]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
e1000e: fix legacy interrupt handling in i219
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77         u32 ofs;
78         char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82         /* General Registers */
83         {E1000_CTRL, "CTRL"},
84         {E1000_STATUS, "STATUS"},
85         {E1000_CTRL_EXT, "CTRL_EXT"},
86
87         /* Interrupt Registers */
88         {E1000_ICR, "ICR"},
89
90         /* Rx Registers */
91         {E1000_RCTL, "RCTL"},
92         {E1000_RDLEN(0), "RDLEN"},
93         {E1000_RDH(0), "RDH"},
94         {E1000_RDT(0), "RDT"},
95         {E1000_RDTR, "RDTR"},
96         {E1000_RXDCTL(0), "RXDCTL"},
97         {E1000_ERT, "ERT"},
98         {E1000_RDBAL(0), "RDBAL"},
99         {E1000_RDBAH(0), "RDBAH"},
100         {E1000_RDFH, "RDFH"},
101         {E1000_RDFT, "RDFT"},
102         {E1000_RDFHS, "RDFHS"},
103         {E1000_RDFTS, "RDFTS"},
104         {E1000_RDFPC, "RDFPC"},
105
106         /* Tx Registers */
107         {E1000_TCTL, "TCTL"},
108         {E1000_TDBAL(0), "TDBAL"},
109         {E1000_TDBAH(0), "TDBAH"},
110         {E1000_TDLEN(0), "TDLEN"},
111         {E1000_TDH(0), "TDH"},
112         {E1000_TDT(0), "TDT"},
113         {E1000_TIDV, "TIDV"},
114         {E1000_TXDCTL(0), "TXDCTL"},
115         {E1000_TADV, "TADV"},
116         {E1000_TARC(0), "TARC"},
117         {E1000_TDFH, "TDFH"},
118         {E1000_TDFT, "TDFT"},
119         {E1000_TDFHS, "TDFHS"},
120         {E1000_TDFTS, "TDFTS"},
121         {E1000_TDFPC, "TDFPC"},
122
123         /* List Terminator */
124         {0, NULL}
125 };
126
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144                 udelay(50);
145
146         return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152                 __ew32_prepare(hw);
153
154         writel(val, hw->hw_addr + reg);
155 }
156
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164         int n = 0;
165         char rname[16];
166         u32 regs[8];
167
168         switch (reginfo->ofs) {
169         case E1000_RXDCTL(0):
170                 for (n = 0; n < 2; n++)
171                         regs[n] = __er32(hw, E1000_RXDCTL(n));
172                 break;
173         case E1000_TXDCTL(0):
174                 for (n = 0; n < 2; n++)
175                         regs[n] = __er32(hw, E1000_TXDCTL(n));
176                 break;
177         case E1000_TARC(0):
178                 for (n = 0; n < 2; n++)
179                         regs[n] = __er32(hw, E1000_TARC(n));
180                 break;
181         default:
182                 pr_info("%-15s %08x\n",
183                         reginfo->name, __er32(hw, reginfo->ofs));
184                 return;
185         }
186
187         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192                                  struct e1000_buffer *bi)
193 {
194         int i;
195         struct e1000_ps_page *ps_page;
196
197         for (i = 0; i < adapter->rx_ps_pages; i++) {
198                 ps_page = &bi->ps_pages[i];
199
200                 if (ps_page->page) {
201                         pr_info("packet dump for ps_page %d:\n", i);
202                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203                                        16, 1, page_address(ps_page->page),
204                                        PAGE_SIZE, true);
205                 }
206         }
207 }
208
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215         struct net_device *netdev = adapter->netdev;
216         struct e1000_hw *hw = &adapter->hw;
217         struct e1000_reg_info *reginfo;
218         struct e1000_ring *tx_ring = adapter->tx_ring;
219         struct e1000_tx_desc *tx_desc;
220         struct my_u0 {
221                 __le64 a;
222                 __le64 b;
223         } *u0;
224         struct e1000_buffer *buffer_info;
225         struct e1000_ring *rx_ring = adapter->rx_ring;
226         union e1000_rx_desc_packet_split *rx_desc_ps;
227         union e1000_rx_desc_extended *rx_desc;
228         struct my_u1 {
229                 __le64 a;
230                 __le64 b;
231                 __le64 c;
232                 __le64 d;
233         } *u1;
234         u32 staterr;
235         int i = 0;
236
237         if (!netif_msg_hw(adapter))
238                 return;
239
240         /* Print netdevice Info */
241         if (netdev) {
242                 dev_info(&adapter->pdev->dev, "Net device Info\n");
243                 pr_info("Device Name     state            trans_start      last_rx\n");
244                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245                         netdev->state, netdev->trans_start, netdev->last_rx);
246         }
247
248         /* Print Registers */
249         dev_info(&adapter->pdev->dev, "Register Dump\n");
250         pr_info(" Register Name   Value\n");
251         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252              reginfo->name; reginfo++) {
253                 e1000_regdump(hw, reginfo);
254         }
255
256         /* Print Tx Ring Summary */
257         if (!netdev || !netif_running(netdev))
258                 return;
259
260         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265                 (unsigned long long)buffer_info->dma,
266                 buffer_info->length,
267                 buffer_info->next_to_watch,
268                 (unsigned long long)buffer_info->time_stamp);
269
270         /* Print Tx Ring */
271         if (!netif_msg_tx_done(adapter))
272                 goto rx_ring_summary;
273
274         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277          *
278          * Legacy Transmit Descriptor
279          *   +--------------------------------------------------------------+
280          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281          *   +--------------------------------------------------------------+
282          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283          *   +--------------------------------------------------------------+
284          *   63       48 47        36 35    32 31     24 23    16 15        0
285          *
286          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287          *   63      48 47    40 39       32 31             16 15    8 7      0
288          *   +----------------------------------------------------------------+
289          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290          *   +----------------------------------------------------------------+
291          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292          *   +----------------------------------------------------------------+
293          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294          *
295          * Extended Data Descriptor (DTYP=0x1)
296          *   +----------------------------------------------------------------+
297          * 0 |                     Buffer Address [63:0]                      |
298          *   +----------------------------------------------------------------+
299          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300          *   +----------------------------------------------------------------+
301          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302          */
303         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307                 const char *next_desc;
308                 tx_desc = E1000_TX_DESC(*tx_ring, i);
309                 buffer_info = &tx_ring->buffer_info[i];
310                 u0 = (struct my_u0 *)tx_desc;
311                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312                         next_desc = " NTC/U";
313                 else if (i == tx_ring->next_to_use)
314                         next_desc = " NTU";
315                 else if (i == tx_ring->next_to_clean)
316                         next_desc = " NTC";
317                 else
318                         next_desc = "";
319                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322                         i,
323                         (unsigned long long)le64_to_cpu(u0->a),
324                         (unsigned long long)le64_to_cpu(u0->b),
325                         (unsigned long long)buffer_info->dma,
326                         buffer_info->length, buffer_info->next_to_watch,
327                         (unsigned long long)buffer_info->time_stamp,
328                         buffer_info->skb, next_desc);
329
330                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332                                        16, 1, buffer_info->skb->data,
333                                        buffer_info->skb->len, true);
334         }
335
336         /* Print Rx Ring Summary */
337 rx_ring_summary:
338         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339         pr_info("Queue [NTU] [NTC]\n");
340         pr_info(" %5d %5X %5X\n",
341                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343         /* Print Rx Ring */
344         if (!netif_msg_rx_status(adapter))
345                 return;
346
347         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348         switch (adapter->rx_ps_pages) {
349         case 1:
350         case 2:
351         case 3:
352                 /* [Extended] Packet Split Receive Descriptor Format
353                  *
354                  *    +-----------------------------------------------------+
355                  *  0 |                Buffer Address 0 [63:0]              |
356                  *    +-----------------------------------------------------+
357                  *  8 |                Buffer Address 1 [63:0]              |
358                  *    +-----------------------------------------------------+
359                  * 16 |                Buffer Address 2 [63:0]              |
360                  *    +-----------------------------------------------------+
361                  * 24 |                Buffer Address 3 [63:0]              |
362                  *    +-----------------------------------------------------+
363                  */
364                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365                 /* [Extended] Receive Descriptor (Write-Back) Format
366                  *
367                  *   63       48 47    32 31     13 12    8 7    4 3        0
368                  *   +------------------------------------------------------+
369                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370                  *   | Checksum | Ident  |         | Queue |      |  Type   |
371                  *   +------------------------------------------------------+
372                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373                  *   +------------------------------------------------------+
374                  *   63       48 47    32 31            20 19               0
375                  */
376                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377                 for (i = 0; i < rx_ring->count; i++) {
378                         const char *next_desc;
379                         buffer_info = &rx_ring->buffer_info[i];
380                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381                         u1 = (struct my_u1 *)rx_desc_ps;
382                         staterr =
383                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385                         if (i == rx_ring->next_to_use)
386                                 next_desc = " NTU";
387                         else if (i == rx_ring->next_to_clean)
388                                 next_desc = " NTC";
389                         else
390                                 next_desc = "";
391
392                         if (staterr & E1000_RXD_STAT_DD) {
393                                 /* Descriptor Done */
394                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395                                         "RWB", i,
396                                         (unsigned long long)le64_to_cpu(u1->a),
397                                         (unsigned long long)le64_to_cpu(u1->b),
398                                         (unsigned long long)le64_to_cpu(u1->c),
399                                         (unsigned long long)le64_to_cpu(u1->d),
400                                         buffer_info->skb, next_desc);
401                         } else {
402                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403                                         "R  ", i,
404                                         (unsigned long long)le64_to_cpu(u1->a),
405                                         (unsigned long long)le64_to_cpu(u1->b),
406                                         (unsigned long long)le64_to_cpu(u1->c),
407                                         (unsigned long long)le64_to_cpu(u1->d),
408                                         (unsigned long long)buffer_info->dma,
409                                         buffer_info->skb, next_desc);
410
411                                 if (netif_msg_pktdata(adapter))
412                                         e1000e_dump_ps_pages(adapter,
413                                                              buffer_info);
414                         }
415                 }
416                 break;
417         default:
418         case 0:
419                 /* Extended Receive Descriptor (Read) Format
420                  *
421                  *   +-----------------------------------------------------+
422                  * 0 |                Buffer Address [63:0]                |
423                  *   +-----------------------------------------------------+
424                  * 8 |                      Reserved                       |
425                  *   +-----------------------------------------------------+
426                  */
427                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428                 /* Extended Receive Descriptor (Write-Back) Format
429                  *
430                  *   63       48 47    32 31    24 23            4 3        0
431                  *   +------------------------------------------------------+
432                  *   |     RSS Hash      |        |               |         |
433                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434                  *   | Packet   | IP     |        |               |  Type   |
435                  *   | Checksum | Ident  |        |               |         |
436                  *   +------------------------------------------------------+
437                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438                  *   +------------------------------------------------------+
439                  *   63       48 47    32 31            20 19               0
440                  */
441                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443                 for (i = 0; i < rx_ring->count; i++) {
444                         const char *next_desc;
445
446                         buffer_info = &rx_ring->buffer_info[i];
447                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448                         u1 = (struct my_u1 *)rx_desc;
449                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451                         if (i == rx_ring->next_to_use)
452                                 next_desc = " NTU";
453                         else if (i == rx_ring->next_to_clean)
454                                 next_desc = " NTC";
455                         else
456                                 next_desc = "";
457
458                         if (staterr & E1000_RXD_STAT_DD) {
459                                 /* Descriptor Done */
460                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461                                         "RWB", i,
462                                         (unsigned long long)le64_to_cpu(u1->a),
463                                         (unsigned long long)le64_to_cpu(u1->b),
464                                         buffer_info->skb, next_desc);
465                         } else {
466                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467                                         "R  ", i,
468                                         (unsigned long long)le64_to_cpu(u1->a),
469                                         (unsigned long long)le64_to_cpu(u1->b),
470                                         (unsigned long long)buffer_info->dma,
471                                         buffer_info->skb, next_desc);
472
473                                 if (netif_msg_pktdata(adapter) &&
474                                     buffer_info->skb)
475                                         print_hex_dump(KERN_INFO, "",
476                                                        DUMP_PREFIX_ADDRESS, 16,
477                                                        1,
478                                                        buffer_info->skb->data,
479                                                        adapter->rx_buffer_len,
480                                                        true);
481                         }
482                 }
483         }
484 }
485
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491         if (ring->next_to_clean > ring->next_to_use)
492                 return ring->next_to_clean - ring->next_to_use - 1;
493
494         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512                                       struct skb_shared_hwtstamps *hwtstamps,
513                                       u64 systim)
514 {
515         u64 ns;
516         unsigned long flags;
517
518         spin_lock_irqsave(&adapter->systim_lock, flags);
519         ns = timecounter_cyc2time(&adapter->tc, systim);
520         spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522         memset(hwtstamps, 0, sizeof(*hwtstamps));
523         hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537                                struct sk_buff *skb)
538 {
539         struct e1000_hw *hw = &adapter->hw;
540         u64 rxstmp;
541
542         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543             !(status & E1000_RXDEXT_STATERR_TST) ||
544             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545                 return;
546
547         /* The Rx time stamp registers contain the time stamp.  No other
548          * received packet will be time stamped until the Rx time stamp
549          * registers are read.  Because only one packet can be time stamped
550          * at a time, the register values must belong to this packet and
551          * therefore none of the other additional attributes need to be
552          * compared.
553          */
554         rxstmp = (u64)er32(RXSTMPL);
555         rxstmp |= (u64)er32(RXSTMPH) << 32;
556         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569                               struct net_device *netdev, struct sk_buff *skb,
570                               u32 staterr, __le16 vlan)
571 {
572         u16 tag = le16_to_cpu(vlan);
573
574         e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576         skb->protocol = eth_type_trans(skb, netdev);
577
578         if (staterr & E1000_RXD_STAT_VP)
579                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581         napi_gro_receive(&adapter->napi, skb);
582 }
583
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592                               struct sk_buff *skb)
593 {
594         u16 status = (u16)status_err;
595         u8 errors = (u8)(status_err >> 24);
596
597         skb_checksum_none_assert(skb);
598
599         /* Rx checksum disabled */
600         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601                 return;
602
603         /* Ignore Checksum bit is set */
604         if (status & E1000_RXD_STAT_IXSM)
605                 return;
606
607         /* TCP/UDP checksum error bit or IP checksum error bit is set */
608         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609                 /* let the stack verify checksum errors */
610                 adapter->hw_csum_err++;
611                 return;
612         }
613
614         /* TCP/UDP Checksum has not been calculated */
615         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616                 return;
617
618         /* It must be a TCP or UDP packet with a valid checksum */
619         skb->ip_summed = CHECKSUM_UNNECESSARY;
620         adapter->hw_csum_good++;
621 }
622
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = rx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, rx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632                 u32 rctl = er32(RCTL);
633
634                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635                 e_err("ME firmware caused invalid RDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642         struct e1000_adapter *adapter = tx_ring->adapter;
643         struct e1000_hw *hw = &adapter->hw;
644         s32 ret_val = __ew32_prepare(hw);
645
646         writel(i, tx_ring->tail);
647
648         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649                 u32 tctl = er32(TCTL);
650
651                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652                 e_err("ME firmware caused invalid TDT - resetting\n");
653                 schedule_work(&adapter->reset_task);
654         }
655 }
656
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662                                    int cleaned_count, gfp_t gfp)
663 {
664         struct e1000_adapter *adapter = rx_ring->adapter;
665         struct net_device *netdev = adapter->netdev;
666         struct pci_dev *pdev = adapter->pdev;
667         union e1000_rx_desc_extended *rx_desc;
668         struct e1000_buffer *buffer_info;
669         struct sk_buff *skb;
670         unsigned int i;
671         unsigned int bufsz = adapter->rx_buffer_len;
672
673         i = rx_ring->next_to_use;
674         buffer_info = &rx_ring->buffer_info[i];
675
676         while (cleaned_count--) {
677                 skb = buffer_info->skb;
678                 if (skb) {
679                         skb_trim(skb, 0);
680                         goto map_skb;
681                 }
682
683                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684                 if (!skb) {
685                         /* Better luck next round */
686                         adapter->alloc_rx_buff_failed++;
687                         break;
688                 }
689
690                 buffer_info->skb = skb;
691 map_skb:
692                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693                                                   adapter->rx_buffer_len,
694                                                   DMA_FROM_DEVICE);
695                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696                         dev_err(&pdev->dev, "Rx DMA map failed\n");
697                         adapter->rx_dma_failed++;
698                         break;
699                 }
700
701                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705                         /* Force memory writes to complete before letting h/w
706                          * know there are new descriptors to fetch.  (Only
707                          * applicable for weak-ordered memory model archs,
708                          * such as IA-64).
709                          */
710                         wmb();
711                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712                                 e1000e_update_rdt_wa(rx_ring, i);
713                         else
714                                 writel(i, rx_ring->tail);
715                 }
716                 i++;
717                 if (i == rx_ring->count)
718                         i = 0;
719                 buffer_info = &rx_ring->buffer_info[i];
720         }
721
722         rx_ring->next_to_use = i;
723 }
724
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730                                       int cleaned_count, gfp_t gfp)
731 {
732         struct e1000_adapter *adapter = rx_ring->adapter;
733         struct net_device *netdev = adapter->netdev;
734         struct pci_dev *pdev = adapter->pdev;
735         union e1000_rx_desc_packet_split *rx_desc;
736         struct e1000_buffer *buffer_info;
737         struct e1000_ps_page *ps_page;
738         struct sk_buff *skb;
739         unsigned int i, j;
740
741         i = rx_ring->next_to_use;
742         buffer_info = &rx_ring->buffer_info[i];
743
744         while (cleaned_count--) {
745                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748                         ps_page = &buffer_info->ps_pages[j];
749                         if (j >= adapter->rx_ps_pages) {
750                                 /* all unused desc entries get hw null ptr */
751                                 rx_desc->read.buffer_addr[j + 1] =
752                                     ~cpu_to_le64(0);
753                                 continue;
754                         }
755                         if (!ps_page->page) {
756                                 ps_page->page = alloc_page(gfp);
757                                 if (!ps_page->page) {
758                                         adapter->alloc_rx_buff_failed++;
759                                         goto no_buffers;
760                                 }
761                                 ps_page->dma = dma_map_page(&pdev->dev,
762                                                             ps_page->page,
763                                                             0, PAGE_SIZE,
764                                                             DMA_FROM_DEVICE);
765                                 if (dma_mapping_error(&pdev->dev,
766                                                       ps_page->dma)) {
767                                         dev_err(&adapter->pdev->dev,
768                                                 "Rx DMA page map failed\n");
769                                         adapter->rx_dma_failed++;
770                                         goto no_buffers;
771                                 }
772                         }
773                         /* Refresh the desc even if buffer_addrs
774                          * didn't change because each write-back
775                          * erases this info.
776                          */
777                         rx_desc->read.buffer_addr[j + 1] =
778                             cpu_to_le64(ps_page->dma);
779                 }
780
781                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782                                                   gfp);
783
784                 if (!skb) {
785                         adapter->alloc_rx_buff_failed++;
786                         break;
787                 }
788
789                 buffer_info->skb = skb;
790                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791                                                   adapter->rx_ps_bsize0,
792                                                   DMA_FROM_DEVICE);
793                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794                         dev_err(&pdev->dev, "Rx DMA map failed\n");
795                         adapter->rx_dma_failed++;
796                         /* cleanup skb */
797                         dev_kfree_skb_any(skb);
798                         buffer_info->skb = NULL;
799                         break;
800                 }
801
802                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805                         /* Force memory writes to complete before letting h/w
806                          * know there are new descriptors to fetch.  (Only
807                          * applicable for weak-ordered memory model archs,
808                          * such as IA-64).
809                          */
810                         wmb();
811                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812                                 e1000e_update_rdt_wa(rx_ring, i << 1);
813                         else
814                                 writel(i << 1, rx_ring->tail);
815                 }
816
817                 i++;
818                 if (i == rx_ring->count)
819                         i = 0;
820                 buffer_info = &rx_ring->buffer_info[i];
821         }
822
823 no_buffers:
824         rx_ring->next_to_use = i;
825 }
826
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834                                          int cleaned_count, gfp_t gfp)
835 {
836         struct e1000_adapter *adapter = rx_ring->adapter;
837         struct net_device *netdev = adapter->netdev;
838         struct pci_dev *pdev = adapter->pdev;
839         union e1000_rx_desc_extended *rx_desc;
840         struct e1000_buffer *buffer_info;
841         struct sk_buff *skb;
842         unsigned int i;
843         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
844
845         i = rx_ring->next_to_use;
846         buffer_info = &rx_ring->buffer_info[i];
847
848         while (cleaned_count--) {
849                 skb = buffer_info->skb;
850                 if (skb) {
851                         skb_trim(skb, 0);
852                         goto check_page;
853                 }
854
855                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856                 if (unlikely(!skb)) {
857                         /* Better luck next round */
858                         adapter->alloc_rx_buff_failed++;
859                         break;
860                 }
861
862                 buffer_info->skb = skb;
863 check_page:
864                 /* allocate a new page if necessary */
865                 if (!buffer_info->page) {
866                         buffer_info->page = alloc_page(gfp);
867                         if (unlikely(!buffer_info->page)) {
868                                 adapter->alloc_rx_buff_failed++;
869                                 break;
870                         }
871                 }
872
873                 if (!buffer_info->dma) {
874                         buffer_info->dma = dma_map_page(&pdev->dev,
875                                                         buffer_info->page, 0,
876                                                         PAGE_SIZE,
877                                                         DMA_FROM_DEVICE);
878                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879                                 adapter->alloc_rx_buff_failed++;
880                                 break;
881                         }
882                 }
883
884                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887                 if (unlikely(++i == rx_ring->count))
888                         i = 0;
889                 buffer_info = &rx_ring->buffer_info[i];
890         }
891
892         if (likely(rx_ring->next_to_use != i)) {
893                 rx_ring->next_to_use = i;
894                 if (unlikely(i-- == 0))
895                         i = (rx_ring->count - 1);
896
897                 /* Force memory writes to complete before letting h/w
898                  * know there are new descriptors to fetch.  (Only
899                  * applicable for weak-ordered memory model archs,
900                  * such as IA-64).
901                  */
902                 wmb();
903                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904                         e1000e_update_rdt_wa(rx_ring, i);
905                 else
906                         writel(i, rx_ring->tail);
907         }
908 }
909
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911                                  struct sk_buff *skb)
912 {
913         if (netdev->features & NETIF_F_RXHASH)
914                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925                                int work_to_do)
926 {
927         struct e1000_adapter *adapter = rx_ring->adapter;
928         struct net_device *netdev = adapter->netdev;
929         struct pci_dev *pdev = adapter->pdev;
930         struct e1000_hw *hw = &adapter->hw;
931         union e1000_rx_desc_extended *rx_desc, *next_rxd;
932         struct e1000_buffer *buffer_info, *next_buffer;
933         u32 length, staterr;
934         unsigned int i;
935         int cleaned_count = 0;
936         bool cleaned = false;
937         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939         i = rx_ring->next_to_clean;
940         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942         buffer_info = &rx_ring->buffer_info[i];
943
944         while (staterr & E1000_RXD_STAT_DD) {
945                 struct sk_buff *skb;
946
947                 if (*work_done >= work_to_do)
948                         break;
949                 (*work_done)++;
950                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
951
952                 skb = buffer_info->skb;
953                 buffer_info->skb = NULL;
954
955                 prefetch(skb->data - NET_IP_ALIGN);
956
957                 i++;
958                 if (i == rx_ring->count)
959                         i = 0;
960                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961                 prefetch(next_rxd);
962
963                 next_buffer = &rx_ring->buffer_info[i];
964
965                 cleaned = true;
966                 cleaned_count++;
967                 dma_unmap_single(&pdev->dev, buffer_info->dma,
968                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
969                 buffer_info->dma = 0;
970
971                 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973                 /* !EOP means multiple descriptors were used to store a single
974                  * packet, if that's the case we need to toss it.  In fact, we
975                  * need to toss every packet with the EOP bit clear and the
976                  * next frame that _does_ have the EOP bit set, as it is by
977                  * definition only a frame fragment
978                  */
979                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980                         adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983                         /* All receives must fit into a single buffer */
984                         e_dbg("Receive packet consumed multiple buffers\n");
985                         /* recycle */
986                         buffer_info->skb = skb;
987                         if (staterr & E1000_RXD_STAT_EOP)
988                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989                         goto next_desc;
990                 }
991
992                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993                              !(netdev->features & NETIF_F_RXALL))) {
994                         /* recycle */
995                         buffer_info->skb = skb;
996                         goto next_desc;
997                 }
998
999                 /* adjust length to remove Ethernet CRC */
1000                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001                         /* If configured to store CRC, don't subtract FCS,
1002                          * but keep the FCS bytes out of the total_rx_bytes
1003                          * counter
1004                          */
1005                         if (netdev->features & NETIF_F_RXFCS)
1006                                 total_rx_bytes -= 4;
1007                         else
1008                                 length -= 4;
1009                 }
1010
1011                 total_rx_bytes += length;
1012                 total_rx_packets++;
1013
1014                 /* code added for copybreak, this should improve
1015                  * performance for small packets with large amounts
1016                  * of reassembly being done in the stack
1017                  */
1018                 if (length < copybreak) {
1019                         struct sk_buff *new_skb =
1020                                 napi_alloc_skb(&adapter->napi, length);
1021                         if (new_skb) {
1022                                 skb_copy_to_linear_data_offset(new_skb,
1023                                                                -NET_IP_ALIGN,
1024                                                                (skb->data -
1025                                                                 NET_IP_ALIGN),
1026                                                                (length +
1027                                                                 NET_IP_ALIGN));
1028                                 /* save the skb in buffer_info as good */
1029                                 buffer_info->skb = skb;
1030                                 skb = new_skb;
1031                         }
1032                         /* else just continue with the old one */
1033                 }
1034                 /* end copybreak code */
1035                 skb_put(skb, length);
1036
1037                 /* Receive Checksum Offload */
1038                 e1000_rx_checksum(adapter, staterr, skb);
1039
1040                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042                 e1000_receive_skb(adapter, netdev, skb, staterr,
1043                                   rx_desc->wb.upper.vlan);
1044
1045 next_desc:
1046                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048                 /* return some buffers to hardware, one at a time is too slow */
1049                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051                                               GFP_ATOMIC);
1052                         cleaned_count = 0;
1053                 }
1054
1055                 /* use prefetched values */
1056                 rx_desc = next_rxd;
1057                 buffer_info = next_buffer;
1058
1059                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060         }
1061         rx_ring->next_to_clean = i;
1062
1063         cleaned_count = e1000_desc_unused(rx_ring);
1064         if (cleaned_count)
1065                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067         adapter->total_rx_bytes += total_rx_bytes;
1068         adapter->total_rx_packets += total_rx_packets;
1069         return cleaned;
1070 }
1071
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073                             struct e1000_buffer *buffer_info)
1074 {
1075         struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077         if (buffer_info->dma) {
1078                 if (buffer_info->mapped_as_page)
1079                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080                                        buffer_info->length, DMA_TO_DEVICE);
1081                 else
1082                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083                                          buffer_info->length, DMA_TO_DEVICE);
1084                 buffer_info->dma = 0;
1085         }
1086         if (buffer_info->skb) {
1087                 dev_kfree_skb_any(buffer_info->skb);
1088                 buffer_info->skb = NULL;
1089         }
1090         buffer_info->time_stamp = 0;
1091 }
1092
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095         struct e1000_adapter *adapter = container_of(work,
1096                                                      struct e1000_adapter,
1097                                                      print_hang_task);
1098         struct net_device *netdev = adapter->netdev;
1099         struct e1000_ring *tx_ring = adapter->tx_ring;
1100         unsigned int i = tx_ring->next_to_clean;
1101         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103         struct e1000_hw *hw = &adapter->hw;
1104         u16 phy_status, phy_1000t_status, phy_ext_status;
1105         u16 pci_status;
1106
1107         if (test_bit(__E1000_DOWN, &adapter->state))
1108                 return;
1109
1110         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111                 /* May be block on write-back, flush and detect again
1112                  * flush pending descriptor writebacks to memory
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 /* Due to rare timing issues, write to TIDV again to ensure
1118                  * the write is successful
1119                  */
1120                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121                 /* execute the writes immediately */
1122                 e1e_flush();
1123                 adapter->tx_hang_recheck = true;
1124                 return;
1125         }
1126         adapter->tx_hang_recheck = false;
1127
1128         if (er32(TDH(0)) == er32(TDT(0))) {
1129                 e_dbg("false hang detected, ignoring\n");
1130                 return;
1131         }
1132
1133         /* Real hang detected */
1134         netif_stop_queue(netdev);
1135
1136         e1e_rphy(hw, MII_BMSR, &phy_status);
1137         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142         /* detected Hardware unit hang */
1143         e_err("Detected Hardware Unit Hang:\n"
1144               "  TDH                  <%x>\n"
1145               "  TDT                  <%x>\n"
1146               "  next_to_use          <%x>\n"
1147               "  next_to_clean        <%x>\n"
1148               "buffer_info[next_to_clean]:\n"
1149               "  time_stamp           <%lx>\n"
1150               "  next_to_watch        <%x>\n"
1151               "  jiffies              <%lx>\n"
1152               "  next_to_watch.status <%x>\n"
1153               "MAC Status             <%x>\n"
1154               "PHY Status             <%x>\n"
1155               "PHY 1000BASE-T Status  <%x>\n"
1156               "PHY Extended Status    <%x>\n"
1157               "PCI Status             <%x>\n",
1158               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163         e1000e_dump(adapter);
1164
1165         /* Suggest workaround for known h/w issue */
1166         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181                                                      tx_hwtstamp_work);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185                 struct skb_shared_hwtstamps shhwtstamps;
1186                 u64 txstmp;
1187
1188                 txstmp = er32(TXSTMPL);
1189                 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195                 adapter->tx_hwtstamp_skb = NULL;
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                   int work_to_do)
1310 {
1311         struct e1000_adapter *adapter = rx_ring->adapter;
1312         struct e1000_hw *hw = &adapter->hw;
1313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314         struct net_device *netdev = adapter->netdev;
1315         struct pci_dev *pdev = adapter->pdev;
1316         struct e1000_buffer *buffer_info, *next_buffer;
1317         struct e1000_ps_page *ps_page;
1318         struct sk_buff *skb;
1319         unsigned int i, j;
1320         u32 length, staterr;
1321         int cleaned_count = 0;
1322         bool cleaned = false;
1323         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325         i = rx_ring->next_to_clean;
1326         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328         buffer_info = &rx_ring->buffer_info[i];
1329
1330         while (staterr & E1000_RXD_STAT_DD) {
1331                 if (*work_done >= work_to_do)
1332                         break;
1333                 (*work_done)++;
1334                 skb = buffer_info->skb;
1335                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                 /* in the packet split case this is header only */
1338                 prefetch(skb->data - NET_IP_ALIGN);
1339
1340                 i++;
1341                 if (i == rx_ring->count)
1342                         i = 0;
1343                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                 prefetch(next_rxd);
1345
1346                 next_buffer = &rx_ring->buffer_info[i];
1347
1348                 cleaned = true;
1349                 cleaned_count++;
1350                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                 buffer_info->dma = 0;
1353
1354                 /* see !EOP comment in other Rx routine */
1355                 if (!(staterr & E1000_RXD_STAT_EOP))
1356                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                         dev_kfree_skb_irq(skb);
1361                         if (staterr & E1000_RXD_STAT_EOP)
1362                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                         goto next_desc;
1364                 }
1365
1366                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                              !(netdev->features & NETIF_F_RXALL))) {
1368                         dev_kfree_skb_irq(skb);
1369                         goto next_desc;
1370                 }
1371
1372                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                 if (!length) {
1375                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                         dev_kfree_skb_irq(skb);
1377                         goto next_desc;
1378                 }
1379
1380                 /* Good Receive */
1381                 skb_put(skb, length);
1382
1383                 {
1384                         /* this looks ugly, but it seems compiler issues make
1385                          * it more efficient than reusing j
1386                          */
1387                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                         /* page alloc/put takes too long and effects small
1390                          * packet throughput, so unsplit small packets and
1391                          * save the alloc/put only valid in softirq (napi)
1392                          * context to call kmap_*
1393                          */
1394                         if (l1 && (l1 <= copybreak) &&
1395                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                 u8 *vaddr;
1397
1398                                 ps_page = &buffer_info->ps_pages[0];
1399
1400                                 /* there is no documentation about how to call
1401                                  * kmap_atomic, so we can't hold the mapping
1402                                  * very long
1403                                  */
1404                                 dma_sync_single_for_cpu(&pdev->dev,
1405                                                         ps_page->dma,
1406                                                         PAGE_SIZE,
1407                                                         DMA_FROM_DEVICE);
1408                                 vaddr = kmap_atomic(ps_page->page);
1409                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                 kunmap_atomic(vaddr);
1411                                 dma_sync_single_for_device(&pdev->dev,
1412                                                            ps_page->dma,
1413                                                            PAGE_SIZE,
1414                                                            DMA_FROM_DEVICE);
1415
1416                                 /* remove the CRC */
1417                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                         if (!(netdev->features & NETIF_F_RXFCS))
1419                                                 l1 -= 4;
1420                                 }
1421
1422                                 skb_put(skb, l1);
1423                                 goto copydone;
1424                         }       /* if */
1425                 }
1426
1427                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                         if (!length)
1430                                 break;
1431
1432                         ps_page = &buffer_info->ps_pages[j];
1433                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                        DMA_FROM_DEVICE);
1435                         ps_page->dma = 0;
1436                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                         ps_page->page = NULL;
1438                         skb->len += length;
1439                         skb->data_len += length;
1440                         skb->truesize += PAGE_SIZE;
1441                 }
1442
1443                 /* strip the ethernet crc, problem is we're using pages now so
1444                  * this whole operation can get a little cpu intensive
1445                  */
1446                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                         if (!(netdev->features & NETIF_F_RXFCS))
1448                                 pskb_trim(skb, skb->len - 4);
1449                 }
1450
1451 copydone:
1452                 total_rx_bytes += skb->len;
1453                 total_rx_packets++;
1454
1455                 e1000_rx_checksum(adapter, staterr, skb);
1456
1457                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                 if (rx_desc->wb.upper.header_status &
1460                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                         adapter->rx_hdr_split++;
1462
1463                 e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                   rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                 buffer_info->skb = NULL;
1469
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                               GFP_ATOMIC);
1474                         cleaned_count = 0;
1475                 }
1476
1477                 /* use prefetched values */
1478                 rx_desc = next_rxd;
1479                 buffer_info = next_buffer;
1480
1481                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482         }
1483         rx_ring->next_to_clean = i;
1484
1485         cleaned_count = e1000_desc_unused(rx_ring);
1486         if (cleaned_count)
1487                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489         adapter->total_rx_bytes += total_rx_bytes;
1490         adapter->total_rx_packets += total_rx_packets;
1491         return cleaned;
1492 }
1493
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498                                u16 length)
1499 {
1500         bi->page = NULL;
1501         skb->len += length;
1502         skb->data_len += length;
1503         skb->truesize += PAGE_SIZE;
1504 }
1505
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514                                      int work_to_do)
1515 {
1516         struct e1000_adapter *adapter = rx_ring->adapter;
1517         struct net_device *netdev = adapter->netdev;
1518         struct pci_dev *pdev = adapter->pdev;
1519         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520         struct e1000_buffer *buffer_info, *next_buffer;
1521         u32 length, staterr;
1522         unsigned int i;
1523         int cleaned_count = 0;
1524         bool cleaned = false;
1525         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526         struct skb_shared_info *shinfo;
1527
1528         i = rx_ring->next_to_clean;
1529         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531         buffer_info = &rx_ring->buffer_info[i];
1532
1533         while (staterr & E1000_RXD_STAT_DD) {
1534                 struct sk_buff *skb;
1535
1536                 if (*work_done >= work_to_do)
1537                         break;
1538                 (*work_done)++;
1539                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1540
1541                 skb = buffer_info->skb;
1542                 buffer_info->skb = NULL;
1543
1544                 ++i;
1545                 if (i == rx_ring->count)
1546                         i = 0;
1547                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548                 prefetch(next_rxd);
1549
1550                 next_buffer = &rx_ring->buffer_info[i];
1551
1552                 cleaned = true;
1553                 cleaned_count++;
1554                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555                                DMA_FROM_DEVICE);
1556                 buffer_info->dma = 0;
1557
1558                 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560                 /* errors is only valid for DD + EOP descriptors */
1561                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563                               !(netdev->features & NETIF_F_RXALL)))) {
1564                         /* recycle both page and skb */
1565                         buffer_info->skb = skb;
1566                         /* an error means any chain goes out the window too */
1567                         if (rx_ring->rx_skb_top)
1568                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569                         rx_ring->rx_skb_top = NULL;
1570                         goto next_desc;
1571                 }
1572 #define rxtop (rx_ring->rx_skb_top)
1573                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574                         /* this descriptor is only the beginning (or middle) */
1575                         if (!rxtop) {
1576                                 /* this is the beginning of a chain */
1577                                 rxtop = skb;
1578                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579                                                    0, length);
1580                         } else {
1581                                 /* this is the middle of a chain */
1582                                 shinfo = skb_shinfo(rxtop);
1583                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584                                                    buffer_info->page, 0,
1585                                                    length);
1586                                 /* re-use the skb, only consumed the page */
1587                                 buffer_info->skb = skb;
1588                         }
1589                         e1000_consume_page(buffer_info, rxtop, length);
1590                         goto next_desc;
1591                 } else {
1592                         if (rxtop) {
1593                                 /* end of the chain */
1594                                 shinfo = skb_shinfo(rxtop);
1595                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596                                                    buffer_info->page, 0,
1597                                                    length);
1598                                 /* re-use the current skb, we only consumed the
1599                                  * page
1600                                  */
1601                                 buffer_info->skb = skb;
1602                                 skb = rxtop;
1603                                 rxtop = NULL;
1604                                 e1000_consume_page(buffer_info, skb, length);
1605                         } else {
1606                                 /* no chain, got EOP, this buf is the packet
1607                                  * copybreak to save the put_page/alloc_page
1608                                  */
1609                                 if (length <= copybreak &&
1610                                     skb_tailroom(skb) >= length) {
1611                                         u8 *vaddr;
1612                                         vaddr = kmap_atomic(buffer_info->page);
1613                                         memcpy(skb_tail_pointer(skb), vaddr,
1614                                                length);
1615                                         kunmap_atomic(vaddr);
1616                                         /* re-use the page, so don't erase
1617                                          * buffer_info->page
1618                                          */
1619                                         skb_put(skb, length);
1620                                 } else {
1621                                         skb_fill_page_desc(skb, 0,
1622                                                            buffer_info->page, 0,
1623                                                            length);
1624                                         e1000_consume_page(buffer_info, skb,
1625                                                            length);
1626                                 }
1627                         }
1628                 }
1629
1630                 /* Receive Checksum Offload */
1631                 e1000_rx_checksum(adapter, staterr, skb);
1632
1633                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635                 /* probably a little skewed due to removing CRC */
1636                 total_rx_bytes += skb->len;
1637                 total_rx_packets++;
1638
1639                 /* eth type trans needs skb->data to point to something */
1640                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641                         e_err("pskb_may_pull failed.\n");
1642                         dev_kfree_skb_irq(skb);
1643                         goto next_desc;
1644                 }
1645
1646                 e1000_receive_skb(adapter, netdev, skb, staterr,
1647                                   rx_desc->wb.upper.vlan);
1648
1649 next_desc:
1650                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652                 /* return some buffers to hardware, one at a time is too slow */
1653                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655                                               GFP_ATOMIC);
1656                         cleaned_count = 0;
1657                 }
1658
1659                 /* use prefetched values */
1660                 rx_desc = next_rxd;
1661                 buffer_info = next_buffer;
1662
1663                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664         }
1665         rx_ring->next_to_clean = i;
1666
1667         cleaned_count = e1000_desc_unused(rx_ring);
1668         if (cleaned_count)
1669                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671         adapter->total_rx_bytes += total_rx_bytes;
1672         adapter->total_rx_packets += total_rx_packets;
1673         return cleaned;
1674 }
1675
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682         struct e1000_adapter *adapter = rx_ring->adapter;
1683         struct e1000_buffer *buffer_info;
1684         struct e1000_ps_page *ps_page;
1685         struct pci_dev *pdev = adapter->pdev;
1686         unsigned int i, j;
1687
1688         /* Free all the Rx ring sk_buffs */
1689         for (i = 0; i < rx_ring->count; i++) {
1690                 buffer_info = &rx_ring->buffer_info[i];
1691                 if (buffer_info->dma) {
1692                         if (adapter->clean_rx == e1000_clean_rx_irq)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_buffer_len,
1695                                                  DMA_FROM_DEVICE);
1696                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698                                                PAGE_SIZE, DMA_FROM_DEVICE);
1699                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                  adapter->rx_ps_bsize0,
1702                                                  DMA_FROM_DEVICE);
1703                         buffer_info->dma = 0;
1704                 }
1705
1706                 if (buffer_info->page) {
1707                         put_page(buffer_info->page);
1708                         buffer_info->page = NULL;
1709                 }
1710
1711                 if (buffer_info->skb) {
1712                         dev_kfree_skb(buffer_info->skb);
1713                         buffer_info->skb = NULL;
1714                 }
1715
1716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717                         ps_page = &buffer_info->ps_pages[j];
1718                         if (!ps_page->page)
1719                                 break;
1720                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721                                        DMA_FROM_DEVICE);
1722                         ps_page->dma = 0;
1723                         put_page(ps_page->page);
1724                         ps_page->page = NULL;
1725                 }
1726         }
1727
1728         /* there also may be some cached data from a chained receive */
1729         if (rx_ring->rx_skb_top) {
1730                 dev_kfree_skb(rx_ring->rx_skb_top);
1731                 rx_ring->rx_skb_top = NULL;
1732         }
1733
1734         /* Zero out the descriptor ring */
1735         memset(rx_ring->desc, 0, rx_ring->size);
1736
1737         rx_ring->next_to_clean = 0;
1738         rx_ring->next_to_use = 0;
1739         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740
1741         writel(0, rx_ring->head);
1742         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1743                 e1000e_update_rdt_wa(rx_ring, 0);
1744         else
1745                 writel(0, rx_ring->tail);
1746 }
1747
1748 static void e1000e_downshift_workaround(struct work_struct *work)
1749 {
1750         struct e1000_adapter *adapter = container_of(work,
1751                                                      struct e1000_adapter,
1752                                                      downshift_task);
1753
1754         if (test_bit(__E1000_DOWN, &adapter->state))
1755                 return;
1756
1757         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758 }
1759
1760 /**
1761  * e1000_intr_msi - Interrupt Handler
1762  * @irq: interrupt number
1763  * @data: pointer to a network interface device structure
1764  **/
1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1766 {
1767         struct net_device *netdev = data;
1768         struct e1000_adapter *adapter = netdev_priv(netdev);
1769         struct e1000_hw *hw = &adapter->hw;
1770         u32 icr = er32(ICR);
1771
1772         /* read ICR disables interrupts using IAM */
1773         if (icr & E1000_ICR_LSC) {
1774                 hw->mac.get_link_status = true;
1775                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1776                  * disconnect (LSC) before accessing any PHY registers
1777                  */
1778                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779                     (!(er32(STATUS) & E1000_STATUS_LU)))
1780                         schedule_work(&adapter->downshift_task);
1781
1782                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1783                  * link down event; disable receives here in the ISR and reset
1784                  * adapter in watchdog
1785                  */
1786                 if (netif_carrier_ok(netdev) &&
1787                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788                         /* disable receives */
1789                         u32 rctl = er32(RCTL);
1790
1791                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1792                         adapter->flags |= FLAG_RESTART_NOW;
1793                 }
1794                 /* guard against interrupt when we're going down */
1795                 if (!test_bit(__E1000_DOWN, &adapter->state))
1796                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797         }
1798
1799         /* Reset on uncorrectable ECC error */
1800         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801                                         (hw->mac.type == e1000_pch_spt))) {
1802                 u32 pbeccsts = er32(PBECCSTS);
1803
1804                 adapter->corr_errors +=
1805                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806                 adapter->uncorr_errors +=
1807                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809
1810                 /* Do the reset outside of interrupt context */
1811                 schedule_work(&adapter->reset_task);
1812
1813                 /* return immediately since reset is imminent */
1814                 return IRQ_HANDLED;
1815         }
1816
1817         if (napi_schedule_prep(&adapter->napi)) {
1818                 adapter->total_tx_bytes = 0;
1819                 adapter->total_tx_packets = 0;
1820                 adapter->total_rx_bytes = 0;
1821                 adapter->total_rx_packets = 0;
1822                 __napi_schedule(&adapter->napi);
1823         }
1824
1825         return IRQ_HANDLED;
1826 }
1827
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835         struct net_device *netdev = data;
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         struct e1000_hw *hw = &adapter->hw;
1838         u32 rctl, icr = er32(ICR);
1839
1840         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841                 return IRQ_NONE;        /* Not our interrupt */
1842
1843         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844          * not set, then the adapter didn't send an interrupt
1845          */
1846         if (!(icr & E1000_ICR_INT_ASSERTED))
1847                 return IRQ_NONE;
1848
1849         /* Interrupt Auto-Mask...upon reading ICR,
1850          * interrupts are masked.  No need for the
1851          * IMC write
1852          */
1853
1854         if (icr & E1000_ICR_LSC) {
1855                 hw->mac.get_link_status = true;
1856                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1857                  * disconnect (LSC) before accessing any PHY registers
1858                  */
1859                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860                     (!(er32(STATUS) & E1000_STATUS_LU)))
1861                         schedule_work(&adapter->downshift_task);
1862
1863                 /* 80003ES2LAN workaround--
1864                  * For packet buffer work-around on link down event;
1865                  * disable receives here in the ISR and
1866                  * reset adapter in watchdog
1867                  */
1868                 if (netif_carrier_ok(netdev) &&
1869                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870                         /* disable receives */
1871                         rctl = er32(RCTL);
1872                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873                         adapter->flags |= FLAG_RESTART_NOW;
1874                 }
1875                 /* guard against interrupt when we're going down */
1876                 if (!test_bit(__E1000_DOWN, &adapter->state))
1877                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878         }
1879
1880         /* Reset on uncorrectable ECC error */
1881         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882                                         (hw->mac.type == e1000_pch_spt))) {
1883                 u32 pbeccsts = er32(PBECCSTS);
1884
1885                 adapter->corr_errors +=
1886                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887                 adapter->uncorr_errors +=
1888                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890
1891                 /* Do the reset outside of interrupt context */
1892                 schedule_work(&adapter->reset_task);
1893
1894                 /* return immediately since reset is imminent */
1895                 return IRQ_HANDLED;
1896         }
1897
1898         if (napi_schedule_prep(&adapter->napi)) {
1899                 adapter->total_tx_bytes = 0;
1900                 adapter->total_tx_packets = 0;
1901                 adapter->total_rx_bytes = 0;
1902                 adapter->total_rx_packets = 0;
1903                 __napi_schedule(&adapter->napi);
1904         }
1905
1906         return IRQ_HANDLED;
1907 }
1908
1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1910 {
1911         struct net_device *netdev = data;
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913         struct e1000_hw *hw = &adapter->hw;
1914         u32 icr = er32(ICR);
1915
1916         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1917                 if (!test_bit(__E1000_DOWN, &adapter->state))
1918                         ew32(IMS, E1000_IMS_OTHER);
1919                 return IRQ_NONE;
1920         }
1921
1922         if (icr & adapter->eiac_mask)
1923                 ew32(ICS, (icr & adapter->eiac_mask));
1924
1925         if (icr & E1000_ICR_OTHER) {
1926                 if (!(icr & E1000_ICR_LSC))
1927                         goto no_link_interrupt;
1928                 hw->mac.get_link_status = true;
1929                 /* guard against interrupt when we're going down */
1930                 if (!test_bit(__E1000_DOWN, &adapter->state))
1931                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932         }
1933
1934 no_link_interrupt:
1935         if (!test_bit(__E1000_DOWN, &adapter->state))
1936                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1937
1938         return IRQ_HANDLED;
1939 }
1940
1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1942 {
1943         struct net_device *netdev = data;
1944         struct e1000_adapter *adapter = netdev_priv(netdev);
1945         struct e1000_hw *hw = &adapter->hw;
1946         struct e1000_ring *tx_ring = adapter->tx_ring;
1947
1948         adapter->total_tx_bytes = 0;
1949         adapter->total_tx_packets = 0;
1950
1951         if (!e1000_clean_tx_irq(tx_ring))
1952                 /* Ring was not completely cleaned, so fire another interrupt */
1953                 ew32(ICS, tx_ring->ims_val);
1954
1955         return IRQ_HANDLED;
1956 }
1957
1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1959 {
1960         struct net_device *netdev = data;
1961         struct e1000_adapter *adapter = netdev_priv(netdev);
1962         struct e1000_ring *rx_ring = adapter->rx_ring;
1963
1964         /* Write the ITR value calculated at the end of the
1965          * previous interrupt.
1966          */
1967         if (rx_ring->set_itr) {
1968                 writel(1000000000 / (rx_ring->itr_val * 256),
1969                        rx_ring->itr_register);
1970                 rx_ring->set_itr = 0;
1971         }
1972
1973         if (napi_schedule_prep(&adapter->napi)) {
1974                 adapter->total_rx_bytes = 0;
1975                 adapter->total_rx_packets = 0;
1976                 __napi_schedule(&adapter->napi);
1977         }
1978         return IRQ_HANDLED;
1979 }
1980
1981 /**
1982  * e1000_configure_msix - Configure MSI-X hardware
1983  *
1984  * e1000_configure_msix sets up the hardware to properly
1985  * generate MSI-X interrupts.
1986  **/
1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989         struct e1000_hw *hw = &adapter->hw;
1990         struct e1000_ring *rx_ring = adapter->rx_ring;
1991         struct e1000_ring *tx_ring = adapter->tx_ring;
1992         int vector = 0;
1993         u32 ctrl_ext, ivar = 0;
1994
1995         adapter->eiac_mask = 0;
1996
1997         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998         if (hw->mac.type == e1000_82574) {
1999                 u32 rfctl = er32(RFCTL);
2000
2001                 rfctl |= E1000_RFCTL_ACK_DIS;
2002                 ew32(RFCTL, rfctl);
2003         }
2004
2005         /* Configure Rx vector */
2006         rx_ring->ims_val = E1000_IMS_RXQ0;
2007         adapter->eiac_mask |= rx_ring->ims_val;
2008         if (rx_ring->itr_val)
2009                 writel(1000000000 / (rx_ring->itr_val * 256),
2010                        rx_ring->itr_register);
2011         else
2012                 writel(1, rx_ring->itr_register);
2013         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015         /* Configure Tx vector */
2016         tx_ring->ims_val = E1000_IMS_TXQ0;
2017         vector++;
2018         if (tx_ring->itr_val)
2019                 writel(1000000000 / (tx_ring->itr_val * 256),
2020                        tx_ring->itr_register);
2021         else
2022                 writel(1, tx_ring->itr_register);
2023         adapter->eiac_mask |= tx_ring->ims_val;
2024         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026         /* set vector for Other Causes, e.g. link changes */
2027         vector++;
2028         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029         if (rx_ring->itr_val)
2030                 writel(1000000000 / (rx_ring->itr_val * 256),
2031                        hw->hw_addr + E1000_EITR_82574(vector));
2032         else
2033                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035         /* Cause Tx interrupts on every write back */
2036         ivar |= (1 << 31);
2037
2038         ew32(IVAR, ivar);
2039
2040         /* enable MSI-X PBA support */
2041         ctrl_ext = er32(CTRL_EXT);
2042         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043
2044         /* Auto-Mask Other interrupts upon ICR read */
2045         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047         ew32(CTRL_EXT, ctrl_ext);
2048         e1e_flush();
2049 }
2050
2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053         if (adapter->msix_entries) {
2054                 pci_disable_msix(adapter->pdev);
2055                 kfree(adapter->msix_entries);
2056                 adapter->msix_entries = NULL;
2057         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2058                 pci_disable_msi(adapter->pdev);
2059                 adapter->flags &= ~FLAG_MSI_ENABLED;
2060         }
2061 }
2062
2063 /**
2064  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065  *
2066  * Attempt to configure interrupts using the best available
2067  * capabilities of the hardware and kernel.
2068  **/
2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071         int err;
2072         int i;
2073
2074         switch (adapter->int_mode) {
2075         case E1000E_INT_MODE_MSIX:
2076                 if (adapter->flags & FLAG_HAS_MSIX) {
2077                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2079                                                         sizeof(struct
2080                                                                msix_entry),
2081                                                         GFP_KERNEL);
2082                         if (adapter->msix_entries) {
2083                                 struct e1000_adapter *a = adapter;
2084
2085                                 for (i = 0; i < adapter->num_vectors; i++)
2086                                         adapter->msix_entries[i].entry = i;
2087
2088                                 err = pci_enable_msix_range(a->pdev,
2089                                                             a->msix_entries,
2090                                                             a->num_vectors,
2091                                                             a->num_vectors);
2092                                 if (err > 0)
2093                                         return;
2094                         }
2095                         /* MSI-X failed, so fall through and try MSI */
2096                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2097                         e1000e_reset_interrupt_capability(adapter);
2098                 }
2099                 adapter->int_mode = E1000E_INT_MODE_MSI;
2100                 /* Fall through */
2101         case E1000E_INT_MODE_MSI:
2102                 if (!pci_enable_msi(adapter->pdev)) {
2103                         adapter->flags |= FLAG_MSI_ENABLED;
2104                 } else {
2105                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2107                 }
2108                 /* Fall through */
2109         case E1000E_INT_MODE_LEGACY:
2110                 /* Don't do anything; this is the system default */
2111                 break;
2112         }
2113
2114         /* store the number of vectors being used */
2115         adapter->num_vectors = 1;
2116 }
2117
2118 /**
2119  * e1000_request_msix - Initialize MSI-X interrupts
2120  *
2121  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122  * kernel.
2123  **/
2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126         struct net_device *netdev = adapter->netdev;
2127         int err = 0, vector = 0;
2128
2129         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130                 snprintf(adapter->rx_ring->name,
2131                          sizeof(adapter->rx_ring->name) - 1,
2132                          "%s-rx-0", netdev->name);
2133         else
2134                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135         err = request_irq(adapter->msix_entries[vector].vector,
2136                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137                           netdev);
2138         if (err)
2139                 return err;
2140         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141             E1000_EITR_82574(vector);
2142         adapter->rx_ring->itr_val = adapter->itr;
2143         vector++;
2144
2145         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146                 snprintf(adapter->tx_ring->name,
2147                          sizeof(adapter->tx_ring->name) - 1,
2148                          "%s-tx-0", netdev->name);
2149         else
2150                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151         err = request_irq(adapter->msix_entries[vector].vector,
2152                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153                           netdev);
2154         if (err)
2155                 return err;
2156         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157             E1000_EITR_82574(vector);
2158         adapter->tx_ring->itr_val = adapter->itr;
2159         vector++;
2160
2161         err = request_irq(adapter->msix_entries[vector].vector,
2162                           e1000_msix_other, 0, netdev->name, netdev);
2163         if (err)
2164                 return err;
2165
2166         e1000_configure_msix(adapter);
2167
2168         return 0;
2169 }
2170
2171 /**
2172  * e1000_request_irq - initialize interrupts
2173  *
2174  * Attempts to configure interrupts using the best available
2175  * capabilities of the hardware and kernel.
2176  **/
2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180         int err;
2181
2182         if (adapter->msix_entries) {
2183                 err = e1000_request_msix(adapter);
2184                 if (!err)
2185                         return err;
2186                 /* fall back to MSI */
2187                 e1000e_reset_interrupt_capability(adapter);
2188                 adapter->int_mode = E1000E_INT_MODE_MSI;
2189                 e1000e_set_interrupt_capability(adapter);
2190         }
2191         if (adapter->flags & FLAG_MSI_ENABLED) {
2192                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193                                   netdev->name, netdev);
2194                 if (!err)
2195                         return err;
2196
2197                 /* fall back to legacy interrupt */
2198                 e1000e_reset_interrupt_capability(adapter);
2199                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200         }
2201
2202         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203                           netdev->name, netdev);
2204         if (err)
2205                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2206
2207         return err;
2208 }
2209
2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212         struct net_device *netdev = adapter->netdev;
2213
2214         if (adapter->msix_entries) {
2215                 int vector = 0;
2216
2217                 free_irq(adapter->msix_entries[vector].vector, netdev);
2218                 vector++;
2219
2220                 free_irq(adapter->msix_entries[vector].vector, netdev);
2221                 vector++;
2222
2223                 /* Other Causes interrupt vector */
2224                 free_irq(adapter->msix_entries[vector].vector, netdev);
2225                 return;
2226         }
2227
2228         free_irq(adapter->pdev->irq, netdev);
2229 }
2230
2231 /**
2232  * e1000_irq_disable - Mask off interrupt generation on the NIC
2233  **/
2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236         struct e1000_hw *hw = &adapter->hw;
2237
2238         ew32(IMC, ~0);
2239         if (adapter->msix_entries)
2240                 ew32(EIAC_82574, 0);
2241         e1e_flush();
2242
2243         if (adapter->msix_entries) {
2244                 int i;
2245
2246                 for (i = 0; i < adapter->num_vectors; i++)
2247                         synchronize_irq(adapter->msix_entries[i].vector);
2248         } else {
2249                 synchronize_irq(adapter->pdev->irq);
2250         }
2251 }
2252
2253 /**
2254  * e1000_irq_enable - Enable default interrupt generation settings
2255  **/
2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258         struct e1000_hw *hw = &adapter->hw;
2259
2260         if (adapter->msix_entries) {
2261                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263         } else if ((hw->mac.type == e1000_pch_lpt) ||
2264                    (hw->mac.type == e1000_pch_spt)) {
2265                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266         } else {
2267                 ew32(IMS, IMS_ENABLE_MASK);
2268         }
2269         e1e_flush();
2270 }
2271
2272 /**
2273  * e1000e_get_hw_control - get control of the h/w from f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that
2278  * the driver is loaded. For AMT version (only with 82573)
2279  * of the f/w this means that the network i/f is open.
2280  **/
2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283         struct e1000_hw *hw = &adapter->hw;
2284         u32 ctrl_ext;
2285         u32 swsm;
2286
2287         /* Let firmware know the driver has taken over */
2288         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289                 swsm = er32(SWSM);
2290                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292                 ctrl_ext = er32(CTRL_EXT);
2293                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294         }
2295 }
2296
2297 /**
2298  * e1000e_release_hw_control - release control of the h/w to f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that the
2303  * driver is no longer loaded. For AMT version (only with 82573) i
2304  * of the f/w this means that the network i/f is closed.
2305  *
2306  **/
2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309         struct e1000_hw *hw = &adapter->hw;
2310         u32 ctrl_ext;
2311         u32 swsm;
2312
2313         /* Let firmware taken over control of h/w */
2314         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315                 swsm = er32(SWSM);
2316                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318                 ctrl_ext = er32(CTRL_EXT);
2319                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320         }
2321 }
2322
2323 /**
2324  * e1000_alloc_ring_dma - allocate memory for a ring structure
2325  **/
2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327                                 struct e1000_ring *ring)
2328 {
2329         struct pci_dev *pdev = adapter->pdev;
2330
2331         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332                                         GFP_KERNEL);
2333         if (!ring->desc)
2334                 return -ENOMEM;
2335
2336         return 0;
2337 }
2338
2339 /**
2340  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341  * @tx_ring: Tx descriptor ring
2342  *
2343  * Return 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347         struct e1000_adapter *adapter = tx_ring->adapter;
2348         int err = -ENOMEM, size;
2349
2350         size = sizeof(struct e1000_buffer) * tx_ring->count;
2351         tx_ring->buffer_info = vzalloc(size);
2352         if (!tx_ring->buffer_info)
2353                 goto err;
2354
2355         /* round up to nearest 4K */
2356         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357         tx_ring->size = ALIGN(tx_ring->size, 4096);
2358
2359         err = e1000_alloc_ring_dma(adapter, tx_ring);
2360         if (err)
2361                 goto err;
2362
2363         tx_ring->next_to_use = 0;
2364         tx_ring->next_to_clean = 0;
2365
2366         return 0;
2367 err:
2368         vfree(tx_ring->buffer_info);
2369         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370         return err;
2371 }
2372
2373 /**
2374  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375  * @rx_ring: Rx descriptor ring
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381         struct e1000_adapter *adapter = rx_ring->adapter;
2382         struct e1000_buffer *buffer_info;
2383         int i, size, desc_len, err = -ENOMEM;
2384
2385         size = sizeof(struct e1000_buffer) * rx_ring->count;
2386         rx_ring->buffer_info = vzalloc(size);
2387         if (!rx_ring->buffer_info)
2388                 goto err;
2389
2390         for (i = 0; i < rx_ring->count; i++) {
2391                 buffer_info = &rx_ring->buffer_info[i];
2392                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393                                                 sizeof(struct e1000_ps_page),
2394                                                 GFP_KERNEL);
2395                 if (!buffer_info->ps_pages)
2396                         goto err_pages;
2397         }
2398
2399         desc_len = sizeof(union e1000_rx_desc_packet_split);
2400
2401         /* Round up to nearest 4K */
2402         rx_ring->size = rx_ring->count * desc_len;
2403         rx_ring->size = ALIGN(rx_ring->size, 4096);
2404
2405         err = e1000_alloc_ring_dma(adapter, rx_ring);
2406         if (err)
2407                 goto err_pages;
2408
2409         rx_ring->next_to_clean = 0;
2410         rx_ring->next_to_use = 0;
2411         rx_ring->rx_skb_top = NULL;
2412
2413         return 0;
2414
2415 err_pages:
2416         for (i = 0; i < rx_ring->count; i++) {
2417                 buffer_info = &rx_ring->buffer_info[i];
2418                 kfree(buffer_info->ps_pages);
2419         }
2420 err:
2421         vfree(rx_ring->buffer_info);
2422         e_err("Unable to allocate memory for the receive descriptor ring\n");
2423         return err;
2424 }
2425
2426 /**
2427  * e1000_clean_tx_ring - Free Tx Buffers
2428  * @tx_ring: Tx descriptor ring
2429  **/
2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432         struct e1000_adapter *adapter = tx_ring->adapter;
2433         struct e1000_buffer *buffer_info;
2434         unsigned long size;
2435         unsigned int i;
2436
2437         for (i = 0; i < tx_ring->count; i++) {
2438                 buffer_info = &tx_ring->buffer_info[i];
2439                 e1000_put_txbuf(tx_ring, buffer_info);
2440         }
2441
2442         netdev_reset_queue(adapter->netdev);
2443         size = sizeof(struct e1000_buffer) * tx_ring->count;
2444         memset(tx_ring->buffer_info, 0, size);
2445
2446         memset(tx_ring->desc, 0, tx_ring->size);
2447
2448         tx_ring->next_to_use = 0;
2449         tx_ring->next_to_clean = 0;
2450
2451         writel(0, tx_ring->head);
2452         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2453                 e1000e_update_tdt_wa(tx_ring, 0);
2454         else
2455                 writel(0, tx_ring->tail);
2456 }
2457
2458 /**
2459  * e1000e_free_tx_resources - Free Tx Resources per Queue
2460  * @tx_ring: Tx descriptor ring
2461  *
2462  * Free all transmit software resources
2463  **/
2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 {
2466         struct e1000_adapter *adapter = tx_ring->adapter;
2467         struct pci_dev *pdev = adapter->pdev;
2468
2469         e1000_clean_tx_ring(tx_ring);
2470
2471         vfree(tx_ring->buffer_info);
2472         tx_ring->buffer_info = NULL;
2473
2474         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475                           tx_ring->dma);
2476         tx_ring->desc = NULL;
2477 }
2478
2479 /**
2480  * e1000e_free_rx_resources - Free Rx Resources
2481  * @rx_ring: Rx descriptor ring
2482  *
2483  * Free all receive software resources
2484  **/
2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 {
2487         struct e1000_adapter *adapter = rx_ring->adapter;
2488         struct pci_dev *pdev = adapter->pdev;
2489         int i;
2490
2491         e1000_clean_rx_ring(rx_ring);
2492
2493         for (i = 0; i < rx_ring->count; i++)
2494                 kfree(rx_ring->buffer_info[i].ps_pages);
2495
2496         vfree(rx_ring->buffer_info);
2497         rx_ring->buffer_info = NULL;
2498
2499         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500                           rx_ring->dma);
2501         rx_ring->desc = NULL;
2502 }
2503
2504 /**
2505  * e1000_update_itr - update the dynamic ITR value based on statistics
2506  * @adapter: pointer to adapter
2507  * @itr_setting: current adapter->itr
2508  * @packets: the number of packets during this measurement interval
2509  * @bytes: the number of bytes during this measurement interval
2510  *
2511  *      Stores a new ITR value based on packets and byte
2512  *      counts during the last interrupt.  The advantage of per interrupt
2513  *      computation is faster updates and more accurate ITR for the current
2514  *      traffic pattern.  Constants in this function were computed
2515  *      based on theoretical maximum wire speed and thresholds were set based
2516  *      on testing data as well as attempting to minimize response time
2517  *      while increasing bulk throughput.  This functionality is controlled
2518  *      by the InterruptThrottleRate module parameter.
2519  **/
2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 {
2522         unsigned int retval = itr_setting;
2523
2524         if (packets == 0)
2525                 return itr_setting;
2526
2527         switch (itr_setting) {
2528         case lowest_latency:
2529                 /* handle TSO and jumbo frames */
2530                 if (bytes / packets > 8000)
2531                         retval = bulk_latency;
2532                 else if ((packets < 5) && (bytes > 512))
2533                         retval = low_latency;
2534                 break;
2535         case low_latency:       /* 50 usec aka 20000 ints/s */
2536                 if (bytes > 10000) {
2537                         /* this if handles the TSO accounting */
2538                         if (bytes / packets > 8000)
2539                                 retval = bulk_latency;
2540                         else if ((packets < 10) || ((bytes / packets) > 1200))
2541                                 retval = bulk_latency;
2542                         else if ((packets > 35))
2543                                 retval = lowest_latency;
2544                 } else if (bytes / packets > 2000) {
2545                         retval = bulk_latency;
2546                 } else if (packets <= 2 && bytes < 512) {
2547                         retval = lowest_latency;
2548                 }
2549                 break;
2550         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2551                 if (bytes > 25000) {
2552                         if (packets > 35)
2553                                 retval = low_latency;
2554                 } else if (bytes < 6000) {
2555                         retval = low_latency;
2556                 }
2557                 break;
2558         }
2559
2560         return retval;
2561 }
2562
2563 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 {
2565         u16 current_itr;
2566         u32 new_itr = adapter->itr;
2567
2568         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569         if (adapter->link_speed != SPEED_1000) {
2570                 current_itr = 0;
2571                 new_itr = 4000;
2572                 goto set_itr_now;
2573         }
2574
2575         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576                 new_itr = 0;
2577                 goto set_itr_now;
2578         }
2579
2580         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581                                            adapter->total_tx_packets,
2582                                            adapter->total_tx_bytes);
2583         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585                 adapter->tx_itr = low_latency;
2586
2587         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588                                            adapter->total_rx_packets,
2589                                            adapter->total_rx_bytes);
2590         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2591         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592                 adapter->rx_itr = low_latency;
2593
2594         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595
2596         /* counts and packets in update_itr are dependent on these numbers */
2597         switch (current_itr) {
2598         case lowest_latency:
2599                 new_itr = 70000;
2600                 break;
2601         case low_latency:
2602                 new_itr = 20000;        /* aka hwitr = ~200 */
2603                 break;
2604         case bulk_latency:
2605                 new_itr = 4000;
2606                 break;
2607         default:
2608                 break;
2609         }
2610
2611 set_itr_now:
2612         if (new_itr != adapter->itr) {
2613                 /* this attempts to bias the interrupt rate towards Bulk
2614                  * by adding intermediate steps when interrupt rate is
2615                  * increasing
2616                  */
2617                 new_itr = new_itr > adapter->itr ?
2618                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2619                 adapter->itr = new_itr;
2620                 adapter->rx_ring->itr_val = new_itr;
2621                 if (adapter->msix_entries)
2622                         adapter->rx_ring->set_itr = 1;
2623                 else
2624                         e1000e_write_itr(adapter, new_itr);
2625         }
2626 }
2627
2628 /**
2629  * e1000e_write_itr - write the ITR value to the appropriate registers
2630  * @adapter: address of board private structure
2631  * @itr: new ITR value to program
2632  *
2633  * e1000e_write_itr determines if the adapter is in MSI-X mode
2634  * and, if so, writes the EITR registers with the ITR value.
2635  * Otherwise, it writes the ITR value into the ITR register.
2636  **/
2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 {
2639         struct e1000_hw *hw = &adapter->hw;
2640         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641
2642         if (adapter->msix_entries) {
2643                 int vector;
2644
2645                 for (vector = 0; vector < adapter->num_vectors; vector++)
2646                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647         } else {
2648                 ew32(ITR, new_itr);
2649         }
2650 }
2651
2652 /**
2653  * e1000_alloc_queues - Allocate memory for all rings
2654  * @adapter: board private structure to initialize
2655  **/
2656 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 {
2658         int size = sizeof(struct e1000_ring);
2659
2660         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2661         if (!adapter->tx_ring)
2662                 goto err;
2663         adapter->tx_ring->count = adapter->tx_ring_count;
2664         adapter->tx_ring->adapter = adapter;
2665
2666         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2667         if (!adapter->rx_ring)
2668                 goto err;
2669         adapter->rx_ring->count = adapter->rx_ring_count;
2670         adapter->rx_ring->adapter = adapter;
2671
2672         return 0;
2673 err:
2674         e_err("Unable to allocate memory for queues\n");
2675         kfree(adapter->rx_ring);
2676         kfree(adapter->tx_ring);
2677         return -ENOMEM;
2678 }
2679
2680 /**
2681  * e1000e_poll - NAPI Rx polling callback
2682  * @napi: struct associated with this polling callback
2683  * @weight: number of packets driver is allowed to process this poll
2684  **/
2685 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 {
2687         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688                                                      napi);
2689         struct e1000_hw *hw = &adapter->hw;
2690         struct net_device *poll_dev = adapter->netdev;
2691         int tx_cleaned = 1, work_done = 0;
2692
2693         adapter = netdev_priv(poll_dev);
2694
2695         if (!adapter->msix_entries ||
2696             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698
2699         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700
2701         if (!tx_cleaned)
2702                 work_done = weight;
2703
2704         /* If weight not fully consumed, exit the polling mode */
2705         if (work_done < weight) {
2706                 if (adapter->itr_setting & 3)
2707                         e1000_set_itr(adapter);
2708                 napi_complete(napi);
2709                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710                         if (adapter->msix_entries)
2711                                 ew32(IMS, adapter->rx_ring->ims_val);
2712                         else
2713                                 e1000_irq_enable(adapter);
2714                 }
2715         }
2716
2717         return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721                                  __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         /* don't update vlan cookie if already programmed */
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id))
2731                 return 0;
2732
2733         /* add VID to filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta |= (1 << (vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740
2741         set_bit(vid, adapter->active_vlans);
2742
2743         return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747                                   __always_unused __be16 proto, u16 vid)
2748 {
2749         struct e1000_adapter *adapter = netdev_priv(netdev);
2750         struct e1000_hw *hw = &adapter->hw;
2751         u32 vfta, index;
2752
2753         if ((adapter->hw.mng_cookie.status &
2754              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755             (vid == adapter->mng_vlan_id)) {
2756                 /* release control to f/w */
2757                 e1000e_release_hw_control(adapter);
2758                 return 0;
2759         }
2760
2761         /* remove VID from filter table */
2762         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763                 index = (vid >> 5) & 0x7F;
2764                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765                 vfta &= ~(1 << (vid & 0x1F));
2766                 hw->mac.ops.write_vfta(hw, index, vfta);
2767         }
2768
2769         clear_bit(vid, adapter->active_vlans);
2770
2771         return 0;
2772 }
2773
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780         struct net_device *netdev = adapter->netdev;
2781         struct e1000_hw *hw = &adapter->hw;
2782         u32 rctl;
2783
2784         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785                 /* disable VLAN receive filtering */
2786                 rctl = er32(RCTL);
2787                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788                 ew32(RCTL, rctl);
2789
2790                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792                                                adapter->mng_vlan_id);
2793                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794                 }
2795         }
2796 }
2797
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804         struct e1000_hw *hw = &adapter->hw;
2805         u32 rctl;
2806
2807         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808                 /* enable VLAN receive filtering */
2809                 rctl = er32(RCTL);
2810                 rctl |= E1000_RCTL_VFE;
2811                 rctl &= ~E1000_RCTL_CFIEN;
2812                 ew32(RCTL, rctl);
2813         }
2814 }
2815
2816 /**
2817  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 ctrl;
2824
2825         /* disable VLAN tag insert/strip */
2826         ctrl = er32(CTRL);
2827         ctrl &= ~E1000_CTRL_VME;
2828         ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837         struct e1000_hw *hw = &adapter->hw;
2838         u32 ctrl;
2839
2840         /* enable VLAN tag insert/strip */
2841         ctrl = er32(CTRL);
2842         ctrl |= E1000_CTRL_VME;
2843         ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848         struct net_device *netdev = adapter->netdev;
2849         u16 vid = adapter->hw.mng_cookie.vlan_id;
2850         u16 old_vid = adapter->mng_vlan_id;
2851
2852         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854                 adapter->mng_vlan_id = vid;
2855         }
2856
2857         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863         u16 vid;
2864
2865         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873         struct e1000_hw *hw = &adapter->hw;
2874         u32 manc, manc2h, mdef, i, j;
2875
2876         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877                 return;
2878
2879         manc = er32(MANC);
2880
2881         /* enable receiving management packets to the host. this will probably
2882          * generate destination unreachable messages from the host OS, but
2883          * the packets will be handled on SMBUS
2884          */
2885         manc |= E1000_MANC_EN_MNG2HOST;
2886         manc2h = er32(MANC2H);
2887
2888         switch (hw->mac.type) {
2889         default:
2890                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891                 break;
2892         case e1000_82574:
2893         case e1000_82583:
2894                 /* Check if IPMI pass-through decision filter already exists;
2895                  * if so, enable it.
2896                  */
2897                 for (i = 0, j = 0; i < 8; i++) {
2898                         mdef = er32(MDEF(i));
2899
2900                         /* Ignore filters with anything other than IPMI ports */
2901                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902                                 continue;
2903
2904                         /* Enable this decision filter in MANC2H */
2905                         if (mdef)
2906                                 manc2h |= (1 << i);
2907
2908                         j |= mdef;
2909                 }
2910
2911                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912                         break;
2913
2914                 /* Create new decision filter in an empty filter */
2915                 for (i = 0, j = 0; i < 8; i++)
2916                         if (er32(MDEF(i)) == 0) {
2917                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918                                                E1000_MDEF_PORT_664));
2919                                 manc2h |= (1 << 1);
2920                                 j++;
2921                                 break;
2922                         }
2923
2924                 if (!j)
2925                         e_warn("Unable to create IPMI pass-through filter\n");
2926                 break;
2927         }
2928
2929         ew32(MANC2H, manc2h);
2930         ew32(MANC, manc);
2931 }
2932
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_ring *tx_ring = adapter->tx_ring;
2943         u64 tdba;
2944         u32 tdlen, tctl, tarc;
2945
2946         /* Setup the HW Tx Head and Tail descriptor pointers */
2947         tdba = tx_ring->dma;
2948         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950         ew32(TDBAH(0), (tdba >> 32));
2951         ew32(TDLEN(0), tdlen);
2952         ew32(TDH(0), 0);
2953         ew32(TDT(0), 0);
2954         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957         /* Set the Tx Interrupt Delay register */
2958         ew32(TIDV, adapter->tx_int_delay);
2959         /* Tx irq moderation */
2960         ew32(TADV, adapter->tx_abs_int_delay);
2961
2962         if (adapter->flags2 & FLAG2_DMA_BURST) {
2963                 u32 txdctl = er32(TXDCTL(0));
2964
2965                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966                             E1000_TXDCTL_WTHRESH);
2967                 /* set up some performance related parameters to encourage the
2968                  * hardware to use the bus more efficiently in bursts, depends
2969                  * on the tx_int_delay to be enabled,
2970                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971                  * hthresh = 1 ==> prefetch when one or more available
2972                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973                  * BEWARE: this seems to work but should be considered first if
2974                  * there are Tx hangs or other Tx related bugs
2975                  */
2976                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977                 ew32(TXDCTL(0), txdctl);
2978         }
2979         /* erratum work around: set txdctl the same for both queues */
2980         ew32(TXDCTL(1), er32(TXDCTL(0)));
2981
2982         /* Program the Transmit Control Register */
2983         tctl = er32(TCTL);
2984         tctl &= ~E1000_TCTL_CT;
2985         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987
2988         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989                 tarc = er32(TARC(0));
2990                 /* set the speed mode bit, we'll clear it if we're not at
2991                  * gigabit link later
2992                  */
2993 #define SPEED_MODE_BIT (1 << 21)
2994                 tarc |= SPEED_MODE_BIT;
2995                 ew32(TARC(0), tarc);
2996         }
2997
2998         /* errata: program both queues to unweighted RR */
2999         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000                 tarc = er32(TARC(0));
3001                 tarc |= 1;
3002                 ew32(TARC(0), tarc);
3003                 tarc = er32(TARC(1));
3004                 tarc |= 1;
3005                 ew32(TARC(1), tarc);
3006         }
3007
3008         /* Setup Transmit Descriptor Settings for eop descriptor */
3009         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010
3011         /* only set IDE if we are delaying interrupts using the timers */
3012         if (adapter->tx_int_delay)
3013                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014
3015         /* enable Report Status bit */
3016         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017
3018         ew32(TCTL, tctl);
3019
3020         hw->mac.ops.config_collision_dist(hw);
3021
3022         /* SPT Si errata workaround to avoid data corruption */
3023         if (hw->mac.type == e1000_pch_spt) {
3024                 u32 reg_val;
3025
3026                 reg_val = er32(IOSFPC);
3027                 reg_val |= E1000_RCTL_RDMTS_HEX;
3028                 ew32(IOSFPC, reg_val);
3029
3030                 reg_val = er32(TARC(0));
3031                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032                 ew32(TARC(0), reg_val);
3033         }
3034 }
3035
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044         struct e1000_hw *hw = &adapter->hw;
3045         u32 rctl, rfctl;
3046         u32 pages = 0;
3047
3048         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3049          * If jumbo frames not set, program related MAC/PHY registers
3050          * to h/w defaults
3051          */
3052         if (hw->mac.type >= e1000_pch2lan) {
3053                 s32 ret_val;
3054
3055                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3056                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057                 else
3058                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059
3060                 if (ret_val)
3061                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062         }
3063
3064         /* Program MC offset vector base */
3065         rctl = er32(RCTL);
3066         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070
3071         /* Do not Store bad packets */
3072         rctl &= ~E1000_RCTL_SBP;
3073
3074         /* Enable Long Packet receive */
3075         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076                 rctl &= ~E1000_RCTL_LPE;
3077         else
3078                 rctl |= E1000_RCTL_LPE;
3079
3080         /* Some systems expect that the CRC is included in SMBUS traffic. The
3081          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082          * host memory when this is enabled
3083          */
3084         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085                 rctl |= E1000_RCTL_SECRC;
3086
3087         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089                 u16 phy_data;
3090
3091                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092                 phy_data &= 0xfff8;
3093                 phy_data |= (1 << 2);
3094                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095
3096                 e1e_rphy(hw, 22, &phy_data);
3097                 phy_data &= 0x0fff;
3098                 phy_data |= (1 << 14);
3099                 e1e_wphy(hw, 0x10, 0x2823);
3100                 e1e_wphy(hw, 0x11, 0x0003);
3101                 e1e_wphy(hw, 22, phy_data);
3102         }
3103
3104         /* Setup buffer sizes */
3105         rctl &= ~E1000_RCTL_SZ_4096;
3106         rctl |= E1000_RCTL_BSEX;
3107         switch (adapter->rx_buffer_len) {
3108         case 2048:
3109         default:
3110                 rctl |= E1000_RCTL_SZ_2048;
3111                 rctl &= ~E1000_RCTL_BSEX;
3112                 break;
3113         case 4096:
3114                 rctl |= E1000_RCTL_SZ_4096;
3115                 break;
3116         case 8192:
3117                 rctl |= E1000_RCTL_SZ_8192;
3118                 break;
3119         case 16384:
3120                 rctl |= E1000_RCTL_SZ_16384;
3121                 break;
3122         }
3123
3124         /* Enable Extended Status in all Receive Descriptors */
3125         rfctl = er32(RFCTL);
3126         rfctl |= E1000_RFCTL_EXTEN;
3127         ew32(RFCTL, rfctl);
3128
3129         /* 82571 and greater support packet-split where the protocol
3130          * header is placed in skb->data and the packet data is
3131          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132          * In the case of a non-split, skb->data is linearly filled,
3133          * followed by the page buffers.  Therefore, skb->data is
3134          * sized to hold the largest protocol header.
3135          *
3136          * allocations using alloc_page take too long for regular MTU
3137          * so only enable packet split for jumbo frames
3138          *
3139          * Using pages when the page size is greater than 16k wastes
3140          * a lot of memory, since we allocate 3 pages at all times
3141          * per packet.
3142          */
3143         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145                 adapter->rx_ps_pages = pages;
3146         else
3147                 adapter->rx_ps_pages = 0;
3148
3149         if (adapter->rx_ps_pages) {
3150                 u32 psrctl = 0;
3151
3152                 /* Enable Packet split descriptors */
3153                 rctl |= E1000_RCTL_DTYP_PS;
3154
3155                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156
3157                 switch (adapter->rx_ps_pages) {
3158                 case 3:
3159                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160                         /* fall-through */
3161                 case 2:
3162                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163                         /* fall-through */
3164                 case 1:
3165                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166                         break;
3167                 }
3168
3169                 ew32(PSRCTL, psrctl);
3170         }
3171
3172         /* This is useful for sniffing bad packets. */
3173         if (adapter->netdev->features & NETIF_F_RXALL) {
3174                 /* UPE and MPE will be handled by normal PROMISC logic
3175                  * in e1000e_set_rx_mode
3176                  */
3177                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3178                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3179                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3180
3181                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3182                           E1000_RCTL_DPF |      /* Allow filtered pause */
3183                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3184                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185                  * and that breaks VLANs.
3186                  */
3187         }
3188
3189         ew32(RCTL, rctl);
3190         /* just started the receive unit, no need to restart */
3191         adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202         struct e1000_hw *hw = &adapter->hw;
3203         struct e1000_ring *rx_ring = adapter->rx_ring;
3204         u64 rdba;
3205         u32 rdlen, rctl, rxcsum, ctrl_ext;
3206
3207         if (adapter->rx_ps_pages) {
3208                 /* this is a 32 byte descriptor */
3209                 rdlen = rx_ring->count *
3210                     sizeof(union e1000_rx_desc_packet_split);
3211                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3212                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217         } else {
3218                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219                 adapter->clean_rx = e1000_clean_rx_irq;
3220                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221         }
3222
3223         /* disable receives while setting up the descriptors */
3224         rctl = er32(RCTL);
3225         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227         e1e_flush();
3228         usleep_range(10000, 20000);
3229
3230         if (adapter->flags2 & FLAG2_DMA_BURST) {
3231                 /* set the writeback threshold (only takes effect if the RDTR
3232                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3233                  * enable prefetching of 0x20 Rx descriptors
3234                  * granularity = 01
3235                  * wthresh = 04,
3236                  * hthresh = 04,
3237                  * pthresh = 0x20
3238                  */
3239                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241
3242                 /* override the delay timers for enabling bursting, only if
3243                  * the value was not set by the user via module options
3244                  */
3245                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3246                         adapter->rx_int_delay = BURST_RDTR;
3247                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248                         adapter->rx_abs_int_delay = BURST_RADV;
3249         }
3250
3251         /* set the Receive Delay Timer Register */
3252         ew32(RDTR, adapter->rx_int_delay);
3253
3254         /* irq moderation */
3255         ew32(RADV, adapter->rx_abs_int_delay);
3256         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257                 e1000e_write_itr(adapter, adapter->itr);
3258
3259         ctrl_ext = er32(CTRL_EXT);
3260         /* Auto-Mask interrupts upon ICR access */
3261         ctrl_ext |= E1000_CTRL_EXT_IAME;
3262         ew32(IAM, 0xffffffff);
3263         ew32(CTRL_EXT, ctrl_ext);
3264         e1e_flush();
3265
3266         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3267          * the Base and Length of the Rx Descriptor Ring
3268          */
3269         rdba = rx_ring->dma;
3270         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271         ew32(RDBAH(0), (rdba >> 32));
3272         ew32(RDLEN(0), rdlen);
3273         ew32(RDH(0), 0);
3274         ew32(RDT(0), 0);
3275         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277
3278         /* Enable Receive Checksum Offload for TCP and UDP */
3279         rxcsum = er32(RXCSUM);
3280         if (adapter->netdev->features & NETIF_F_RXCSUM)
3281                 rxcsum |= E1000_RXCSUM_TUOFL;
3282         else
3283                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3284         ew32(RXCSUM, rxcsum);
3285
3286         /* With jumbo frames, excessive C-state transition latencies result
3287          * in dropped transactions.
3288          */
3289         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290                 u32 lat =
3291                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292                      adapter->max_frame_size) * 8 / 1000;
3293
3294                 if (adapter->flags & FLAG_IS_ICH) {
3295                         u32 rxdctl = er32(RXDCTL(0));
3296
3297                         ew32(RXDCTL(0), rxdctl | 0x3);
3298                 }
3299
3300                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3301         } else {
3302                 pm_qos_update_request(&adapter->pm_qos_req,
3303                                       PM_QOS_DEFAULT_VALUE);
3304         }
3305
3306         /* Enable Receives */
3307         ew32(RCTL, rctl);
3308 }
3309
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321         struct e1000_adapter *adapter = netdev_priv(netdev);
3322         struct e1000_hw *hw = &adapter->hw;
3323         struct netdev_hw_addr *ha;
3324         u8 *mta_list;
3325         int i;
3326
3327         if (netdev_mc_empty(netdev)) {
3328                 /* nothing to program, so clear mc list */
3329                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330                 return 0;
3331         }
3332
3333         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334         if (!mta_list)
3335                 return -ENOMEM;
3336
3337         /* update_mc_addr_list expects a packed array of only addresses. */
3338         i = 0;
3339         netdev_for_each_mc_addr(ha, netdev)
3340             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341
3342         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343         kfree(mta_list);
3344
3345         return netdev_mc_count(netdev);
3346 }
3347
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359         struct e1000_adapter *adapter = netdev_priv(netdev);
3360         struct e1000_hw *hw = &adapter->hw;
3361         unsigned int rar_entries;
3362         int count = 0;
3363
3364         rar_entries = hw->mac.ops.rar_get_count(hw);
3365
3366         /* save a rar entry for our hardware address */
3367         rar_entries--;
3368
3369         /* save a rar entry for the LAA workaround */
3370         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371                 rar_entries--;
3372
3373         /* return ENOMEM indicating insufficient memory for addresses */
3374         if (netdev_uc_count(netdev) > rar_entries)
3375                 return -ENOMEM;
3376
3377         if (!netdev_uc_empty(netdev) && rar_entries) {
3378                 struct netdev_hw_addr *ha;
3379
3380                 /* write the addresses in reverse order to avoid write
3381                  * combining
3382                  */
3383                 netdev_for_each_uc_addr(ha, netdev) {
3384                         int rval;
3385
3386                         if (!rar_entries)
3387                                 break;
3388                         rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389                         if (rval < 0)
3390                                 return -ENOMEM;
3391                         count++;
3392                 }
3393         }
3394
3395         /* zero out the remaining RAR entries not used above */
3396         for (; rar_entries > 0; rar_entries--) {
3397                 ew32(RAH(rar_entries), 0);
3398                 ew32(RAL(rar_entries), 0);
3399         }
3400         e1e_flush();
3401
3402         return count;
3403 }
3404
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416         struct e1000_adapter *adapter = netdev_priv(netdev);
3417         struct e1000_hw *hw = &adapter->hw;
3418         u32 rctl;
3419
3420         if (pm_runtime_suspended(netdev->dev.parent))
3421                 return;
3422
3423         /* Check for Promiscuous and All Multicast modes */
3424         rctl = er32(RCTL);
3425
3426         /* clear the affected bits */
3427         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
3429         if (netdev->flags & IFF_PROMISC) {
3430                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431                 /* Do not hardware filter VLANs in promisc mode */
3432                 e1000e_vlan_filter_disable(adapter);
3433         } else {
3434                 int count;
3435
3436                 if (netdev->flags & IFF_ALLMULTI) {
3437                         rctl |= E1000_RCTL_MPE;
3438                 } else {
3439                         /* Write addresses to the MTA, if the attempt fails
3440                          * then we should just turn on promiscuous mode so
3441                          * that we can at least receive multicast traffic
3442                          */
3443                         count = e1000e_write_mc_addr_list(netdev);
3444                         if (count < 0)
3445                                 rctl |= E1000_RCTL_MPE;
3446                 }
3447                 e1000e_vlan_filter_enable(adapter);
3448                 /* Write addresses to available RAR registers, if there is not
3449                  * sufficient space to store all the addresses then enable
3450                  * unicast promiscuous mode
3451                  */
3452                 count = e1000e_write_uc_addr_list(netdev);
3453                 if (count < 0)
3454                         rctl |= E1000_RCTL_UPE;
3455         }
3456
3457         ew32(RCTL, rctl);
3458
3459         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460                 e1000e_vlan_strip_enable(adapter);
3461         else
3462                 e1000e_vlan_strip_disable(adapter);
3463 }
3464
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467         struct e1000_hw *hw = &adapter->hw;
3468         u32 mrqc, rxcsum;
3469         u32 rss_key[10];
3470         int i;
3471
3472         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473         for (i = 0; i < 10; i++)
3474                 ew32(RSSRK(i), rss_key[i]);
3475
3476         /* Direct all traffic to queue 0 */
3477         for (i = 0; i < 32; i++)
3478                 ew32(RETA(i), 0);
3479
3480         /* Disable raw packet checksumming so that RSS hash is placed in
3481          * descriptor on writeback.
3482          */
3483         rxcsum = er32(RXCSUM);
3484         rxcsum |= E1000_RXCSUM_PCSD;
3485
3486         ew32(RXCSUM, rxcsum);
3487
3488         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490                 E1000_MRQC_RSS_FIELD_IPV6 |
3491                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494         ew32(MRQC, mrqc);
3495 }
3496
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507         struct e1000_hw *hw = &adapter->hw;
3508         u32 incvalue, incperiod, shift;
3509
3510         /* Make sure clock is enabled on I217/I218/I219  before checking
3511          * the frequency
3512          */
3513         if (((hw->mac.type == e1000_pch_lpt) ||
3514              (hw->mac.type == e1000_pch_spt)) &&
3515             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517                 u32 fextnvm7 = er32(FEXTNVM7);
3518
3519                 if (!(fextnvm7 & (1 << 0))) {
3520                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521                         e1e_flush();
3522                 }
3523         }
3524
3525         switch (hw->mac.type) {
3526         case e1000_pch2lan:
3527         case e1000_pch_lpt:
3528         case e1000_pch_spt:
3529                 /* On I217, I218 and I219, the clock frequency is 25MHz
3530                  * or 96MHz as indicated by the System Clock Frequency
3531                  * Indication
3532                  */
3533                 if (((hw->mac.type != e1000_pch_lpt) &&
3534                      (hw->mac.type != e1000_pch_spt)) ||
3535                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3536                         /* Stable 96MHz frequency */
3537                         incperiod = INCPERIOD_96MHz;
3538                         incvalue = INCVALUE_96MHz;
3539                         shift = INCVALUE_SHIFT_96MHz;
3540                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3541                         break;
3542                 }
3543                 /* fall-through */
3544         case e1000_82574:
3545         case e1000_82583:
3546                 /* Stable 25MHz frequency */
3547                 incperiod = INCPERIOD_25MHz;
3548                 incvalue = INCVALUE_25MHz;
3549                 shift = INCVALUE_SHIFT_25MHz;
3550                 adapter->cc.shift = shift;
3551                 break;
3552         default:
3553                 return -EINVAL;
3554         }
3555
3556         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3557                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3558
3559         return 0;
3560 }
3561
3562 /**
3563  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3564  * @adapter: board private structure
3565  *
3566  * Outgoing time stamping can be enabled and disabled. Play nice and
3567  * disable it when requested, although it shouldn't cause any overhead
3568  * when no packet needs it. At most one packet in the queue may be
3569  * marked for time stamping, otherwise it would be impossible to tell
3570  * for sure to which packet the hardware time stamp belongs.
3571  *
3572  * Incoming time stamping has to be configured via the hardware filters.
3573  * Not all combinations are supported, in particular event type has to be
3574  * specified. Matching the kind of event packet is not supported, with the
3575  * exception of "all V2 events regardless of level 2 or 4".
3576  **/
3577 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3578                                   struct hwtstamp_config *config)
3579 {
3580         struct e1000_hw *hw = &adapter->hw;
3581         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3582         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3583         u32 rxmtrl = 0;
3584         u16 rxudp = 0;
3585         bool is_l4 = false;
3586         bool is_l2 = false;
3587         u32 regval;
3588         s32 ret_val;
3589
3590         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3591                 return -EINVAL;
3592
3593         /* flags reserved for future extensions - must be zero */
3594         if (config->flags)
3595                 return -EINVAL;
3596
3597         switch (config->tx_type) {
3598         case HWTSTAMP_TX_OFF:
3599                 tsync_tx_ctl = 0;
3600                 break;
3601         case HWTSTAMP_TX_ON:
3602                 break;
3603         default:
3604                 return -ERANGE;
3605         }
3606
3607         switch (config->rx_filter) {
3608         case HWTSTAMP_FILTER_NONE:
3609                 tsync_rx_ctl = 0;
3610                 break;
3611         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3612                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3614                 is_l4 = true;
3615                 break;
3616         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3617                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3619                 is_l4 = true;
3620                 break;
3621         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3622                 /* Also time stamps V2 L2 Path Delay Request/Response */
3623                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3625                 is_l2 = true;
3626                 break;
3627         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3628                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3629                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3631                 is_l2 = true;
3632                 break;
3633         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3634                 /* Hardware cannot filter just V2 L4 Sync messages;
3635                  * fall-through to V2 (both L2 and L4) Sync.
3636                  */
3637         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3638                 /* Also time stamps V2 Path Delay Request/Response. */
3639                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3640                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641                 is_l2 = true;
3642                 is_l4 = true;
3643                 break;
3644         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3645                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3646                  * fall-through to V2 (both L2 and L4) Delay Request.
3647                  */
3648         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3649                 /* Also time stamps V2 Path Delay Request/Response. */
3650                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3651                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652                 is_l2 = true;
3653                 is_l4 = true;
3654                 break;
3655         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3656         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3657                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3658                  * fall-through to all V2 (both L2 and L4) Events.
3659                  */
3660         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3661                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3662                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3663                 is_l2 = true;
3664                 is_l4 = true;
3665                 break;
3666         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3667                 /* For V1, the hardware can only filter Sync messages or
3668                  * Delay Request messages but not both so fall-through to
3669                  * time stamp all packets.
3670                  */
3671         case HWTSTAMP_FILTER_ALL:
3672                 is_l2 = true;
3673                 is_l4 = true;
3674                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3675                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3676                 break;
3677         default:
3678                 return -ERANGE;
3679         }
3680
3681         adapter->hwtstamp_config = *config;
3682
3683         /* enable/disable Tx h/w time stamping */
3684         regval = er32(TSYNCTXCTL);
3685         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3686         regval |= tsync_tx_ctl;
3687         ew32(TSYNCTXCTL, regval);
3688         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3689             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3690                 e_err("Timesync Tx Control register not set as expected\n");
3691                 return -EAGAIN;
3692         }
3693
3694         /* enable/disable Rx h/w time stamping */
3695         regval = er32(TSYNCRXCTL);
3696         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3697         regval |= tsync_rx_ctl;
3698         ew32(TSYNCRXCTL, regval);
3699         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3700                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3701             (regval & (E1000_TSYNCRXCTL_ENABLED |
3702                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3703                 e_err("Timesync Rx Control register not set as expected\n");
3704                 return -EAGAIN;
3705         }
3706
3707         /* L2: define ethertype filter for time stamped packets */
3708         if (is_l2)
3709                 rxmtrl |= ETH_P_1588;
3710
3711         /* define which PTP packets get time stamped */
3712         ew32(RXMTRL, rxmtrl);
3713
3714         /* Filter by destination port */
3715         if (is_l4) {
3716                 rxudp = PTP_EV_PORT;
3717                 cpu_to_be16s(&rxudp);
3718         }
3719         ew32(RXUDP, rxudp);
3720
3721         e1e_flush();
3722
3723         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3724         er32(RXSTMPH);
3725         er32(TXSTMPH);
3726
3727         /* Get and set the System Time Register SYSTIM base frequency */
3728         ret_val = e1000e_get_base_timinca(adapter, &regval);
3729         if (ret_val)
3730                 return ret_val;
3731         ew32(TIMINCA, regval);
3732
3733         /* reset the ns time counter */
3734         timecounter_init(&adapter->tc, &adapter->cc,
3735                          ktime_to_ns(ktime_get_real()));
3736
3737         return 0;
3738 }
3739
3740 /**
3741  * e1000_configure - configure the hardware for Rx and Tx
3742  * @adapter: private board structure
3743  **/
3744 static void e1000_configure(struct e1000_adapter *adapter)
3745 {
3746         struct e1000_ring *rx_ring = adapter->rx_ring;
3747
3748         e1000e_set_rx_mode(adapter->netdev);
3749
3750         e1000_restore_vlan(adapter);
3751         e1000_init_manageability_pt(adapter);
3752
3753         e1000_configure_tx(adapter);
3754
3755         if (adapter->netdev->features & NETIF_F_RXHASH)
3756                 e1000e_setup_rss_hash(adapter);
3757         e1000_setup_rctl(adapter);
3758         e1000_configure_rx(adapter);
3759         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3760 }
3761
3762 /**
3763  * e1000e_power_up_phy - restore link in case the phy was powered down
3764  * @adapter: address of board private structure
3765  *
3766  * The phy may be powered down to save power and turn off link when the
3767  * driver is unloaded and wake on lan is not enabled (among others)
3768  * *** this routine MUST be followed by a call to e1000e_reset ***
3769  **/
3770 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3771 {
3772         if (adapter->hw.phy.ops.power_up)
3773                 adapter->hw.phy.ops.power_up(&adapter->hw);
3774
3775         adapter->hw.mac.ops.setup_link(&adapter->hw);
3776 }
3777
3778 /**
3779  * e1000_power_down_phy - Power down the PHY
3780  *
3781  * Power down the PHY so no link is implied when interface is down.
3782  * The PHY cannot be powered down if management or WoL is active.
3783  */
3784 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3785 {
3786         if (adapter->hw.phy.ops.power_down)
3787                 adapter->hw.phy.ops.power_down(&adapter->hw);
3788 }
3789
3790 /**
3791  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3792  *
3793  * We want to clear all pending descriptors from the TX ring.
3794  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3795  * the data of the next descriptor. We don't care about the data we are about
3796  * to reset the HW.
3797  */
3798 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3799 {
3800         struct e1000_hw *hw = &adapter->hw;
3801         struct e1000_ring *tx_ring = adapter->tx_ring;
3802         struct e1000_tx_desc *tx_desc = NULL;
3803         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3804         u16 size = 512;
3805
3806         tctl = er32(TCTL);
3807         ew32(TCTL, tctl | E1000_TCTL_EN);
3808         tdt = er32(TDT(0));
3809         BUG_ON(tdt != tx_ring->next_to_use);
3810         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3811         tx_desc->buffer_addr = tx_ring->dma;
3812
3813         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3814         tx_desc->upper.data = 0;
3815         /* flush descriptors to memory before notifying the HW */
3816         wmb();
3817         tx_ring->next_to_use++;
3818         if (tx_ring->next_to_use == tx_ring->count)
3819                 tx_ring->next_to_use = 0;
3820         ew32(TDT(0), tx_ring->next_to_use);
3821         mmiowb();
3822         usleep_range(200, 250);
3823 }
3824
3825 /**
3826  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3827  *
3828  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3829  */
3830 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3831 {
3832         u32 rctl, rxdctl;
3833         struct e1000_hw *hw = &adapter->hw;
3834
3835         rctl = er32(RCTL);
3836         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3837         e1e_flush();
3838         usleep_range(100, 150);
3839
3840         rxdctl = er32(RXDCTL(0));
3841         /* zero the lower 14 bits (prefetch and host thresholds) */
3842         rxdctl &= 0xffffc000;
3843
3844         /* update thresholds: prefetch threshold to 31, host threshold to 1
3845          * and make sure the granularity is "descriptors" and not "cache lines"
3846          */
3847         rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3848
3849         ew32(RXDCTL(0), rxdctl);
3850         /* momentarily enable the RX ring for the changes to take effect */
3851         ew32(RCTL, rctl | E1000_RCTL_EN);
3852         e1e_flush();
3853         usleep_range(100, 150);
3854         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3855 }
3856
3857 /**
3858  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3859  *
3860  * In i219, the descriptor rings must be emptied before resetting the HW
3861  * or before changing the device state to D3 during runtime (runtime PM).
3862  *
3863  * Failure to do this will cause the HW to enter a unit hang state which can
3864  * only be released by PCI reset on the device
3865  *
3866  */
3867
3868 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3869 {
3870         u16 hang_state;
3871         u32 fext_nvm11, tdlen;
3872         struct e1000_hw *hw = &adapter->hw;
3873
3874         /* First, disable MULR fix in FEXTNVM11 */
3875         fext_nvm11 = er32(FEXTNVM11);
3876         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3877         ew32(FEXTNVM11, fext_nvm11);
3878         /* do nothing if we're not in faulty state, or if the queue is empty */
3879         tdlen = er32(TDLEN(0));
3880         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3881                              &hang_state);
3882         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3883                 return;
3884         e1000_flush_tx_ring(adapter);
3885         /* recheck, maybe the fault is caused by the rx ring */
3886         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3887                              &hang_state);
3888         if (hang_state & FLUSH_DESC_REQUIRED)
3889                 e1000_flush_rx_ring(adapter);
3890 }
3891
3892 /**
3893  * e1000e_reset - bring the hardware into a known good state
3894  *
3895  * This function boots the hardware and enables some settings that
3896  * require a configuration cycle of the hardware - those cannot be
3897  * set/changed during runtime. After reset the device needs to be
3898  * properly configured for Rx, Tx etc.
3899  */
3900 void e1000e_reset(struct e1000_adapter *adapter)
3901 {
3902         struct e1000_mac_info *mac = &adapter->hw.mac;
3903         struct e1000_fc_info *fc = &adapter->hw.fc;
3904         struct e1000_hw *hw = &adapter->hw;
3905         u32 tx_space, min_tx_space, min_rx_space;
3906         u32 pba = adapter->pba;
3907         u16 hwm;
3908
3909         /* reset Packet Buffer Allocation to default */
3910         ew32(PBA, pba);
3911
3912         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3913                 /* To maintain wire speed transmits, the Tx FIFO should be
3914                  * large enough to accommodate two full transmit packets,
3915                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3916                  * the Rx FIFO should be large enough to accommodate at least
3917                  * one full receive packet and is similarly rounded up and
3918                  * expressed in KB.
3919                  */
3920                 pba = er32(PBA);
3921                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3922                 tx_space = pba >> 16;
3923                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3924                 pba &= 0xffff;
3925                 /* the Tx fifo also stores 16 bytes of information about the Tx
3926                  * but don't include ethernet FCS because hardware appends it
3927                  */
3928                 min_tx_space = (adapter->max_frame_size +
3929                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3930                 min_tx_space = ALIGN(min_tx_space, 1024);
3931                 min_tx_space >>= 10;
3932                 /* software strips receive CRC, so leave room for it */
3933                 min_rx_space = adapter->max_frame_size;
3934                 min_rx_space = ALIGN(min_rx_space, 1024);
3935                 min_rx_space >>= 10;
3936
3937                 /* If current Tx allocation is less than the min Tx FIFO size,
3938                  * and the min Tx FIFO size is less than the current Rx FIFO
3939                  * allocation, take space away from current Rx allocation
3940                  */
3941                 if ((tx_space < min_tx_space) &&
3942                     ((min_tx_space - tx_space) < pba)) {
3943                         pba -= min_tx_space - tx_space;
3944
3945                         /* if short on Rx space, Rx wins and must trump Tx
3946                          * adjustment
3947                          */
3948                         if (pba < min_rx_space)
3949                                 pba = min_rx_space;
3950                 }
3951
3952                 ew32(PBA, pba);
3953         }
3954
3955         /* flow control settings
3956          *
3957          * The high water mark must be low enough to fit one full frame
3958          * (or the size used for early receive) above it in the Rx FIFO.
3959          * Set it to the lower of:
3960          * - 90% of the Rx FIFO size, and
3961          * - the full Rx FIFO size minus one full frame
3962          */
3963         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3964                 fc->pause_time = 0xFFFF;
3965         else
3966                 fc->pause_time = E1000_FC_PAUSE_TIME;
3967         fc->send_xon = true;
3968         fc->current_mode = fc->requested_mode;
3969
3970         switch (hw->mac.type) {
3971         case e1000_ich9lan:
3972         case e1000_ich10lan:
3973                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3974                         pba = 14;
3975                         ew32(PBA, pba);
3976                         fc->high_water = 0x2800;
3977                         fc->low_water = fc->high_water - 8;
3978                         break;
3979                 }
3980                 /* fall-through */
3981         default:
3982                 hwm = min(((pba << 10) * 9 / 10),
3983                           ((pba << 10) - adapter->max_frame_size));
3984
3985                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3986                 fc->low_water = fc->high_water - 8;
3987                 break;
3988         case e1000_pchlan:
3989                 /* Workaround PCH LOM adapter hangs with certain network
3990                  * loads.  If hangs persist, try disabling Tx flow control.
3991                  */
3992                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3993                         fc->high_water = 0x3500;
3994                         fc->low_water = 0x1500;
3995                 } else {
3996                         fc->high_water = 0x5000;
3997                         fc->low_water = 0x3000;
3998                 }
3999                 fc->refresh_time = 0x1000;
4000                 break;
4001         case e1000_pch2lan:
4002         case e1000_pch_lpt:
4003         case e1000_pch_spt:
4004                 fc->refresh_time = 0x0400;
4005
4006                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4007                         fc->high_water = 0x05C20;
4008                         fc->low_water = 0x05048;
4009                         fc->pause_time = 0x0650;
4010                         break;
4011                 }
4012
4013                 pba = 14;
4014                 ew32(PBA, pba);
4015                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4016                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4017                 break;
4018         }
4019
4020         /* Alignment of Tx data is on an arbitrary byte boundary with the
4021          * maximum size per Tx descriptor limited only to the transmit
4022          * allocation of the packet buffer minus 96 bytes with an upper
4023          * limit of 24KB due to receive synchronization limitations.
4024          */
4025         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4026                                        24 << 10);
4027
4028         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4029          * fit in receive buffer.
4030          */
4031         if (adapter->itr_setting & 0x3) {
4032                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4033                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4034                                 dev_info(&adapter->pdev->dev,
4035                                          "Interrupt Throttle Rate off\n");
4036                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4037                                 e1000e_write_itr(adapter, 0);
4038                         }
4039                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4040                         dev_info(&adapter->pdev->dev,
4041                                  "Interrupt Throttle Rate on\n");
4042                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4043                         adapter->itr = 20000;
4044                         e1000e_write_itr(adapter, adapter->itr);
4045                 }
4046         }
4047
4048         if (hw->mac.type == e1000_pch_spt)
4049                 e1000_flush_desc_rings(adapter);
4050         /* Allow time for pending master requests to run */
4051         mac->ops.reset_hw(hw);
4052
4053         /* For parts with AMT enabled, let the firmware know
4054          * that the network interface is in control
4055          */
4056         if (adapter->flags & FLAG_HAS_AMT)
4057                 e1000e_get_hw_control(adapter);
4058
4059         ew32(WUC, 0);
4060
4061         if (mac->ops.init_hw(hw))
4062                 e_err("Hardware Error\n");
4063
4064         e1000_update_mng_vlan(adapter);
4065
4066         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4067         ew32(VET, ETH_P_8021Q);
4068
4069         e1000e_reset_adaptive(hw);
4070
4071         /* initialize systim and reset the ns time counter */
4072         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4073
4074         /* Set EEE advertisement as appropriate */
4075         if (adapter->flags2 & FLAG2_HAS_EEE) {
4076                 s32 ret_val;
4077                 u16 adv_addr;
4078
4079                 switch (hw->phy.type) {
4080                 case e1000_phy_82579:
4081                         adv_addr = I82579_EEE_ADVERTISEMENT;
4082                         break;
4083                 case e1000_phy_i217:
4084                         adv_addr = I217_EEE_ADVERTISEMENT;
4085                         break;
4086                 default:
4087                         dev_err(&adapter->pdev->dev,
4088                                 "Invalid PHY type setting EEE advertisement\n");
4089                         return;
4090                 }
4091
4092                 ret_val = hw->phy.ops.acquire(hw);
4093                 if (ret_val) {
4094                         dev_err(&adapter->pdev->dev,
4095                                 "EEE advertisement - unable to acquire PHY\n");
4096                         return;
4097                 }
4098
4099                 e1000_write_emi_reg_locked(hw, adv_addr,
4100                                            hw->dev_spec.ich8lan.eee_disable ?
4101                                            0 : adapter->eee_advert);
4102
4103                 hw->phy.ops.release(hw);
4104         }
4105
4106         if (!netif_running(adapter->netdev) &&
4107             !test_bit(__E1000_TESTING, &adapter->state))
4108                 e1000_power_down_phy(adapter);
4109
4110         e1000_get_phy_info(hw);
4111
4112         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4113             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4114                 u16 phy_data = 0;
4115                 /* speed up time to link by disabling smart power down, ignore
4116                  * the return value of this function because there is nothing
4117                  * different we would do if it failed
4118                  */
4119                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4120                 phy_data &= ~IGP02E1000_PM_SPD;
4121                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4122         }
4123         if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4124                 u32 reg;
4125
4126                 /* Fextnvm7 @ 0xe4[2] = 1 */
4127                 reg = er32(FEXTNVM7);
4128                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4129                 ew32(FEXTNVM7, reg);
4130                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4131                 reg = er32(FEXTNVM9);
4132                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4133                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4134                 ew32(FEXTNVM9, reg);
4135         }
4136
4137 }
4138
4139 int e1000e_up(struct e1000_adapter *adapter)
4140 {
4141         struct e1000_hw *hw = &adapter->hw;
4142
4143         /* hardware has been reset, we need to reload some things */
4144         e1000_configure(adapter);
4145
4146         clear_bit(__E1000_DOWN, &adapter->state);
4147
4148         if (adapter->msix_entries)
4149                 e1000_configure_msix(adapter);
4150         e1000_irq_enable(adapter);
4151
4152         netif_start_queue(adapter->netdev);
4153
4154         /* fire a link change interrupt to start the watchdog */
4155         if (adapter->msix_entries)
4156                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4157         else
4158                 ew32(ICS, E1000_ICS_LSC);
4159
4160         return 0;
4161 }
4162
4163 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4164 {
4165         struct e1000_hw *hw = &adapter->hw;
4166
4167         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4168                 return;
4169
4170         /* flush pending descriptor writebacks to memory */
4171         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4172         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4173
4174         /* execute the writes immediately */
4175         e1e_flush();
4176
4177         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4178          * write is successful
4179          */
4180         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4181         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4182
4183         /* execute the writes immediately */
4184         e1e_flush();
4185 }
4186
4187 static void e1000e_update_stats(struct e1000_adapter *adapter);
4188
4189 /**
4190  * e1000e_down - quiesce the device and optionally reset the hardware
4191  * @adapter: board private structure
4192  * @reset: boolean flag to reset the hardware or not
4193  */
4194 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4195 {
4196         struct net_device *netdev = adapter->netdev;
4197         struct e1000_hw *hw = &adapter->hw;
4198         u32 tctl, rctl;
4199
4200         /* signal that we're down so the interrupt handler does not
4201          * reschedule our watchdog timer
4202          */
4203         set_bit(__E1000_DOWN, &adapter->state);
4204
4205         netif_carrier_off(netdev);
4206
4207         /* disable receives in the hardware */
4208         rctl = er32(RCTL);
4209         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4210                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4211         /* flush and sleep below */
4212
4213         netif_stop_queue(netdev);
4214
4215         /* disable transmits in the hardware */
4216         tctl = er32(TCTL);
4217         tctl &= ~E1000_TCTL_EN;
4218         ew32(TCTL, tctl);
4219
4220         /* flush both disables and wait for them to finish */
4221         e1e_flush();
4222         usleep_range(10000, 20000);
4223
4224         e1000_irq_disable(adapter);
4225
4226         napi_synchronize(&adapter->napi);
4227
4228         del_timer_sync(&adapter->watchdog_timer);
4229         del_timer_sync(&adapter->phy_info_timer);
4230
4231         spin_lock(&adapter->stats64_lock);
4232         e1000e_update_stats(adapter);
4233         spin_unlock(&adapter->stats64_lock);
4234
4235         e1000e_flush_descriptors(adapter);
4236
4237         adapter->link_speed = 0;
4238         adapter->link_duplex = 0;
4239
4240         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4241         if ((hw->mac.type >= e1000_pch2lan) &&
4242             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4243             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4244                 e_dbg("failed to disable jumbo frame workaround mode\n");
4245
4246         if (!pci_channel_offline(adapter->pdev)) {
4247                 if (reset)
4248                         e1000e_reset(adapter);
4249                 else if (hw->mac.type == e1000_pch_spt)
4250                         e1000_flush_desc_rings(adapter);
4251         }
4252         e1000_clean_tx_ring(adapter->tx_ring);
4253         e1000_clean_rx_ring(adapter->rx_ring);
4254 }
4255
4256 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4257 {
4258         might_sleep();
4259         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4260                 usleep_range(1000, 2000);
4261         e1000e_down(adapter, true);
4262         e1000e_up(adapter);
4263         clear_bit(__E1000_RESETTING, &adapter->state);
4264 }
4265
4266 /**
4267  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4268  * @cc: cyclecounter structure
4269  **/
4270 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4271 {
4272         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4273                                                      cc);
4274         struct e1000_hw *hw = &adapter->hw;
4275         cycle_t systim, systim_next;
4276
4277         /* latch SYSTIMH on read of SYSTIML */
4278         systim = (cycle_t)er32(SYSTIML);
4279         systim |= (cycle_t)er32(SYSTIMH) << 32;
4280
4281         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4282                 u64 incvalue, time_delta, rem, temp;
4283                 int i;
4284
4285                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4286                  * check to see that the time is incrementing at a reasonable
4287                  * rate and is a multiple of incvalue
4288                  */
4289                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4290                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4291                         /* latch SYSTIMH on read of SYSTIML */
4292                         systim_next = (cycle_t)er32(SYSTIML);
4293                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4294
4295                         time_delta = systim_next - systim;
4296                         temp = time_delta;
4297                         rem = do_div(temp, incvalue);
4298
4299                         systim = systim_next;
4300
4301                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4302                             (rem == 0))
4303                                 break;
4304                 }
4305         }
4306         return systim;
4307 }
4308
4309 /**
4310  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4311  * @adapter: board private structure to initialize
4312  *
4313  * e1000_sw_init initializes the Adapter private data structure.
4314  * Fields are initialized based on PCI device information and
4315  * OS network device settings (MTU size).
4316  **/
4317 static int e1000_sw_init(struct e1000_adapter *adapter)
4318 {
4319         struct net_device *netdev = adapter->netdev;
4320
4321         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4322         adapter->rx_ps_bsize0 = 128;
4323         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4324         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4325         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4326         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4327
4328         spin_lock_init(&adapter->stats64_lock);
4329
4330         e1000e_set_interrupt_capability(adapter);
4331
4332         if (e1000_alloc_queues(adapter))
4333                 return -ENOMEM;
4334
4335         /* Setup hardware time stamping cyclecounter */
4336         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4337                 adapter->cc.read = e1000e_cyclecounter_read;
4338                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4339                 adapter->cc.mult = 1;
4340                 /* cc.shift set in e1000e_get_base_tininca() */
4341
4342                 spin_lock_init(&adapter->systim_lock);
4343                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4344         }
4345
4346         /* Explicitly disable IRQ since the NIC can be in any state. */
4347         e1000_irq_disable(adapter);
4348
4349         set_bit(__E1000_DOWN, &adapter->state);
4350         return 0;
4351 }
4352
4353 /**
4354  * e1000_intr_msi_test - Interrupt Handler
4355  * @irq: interrupt number
4356  * @data: pointer to a network interface device structure
4357  **/
4358 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4359 {
4360         struct net_device *netdev = data;
4361         struct e1000_adapter *adapter = netdev_priv(netdev);
4362         struct e1000_hw *hw = &adapter->hw;
4363         u32 icr = er32(ICR);
4364
4365         e_dbg("icr is %08X\n", icr);
4366         if (icr & E1000_ICR_RXSEQ) {
4367                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4368                 /* Force memory writes to complete before acknowledging the
4369                  * interrupt is handled.
4370                  */
4371                 wmb();
4372         }
4373
4374         return IRQ_HANDLED;
4375 }
4376
4377 /**
4378  * e1000_test_msi_interrupt - Returns 0 for successful test
4379  * @adapter: board private struct
4380  *
4381  * code flow taken from tg3.c
4382  **/
4383 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4384 {
4385         struct net_device *netdev = adapter->netdev;
4386         struct e1000_hw *hw = &adapter->hw;
4387         int err;
4388
4389         /* poll_enable hasn't been called yet, so don't need disable */
4390         /* clear any pending events */
4391         er32(ICR);
4392
4393         /* free the real vector and request a test handler */
4394         e1000_free_irq(adapter);
4395         e1000e_reset_interrupt_capability(adapter);
4396
4397         /* Assume that the test fails, if it succeeds then the test
4398          * MSI irq handler will unset this flag
4399          */
4400         adapter->flags |= FLAG_MSI_TEST_FAILED;
4401
4402         err = pci_enable_msi(adapter->pdev);
4403         if (err)
4404                 goto msi_test_failed;
4405
4406         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4407                           netdev->name, netdev);
4408         if (err) {
4409                 pci_disable_msi(adapter->pdev);
4410                 goto msi_test_failed;
4411         }
4412
4413         /* Force memory writes to complete before enabling and firing an
4414          * interrupt.
4415          */
4416         wmb();
4417
4418         e1000_irq_enable(adapter);
4419
4420         /* fire an unusual interrupt on the test handler */
4421         ew32(ICS, E1000_ICS_RXSEQ);
4422         e1e_flush();
4423         msleep(100);
4424
4425         e1000_irq_disable(adapter);
4426
4427         rmb();                  /* read flags after interrupt has been fired */
4428
4429         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4430                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4431                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4432         } else {
4433                 e_dbg("MSI interrupt test succeeded!\n");
4434         }
4435
4436         free_irq(adapter->pdev->irq, netdev);
4437         pci_disable_msi(adapter->pdev);
4438
4439 msi_test_failed:
4440         e1000e_set_interrupt_capability(adapter);
4441         return e1000_request_irq(adapter);
4442 }
4443
4444 /**
4445  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4446  * @adapter: board private struct
4447  *
4448  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4449  **/
4450 static int e1000_test_msi(struct e1000_adapter *adapter)
4451 {
4452         int err;
4453         u16 pci_cmd;
4454
4455         if (!(adapter->flags & FLAG_MSI_ENABLED))
4456                 return 0;
4457
4458         /* disable SERR in case the MSI write causes a master abort */
4459         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4460         if (pci_cmd & PCI_COMMAND_SERR)
4461                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4462                                       pci_cmd & ~PCI_COMMAND_SERR);
4463
4464         err = e1000_test_msi_interrupt(adapter);
4465
4466         /* re-enable SERR */
4467         if (pci_cmd & PCI_COMMAND_SERR) {
4468                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4469                 pci_cmd |= PCI_COMMAND_SERR;
4470                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4471         }
4472
4473         return err;
4474 }
4475
4476 /**
4477  * e1000_open - Called when a network interface is made active
4478  * @netdev: network interface device structure
4479  *
4480  * Returns 0 on success, negative value on failure
4481  *
4482  * The open entry point is called when a network interface is made
4483  * active by the system (IFF_UP).  At this point all resources needed
4484  * for transmit and receive operations are allocated, the interrupt
4485  * handler is registered with the OS, the watchdog timer is started,
4486  * and the stack is notified that the interface is ready.
4487  **/
4488 static int e1000_open(struct net_device *netdev)
4489 {
4490         struct e1000_adapter *adapter = netdev_priv(netdev);
4491         struct e1000_hw *hw = &adapter->hw;
4492         struct pci_dev *pdev = adapter->pdev;
4493         int err;
4494
4495         /* disallow open during test */
4496         if (test_bit(__E1000_TESTING, &adapter->state))
4497                 return -EBUSY;
4498
4499         pm_runtime_get_sync(&pdev->dev);
4500
4501         netif_carrier_off(netdev);
4502
4503         /* allocate transmit descriptors */
4504         err = e1000e_setup_tx_resources(adapter->tx_ring);
4505         if (err)
4506                 goto err_setup_tx;
4507
4508         /* allocate receive descriptors */
4509         err = e1000e_setup_rx_resources(adapter->rx_ring);
4510         if (err)
4511                 goto err_setup_rx;
4512
4513         /* If AMT is enabled, let the firmware know that the network
4514          * interface is now open and reset the part to a known state.
4515          */
4516         if (adapter->flags & FLAG_HAS_AMT) {
4517                 e1000e_get_hw_control(adapter);
4518                 e1000e_reset(adapter);
4519         }
4520
4521         e1000e_power_up_phy(adapter);
4522
4523         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4524         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4525                 e1000_update_mng_vlan(adapter);
4526
4527         /* DMA latency requirement to workaround jumbo issue */
4528         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4529                            PM_QOS_DEFAULT_VALUE);
4530
4531         /* before we allocate an interrupt, we must be ready to handle it.
4532          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4533          * as soon as we call pci_request_irq, so we have to setup our
4534          * clean_rx handler before we do so.
4535          */
4536         e1000_configure(adapter);
4537
4538         err = e1000_request_irq(adapter);
4539         if (err)
4540                 goto err_req_irq;
4541
4542         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4543          * ignore e1000e MSI messages, which means we need to test our MSI
4544          * interrupt now
4545          */
4546         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4547                 err = e1000_test_msi(adapter);
4548                 if (err) {
4549                         e_err("Interrupt allocation failed\n");
4550                         goto err_req_irq;
4551                 }
4552         }
4553
4554         /* From here on the code is the same as e1000e_up() */
4555         clear_bit(__E1000_DOWN, &adapter->state);
4556
4557         napi_enable(&adapter->napi);
4558
4559         e1000_irq_enable(adapter);
4560
4561         adapter->tx_hang_recheck = false;
4562         netif_start_queue(netdev);
4563
4564         hw->mac.get_link_status = true;
4565         pm_runtime_put(&pdev->dev);
4566
4567         /* fire a link status change interrupt to start the watchdog */
4568         if (adapter->msix_entries)
4569                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4570         else
4571                 ew32(ICS, E1000_ICS_LSC);
4572
4573         return 0;
4574
4575 err_req_irq:
4576         e1000e_release_hw_control(adapter);
4577         e1000_power_down_phy(adapter);
4578         e1000e_free_rx_resources(adapter->rx_ring);
4579 err_setup_rx:
4580         e1000e_free_tx_resources(adapter->tx_ring);
4581 err_setup_tx:
4582         e1000e_reset(adapter);
4583         pm_runtime_put_sync(&pdev->dev);
4584
4585         return err;
4586 }
4587
4588 /**
4589  * e1000_close - Disables a network interface
4590  * @netdev: network interface device structure
4591  *
4592  * Returns 0, this is not allowed to fail
4593  *
4594  * The close entry point is called when an interface is de-activated
4595  * by the OS.  The hardware is still under the drivers control, but
4596  * needs to be disabled.  A global MAC reset is issued to stop the
4597  * hardware, and all transmit and receive resources are freed.
4598  **/
4599 static int e1000_close(struct net_device *netdev)
4600 {
4601         struct e1000_adapter *adapter = netdev_priv(netdev);
4602         struct pci_dev *pdev = adapter->pdev;
4603         int count = E1000_CHECK_RESET_COUNT;
4604
4605         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4606                 usleep_range(10000, 20000);
4607
4608         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4609
4610         pm_runtime_get_sync(&pdev->dev);
4611
4612         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4613                 e1000e_down(adapter, true);
4614                 e1000_free_irq(adapter);
4615
4616                 /* Link status message must follow this format */
4617                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4618         }
4619
4620         napi_disable(&adapter->napi);
4621
4622         e1000e_free_tx_resources(adapter->tx_ring);
4623         e1000e_free_rx_resources(adapter->rx_ring);
4624
4625         /* kill manageability vlan ID if supported, but not if a vlan with
4626          * the same ID is registered on the host OS (let 8021q kill it)
4627          */
4628         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4629                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4630                                        adapter->mng_vlan_id);
4631
4632         /* If AMT is enabled, let the firmware know that the network
4633          * interface is now closed
4634          */
4635         if ((adapter->flags & FLAG_HAS_AMT) &&
4636             !test_bit(__E1000_TESTING, &adapter->state))
4637                 e1000e_release_hw_control(adapter);
4638
4639         pm_qos_remove_request(&adapter->pm_qos_req);
4640
4641         pm_runtime_put_sync(&pdev->dev);
4642
4643         return 0;
4644 }
4645
4646 /**
4647  * e1000_set_mac - Change the Ethernet Address of the NIC
4648  * @netdev: network interface device structure
4649  * @p: pointer to an address structure
4650  *
4651  * Returns 0 on success, negative on failure
4652  **/
4653 static int e1000_set_mac(struct net_device *netdev, void *p)
4654 {
4655         struct e1000_adapter *adapter = netdev_priv(netdev);
4656         struct e1000_hw *hw = &adapter->hw;
4657         struct sockaddr *addr = p;
4658
4659         if (!is_valid_ether_addr(addr->sa_data))
4660                 return -EADDRNOTAVAIL;
4661
4662         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4663         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4664
4665         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4666
4667         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4668                 /* activate the work around */
4669                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4670
4671                 /* Hold a copy of the LAA in RAR[14] This is done so that
4672                  * between the time RAR[0] gets clobbered  and the time it
4673                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4674                  * of the RARs and no incoming packets directed to this port
4675                  * are dropped. Eventually the LAA will be in RAR[0] and
4676                  * RAR[14]
4677                  */
4678                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4679                                     adapter->hw.mac.rar_entry_count - 1);
4680         }
4681
4682         return 0;
4683 }
4684
4685 /**
4686  * e1000e_update_phy_task - work thread to update phy
4687  * @work: pointer to our work struct
4688  *
4689  * this worker thread exists because we must acquire a
4690  * semaphore to read the phy, which we could msleep while
4691  * waiting for it, and we can't msleep in a timer.
4692  **/
4693 static void e1000e_update_phy_task(struct work_struct *work)
4694 {
4695         struct e1000_adapter *adapter = container_of(work,
4696                                                      struct e1000_adapter,
4697                                                      update_phy_task);
4698         struct e1000_hw *hw = &adapter->hw;
4699
4700         if (test_bit(__E1000_DOWN, &adapter->state))
4701                 return;
4702
4703         e1000_get_phy_info(hw);
4704
4705         /* Enable EEE on 82579 after link up */
4706         if (hw->phy.type >= e1000_phy_82579)
4707                 e1000_set_eee_pchlan(hw);
4708 }
4709
4710 /**
4711  * e1000_update_phy_info - timre call-back to update PHY info
4712  * @data: pointer to adapter cast into an unsigned long
4713  *
4714  * Need to wait a few seconds after link up to get diagnostic information from
4715  * the phy
4716  **/
4717 static void e1000_update_phy_info(unsigned long data)
4718 {
4719         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4720
4721         if (test_bit(__E1000_DOWN, &adapter->state))
4722                 return;
4723
4724         schedule_work(&adapter->update_phy_task);
4725 }
4726
4727 /**
4728  * e1000e_update_phy_stats - Update the PHY statistics counters
4729  * @adapter: board private structure
4730  *
4731  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4732  **/
4733 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4734 {
4735         struct e1000_hw *hw = &adapter->hw;
4736         s32 ret_val;
4737         u16 phy_data;
4738
4739         ret_val = hw->phy.ops.acquire(hw);
4740         if (ret_val)
4741                 return;
4742
4743         /* A page set is expensive so check if already on desired page.
4744          * If not, set to the page with the PHY status registers.
4745          */
4746         hw->phy.addr = 1;
4747         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4748                                            &phy_data);
4749         if (ret_val)
4750                 goto release;
4751         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4752                 ret_val = hw->phy.ops.set_page(hw,
4753                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4754                 if (ret_val)
4755                         goto release;
4756         }
4757
4758         /* Single Collision Count */
4759         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4760         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4761         if (!ret_val)
4762                 adapter->stats.scc += phy_data;
4763
4764         /* Excessive Collision Count */
4765         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4766         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4767         if (!ret_val)
4768                 adapter->stats.ecol += phy_data;
4769
4770         /* Multiple Collision Count */
4771         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4772         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4773         if (!ret_val)
4774                 adapter->stats.mcc += phy_data;
4775
4776         /* Late Collision Count */
4777         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4778         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4779         if (!ret_val)
4780                 adapter->stats.latecol += phy_data;
4781
4782         /* Collision Count - also used for adaptive IFS */
4783         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4784         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4785         if (!ret_val)
4786                 hw->mac.collision_delta = phy_data;
4787
4788         /* Defer Count */
4789         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4790         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4791         if (!ret_val)
4792                 adapter->stats.dc += phy_data;
4793
4794         /* Transmit with no CRS */
4795         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4796         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4797         if (!ret_val)
4798                 adapter->stats.tncrs += phy_data;
4799
4800 release:
4801         hw->phy.ops.release(hw);
4802 }
4803
4804 /**
4805  * e1000e_update_stats - Update the board statistics counters
4806  * @adapter: board private structure
4807  **/
4808 static void e1000e_update_stats(struct e1000_adapter *adapter)
4809 {
4810         struct net_device *netdev = adapter->netdev;
4811         struct e1000_hw *hw = &adapter->hw;
4812         struct pci_dev *pdev = adapter->pdev;
4813
4814         /* Prevent stats update while adapter is being reset, or if the pci
4815          * connection is down.
4816          */
4817         if (adapter->link_speed == 0)
4818                 return;
4819         if (pci_channel_offline(pdev))
4820                 return;
4821
4822         adapter->stats.crcerrs += er32(CRCERRS);
4823         adapter->stats.gprc += er32(GPRC);
4824         adapter->stats.gorc += er32(GORCL);
4825         er32(GORCH);            /* Clear gorc */
4826         adapter->stats.bprc += er32(BPRC);
4827         adapter->stats.mprc += er32(MPRC);
4828         adapter->stats.roc += er32(ROC);
4829
4830         adapter->stats.mpc += er32(MPC);
4831
4832         /* Half-duplex statistics */
4833         if (adapter->link_duplex == HALF_DUPLEX) {
4834                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4835                         e1000e_update_phy_stats(adapter);
4836                 } else {
4837                         adapter->stats.scc += er32(SCC);
4838                         adapter->stats.ecol += er32(ECOL);
4839                         adapter->stats.mcc += er32(MCC);
4840                         adapter->stats.latecol += er32(LATECOL);
4841                         adapter->stats.dc += er32(DC);
4842
4843                         hw->mac.collision_delta = er32(COLC);
4844
4845                         if ((hw->mac.type != e1000_82574) &&
4846                             (hw->mac.type != e1000_82583))
4847                                 adapter->stats.tncrs += er32(TNCRS);
4848                 }
4849                 adapter->stats.colc += hw->mac.collision_delta;
4850         }
4851
4852         adapter->stats.xonrxc += er32(XONRXC);
4853         adapter->stats.xontxc += er32(XONTXC);
4854         adapter->stats.xoffrxc += er32(XOFFRXC);
4855         adapter->stats.xofftxc += er32(XOFFTXC);
4856         adapter->stats.gptc += er32(GPTC);
4857         adapter->stats.gotc += er32(GOTCL);
4858         er32(GOTCH);            /* Clear gotc */
4859         adapter->stats.rnbc += er32(RNBC);
4860         adapter->stats.ruc += er32(RUC);
4861
4862         adapter->stats.mptc += er32(MPTC);
4863         adapter->stats.bptc += er32(BPTC);
4864
4865         /* used for adaptive IFS */
4866
4867         hw->mac.tx_packet_delta = er32(TPT);
4868         adapter->stats.tpt += hw->mac.tx_packet_delta;
4869
4870         adapter->stats.algnerrc += er32(ALGNERRC);
4871         adapter->stats.rxerrc += er32(RXERRC);
4872         adapter->stats.cexterr += er32(CEXTERR);
4873         adapter->stats.tsctc += er32(TSCTC);
4874         adapter->stats.tsctfc += er32(TSCTFC);
4875
4876         /* Fill out the OS statistics structure */
4877         netdev->stats.multicast = adapter->stats.mprc;
4878         netdev->stats.collisions = adapter->stats.colc;
4879
4880         /* Rx Errors */
4881
4882         /* RLEC on some newer hardware can be incorrect so build
4883          * our own version based on RUC and ROC
4884          */
4885         netdev->stats.rx_errors = adapter->stats.rxerrc +
4886             adapter->stats.crcerrs + adapter->stats.algnerrc +
4887             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4888         netdev->stats.rx_length_errors = adapter->stats.ruc +
4889             adapter->stats.roc;
4890         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4891         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4892         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4893
4894         /* Tx Errors */
4895         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4896         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4897         netdev->stats.tx_window_errors = adapter->stats.latecol;
4898         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4899
4900         /* Tx Dropped needs to be maintained elsewhere */
4901
4902         /* Management Stats */
4903         adapter->stats.mgptc += er32(MGTPTC);
4904         adapter->stats.mgprc += er32(MGTPRC);
4905         adapter->stats.mgpdc += er32(MGTPDC);
4906
4907         /* Correctable ECC Errors */
4908         if ((hw->mac.type == e1000_pch_lpt) ||
4909             (hw->mac.type == e1000_pch_spt)) {
4910                 u32 pbeccsts = er32(PBECCSTS);
4911
4912                 adapter->corr_errors +=
4913                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4914                 adapter->uncorr_errors +=
4915                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4916                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4917         }
4918 }
4919
4920 /**
4921  * e1000_phy_read_status - Update the PHY register status snapshot
4922  * @adapter: board private structure
4923  **/
4924 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4925 {
4926         struct e1000_hw *hw = &adapter->hw;
4927         struct e1000_phy_regs *phy = &adapter->phy_regs;
4928
4929         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4930             (er32(STATUS) & E1000_STATUS_LU) &&
4931             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4932                 int ret_val;
4933
4934                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4935                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4936                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4937                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4938                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4939                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4940                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4941                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4942                 if (ret_val)
4943                         e_warn("Error reading PHY register\n");
4944         } else {
4945                 /* Do not read PHY registers if link is not up
4946                  * Set values to typical power-on defaults
4947                  */
4948                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4949                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4950                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4951                              BMSR_ERCAP);
4952                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4953                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4954                 phy->lpa = 0;
4955                 phy->expansion = EXPANSION_ENABLENPAGE;
4956                 phy->ctrl1000 = ADVERTISE_1000FULL;
4957                 phy->stat1000 = 0;
4958                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4959         }
4960 }
4961
4962 static void e1000_print_link_info(struct e1000_adapter *adapter)
4963 {
4964         struct e1000_hw *hw = &adapter->hw;
4965         u32 ctrl = er32(CTRL);
4966
4967         /* Link status message must follow this format for user tools */
4968         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4969                 adapter->netdev->name, adapter->link_speed,
4970                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4971                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4972                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4973                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4974 }
4975
4976 static bool e1000e_has_link(struct e1000_adapter *adapter)
4977 {
4978         struct e1000_hw *hw = &adapter->hw;
4979         bool link_active = false;
4980         s32 ret_val = 0;
4981
4982         /* get_link_status is set on LSC (link status) interrupt or
4983          * Rx sequence error interrupt.  get_link_status will stay
4984          * false until the check_for_link establishes link
4985          * for copper adapters ONLY
4986          */
4987         switch (hw->phy.media_type) {
4988         case e1000_media_type_copper:
4989                 if (hw->mac.get_link_status) {
4990                         ret_val = hw->mac.ops.check_for_link(hw);
4991                         link_active = !hw->mac.get_link_status;
4992                 } else {
4993                         link_active = true;
4994                 }
4995                 break;
4996         case e1000_media_type_fiber:
4997                 ret_val = hw->mac.ops.check_for_link(hw);
4998                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4999                 break;
5000         case e1000_media_type_internal_serdes:
5001                 ret_val = hw->mac.ops.check_for_link(hw);
5002                 link_active = adapter->hw.mac.serdes_has_link;
5003                 break;
5004         default:
5005         case e1000_media_type_unknown:
5006                 break;
5007         }
5008
5009         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5010             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5011                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5012                 e_info("Gigabit has been disabled, downgrading speed\n");
5013         }
5014
5015         return link_active;
5016 }
5017
5018 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5019 {
5020         /* make sure the receive unit is started */
5021         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5022             (adapter->flags & FLAG_RESTART_NOW)) {
5023                 struct e1000_hw *hw = &adapter->hw;
5024                 u32 rctl = er32(RCTL);
5025
5026                 ew32(RCTL, rctl | E1000_RCTL_EN);
5027                 adapter->flags &= ~FLAG_RESTART_NOW;
5028         }
5029 }
5030
5031 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5032 {
5033         struct e1000_hw *hw = &adapter->hw;
5034
5035         /* With 82574 controllers, PHY needs to be checked periodically
5036          * for hung state and reset, if two calls return true
5037          */
5038         if (e1000_check_phy_82574(hw))
5039                 adapter->phy_hang_count++;
5040         else
5041                 adapter->phy_hang_count = 0;
5042
5043         if (adapter->phy_hang_count > 1) {
5044                 adapter->phy_hang_count = 0;
5045                 e_dbg("PHY appears hung - resetting\n");
5046                 schedule_work(&adapter->reset_task);
5047         }
5048 }
5049
5050 /**
5051  * e1000_watchdog - Timer Call-back
5052  * @data: pointer to adapter cast into an unsigned long
5053  **/
5054 static void e1000_watchdog(unsigned long data)
5055 {
5056         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5057
5058         /* Do the rest outside of interrupt context */
5059         schedule_work(&adapter->watchdog_task);
5060
5061         /* TODO: make this use queue_delayed_work() */
5062 }
5063
5064 static void e1000_watchdog_task(struct work_struct *work)
5065 {
5066         struct e1000_adapter *adapter = container_of(work,
5067                                                      struct e1000_adapter,
5068                                                      watchdog_task);
5069         struct net_device *netdev = adapter->netdev;
5070         struct e1000_mac_info *mac = &adapter->hw.mac;
5071         struct e1000_phy_info *phy = &adapter->hw.phy;
5072         struct e1000_ring *tx_ring = adapter->tx_ring;
5073         struct e1000_hw *hw = &adapter->hw;
5074         u32 link, tctl;
5075
5076         if (test_bit(__E1000_DOWN, &adapter->state))
5077                 return;
5078
5079         link = e1000e_has_link(adapter);
5080         if ((netif_carrier_ok(netdev)) && link) {
5081                 /* Cancel scheduled suspend requests. */
5082                 pm_runtime_resume(netdev->dev.parent);
5083
5084                 e1000e_enable_receives(adapter);
5085                 goto link_up;
5086         }
5087
5088         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5089             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5090                 e1000_update_mng_vlan(adapter);
5091
5092         if (link) {
5093                 if (!netif_carrier_ok(netdev)) {
5094                         bool txb2b = true;
5095
5096                         /* Cancel scheduled suspend requests. */
5097                         pm_runtime_resume(netdev->dev.parent);
5098
5099                         /* update snapshot of PHY registers on LSC */
5100                         e1000_phy_read_status(adapter);
5101                         mac->ops.get_link_up_info(&adapter->hw,
5102                                                   &adapter->link_speed,
5103                                                   &adapter->link_duplex);
5104                         e1000_print_link_info(adapter);
5105
5106                         /* check if SmartSpeed worked */
5107                         e1000e_check_downshift(hw);
5108                         if (phy->speed_downgraded)
5109                                 netdev_warn(netdev,
5110                                             "Link Speed was downgraded by SmartSpeed\n");
5111
5112                         /* On supported PHYs, check for duplex mismatch only
5113                          * if link has autonegotiated at 10/100 half
5114                          */
5115                         if ((hw->phy.type == e1000_phy_igp_3 ||
5116                              hw->phy.type == e1000_phy_bm) &&
5117                             hw->mac.autoneg &&
5118                             (adapter->link_speed == SPEED_10 ||
5119                              adapter->link_speed == SPEED_100) &&
5120                             (adapter->link_duplex == HALF_DUPLEX)) {
5121                                 u16 autoneg_exp;
5122
5123                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5124
5125                                 if (!(autoneg_exp & EXPANSION_NWAY))
5126                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5127                         }
5128
5129                         /* adjust timeout factor according to speed/duplex */
5130                         adapter->tx_timeout_factor = 1;
5131                         switch (adapter->link_speed) {
5132                         case SPEED_10:
5133                                 txb2b = false;
5134                                 adapter->tx_timeout_factor = 16;
5135                                 break;
5136                         case SPEED_100:
5137                                 txb2b = false;
5138                                 adapter->tx_timeout_factor = 10;
5139                                 break;
5140                         }
5141
5142                         /* workaround: re-program speed mode bit after
5143                          * link-up event
5144                          */
5145                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5146                             !txb2b) {
5147                                 u32 tarc0;
5148
5149                                 tarc0 = er32(TARC(0));
5150                                 tarc0 &= ~SPEED_MODE_BIT;
5151                                 ew32(TARC(0), tarc0);
5152                         }
5153
5154                         /* disable TSO for pcie and 10/100 speeds, to avoid
5155                          * some hardware issues
5156                          */
5157                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5158                                 switch (adapter->link_speed) {
5159                                 case SPEED_10:
5160                                 case SPEED_100:
5161                                         e_info("10/100 speed: disabling TSO\n");
5162                                         netdev->features &= ~NETIF_F_TSO;
5163                                         netdev->features &= ~NETIF_F_TSO6;
5164                                         break;
5165                                 case SPEED_1000:
5166                                         netdev->features |= NETIF_F_TSO;
5167                                         netdev->features |= NETIF_F_TSO6;
5168                                         break;
5169                                 default:
5170                                         /* oops */
5171                                         break;
5172                                 }
5173                         }
5174
5175                         /* enable transmits in the hardware, need to do this
5176                          * after setting TARC(0)
5177                          */
5178                         tctl = er32(TCTL);
5179                         tctl |= E1000_TCTL_EN;
5180                         ew32(TCTL, tctl);
5181
5182                         /* Perform any post-link-up configuration before
5183                          * reporting link up.
5184                          */
5185                         if (phy->ops.cfg_on_link_up)
5186                                 phy->ops.cfg_on_link_up(hw);
5187
5188                         netif_carrier_on(netdev);
5189
5190                         if (!test_bit(__E1000_DOWN, &adapter->state))
5191                                 mod_timer(&adapter->phy_info_timer,
5192                                           round_jiffies(jiffies + 2 * HZ));
5193                 }
5194         } else {
5195                 if (netif_carrier_ok(netdev)) {
5196                         adapter->link_speed = 0;
5197                         adapter->link_duplex = 0;
5198                         /* Link status message must follow this format */
5199                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5200                         netif_carrier_off(netdev);
5201                         if (!test_bit(__E1000_DOWN, &adapter->state))
5202                                 mod_timer(&adapter->phy_info_timer,
5203                                           round_jiffies(jiffies + 2 * HZ));
5204
5205                         /* 8000ES2LAN requires a Rx packet buffer work-around
5206                          * on link down event; reset the controller to flush
5207                          * the Rx packet buffer.
5208                          */
5209                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5210                                 adapter->flags |= FLAG_RESTART_NOW;
5211                         else
5212                                 pm_schedule_suspend(netdev->dev.parent,
5213                                                     LINK_TIMEOUT);
5214                 }
5215         }
5216
5217 link_up:
5218         spin_lock(&adapter->stats64_lock);
5219         e1000e_update_stats(adapter);
5220
5221         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5222         adapter->tpt_old = adapter->stats.tpt;
5223         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5224         adapter->colc_old = adapter->stats.colc;
5225
5226         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5227         adapter->gorc_old = adapter->stats.gorc;
5228         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5229         adapter->gotc_old = adapter->stats.gotc;
5230         spin_unlock(&adapter->stats64_lock);
5231
5232         /* If the link is lost the controller stops DMA, but
5233          * if there is queued Tx work it cannot be done.  So
5234          * reset the controller to flush the Tx packet buffers.
5235          */
5236         if (!netif_carrier_ok(netdev) &&
5237             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5238                 adapter->flags |= FLAG_RESTART_NOW;
5239
5240         /* If reset is necessary, do it outside of interrupt context. */
5241         if (adapter->flags & FLAG_RESTART_NOW) {
5242                 schedule_work(&adapter->reset_task);
5243                 /* return immediately since reset is imminent */
5244                 return;
5245         }
5246
5247         e1000e_update_adaptive(&adapter->hw);
5248
5249         /* Simple mode for Interrupt Throttle Rate (ITR) */
5250         if (adapter->itr_setting == 4) {
5251                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5252                  * Total asymmetrical Tx or Rx gets ITR=8000;
5253                  * everyone else is between 2000-8000.
5254                  */
5255                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5256                 u32 dif = (adapter->gotc > adapter->gorc ?
5257                            adapter->gotc - adapter->gorc :
5258                            adapter->gorc - adapter->gotc) / 10000;
5259                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5260
5261                 e1000e_write_itr(adapter, itr);
5262         }
5263
5264         /* Cause software interrupt to ensure Rx ring is cleaned */
5265         if (adapter->msix_entries)
5266                 ew32(ICS, adapter->rx_ring->ims_val);
5267         else
5268                 ew32(ICS, E1000_ICS_RXDMT0);
5269
5270         /* flush pending descriptors to memory before detecting Tx hang */
5271         e1000e_flush_descriptors(adapter);
5272
5273         /* Force detection of hung controller every watchdog period */
5274         adapter->detect_tx_hung = true;
5275
5276         /* With 82571 controllers, LAA may be overwritten due to controller
5277          * reset from the other port. Set the appropriate LAA in RAR[0]
5278          */
5279         if (e1000e_get_laa_state_82571(hw))
5280                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5281
5282         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5283                 e1000e_check_82574_phy_workaround(adapter);
5284
5285         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5286         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5287                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5288                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5289                         er32(RXSTMPH);
5290                         adapter->rx_hwtstamp_cleared++;
5291                 } else {
5292                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5293                 }
5294         }
5295
5296         /* Reset the timer */
5297         if (!test_bit(__E1000_DOWN, &adapter->state))
5298                 mod_timer(&adapter->watchdog_timer,
5299                           round_jiffies(jiffies + 2 * HZ));
5300 }
5301
5302 #define E1000_TX_FLAGS_CSUM             0x00000001
5303 #define E1000_TX_FLAGS_VLAN             0x00000002
5304 #define E1000_TX_FLAGS_TSO              0x00000004
5305 #define E1000_TX_FLAGS_IPV4             0x00000008
5306 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5307 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5308 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5309 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5310
5311 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5312                      __be16 protocol)
5313 {
5314         struct e1000_context_desc *context_desc;
5315         struct e1000_buffer *buffer_info;
5316         unsigned int i;
5317         u32 cmd_length = 0;
5318         u16 ipcse = 0, mss;
5319         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5320         int err;
5321
5322         if (!skb_is_gso(skb))
5323                 return 0;
5324
5325         err = skb_cow_head(skb, 0);
5326         if (err < 0)
5327                 return err;
5328
5329         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5330         mss = skb_shinfo(skb)->gso_size;
5331         if (protocol == htons(ETH_P_IP)) {
5332                 struct iphdr *iph = ip_hdr(skb);
5333                 iph->tot_len = 0;
5334                 iph->check = 0;
5335                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5336                                                          0, IPPROTO_TCP, 0);
5337                 cmd_length = E1000_TXD_CMD_IP;
5338                 ipcse = skb_transport_offset(skb) - 1;
5339         } else if (skb_is_gso_v6(skb)) {
5340                 ipv6_hdr(skb)->payload_len = 0;
5341                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5342                                                        &ipv6_hdr(skb)->daddr,
5343                                                        0, IPPROTO_TCP, 0);
5344                 ipcse = 0;
5345         }
5346         ipcss = skb_network_offset(skb);
5347         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5348         tucss = skb_transport_offset(skb);
5349         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5350
5351         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5352                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5353
5354         i = tx_ring->next_to_use;
5355         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5356         buffer_info = &tx_ring->buffer_info[i];
5357
5358         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5359         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5360         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5361         context_desc->upper_setup.tcp_fields.tucss = tucss;
5362         context_desc->upper_setup.tcp_fields.tucso = tucso;
5363         context_desc->upper_setup.tcp_fields.tucse = 0;
5364         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5365         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5366         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5367
5368         buffer_info->time_stamp = jiffies;
5369         buffer_info->next_to_watch = i;
5370
5371         i++;
5372         if (i == tx_ring->count)
5373                 i = 0;
5374         tx_ring->next_to_use = i;
5375
5376         return 1;
5377 }
5378
5379 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5380                           __be16 protocol)
5381 {
5382         struct e1000_adapter *adapter = tx_ring->adapter;
5383         struct e1000_context_desc *context_desc;
5384         struct e1000_buffer *buffer_info;
5385         unsigned int i;
5386         u8 css;
5387         u32 cmd_len = E1000_TXD_CMD_DEXT;
5388
5389         if (skb->ip_summed != CHECKSUM_PARTIAL)
5390                 return false;
5391
5392         switch (protocol) {
5393         case cpu_to_be16(ETH_P_IP):
5394                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5395                         cmd_len |= E1000_TXD_CMD_TCP;
5396                 break;
5397         case cpu_to_be16(ETH_P_IPV6):
5398                 /* XXX not handling all IPV6 headers */
5399                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5400                         cmd_len |= E1000_TXD_CMD_TCP;
5401                 break;
5402         default:
5403                 if (unlikely(net_ratelimit()))
5404                         e_warn("checksum_partial proto=%x!\n",
5405                                be16_to_cpu(protocol));
5406                 break;
5407         }
5408
5409         css = skb_checksum_start_offset(skb);
5410
5411         i = tx_ring->next_to_use;
5412         buffer_info = &tx_ring->buffer_info[i];
5413         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5414
5415         context_desc->lower_setup.ip_config = 0;
5416         context_desc->upper_setup.tcp_fields.tucss = css;
5417         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5418         context_desc->upper_setup.tcp_fields.tucse = 0;
5419         context_desc->tcp_seg_setup.data = 0;
5420         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5421
5422         buffer_info->time_stamp = jiffies;
5423         buffer_info->next_to_watch = i;
5424
5425         i++;
5426         if (i == tx_ring->count)
5427                 i = 0;
5428         tx_ring->next_to_use = i;
5429
5430         return true;
5431 }
5432
5433 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5434                         unsigned int first, unsigned int max_per_txd,
5435                         unsigned int nr_frags)
5436 {
5437         struct e1000_adapter *adapter = tx_ring->adapter;
5438         struct pci_dev *pdev = adapter->pdev;
5439         struct e1000_buffer *buffer_info;
5440         unsigned int len = skb_headlen(skb);
5441         unsigned int offset = 0, size, count = 0, i;
5442         unsigned int f, bytecount, segs;
5443
5444         i = tx_ring->next_to_use;
5445
5446         while (len) {
5447                 buffer_info = &tx_ring->buffer_info[i];
5448                 size = min(len, max_per_txd);
5449
5450                 buffer_info->length = size;
5451                 buffer_info->time_stamp = jiffies;
5452                 buffer_info->next_to_watch = i;
5453                 buffer_info->dma = dma_map_single(&pdev->dev,
5454                                                   skb->data + offset,
5455                                                   size, DMA_TO_DEVICE);
5456                 buffer_info->mapped_as_page = false;
5457                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5458                         goto dma_error;
5459
5460                 len -= size;
5461                 offset += size;
5462                 count++;
5463
5464                 if (len) {
5465                         i++;
5466                         if (i == tx_ring->count)
5467                                 i = 0;
5468                 }
5469         }
5470
5471         for (f = 0; f < nr_frags; f++) {
5472                 const struct skb_frag_struct *frag;
5473
5474                 frag = &skb_shinfo(skb)->frags[f];
5475                 len = skb_frag_size(frag);
5476                 offset = 0;
5477
5478                 while (len) {
5479                         i++;
5480                         if (i == tx_ring->count)
5481                                 i = 0;
5482
5483                         buffer_info = &tx_ring->buffer_info[i];
5484                         size = min(len, max_per_txd);
5485
5486                         buffer_info->length = size;
5487                         buffer_info->time_stamp = jiffies;
5488                         buffer_info->next_to_watch = i;
5489                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5490                                                             offset, size,
5491                                                             DMA_TO_DEVICE);
5492                         buffer_info->mapped_as_page = true;
5493                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5494                                 goto dma_error;
5495
5496                         len -= size;
5497                         offset += size;
5498                         count++;
5499                 }
5500         }
5501
5502         segs = skb_shinfo(skb)->gso_segs ? : 1;
5503         /* multiply data chunks by size of headers */
5504         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5505
5506         tx_ring->buffer_info[i].skb = skb;
5507         tx_ring->buffer_info[i].segs = segs;
5508         tx_ring->buffer_info[i].bytecount = bytecount;
5509         tx_ring->buffer_info[first].next_to_watch = i;
5510
5511         return count;
5512
5513 dma_error:
5514         dev_err(&pdev->dev, "Tx DMA map failed\n");
5515         buffer_info->dma = 0;
5516         if (count)
5517                 count--;
5518
5519         while (count--) {
5520                 if (i == 0)
5521                         i += tx_ring->count;
5522                 i--;
5523                 buffer_info = &tx_ring->buffer_info[i];
5524                 e1000_put_txbuf(tx_ring, buffer_info);
5525         }
5526
5527         return 0;
5528 }
5529
5530 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5531 {
5532         struct e1000_adapter *adapter = tx_ring->adapter;
5533         struct e1000_tx_desc *tx_desc = NULL;
5534         struct e1000_buffer *buffer_info;
5535         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5536         unsigned int i;
5537
5538         if (tx_flags & E1000_TX_FLAGS_TSO) {
5539                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5540                     E1000_TXD_CMD_TSE;
5541                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5542
5543                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5544                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5545         }
5546
5547         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5548                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5549                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5550         }
5551
5552         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5553                 txd_lower |= E1000_TXD_CMD_VLE;
5554                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5555         }
5556
5557         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5558                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5559
5560         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5561                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5562                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5563         }
5564
5565         i = tx_ring->next_to_use;
5566
5567         do {
5568                 buffer_info = &tx_ring->buffer_info[i];
5569                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5570                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5571                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5572                                                   buffer_info->length);
5573                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5574
5575                 i++;
5576                 if (i == tx_ring->count)
5577                         i = 0;
5578         } while (--count > 0);
5579
5580         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5581
5582         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5583         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5584                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5585
5586         /* Force memory writes to complete before letting h/w
5587          * know there are new descriptors to fetch.  (Only
5588          * applicable for weak-ordered memory model archs,
5589          * such as IA-64).
5590          */
5591         wmb();
5592
5593         tx_ring->next_to_use = i;
5594 }
5595
5596 #define MINIMUM_DHCP_PACKET_SIZE 282
5597 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5598                                     struct sk_buff *skb)
5599 {
5600         struct e1000_hw *hw = &adapter->hw;
5601         u16 length, offset;
5602
5603         if (skb_vlan_tag_present(skb) &&
5604             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5605               (adapter->hw.mng_cookie.status &
5606                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5607                 return 0;
5608
5609         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5610                 return 0;
5611
5612         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5613                 return 0;
5614
5615         {
5616                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5617                 struct udphdr *udp;
5618
5619                 if (ip->protocol != IPPROTO_UDP)
5620                         return 0;
5621
5622                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5623                 if (ntohs(udp->dest) != 67)
5624                         return 0;
5625
5626                 offset = (u8 *)udp + 8 - skb->data;
5627                 length = skb->len - offset;
5628                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5629         }
5630
5631         return 0;
5632 }
5633
5634 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5635 {
5636         struct e1000_adapter *adapter = tx_ring->adapter;
5637
5638         netif_stop_queue(adapter->netdev);
5639         /* Herbert's original patch had:
5640          *  smp_mb__after_netif_stop_queue();
5641          * but since that doesn't exist yet, just open code it.
5642          */
5643         smp_mb();
5644
5645         /* We need to check again in a case another CPU has just
5646          * made room available.
5647          */
5648         if (e1000_desc_unused(tx_ring) < size)
5649                 return -EBUSY;
5650
5651         /* A reprieve! */
5652         netif_start_queue(adapter->netdev);
5653         ++adapter->restart_queue;
5654         return 0;
5655 }
5656
5657 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5658 {
5659         BUG_ON(size > tx_ring->count);
5660
5661         if (e1000_desc_unused(tx_ring) >= size)
5662                 return 0;
5663         return __e1000_maybe_stop_tx(tx_ring, size);
5664 }
5665
5666 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5667                                     struct net_device *netdev)
5668 {
5669         struct e1000_adapter *adapter = netdev_priv(netdev);
5670         struct e1000_ring *tx_ring = adapter->tx_ring;
5671         unsigned int first;
5672         unsigned int tx_flags = 0;
5673         unsigned int len = skb_headlen(skb);
5674         unsigned int nr_frags;
5675         unsigned int mss;
5676         int count = 0;
5677         int tso;
5678         unsigned int f;
5679         __be16 protocol = vlan_get_protocol(skb);
5680
5681         if (test_bit(__E1000_DOWN, &adapter->state)) {
5682                 dev_kfree_skb_any(skb);
5683                 return NETDEV_TX_OK;
5684         }
5685
5686         if (skb->len <= 0) {
5687                 dev_kfree_skb_any(skb);
5688                 return NETDEV_TX_OK;
5689         }
5690
5691         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5692          * pad skb in order to meet this minimum size requirement
5693          */
5694         if (skb_put_padto(skb, 17))
5695                 return NETDEV_TX_OK;
5696
5697         mss = skb_shinfo(skb)->gso_size;
5698         if (mss) {
5699                 u8 hdr_len;
5700
5701                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5702                  * points to just header, pull a few bytes of payload from
5703                  * frags into skb->data
5704                  */
5705                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5706                 /* we do this workaround for ES2LAN, but it is un-necessary,
5707                  * avoiding it could save a lot of cycles
5708                  */
5709                 if (skb->data_len && (hdr_len == len)) {
5710                         unsigned int pull_size;
5711
5712                         pull_size = min_t(unsigned int, 4, skb->data_len);
5713                         if (!__pskb_pull_tail(skb, pull_size)) {
5714                                 e_err("__pskb_pull_tail failed.\n");
5715                                 dev_kfree_skb_any(skb);
5716                                 return NETDEV_TX_OK;
5717                         }
5718                         len = skb_headlen(skb);
5719                 }
5720         }
5721
5722         /* reserve a descriptor for the offload context */
5723         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5724                 count++;
5725         count++;
5726
5727         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5728
5729         nr_frags = skb_shinfo(skb)->nr_frags;
5730         for (f = 0; f < nr_frags; f++)
5731                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5732                                       adapter->tx_fifo_limit);
5733
5734         if (adapter->hw.mac.tx_pkt_filtering)
5735                 e1000_transfer_dhcp_info(adapter, skb);
5736
5737         /* need: count + 2 desc gap to keep tail from touching
5738          * head, otherwise try next time
5739          */
5740         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5741                 return NETDEV_TX_BUSY;
5742
5743         if (skb_vlan_tag_present(skb)) {
5744                 tx_flags |= E1000_TX_FLAGS_VLAN;
5745                 tx_flags |= (skb_vlan_tag_get(skb) <<
5746                              E1000_TX_FLAGS_VLAN_SHIFT);
5747         }
5748
5749         first = tx_ring->next_to_use;
5750
5751         tso = e1000_tso(tx_ring, skb, protocol);
5752         if (tso < 0) {
5753                 dev_kfree_skb_any(skb);
5754                 return NETDEV_TX_OK;
5755         }
5756
5757         if (tso)
5758                 tx_flags |= E1000_TX_FLAGS_TSO;
5759         else if (e1000_tx_csum(tx_ring, skb, protocol))
5760                 tx_flags |= E1000_TX_FLAGS_CSUM;
5761
5762         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5763          * 82571 hardware supports TSO capabilities for IPv6 as well...
5764          * no longer assume, we must.
5765          */
5766         if (protocol == htons(ETH_P_IP))
5767                 tx_flags |= E1000_TX_FLAGS_IPV4;
5768
5769         if (unlikely(skb->no_fcs))
5770                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5771
5772         /* if count is 0 then mapping error has occurred */
5773         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5774                              nr_frags);
5775         if (count) {
5776                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5777                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5778                     !adapter->tx_hwtstamp_skb) {
5779                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5780                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5781                         adapter->tx_hwtstamp_skb = skb_get(skb);
5782                         adapter->tx_hwtstamp_start = jiffies;
5783                         schedule_work(&adapter->tx_hwtstamp_work);
5784                 } else {
5785                         skb_tx_timestamp(skb);
5786                 }
5787
5788                 netdev_sent_queue(netdev, skb->len);
5789                 e1000_tx_queue(tx_ring, tx_flags, count);
5790                 /* Make sure there is space in the ring for the next send. */
5791                 e1000_maybe_stop_tx(tx_ring,
5792                                     (MAX_SKB_FRAGS *
5793                                      DIV_ROUND_UP(PAGE_SIZE,
5794                                                   adapter->tx_fifo_limit) + 2));
5795
5796                 if (!skb->xmit_more ||
5797                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5798                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5799                                 e1000e_update_tdt_wa(tx_ring,
5800                                                      tx_ring->next_to_use);
5801                         else
5802                                 writel(tx_ring->next_to_use, tx_ring->tail);
5803
5804                         /* we need this if more than one processor can write
5805                          * to our tail at a time, it synchronizes IO on
5806                          *IA64/Altix systems
5807                          */
5808                         mmiowb();
5809                 }
5810         } else {
5811                 dev_kfree_skb_any(skb);
5812                 tx_ring->buffer_info[first].time_stamp = 0;
5813                 tx_ring->next_to_use = first;
5814         }
5815
5816         return NETDEV_TX_OK;
5817 }
5818
5819 /**
5820  * e1000_tx_timeout - Respond to a Tx Hang
5821  * @netdev: network interface device structure
5822  **/
5823 static void e1000_tx_timeout(struct net_device *netdev)
5824 {
5825         struct e1000_adapter *adapter = netdev_priv(netdev);
5826
5827         /* Do the reset outside of interrupt context */
5828         adapter->tx_timeout_count++;
5829         schedule_work(&adapter->reset_task);
5830 }
5831
5832 static void e1000_reset_task(struct work_struct *work)
5833 {
5834         struct e1000_adapter *adapter;
5835         adapter = container_of(work, struct e1000_adapter, reset_task);
5836
5837         /* don't run the task if already down */
5838         if (test_bit(__E1000_DOWN, &adapter->state))
5839                 return;
5840
5841         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5842                 e1000e_dump(adapter);
5843                 e_err("Reset adapter unexpectedly\n");
5844         }
5845         e1000e_reinit_locked(adapter);
5846 }
5847
5848 /**
5849  * e1000_get_stats64 - Get System Network Statistics
5850  * @netdev: network interface device structure
5851  * @stats: rtnl_link_stats64 pointer
5852  *
5853  * Returns the address of the device statistics structure.
5854  **/
5855 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5856                                              struct rtnl_link_stats64 *stats)
5857 {
5858         struct e1000_adapter *adapter = netdev_priv(netdev);
5859
5860         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5861         spin_lock(&adapter->stats64_lock);
5862         e1000e_update_stats(adapter);
5863         /* Fill out the OS statistics structure */
5864         stats->rx_bytes = adapter->stats.gorc;
5865         stats->rx_packets = adapter->stats.gprc;
5866         stats->tx_bytes = adapter->stats.gotc;
5867         stats->tx_packets = adapter->stats.gptc;
5868         stats->multicast = adapter->stats.mprc;
5869         stats->collisions = adapter->stats.colc;
5870
5871         /* Rx Errors */
5872
5873         /* RLEC on some newer hardware can be incorrect so build
5874          * our own version based on RUC and ROC
5875          */
5876         stats->rx_errors = adapter->stats.rxerrc +
5877             adapter->stats.crcerrs + adapter->stats.algnerrc +
5878             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5879         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5880         stats->rx_crc_errors = adapter->stats.crcerrs;
5881         stats->rx_frame_errors = adapter->stats.algnerrc;
5882         stats->rx_missed_errors = adapter->stats.mpc;
5883
5884         /* Tx Errors */
5885         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5886         stats->tx_aborted_errors = adapter->stats.ecol;
5887         stats->tx_window_errors = adapter->stats.latecol;
5888         stats->tx_carrier_errors = adapter->stats.tncrs;
5889
5890         /* Tx Dropped needs to be maintained elsewhere */
5891
5892         spin_unlock(&adapter->stats64_lock);
5893         return stats;
5894 }
5895
5896 /**
5897  * e1000_change_mtu - Change the Maximum Transfer Unit
5898  * @netdev: network interface device structure
5899  * @new_mtu: new value for maximum frame size
5900  *
5901  * Returns 0 on success, negative on failure
5902  **/
5903 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5904 {
5905         struct e1000_adapter *adapter = netdev_priv(netdev);
5906         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5907
5908         /* Jumbo frame support */
5909         if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5910             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5911                 e_err("Jumbo Frames not supported.\n");
5912                 return -EINVAL;
5913         }
5914
5915         /* Supported frame sizes */
5916         if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5917             (max_frame > adapter->max_hw_frame_size)) {
5918                 e_err("Unsupported MTU setting\n");
5919                 return -EINVAL;
5920         }
5921
5922         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5923         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5924             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5925             (new_mtu > ETH_DATA_LEN)) {
5926                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5927                 return -EINVAL;
5928         }
5929
5930         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5931                 usleep_range(1000, 2000);
5932         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5933         adapter->max_frame_size = max_frame;
5934         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5935         netdev->mtu = new_mtu;
5936
5937         pm_runtime_get_sync(netdev->dev.parent);
5938
5939         if (netif_running(netdev))
5940                 e1000e_down(adapter, true);
5941
5942         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5943          * means we reserve 2 more, this pushes us to allocate from the next
5944          * larger slab size.
5945          * i.e. RXBUFFER_2048 --> size-4096 slab
5946          * However with the new *_jumbo_rx* routines, jumbo receives will use
5947          * fragmented skbs
5948          */
5949
5950         if (max_frame <= 2048)
5951                 adapter->rx_buffer_len = 2048;
5952         else
5953                 adapter->rx_buffer_len = 4096;
5954
5955         /* adjust allocation if LPE protects us, and we aren't using SBP */
5956         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5957                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5958
5959         if (netif_running(netdev))
5960                 e1000e_up(adapter);
5961         else
5962                 e1000e_reset(adapter);
5963
5964         pm_runtime_put_sync(netdev->dev.parent);
5965
5966         clear_bit(__E1000_RESETTING, &adapter->state);
5967
5968         return 0;
5969 }
5970
5971 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5972                            int cmd)
5973 {
5974         struct e1000_adapter *adapter = netdev_priv(netdev);
5975         struct mii_ioctl_data *data = if_mii(ifr);
5976
5977         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5978                 return -EOPNOTSUPP;
5979
5980         switch (cmd) {
5981         case SIOCGMIIPHY:
5982                 data->phy_id = adapter->hw.phy.addr;
5983                 break;
5984         case SIOCGMIIREG:
5985                 e1000_phy_read_status(adapter);
5986
5987                 switch (data->reg_num & 0x1F) {
5988                 case MII_BMCR:
5989                         data->val_out = adapter->phy_regs.bmcr;
5990                         break;
5991                 case MII_BMSR:
5992                         data->val_out = adapter->phy_regs.bmsr;
5993                         break;
5994                 case MII_PHYSID1:
5995                         data->val_out = (adapter->hw.phy.id >> 16);
5996                         break;
5997                 case MII_PHYSID2:
5998                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5999                         break;
6000                 case MII_ADVERTISE:
6001                         data->val_out = adapter->phy_regs.advertise;
6002                         break;
6003                 case MII_LPA:
6004                         data->val_out = adapter->phy_regs.lpa;
6005                         break;
6006                 case MII_EXPANSION:
6007                         data->val_out = adapter->phy_regs.expansion;
6008                         break;
6009                 case MII_CTRL1000:
6010                         data->val_out = adapter->phy_regs.ctrl1000;
6011                         break;
6012                 case MII_STAT1000:
6013                         data->val_out = adapter->phy_regs.stat1000;
6014                         break;
6015                 case MII_ESTATUS:
6016                         data->val_out = adapter->phy_regs.estatus;
6017                         break;
6018                 default:
6019                         return -EIO;
6020                 }
6021                 break;
6022         case SIOCSMIIREG:
6023         default:
6024                 return -EOPNOTSUPP;
6025         }
6026         return 0;
6027 }
6028
6029 /**
6030  * e1000e_hwtstamp_ioctl - control hardware time stamping
6031  * @netdev: network interface device structure
6032  * @ifreq: interface request
6033  *
6034  * Outgoing time stamping can be enabled and disabled. Play nice and
6035  * disable it when requested, although it shouldn't cause any overhead
6036  * when no packet needs it. At most one packet in the queue may be
6037  * marked for time stamping, otherwise it would be impossible to tell
6038  * for sure to which packet the hardware time stamp belongs.
6039  *
6040  * Incoming time stamping has to be configured via the hardware filters.
6041  * Not all combinations are supported, in particular event type has to be
6042  * specified. Matching the kind of event packet is not supported, with the
6043  * exception of "all V2 events regardless of level 2 or 4".
6044  **/
6045 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6046 {
6047         struct e1000_adapter *adapter = netdev_priv(netdev);
6048         struct hwtstamp_config config;
6049         int ret_val;
6050
6051         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6052                 return -EFAULT;
6053
6054         ret_val = e1000e_config_hwtstamp(adapter, &config);
6055         if (ret_val)
6056                 return ret_val;
6057
6058         switch (config.rx_filter) {
6059         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6060         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6061         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6062         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6063         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6064         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6065                 /* With V2 type filters which specify a Sync or Delay Request,
6066                  * Path Delay Request/Response messages are also time stamped
6067                  * by hardware so notify the caller the requested packets plus
6068                  * some others are time stamped.
6069                  */
6070                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6071                 break;
6072         default:
6073                 break;
6074         }
6075
6076         return copy_to_user(ifr->ifr_data, &config,
6077                             sizeof(config)) ? -EFAULT : 0;
6078 }
6079
6080 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6081 {
6082         struct e1000_adapter *adapter = netdev_priv(netdev);
6083
6084         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6085                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6086 }
6087
6088 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6089 {
6090         switch (cmd) {
6091         case SIOCGMIIPHY:
6092         case SIOCGMIIREG:
6093         case SIOCSMIIREG:
6094                 return e1000_mii_ioctl(netdev, ifr, cmd);
6095         case SIOCSHWTSTAMP:
6096                 return e1000e_hwtstamp_set(netdev, ifr);
6097         case SIOCGHWTSTAMP:
6098                 return e1000e_hwtstamp_get(netdev, ifr);
6099         default:
6100                 return -EOPNOTSUPP;
6101         }
6102 }
6103
6104 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6105 {
6106         struct e1000_hw *hw = &adapter->hw;
6107         u32 i, mac_reg, wuc;
6108         u16 phy_reg, wuc_enable;
6109         int retval;
6110
6111         /* copy MAC RARs to PHY RARs */
6112         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6113
6114         retval = hw->phy.ops.acquire(hw);
6115         if (retval) {
6116                 e_err("Could not acquire PHY\n");
6117                 return retval;
6118         }
6119
6120         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6121         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6122         if (retval)
6123                 goto release;
6124
6125         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6126         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6127                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6128                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6129                                            (u16)(mac_reg & 0xFFFF));
6130                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6131                                            (u16)((mac_reg >> 16) & 0xFFFF));
6132         }
6133
6134         /* configure PHY Rx Control register */
6135         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6136         mac_reg = er32(RCTL);
6137         if (mac_reg & E1000_RCTL_UPE)
6138                 phy_reg |= BM_RCTL_UPE;
6139         if (mac_reg & E1000_RCTL_MPE)
6140                 phy_reg |= BM_RCTL_MPE;
6141         phy_reg &= ~(BM_RCTL_MO_MASK);
6142         if (mac_reg & E1000_RCTL_MO_3)
6143                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6144                             << BM_RCTL_MO_SHIFT);
6145         if (mac_reg & E1000_RCTL_BAM)
6146                 phy_reg |= BM_RCTL_BAM;
6147         if (mac_reg & E1000_RCTL_PMCF)
6148                 phy_reg |= BM_RCTL_PMCF;
6149         mac_reg = er32(CTRL);
6150         if (mac_reg & E1000_CTRL_RFCE)
6151                 phy_reg |= BM_RCTL_RFCE;
6152         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6153
6154         wuc = E1000_WUC_PME_EN;
6155         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6156                 wuc |= E1000_WUC_APME;
6157
6158         /* enable PHY wakeup in MAC register */
6159         ew32(WUFC, wufc);
6160         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6161                    E1000_WUC_PME_STATUS | wuc));
6162
6163         /* configure and enable PHY wakeup in PHY registers */
6164         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6165         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6166
6167         /* activate PHY wakeup */
6168         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6169         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6170         if (retval)
6171                 e_err("Could not set PHY Host Wakeup bit\n");
6172 release:
6173         hw->phy.ops.release(hw);
6174
6175         return retval;
6176 }
6177
6178 static void e1000e_flush_lpic(struct pci_dev *pdev)
6179 {
6180         struct net_device *netdev = pci_get_drvdata(pdev);
6181         struct e1000_adapter *adapter = netdev_priv(netdev);
6182         struct e1000_hw *hw = &adapter->hw;
6183         u32 ret_val;
6184
6185         pm_runtime_get_sync(netdev->dev.parent);
6186
6187         ret_val = hw->phy.ops.acquire(hw);
6188         if (ret_val)
6189                 goto fl_out;
6190
6191         pr_info("EEE TX LPI TIMER: %08X\n",
6192                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6193
6194         hw->phy.ops.release(hw);
6195
6196 fl_out:
6197         pm_runtime_put_sync(netdev->dev.parent);
6198 }
6199
6200 static int e1000e_pm_freeze(struct device *dev)
6201 {
6202         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6203         struct e1000_adapter *adapter = netdev_priv(netdev);
6204
6205         netif_device_detach(netdev);
6206
6207         if (netif_running(netdev)) {
6208                 int count = E1000_CHECK_RESET_COUNT;
6209
6210                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6211                         usleep_range(10000, 20000);
6212
6213                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6214
6215                 /* Quiesce the device without resetting the hardware */
6216                 e1000e_down(adapter, false);
6217                 e1000_free_irq(adapter);
6218         }
6219         e1000e_reset_interrupt_capability(adapter);
6220
6221         /* Allow time for pending master requests to run */
6222         e1000e_disable_pcie_master(&adapter->hw);
6223
6224         return 0;
6225 }
6226
6227 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6228 {
6229         struct net_device *netdev = pci_get_drvdata(pdev);
6230         struct e1000_adapter *adapter = netdev_priv(netdev);
6231         struct e1000_hw *hw = &adapter->hw;
6232         u32 ctrl, ctrl_ext, rctl, status;
6233         /* Runtime suspend should only enable wakeup for link changes */
6234         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6235         int retval = 0;
6236
6237         status = er32(STATUS);
6238         if (status & E1000_STATUS_LU)
6239                 wufc &= ~E1000_WUFC_LNKC;
6240
6241         if (wufc) {
6242                 e1000_setup_rctl(adapter);
6243                 e1000e_set_rx_mode(netdev);
6244
6245                 /* turn on all-multi mode if wake on multicast is enabled */
6246                 if (wufc & E1000_WUFC_MC) {
6247                         rctl = er32(RCTL);
6248                         rctl |= E1000_RCTL_MPE;
6249                         ew32(RCTL, rctl);
6250                 }
6251
6252                 ctrl = er32(CTRL);
6253                 ctrl |= E1000_CTRL_ADVD3WUC;
6254                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6255                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6256                 ew32(CTRL, ctrl);
6257
6258                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6259                     adapter->hw.phy.media_type ==
6260                     e1000_media_type_internal_serdes) {
6261                         /* keep the laser running in D3 */
6262                         ctrl_ext = er32(CTRL_EXT);
6263                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6264                         ew32(CTRL_EXT, ctrl_ext);
6265                 }
6266
6267                 if (!runtime)
6268                         e1000e_power_up_phy(adapter);
6269
6270                 if (adapter->flags & FLAG_IS_ICH)
6271                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6272
6273                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6274                         /* enable wakeup by the PHY */
6275                         retval = e1000_init_phy_wakeup(adapter, wufc);
6276                         if (retval)
6277                                 return retval;
6278                 } else {
6279                         /* enable wakeup by the MAC */
6280                         ew32(WUFC, wufc);
6281                         ew32(WUC, E1000_WUC_PME_EN);
6282                 }
6283         } else {
6284                 ew32(WUC, 0);
6285                 ew32(WUFC, 0);
6286
6287                 e1000_power_down_phy(adapter);
6288         }
6289
6290         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6291                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6292         } else if ((hw->mac.type == e1000_pch_lpt) ||
6293                    (hw->mac.type == e1000_pch_spt)) {
6294                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6295                         /* ULP does not support wake from unicast, multicast
6296                          * or broadcast.
6297                          */
6298                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6299
6300                 if (retval)
6301                         return retval;
6302         }
6303
6304
6305         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6306          * would have already happened in close and is redundant.
6307          */
6308         e1000e_release_hw_control(adapter);
6309
6310         pci_clear_master(pdev);
6311
6312         /* The pci-e switch on some quad port adapters will report a
6313          * correctable error when the MAC transitions from D0 to D3.  To
6314          * prevent this we need to mask off the correctable errors on the
6315          * downstream port of the pci-e switch.
6316          *
6317          * We don't have the associated upstream bridge while assigning
6318          * the PCI device into guest. For example, the KVM on power is
6319          * one of the cases.
6320          */
6321         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6322                 struct pci_dev *us_dev = pdev->bus->self;
6323                 u16 devctl;
6324
6325                 if (!us_dev)
6326                         return 0;
6327
6328                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6329                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6330                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6331
6332                 pci_save_state(pdev);
6333                 pci_prepare_to_sleep(pdev);
6334
6335                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6336         }
6337
6338         return 0;
6339 }
6340
6341 /**
6342  * e1000e_disable_aspm - Disable ASPM states
6343  * @pdev: pointer to PCI device struct
6344  * @state: bit-mask of ASPM states to disable
6345  *
6346  * Some devices *must* have certain ASPM states disabled per hardware errata.
6347  **/
6348 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6349 {
6350         struct pci_dev *parent = pdev->bus->self;
6351         u16 aspm_dis_mask = 0;
6352         u16 pdev_aspmc, parent_aspmc;
6353
6354         switch (state) {
6355         case PCIE_LINK_STATE_L0S:
6356         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6357                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6358                 /* fall-through - can't have L1 without L0s */
6359         case PCIE_LINK_STATE_L1:
6360                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6361                 break;
6362         default:
6363                 return;
6364         }
6365
6366         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6367         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6368
6369         if (parent) {
6370                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6371                                           &parent_aspmc);
6372                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6373         }
6374
6375         /* Nothing to do if the ASPM states to be disabled already are */
6376         if (!(pdev_aspmc & aspm_dis_mask) &&
6377             (!parent || !(parent_aspmc & aspm_dis_mask)))
6378                 return;
6379
6380         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6381                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6382                  "L0s" : "",
6383                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6384                  "L1" : "");
6385
6386 #ifdef CONFIG_PCIEASPM
6387         pci_disable_link_state_locked(pdev, state);
6388
6389         /* Double-check ASPM control.  If not disabled by the above, the
6390          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6391          * not enabled); override by writing PCI config space directly.
6392          */
6393         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6394         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6395
6396         if (!(aspm_dis_mask & pdev_aspmc))
6397                 return;
6398 #endif
6399
6400         /* Both device and parent should have the same ASPM setting.
6401          * Disable ASPM in downstream component first and then upstream.
6402          */
6403         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6404
6405         if (parent)
6406                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6407                                            aspm_dis_mask);
6408 }
6409
6410 #ifdef CONFIG_PM
6411 static int __e1000_resume(struct pci_dev *pdev)
6412 {
6413         struct net_device *netdev = pci_get_drvdata(pdev);
6414         struct e1000_adapter *adapter = netdev_priv(netdev);
6415         struct e1000_hw *hw = &adapter->hw;
6416         u16 aspm_disable_flag = 0;
6417
6418         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6419                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6420         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6421                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6422         if (aspm_disable_flag)
6423                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6424
6425         pci_set_master(pdev);
6426
6427         if (hw->mac.type >= e1000_pch2lan)
6428                 e1000_resume_workarounds_pchlan(&adapter->hw);
6429
6430         e1000e_power_up_phy(adapter);
6431
6432         /* report the system wakeup cause from S3/S4 */
6433         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6434                 u16 phy_data;
6435
6436                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6437                 if (phy_data) {
6438                         e_info("PHY Wakeup cause - %s\n",
6439                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6440                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6441                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6442                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6443                                phy_data & E1000_WUS_LNKC ?
6444                                "Link Status Change" : "other");
6445                 }
6446                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6447         } else {
6448                 u32 wus = er32(WUS);
6449
6450                 if (wus) {
6451                         e_info("MAC Wakeup cause - %s\n",
6452                                wus & E1000_WUS_EX ? "Unicast Packet" :
6453                                wus & E1000_WUS_MC ? "Multicast Packet" :
6454                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6455                                wus & E1000_WUS_MAG ? "Magic Packet" :
6456                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6457                                "other");
6458                 }
6459                 ew32(WUS, ~0);
6460         }
6461
6462         e1000e_reset(adapter);
6463
6464         e1000_init_manageability_pt(adapter);
6465
6466         /* If the controller has AMT, do not set DRV_LOAD until the interface
6467          * is up.  For all other cases, let the f/w know that the h/w is now
6468          * under the control of the driver.
6469          */
6470         if (!(adapter->flags & FLAG_HAS_AMT))
6471                 e1000e_get_hw_control(adapter);
6472
6473         return 0;
6474 }
6475
6476 #ifdef CONFIG_PM_SLEEP
6477 static int e1000e_pm_thaw(struct device *dev)
6478 {
6479         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6480         struct e1000_adapter *adapter = netdev_priv(netdev);
6481
6482         e1000e_set_interrupt_capability(adapter);
6483         if (netif_running(netdev)) {
6484                 u32 err = e1000_request_irq(adapter);
6485
6486                 if (err)
6487                         return err;
6488
6489                 e1000e_up(adapter);
6490         }
6491
6492         netif_device_attach(netdev);
6493
6494         return 0;
6495 }
6496
6497 static int e1000e_pm_suspend(struct device *dev)
6498 {
6499         struct pci_dev *pdev = to_pci_dev(dev);
6500
6501         e1000e_flush_lpic(pdev);
6502
6503         e1000e_pm_freeze(dev);
6504
6505         return __e1000_shutdown(pdev, false);
6506 }
6507
6508 static int e1000e_pm_resume(struct device *dev)
6509 {
6510         struct pci_dev *pdev = to_pci_dev(dev);
6511         int rc;
6512
6513         rc = __e1000_resume(pdev);
6514         if (rc)
6515                 return rc;
6516
6517         return e1000e_pm_thaw(dev);
6518 }
6519 #endif /* CONFIG_PM_SLEEP */
6520
6521 static int e1000e_pm_runtime_idle(struct device *dev)
6522 {
6523         struct pci_dev *pdev = to_pci_dev(dev);
6524         struct net_device *netdev = pci_get_drvdata(pdev);
6525         struct e1000_adapter *adapter = netdev_priv(netdev);
6526         u16 eee_lp;
6527
6528         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6529
6530         if (!e1000e_has_link(adapter)) {
6531                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6532                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6533         }
6534
6535         return -EBUSY;
6536 }
6537
6538 static int e1000e_pm_runtime_resume(struct device *dev)
6539 {
6540         struct pci_dev *pdev = to_pci_dev(dev);
6541         struct net_device *netdev = pci_get_drvdata(pdev);
6542         struct e1000_adapter *adapter = netdev_priv(netdev);
6543         int rc;
6544
6545         rc = __e1000_resume(pdev);
6546         if (rc)
6547                 return rc;
6548
6549         if (netdev->flags & IFF_UP)
6550                 rc = e1000e_up(adapter);
6551
6552         return rc;
6553 }
6554
6555 static int e1000e_pm_runtime_suspend(struct device *dev)
6556 {
6557         struct pci_dev *pdev = to_pci_dev(dev);
6558         struct net_device *netdev = pci_get_drvdata(pdev);
6559         struct e1000_adapter *adapter = netdev_priv(netdev);
6560
6561         if (netdev->flags & IFF_UP) {
6562                 int count = E1000_CHECK_RESET_COUNT;
6563
6564                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6565                         usleep_range(10000, 20000);
6566
6567                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6568
6569                 /* Down the device without resetting the hardware */
6570                 e1000e_down(adapter, false);
6571         }
6572
6573         if (__e1000_shutdown(pdev, true)) {
6574                 e1000e_pm_runtime_resume(dev);
6575                 return -EBUSY;
6576         }
6577
6578         return 0;
6579 }
6580 #endif /* CONFIG_PM */
6581
6582 static void e1000_shutdown(struct pci_dev *pdev)
6583 {
6584         e1000e_flush_lpic(pdev);
6585
6586         e1000e_pm_freeze(&pdev->dev);
6587
6588         __e1000_shutdown(pdev, false);
6589 }
6590
6591 #ifdef CONFIG_NET_POLL_CONTROLLER
6592
6593 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6594 {
6595         struct net_device *netdev = data;
6596         struct e1000_adapter *adapter = netdev_priv(netdev);
6597
6598         if (adapter->msix_entries) {
6599                 int vector, msix_irq;
6600
6601                 vector = 0;
6602                 msix_irq = adapter->msix_entries[vector].vector;
6603                 disable_irq(msix_irq);
6604                 e1000_intr_msix_rx(msix_irq, netdev);
6605                 enable_irq(msix_irq);
6606
6607                 vector++;
6608                 msix_irq = adapter->msix_entries[vector].vector;
6609                 disable_irq(msix_irq);
6610                 e1000_intr_msix_tx(msix_irq, netdev);
6611                 enable_irq(msix_irq);
6612
6613                 vector++;
6614                 msix_irq = adapter->msix_entries[vector].vector;
6615                 disable_irq(msix_irq);
6616                 e1000_msix_other(msix_irq, netdev);
6617                 enable_irq(msix_irq);
6618         }
6619
6620         return IRQ_HANDLED;
6621 }
6622
6623 /**
6624  * e1000_netpoll
6625  * @netdev: network interface device structure
6626  *
6627  * Polling 'interrupt' - used by things like netconsole to send skbs
6628  * without having to re-enable interrupts. It's not called while
6629  * the interrupt routine is executing.
6630  */
6631 static void e1000_netpoll(struct net_device *netdev)
6632 {
6633         struct e1000_adapter *adapter = netdev_priv(netdev);
6634
6635         switch (adapter->int_mode) {
6636         case E1000E_INT_MODE_MSIX:
6637                 e1000_intr_msix(adapter->pdev->irq, netdev);
6638                 break;
6639         case E1000E_INT_MODE_MSI:
6640                 disable_irq(adapter->pdev->irq);
6641                 e1000_intr_msi(adapter->pdev->irq, netdev);
6642                 enable_irq(adapter->pdev->irq);
6643                 break;
6644         default:                /* E1000E_INT_MODE_LEGACY */
6645                 disable_irq(adapter->pdev->irq);
6646                 e1000_intr(adapter->pdev->irq, netdev);
6647                 enable_irq(adapter->pdev->irq);
6648                 break;
6649         }
6650 }
6651 #endif
6652
6653 /**
6654  * e1000_io_error_detected - called when PCI error is detected
6655  * @pdev: Pointer to PCI device
6656  * @state: The current pci connection state
6657  *
6658  * This function is called after a PCI bus error affecting
6659  * this device has been detected.
6660  */
6661 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6662                                                 pci_channel_state_t state)
6663 {
6664         struct net_device *netdev = pci_get_drvdata(pdev);
6665         struct e1000_adapter *adapter = netdev_priv(netdev);
6666
6667         netif_device_detach(netdev);
6668
6669         if (state == pci_channel_io_perm_failure)
6670                 return PCI_ERS_RESULT_DISCONNECT;
6671
6672         if (netif_running(netdev))
6673                 e1000e_down(adapter, true);
6674         pci_disable_device(pdev);
6675
6676         /* Request a slot slot reset. */
6677         return PCI_ERS_RESULT_NEED_RESET;
6678 }
6679
6680 /**
6681  * e1000_io_slot_reset - called after the pci bus has been reset.
6682  * @pdev: Pointer to PCI device
6683  *
6684  * Restart the card from scratch, as if from a cold-boot. Implementation
6685  * resembles the first-half of the e1000e_pm_resume routine.
6686  */
6687 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6688 {
6689         struct net_device *netdev = pci_get_drvdata(pdev);
6690         struct e1000_adapter *adapter = netdev_priv(netdev);
6691         struct e1000_hw *hw = &adapter->hw;
6692         u16 aspm_disable_flag = 0;
6693         int err;
6694         pci_ers_result_t result;
6695
6696         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6697                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6698         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6699                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6700         if (aspm_disable_flag)
6701                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6702
6703         err = pci_enable_device_mem(pdev);
6704         if (err) {
6705                 dev_err(&pdev->dev,
6706                         "Cannot re-enable PCI device after reset.\n");
6707                 result = PCI_ERS_RESULT_DISCONNECT;
6708         } else {
6709                 pdev->state_saved = true;
6710                 pci_restore_state(pdev);
6711                 pci_set_master(pdev);
6712
6713                 pci_enable_wake(pdev, PCI_D3hot, 0);
6714                 pci_enable_wake(pdev, PCI_D3cold, 0);
6715
6716                 e1000e_reset(adapter);
6717                 ew32(WUS, ~0);
6718                 result = PCI_ERS_RESULT_RECOVERED;
6719         }
6720
6721         pci_cleanup_aer_uncorrect_error_status(pdev);
6722
6723         return result;
6724 }
6725
6726 /**
6727  * e1000_io_resume - called when traffic can start flowing again.
6728  * @pdev: Pointer to PCI device
6729  *
6730  * This callback is called when the error recovery driver tells us that
6731  * its OK to resume normal operation. Implementation resembles the
6732  * second-half of the e1000e_pm_resume routine.
6733  */
6734 static void e1000_io_resume(struct pci_dev *pdev)
6735 {
6736         struct net_device *netdev = pci_get_drvdata(pdev);
6737         struct e1000_adapter *adapter = netdev_priv(netdev);
6738
6739         e1000_init_manageability_pt(adapter);
6740
6741         if (netif_running(netdev)) {
6742                 if (e1000e_up(adapter)) {
6743                         dev_err(&pdev->dev,
6744                                 "can't bring device back up after reset\n");
6745                         return;
6746                 }
6747         }
6748
6749         netif_device_attach(netdev);
6750
6751         /* If the controller has AMT, do not set DRV_LOAD until the interface
6752          * is up.  For all other cases, let the f/w know that the h/w is now
6753          * under the control of the driver.
6754          */
6755         if (!(adapter->flags & FLAG_HAS_AMT))
6756                 e1000e_get_hw_control(adapter);
6757 }
6758
6759 static void e1000_print_device_info(struct e1000_adapter *adapter)
6760 {
6761         struct e1000_hw *hw = &adapter->hw;
6762         struct net_device *netdev = adapter->netdev;
6763         u32 ret_val;
6764         u8 pba_str[E1000_PBANUM_LENGTH];
6765
6766         /* print bus type/speed/width info */
6767         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6768                /* bus width */
6769                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6770                 "Width x1"),
6771                /* MAC address */
6772                netdev->dev_addr);
6773         e_info("Intel(R) PRO/%s Network Connection\n",
6774                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6775         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6776                                                 E1000_PBANUM_LENGTH);
6777         if (ret_val)
6778                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6779         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6780                hw->mac.type, hw->phy.type, pba_str);
6781 }
6782
6783 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6784 {
6785         struct e1000_hw *hw = &adapter->hw;
6786         int ret_val;
6787         u16 buf = 0;
6788
6789         if (hw->mac.type != e1000_82573)
6790                 return;
6791
6792         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6793         le16_to_cpus(&buf);
6794         if (!ret_val && (!(buf & (1 << 0)))) {
6795                 /* Deep Smart Power Down (DSPD) */
6796                 dev_warn(&adapter->pdev->dev,
6797                          "Warning: detected DSPD enabled in EEPROM\n");
6798         }
6799 }
6800
6801 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6802                                             netdev_features_t features)
6803 {
6804         struct e1000_adapter *adapter = netdev_priv(netdev);
6805         struct e1000_hw *hw = &adapter->hw;
6806
6807         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6808         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6809                 features &= ~NETIF_F_RXFCS;
6810
6811         return features;
6812 }
6813
6814 static int e1000_set_features(struct net_device *netdev,
6815                               netdev_features_t features)
6816 {
6817         struct e1000_adapter *adapter = netdev_priv(netdev);
6818         netdev_features_t changed = features ^ netdev->features;
6819
6820         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6821                 adapter->flags |= FLAG_TSO_FORCE;
6822
6823         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6824                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6825                          NETIF_F_RXALL)))
6826                 return 0;
6827
6828         if (changed & NETIF_F_RXFCS) {
6829                 if (features & NETIF_F_RXFCS) {
6830                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6831                 } else {
6832                         /* We need to take it back to defaults, which might mean
6833                          * stripping is still disabled at the adapter level.
6834                          */
6835                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6836                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6837                         else
6838                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6839                 }
6840         }
6841
6842         netdev->features = features;
6843
6844         if (netif_running(netdev))
6845                 e1000e_reinit_locked(adapter);
6846         else
6847                 e1000e_reset(adapter);
6848
6849         return 0;
6850 }
6851
6852 static const struct net_device_ops e1000e_netdev_ops = {
6853         .ndo_open               = e1000_open,
6854         .ndo_stop               = e1000_close,
6855         .ndo_start_xmit         = e1000_xmit_frame,
6856         .ndo_get_stats64        = e1000e_get_stats64,
6857         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6858         .ndo_set_mac_address    = e1000_set_mac,
6859         .ndo_change_mtu         = e1000_change_mtu,
6860         .ndo_do_ioctl           = e1000_ioctl,
6861         .ndo_tx_timeout         = e1000_tx_timeout,
6862         .ndo_validate_addr      = eth_validate_addr,
6863
6864         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6865         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6866 #ifdef CONFIG_NET_POLL_CONTROLLER
6867         .ndo_poll_controller    = e1000_netpoll,
6868 #endif
6869         .ndo_set_features = e1000_set_features,
6870         .ndo_fix_features = e1000_fix_features,
6871 };
6872
6873 /**
6874  * e1000_probe - Device Initialization Routine
6875  * @pdev: PCI device information struct
6876  * @ent: entry in e1000_pci_tbl
6877  *
6878  * Returns 0 on success, negative on failure
6879  *
6880  * e1000_probe initializes an adapter identified by a pci_dev structure.
6881  * The OS initialization, configuring of the adapter private structure,
6882  * and a hardware reset occur.
6883  **/
6884 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6885 {
6886         struct net_device *netdev;
6887         struct e1000_adapter *adapter;
6888         struct e1000_hw *hw;
6889         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6890         resource_size_t mmio_start, mmio_len;
6891         resource_size_t flash_start, flash_len;
6892         static int cards_found;
6893         u16 aspm_disable_flag = 0;
6894         int bars, i, err, pci_using_dac;
6895         u16 eeprom_data = 0;
6896         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6897         s32 rval = 0;
6898
6899         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6900                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6901         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6902                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6903         if (aspm_disable_flag)
6904                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6905
6906         err = pci_enable_device_mem(pdev);
6907         if (err)
6908                 return err;
6909
6910         pci_using_dac = 0;
6911         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6912         if (!err) {
6913                 pci_using_dac = 1;
6914         } else {
6915                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6916                 if (err) {
6917                         dev_err(&pdev->dev,
6918                                 "No usable DMA configuration, aborting\n");
6919                         goto err_dma;
6920                 }
6921         }
6922
6923         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6924         err = pci_request_selected_regions_exclusive(pdev, bars,
6925                                                      e1000e_driver_name);
6926         if (err)
6927                 goto err_pci_reg;
6928
6929         /* AER (Advanced Error Reporting) hooks */
6930         pci_enable_pcie_error_reporting(pdev);
6931
6932         pci_set_master(pdev);
6933         /* PCI config space info */
6934         err = pci_save_state(pdev);
6935         if (err)
6936                 goto err_alloc_etherdev;
6937
6938         err = -ENOMEM;
6939         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6940         if (!netdev)
6941                 goto err_alloc_etherdev;
6942
6943         SET_NETDEV_DEV(netdev, &pdev->dev);
6944
6945         netdev->irq = pdev->irq;
6946
6947         pci_set_drvdata(pdev, netdev);
6948         adapter = netdev_priv(netdev);
6949         hw = &adapter->hw;
6950         adapter->netdev = netdev;
6951         adapter->pdev = pdev;
6952         adapter->ei = ei;
6953         adapter->pba = ei->pba;
6954         adapter->flags = ei->flags;
6955         adapter->flags2 = ei->flags2;
6956         adapter->hw.adapter = adapter;
6957         adapter->hw.mac.type = ei->mac;
6958         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6959         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6960
6961         mmio_start = pci_resource_start(pdev, 0);
6962         mmio_len = pci_resource_len(pdev, 0);
6963
6964         err = -EIO;
6965         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6966         if (!adapter->hw.hw_addr)
6967                 goto err_ioremap;
6968
6969         if ((adapter->flags & FLAG_HAS_FLASH) &&
6970             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
6971             (hw->mac.type < e1000_pch_spt)) {
6972                 flash_start = pci_resource_start(pdev, 1);
6973                 flash_len = pci_resource_len(pdev, 1);
6974                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6975                 if (!adapter->hw.flash_address)
6976                         goto err_flashmap;
6977         }
6978
6979         /* Set default EEE advertisement */
6980         if (adapter->flags2 & FLAG2_HAS_EEE)
6981                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6982
6983         /* construct the net_device struct */
6984         netdev->netdev_ops = &e1000e_netdev_ops;
6985         e1000e_set_ethtool_ops(netdev);
6986         netdev->watchdog_timeo = 5 * HZ;
6987         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6988         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6989
6990         netdev->mem_start = mmio_start;
6991         netdev->mem_end = mmio_start + mmio_len;
6992
6993         adapter->bd_number = cards_found++;
6994
6995         e1000e_check_options(adapter);
6996
6997         /* setup adapter struct */
6998         err = e1000_sw_init(adapter);
6999         if (err)
7000                 goto err_sw_init;
7001
7002         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7003         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7004         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7005
7006         err = ei->get_variants(adapter);
7007         if (err)
7008                 goto err_hw_init;
7009
7010         if ((adapter->flags & FLAG_IS_ICH) &&
7011             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7012             (hw->mac.type < e1000_pch_spt))
7013                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7014
7015         hw->mac.ops.get_bus_info(&adapter->hw);
7016
7017         adapter->hw.phy.autoneg_wait_to_complete = 0;
7018
7019         /* Copper options */
7020         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7021                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7022                 adapter->hw.phy.disable_polarity_correction = 0;
7023                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7024         }
7025
7026         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7027                 dev_info(&pdev->dev,
7028                          "PHY reset is blocked due to SOL/IDER session.\n");
7029
7030         /* Set initial default active device features */
7031         netdev->features = (NETIF_F_SG |
7032                             NETIF_F_HW_VLAN_CTAG_RX |
7033                             NETIF_F_HW_VLAN_CTAG_TX |
7034                             NETIF_F_TSO |
7035                             NETIF_F_TSO6 |
7036                             NETIF_F_RXHASH |
7037                             NETIF_F_RXCSUM |
7038                             NETIF_F_HW_CSUM);
7039
7040         /* Set user-changeable features (subset of all device features) */
7041         netdev->hw_features = netdev->features;
7042         netdev->hw_features |= NETIF_F_RXFCS;
7043         netdev->priv_flags |= IFF_SUPP_NOFCS;
7044         netdev->hw_features |= NETIF_F_RXALL;
7045
7046         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7047                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7048
7049         netdev->vlan_features |= (NETIF_F_SG |
7050                                   NETIF_F_TSO |
7051                                   NETIF_F_TSO6 |
7052                                   NETIF_F_HW_CSUM);
7053
7054         netdev->priv_flags |= IFF_UNICAST_FLT;
7055
7056         if (pci_using_dac) {
7057                 netdev->features |= NETIF_F_HIGHDMA;
7058                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7059         }
7060
7061         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7062                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7063
7064         /* before reading the NVM, reset the controller to
7065          * put the device in a known good starting state
7066          */
7067         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7068
7069         /* systems with ASPM and others may see the checksum fail on the first
7070          * attempt. Let's give it a few tries
7071          */
7072         for (i = 0;; i++) {
7073                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7074                         break;
7075                 if (i == 2) {
7076                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7077                         err = -EIO;
7078                         goto err_eeprom;
7079                 }
7080         }
7081
7082         e1000_eeprom_checks(adapter);
7083
7084         /* copy the MAC address */
7085         if (e1000e_read_mac_addr(&adapter->hw))
7086                 dev_err(&pdev->dev,
7087                         "NVM Read Error while reading MAC address\n");
7088
7089         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7090
7091         if (!is_valid_ether_addr(netdev->dev_addr)) {
7092                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7093                         netdev->dev_addr);
7094                 err = -EIO;
7095                 goto err_eeprom;
7096         }
7097
7098         init_timer(&adapter->watchdog_timer);
7099         adapter->watchdog_timer.function = e1000_watchdog;
7100         adapter->watchdog_timer.data = (unsigned long)adapter;
7101
7102         init_timer(&adapter->phy_info_timer);
7103         adapter->phy_info_timer.function = e1000_update_phy_info;
7104         adapter->phy_info_timer.data = (unsigned long)adapter;
7105
7106         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7107         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7108         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7109         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7110         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7111
7112         /* Initialize link parameters. User can change them with ethtool */
7113         adapter->hw.mac.autoneg = 1;
7114         adapter->fc_autoneg = true;
7115         adapter->hw.fc.requested_mode = e1000_fc_default;
7116         adapter->hw.fc.current_mode = e1000_fc_default;
7117         adapter->hw.phy.autoneg_advertised = 0x2f;
7118
7119         /* Initial Wake on LAN setting - If APM wake is enabled in
7120          * the EEPROM, enable the ACPI Magic Packet filter
7121          */
7122         if (adapter->flags & FLAG_APME_IN_WUC) {
7123                 /* APME bit in EEPROM is mapped to WUC.APME */
7124                 eeprom_data = er32(WUC);
7125                 eeprom_apme_mask = E1000_WUC_APME;
7126                 if ((hw->mac.type > e1000_ich10lan) &&
7127                     (eeprom_data & E1000_WUC_PHY_WAKE))
7128                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7129         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7130                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7131                     (adapter->hw.bus.func == 1))
7132                         rval = e1000_read_nvm(&adapter->hw,
7133                                               NVM_INIT_CONTROL3_PORT_B,
7134                                               1, &eeprom_data);
7135                 else
7136                         rval = e1000_read_nvm(&adapter->hw,
7137                                               NVM_INIT_CONTROL3_PORT_A,
7138                                               1, &eeprom_data);
7139         }
7140
7141         /* fetch WoL from EEPROM */
7142         if (rval)
7143                 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7144         else if (eeprom_data & eeprom_apme_mask)
7145                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7146
7147         /* now that we have the eeprom settings, apply the special cases
7148          * where the eeprom may be wrong or the board simply won't support
7149          * wake on lan on a particular port
7150          */
7151         if (!(adapter->flags & FLAG_HAS_WOL))
7152                 adapter->eeprom_wol = 0;
7153
7154         /* initialize the wol settings based on the eeprom settings */
7155         adapter->wol = adapter->eeprom_wol;
7156
7157         /* make sure adapter isn't asleep if manageability is enabled */
7158         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7159             (hw->mac.ops.check_mng_mode(hw)))
7160                 device_wakeup_enable(&pdev->dev);
7161
7162         /* save off EEPROM version number */
7163         rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7164
7165         if (rval) {
7166                 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7167                 adapter->eeprom_vers = 0;
7168         }
7169
7170         /* reset the hardware with the new settings */
7171         e1000e_reset(adapter);
7172
7173         /* If the controller has AMT, do not set DRV_LOAD until the interface
7174          * is up.  For all other cases, let the f/w know that the h/w is now
7175          * under the control of the driver.
7176          */
7177         if (!(adapter->flags & FLAG_HAS_AMT))
7178                 e1000e_get_hw_control(adapter);
7179
7180         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7181         err = register_netdev(netdev);
7182         if (err)
7183                 goto err_register;
7184
7185         /* carrier off reporting is important to ethtool even BEFORE open */
7186         netif_carrier_off(netdev);
7187
7188         /* init PTP hardware clock */
7189         e1000e_ptp_init(adapter);
7190
7191         e1000_print_device_info(adapter);
7192
7193         if (pci_dev_run_wake(pdev))
7194                 pm_runtime_put_noidle(&pdev->dev);
7195
7196         return 0;
7197
7198 err_register:
7199         if (!(adapter->flags & FLAG_HAS_AMT))
7200                 e1000e_release_hw_control(adapter);
7201 err_eeprom:
7202         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7203                 e1000_phy_hw_reset(&adapter->hw);
7204 err_hw_init:
7205         kfree(adapter->tx_ring);
7206         kfree(adapter->rx_ring);
7207 err_sw_init:
7208         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7209                 iounmap(adapter->hw.flash_address);
7210         e1000e_reset_interrupt_capability(adapter);
7211 err_flashmap:
7212         iounmap(adapter->hw.hw_addr);
7213 err_ioremap:
7214         free_netdev(netdev);
7215 err_alloc_etherdev:
7216         pci_release_selected_regions(pdev,
7217                                      pci_select_bars(pdev, IORESOURCE_MEM));
7218 err_pci_reg:
7219 err_dma:
7220         pci_disable_device(pdev);
7221         return err;
7222 }
7223
7224 /**
7225  * e1000_remove - Device Removal Routine
7226  * @pdev: PCI device information struct
7227  *
7228  * e1000_remove is called by the PCI subsystem to alert the driver
7229  * that it should release a PCI device.  The could be caused by a
7230  * Hot-Plug event, or because the driver is going to be removed from
7231  * memory.
7232  **/
7233 static void e1000_remove(struct pci_dev *pdev)
7234 {
7235         struct net_device *netdev = pci_get_drvdata(pdev);
7236         struct e1000_adapter *adapter = netdev_priv(netdev);
7237         bool down = test_bit(__E1000_DOWN, &adapter->state);
7238
7239         e1000e_ptp_remove(adapter);
7240
7241         /* The timers may be rescheduled, so explicitly disable them
7242          * from being rescheduled.
7243          */
7244         if (!down)
7245                 set_bit(__E1000_DOWN, &adapter->state);
7246         del_timer_sync(&adapter->watchdog_timer);
7247         del_timer_sync(&adapter->phy_info_timer);
7248
7249         cancel_work_sync(&adapter->reset_task);
7250         cancel_work_sync(&adapter->watchdog_task);
7251         cancel_work_sync(&adapter->downshift_task);
7252         cancel_work_sync(&adapter->update_phy_task);
7253         cancel_work_sync(&adapter->print_hang_task);
7254
7255         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7256                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7257                 if (adapter->tx_hwtstamp_skb) {
7258                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7259                         adapter->tx_hwtstamp_skb = NULL;
7260                 }
7261         }
7262
7263         /* Don't lie to e1000_close() down the road. */
7264         if (!down)
7265                 clear_bit(__E1000_DOWN, &adapter->state);
7266         unregister_netdev(netdev);
7267
7268         if (pci_dev_run_wake(pdev))
7269                 pm_runtime_get_noresume(&pdev->dev);
7270
7271         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7272          * would have already happened in close and is redundant.
7273          */
7274         e1000e_release_hw_control(adapter);
7275
7276         e1000e_reset_interrupt_capability(adapter);
7277         kfree(adapter->tx_ring);
7278         kfree(adapter->rx_ring);
7279
7280         iounmap(adapter->hw.hw_addr);
7281         if ((adapter->hw.flash_address) &&
7282             (adapter->hw.mac.type < e1000_pch_spt))
7283                 iounmap(adapter->hw.flash_address);
7284         pci_release_selected_regions(pdev,
7285                                      pci_select_bars(pdev, IORESOURCE_MEM));
7286
7287         free_netdev(netdev);
7288
7289         /* AER disable */
7290         pci_disable_pcie_error_reporting(pdev);
7291
7292         pci_disable_device(pdev);
7293 }
7294
7295 /* PCI Error Recovery (ERS) */
7296 static const struct pci_error_handlers e1000_err_handler = {
7297         .error_detected = e1000_io_error_detected,
7298         .slot_reset = e1000_io_slot_reset,
7299         .resume = e1000_io_resume,
7300 };
7301
7302 static const struct pci_device_id e1000_pci_tbl[] = {
7303         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7304         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7305         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7306         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7307           board_82571 },
7308         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7309         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7310         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7311         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7312         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7313
7314         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7315         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7316         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7317         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7318
7319         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7320         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7321         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7322
7323         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7324         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7325         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7326
7327         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7328           board_80003es2lan },
7329         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7330           board_80003es2lan },
7331         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7332           board_80003es2lan },
7333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7334           board_80003es2lan },
7335
7336         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7337         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7339         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7340         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7341         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7344
7345         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7346         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7347         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7348         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7349         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7350         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7351         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7352         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7353         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7354
7355         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7356         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7357         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7358
7359         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7360         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7361         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7362
7363         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7364         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7365         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7366         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7367
7368         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7369         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7370
7371         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7372         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7373         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7374         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7375         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7376         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7377         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7378         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7379         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7380         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7381         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7382         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7383
7384         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7385 };
7386 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7387
7388 static const struct dev_pm_ops e1000_pm_ops = {
7389 #ifdef CONFIG_PM_SLEEP
7390         .suspend        = e1000e_pm_suspend,
7391         .resume         = e1000e_pm_resume,
7392         .freeze         = e1000e_pm_freeze,
7393         .thaw           = e1000e_pm_thaw,
7394         .poweroff       = e1000e_pm_suspend,
7395         .restore        = e1000e_pm_resume,
7396 #endif
7397         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7398                            e1000e_pm_runtime_idle)
7399 };
7400
7401 /* PCI Device API Driver */
7402 static struct pci_driver e1000_driver = {
7403         .name     = e1000e_driver_name,
7404         .id_table = e1000_pci_tbl,
7405         .probe    = e1000_probe,
7406         .remove   = e1000_remove,
7407         .driver   = {
7408                 .pm = &e1000_pm_ops,
7409         },
7410         .shutdown = e1000_shutdown,
7411         .err_handler = &e1000_err_handler
7412 };
7413
7414 /**
7415  * e1000_init_module - Driver Registration Routine
7416  *
7417  * e1000_init_module is the first routine called when the driver is
7418  * loaded. All it does is register with the PCI subsystem.
7419  **/
7420 static int __init e1000_init_module(void)
7421 {
7422         int ret;
7423
7424         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7425                 e1000e_driver_version);
7426         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7427         ret = pci_register_driver(&e1000_driver);
7428
7429         return ret;
7430 }
7431 module_init(e1000_init_module);
7432
7433 /**
7434  * e1000_exit_module - Driver Exit Cleanup Routine
7435  *
7436  * e1000_exit_module is called just before the driver is removed
7437  * from memory.
7438  **/
7439 static void __exit e1000_exit_module(void)
7440 {
7441         pci_unregister_driver(&e1000_driver);
7442 }
7443 module_exit(e1000_exit_module);
7444
7445 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7446 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7447 MODULE_LICENSE("GPL");
7448 MODULE_VERSION(DRV_VERSION);
7449
7450 /* netdev.c */