entries[vector].vector, netdev);
2214 free_irq(adapter->msix_entries[vector].vector, netdev);
2217 /* Other Causes interrupt vector */
2218 free_irq(adapter->msix_entries[vector].vector, netdev);
2222 free_irq(adapter->pdev->irq, netdev);
2226 * e1000_irq_disable - Mask off interrupt generation on the NIC
2228 static void e1000_irq_disable(struct e1000_adapter *adapter)
2230 struct e1000_hw *hw = &adapter->hw;
2233 if (adapter->msix_entries)
2234 ew32(EIAC_82574, 0);
2237 if (adapter->msix_entries) {
2240 for (i = 0; i < adapter->num_vectors; i++)
2241 synchronize_irq(adapter->msix_entries[i].vector);
2243 synchronize_irq(adapter->pdev->irq);
2248 * e1000_irq_enable - Enable default interrupt generation settings
2250 static void e1000_irq_enable(struct e1000_adapter *adapter)
2252 struct e1000_hw *hw = &adapter->hw;
2254 if (adapter->msix_entries) {
2255 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2256 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2257 } else if ((hw->mac.type == e1000_pch_lpt) ||
2258 (hw->mac.type == e1000_pch_spt)) {
2259 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2261 ew32(IMS, IMS_ENABLE_MASK);
2267 * e1000e_get_hw_control - get control of the h/w from f/w
2268 * @adapter: address of board private structure
2270 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2271 * For ASF and Pass Through versions of f/w this means that
2272 * the driver is loaded. For AMT version (only with 82573)
2273 * of the f/w this means that the network i/f is open.
2275 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2277 struct e1000_hw *hw = &adapter->hw;
2281 /* Let firmware know the driver has taken over */
2282 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2284 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2285 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2286 ctrl_ext = er32(CTRL_EXT);
2287 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2292 * e1000e_release_hw_control - release control of the h/w to f/w
2293 * @adapter: address of board private structure
2295 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2296 * For ASF and Pass Through versions of f/w this means that the
2297 * driver is no longer loaded. For AMT version (only with 82573) i
2298 * of the f/w this means that the network i/f is closed.
2301 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2303 struct e1000_hw *hw = &adapter->hw;
2307 /* Let firmware taken over control of h/w */
2308 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2310 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2311 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2312 ctrl_ext = er32(CTRL_EXT);
2313 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2318 * e1000_alloc_ring_dma - allocate memory for a ring structure
2320 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2321 struct e1000_ring *ring)
2323 struct pci_dev *pdev = adapter->pdev;
2325 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2334 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2335 * @tx_ring: Tx descriptor ring
2337 * Return 0 on success, negative on failure
2339 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2341 struct e1000_adapter *adapter = tx_ring->adapter;
2342 int err = -ENOMEM, size;
2344 size = sizeof(struct e1000_buffer) * tx_ring->count;
2345 tx_ring->buffer_info = vzalloc(size);
2346 if (!tx_ring->buffer_info)
2349 /* round up to nearest 4K */
2350 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2351 tx_ring->size = ALIGN(tx_ring->size, 4096);
2353 err = e1000_alloc_ring_dma(adapter, tx_ring);
2357 tx_ring->next_to_use = 0;
2358 tx_ring->next_to_clean = 0;
2362 vfree(tx_ring->buffer_info);
2363 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2368 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2369 * @rx_ring: Rx descriptor ring
2371 * Returns 0 on success, negative on failure
2373 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2375 struct e1000_adapter *adapter = rx_ring->adapter;
2376 struct e1000_buffer *buffer_info;
2377 int i, size, desc_len, err = -ENOMEM;
2379 size = sizeof(struct e1000_buffer) * rx_ring->count;
2380 rx_ring->buffer_info = vzalloc(size);
2381 if (!rx_ring->buffer_info)
2384 for (i = 0; i < rx_ring->count; i++) {
2385 buffer_info = &rx_ring->buffer_info[i];
2386 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2387 sizeof(struct e1000_ps_page),
2389 if (!buffer_info->ps_pages)
2393 desc_len = sizeof(union e1000_rx_desc_packet_split);
2395 /* Round up to nearest 4K */
2396 rx_ring->size = rx_ring->count * desc_len;
2397 rx_ring->size = ALIGN(rx_ring->size, 4096);
2399 err = e1000_alloc_ring_dma(adapter, rx_ring);
2403 rx_ring->next_to_clean = 0;
2404 rx_ring->next_to_use = 0;
2405 rx_ring->rx_skb_top = NULL;
2410 for (i = 0; i < rx_ring->count; i++) {
2411 buffer_info = &rx_ring->buffer_info[i];
2412 kfree(buffer_info->ps_pages);
2415 vfree(rx_ring->buffer_info);
2416 e_err("Unable to allocate memory for the receive descriptor ring\n");
2421 * e1000_clean_tx_ring - Free Tx Buffers
2422 * @tx_ring: Tx descriptor ring
2424 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2426 struct e1000_adapter *adapter = tx_ring->adapter;
2427 struct e1000_buffer *buffer_info;
2431 for (i = 0; i < tx_ring->count; i++) {
2432 buffer_info = &tx_ring->buffer_info[i];
2433 e1000_put_txbuf(tx_ring, buffer_info);
2436 netdev_reset_queue(adapter->netdev);
2437 size = sizeof(struct e1000_buffer) * tx_ring->count;
2438 memset(tx_ring->buffer_info, 0, size);
2440 memset(tx_ring->desc, 0, tx_ring->size);
2442 tx_ring->next_to_use = 0;
2443 tx_ring->next_to_clean = 0;
2447 * e1000e_free_tx_resources - Free Tx Resources per Queue
2448 * @tx_ring: Tx descriptor ring
2450 * Free all transmit software resources
2452 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2454 struct e1000_adapter *adapter = tx_ring->adapter;
2455 struct pci_dev *pdev = adapter->pdev;
2457 e1000_clean_tx_ring(tx_ring);
2459 vfree(tx_ring->buffer_info);
2460 tx_ring->buffer_info = NULL;
2462 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2464 tx_ring->desc = NULL;
2468 * e1000e_free_rx_resources - Free Rx Resources
2469 * @rx_ring: Rx descriptor ring
2471 * Free all receive software resources
2473 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2475 struct e1000_adapter *adapter = rx_ring->adapter;
2476 struct pci_dev *pdev = adapter->pdev;
2479 e1000_clean_rx_ring(rx_ring);
2481 for (i = 0; i < rx_ring->count; i++)
2482 kfree(rx_ring->buffer_info[i].ps_pages);
2484 vfree(rx_ring->buffer_info);
2485 rx_ring->buffer_info = NULL;
2487 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2489 rx_ring->desc = NULL;
2493 * e1000_update_itr - update the dynamic ITR value based on statistics
2494 * @adapter: pointer to adapter
2495 * @itr_setting: current adapter->itr
2496 * @packets: the number of packets during this measurement interval
2497 * @bytes: the number of bytes during this measurement interval
2499 * Stores a new ITR value based on packets and byte
2500 * counts during the last interrupt. The advantage of per interrupt
2501 * computation is faster updates and more accurate ITR for the current
2502 * traffic pattern. Constants in this function were computed
2503 * based on theoretical maximum wire speed and thresholds were set based
2504 * on testing data as well as attempting to minimize response time
2505 * while increasing bulk throughput. This functionality is controlled
2506 * by the InterruptThrottleRate module parameter.
2508 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2510 unsigned int retval = itr_setting;
2515 switch (itr_setting) {
2516 case lowest_latency:
2517 /* handle TSO and jumbo frames */
2518 if (bytes / packets > 8000)
2519 retval = bulk_latency;
2520 else if ((packets < 5) && (bytes > 512))
2521 retval = low_latency;
2523 case low_latency: /* 50 usec aka 20000 ints/s */
2524 if (bytes > 10000) {
2525 /* this if handles the TSO accounting */
2526 if (bytes / packets > 8000)
2527 retval = bulk_latency;
2528 else if ((packets < 10) || ((bytes / packets) > 1200))
2529 retval = bulk_latency;
2530 else if ((packets > 35))
2531 retval = lowest_latency;
2532 } else if (bytes / packets > 2000) {
2533 retval = bulk_latency;
2534 } else if (packets <= 2 && bytes < 512) {
2535 retval = lowest_latency;
2538 case bulk_latency: /* 250 usec aka 4000 ints/s */
2539 if (bytes > 25000) {
2541 retval = low_latency;
2542 } else if (bytes < 6000) {
2543 retval = low_latency;
2551 static void e1000_set_itr(struct e1000_adapter *adapter)
2554 u32 new_itr = adapter->itr;
2556 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2557 if (adapter->link_speed != SPEED_1000) {
2563 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2568 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2569 adapter->total_tx_packets,
2570 adapter->total_tx_bytes);
2571 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2572 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2573 adapter->tx_itr = low_latency;
2575 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2576 adapter->total_rx_packets,
2577 adapter->total_rx_bytes);
2578 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2579 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2580 adapter->rx_itr = low_latency;
2582 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2584 /* counts and packets in update_itr are dependent on these numbers */
2585 switch (current_itr) {
2586 case lowest_latency:
2590 new_itr = 20000; /* aka hwitr = ~200 */
2600 if (new_itr != adapter->itr) {
2601 /* this attempts to bias the interrupt rate towards Bulk
2602 * by adding intermediate steps when interrupt rate is
2605 new_itr = new_itr > adapter->itr ?
2606 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2607 adapter->itr = new_itr;
2608 adapter->rx_ring->itr_val = new_itr;
2609 if (adapter->msix_entries)
2610 adapter->rx_ring->set_itr = 1;
2612 e1000e_write_itr(adapter, new_itr);
2617 * e1000e_write_itr - write the ITR value to the appropriate registers
2618 * @adapter: address of board private structure
2619 * @itr: new ITR value to program
2621 * e1000e_write_itr determines if the adapter is in MSI-X mode
2622 * and, if so, writes the EITR registers with the ITR value.
2623 * Otherwise, it writes the ITR value into the ITR register.
2625 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2627 struct e1000_hw *hw = &adapter->hw;
2628 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2630 if (adapter->msix_entries) {
2633 for (vector = 0; vector < adapter->num_vectors; vector++)
2634 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2641 * e1000_alloc_queues - Allocate memory for all rings
2642 * @adapter: board private structure to initialize
2644 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2646 int size = sizeof(struct e1000_ring);
2648 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2649 if (!adapter->tx_ring)
2651 adapter->tx_ring->count = adapter->tx_ring_count;
2652 adapter->tx_ring->adapter = adapter;
2654 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2655 if (!adapter->rx_ring)
2657 adapter->rx_ring->count = adapter->rx_ring_count;
2658 adapter->rx_ring->adapter = adapter;
2662 e_err("Unable to allocate memory for queues\n");
2663 kfree(adapter->rx_ring);
2664 kfree(adapter->tx_ring);
2669 * e1000e_poll - NAPI Rx polling callback
2670 * @napi: struct associated with this polling callback
2671 * @weight: number of packets driver is allowed to process this poll
2673 static int e1000e_poll(struct napi_struct *napi, int weight)
2675 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2677 struct e1000_hw *hw = &adapter->hw;
2678 struct net_device *poll_dev = adapter->netdev;
2679 int tx_cleaned = 1, work_done = 0;
2681 adapter = netdev_priv(poll_dev);
2683 if (!adapter->msix_entries ||
2684 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2685 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2687 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2692 /* If weight not fully consumed, exit the polling mode */
2693 if (work_done < weight) {
2694 if (adapter->itr_setting & 3)
2695 e1000_set_itr(adapter);
2696 napi_complete(napi);
2697 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2698 if (adapter->msix_entries)
2699 ew32(IMS, adapter->rx_ring->ims_val);
2701 e1000_irq_enable(adapter);
2708 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2709 __always_unused __be16 proto, u16 vid)
2711 struct e1000_adapter *adapter = netdev_priv(netdev);
2712 struct e1000_hw *hw = &adapter->hw;
2715 /* don't update vlan cookie if already programmed */
2716 if ((adapter->hw.mng_cookie.status &
2717 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2718 (vid == adapter->mng_vlan_id))
2721 /* add VID to filter table */
2722 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2723 index = (vid >> 5) & 0x7F;
2724 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2725 vfta |= (1 << (vid & 0x1F));
2726 hw->mac.ops.write_vfta(hw, index, vfta);
2729 set_bit(vid, adapter->active_vlans);
2734 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2735 __always_unused __be16 proto, u16 vid)
2737 struct e1000_adapter *adapter = netdev_priv(netdev);
2738 struct e1000_hw *hw = &adapter->hw;
2741 if ((adapter->hw.mng_cookie.status &
2742 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2743 (vid == adapter->mng_vlan_id)) {
2744 /* release control to f/w */
2745 e1000e_release_hw_control(adapter);
2749 /* remove VID from filter table */
2750 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2751 index = (vid >> 5) & 0x7F;
2752 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2753 vfta &= ~(1 << (vid & 0x1F));
2754 hw->mac.ops.write_vfta(hw, index, vfta);
2757 clear_bit(vid, adapter->active_vlans);
2763 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2764 * @adapter: board private structure to initialize
2766 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2768 struct net_device *netdev = adapter->netdev;
2769 struct e1000_hw *hw = &adapter->hw;
2772 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2773 /* disable VLAN receive filtering */
2775 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2778 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2779 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2780 adapter->mng_vlan_id);
2781 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2787 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2788 * @adapter: board private structure to initialize
2790 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2792 struct e1000_hw *hw = &adapter->hw;
2795 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2796 /* enable VLAN receive filtering */
2798 rctl |= E1000_RCTL_VFE;
2799 rctl &= ~E1000_RCTL_CFIEN;
2805 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2806 * @adapter: board private structure to initialize
2808 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2810 struct e1000_hw *hw = &adapter->hw;
2813 /* disable VLAN tag insert/strip */
2815 ctrl &= ~E1000_CTRL_VME;
2820 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2821 * @adapter: board private structure to initialize
2823 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2825 struct e1000_hw *hw = &adapter->hw;
2828 /* enable VLAN tag insert/strip */
2830 ctrl |= E1000_CTRL_VME;
2834 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2836 struct net_device *netdev = adapter->netdev;
2837 u16 vid = adapter->hw.mng_cookie.vlan_id;
2838 u16 old_vid = adapter->mng_vlan_id;
2840 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2841 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2842 adapter->mng_vlan_id = vid;
2845 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2846 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2849 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2853 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2855 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2856 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2859 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2861 struct e1000_hw *hw = &adapter->hw;
2862 u32 manc, manc2h, mdef, i, j;
2864 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2869 /* enable receiving management packets to the host. this will probably
2870 * generate destination unreachable messages from the host OS, but
2871 * the packets will be handled on SMBUS
2873 manc |= E1000_MANC_EN_MNG2HOST;
2874 manc2h = er32(MANC2H);
2876 switch (hw->mac.type) {
2878 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2882 /* Check if IPMI pass-through decision filter already exists;
2885 for (i = 0, j = 0; i < 8; i++) {
2886 mdef = er32(MDEF(i));
2888 /* Ignore filters with anything other than IPMI ports */
2889 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2892 /* Enable this decision filter in MANC2H */
2899 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 /* Create new decision filter in an empty filter */
2903 for (i = 0, j = 0; i < 8; i++)
2904 if (er32(MDEF(i)) == 0) {
2905 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2906 E1000_MDEF_PORT_664));
2913 e_warn("Unable to create IPMI pass-through filter\n");
2917 ew32(MANC2H, manc2h);
2922 * e1000_configure_tx - Configure Transmit Unit after Reset
2923 * @adapter: board private structure
2925 * Configure the Tx unit of the MAC after a reset.
2927 static void e1000_configure_tx(struct e1000_adapter *adapter)
2929 struct e1000_hw *hw = &adapter->hw;
2930 struct e1000_ring *tx_ring = adapter->tx_ring;
2932 u32 tdlen, tctl, tarc;
2934 /* Setup the HW Tx Head and Tail descriptor pointers */
2935 tdba = tx_ring->dma;
2936 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2937 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2938 ew32(TDBAH(0), (tdba >> 32));
2939 ew32(TDLEN(0), tdlen);
2942 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2943 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2945 writel(0, tx_ring->head);
2946 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2947 e1000e_update_tdt_wa(tx_ring, 0);
2949 writel(0, tx_ring->tail);
2951 /* Set the Tx Interrupt Delay register */
2952 ew32(TIDV, adapter->tx_int_delay);
2953 /* Tx irq moderation */
2954 ew32(TADV, adapter->tx_abs_int_delay);
2956 if (adapter->flags2 & FLAG2_DMA_BURST) {
2957 u32 txdctl = er32(TXDCTL(0));
2959 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2960 E1000_TXDCTL_WTHRESH);
2961 /* set up some performance related parameters to encourage the
2962 * hardware to use the bus more efficiently in bursts, depends
2963 * on the tx_int_delay to be enabled,
2964 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2965 * hthresh = 1 ==> prefetch when one or more available
2966 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2967 * BEWARE: this seems to work but should be considered first if
2968 * there are Tx hangs or other Tx related bugs
2970 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2971 ew32(TXDCTL(0), txdctl);
2973 /* erratum work around: set txdctl the same for both queues */
2974 ew32(TXDCTL(1), er32(TXDCTL(0)));
2976 /* Program the Transmit Control Register */
2978 tctl &= ~E1000_TCTL_CT;
2979 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2980 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2982 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2983 tarc = er32(TARC(0));
2984 /* set the speed mode bit, we'll clear it if we're not at
2985 * gigabit link later
2987 #define SPEED_MODE_BIT (1 << 21)
2988 tarc |= SPEED_MODE_BIT;
2989 ew32(TARC(0), tarc);
2992 /* errata: program both queues to unweighted RR */
2993 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2994 tarc = er32(TARC(0));
2996 ew32(TARC(0), tarc);
2997 tarc = er32(TARC(1));
2999 ew32(TARC(1), tarc);
3002 /* Setup Transmit Descriptor Settings for eop descriptor */
3003 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3005 /* only set IDE if we are delaying interrupts using the timers */
3006 if (adapter->tx_int_delay)
3007 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3009 /* enable Report Status bit */
3010 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3014 hw->mac.ops.config_collision_dist(hw);
3016 /* SPT Si errata workaround to avoid data corruption */
3017 if (hw->mac.type == e1000_pch_spt) {
3020 reg_val = er32(IOSFPC);
3021 reg_val |= E1000_RCTL_RDMTS_HEX;
3022 ew32(IOSFPC, reg_val);
3024 reg_val = er32(TARC(0));
3025 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3026 ew32(TARC(0), reg_val);
3031 * e1000_setup_rctl - configure the receive control registers
3032 * @adapter: Board private structure
3034 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3035 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3036 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3038 struct e1000_hw *hw = &adapter->hw;
3042 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3043 * If jumbo frames not set, program related MAC/PHY registers
3046 if (hw->mac.type >= e1000_pch2lan) {
3049 if (adapter->netdev->mtu > ETH_DATA_LEN)
3050 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3052 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 /* Program MC offset vector base */
3060 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3061 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3062 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3063 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3065 /* Do not Store bad packets */
3066 rctl &= ~E1000_RCTL_SBP;
3068 /* Enable Long Packet receive */
3069 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3070 rctl &= ~E1000_RCTL_LPE;
3072 rctl |= E1000_RCTL_LPE;
3074 /* Some systems expect that the CRC is included in SMBUS traffic. The
3075 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076 * host memory when this is enabled
3078 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3079 rctl |= E1000_RCTL_SECRC;
3081 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3087 phy_data |= (1 << 2);
3088 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3090 e1e_rphy(hw, 22, &phy_data);
3092 phy_data |= (1 << 14);
3093 e1e_wphy(hw, 0x10, 0x2823);
3094 e1e_wphy(hw, 0x11, 0x0003);
3095 e1e_wphy(hw, 22, phy_data);
3098 /* Setup buffer sizes */
3099 rctl &= ~E1000_RCTL_SZ_4096;
3100 rctl |= E1000_RCTL_BSEX;
3101 switch (adapter->rx_buffer_len) {
3104 rctl |= E1000_RCTL_SZ_2048;
3105 rctl &= ~E1000_RCTL_BSEX;
3108 rctl |= E1000_RCTL_SZ_4096;
3111 rctl |= E1000_RCTL_SZ_8192;
3114 rctl |= E1000_RCTL_SZ_16384;
3118 /* Enable Extended Status in all Receive Descriptors */
3119 rfctl = er32(RFCTL);
3120 rfctl |= E1000_RFCTL_EXTEN;
3123 /* 82571 and greater support packet-split where the protocol
3124 * header is placed in skb->data and the packet data is
3125 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126 * In the case of a non-split, skb->data is linearly filled,
3127 * followed by the page buffers. Therefore, skb->data is
3128 * sized to hold the largest protocol header.
3130 * allocations using alloc_page take too long for regular MTU
3131 * so only enable packet split for jumbo frames
3133 * Using pages when the page size is greater than 16k wastes
3134 * a lot of memory, since we allocate 3 pages at all times
3137 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3138 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3139 adapter->rx_ps_pages = pages;
3141 adapter->rx_ps_pages = 0;
3143 if (adapter->rx_ps_pages) {
3146 /* Enable Packet split descriptors */
3147 rctl |= E1000_RCTL_DTYP_PS;
3149 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3151 switch (adapter->rx_ps_pages) {
3153 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3163 ew32(PSRCTL, psrctl);
3166 /* This is useful for sniffing bad packets. */
3167 if (adapter->netdev->features & NETIF_F_RXALL) {
3168 /* UPE and MPE will be handled by normal PROMISC logic
3169 * in e1000e_set_rx_mode
3171 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3172 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3173 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3175 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3176 E1000_RCTL_DPF | /* Allow filtered pause */
3177 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3178 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179 * and that breaks VLANs.
3184 /* just started the receive unit, no need to restart */
3185 adapter->flags &= ~FLAG_RESTART_NOW;
3189 * e1000_configure_rx - Configure Receive Unit after Reset
3190 * @adapter: board private structure
3192 * Configure the Rx unit of the MAC after a reset.
3194 static void e1000_configure_rx(struct e1000_adapter *adapter)
3196 struct e1000_hw *hw = &adapter->hw;
3197 struct e1000_ring *rx_ring = adapter->rx_ring;
3199 u32 rdlen, rctl, rxcsum, ctrl_ext;
3201 if (adapter->rx_ps_pages) {
3202 /* this is a 32 byte descriptor */
3203 rdlen = rx_ring->count *
3204 sizeof(union e1000_rx_desc_packet_split);
3205 adapter->clean_rx = e1000_clean_rx_irq_ps;
3206 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3207 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3208 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3209 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3210 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3212 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3213 adapter->clean_rx = e1000_clean_rx_irq;
3214 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 /* disable receives while setting up the descriptors */
3219 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3222 usleep_range(10000, 20000);
3224 if (adapter->flags2 & FLAG2_DMA_BURST) {
3225 /* set the writeback threshold (only takes effect if the RDTR
3226 * is set). set GRAN=1 and write back up to 0x4 worth, and
3227 * enable prefetching of 0x20 Rx descriptors
3233 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3234 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 /* override the delay timers for enabling bursting, only if
3237 * the value was not set by the user via module options
3239 if (adapter->rx_int_delay == DEFAULT_RDTR)
3240 adapter->rx_int_delay = BURST_RDTR;
3241 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3242 adapter->rx_abs_int_delay = BURST_RADV;
3245 /* set the Receive Delay Timer Register */
3246 ew32(RDTR, adapter->rx_int_delay);
3248 /* irq moderation */
3249 ew32(RADV, adapter->rx_abs_int_delay);
3250 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3251 e1000e_write_itr(adapter, adapter->itr);
3253 ctrl_ext = er32(CTRL_EXT);
3254 /* Auto-Mask interrupts upon ICR access */
3255 ctrl_ext |= E1000_CTRL_EXT_IAME;
3256 ew32(IAM, 0xffffffff);
3257 ew32(CTRL_EXT, ctrl_ext);
3260 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3261 * the Base and Length of the Rx Descriptor Ring
3263 rdba = rx_ring->dma;
3264 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3265 ew32(RDBAH(0), (rdba >> 32));
3266 ew32(RDLEN(0), rdlen);
3269 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3270 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3272 writel(0, rx_ring->head);
3273 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3274 e1000e_update_rdt_wa(rx_ring, 0);
3276 writel(0, rx_ring->tail);
3278 /* Enable Receive Checksum Offload for TCP and UDP */
3279 rxcsum = er32(RXCSUM);
3280 if (adapter->netdev->features & NETIF_F_RXCSUM)
3281 rxcsum |= E1000_RXCSUM_TUOFL;
3283 rxcsum &= ~E1000_RXCSUM_TUOFL;
3284 ew32(RXCSUM, rxcsum);
3286 /* With jumbo frames, excessive C-state transition latencies result
3287 * in dropped transactions.
3289 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3291 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292 adapter->max_frame_size) * 8 / 1000;
3294 if (adapter->flags & FLAG_IS_ICH) {
3295 u32 rxdctl = er32(RXDCTL(0));
3297 ew32(RXDCTL(0), rxdctl | 0x3);
3300 pm_qos_update_request(&adapter->pm_qos_req, lat);
3302 pm_qos_update_request(&adapter->pm_qos_req,
3303 PM_QOS_DEFAULT_VALUE);
3306 /* Enable Receives */
3311 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312 * @netdev: network interface device structure
3314 * Writes multicast address list to the MTA hash table.
3315 * Returns: -ENOMEM on failure
3316 * 0 on no addresses written
3317 * X on writing X addresses to MTA
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3321 struct e1000_adapter *adapter = netdev_priv(netdev);
3322 struct e1000_hw *hw = &adapter->hw;
3323 struct netdev_hw_addr *ha;
3327 if (netdev_mc_empty(netdev)) {
3328 /* nothing to program, so clear mc list */
3329 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3333 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3337 /* update_mc_addr_list expects a packed array of only addresses. */
3339 netdev_for_each_mc_addr(ha, netdev)
3340 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3342 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3345 return netdev_mc_count(netdev);
3349 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350 * @netdev: network interface device structure
3352 * Writes unicast address list to the RAR table.
3353 * Returns: -ENOMEM on failure/insufficient address space
3354 * 0 on no addresses written
3355 * X on writing X addresses to the RAR table
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3359 struct e1000_adapter *adapter = netdev_priv(netdev);
3360 struct e1000_hw *hw = &adapter->hw;
3361 unsigned int rar_entries;
3364 rar_entries = hw->mac.ops.rar_get_count(hw);
3366 /* save a rar entry for our hardware address */
3369 /* save a rar entry for the LAA workaround */
3370 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3373 /* return ENOMEM indicating insufficient memory for addresses */
3374 if (netdev_uc_count(netdev) > rar_entries)
3377 if (!netdev_uc_empty(netdev) && rar_entries) {
3378 struct netdev_hw_addr *ha;
3380 /* write the addresses in reverse order to avoid write
3383 netdev_for_each_uc_addr(ha, netdev) {
3388 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3395 /* zero out the remaining RAR entries not used above */
3396 for (; rar_entries > 0; rar_entries--) {
3397 ew32(RAH(rar_entries), 0);
3398 ew32(RAL(rar_entries), 0);
3406 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407 * @netdev: network interface device structure
3409 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410 * address list or the network interface flags are updated. This routine is
3411 * responsible for configuring the hardware for proper unicast, multicast,
3412 * promiscuous mode, and all-multi behavior.
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3416 struct e1000_adapter *adapter = netdev_priv(netdev);
3417 struct e1000_hw *hw = &adapter->hw;
3420 if (pm_runtime_suspended(netdev->dev.parent))
3423 /* Check for Promiscuous and All Multicast modes */
3426 /* clear the affected bits */
3427 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3429 if (netdev->flags & IFF_PROMISC) {
3430 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431 /* Do not hardware filter VLANs in promisc mode */
3432 e1000e_vlan_filter_disable(adapter);
3436 if (netdev->flags & IFF_ALLMULTI) {
3437 rctl |= E1000_RCTL_MPE;
3439 /* Write addresses to the MTA, if the attempt fails
3440 * then we should just turn on promiscuous mode so
3441 * that we can at least receive multicast traffic
3443 count = e1000e_write_mc_addr_list(netdev);
3445 rctl |= E1000_RCTL_MPE;
3447 e1000e_vlan_filter_enable(adapter);
3448 /* Write addresses to available RAR registers, if there is not
3449 * sufficient space to store all the addresses then enable
3450 * unicast promiscuous mode
3452 count = e1000e_write_uc_addr_list(netdev);
3454 rctl |= E1000_RCTL_UPE;
3459 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460 e1000e_vlan_strip_enable(adapter);
3462 e1000e_vlan_strip_disable(adapter);
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3467 struct e1000_hw *hw = &adapter->hw;
3472 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473 for (i = 0; i < 10; i++)
3474 ew32(RSSRK(i), rss_key[i]);
3476 /* Direct all traffic to queue 0 */
3477 for (i = 0; i < 32; i++)
3480 /* Disable raw packet checksumming so that RSS hash is placed in
3481 * descriptor on writeback.
3483 rxcsum = er32(RXCSUM);
3484 rxcsum |= E1000_RXCSUM_PCSD;
3486 ew32(RXCSUM, rxcsum);
3488 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490 E1000_MRQC_RSS_FIELD_IPV6 |
3491 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3498 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499 * @adapter: board private structure
3500 * @timinca: pointer to returned time increment attributes
3502 * Get attributes for incrementing the System Time Register SYSTIML/H at
3503 * the default base frequency, and set the cyclecounter shift value.
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3507 struct e1000_hw *hw = &adapter->hw;
3508 u32 incvalue, incperiod, shift;
3510 /* Make sure clock is enabled on I217/I218/I219 before checking
3513 if (((hw->mac.type == e1000_pch_lpt) ||
3514 (hw->mac.type == e1000_pch_spt)) &&
3515 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517 u32 fextnvm7 = er32(FEXTNVM7);
3519 if (!(fextnvm7 & (1 << 0))) {
3520 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3525 switch (hw->mac.type) {
3528 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3529 /* Stable 96MHz frequency */
3530 incperiod = INCPERIOD_96MHz;
3531 incvalue = INCVALUE_96MHz;
3532 shift = INCVALUE_SHIFT_96MHz;
3533 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3535 /* Stable 25MHz frequency */
3536 incperiod = INCPERIOD_25MHz;
3537 incvalue = INCVALUE_25MHz;
3538 shift = INCVALUE_SHIFT_25MHz;
3539 adapter->cc.shift = shift;
3543 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3544 /* Stable 24MHz frequency */
3545 incperiod = INCPERIOD_24MHz;
3546 incvalue = INCVALUE_24MHz;
3547 shift = INCVALUE_SHIFT_24MHz;
3548 adapter->cc.shift = shift;
3554 /* Stable 25MHz frequency */
3555 incperiod = INCPERIOD_25MHz;
3556 incvalue = INCVALUE_25MHz;
3557 shift = INCVALUE_SHIFT_25MHz;
3558 adapter->cc.shift = shift;
3564 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3565 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3571 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572 * @adapter: board private structure
3574 * Outgoing time stamping can be enabled and disabled. Play nice and
3575 * disable it when requested, although it shouldn't cause any overhead
3576 * when no packet needs it. At most one packet in the queue may be
3577 * marked for time stamping, otherwise it would be impossible to tell
3578 * for sure to which packet the hardware time stamp belongs.
3580 * Incoming time stamping has to be configured via the hardware filters.
3581 * Not all combinations are supported, in particular event type has to be
3582 * specified. Matching the kind of event packet is not supported, with the
3583 * exception of "all V2 events regardless of level 2 or 4".
3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3586 struct hwtstamp_config *config)
3588 struct e1000_hw *hw = &adapter->hw;
3589 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3590 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3598 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3601 /* flags reserved for future extensions - must be zero */
3605 switch (config->tx_type) {
3606 case HWTSTAMP_TX_OFF:
3609 case HWTSTAMP_TX_ON:
3615 switch (config->rx_filter) {
3616 case HWTSTAMP_FILTER_NONE:
3619 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3620 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3621 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3624 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3625 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3629 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3630 /* Also time stamps V2 L2 Path Delay Request/Response */
3631 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3632 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3635 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3636 /* Also time stamps V2 L2 Path Delay Request/Response. */
3637 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3638 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3641 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3642 /* Hardware cannot filter just V2 L4 Sync messages;
3643 * fall-through to V2 (both L2 and L4) Sync.
3645 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3646 /* Also time stamps V2 Path Delay Request/Response. */
3647 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3648 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3652 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3653 /* Hardware cannot filter just V2 L4 Delay Request messages;
3654 * fall-through to V2 (both L2 and L4) Delay Request.
3656 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3657 /* Also time stamps V2 Path Delay Request/Response. */
3658 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3659 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3663 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3664 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3665 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3666 * fall-through to all V2 (both L2 and L4) Events.
3668 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3669 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3670 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3674 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3675 /* For V1, the hardware can only filter Sync messages or
3676 * Delay Request messages but not both so fall-through to
3677 * time stamp all packets.
3679 case HWTSTAMP_FILTER_ALL:
3682 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3683 config->rx_filter = HWTSTAMP_FILTER_ALL;
3689 adapter->hwtstamp_config = *config;
3691 /* enable/disable Tx h/w time stamping */
3692 regval = er32(TSYNCTXCTL);
3693 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3694 regval |= tsync_tx_ctl;
3695 ew32(TSYNCTXCTL, regval);
3696 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3697 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3698 e_err("Timesync Tx Control register not set as expected\n");
3702 /* enable/disable Rx h/w time stamping */
3703 regval = er32(TSYNCRXCTL);
3704 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3705 regval |= tsync_rx_ctl;
3706 ew32(TSYNCRXCTL, regval);
3707 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3708 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3709 (regval & (E1000_TSYNCRXCTL_ENABLED |
3710 E1000_TSYNCRXCTL_TYPE_MASK))) {
3711 e_err("Timesync Rx Control register not set as expected\n");
3715 /* L2: define ethertype filter for time stamped packets */
3717 rxmtrl |= ETH_P_1588;
3719 /* define which PTP packets get time stamped */
3720 ew32(RXMTRL, rxmtrl);
3722 /* Filter by destination port */
3724 rxudp = PTP_EV_PORT;
3725 cpu_to_be16s(&rxudp);
3731 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3735 /* Get and set the System Time Register SYSTIM base frequency */
3736 ret_val = e1000e_get_base_timinca(adapter, ®val);
3739 ew32(TIMINCA, regval);
3741 /* reset the ns time counter */
3742 timecounter_init(&adapter->tc, &adapter->cc,
3743 ktime_to_ns(ktime_get_real()));
3749 * e1000_configure - configure the hardware for Rx and Tx
3750 * @adapter: private board structure
3752 static void e1000_configure(struct e1000_adapter *adapter)
3754 struct e1000_ring *rx_ring = adapter->rx_ring;
3756 e1000e_set_rx_mode(adapter->netdev);
3758 e1000_restore_vlan(adapter);
3759 e1000_init_manageability_pt(adapter);
3761 e1000_configure_tx(adapter);
3763 if (adapter->netdev->features & NETIF_F_RXHASH)
3764 e1000e_setup_rss_hash(adapter);
3765 e1000_setup_rctl(adapter);
3766 e1000_configure_rx(adapter);
3767 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3771 * e1000e_power_up_phy - restore link in case the phy was powered down
3772 * @adapter: address of board private structure
3774 * The phy may be powered down to save power and turn off link when the
3775 * driver is unloaded and wake on lan is not enabled (among others)
3776 * *** this routine MUST be followed by a call to e1000e_reset ***
3778 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3780 if (adapter->hw.phy.ops.power_up)
3781 adapter->hw.phy.ops.power_up(&adapter->hw);
3783 adapter->hw.mac.ops.setup_link(&adapter->hw);
3787 * e1000_power_down_phy - Power down the PHY
3789 * Power down the PHY so no link is implied when interface is down.
3790 * The PHY cannot be powered down if management or WoL is active.
3792 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3794 if (adapter->hw.phy.ops.power_down)
3795 adapter->hw.phy.ops.power_down(&adapter->hw);
3799 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3801 * We want to clear all pending descriptors from the TX ring.
3802 * zeroing happens when the HW reads the regs. We assign the ring itself as
3803 * the data of the next descriptor. We don't care about the data we are about
3806 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3808 struct e1000_hw *hw = &adapter->hw;
3809 struct e1000_ring *tx_ring = adapter->tx_ring;
3810 struct e1000_tx_desc *tx_desc = NULL;
3811 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3815 ew32(TCTL, tctl | E1000_TCTL_EN);
3817 BUG_ON(tdt != tx_ring->next_to_use);
3818 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3819 tx_desc->buffer_addr = tx_ring->dma;
3821 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3822 tx_desc->upper.data = 0;
3823 /* flush descriptors to memory before notifying the HW */
3825 tx_ring->next_to_use++;
3826 if (tx_ring->next_to_use == tx_ring->count)
3827 tx_ring->next_to_use = 0;
3828 ew32(TDT(0), tx_ring->next_to_use);
3830 usleep_range(200, 250);
3834 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3836 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3838 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3841 struct e1000_hw *hw = &adapter->hw;
3844 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3846 usleep_range(100, 150);
3848 rxdctl = er32(RXDCTL(0));
3849 /* zero the lower 14 bits (prefetch and host thresholds) */
3850 rxdctl &= 0xffffc000;
3852 /* update thresholds: prefetch threshold to 31, host threshold to 1
3853 * and make sure the granularity is "descriptors" and not "cache lines"
3855 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3857 ew32(RXDCTL(0), rxdctl);
3858 /* momentarily enable the RX ring for the changes to take effect */
3859 ew32(RCTL, rctl | E1000_RCTL_EN);
3861 usleep_range(100, 150);
3862 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3866 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3868 * In i219, the descriptor rings must be emptied before resetting the HW
3869 * or before changing the device state to D3 during runtime (runtime PM).
3871 * Failure to do this will cause the HW to enter a unit hang state which can
3872 * only be released by PCI reset on the device
3876 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3879 u32 fext_nvm11, tdlen;
3880 struct e1000_hw *hw = &adapter->hw;
3882 /* First, disable MULR fix in FEXTNVM11 */
3883 fext_nvm11 = er32(FEXTNVM11);
3884 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3885 ew32(FEXTNVM11, fext_nvm11);
3886 /* do nothing if we're not in faulty state, or if the queue is empty */
3887 tdlen = er32(TDLEN(0));
3888 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3890 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3892 e1000_flush_tx_ring(adapter);
3893 /* recheck, maybe the fault is caused by the rx ring */
3894 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896 if (hang_state & FLUSH_DESC_REQUIRED)
3897 e1000_flush_rx_ring(adapter);
3901 * e1000e_reset - bring the hardware into a known good state
3903 * This function boots the hardware and enables some settings that
3904 * require a configuration cycle of the hardware - those cannot be
3905 * set/changed during runtime. After reset the device needs to be
3906 * properly configured for Rx, Tx etc.
3908 void e1000e_reset(struct e1000_adapter *adapter)
3910 struct e1000_mac_info *mac = &adapter->hw.mac;
3911 struct e1000_fc_info *fc = &adapter->hw.fc;
3912 struct e1000_hw *hw = &adapter->hw;
3913 u32 tx_space, min_tx_space, min_rx_space;
3914 u32 pba = adapter->pba;
3917 /* reset Packet Buffer Allocation to default */
3920 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3921 /* To maintain wire speed transmits, the Tx FIFO should be
3922 * large enough to accommodate two full transmit packets,
3923 * rounded up to the next 1KB and expressed in KB. Likewise,
3924 * the Rx FIFO should be large enough to accommodate at least
3925 * one full receive packet and is similarly rounded up and
3929 /* upper 16 bits has Tx packet buffer allocation size in KB */
3930 tx_space = pba >> 16;
3931 /* lower 16 bits has Rx packet buffer allocation size in KB */
3933 /* the Tx fifo also stores 16 bytes of information about the Tx
3934 * but don't include ethernet FCS because hardware appends it
3936 min_tx_space = (adapter->max_frame_size +
3937 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3938 min_tx_space = ALIGN(min_tx_space, 1024);
3939 min_tx_space >>= 10;
3940 /* software strips receive CRC, so leave room for it */
3941 min_rx_space = adapter->max_frame_size;
3942 min_rx_space = ALIGN(min_rx_space, 1024);
3943 min_rx_space >>= 10;
3945 /* If current Tx allocation is less than the min Tx FIFO size,
3946 * and the min Tx FIFO size is less than the current Rx FIFO
3947 * allocation, take space away from current Rx allocation
3949 if ((tx_space < min_tx_space) &&
3950 ((min_tx_space - tx_space) < pba)) {
3951 pba -= min_tx_space - tx_space;
3953 /* if short on Rx space, Rx wins and must trump Tx
3956 if (pba < min_rx_space)
3963 /* flow control settings
3965 * The high water mark must be low enough to fit one full frame
3966 * (or the size used for early receive) above it in the Rx FIFO.
3967 * Set it to the lower of:
3968 * - 90% of the Rx FIFO size, and
3969 * - the full Rx FIFO size minus one full frame
3971 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3972 fc->pause_time = 0xFFFF;
3974 fc->pause_time = E1000_FC_PAUSE_TIME;
3975 fc->send_xon = true;
3976 fc->current_mode = fc->requested_mode;
3978 switch (hw->mac.type) {
3980 case e1000_ich10lan:
3981 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3984 fc->high_water = 0x2800;
3985 fc->low_water = fc->high_water - 8;
3990 hwm = min(((pba << 10) * 9 / 10),
3991 ((pba << 10) - adapter->max_frame_size));
3993 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3994 fc->low_water = fc->high_water - 8;
3997 /* Workaround PCH LOM adapter hangs with certain network
3998 * loads. If hangs persist, try disabling Tx flow control.
4000 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4001 fc->high_water = 0x3500;
4002 fc->low_water = 0x1500;
4004 fc->high_water = 0x5000;
4005 fc->low_water = 0x3000;
4007 fc->refresh_time = 0x1000;
4012 fc->refresh_time = 0x0400;
4014 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4015 fc->high_water = 0x05C20;
4016 fc->low_water = 0x05048;
4017 fc->pause_time = 0x0650;
4023 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4024 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4028 /* Alignment of Tx data is on an arbitrary byte boundary with the
4029 * maximum size per Tx descriptor limited only to the transmit
4030 * allocation of the packet buffer minus 96 bytes with an upper
4031 * limit of 24KB due to receive synchronization limitations.
4033 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4036 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4037 * fit in receive buffer.
4039 if (adapter->itr_setting & 0x3) {
4040 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4041 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4042 dev_info(&adapter->pdev->dev,
4043 "Interrupt Throttle Rate off\n");
4044 adapter->flags2 |= FLAG2_DISABLE_AIM;
4045 e1000e_write_itr(adapter, 0);
4047 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4048 dev_info(&adapter->pdev->dev,
4049 "Interrupt Throttle Rate on\n");
4050 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4051 adapter->itr = 20000;
4052 e1000e_write_itr(adapter, adapter->itr);
4056 if (hw->mac.type == e1000_pch_spt)
4057 e1000_flush_desc_rings(adapter);
4058 /* Allow time for pending master requests to run */
4059 mac->ops.reset_hw(hw);
4061 /* For parts with AMT enabled, let the firmware know
4062 * that the network interface is in control
4064 if (adapter->flags & FLAG_HAS_AMT)
4065 e1000e_get_hw_control(adapter);
4069 if (mac->ops.init_hw(hw))
4070 e_err("Hardware Error\n");
4072 e1000_update_mng_vlan(adapter);
4074 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4075 ew32(VET, ETH_P_8021Q);
4077 e1000e_reset_adaptive(hw);
4079 /* initialize systim and reset the ns time counter */
4080 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4082 /* Set EEE advertisement as appropriate */
4083 if (adapter->flags2 & FLAG2_HAS_EEE) {
4087 switch (hw->phy.type) {
4088 case e1000_phy_82579:
4089 adv_addr = I82579_EEE_ADVERTISEMENT;
4091 case e1000_phy_i217:
4092 adv_addr = I217_EEE_ADVERTISEMENT;
4095 dev_err(&adapter->pdev->dev,
4096 "Invalid PHY type setting EEE advertisement\n");
4100 ret_val = hw->phy.ops.acquire(hw);
4102 dev_err(&adapter->pdev->dev,
4103 "EEE advertisement - unable to acquire PHY\n");
4107 e1000_write_emi_reg_locked(hw, adv_addr,
4108 hw->dev_spec.ich8lan.eee_disable ?
4109 0 : adapter->eee_advert);
4111 hw->phy.ops.release(hw);
4114 if (!netif_running(adapter->netdev) &&
4115 !test_bit(__E1000_TESTING, &adapter->state))
4116 e1000_power_down_phy(adapter);
4118 e1000_get_phy_info(hw);
4120 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4121 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4123 /* speed up time to link by disabling smart power down, ignore
4124 * the return value of this function because there is nothing
4125 * different we would do if it failed
4127 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4128 phy_data &= ~IGP02E1000_PM_SPD;
4129 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4131 if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4134 /* Fextnvm7 @ 0xe4[2] = 1 */
4135 reg = er32(FEXTNVM7);
4136 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4137 ew32(FEXTNVM7, reg);
4138 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4139 reg = er32(FEXTNVM9);
4140 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4141 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4142 ew32(FEXTNVM9, reg);
4147 int e1000e_up(struct e1000_adapter *adapter)
4149 struct e1000_hw *hw = &adapter->hw;
4151 /* hardware has been reset, we need to reload some things */
4152 e1000_configure(adapter);
4154 clear_bit(__E1000_DOWN, &adapter->state);
4156 if (adapter->msix_entries)
4157 e1000_configure_msix(adapter);
4158 e1000_irq_enable(adapter);
4160 netif_start_queue(adapter->netdev);
4162 /* fire a link change interrupt to start the watchdog */
4163 if (adapter->msix_entries)
4164 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4166 ew32(ICS, E1000_ICS_LSC);
4171 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4173 struct e1000_hw *hw = &adapter->hw;
4175 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4178 /* flush pending descriptor writebacks to memory */
4179 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4180 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4182 /* execute the writes immediately */
4185 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4186 * write is successful
4188 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4189 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4191 /* execute the writes immediately */
4195 static void e1000e_update_stats(struct e1000_adapter *adapter);
4198 * e1000e_down - quiesce the device and optionally reset the hardware
4199 * @adapter: board private structure
4200 * @reset: boolean flag to reset the hardware or not
4202 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4204 struct net_device *netdev = adapter->netdev;
4205 struct e1000_hw *hw = &adapter->hw;
4208 /* signal that we're down so the interrupt handler does not
4209 * reschedule our watchdog timer
4211 set_bit(__E1000_DOWN, &adapter->state);
4213 netif_carrier_off(netdev);
4215 /* disable receives in the hardware */
4217 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4218 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4219 /* flush and sleep below */
4221 netif_stop_queue(netdev);
4223 /* disable transmits in the hardware */
4225 tctl &= ~E1000_TCTL_EN;
4228 /* flush both disables and wait for them to finish */
4230 usleep_range(10000, 20000);
4232 e1000_irq_disable(adapter);
4234 napi_synchronize(&adapter->napi);
4236 del_timer_sync(&adapter->watchdog_timer);
4237 del_timer_sync(&adapter->phy_info_timer);
4239 spin_lock(&adapter->stats64_lock);
4240 e1000e_update_stats(adapter);
4241 spin_unlock(&adapter->stats64_lock);
4243 e1000e_flush_descriptors(adapter);
4245 adapter->link_speed = 0;
4246 adapter->link_duplex = 0;
4248 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4249 if ((hw->mac.type >= e1000_pch2lan) &&
4250 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4251 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4252 e_dbg("failed to disable jumbo frame workaround mode\n");
4254 if (!pci_channel_offline(adapter->pdev)) {
4256 e1000e_reset(adapter);
4257 else if (hw->mac.type == e1000_pch_spt)
4258 e1000_flush_desc_rings(adapter);
4260 e1000_clean_tx_ring(adapter->tx_ring);
4261 e1000_clean_rx_ring(adapter->rx_ring);
4264 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4267 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4268 usleep_range(1000, 2000);
4269 e1000e_down(adapter, true);
4271 clear_bit(__E1000_RESETTING, &adapter->state);
4275 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4276 * @cc: cyclecounter structure
4278 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4280 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4282 struct e1000_hw *hw = &adapter->hw;
4283 u32 systimel_1, systimel_2, systimeh;
4284 cycle_t systim, systim_next;
4285 /* SYSTIMH latching upon SYSTIML read does not work well.
4286 * This means that if SYSTIML overflows after we read it but before
4287 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4288 * will experience a huge non linear increment in the systime value
4289 * to fix that we test for overflow and if true, we re-read systime.
4291 systimel_1 = er32(SYSTIML);
4292 systimeh = er32(SYSTIMH);
4293 systimel_2 = er32(SYSTIML);
4294 /* Check for overflow. If there was no overflow, use the values */
4295 if (systimel_1 < systimel_2) {
4296 systim = (cycle_t)systimel_1;
4297 systim |= (cycle_t)systimeh << 32;
4299 /* There was an overflow, read again SYSTIMH, and use
4302 systimeh = er32(SYSTIMH);
4303 systim = (cycle_t)systimel_2;
4304 systim |= (cycle_t)systimeh << 32;
4307 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4308 u64 incvalue, time_delta, rem, temp;
4311 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4312 * check to see that the time is incrementing at a reasonable
4313 * rate and is a multiple of incvalue
4315 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4316 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4317 /* latch SYSTIMH on read of SYSTIML */
4318 systim_next = (cycle_t)er32(SYSTIML);
4319 systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4321 time_delta = systim_next - systim;
4323 rem = do_div(temp, incvalue);
4325 systim = systim_next;
4327 if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4336 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4337 * @adapter: board private structure to initialize
4339 * e1000_sw_init initializes the Adapter private data structure.
4340 * Fields are initialized based on PCI device information and
4341 * OS network device settings (MTU size).
4343 static int e1000_sw_init(struct e1000_adapter *adapter)
4345 struct net_device *netdev = adapter->netdev;
4347 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4348 adapter->rx_ps_bsize0 = 128;
4349 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4350 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4351 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4352 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4354 spin_lock_init(&adapter->stats64_lock);
4356 e1000e_set_interrupt_capability(adapter);
4358 if (e1000_alloc_queues(adapter))
4361 /* Setup hardware time stamping cyclecounter */
4362 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4363 adapter->cc.read = e1000e_cyclecounter_read;
4364 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4365 adapter->cc.mult = 1;
4366 /* cc.shift set in e1000e_get_base_tininca() */
4368 spin_lock_init(&adapter->systim_lock);
4369 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4372 /* Explicitly disable IRQ since the NIC can be in any state. */
4373 e1000_irq_disable(adapter);
4375 set_bit(__E1000_DOWN, &adapter->state);
4380 * e1000_intr_msi_test - Interrupt Handler
4381 * @irq: interrupt number
4382 * @data: pointer to a network interface device structure
4384 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4386 struct net_device *netdev = data;
4387 struct e1000_adapter *adapter = netdev_priv(netdev);
4388 struct e1000_hw *hw = &adapter->hw;
4389 u32 icr = er32(ICR);
4391 e_dbg("icr is %08X\n", icr);
4392 if (icr & E1000_ICR_RXSEQ) {
4393 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4394 /* Force memory writes to complete before acknowledging the
4395 * interrupt is handled.
4404 * e1000_test_msi_interrupt - Returns 0 for successful test
4405 * @adapter: board private struct
4407 * code flow taken from tg3.c
4409 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4411 struct net_device *netdev = adapter->netdev;
4412 struct e1000_hw *hw = &adapter->hw;
4415 /* poll_enable hasn't been called yet, so don't need disable */
4416 /* clear any pending events */
4419 /* free the real vector and request a test handler */
4420 e1000_free_irq(adapter);
4421 e1000e_reset_interrupt_capability(adapter);
4423 /* Assume that the test fails, if it succeeds then the test
4424 * MSI irq handler will unset this flag
4426 adapter->flags |= FLAG_MSI_TEST_FAILED;
4428 err = pci_enable_msi(adapter->pdev);
4430 goto msi_test_failed;
4432 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4433 netdev->name, netdev);
4435 pci_disable_msi(adapter->pdev);
4436 goto msi_test_failed;
4439 /* Force memory writes to complete before enabling and firing an
4444 e1000_irq_enable(adapter);
4446 /* fire an unusual interrupt on the test handler */
4447 ew32(ICS, E1000_ICS_RXSEQ);
4451 e1000_irq_disable(adapter);
4453 rmb(); /* read flags after interrupt has been fired */
4455 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4456 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4457 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4459 e_dbg("MSI interrupt test succeeded!\n");
4462 free_irq(adapter->pdev->irq, netdev);
4463 pci_disable_msi(adapter->pdev);
4466 e1000e_set_interrupt_capability(adapter);
4467 return e1000_request_irq(adapter);
4471 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4472 * @adapter: board private struct
4474 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4476 static int e1000_test_msi(struct e1000_adapter *adapter)
4481 if (!(adapter->flags & FLAG_MSI_ENABLED))
4484 /* disable SERR in case the MSI write causes a master abort */
4485 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4486 if (pci_cmd & PCI_COMMAND_SERR)
4487 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4488 pci_cmd & ~PCI_COMMAND_SERR);
4490 err = e1000_test_msi_interrupt(adapter);
4492 /* re-enable SERR */
4493 if (pci_cmd & PCI_COMMAND_SERR) {
4494 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4495 pci_cmd |= PCI_COMMAND_SERR;
4496 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4503 * e1000_open - Called when a network interface is made active
4504 * @netdev: network interface device structure
4506 * Returns 0 on success, negative value on failure
4508 * The open entry point is called when a network interface is made
4509 * active by the system (IFF_UP). At this point all resources needed
4510 * for transmit and receive operations are allocated, the interrupt
4511 * handler is registered with the OS, the watchdog timer is started,
4512 * and the stack is notified that the interface is ready.
4514 static int e1000_open(struct net_device *netdev)
4516 struct e1000_adapter *adapter = netdev_priv(netdev);
4517 struct e1000_hw *hw = &adapter->hw;
4518 struct pci_dev *pdev = adapter->pdev;
4521 /* disallow open during test */
4522 if (test_bit(__E1000_TESTING, &adapter->state))
4525 pm_runtime_get_sync(&pdev->dev);
4527 netif_carrier_off(netdev);
4529 /* allocate transmit descriptors */
4530 err = e1000e_setup_tx_resources(adapter->tx_ring);
4534 /* allocate receive descriptors */
4535 err = e1000e_setup_rx_resources(adapter->rx_ring);
4539 /* If AMT is enabled, let the firmware know that the network
4540 * interface is now open and reset the part to a known state.
4542 if (adapter->flags & FLAG_HAS_AMT) {
4543 e1000e_get_hw_control(adapter);
4544 e1000e_reset(adapter);
4547 e1000e_power_up_phy(adapter);
4549 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4550 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4551 e1000_update_mng_vlan(adapter);
4553 /* DMA latency requirement to workaround jumbo issue */
4554 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4555 PM_QOS_DEFAULT_VALUE);
4557 /* before we allocate an interrupt, we must be ready to handle it.
4558 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4559 * as soon as we call pci_request_irq, so we have to setup our
4560 * clean_rx handler before we do so.
4562 e1000_configure(adapter);
4564 err = e1000_request_irq(adapter);
4568 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4569 * ignore e1000e MSI messages, which means we need to test our MSI
4572 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4573 err = e1000_test_msi(adapter);
4575 e_err("Interrupt allocation failed\n");
4580 /* From here on the code is the same as e1000e_up() */
4581 clear_bit(__E1000_DOWN, &adapter->state);
4583 napi_enable(&adapter->napi);
4585 e1000_irq_enable(adapter);
4587 adapter->tx_hang_recheck = false;
4588 netif_start_queue(netdev);
4590 hw->mac.get_link_status = true;
4591 pm_runtime_put(&pdev->dev);
4593 /* fire a link status change interrupt to start the watchdog */
4594 if (adapter->msix_entries)
4595 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4597 ew32(ICS, E1000_ICS_LSC);
4602 pm_qos_remove_request(&adapter->pm_qos_req);
4603 e1000e_release_hw_control(adapter);
4604 e1000_power_down_phy(adapter);
4605 e1000e_free_rx_resources(adapter->rx_ring);
4607 e1000e_free_tx_resources(adapter->tx_ring);
4609 e1000e_reset(adapter);
4610 pm_runtime_put_sync(&pdev->dev);
4616 * e1000_close - Disables a network interface
4617 * @netdev: network interface device structure
4619 * Returns 0, this is not allowed to fail
4621 * The close entry point is called when an interface is de-activated
4622 * by the OS. The hardware is still under the drivers control, but
4623 * needs to be disabled. A global MAC reset is issued to stop the
4624 * hardware, and all transmit and receive resources are freed.
4626 static int e1000_close(struct net_device *netdev)
4628 struct e1000_adapter *adapter = netdev_priv(netdev);
4629 struct pci_dev *pdev = adapter->pdev;
4630 int count = E1000_CHECK_RESET_COUNT;
4632 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4633 usleep_range(10000, 20000);
4635 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4637 pm_runtime_get_sync(&pdev->dev);
4639 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4640 e1000e_down(adapter, true);
4641 e1000_free_irq(adapter);
4643 /* Link status message must follow this format */
4644 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4647 napi_disable(&adapter->napi);
4649 e1000e_free_tx_resources(adapter->tx_ring);
4650 e1000e_free_rx_resources(adapter->rx_ring);
4652 /* kill manageability vlan ID if supported, but not if a vlan with
4653 * the same ID is registered on the host OS (let 8021q kill it)
4655 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4656 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4657 adapter->mng_vlan_id);
4659 /* If AMT is enabled, let the firmware know that the network
4660 * interface is now closed
4662 if ((adapter->flags & FLAG_HAS_AMT) &&
4663 !test_bit(__E1000_TESTING, &adapter->state))
4664 e1000e_release_hw_control(adapter);
4666 pm_qos_remove_request(&adapter->pm_qos_req);
4668 pm_runtime_put_sync(&pdev->dev);
4674 * e1000_set_mac - Change the Ethernet Address of the NIC
4675 * @netdev: network interface device structure
4676 * @p: pointer to an address structure
4678 * Returns 0 on success, negative on failure
4680 static int e1000_set_mac(struct net_device *netdev, void *p)
4682 struct e1000_adapter *adapter = netdev_priv(netdev);
4683 struct e1000_hw *hw = &adapter->hw;
4684 struct sockaddr *addr = p;
4686 if (!is_valid_ether_addr(addr->sa_data))
4687 return -EADDRNOTAVAIL;
4689 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4690 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4692 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4694 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4695 /* activate the work around */
4696 e1000e_set_laa_state_82571(&adapter->hw, 1);
4698 /* Hold a copy of the LAA in RAR[14] This is done so that
4699 * between the time RAR[0] gets clobbered and the time it
4700 * gets fixed (in e1000_watchdog), the actual LAA is in one
4701 * of the RARs and no incoming packets directed to this port
4702 * are dropped. Eventually the LAA will be in RAR[0] and
4705 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4706 adapter->hw.mac.rar_entry_count - 1);
4713 * e1000e_update_phy_task - work thread to update phy
4714 * @work: pointer to our work struct
4716 * this worker thread exists because we must acquire a
4717 * semaphore to read the phy, which we could msleep while
4718 * waiting for it, and we can't msleep in a timer.
4720 static void e1000e_update_phy_task(struct work_struct *work)
4722 struct e1000_adapter *adapter = container_of(work,
4723 struct e1000_adapter,
4725 struct e1000_hw *hw = &adapter->hw;
4727 if (test_bit(__E1000_DOWN, &adapter->state))
4730 e1000_get_phy_info(hw);
4732 /* Enable EEE on 82579 after link up */
4733 if (hw->phy.type >= e1000_phy_82579)
4734 e1000_set_eee_pchlan(hw);
4738 * e1000_update_phy_info - timre call-back to update PHY info
4739 * @data: pointer to adapter cast into an unsigned long
4741 * Need to wait a few seconds after link up to get diagnostic information from
4744 static void e1000_update_phy_info(unsigned long data)
4746 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4748 if (test_bit(__E1000_DOWN, &adapter->state))
4751 schedule_work(&adapter->update_phy_task);
4755 * e1000e_update_phy_stats - Update the PHY statistics counters
4756 * @adapter: board private structure
4758 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4760 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4762 struct e1000_hw *hw = &adapter->hw;
4766 ret_val = hw->phy.ops.acquire(hw);
4770 /* A page set is expensive so check if already on desired page.
4771 * If not, set to the page with the PHY status registers.
4774 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4778 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4779 ret_val = hw->phy.ops.set_page(hw,
4780 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4785 /* Single Collision Count */
4786 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4787 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4789 adapter->stats.scc += phy_data;
4791 /* Excessive Collision Count */
4792 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4793 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4795 adapter->stats.ecol += phy_data;
4797 /* Multiple Collision Count */
4798 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4799 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4801 adapter->stats.mcc += phy_data;
4803 /* Late Collision Count */
4804 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4805 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4807 adapter->stats.latecol += phy_data;
4809 /* Collision Count - also used for adaptive IFS */
4810 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4811 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4813 hw->mac.collision_delta = phy_data;
4816 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4817 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4819 adapter->stats.dc += phy_data;
4821 /* Transmit with no CRS */
4822 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4823 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4825 adapter->stats.tncrs += phy_data;
4828 hw->phy.ops.release(hw);
4832 * e1000e_update_stats - Update the board statistics counters
4833 * @adapter: board private structure
4835 static void e1000e_update_stats(struct e1000_adapter *adapter)
4837 struct net_device *netdev = adapter->netdev;
4838 struct e1000_hw *hw = &adapter->hw;
4839 struct pci_dev *pdev = adapter->pdev;
4841 /* Prevent stats update while adapter is being reset, or if the pci
4842 * connection is down.
4844 if (adapter->link_speed == 0)
4846 if (pci_channel_offline(pdev))
4849 adapter->stats.crcerrs += er32(CRCERRS);
4850 adapter->stats.gprc += er32(GPRC);
4851 adapter->stats.gorc += er32(GORCL);
4852 er32(GORCH); /* Clear gorc */
4853 adapter->stats.bprc += er32(BPRC);
4854 adapter->stats.mprc += er32(MPRC);
4855 adapter->stats.roc += er32(ROC);
4857 adapter->stats.mpc += er32(MPC);
4859 /* Half-duplex statistics */
4860 if (adapter->link_duplex == HALF_DUPLEX) {
4861 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4862 e1000e_update_phy_stats(adapter);
4864 adapter->stats.scc += er32(SCC);
4865 adapter->stats.ecol += er32(ECOL);
4866 adapter->stats.mcc += er32(MCC);
4867 adapter->stats.latecol += er32(LATECOL);
4868 adapter->stats.dc += er32(DC);
4870 hw->mac.collision_delta = er32(COLC);
4872 if ((hw->mac.type != e1000_82574) &&
4873 (hw->mac.type != e1000_82583))
4874 adapter->stats.tncrs += er32(TNCRS);
4876 adapter->stats.colc += hw->mac.collision_delta;
4879 adapter->stats.xonrxc += er32(XONRXC);
4880 adapter->stats.xontxc += er32(XONTXC);
4881 adapter->stats.xoffrxc += er32(XOFFRXC);
4882 adapter->stats.xofftxc += er32(XOFFTXC);
4883 adapter->stats.gptc += er32(GPTC);
4884 adapter->stats.gotc += er32(GOTCL);
4885 er32(GOTCH); /* Clear gotc */
4886 adapter->stats.rnbc += er32(RNBC);
4887 adapter->stats.ruc += er32(RUC);
4889 adapter->stats.mptc += er32(MPTC);
4890 adapter->stats.bptc += er32(BPTC);
4892 /* used for adaptive IFS */
4894 hw->mac.tx_packet_delta = er32(TPT);
4895 adapter->stats.tpt += hw->mac.tx_packet_delta;
4897 adapter->stats.algnerrc += er32(ALGNERRC);
4898 adapter->stats.rxerrc += er32(RXERRC);
4899 adapter->stats.cexterr += er32(CEXTERR);
4900 adapter->stats.tsctc += er32(TSCTC);
4901 adapter->stats.tsctfc += er32(TSCTFC);
4903 /* Fill out the OS statistics structure */
4904 netdev->stats.multicast = adapter->stats.mprc;
4905 netdev->stats.collisions = adapter->stats.colc;
4909 /* RLEC on some newer hardware can be incorrect so build
4910 * our own version based on RUC and ROC
4912 netdev->stats.rx_errors = adapter->stats.rxerrc +
4913 adapter->stats.crcerrs + adapter->stats.algnerrc +
4914 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4915 netdev->stats.rx_length_errors = adapter->stats.ruc +
4917 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4918 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4919 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4922 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4923 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4924 netdev->stats.tx_window_errors = adapter->stats.latecol;
4925 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4927 /* Tx Dropped needs to be maintained elsewhere */
4929 /* Management Stats */
4930 adapter->stats.mgptc += er32(MGTPTC);
4931 adapter->stats.mgprc += er32(MGTPRC);
4932 adapter->stats.mgpdc += er32(MGTPDC);
4934 /* Correctable ECC Errors */
4935 if ((hw->mac.type == e1000_pch_lpt) ||
4936 (hw->mac.type == e1000_pch_spt)) {
4937 u32 pbeccsts = er32(PBECCSTS);
4939 adapter->corr_errors +=
4940 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4941 adapter->uncorr_errors +=
4942 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4943 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4948 * e1000_phy_read_status - Update the PHY register status snapshot
4949 * @adapter: board private structure
4951 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4953 struct e1000_hw *hw = &adapter->hw;
4954 struct e1000_phy_regs *phy = &adapter->phy_regs;
4956 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4957 (er32(STATUS) & E1000_STATUS_LU) &&
4958 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4961 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4962 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4963 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4964 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4965 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4966 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4967 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4968 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4970 e_warn("Error reading PHY register\n");
4972 /* Do not read PHY registers if link is not up
4973 * Set values to typical power-on defaults
4975 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4976 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4977 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4979 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4980 ADVERTISE_ALL | ADVERTISE_CSMA);
4982 phy->expansion = EXPANSION_ENABLENPAGE;
4983 phy->ctrl1000 = ADVERTISE_1000FULL;
4985 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4989 static void e1000_print_link_info(struct e1000_adapter *adapter)
4991 struct e1000_hw *hw = &adapter->hw;
4992 u32 ctrl = er32(CTRL);
4994 /* Link status message must follow this format for user tools */
4995 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4996 adapter->netdev->name, adapter->link_speed,
4997 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4998 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4999 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5000 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5003 static bool e1000e_has_link(struct e1000_adapter *adapter)
5005 struct e1000_hw *hw = &adapter->hw;
5006 bool link_active = false;
5009 /* get_link_status is set on LSC (link status) interrupt or
5010 * Rx sequence error interrupt. get_link_status will stay
5011 * false until the check_for_link establishes link
5012 * for copper adapters ONLY
5014 switch (hw->phy.media_type) {
5015 case e1000_media_type_copper:
5016 if (hw->mac.get_link_status) {
5017 ret_val = hw->mac.ops.check_for_link(hw);
5018 link_active = !hw->mac.get_link_status;
5023 case e1000_media_type_fiber:
5024 ret_val = hw->mac.ops.check_for_link(hw);
5025 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5027 case e1000_media_type_internal_serdes:
5028 ret_val = hw->mac.ops.check_for_link(hw);
5029 link_active = adapter->hw.mac.serdes_has_link;
5032 case e1000_media_type_unknown:
5036 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5037 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5038 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5039 e_info("Gigabit has been disabled, downgrading speed\n");
5045 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5047 /* make sure the receive unit is started */
5048 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5049 (adapter->flags & FLAG_RESTART_NOW)) {
5050 struct e1000_hw *hw = &adapter->hw;
5051 u32 rctl = er32(RCTL);
5053 ew32(RCTL, rctl | E1000_RCTL_EN);
5054 adapter->flags &= ~FLAG_RESTART_NOW;
5058 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5060 struct e1000_hw *hw = &adapter->hw;
5062 /* With 82574 controllers, PHY needs to be checked periodically
5063 * for hung state and reset, if two calls return true
5065 if (e1000_check_phy_82574(hw))
5066 adapter->phy_hang_count++;
5068 adapter->phy_hang_count = 0;
5070 if (adapter->phy_hang_count > 1) {
5071 adapter->phy_hang_count = 0;
5072 e_dbg("PHY appears hung - resetting\n");
5073 schedule_work(&adapter->reset_task);
5078 * e1000_watchdog - Timer Call-back
5079 * @data: pointer to adapter cast into an unsigned long
5081 static void e1000_watchdog(unsigned long data)
5083 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5085 /* Do the rest outside of interrupt context */
5086 schedule_work(&adapter->watchdog_task);
5088 /* TODO: make this use queue_delayed_work() */
5091 static void e1000_watchdog_task(struct work_struct *work)
5093 struct e1000_adapter *adapter = container_of(work,
5094 struct e1000_adapter,
5096 struct net_device *netdev = adapter->netdev;
5097 struct e1000_mac_info *mac = &adapter->hw.mac;
5098 struct e1000_phy_info *phy = &adapter->hw.phy;
5099 struct e1000_ring *tx_ring = adapter->tx_ring;
5100 struct e1000_hw *hw = &adapter->hw;
5103 if (test_bit(__E1000_DOWN, &adapter->state))
5106 link = e1000e_has_link(adapter);
5107 if ((netif_carrier_ok(netdev)) && link) {
5108 /* Cancel scheduled suspend requests. */
5109 pm_runtime_resume(netdev->dev.parent);
5111 e1000e_enable_receives(adapter);
5115 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5116 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5117 e1000_update_mng_vlan(adapter);
5120 if (!netif_carrier_ok(netdev)) {
5123 /* Cancel scheduled suspend requests. */
5124 pm_runtime_resume(netdev->dev.parent);
5126 /* update snapshot of PHY registers on LSC */
5127 e1000_phy_read_status(adapter);
5128 mac->ops.get_link_up_info(&adapter->hw,
5129 &adapter->link_speed,
5130 &adapter->link_duplex);
5131 e1000_print_link_info(adapter);
5133 /* check if SmartSpeed worked */
5134 e1000e_check_downshift(hw);
5135 if (phy->speed_downgraded)
5137 "Link Speed was downgraded by SmartSpeed\n");
5139 /* On supported PHYs, check for duplex mismatch only
5140 * if link has autonegotiated at 10/100 half
5142 if ((hw->phy.type == e1000_phy_igp_3 ||
5143 hw->phy.type == e1000_phy_bm) &&
5145 (adapter->link_speed == SPEED_10 ||
5146 adapter->link_speed == SPEED_100) &&
5147 (adapter->link_duplex == HALF_DUPLEX)) {
5150 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5152 if (!(autoneg_exp & EXPANSION_NWAY))
5153 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5156 /* adjust timeout factor according to speed/duplex */
5157 adapter->tx_timeout_factor = 1;
5158 switch (adapter->link_speed) {
5161 adapter->tx_timeout_factor = 16;
5165 adapter->tx_timeout_factor = 10;
5169 /* workaround: re-program speed mode bit after
5172 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5176 tarc0 = er32(TARC(0));
5177 tarc0 &= ~SPEED_MODE_BIT;
5178 ew32(TARC(0), tarc0);
5181 /* disable TSO for pcie and 10/100 speeds, to avoid
5182 * some hardware issues
5184 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5185 switch (adapter->link_speed) {
5188 e_info("10/100 speed: disabling TSO\n");
5189 netdev->features &= ~NETIF_F_TSO;
5190 netdev->features &= ~NETIF_F_TSO6;
5193 netdev->features |= NETIF_F_TSO;
5194 netdev->features |= NETIF_F_TSO6;
5202 /* enable transmits in the hardware, need to do this
5203 * after setting TARC(0)
5206 tctl |= E1000_TCTL_EN;
5209 /* Perform any post-link-up configuration before
5210 * reporting link up.
5212 if (phy->ops.cfg_on_link_up)
5213 phy->ops.cfg_on_link_up(hw);
5215 netif_carrier_on(netdev);
5217 if (!test_bit(__E1000_DOWN, &adapter->state))
5218 mod_timer(&adapter->phy_info_timer,
5219 round_jiffies(jiffies + 2 * HZ));
5222 if (netif_carrier_ok(netdev)) {
5223 adapter->link_speed = 0;
5224 adapter->link_duplex = 0;
5225 /* Link status message must follow this format */
5226 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5227 netif_carrier_off(netdev);
5228 if (!test_bit(__E1000_DOWN, &adapter->state))
5229 mod_timer(&adapter->phy_info_timer,
5230 round_jiffies(jiffies + 2 * HZ));
5232 /* 8000ES2LAN requires a Rx packet buffer work-around
5233 * on link down event; reset the controller to flush
5234 * the Rx packet buffer.
5236 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5237 adapter->flags |= FLAG_RESTART_NOW;
5239 pm_schedule_suspend(netdev->dev.parent,
5245 spin_lock(&adapter->stats64_lock);
5246 e1000e_update_stats(adapter);
5248 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5249 adapter->tpt_old = adapter->stats.tpt;
5250 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5251 adapter->colc_old = adapter->stats.colc;
5253 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5254 adapter->gorc_old = adapter->stats.gorc;
5255 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5256 adapter->gotc_old = adapter->stats.gotc;
5257 spin_unlock(&adapter->stats64_lock);
5259 /* If the link is lost the controller stops DMA, but
5260 * if there is queued Tx work it cannot be done. So
5261 * reset the controller to flush the Tx packet buffers.
5263 if (!netif_carrier_ok(netdev) &&
5264 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5265 adapter->flags |= FLAG_RESTART_NOW;
5267 /* If reset is necessary, do it outside of interrupt context. */
5268 if (adapter->flags & FLAG_RESTART_NOW) {
5269 schedule_work(&adapter->reset_task);
5270 /* return immediately since reset is imminent */
5274 e1000e_update_adaptive(&adapter->hw);
5276 /* Simple mode for Interrupt Throttle Rate (ITR) */
5277 if (adapter->itr_setting == 4) {
5278 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5279 * Total asymmetrical Tx or Rx gets ITR=8000;
5280 * everyone else is between 2000-8000.
5282 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5283 u32 dif = (adapter->gotc > adapter->gorc ?
5284 adapter->gotc - adapter->gorc :
5285 adapter->gorc - adapter->gotc) / 10000;
5286 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5288 e1000e_write_itr(adapter, itr);
5291 /* Cause software interrupt to ensure Rx ring is cleaned */
5292 if (adapter->msix_entries)
5293 ew32(ICS, adapter->rx_ring->ims_val);
5295 ew32(ICS, E1000_ICS_RXDMT0);
5297 /* flush pending descriptors to memory before detecting Tx hang */
5298 e1000e_flush_descriptors(adapter);
5300 /* Force detection of hung controller every watchdog period */
5301 adapter->detect_tx_hung = true;
5303 /* With 82571 controllers, LAA may be overwritten due to controller
5304 * reset from the other port. Set the appropriate LAA in RAR[0]
5306 if (e1000e_get_laa_state_82571(hw))
5307 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5309 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5310 e1000e_check_82574_phy_workaround(adapter);
5312 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5313 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5314 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5315 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5317 adapter->rx_hwtstamp_cleared++;
5319 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5323 /* Reset the timer */
5324 if (!test_bit(__E1000_DOWN, &adapter->state))
5325 mod_timer(&adapter->watchdog_timer,
5326 round_jiffies(jiffies + 2 * HZ));
5329 #define E1000_TX_FLAGS_CSUM 0x00000001
5330 #define E1000_TX_FLAGS_VLAN 0x00000002
5331 #define E1000_TX_FLAGS_TSO 0x00000004
5332 #define E1000_TX_FLAGS_IPV4 0x00000008
5333 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5334 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5335 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5336 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5338 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5341 struct e1000_context_desc *context_desc;
5342 struct e1000_buffer *buffer_info;
5346 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5349 if (!skb_is_gso(skb))
5352 err = skb_cow_head(skb, 0);
5356 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5357 mss = skb_shinfo(skb)->gso_size;
5358 if (protocol == htons(ETH_P_IP)) {
5359 struct iphdr *iph = ip_hdr(skb);
5362 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5364 cmd_length = E1000_TXD_CMD_IP;
5365 ipcse = skb_transport_offset(skb) - 1;
5366 } else if (skb_is_gso_v6(skb)) {
5367 ipv6_hdr(skb)->payload_len = 0;
5368 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5369 &ipv6_hdr(skb)->daddr,
5373 ipcss = skb_network_offset(skb);
5374 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5375 tucss = skb_transport_offset(skb);
5376 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5378 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5379 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5381 i = tx_ring->next_to_use;
5382 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5383 buffer_info = &tx_ring->buffer_info[i];
5385 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5386 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5387 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5388 context_desc->upper_setup.tcp_fields.tucss = tucss;
5389 context_desc->upper_setup.tcp_fields.tucso = tucso;
5390 context_desc->upper_setup.tcp_fields.tucse = 0;
5391 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5392 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5393 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5395 buffer_info->time_stamp = jiffies;
5396 buffer_info->next_to_watch = i;
5399 if (i == tx_ring->count)
5401 tx_ring->next_to_use = i;
5406 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5409 struct e1000_adapter *adapter = tx_ring->adapter;
5410 struct e1000_context_desc *context_desc;
5411 struct e1000_buffer *buffer_info;
5414 u32 cmd_len = E1000_TXD_CMD_DEXT;
5416 if (skb->ip_summed != CHECKSUM_PARTIAL)
5420 case cpu_to_be16(ETH_P_IP):
5421 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5422 cmd_len |= E1000_TXD_CMD_TCP;
5424 case cpu_to_be16(ETH_P_IPV6):
5425 /* XXX not handling all IPV6 headers */
5426 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5427 cmd_len |= E1000_TXD_CMD_TCP;
5430 if (unlikely(net_ratelimit()))
5431 e_warn("checksum_partial proto=%x!\n",
5432 be16_to_cpu(protocol));
5436 css = skb_checksum_start_offset(skb);
5438 i = tx_ring->next_to_use;
5439 buffer_info = &tx_ring->buffer_info[i];
5440 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5442 context_desc->lower_setup.ip_config = 0;
5443 context_desc->upper_setup.tcp_fields.tucss = css;
5444 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5445 context_desc->upper_setup.tcp_fields.tucse = 0;
5446 context_desc->tcp_seg_setup.data = 0;
5447 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5449 buffer_info->time_stamp = jiffies;
5450 buffer_info->next_to_watch = i;
5453 if (i == tx_ring->count)
5455 tx_ring->next_to_use = i;
5460 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5461 unsigned int first, unsigned int max_per_txd,
5462 unsigned int nr_frags)
5464 struct e1000_adapter *adapter = tx_ring->adapter;
5465 struct pci_dev *pdev = adapter->pdev;
5466 struct e1000_buffer *buffer_info;
5467 unsigned int len = skb_headlen(skb);
5468 unsigned int offset = 0, size, count = 0, i;
5469 unsigned int f, bytecount, segs;
5471 i = tx_ring->next_to_use;
5474 buffer_info = &tx_ring->buffer_info[i];
5475 size = min(len, max_per_txd);
5477 buffer_info->length = size;
5478 buffer_info->time_stamp = jiffies;
5479 buffer_info->next_to_watch = i;
5480 buffer_info->dma = dma_map_single(&pdev->dev,
5482 size, DMA_TO_DEVICE);
5483 buffer_info->mapped_as_page = false;
5484 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5493 if (i == tx_ring->count)
5498 for (f = 0; f < nr_frags; f++) {
5499 const struct skb_frag_struct *frag;
5501 frag = &skb_shinfo(skb)->frags[f];
5502 len = skb_frag_size(frag);
5507 if (i == tx_ring->count)
5510 buffer_info = &tx_ring->buffer_info[i];
5511 size = min(len, max_per_txd);
5513 buffer_info->length = size;
5514 buffer_info->time_stamp = jiffies;
5515 buffer_info->next_to_watch = i;
5516 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5519 buffer_info->mapped_as_page = true;
5520 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5529 segs = skb_shinfo(skb)->gso_segs ? : 1;
5530 /* multiply data chunks by size of headers */
5531 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5533 tx_ring->buffer_info[i].skb = skb;
5534 tx_ring->buffer_info[i].segs = segs;
5535 tx_ring->buffer_info[i].bytecount = bytecount;
5536 tx_ring->buffer_info[first].next_to_watch = i;
5541 dev_err(&pdev->dev, "Tx DMA map failed\n");
5542 buffer_info->dma = 0;
5548 i += tx_ring->count;
5550 buffer_info = &tx_ring->buffer_info[i];
5551 e1000_put_txbuf(tx_ring, buffer_info);
5557 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5559 struct e1000_adapter *adapter = tx_ring->adapter;
5560 struct e1000_tx_desc *tx_desc = NULL;
5561 struct e1000_buffer *buffer_info;
5562 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5565 if (tx_flags & E1000_TX_FLAGS_TSO) {
5566 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5568 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5570 if (tx_flags & E1000_TX_FLAGS_IPV4)
5571 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5574 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5575 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5576 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5579 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5580 txd_lower |= E1000_TXD_CMD_VLE;
5581 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5584 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5585 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5587 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5588 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5589 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5592 i = tx_ring->next_to_use;
5595 buffer_info = &tx_ring->buffer_info[i];
5596 tx_desc = E1000_TX_DESC(*tx_ring, i);
5597 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5598 tx_desc->lower.data = cpu_to_le32(txd_lower |
5599 buffer_info->length);
5600 tx_desc->upper.data = cpu_to_le32(txd_upper);
5603 if (i == tx_ring->count)
5605 } while (--count > 0);
5607 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5609 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5610 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5611 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5613 /* Force memory writes to complete before letting h/w
5614 * know there are new descriptors to fetch. (Only
5615 * applicable for weak-ordered memory model archs,
5620 tx_ring->next_to_use = i;
5623 #define MINIMUM_DHCP_PACKET_SIZE 282
5624 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5625 struct sk_buff *skb)
5627 struct e1000_hw *hw = &adapter->hw;
5630 if (skb_vlan_tag_present(skb) &&
5631 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5632 (adapter->hw.mng_cookie.status &
5633 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5636 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5639 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5643 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5646 if (ip->protocol != IPPROTO_UDP)
5649 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5650 if (ntohs(udp->dest) != 67)
5653 offset = (u8 *)udp + 8 - skb->data;
5654 length = skb->len - offset;
5655 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5661 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5663 struct e1000_adapter *adapter = tx_ring->adapter;
5665 netif_stop_queue(adapter->netdev);
5666 /* Herbert's original patch had:
5667 * smp_mb__after_netif_stop_queue();
5668 * but since that doesn't exist yet, just open code it.
5672 /* We need to check again in a case another CPU has just
5673 * made room available.
5675 if (e1000_desc_unused(tx_ring) < size)
5679 netif_start_queue(adapter->netdev);
5680 ++adapter->restart_queue;
5684 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5686 BUG_ON(size > tx_ring->count);
5688 if (e1000_desc_unused(tx_ring) >= size)
5690 return __e1000_maybe_stop_tx(tx_ring, size);
5693 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5694 struct net_device *netdev)
5696 struct e1000_adapter *adapter = netdev_priv(netdev);
5697 struct e1000_ring *tx_ring = adapter->tx_ring;
5699 unsigned int tx_flags = 0;
5700 unsigned int len = skb_headlen(skb);
5701 unsigned int nr_frags;
5706 __be16 protocol = vlan_get_protocol(skb);
5708 if (test_bit(__E1000_DOWN, &adapter->state)) {
5709 dev_kfree_skb_any(skb);
5710 return NETDEV_TX_OK;
5713 if (skb->len <= 0) {
5714 dev_kfree_skb_any(skb);
5715 return NETDEV_TX_OK;
5718 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5719 * pad skb in order to meet this minimum size requirement
5721 if (skb_put_padto(skb, 17))
5722 return NETDEV_TX_OK;
5724 mss = skb_shinfo(skb)->gso_size;
5728 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5729 * points to just header, pull a few bytes of payload from
5730 * frags into skb->data
5732 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5733 /* we do this workaround for ES2LAN, but it is un-necessary,
5734 * avoiding it could save a lot of cycles
5736 if (skb->data_len && (hdr_len == len)) {
5737 unsigned int pull_size;
5739 pull_size = min_t(unsigned int, 4, skb->data_len);
5740 if (!__pskb_pull_tail(skb, pull_size)) {
5741 e_err("__pskb_pull_tail failed.\n");
5742 dev_kfree_skb_any(skb);
5743 return NETDEV_TX_OK;
5745 len = skb_headlen(skb);
5749 /* reserve a descriptor for the offload context */
5750 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5754 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5756 nr_frags = skb_shinfo(skb)->nr_frags;
5757 for (f = 0; f < nr_frags; f++)
5758 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5759 adapter->tx_fifo_limit);
5761 if (adapter->hw.mac.tx_pkt_filtering)
5762 e1000_transfer_dhcp_info(adapter, skb);
5764 /* need: count + 2 desc gap to keep tail from touching
5765 * head, otherwise try next time
5767 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5768 return NETDEV_TX_BUSY;
5770 if (skb_vlan_tag_present(skb)) {
5771 tx_flags |= E1000_TX_FLAGS_VLAN;
5772 tx_flags |= (skb_vlan_tag_get(skb) <<
5773 E1000_TX_FLAGS_VLAN_SHIFT);
5776 first = tx_ring->next_to_use;
5778 tso = e1000_tso(tx_ring, skb, protocol);
5780 dev_kfree_skb_any(skb);
5781 return NETDEV_TX_OK;
5785 tx_flags |= E1000_TX_FLAGS_TSO;
5786 else if (e1000_tx_csum(tx_ring, skb, protocol))
5787 tx_flags |= E1000_TX_FLAGS_CSUM;
5789 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5790 * 82571 hardware supports TSO capabilities for IPv6 as well...
5791 * no longer assume, we must.
5793 if (protocol == htons(ETH_P_IP))
5794 tx_flags |= E1000_TX_FLAGS_IPV4;
5796 if (unlikely(skb->no_fcs))
5797 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5799 /* if count is 0 then mapping error has occurred */
5800 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5803 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5804 (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5805 !adapter->tx_hwtstamp_skb) {
5806 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5807 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5808 adapter->tx_hwtstamp_skb = skb_get(skb);
5809 adapter->tx_hwtstamp_start = jiffies;
5810 schedule_work(&adapter->tx_hwtstamp_work);
5812 skb_tx_timestamp(skb);
5815 netdev_sent_queue(netdev, skb->len);
5816 e1000_tx_queue(tx_ring, tx_flags, count);
5817 /* Make sure there is space in the ring for the next send. */
5818 e1000_maybe_stop_tx(tx_ring,
5820 DIV_ROUND_UP(PAGE_SIZE,
5821 adapter->tx_fifo_limit) + 2));
5823 if (!skb->xmit_more ||
5824 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5825 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5826 e1000e_update_tdt_wa(tx_ring,
5827 tx_ring->next_to_use);
5829 writel(tx_ring->next_to_use, tx_ring->tail);
5831 /* we need this if more than one processor can write
5832 * to our tail at a time, it synchronizes IO on
5838 dev_kfree_skb_any(skb);
5839 tx_ring->buffer_info[first].time_stamp = 0;
5840 tx_ring->next_to_use = first;
5843 return NETDEV_TX_OK;
5847 * e1000_tx_timeout - Respond to a Tx Hang
5848 * @netdev: network interface device structure
5850 static void e1000_tx_timeout(struct net_device *netdev)
5852 struct e1000_adapter *adapter = netdev_priv(netdev);
5854 /* Do the reset outside of interrupt context */
5855 adapter->tx_timeout_count++;
5856 schedule_work(&adapter->reset_task);
5859 static void e1000_reset_task(struct work_struct *work)
5861 struct e1000_adapter *adapter;
5862 adapter = container_of(work, struct e1000_adapter, reset_task);
5864 /* don't run the task if already down */
5865 if (test_bit(__E1000_DOWN, &adapter->state))
5868 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5869 e1000e_dump(adapter);
5870 e_err("Reset adapter unexpectedly\n");
5872 e1000e_reinit_locked(adapter);
5876 * e1000_get_stats64 - Get System Network Statistics
5877 * @netdev: network interface device structure
5878 * @stats: rtnl_link_stats64 pointer
5880 * Returns the address of the device statistics structure.
5882 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5883 struct rtnl_link_stats64 *stats)
5885 struct e1000_adapter *adapter = netdev_priv(netdev);
5887 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5888 spin_lock(&adapter->stats64_lock);
5889 e1000e_update_stats(adapter);
5890 /* Fill out the OS statistics structure */
5891 stats->rx_bytes = adapter->stats.gorc;
5892 stats->rx_packets = adapter->stats.gprc;
5893 stats->tx_bytes = adapter->stats.gotc;
5894 stats->tx_packets = adapter->stats.gptc;
5895 stats->multicast = adapter->stats.mprc;
5896 stats->collisions = adapter->stats.colc;
5900 /* RLEC on some newer hardware can be incorrect so build
5901 * our own version based on RUC and ROC
5903 stats->rx_errors = adapter->stats.rxerrc +
5904 adapter->stats.crcerrs + adapter->stats.algnerrc +
5905 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5906 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5907 stats->rx_crc_errors = adapter->stats.crcerrs;
5908 stats->rx_frame_errors = adapter->stats.algnerrc;
5909 stats->rx_missed_errors = adapter->stats.mpc;
5912 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5913 stats->tx_aborted_errors = adapter->stats.ecol;
5914 stats->tx_window_errors = adapter->stats.latecol;
5915 stats->tx_carrier_errors = adapter->stats.tncrs;
5917 /* Tx Dropped needs to be maintained elsewhere */
5919 spin_unlock(&adapter->stats64_lock);
5924 * e1000_change_mtu - Change the Maximum Transfer Unit
5925 * @netdev: network interface device structure
5926 * @new_mtu: new value for maximum frame size
5928 * Returns 0 on success, negative on failure
5930 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5932 struct e1000_adapter *adapter = netdev_priv(netdev);
5933 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5935 /* Jumbo frame support */
5936 if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5937 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5938 e_err("Jumbo Frames not supported.\n");
5942 /* Supported frame sizes */
5943 if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5944 (max_frame > adapter->max_hw_frame_size)) {
5945 e_err("Unsupported MTU setting\n");
5949 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5950 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5951 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5952 (new_mtu > ETH_DATA_LEN)) {
5953 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5957 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5958 usleep_range(1000, 2000);
5959 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5960 adapter->max_frame_size = max_frame;
5961 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5962 netdev->mtu = new_mtu;
5964 pm_runtime_get_sync(netdev->dev.parent);
5966 if (netif_running(netdev))
5967 e1000e_down(adapter, true);
5969 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5970 * means we reserve 2 more, this pushes us to allocate from the next
5972 * i.e. RXBUFFER_2048 --> size-4096 slab
5973 * However with the new *_jumbo_rx* routines, jumbo receives will use
5977 if (max_frame <= 2048)
5978 adapter->rx_buffer_len = 2048;
5980 adapter->rx_buffer_len = 4096;
5982 /* adjust allocation if LPE protects us, and we aren't using SBP */
5983 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5984 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5986 if (netif_running(netdev))
5989 e1000e_reset(adapter);
5991 pm_runtime_put_sync(netdev->dev.parent);
5993 clear_bit(__E1000_RESETTING, &adapter->state);
5998 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6001 struct e1000_adapter *adapter = netdev_priv(netdev);
6002 struct mii_ioctl_data *data = if_mii(ifr);
6004 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6009 data->phy_id = adapter->hw.phy.addr;
6012 e1000_phy_read_status(adapter);
6014 switch (data->reg_num & 0x1F) {
6016 data->val_out = adapter->phy_regs.bmcr;
6019 data->val_out = adapter->phy_regs.bmsr;
6022 data->val_out = (adapter->hw.phy.id >> 16);
6025 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6028 data->val_out = adapter->phy_regs.advertise;
6031 data->val_out = adapter->phy_regs.lpa;
6034 data->val_out = adapter->phy_regs.expansion;
6037 data->val_out = adapter->phy_regs.ctrl1000;
6040 data->val_out = adapter->phy_regs.stat1000;
6043 data->val_out = adapter->phy_regs.estatus;
6057 * e1000e_hwtstamp_ioctl - control hardware time stamping
6058 * @netdev: network interface device structure
6059 * @ifreq: interface request
6061 * Outgoing time stamping can be enabled and disabled. Play nice and
6062 * disable it when requested, although it shouldn't cause any overhead
6063 * when no packet needs it. At most one packet in the queue may be
6064 * marked for time stamping, otherwise it would be impossible to tell
6065 * for sure to which packet the hardware time stamp belongs.
6067 * Incoming time stamping has to be configured via the hardware filters.
6068 * Not all combinations are supported, in particular event type has to be
6069 * specified. Matching the kind of event packet is not supported, with the
6070 * exception of "all V2 events regardless of level 2 or 4".
6072 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6074 struct e1000_adapter *adapter = netdev_priv(netdev);
6075 struct hwtstamp_config config;
6078 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6081 ret_val = e1000e_config_hwtstamp(adapter, &config);
6085 switch (config.rx_filter) {
6086 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6087 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6088 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6089 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6090 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6091 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6092 /* With V2 type filters which specify a Sync or Delay Request,
6093 * Path Delay Request/Response messages are also time stamped
6094 * by hardware so notify the caller the requested packets plus
6095 * some others are time stamped.
6097 config.rx_filter = HWTSTAMP_FILTER_SOME;
6103 return copy_to_user(ifr->ifr_data, &config,
6104 sizeof(config)) ? -EFAULT : 0;
6107 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6109 struct e1000_adapter *adapter = netdev_priv(netdev);
6111 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6112 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6115 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6121 return e1000_mii_ioctl(netdev, ifr, cmd);
6123 return e1000e_hwtstamp_set(netdev, ifr);
6125 return e1000e_hwtstamp_get(netdev, ifr);
6131 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6133 struct e1000_hw *hw = &adapter->hw;
6134 u32 i, mac_reg, wuc;
6135 u16 phy_reg, wuc_enable;
6138 /* copy MAC RARs to PHY RARs */
6139 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6141 retval = hw->phy.ops.acquire(hw);
6143 e_err("Could not acquire PHY\n");
6147 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6148 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6152 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6153 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6154 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6155 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6156 (u16)(mac_reg & 0xFFFF));
6157 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6158 (u16)((mac_reg >> 16) & 0xFFFF));
6161 /* configure PHY Rx Control register */
6162 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6163 mac_reg = er32(RCTL);
6164 if (mac_reg & E1000_RCTL_UPE)
6165 phy_reg |= BM_RCTL_UPE;
6166 if (mac_reg & E1000_RCTL_MPE)
6167 phy_reg |= BM_RCTL_MPE;
6168 phy_reg &= ~(BM_RCTL_MO_MASK);
6169 if (mac_reg & E1000_RCTL_MO_3)
6170 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6171 << BM_RCTL_MO_SHIFT);
6172 if (mac_reg & E1000_RCTL_BAM)
6173 phy_reg |= BM_RCTL_BAM;
6174 if (mac_reg & E1000_RCTL_PMCF)
6175 phy_reg |= BM_RCTL_PMCF;
6176 mac_reg = er32(CTRL);
6177 if (mac_reg & E1000_CTRL_RFCE)
6178 phy_reg |= BM_RCTL_RFCE;
6179 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6181 wuc = E1000_WUC_PME_EN;
6182 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6183 wuc |= E1000_WUC_APME;
6185 /* enable PHY wakeup in MAC register */
6187 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6188 E1000_WUC_PME_STATUS | wuc));
6190 /* configure and enable PHY wakeup in PHY registers */
6191 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6192 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6194 /* activate PHY wakeup */
6195 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6196 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6198 e_err("Could not set PHY Host Wakeup bit\n");
6200 hw->phy.ops.release(hw);
6205 static void e1000e_flush_lpic(struct pci_dev *pdev)
6207 struct net_device *netdev = pci_get_drvdata(pdev);
6208 struct e1000_adapter *adapter = netdev_priv(netdev);
6209 struct e1000_hw *hw = &adapter->hw;
6212 pm_runtime_get_sync(netdev->dev.parent);
6214 ret_val = hw->phy.ops.acquire(hw);
6218 pr_info("EEE TX LPI TIMER: %08X\n",
6219 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6221 hw->phy.ops.release(hw);
6224 pm_runtime_put_sync(netdev->dev.parent);
6227 static int e1000e_pm_freeze(struct device *dev)
6229 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6230 struct e1000_adapter *adapter = netdev_priv(netdev);
6232 netif_device_detach(netdev);
6234 if (netif_running(netdev)) {
6235 int count = E1000_CHECK_RESET_COUNT;
6237 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6238 usleep_range(10000, 20000);
6240 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6242 /* Quiesce the device without resetting the hardware */
6243 e1000e_down(adapter, false);
6244 e1000_free_irq(adapter);
6246 e1000e_reset_interrupt_capability(adapter);
6248 /* Allow time for pending master requests to run */
6249 e1000e_disable_pcie_master(&adapter->hw);
6254 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6256 struct net_device *netdev = pci_get_drvdata(pdev);
6257 struct e1000_adapter *adapter = netdev_priv(netdev);
6258 struct e1000_hw *hw = &adapter->hw;
6259 u32 ctrl, ctrl_ext, rctl, status;
6260 /* Runtime suspend should only enable wakeup for link changes */
6261 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6264 status = er32(STATUS);
6265 if (status & E1000_STATUS_LU)
6266 wufc &= ~E1000_WUFC_LNKC;
6269 e1000_setup_rctl(adapter);
6270 e1000e_set_rx_mode(netdev);
6272 /* turn on all-multi mode if wake on multicast is enabled */
6273 if (wufc & E1000_WUFC_MC) {
6275 rctl |= E1000_RCTL_MPE;
6280 ctrl |= E1000_CTRL_ADVD3WUC;
6281 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6282 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6285 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6286 adapter->hw.phy.media_type ==
6287 e1000_media_type_internal_serdes) {
6288 /* keep the laser running in D3 */
6289 ctrl_ext = er32(CTRL_EXT);
6290 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6291 ew32(CTRL_EXT, ctrl_ext);
6295 e1000e_power_up_phy(adapter);
6297 if (adapter->flags & FLAG_IS_ICH)
6298 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6300 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6301 /* enable wakeup by the PHY */
6302 retval = e1000_init_phy_wakeup(adapter, wufc);
6306 /* enable wakeup by the MAC */
6308 ew32(WUC, E1000_WUC_PME_EN);
6314 e1000_power_down_phy(adapter);
6317 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6318 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6319 } else if ((hw->mac.type == e1000_pch_lpt) ||
6320 (hw->mac.type == e1000_pch_spt)) {
6321 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6322 /* ULP does not support wake from unicast, multicast
6325 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6331 /* Ensure that the appropriate bits are set in LPI_CTRL
6334 if ((hw->phy.type >= e1000_phy_i217) &&
6335 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6338 retval = hw->phy.ops.acquire(hw);
6340 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6343 if (adapter->eee_advert &
6344 hw->dev_spec.ich8lan.eee_lp_ability &
6345 I82579_EEE_100_SUPPORTED)
6346 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6347 if (adapter->eee_advert &
6348 hw->dev_spec.ich8lan.eee_lp_ability &
6349 I82579_EEE_1000_SUPPORTED)
6350 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6352 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6356 hw->phy.ops.release(hw);
6359 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6360 * would have already happened in close and is redundant.
6362 e1000e_release_hw_control(adapter);
6364 pci_clear_master(pdev);
6366 /* The pci-e switch on some quad port adapters will report a
6367 * correctable error when the MAC transitions from D0 to D3. To
6368 * prevent this we need to mask off the correctable errors on the
6369 * downstream port of the pci-e switch.
6371 * We don't have the associated upstream bridge while assigning
6372 * the PCI device into guest. For example, the KVM on power is
6375 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6376 struct pci_dev *us_dev = pdev->bus->self;
6382 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6383 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6384 (devctl & ~PCI_EXP_DEVCTL_CERE));
6386 pci_save_state(pdev);
6387 pci_prepare_to_sleep(pdev);
6389 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6396 * __e1000e_disable_aspm - Disable ASPM states
6397 * @pdev: pointer to PCI device struct
6398 * @state: bit-mask of ASPM states to disable
6399 * @locked: indication if this context holds pci_bus_sem locked.
6401 * Some devices *must* have certain ASPM states disabled per hardware errata.
6403 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6405 struct pci_dev *parent = pdev->bus->self;
6406 u16 aspm_dis_mask = 0;
6407 u16 pdev_aspmc, parent_aspmc;
6410 case PCIE_LINK_STATE_L0S:
6411 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6412 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6413 /* fall-through - can't have L1 without L0s */
6414 case PCIE_LINK_STATE_L1:
6415 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6421 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6422 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6425 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6427 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6430 /* Nothing to do if the ASPM states to be disabled already are */
6431 if (!(pdev_aspmc & aspm_dis_mask) &&
6432 (!parent || !(parent_aspmc & aspm_dis_mask)))
6435 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6436 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6438 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6441 #ifdef CONFIG_PCIEASPM
6443 pci_disable_link_state_locked(pdev, state);
6445 pci_disable_link_state(pdev, state);
6447 /* Double-check ASPM control. If not disabled by the above, the
6448 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6449 * not enabled); override by writing PCI config space directly.
6451 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6452 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6454 if (!(aspm_dis_mask & pdev_aspmc))
6458 /* Both device and parent should have the same ASPM setting.
6459 * Disable ASPM in downstream component first and then upstream.
6461 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6464 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6469 * e1000e_disable_aspm - Disable ASPM states.
6470 * @pdev: pointer to PCI device struct
6471 * @state: bit-mask of ASPM states to disable
6473 * This function acquires the pci_bus_sem!
6474 * Some devices *must* have certain ASPM states disabled per hardware errata.
6476 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6478 __e1000e_disable_aspm(pdev, state, 0);
6482 * e1000e_disable_aspm_locked Disable ASPM states.
6483 * @pdev: pointer to PCI device struct
6484 * @state: bit-mask of ASPM states to disable
6486 * This function must be called with pci_bus_sem acquired!
6487 * Some devices *must* have certain ASPM states disabled per hardware errata.
6489 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6491 __e1000e_disable_aspm(pdev, state, 1);
6495 static int __e1000_resume(struct pci_dev *pdev)
6497 struct net_device *netdev = pci_get_drvdata(pdev);
6498 struct e1000_adapter *adapter = netdev_priv(netdev);
6499 struct e1000_hw *hw = &adapter->hw;
6500 u16 aspm_disable_flag = 0;
6502 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6503 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6504 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6505 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6506 if (aspm_disable_flag)
6507 e1000e_disable_aspm(pdev, aspm_disable_flag);
6509 pci_set_master(pdev);
6511 if (hw->mac.type >= e1000_pch2lan)
6512 e1000_resume_workarounds_pchlan(&adapter->hw);
6514 e1000e_power_up_phy(adapter);
6516 /* report the system wakeup cause from S3/S4 */
6517 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6520 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6522 e_info("PHY Wakeup cause - %s\n",
6523 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6524 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6525 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6526 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6527 phy_data & E1000_WUS_LNKC ?
6528 "Link Status Change" : "other");
6530 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6532 u32 wus = er32(WUS);
6535 e_info("MAC Wakeup cause - %s\n",
6536 wus & E1000_WUS_EX ? "Unicast Packet" :
6537 wus & E1000_WUS_MC ? "Multicast Packet" :
6538 wus & E1000_WUS_BC ? "Broadcast Packet" :
6539 wus & E1000_WUS_MAG ? "Magic Packet" :
6540 wus & E1000_WUS_LNKC ? "Link Status Change" :
6546 e1000e_reset(adapter);
6548 e1000_init_manageability_pt(adapter);
6550 /* If the controller has AMT, do not set DRV_LOAD until the interface
6551 * is up. For all other cases, let the f/w know that the h/w is now
6552 * under the control of the driver.
6554 if (!(adapter->flags & FLAG_HAS_AMT))
6555 e1000e_get_hw_control(adapter);
6560 #ifdef CONFIG_PM_SLEEP
6561 static int e1000e_pm_thaw(struct device *dev)
6563 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6564 struct e1000_adapter *adapter = netdev_priv(netdev);
6566 e1000e_set_interrupt_capability(adapter);
6567 if (netif_running(netdev)) {
6568 u32 err = e1000_request_irq(adapter);
6576 netif_device_attach(netdev);
6581 static int e1000e_pm_suspend(struct device *dev)
6583 struct pci_dev *pdev = to_pci_dev(dev);
6585 e1000e_flush_lpic(pdev);
6587 e1000e_pm_freeze(dev);
6589 return __e1000_shutdown(pdev, false);
6592 static int e1000e_pm_resume(struct device *dev)
6594 struct pci_dev *pdev = to_pci_dev(dev);
6597 rc = __e1000_resume(pdev);
6601 return e1000e_pm_thaw(dev);
6603 #endif /* CONFIG_PM_SLEEP */
6605 static int e1000e_pm_runtime_idle(struct device *dev)
6607 struct pci_dev *pdev = to_pci_dev(dev);
6608 struct net_device *netdev = pci_get_drvdata(pdev);
6609 struct e1000_adapter *adapter = netdev_priv(netdev);
6612 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6614 if (!e1000e_has_link(adapter)) {
6615 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6616 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6622 static int e1000e_pm_runtime_resume(struct device *dev)
6624 struct pci_dev *pdev = to_pci_dev(dev);
6625 struct net_device *netdev = pci_get_drvdata(pdev);
6626 struct e1000_adapter *adapter = netdev_priv(netdev);
6629 rc = __e1000_resume(pdev);
6633 if (netdev->flags & IFF_UP)
6634 rc = e1000e_up(adapter);
6639 static int e1000e_pm_runtime_suspend(struct device *dev)
6641 struct pci_dev *pdev = to_pci_dev(dev);
6642 struct net_device *netdev = pci_get_drvdata(pdev);
6643 struct e1000_adapter *adapter = netdev_priv(netdev);
6645 if (netdev->flags & IFF_UP) {
6646 int count = E1000_CHECK_RESET_COUNT;
6648 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6649 usleep_range(10000, 20000);
6651 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6653 /* Down the device without resetting the hardware */
6654 e1000e_down(adapter, false);
6657 if (__e1000_shutdown(pdev, true)) {
6658 e1000e_pm_runtime_resume(dev);
6664 #endif /* CONFIG_PM */
6666 static void e1000_shutdown(struct pci_dev *pdev)
6668 e1000e_flush_lpic(pdev);
6670 e1000e_pm_freeze(&pdev->dev);
6672 __e1000_shutdown(pdev, false);
6675 #ifdef CONFIG_NET_POLL_CONTROLLER
6677 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6679 struct net_device *netdev = data;
6680 struct e1000_adapter *adapter = netdev_priv(netdev);
6682 if (adapter->msix_entries) {
6683 int vector, msix_irq;
6686 msix_irq = adapter->msix_entries[vector].vector;
6687 disable_irq(msix_irq);
6688 e1000_intr_msix_rx(msix_irq, netdev);
6689 enable_irq(msix_irq);
6692 msix_irq = adapter->msix_entries[vector].vector;
6693 disable_irq(msix_irq);
6694 e1000_intr_msix_tx(msix_irq, netdev);
6695 enable_irq(msix_irq);
6698 msix_irq = adapter->msix_entries[vector].vector;
6699 disable_irq(msix_irq);
6700 e1000_msix_other(msix_irq, netdev);
6701 enable_irq(msix_irq);
6709 * @netdev: network interface device structure
6711 * Polling 'interrupt' - used by things like netconsole to send skbs
6712 * without having to re-enable interrupts. It's not called while
6713 * the interrupt routine is executing.
6715 static void e1000_netpoll(struct net_device *netdev)
6717 struct e1000_adapter *adapter = netdev_priv(netdev);
6719 switch (adapter->int_mode) {
6720 case E1000E_INT_MODE_MSIX:
6721 e1000_intr_msix(adapter->pdev->irq, netdev);
6723 case E1000E_INT_MODE_MSI:
6724 disable_irq(adapter->pdev->irq);
6725 e1000_intr_msi(adapter->pdev->irq, netdev);
6726 enable_irq(adapter->pdev->irq);
6728 default: /* E1000E_INT_MODE_LEGACY */
6729 disable_irq(adapter->pdev->irq);
6730 e1000_intr(adapter->pdev->irq, netdev);
6731 enable_irq(adapter->pdev->irq);
6738 * e1000_io_error_detected - called when PCI error is detected
6739 * @pdev: Pointer to PCI device
6740 * @state: The current pci connection state
6742 * This function is called after a PCI bus error affecting
6743 * this device has been detected.
6745 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6746 pci_channel_state_t state)
6748 struct net_device *netdev = pci_get_drvdata(pdev);
6749 struct e1000_adapter *adapter = netdev_priv(netdev);
6751 netif_device_detach(netdev);
6753 if (state == pci_channel_io_perm_failure)
6754 return PCI_ERS_RESULT_DISCONNECT;
6756 if (netif_running(netdev))
6757 e1000e_down(adapter, true);
6758 pci_disable_device(pdev);
6760 /* Request a slot slot reset. */
6761 return PCI_ERS_RESULT_NEED_RESET;
6765 * e1000_io_slot_reset - called after the pci bus has been reset.
6766 * @pdev: Pointer to PCI device
6768 * Restart the card from scratch, as if from a cold-boot. Implementation
6769 * resembles the first-half of the e1000e_pm_resume routine.
6771 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6773 struct net_device *netdev = pci_get_drvdata(pdev);
6774 struct e1000_adapter *adapter = netdev_priv(netdev);
6775 struct e1000_hw *hw = &adapter->hw;
6776 u16 aspm_disable_flag = 0;
6778 pci_ers_result_t result;
6780 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6781 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6782 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6783 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6784 if (aspm_disable_flag)
6785 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6787 err = pci_enable_device_mem(pdev);
6790 "Cannot re-enable PCI device after reset.\n");
6791 result = PCI_ERS_RESULT_DISCONNECT;
6793 pdev->state_saved = true;
6794 pci_restore_state(pdev);
6795 pci_set_master(pdev);
6797 pci_enable_wake(pdev, PCI_D3hot, 0);
6798 pci_enable_wake(pdev, PCI_D3cold, 0);
6800 e1000e_reset(adapter);
6802 result = PCI_ERS_RESULT_RECOVERED;
6805 pci_cleanup_aer_uncorrect_error_status(pdev);
6811 * e1000_io_resume - called when traffic can start flowing again.
6812 * @pdev: Pointer to PCI device
6814 * This callback is called when the error recovery driver tells us that
6815 * its OK to resume normal operation. Implementation resembles the
6816 * second-half of the e1000e_pm_resume routine.
6818 static void e1000_io_resume(struct pci_dev *pdev)
6820 struct net_device *netdev = pci_get_drvdata(pdev);
6821 struct e1000_adapter *adapter = netdev_priv(netdev);
6823 e1000_init_manageability_pt(adapter);
6825 if (netif_running(netdev)) {
6826 if (e1000e_up(adapter)) {
6828 "can't bring device back up after reset\n");
6833 netif_device_attach(netdev);
6835 /* If the controller has AMT, do not set DRV_LOAD until the interface
6836 * is up. For all other cases, let the f/w know that the h/w is now
6837 * under the control of the driver.
6839 if (!(adapter->flags & FLAG_HAS_AMT))
6840 e1000e_get_hw_control(adapter);
6843 static void e1000_print_device_info(struct e1000_adapter *adapter)
6845 struct e1000_hw *hw = &adapter->hw;
6846 struct net_device *netdev = adapter->netdev;
6848 u8 pba_str[E1000_PBANUM_LENGTH];
6850 /* print bus type/speed/width info */
6851 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6853 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6857 e_info("Intel(R) PRO/%s Network Connection\n",
6858 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6859 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6860 E1000_PBANUM_LENGTH);
6862 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6863 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6864 hw->mac.type, hw->phy.type, pba_str);
6867 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6869 struct e1000_hw *hw = &adapter->hw;
6873 if (hw->mac.type != e1000_82573)
6876 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6878 if (!ret_val && (!(buf & (1 << 0)))) {
6879 /* Deep Smart Power Down (DSPD) */
6880 dev_warn(&adapter->pdev->dev,
6881 "Warning: detected DSPD enabled in EEPROM\n");
6885 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6886 netdev_features_t features)
6888 struct e1000_adapter *adapter = netdev_priv(netdev);
6889 struct e1000_hw *hw = &adapter->hw;
6891 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6892 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6893 features &= ~NETIF_F_RXFCS;
6898 static int e1000_set_features(struct net_device *netdev,
6899 netdev_features_t features)
6901 struct e1000_adapter *adapter = netdev_priv(netdev);
6902 netdev_features_t changed = features ^ netdev->features;
6904 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6905 adapter->flags |= FLAG_TSO_FORCE;
6907 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6908 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6912 if (changed & NETIF_F_RXFCS) {
6913 if (features & NETIF_F_RXFCS) {
6914 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6916 /* We need to take it back to defaults, which might mean
6917 * stripping is still disabled at the adapter level.
6919 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6920 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6922 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6926 netdev->features = features;
6928 if (netif_running(netdev))
6929 e1000e_reinit_locked(adapter);
6931 e1000e_reset(adapter);
6936 static const struct net_device_ops e1000e_netdev_ops = {
6937 .ndo_open = e1000_open,
6938 .ndo_stop = e1000_close,
6939 .ndo_start_xmit = e1000_xmit_frame,
6940 .ndo_get_stats64 = e1000e_get_stats64,
6941 .ndo_set_rx_mode = e1000e_set_rx_mode,
6942 .ndo_set_mac_address = e1000_set_mac,
6943 .ndo_change_mtu = e1000_change_mtu,
6944 .ndo_do_ioctl = e1000_ioctl,
6945 .ndo_tx_timeout = e1000_tx_timeout,
6946 .ndo_validate_addr = eth_validate_addr,
6948 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6949 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6950 #ifdef CONFIG_NET_POLL_CONTROLLER
6951 .ndo_poll_controller = e1000_netpoll,
6953 .ndo_set_features = e1000_set_features,
6954 .ndo_fix_features = e1000_fix_features,
6955 .ndo_features_check = passthru_features_check,
6959 * e1000_probe - Device Initialization Routine
6960 * @pdev: PCI device information struct
6961 * @ent: entry in e1000_pci_tbl
6963 * Returns 0 on success, negative on failure
6965 * e1000_probe initializes an adapter identified by a pci_dev structure.
6966 * The OS initialization, configuring of the adapter private structure,
6967 * and a hardware reset occur.
6969 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6971 struct net_device *netdev;
6972 struct e1000_adapter *adapter;
6973 struct e1000_hw *hw;
6974 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6975 resource_size_t mmio_start, mmio_len;
6976 resource_size_t flash_start, flash_len;
6977 static int cards_found;
6978 u16 aspm_disable_flag = 0;
6979 int bars, i, err, pci_using_dac;
6980 u16 eeprom_data = 0;
6981 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6984 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6985 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6986 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6987 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6988 if (aspm_disable_flag)
6989 e1000e_disable_aspm(pdev, aspm_disable_flag);
6991 err = pci_enable_device_mem(pdev);
6996 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7000 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7003 "No usable DMA configuration, aborting\n");
7008 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7009 err = pci_request_selected_regions_exclusive(pdev, bars,
7010 e1000e_driver_name);
7014 /* AER (Advanced Error Reporting) hooks */
7015 pci_enable_pcie_error_reporting(pdev);
7017 pci_set_master(pdev);
7018 /* PCI config space info */
7019 err = pci_save_state(pdev);
7021 goto err_alloc_etherdev;
7024 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7026 goto err_alloc_etherdev;
7028 SET_NETDEV_DEV(netdev, &pdev->dev);
7030 netdev->irq = pdev->irq;
7032 pci_set_drvdata(pdev, netdev);
7033 adapter = netdev_priv(netdev);
7035 adapter->netdev = netdev;
7036 adapter->pdev = pdev;
7038 adapter->pba = ei->pba;
7039 adapter->flags = ei->flags;
7040 adapter->flags2 = ei->flags2;
7041 adapter->hw.adapter = adapter;
7042 adapter->hw.mac.type = ei->mac;
7043 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7044 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7046 mmio_start = pci_resource_start(pdev, 0);
7047 mmio_len = pci_resource_len(pdev, 0);
7050 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7051 if (!adapter->hw.hw_addr)
7054 if ((adapter->flags & FLAG_HAS_FLASH) &&
7055 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7056 (hw->mac.type < e1000_pch_spt)) {
7057 flash_start = pci_resource_start(pdev, 1);
7058 flash_len = pci_resource_len(pdev, 1);
7059 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7060 if (!adapter->hw.flash_address)
7064 /* Set default EEE advertisement */
7065 if (adapter->flags2 & FLAG2_HAS_EEE)
7066 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7068 /* construct the net_device struct */
7069 netdev->netdev_ops = &e1000e_netdev_ops;
7070 e1000e_set_ethtool_ops(netdev);
7071 netdev->watchdog_timeo = 5 * HZ;
7072 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7073 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7075 netdev->mem_start = mmio_start;
7076 netdev->mem_end = mmio_start + mmio_len;
7078 adapter->bd_number = cards_found++;
7080 e1000e_check_options(adapter);
7082 /* setup adapter struct */
7083 err = e1000_sw_init(adapter);
7087 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7088 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7089 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7091 err = ei->get_variants(adapter);
7095 if ((adapter->flags & FLAG_IS_ICH) &&
7096 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7097 (hw->mac.type < e1000_pch_spt))
7098 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7100 hw->mac.ops.get_bus_info(&adapter->hw);
7102 adapter->hw.phy.autoneg_wait_to_complete = 0;
7104 /* Copper options */
7105 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7106 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7107 adapter->hw.phy.disable_polarity_correction = 0;
7108 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7111 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7112 dev_info(&pdev->dev,
7113 "PHY reset is blocked due to SOL/IDER session.\n");
7115 /* Set initial default active device features */
7116 netdev->features = (NETIF_F_SG |
7117 NETIF_F_HW_VLAN_CTAG_RX |
7118 NETIF_F_HW_VLAN_CTAG_TX |
7125 /* Set user-changeable features (subset of all device features) */
7126 netdev->hw_features = netdev->features;
7127 netdev->hw_features |= NETIF_F_RXFCS;
7128 netdev->priv_flags |= IFF_SUPP_NOFCS;
7129 netdev->hw_features |= NETIF_F_RXALL;
7131 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7132 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7134 netdev->vlan_features |= (NETIF_F_SG |
7139 netdev->priv_flags |= IFF_UNICAST_FLT;
7141 if (pci_using_dac) {
7142 netdev->features |= NETIF_F_HIGHDMA;
7143 netdev->vlan_features |= NETIF_F_HIGHDMA;
7146 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7147 adapter->flags |= FLAG_MNG_PT_ENABLED;
7149 /* before reading the NVM, reset the controller to
7150 * put the device in a known good starting state
7152 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7154 /* systems with ASPM and others may see the checksum fail on the first
7155 * attempt. Let's give it a few tries
7158 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7161 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7167 e1000_eeprom_checks(adapter);
7169 /* copy the MAC address */
7170 if (e1000e_read_mac_addr(&adapter->hw))
7172 "NVM Read Error while reading MAC address\n");
7174 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7176 if (!is_valid_ether_addr(netdev->dev_addr)) {
7177 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7183 init_timer(&adapter->watchdog_timer);
7184 adapter->watchdog_timer.function = e1000_watchdog;
7185 adapter->watchdog_timer.data = (unsigned long)adapter;
7187 init_timer(&adapter->phy_info_timer);
7188 adapter->phy_info_timer.function = e1000_update_phy_info;
7189 adapter->phy_info_timer.data = (unsigned long)adapter;
7191 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7192 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7193 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7194 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7195 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7197 /* Initialize link parameters. User can change them with ethtool */
7198 adapter->hw.mac.autoneg = 1;
7199 adapter->fc_autoneg = true;
7200 adapter->hw.fc.requested_mode = e1000_fc_default;
7201 adapter->hw.fc.current_mode = e1000_fc_default;
7202 adapter->hw.phy.autoneg_advertised = 0x2f;
7204 /* Initial Wake on LAN setting - If APM wake is enabled in
7205 * the EEPROM, enable the ACPI Magic Packet filter
7207 if (adapter->flags & FLAG_APME_IN_WUC) {
7208 /* APME bit in EEPROM is mapped to WUC.APME */
7209 eeprom_data = er32(WUC);
7210 eeprom_apme_mask = E1000_WUC_APME;
7211 if ((hw->mac.type > e1000_ich10lan) &&
7212 (eeprom_data & E1000_WUC_PHY_WAKE))
7213 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7214 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7215 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7216 (adapter->hw.bus.func == 1))
7217 rval = e1000_read_nvm(&adapter->hw,
7218 NVM_INIT_CONTROL3_PORT_B,
7221 rval = e1000_read_nvm(&adapter->hw,
7222 NVM_INIT_CONTROL3_PORT_A,
7226 /* fetch WoL from EEPROM */
7228 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7229 else if (eeprom_data & eeprom_apme_mask)
7230 adapter->eeprom_wol |= E1000_WUFC_MAG;
7232 /* now that we have the eeprom settings, apply the special cases
7233 * where the eeprom may be wrong or the board simply won't support
7234 * wake on lan on a particular port
7236 if (!(adapter->flags & FLAG_HAS_WOL))
7237 adapter->eeprom_wol = 0;
7239 /* initialize the wol settings based on the eeprom settings */
7240 adapter->wol = adapter->eeprom_wol;
7242 /* make sure adapter isn't asleep if manageability is enabled */
7243 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7244 (hw->mac.ops.check_mng_mode(hw)))
7245 device_wakeup_enable(&pdev->dev);
7247 /* save off EEPROM version number */
7248 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7251 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7252 adapter->eeprom_vers = 0;
7255 /* reset the hardware with the new settings */
7256 e1000e_reset(adapter);
7258 /* If the controller has AMT, do not set DRV_LOAD until the interface
7259 * is up. For all other cases, let the f/w know that the h/w is now
7260 * under the control of the driver.
7262 if (!(adapter->flags & FLAG_HAS_AMT))
7263 e1000e_get_hw_control(adapter);
7265 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7266 err = register_netdev(netdev);
7270 /* carrier off reporting is important to ethtool even BEFORE open */
7271 netif_carrier_off(netdev);
7273 /* init PTP hardware clock */
7274 e1000e_ptp_init(adapter);
7276 e1000_print_device_info(adapter);
7278 if (pci_dev_run_wake(pdev))
7279 pm_runtime_put_noidle(&pdev->dev);
7284 if (!(adapter->flags & FLAG_HAS_AMT))
7285 e1000e_release_hw_control(adapter);
7287 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7288 e1000_phy_hw_reset(&adapter->hw);
7290 kfree(adapter->tx_ring);
7291 kfree(adapter->rx_ring);
7293 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7294 iounmap(adapter->hw.flash_address);
7295 e1000e_reset_interrupt_capability(adapter);
7297 iounmap(adapter->hw.hw_addr);
7299 free_netdev(netdev);
7301 pci_release_selected_regions(pdev,
7302 pci_select_bars(pdev, IORESOURCE_MEM));
7305 pci_disable_device(pdev);
7310 * e1000_remove - Device Removal Routine
7311 * @pdev: PCI device information struct
7313 * e1000_remove is called by the PCI subsystem to alert the driver
7314 * that it should release a PCI device. The could be caused by a
7315 * Hot-Plug event, or because the driver is going to be removed from
7318 static void e1000_remove(struct pci_dev *pdev)
7320 struct net_device *netdev = pci_get_drvdata(pdev);
7321 struct e1000_adapter *adapter = netdev_priv(netdev);
7322 bool down = test_bit(__E1000_DOWN, &adapter->state);
7324 e1000e_ptp_remove(adapter);
7326 /* The timers may be rescheduled, so explicitly disable them
7327 * from being rescheduled.
7330 set_bit(__E1000_DOWN, &adapter->state);
7331 del_timer_sync(&adapter->watchdog_timer);
7332 del_timer_sync(&adapter->phy_info_timer);
7334 cancel_work_sync(&adapter->reset_task);
7335 cancel_work_sync(&adapter->watchdog_task);
7336 cancel_work_sync(&adapter->downshift_task);
7337 cancel_work_sync(&adapter->update_phy_task);
7338 cancel_work_sync(&adapter->print_hang_task);
7340 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7341 cancel_work_sync(&adapter->tx_hwtstamp_work);
7342 if (adapter->tx_hwtstamp_skb) {
7343 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7344 adapter->tx_hwtstamp_skb = NULL;
7348 /* Don't lie to e1000_close() down the road. */
7350 clear_bit(__E1000_DOWN, &adapter->state);
7351 unregister_netdev(netdev);
7353 if (pci_dev_run_wake(pdev))
7354 pm_runtime_get_noresume(&pdev->dev);
7356 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7357 * would have already happened in close and is redundant.
7359 e1000e_release_hw_control(adapter);
7361 e1000e_reset_interrupt_capability(adapter);
7362 kfree(adapter->tx_ring);
7363 kfree(adapter->rx_ring);
7365 iounmap(adapter->hw.hw_addr);
7366 if ((adapter->hw.flash_address) &&
7367 (adapter->hw.mac.type < e1000_pch_spt))
7368 iounmap(adapter->hw.flash_address);
7369 pci_release_selected_regions(pdev,
7370 pci_select_bars(pdev, IORESOURCE_MEM));
7372 free_netdev(netdev);
7375 pci_disable_pcie_error_reporting(pdev);
7377 pci_disable_device(pdev);
7380 /* PCI Error Recovery (ERS) */
7381 static const struct pci_error_handlers e1000_err_handler = {
7382 .error_detected = e1000_io_error_detected,
7383 .slot_reset = e1000_io_slot_reset,
7384 .resume = e1000_io_resume,
7387 static const struct pci_device_id e1000_pci_tbl[] = {
7388 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7389 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7390 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7391 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7393 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7394 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7395 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7396 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7397 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7399 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7400 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7401 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7402 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7404 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7405 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7406 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7408 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7409 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7410 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7412 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7413 board_80003es2lan },
7414 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7415 board_80003es2lan },
7416 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7417 board_80003es2lan },
7418 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7419 board_80003es2lan },
7421 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7422 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7423 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7424 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7425 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7426 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7427 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7428 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7430 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7431 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7432 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7433 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7434 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7435 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7436 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7437 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7438 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7440 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7441 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7442 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7444 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7445 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7446 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7448 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7449 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7450 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7451 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7453 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7454 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7457 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7458 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7462 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7464 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7466 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7469 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7471 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7473 static const struct dev_pm_ops e1000_pm_ops = {
7474 #ifdef CONFIG_PM_SLEEP
7475 .suspend = e1000e_pm_suspend,
7476 .resume = e1000e_pm_resume,
7477 .freeze = e1000e_pm_freeze,
7478 .thaw = e1000e_pm_thaw,
7479 .poweroff = e1000e_pm_suspend,
7480 .restore = e1000e_pm_resume,
7482 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7483 e1000e_pm_runtime_idle)
7486 /* PCI Device API Driver */
7487 static struct pci_driver e1000_driver = {
7488 .name = e1000e_driver_name,
7489 .id_table = e1000_pci_tbl,
7490 .probe = e1000_probe,
7491 .remove = e1000_remove,
7493 .pm = &e1000_pm_ops,
7495 .shutdown = e1000_shutdown,
7496 .err_handler = &e1000_err_handler
7500 * e1000_init_module - Driver Registration Routine
7502 * e1000_init_module is the first routine called when the driver is
7503 * loaded. All it does is register with the PCI subsystem.
7505 static int __init e1000_init_module(void)
7509 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7510 e1000e_driver_version);
7511 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7512 ret = pci_register_driver(&e1000_driver);
7516 module_init(e1000_init_module);
7519 * e1000_exit_module - Driver Exit Cleanup Routine
7521 * e1000_exit_module is called just before the driver is removed
7524 static void __exit e1000_exit_module(void)
7526 pci_unregister_driver(&e1000_driver);
7528 module_exit(e1000_exit_module);
7530 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7531 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7532 MODULE_LICENSE("GPL");
7533 MODULE_VERSION(DRV_VERSION);