]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[linux-beck.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Returns 0 if the filters were successfully added or removed
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 }
519         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522                                  rx_desc->wb.qword0.hi_dword.fd_id);
523         }
524 }
525
526 /**
527  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528  * @ring:      the ring that owns the buffer
529  * @tx_buffer: the buffer to free
530  **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532                                             struct i40e_tx_buffer *tx_buffer)
533 {
534         if (tx_buffer->skb) {
535                 dev_kfree_skb_any(tx_buffer->skb);
536                 if (dma_unmap_len(tx_buffer, len))
537                         dma_unmap_single(ring->dev,
538                                          dma_unmap_addr(tx_buffer, dma),
539                                          dma_unmap_len(tx_buffer, len),
540                                          DMA_TO_DEVICE);
541         } else if (dma_unmap_len(tx_buffer, len)) {
542                 dma_unmap_page(ring->dev,
543                                dma_unmap_addr(tx_buffer, dma),
544                                dma_unmap_len(tx_buffer, len),
545                                DMA_TO_DEVICE);
546         }
547
548         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549                 kfree(tx_buffer->raw_buf);
550
551         tx_buffer->next_to_watch = NULL;
552         tx_buffer->skb = NULL;
553         dma_unmap_len_set(tx_buffer, len, 0);
554         /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558  * i40e_clean_tx_ring - Free any empty Tx buffers
559  * @tx_ring: ring to be cleaned
560  **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563         unsigned long bi_size;
564         u16 i;
565
566         /* ring already cleared, nothing to do */
567         if (!tx_ring->tx_bi)
568                 return;
569
570         /* Free all the Tx ring sk_buffs */
571         for (i = 0; i < tx_ring->count; i++)
572                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575         memset(tx_ring->tx_bi, 0, bi_size);
576
577         /* Zero out the descriptor ring */
578         memset(tx_ring->desc, 0, tx_ring->size);
579
580         tx_ring->next_to_use = 0;
581         tx_ring->next_to_clean = 0;
582
583         if (!tx_ring->netdev)
584                 return;
585
586         /* cleanup Tx queue statistics */
587         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588                                                   tx_ring->queue_index));
589 }
590
591 /**
592  * i40e_free_tx_resources - Free Tx resources per queue
593  * @tx_ring: Tx descriptor ring for a specific queue
594  *
595  * Free all transmit software resources
596  **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599         i40e_clean_tx_ring(tx_ring);
600         kfree(tx_ring->tx_bi);
601         tx_ring->tx_bi = NULL;
602
603         if (tx_ring->desc) {
604                 dma_free_coherent(tx_ring->dev, tx_ring->size,
605                                   tx_ring->desc, tx_ring->dma);
606                 tx_ring->desc = NULL;
607         }
608 }
609
610 /**
611  * i40e_get_tx_pending - how many tx descriptors not processed
612  * @tx_ring: the ring of descriptors
613  *
614  * Since there is no access to the ring head register
615  * in XL710, we need to use our local copies
616  **/
617 u32 i40e_get_tx_pending(struct i40e_ring *ring)
618 {
619         u32 head, tail;
620
621         head = i40e_get_head(ring);
622         tail = readl(ring->tail);
623
624         if (head != tail)
625                 return (head < tail) ?
626                         tail - head : (tail + ring->count - head);
627
628         return 0;
629 }
630
631 #define WB_STRIDE 0x3
632
633 /**
634  * i40e_clean_tx_irq - Reclaim resources after transmit completes
635  * @tx_ring:  tx ring to clean
636  * @budget:   how many cleans we're allowed
637  *
638  * Returns true if there's any budget left (e.g. the clean is finished)
639  **/
640 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
641 {
642         u16 i = tx_ring->next_to_clean;
643         struct i40e_tx_buffer *tx_buf;
644         struct i40e_tx_desc *tx_head;
645         struct i40e_tx_desc *tx_desc;
646         unsigned int total_packets = 0;
647         unsigned int total_bytes = 0;
648
649         tx_buf = &tx_ring->tx_bi[i];
650         tx_desc = I40E_TX_DESC(tx_ring, i);
651         i -= tx_ring->count;
652
653         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
654
655         do {
656                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
657
658                 /* if next_to_watch is not set then there is no work pending */
659                 if (!eop_desc)
660                         break;
661
662                 /* prevent any other reads prior to eop_desc */
663                 read_barrier_depends();
664
665                 /* we have caught up to head, no work left to do */
666                 if (tx_head == tx_desc)
667                         break;
668
669                 /* clear next_to_watch to prevent false hangs */
670                 tx_buf->next_to_watch = NULL;
671
672                 /* update the statistics for this packet */
673                 total_bytes += tx_buf->bytecount;
674                 total_packets += tx_buf->gso_segs;
675
676                 /* free the skb */
677                 dev_consume_skb_any(tx_buf->skb);
678
679                 /* unmap skb header data */
680                 dma_unmap_single(tx_ring->dev,
681                                  dma_unmap_addr(tx_buf, dma),
682                                  dma_unmap_len(tx_buf, len),
683                                  DMA_TO_DEVICE);
684
685                 /* clear tx_buffer data */
686                 tx_buf->skb = NULL;
687                 dma_unmap_len_set(tx_buf, len, 0);
688
689                 /* unmap remaining buffers */
690                 while (tx_desc != eop_desc) {
691
692                         tx_buf++;
693                         tx_desc++;
694                         i++;
695                         if (unlikely(!i)) {
696                                 i -= tx_ring->count;
697                                 tx_buf = tx_ring->tx_bi;
698                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
699                         }
700
701                         /* unmap any remaining paged data */
702                         if (dma_unmap_len(tx_buf, len)) {
703                                 dma_unmap_page(tx_ring->dev,
704                                                dma_unmap_addr(tx_buf, dma),
705                                                dma_unmap_len(tx_buf, len),
706                                                DMA_TO_DEVICE);
707                                 dma_unmap_len_set(tx_buf, len, 0);
708                         }
709                 }
710
711                 /* move us one more past the eop_desc for start of next pkt */
712                 tx_buf++;
713                 tx_desc++;
714                 i++;
715                 if (unlikely(!i)) {
716                         i -= tx_ring->count;
717                         tx_buf = tx_ring->tx_bi;
718                         tx_desc = I40E_TX_DESC(tx_ring, 0);
719                 }
720
721                 prefetch(tx_desc);
722
723                 /* update budget accounting */
724                 budget--;
725         } while (likely(budget));
726
727         i += tx_ring->count;
728         tx_ring->next_to_clean = i;
729         u64_stats_update_begin(&tx_ring->syncp);
730         tx_ring->stats.bytes += total_bytes;
731         tx_ring->stats.packets += total_packets;
732         u64_stats_update_end(&tx_ring->syncp);
733         tx_ring->q_vector->tx.total_bytes += total_bytes;
734         tx_ring->q_vector->tx.total_packets += total_packets;
735
736         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
737                 unsigned int j = 0;
738
739                 /* check to see if there are < 4 descriptors
740                  * waiting to be written back, then kick the hardware to force
741                  * them to be written back in case we stay in NAPI.
742                  * In this mode on X722 we do not enable Interrupt.
743                  */
744                 j = i40e_get_tx_pending(tx_ring);
745
746                 if (budget &&
747                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
748                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
749                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
750                         tx_ring->arm_wb = true;
751         }
752
753         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
754                                                       tx_ring->queue_index),
755                                   total_packets, total_bytes);
756
757 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
758         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
759                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
760                 /* Make sure that anybody stopping the queue after this
761                  * sees the new next_to_clean.
762                  */
763                 smp_mb();
764                 if (__netif_subqueue_stopped(tx_ring->netdev,
765                                              tx_ring->queue_index) &&
766                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
767                         netif_wake_subqueue(tx_ring->netdev,
768                                             tx_ring->queue_index);
769                         ++tx_ring->tx_stats.restart_queue;
770                 }
771         }
772
773         return !!budget;
774 }
775
776 /**
777  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
778  * @vsi: the VSI we care about
779  * @q_vector: the vector  on which to force writeback
780  *
781  **/
782 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
783 {
784         u16 flags = q_vector->tx.ring[0].flags;
785
786         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
787                 u32 val;
788
789                 if (q_vector->arm_wb_state)
790                         return;
791
792                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
793
794                 wr32(&vsi->back->hw,
795                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
796                                          vsi->base_vector - 1),
797                      val);
798                 q_vector->arm_wb_state = true;
799         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
800                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
801                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
802                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
803                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
804                           /* allow 00 to be written to the index */
805
806                 wr32(&vsi->back->hw,
807                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
808                                          vsi->base_vector - 1), val);
809         } else {
810                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
811                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
812                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
813                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
814                         /* allow 00 to be written to the index */
815
816                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
817         }
818 }
819
820 /**
821  * i40e_set_new_dynamic_itr - Find new ITR level
822  * @rc: structure containing ring performance data
823  *
824  * Returns true if ITR changed, false if not
825  *
826  * Stores a new ITR value based on packets and byte counts during
827  * the last interrupt.  The advantage of per interrupt computation
828  * is faster updates and more accurate ITR for the current traffic
829  * pattern.  Constants in this function were computed based on
830  * theoretical maximum wire speed and thresholds were set based on
831  * testing data as well as attempting to minimize response time
832  * while increasing bulk throughput.
833  **/
834 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
835 {
836         enum i40e_latency_range new_latency_range = rc->latency_range;
837         struct i40e_q_vector *qv = rc->ring->q_vector;
838         u32 new_itr = rc->itr;
839         int bytes_per_int;
840         int usecs;
841
842         if (rc->total_packets == 0 || !rc->itr)
843                 return false;
844
845         /* simple throttlerate management
846          *   0-10MB/s   lowest (50000 ints/s)
847          *  10-20MB/s   low    (20000 ints/s)
848          *  20-1249MB/s bulk   (18000 ints/s)
849          *  > 40000 Rx packets per second (8000 ints/s)
850          *
851          * The math works out because the divisor is in 10^(-6) which
852          * turns the bytes/us input value into MB/s values, but
853          * make sure to use usecs, as the register values written
854          * are in 2 usec increments in the ITR registers, and make sure
855          * to use the smoothed values that the countdown timer gives us.
856          */
857         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
858         bytes_per_int = rc->total_bytes / usecs;
859
860         switch (new_latency_range) {
861         case I40E_LOWEST_LATENCY:
862                 if (bytes_per_int > 10)
863                         new_latency_range = I40E_LOW_LATENCY;
864                 break;
865         case I40E_LOW_LATENCY:
866                 if (bytes_per_int > 20)
867                         new_latency_range = I40E_BULK_LATENCY;
868                 else if (bytes_per_int <= 10)
869                         new_latency_range = I40E_LOWEST_LATENCY;
870                 break;
871         case I40E_BULK_LATENCY:
872         case I40E_ULTRA_LATENCY:
873         default:
874                 if (bytes_per_int <= 20)
875                         new_latency_range = I40E_LOW_LATENCY;
876                 break;
877         }
878
879         /* this is to adjust RX more aggressively when streaming small
880          * packets.  The value of 40000 was picked as it is just beyond
881          * what the hardware can receive per second if in low latency
882          * mode.
883          */
884 #define RX_ULTRA_PACKET_RATE 40000
885
886         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
887             (&qv->rx == rc))
888                 new_latency_range = I40E_ULTRA_LATENCY;
889
890         rc->latency_range = new_latency_range;
891
892         switch (new_latency_range) {
893         case I40E_LOWEST_LATENCY:
894                 new_itr = I40E_ITR_50K;
895                 break;
896         case I40E_LOW_LATENCY:
897                 new_itr = I40E_ITR_20K;
898                 break;
899         case I40E_BULK_LATENCY:
900                 new_itr = I40E_ITR_18K;
901                 break;
902         case I40E_ULTRA_LATENCY:
903                 new_itr = I40E_ITR_8K;
904                 break;
905         default:
906                 break;
907         }
908
909         rc->total_bytes = 0;
910         rc->total_packets = 0;
911
912         if (new_itr != rc->itr) {
913                 rc->itr = new_itr;
914                 return true;
915         }
916
917         return false;
918 }
919
920 /**
921  * i40e_clean_programming_status - clean the programming status descriptor
922  * @rx_ring: the rx ring that has this descriptor
923  * @rx_desc: the rx descriptor written back by HW
924  *
925  * Flow director should handle FD_FILTER_STATUS to check its filter programming
926  * status being successful or not and take actions accordingly. FCoE should
927  * handle its context/filter programming/invalidation status and take actions.
928  *
929  **/
930 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
931                                           union i40e_rx_desc *rx_desc)
932 {
933         u64 qw;
934         u8 id;
935
936         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
937         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
938                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
939
940         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
941                 i40e_fd_handle_status(rx_ring, rx_desc, id);
942 #ifdef I40E_FCOE
943         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
944                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
945                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
946 #endif
947 }
948
949 /**
950  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
951  * @tx_ring: the tx ring to set up
952  *
953  * Return 0 on success, negative on error
954  **/
955 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
956 {
957         struct device *dev = tx_ring->dev;
958         int bi_size;
959
960         if (!dev)
961                 return -ENOMEM;
962
963         /* warn if we are about to overwrite the pointer */
964         WARN_ON(tx_ring->tx_bi);
965         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
966         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
967         if (!tx_ring->tx_bi)
968                 goto err;
969
970         /* round up to nearest 4K */
971         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
972         /* add u32 for head writeback, align after this takes care of
973          * guaranteeing this is at least one cache line in size
974          */
975         tx_ring->size += sizeof(u32);
976         tx_ring->size = ALIGN(tx_ring->size, 4096);
977         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
978                                            &tx_ring->dma, GFP_KERNEL);
979         if (!tx_ring->desc) {
980                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
981                          tx_ring->size);
982                 goto err;
983         }
984
985         tx_ring->next_to_use = 0;
986         tx_ring->next_to_clean = 0;
987         return 0;
988
989 err:
990         kfree(tx_ring->tx_bi);
991         tx_ring->tx_bi = NULL;
992         return -ENOMEM;
993 }
994
995 /**
996  * i40e_clean_rx_ring - Free Rx buffers
997  * @rx_ring: ring to be cleaned
998  **/
999 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1000 {
1001         struct device *dev = rx_ring->dev;
1002         struct i40e_rx_buffer *rx_bi;
1003         unsigned long bi_size;
1004         u16 i;
1005
1006         /* ring already cleared, nothing to do */
1007         if (!rx_ring->rx_bi)
1008                 return;
1009
1010         if (ring_is_ps_enabled(rx_ring)) {
1011                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1012
1013                 rx_bi = &rx_ring->rx_bi[0];
1014                 if (rx_bi->hdr_buf) {
1015                         dma_free_coherent(dev,
1016                                           bufsz,
1017                                           rx_bi->hdr_buf,
1018                                           rx_bi->dma);
1019                         for (i = 0; i < rx_ring->count; i++) {
1020                                 rx_bi = &rx_ring->rx_bi[i];
1021                                 rx_bi->dma = 0;
1022                                 rx_bi->hdr_buf = NULL;
1023                         }
1024                 }
1025         }
1026         /* Free all the Rx ring sk_buffs */
1027         for (i = 0; i < rx_ring->count; i++) {
1028                 rx_bi = &rx_ring->rx_bi[i];
1029                 if (rx_bi->dma) {
1030                         dma_unmap_single(dev,
1031                                          rx_bi->dma,
1032                                          rx_ring->rx_buf_len,
1033                                          DMA_FROM_DEVICE);
1034                         rx_bi->dma = 0;
1035                 }
1036                 if (rx_bi->skb) {
1037                         dev_kfree_skb(rx_bi->skb);
1038                         rx_bi->skb = NULL;
1039                 }
1040                 if (rx_bi->page) {
1041                         if (rx_bi->page_dma) {
1042                                 dma_unmap_page(dev,
1043                                                rx_bi->page_dma,
1044                                                PAGE_SIZE / 2,
1045                                                DMA_FROM_DEVICE);
1046                                 rx_bi->page_dma = 0;
1047                         }
1048                         __free_page(rx_bi->page);
1049                         rx_bi->page = NULL;
1050                         rx_bi->page_offset = 0;
1051                 }
1052         }
1053
1054         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1055         memset(rx_ring->rx_bi, 0, bi_size);
1056
1057         /* Zero out the descriptor ring */
1058         memset(rx_ring->desc, 0, rx_ring->size);
1059
1060         rx_ring->next_to_clean = 0;
1061         rx_ring->next_to_use = 0;
1062 }
1063
1064 /**
1065  * i40e_free_rx_resources - Free Rx resources
1066  * @rx_ring: ring to clean the resources from
1067  *
1068  * Free all receive software resources
1069  **/
1070 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1071 {
1072         i40e_clean_rx_ring(rx_ring);
1073         kfree(rx_ring->rx_bi);
1074         rx_ring->rx_bi = NULL;
1075
1076         if (rx_ring->desc) {
1077                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1078                                   rx_ring->desc, rx_ring->dma);
1079                 rx_ring->desc = NULL;
1080         }
1081 }
1082
1083 /**
1084  * i40e_alloc_rx_headers - allocate rx header buffers
1085  * @rx_ring: ring to alloc buffers
1086  *
1087  * Allocate rx header buffers for the entire ring. As these are static,
1088  * this is only called when setting up a new ring.
1089  **/
1090 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1091 {
1092         struct device *dev = rx_ring->dev;
1093         struct i40e_rx_buffer *rx_bi;
1094         dma_addr_t dma;
1095         void *buffer;
1096         int buf_size;
1097         int i;
1098
1099         if (rx_ring->rx_bi[0].hdr_buf)
1100                 return;
1101         /* Make sure the buffers don't cross cache line boundaries. */
1102         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1103         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1104                                     &dma, GFP_KERNEL);
1105         if (!buffer)
1106                 return;
1107         for (i = 0; i < rx_ring->count; i++) {
1108                 rx_bi = &rx_ring->rx_bi[i];
1109                 rx_bi->dma = dma + (i * buf_size);
1110                 rx_bi->hdr_buf = buffer + (i * buf_size);
1111         }
1112 }
1113
1114 /**
1115  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1116  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1117  *
1118  * Returns 0 on success, negative on failure
1119  **/
1120 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1121 {
1122         struct device *dev = rx_ring->dev;
1123         int bi_size;
1124
1125         /* warn if we are about to overwrite the pointer */
1126         WARN_ON(rx_ring->rx_bi);
1127         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1128         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1129         if (!rx_ring->rx_bi)
1130                 goto err;
1131
1132         u64_stats_init(&rx_ring->syncp);
1133
1134         /* Round up to nearest 4K */
1135         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1136                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1137                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1138         rx_ring->size = ALIGN(rx_ring->size, 4096);
1139         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1140                                            &rx_ring->dma, GFP_KERNEL);
1141
1142         if (!rx_ring->desc) {
1143                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1144                          rx_ring->size);
1145                 goto err;
1146         }
1147
1148         rx_ring->next_to_clean = 0;
1149         rx_ring->next_to_use = 0;
1150
1151         return 0;
1152 err:
1153         kfree(rx_ring->rx_bi);
1154         rx_ring->rx_bi = NULL;
1155         return -ENOMEM;
1156 }
1157
1158 /**
1159  * i40e_release_rx_desc - Store the new tail and head values
1160  * @rx_ring: ring to bump
1161  * @val: new head index
1162  **/
1163 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1164 {
1165         rx_ring->next_to_use = val;
1166         /* Force memory writes to complete before letting h/w
1167          * know there are new descriptors to fetch.  (Only
1168          * applicable for weak-ordered memory model archs,
1169          * such as IA-64).
1170          */
1171         wmb();
1172         writel(val, rx_ring->tail);
1173 }
1174
1175 /**
1176  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1177  * @rx_ring: ring to place buffers on
1178  * @cleaned_count: number of buffers to replace
1179  **/
1180 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1181 {
1182         u16 i = rx_ring->next_to_use;
1183         union i40e_rx_desc *rx_desc;
1184         struct i40e_rx_buffer *bi;
1185
1186         /* do nothing if no valid netdev defined */
1187         if (!rx_ring->netdev || !cleaned_count)
1188                 return;
1189
1190         while (cleaned_count--) {
1191                 rx_desc = I40E_RX_DESC(rx_ring, i);
1192                 bi = &rx_ring->rx_bi[i];
1193
1194                 if (bi->skb) /* desc is in use */
1195                         goto no_buffers;
1196                 if (!bi->page) {
1197                         bi->page = alloc_page(GFP_ATOMIC);
1198                         if (!bi->page) {
1199                                 rx_ring->rx_stats.alloc_page_failed++;
1200                                 goto no_buffers;
1201                         }
1202                 }
1203
1204                 if (!bi->page_dma) {
1205                         /* use a half page if we're re-using */
1206                         bi->page_offset ^= PAGE_SIZE / 2;
1207                         bi->page_dma = dma_map_page(rx_ring->dev,
1208                                                     bi->page,
1209                                                     bi->page_offset,
1210                                                     PAGE_SIZE / 2,
1211                                                     DMA_FROM_DEVICE);
1212                         if (dma_mapping_error(rx_ring->dev,
1213                                               bi->page_dma)) {
1214                                 rx_ring->rx_stats.alloc_page_failed++;
1215                                 bi->page_dma = 0;
1216                                 goto no_buffers;
1217                         }
1218                 }
1219
1220                 dma_sync_single_range_for_device(rx_ring->dev,
1221                                                  bi->dma,
1222                                                  0,
1223                                                  rx_ring->rx_hdr_len,
1224                                                  DMA_FROM_DEVICE);
1225                 /* Refresh the desc even if buffer_addrs didn't change
1226                  * because each write-back erases this info.
1227                  */
1228                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1229                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1230                 i++;
1231                 if (i == rx_ring->count)
1232                         i = 0;
1233         }
1234
1235 no_buffers:
1236         if (rx_ring->next_to_use != i)
1237                 i40e_release_rx_desc(rx_ring, i);
1238 }
1239
1240 /**
1241  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1242  * @rx_ring: ring to place buffers on
1243  * @cleaned_count: number of buffers to replace
1244  **/
1245 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1246 {
1247         u16 i = rx_ring->next_to_use;
1248         union i40e_rx_desc *rx_desc;
1249         struct i40e_rx_buffer *bi;
1250         struct sk_buff *skb;
1251
1252         /* do nothing if no valid netdev defined */
1253         if (!rx_ring->netdev || !cleaned_count)
1254                 return;
1255
1256         while (cleaned_count--) {
1257                 rx_desc = I40E_RX_DESC(rx_ring, i);
1258                 bi = &rx_ring->rx_bi[i];
1259                 skb = bi->skb;
1260
1261                 if (!skb) {
1262                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1263                                                         rx_ring->rx_buf_len);
1264                         if (!skb) {
1265                                 rx_ring->rx_stats.alloc_buff_failed++;
1266                                 goto no_buffers;
1267                         }
1268                         /* initialize queue mapping */
1269                         skb_record_rx_queue(skb, rx_ring->queue_index);
1270                         bi->skb = skb;
1271                 }
1272
1273                 if (!bi->dma) {
1274                         bi->dma = dma_map_single(rx_ring->dev,
1275                                                  skb->data,
1276                                                  rx_ring->rx_buf_len,
1277                                                  DMA_FROM_DEVICE);
1278                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1279                                 rx_ring->rx_stats.alloc_buff_failed++;
1280                                 bi->dma = 0;
1281                                 goto no_buffers;
1282                         }
1283                 }
1284
1285                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1286                 rx_desc->read.hdr_addr = 0;
1287                 i++;
1288                 if (i == rx_ring->count)
1289                         i = 0;
1290         }
1291
1292 no_buffers:
1293         if (rx_ring->next_to_use != i)
1294                 i40e_release_rx_desc(rx_ring, i);
1295 }
1296
1297 /**
1298  * i40e_receive_skb - Send a completed packet up the stack
1299  * @rx_ring:  rx ring in play
1300  * @skb: packet to send up
1301  * @vlan_tag: vlan tag for packet
1302  **/
1303 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1304                              struct sk_buff *skb, u16 vlan_tag)
1305 {
1306         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1307
1308         if (vlan_tag & VLAN_VID_MASK)
1309                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1310
1311         napi_gro_receive(&q_vector->napi, skb);
1312 }
1313
1314 /**
1315  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1316  * @vsi: the VSI we care about
1317  * @skb: skb currently being received and modified
1318  * @rx_status: status value of last descriptor in packet
1319  * @rx_error: error value of last descriptor in packet
1320  * @rx_ptype: ptype value of last descriptor in packet
1321  **/
1322 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1323                                     struct sk_buff *skb,
1324                                     u32 rx_status,
1325                                     u32 rx_error,
1326                                     u16 rx_ptype)
1327 {
1328         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1329         bool ipv4 = false, ipv6 = false;
1330         bool ipv4_tunnel, ipv6_tunnel;
1331         __wsum rx_udp_csum;
1332         struct iphdr *iph;
1333         __sum16 csum;
1334
1335         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1336                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1337         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1338                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1339
1340         skb->ip_summed = CHECKSUM_NONE;
1341
1342         /* Rx csum enabled and ip headers found? */
1343         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1344                 return;
1345
1346         /* did the hardware decode the packet and checksum? */
1347         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1348                 return;
1349
1350         /* both known and outer_ip must be set for the below code to work */
1351         if (!(decoded.known && decoded.outer_ip))
1352                 return;
1353
1354         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1355             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1356                 ipv4 = true;
1357         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1359                 ipv6 = true;
1360
1361         if (ipv4 &&
1362             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1363                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1364                 goto checksum_fail;
1365
1366         /* likely incorrect csum if alternate IP extension headers found */
1367         if (ipv6 &&
1368             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1369                 /* don't increment checksum err here, non-fatal err */
1370                 return;
1371
1372         /* there was some L4 error, count error and punt packet to the stack */
1373         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1374                 goto checksum_fail;
1375
1376         /* handle packets that were not able to be checksummed due
1377          * to arrival speed, in this case the stack can compute
1378          * the csum.
1379          */
1380         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1381                 return;
1382
1383         /* If VXLAN/GENEVE traffic has an outer UDPv4 checksum we need to check
1384          * it in the driver, hardware does not do it for us.
1385          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1386          * so the total length of IPv4 header is IHL*4 bytes
1387          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1388          */
1389         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1390             (ipv4_tunnel)) {
1391                 skb->transport_header = skb->mac_header +
1392                                         sizeof(struct ethhdr) +
1393                                         (ip_hdr(skb)->ihl * 4);
1394
1395                 /* Add 4 bytes for VLAN tagged packets */
1396                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1397                                           skb->protocol == htons(ETH_P_8021AD))
1398                                           ? VLAN_HLEN : 0;
1399
1400                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1401                     (udp_hdr(skb)->check != 0)) {
1402                         rx_udp_csum = udp_csum(skb);
1403                         iph = ip_hdr(skb);
1404                         csum = csum_tcpudp_magic(
1405                                         iph->saddr, iph->daddr,
1406                                         (skb->len - skb_transport_offset(skb)),
1407                                         IPPROTO_UDP, rx_udp_csum);
1408
1409                         if (udp_hdr(skb)->check != csum)
1410                                 goto checksum_fail;
1411
1412                 } /* else its GRE and so no outer UDP header */
1413         }
1414
1415         skb->ip_summed = CHECKSUM_UNNECESSARY;
1416         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1417
1418         return;
1419
1420 checksum_fail:
1421         vsi->back->hw_csum_rx_error++;
1422 }
1423
1424 /**
1425  * i40e_rx_hash - returns the hash value from the Rx descriptor
1426  * @ring: descriptor ring
1427  * @rx_desc: specific descriptor
1428  **/
1429 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1430                                union i40e_rx_desc *rx_desc)
1431 {
1432         const __le64 rss_mask =
1433                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1434                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1435
1436         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1437             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1438                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1439         else
1440                 return 0;
1441 }
1442
1443 /**
1444  * i40e_ptype_to_hash - get a hash type
1445  * @ptype: the ptype value from the descriptor
1446  *
1447  * Returns a hash type to be used by skb_set_hash
1448  **/
1449 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1450 {
1451         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1452
1453         if (!decoded.known)
1454                 return PKT_HASH_TYPE_NONE;
1455
1456         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1457             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1458                 return PKT_HASH_TYPE_L4;
1459         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1460                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1461                 return PKT_HASH_TYPE_L3;
1462         else
1463                 return PKT_HASH_TYPE_L2;
1464 }
1465
1466 /**
1467  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1468  * @rx_ring:  rx ring to clean
1469  * @budget:   how many cleans we're allowed
1470  *
1471  * Returns true if there's any budget left (e.g. the clean is finished)
1472  **/
1473 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1474 {
1475         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1476         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1477         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1478         const int current_node = numa_mem_id();
1479         struct i40e_vsi *vsi = rx_ring->vsi;
1480         u16 i = rx_ring->next_to_clean;
1481         union i40e_rx_desc *rx_desc;
1482         u32 rx_error, rx_status;
1483         u8 rx_ptype;
1484         u64 qword;
1485
1486         if (budget <= 0)
1487                 return 0;
1488
1489         do {
1490                 struct i40e_rx_buffer *rx_bi;
1491                 struct sk_buff *skb;
1492                 u16 vlan_tag;
1493                 /* return some buffers to hardware, one at a time is too slow */
1494                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1495                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1496                         cleaned_count = 0;
1497                 }
1498
1499                 i = rx_ring->next_to_clean;
1500                 rx_desc = I40E_RX_DESC(rx_ring, i);
1501                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1502                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1503                         I40E_RXD_QW1_STATUS_SHIFT;
1504
1505                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1506                         break;
1507
1508                 /* This memory barrier is needed to keep us from reading
1509                  * any other fields out of the rx_desc until we know the
1510                  * DD bit is set.
1511                  */
1512                 dma_rmb();
1513                 if (i40e_rx_is_programming_status(qword)) {
1514                         i40e_clean_programming_status(rx_ring, rx_desc);
1515                         I40E_RX_INCREMENT(rx_ring, i);
1516                         continue;
1517                 }
1518                 rx_bi = &rx_ring->rx_bi[i];
1519                 skb = rx_bi->skb;
1520                 if (likely(!skb)) {
1521                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1522                                                         rx_ring->rx_hdr_len);
1523                         if (!skb) {
1524                                 rx_ring->rx_stats.alloc_buff_failed++;
1525                                 break;
1526                         }
1527
1528                         /* initialize queue mapping */
1529                         skb_record_rx_queue(skb, rx_ring->queue_index);
1530                         /* we are reusing so sync this buffer for CPU use */
1531                         dma_sync_single_range_for_cpu(rx_ring->dev,
1532                                                       rx_bi->dma,
1533                                                       0,
1534                                                       rx_ring->rx_hdr_len,
1535                                                       DMA_FROM_DEVICE);
1536                 }
1537                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1538                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1539                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1540                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1541                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1542                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1543
1544                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1545                            I40E_RXD_QW1_ERROR_SHIFT;
1546                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1547                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1548
1549                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1550                            I40E_RXD_QW1_PTYPE_SHIFT;
1551                 prefetch(rx_bi->page);
1552                 rx_bi->skb = NULL;
1553                 cleaned_count++;
1554                 if (rx_hbo || rx_sph) {
1555                         int len;
1556
1557                         if (rx_hbo)
1558                                 len = I40E_RX_HDR_SIZE;
1559                         else
1560                                 len = rx_header_len;
1561                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1562                 } else if (skb->len == 0) {
1563                         int len;
1564
1565                         len = (rx_packet_len > skb_headlen(skb) ?
1566                                 skb_headlen(skb) : rx_packet_len);
1567                         memcpy(__skb_put(skb, len),
1568                                rx_bi->page + rx_bi->page_offset,
1569                                len);
1570                         rx_bi->page_offset += len;
1571                         rx_packet_len -= len;
1572                 }
1573
1574                 /* Get the rest of the data if this was a header split */
1575                 if (rx_packet_len) {
1576                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1577                                            rx_bi->page,
1578                                            rx_bi->page_offset,
1579                                            rx_packet_len);
1580
1581                         skb->len += rx_packet_len;
1582                         skb->data_len += rx_packet_len;
1583                         skb->truesize += rx_packet_len;
1584
1585                         if ((page_count(rx_bi->page) == 1) &&
1586                             (page_to_nid(rx_bi->page) == current_node))
1587                                 get_page(rx_bi->page);
1588                         else
1589                                 rx_bi->page = NULL;
1590
1591                         dma_unmap_page(rx_ring->dev,
1592                                        rx_bi->page_dma,
1593                                        PAGE_SIZE / 2,
1594                                        DMA_FROM_DEVICE);
1595                         rx_bi->page_dma = 0;
1596                 }
1597                 I40E_RX_INCREMENT(rx_ring, i);
1598
1599                 if (unlikely(
1600                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1601                         struct i40e_rx_buffer *next_buffer;
1602
1603                         next_buffer = &rx_ring->rx_bi[i];
1604                         next_buffer->skb = skb;
1605                         rx_ring->rx_stats.non_eop_descs++;
1606                         continue;
1607                 }
1608
1609                 /* ERR_MASK will only have valid bits if EOP set */
1610                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1611                         dev_kfree_skb_any(skb);
1612                         continue;
1613                 }
1614
1615                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1616                              i40e_ptype_to_hash(rx_ptype));
1617                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1618                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1619                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1620                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1621                         rx_ring->last_rx_timestamp = jiffies;
1622                 }
1623
1624                 /* probably a little skewed due to removing CRC */
1625                 total_rx_bytes += skb->len;
1626                 total_rx_packets++;
1627
1628                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1629
1630                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1631
1632                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1633                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1634                          : 0;
1635 #ifdef I40E_FCOE
1636                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1637                         dev_kfree_skb_any(skb);
1638                         continue;
1639                 }
1640 #endif
1641                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1642
1643                 rx_desc->wb.qword1.status_error_len = 0;
1644
1645         } while (likely(total_rx_packets < budget));
1646
1647         u64_stats_update_begin(&rx_ring->syncp);
1648         rx_ring->stats.packets += total_rx_packets;
1649         rx_ring->stats.bytes += total_rx_bytes;
1650         u64_stats_update_end(&rx_ring->syncp);
1651         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1652         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1653
1654         return total_rx_packets;
1655 }
1656
1657 /**
1658  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1659  * @rx_ring:  rx ring to clean
1660  * @budget:   how many cleans we're allowed
1661  *
1662  * Returns number of packets cleaned
1663  **/
1664 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1665 {
1666         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1667         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1668         struct i40e_vsi *vsi = rx_ring->vsi;
1669         union i40e_rx_desc *rx_desc;
1670         u32 rx_error, rx_status;
1671         u16 rx_packet_len;
1672         u8 rx_ptype;
1673         u64 qword;
1674         u16 i;
1675
1676         do {
1677                 struct i40e_rx_buffer *rx_bi;
1678                 struct sk_buff *skb;
1679                 u16 vlan_tag;
1680                 /* return some buffers to hardware, one at a time is too slow */
1681                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1682                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1683                         cleaned_count = 0;
1684                 }
1685
1686                 i = rx_ring->next_to_clean;
1687                 rx_desc = I40E_RX_DESC(rx_ring, i);
1688                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1689                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1690                         I40E_RXD_QW1_STATUS_SHIFT;
1691
1692                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1693                         break;
1694
1695                 /* This memory barrier is needed to keep us from reading
1696                  * any other fields out of the rx_desc until we know the
1697                  * DD bit is set.
1698                  */
1699                 dma_rmb();
1700
1701                 if (i40e_rx_is_programming_status(qword)) {
1702                         i40e_clean_programming_status(rx_ring, rx_desc);
1703                         I40E_RX_INCREMENT(rx_ring, i);
1704                         continue;
1705                 }
1706                 rx_bi = &rx_ring->rx_bi[i];
1707                 skb = rx_bi->skb;
1708                 prefetch(skb->data);
1709
1710                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1711                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1712
1713                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1714                            I40E_RXD_QW1_ERROR_SHIFT;
1715                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1716
1717                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1718                            I40E_RXD_QW1_PTYPE_SHIFT;
1719                 rx_bi->skb = NULL;
1720                 cleaned_count++;
1721
1722                 /* Get the header and possibly the whole packet
1723                  * If this is an skb from previous receive dma will be 0
1724                  */
1725                 skb_put(skb, rx_packet_len);
1726                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1727                                  DMA_FROM_DEVICE);
1728                 rx_bi->dma = 0;
1729
1730                 I40E_RX_INCREMENT(rx_ring, i);
1731
1732                 if (unlikely(
1733                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1734                         rx_ring->rx_stats.non_eop_descs++;
1735                         continue;
1736                 }
1737
1738                 /* ERR_MASK will only have valid bits if EOP set */
1739                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1740                         dev_kfree_skb_any(skb);
1741                         continue;
1742                 }
1743
1744                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1745                              i40e_ptype_to_hash(rx_ptype));
1746                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1747                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1748                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1749                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1750                         rx_ring->last_rx_timestamp = jiffies;
1751                 }
1752
1753                 /* probably a little skewed due to removing CRC */
1754                 total_rx_bytes += skb->len;
1755                 total_rx_packets++;
1756
1757                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1758
1759                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1760
1761                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1762                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1763                          : 0;
1764 #ifdef I40E_FCOE
1765                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1766                         dev_kfree_skb_any(skb);
1767                         continue;
1768                 }
1769 #endif
1770                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1771
1772                 rx_desc->wb.qword1.status_error_len = 0;
1773         } while (likely(total_rx_packets < budget));
1774
1775         u64_stats_update_begin(&rx_ring->syncp);
1776         rx_ring->stats.packets += total_rx_packets;
1777         rx_ring->stats.bytes += total_rx_bytes;
1778         u64_stats_update_end(&rx_ring->syncp);
1779         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1780         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1781
1782         return total_rx_packets;
1783 }
1784
1785 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1786 {
1787         u32 val;
1788
1789         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1790               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1791               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1792               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1793
1794         return val;
1795 }
1796
1797 /* a small macro to shorten up some long lines */
1798 #define INTREG I40E_PFINT_DYN_CTLN
1799
1800 /**
1801  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1802  * @vsi: the VSI we care about
1803  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1804  *
1805  **/
1806 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1807                                           struct i40e_q_vector *q_vector)
1808 {
1809         struct i40e_hw *hw = &vsi->back->hw;
1810         bool rx = false, tx = false;
1811         u32 rxval, txval;
1812         int vector;
1813
1814         vector = (q_vector->v_idx + vsi->base_vector);
1815
1816         /* avoid dynamic calculation if in countdown mode OR if
1817          * all dynamic is disabled
1818          */
1819         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1820
1821         if (q_vector->itr_countdown > 0 ||
1822             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1823              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1824                 goto enable_int;
1825         }
1826
1827         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1828                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1829                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1830         }
1831
1832         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1833                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1834                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1835         }
1836
1837         if (rx || tx) {
1838                 /* get the higher of the two ITR adjustments and
1839                  * use the same value for both ITR registers
1840                  * when in adaptive mode (Rx and/or Tx)
1841                  */
1842                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1843
1844                 q_vector->tx.itr = q_vector->rx.itr = itr;
1845                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1846                 tx = true;
1847                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1848                 rx = true;
1849         }
1850
1851         /* only need to enable the interrupt once, but need
1852          * to possibly update both ITR values
1853          */
1854         if (rx) {
1855                 /* set the INTENA_MSK_MASK so that this first write
1856                  * won't actually enable the interrupt, instead just
1857                  * updating the ITR (it's bit 31 PF and VF)
1858                  */
1859                 rxval |= BIT(31);
1860                 /* don't check _DOWN because interrupt isn't being enabled */
1861                 wr32(hw, INTREG(vector - 1), rxval);
1862         }
1863
1864 enable_int:
1865         if (!test_bit(__I40E_DOWN, &vsi->state))
1866                 wr32(hw, INTREG(vector - 1), txval);
1867
1868         if (q_vector->itr_countdown)
1869                 q_vector->itr_countdown--;
1870         else
1871                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1872 }
1873
1874 /**
1875  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1876  * @napi: napi struct with our devices info in it
1877  * @budget: amount of work driver is allowed to do this pass, in packets
1878  *
1879  * This function will clean all queues associated with a q_vector.
1880  *
1881  * Returns the amount of work done
1882  **/
1883 int i40e_napi_poll(struct napi_struct *napi, int budget)
1884 {
1885         struct i40e_q_vector *q_vector =
1886                                container_of(napi, struct i40e_q_vector, napi);
1887         struct i40e_vsi *vsi = q_vector->vsi;
1888         struct i40e_ring *ring;
1889         bool clean_complete = true;
1890         bool arm_wb = false;
1891         int budget_per_ring;
1892         int work_done = 0;
1893
1894         if (test_bit(__I40E_DOWN, &vsi->state)) {
1895                 napi_complete(napi);
1896                 return 0;
1897         }
1898
1899         /* Clear hung_detected bit */
1900         clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1901         /* Since the actual Tx work is minimal, we can give the Tx a larger
1902          * budget and be more aggressive about cleaning up the Tx descriptors.
1903          */
1904         i40e_for_each_ring(ring, q_vector->tx) {
1905                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1906                 arm_wb = arm_wb || ring->arm_wb;
1907                 ring->arm_wb = false;
1908         }
1909
1910         /* Handle case where we are called by netpoll with a budget of 0 */
1911         if (budget <= 0)
1912                 goto tx_only;
1913
1914         /* We attempt to distribute budget to each Rx queue fairly, but don't
1915          * allow the budget to go below 1 because that would exit polling early.
1916          */
1917         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1918
1919         i40e_for_each_ring(ring, q_vector->rx) {
1920                 int cleaned;
1921
1922                 if (ring_is_ps_enabled(ring))
1923                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1924                 else
1925                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1926
1927                 work_done += cleaned;
1928                 /* if we didn't clean as many as budgeted, we must be done */
1929                 clean_complete &= (budget_per_ring != cleaned);
1930         }
1931
1932         /* If work not completed, return budget and polling will return */
1933         if (!clean_complete) {
1934 tx_only:
1935                 if (arm_wb) {
1936                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1937                         i40e_force_wb(vsi, q_vector);
1938                 }
1939                 return budget;
1940         }
1941
1942         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1943                 q_vector->arm_wb_state = false;
1944
1945         /* Work is done so exit the polling mode and re-enable the interrupt */
1946         napi_complete_done(napi, work_done);
1947         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1948                 i40e_update_enable_itr(vsi, q_vector);
1949         } else { /* Legacy mode */
1950                 struct i40e_hw *hw = &vsi->back->hw;
1951                 /* We re-enable the queue 0 cause, but
1952                  * don't worry about dynamic_enable
1953                  * because we left it on for the other
1954                  * possible interrupts during napi
1955                  */
1956                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1957                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1958
1959                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1960                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1961                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1962                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1963                 i40e_irq_dynamic_enable_icr0(vsi->back);
1964         }
1965         return 0;
1966 }
1967
1968 /**
1969  * i40e_atr - Add a Flow Director ATR filter
1970  * @tx_ring:  ring to add programming descriptor to
1971  * @skb:      send buffer
1972  * @tx_flags: send tx flags
1973  * @protocol: wire protocol
1974  **/
1975 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1976                      u32 tx_flags, __be16 protocol)
1977 {
1978         struct i40e_filter_program_desc *fdir_desc;
1979         struct i40e_pf *pf = tx_ring->vsi->back;
1980         union {
1981                 unsigned char *network;
1982                 struct iphdr *ipv4;
1983                 struct ipv6hdr *ipv6;
1984         } hdr;
1985         struct tcphdr *th;
1986         unsigned int hlen;
1987         u32 flex_ptype, dtype_cmd;
1988         u16 i;
1989
1990         /* make sure ATR is enabled */
1991         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1992                 return;
1993
1994         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1995                 return;
1996
1997         /* if sampling is disabled do nothing */
1998         if (!tx_ring->atr_sample_rate)
1999                 return;
2000
2001         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2002                 return;
2003
2004         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) {
2005                 /* snag network header to get L4 type and address */
2006                 hdr.network = skb_network_header(skb);
2007
2008                 /* Currently only IPv4/IPv6 with TCP is supported
2009                  * access ihl as u8 to avoid unaligned access on ia64
2010                  */
2011                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2012                         hlen = (hdr.network[0] & 0x0F) << 2;
2013                 else if (protocol == htons(ETH_P_IPV6))
2014                         hlen = sizeof(struct ipv6hdr);
2015                 else
2016                         return;
2017         } else {
2018                 hdr.network = skb_inner_network_header(skb);
2019                 hlen = skb_inner_network_header_len(skb);
2020         }
2021
2022         /* Currently only IPv4/IPv6 with TCP is supported
2023          * Note: tx_flags gets modified to reflect inner protocols in
2024          * tx_enable_csum function if encap is enabled.
2025          */
2026         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2027             (hdr.ipv4->protocol != IPPROTO_TCP))
2028                 return;
2029         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2030                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2031                 return;
2032
2033         th = (struct tcphdr *)(hdr.network + hlen);
2034
2035         /* Due to lack of space, no more new filters can be programmed */
2036         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2037                 return;
2038         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2039                 /* HW ATR eviction will take care of removing filters on FIN
2040                  * and RST packets.
2041                  */
2042                 if (th->fin || th->rst)
2043                         return;
2044         }
2045
2046         tx_ring->atr_count++;
2047
2048         /* sample on all syn/fin/rst packets or once every atr sample rate */
2049         if (!th->fin &&
2050             !th->syn &&
2051             !th->rst &&
2052             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2053                 return;
2054
2055         tx_ring->atr_count = 0;
2056
2057         /* grab the next descriptor */
2058         i = tx_ring->next_to_use;
2059         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2060
2061         i++;
2062         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2063
2064         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2065                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2066         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2067                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2068                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2069                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2070                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2071
2072         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2073
2074         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2075
2076         dtype_cmd |= (th->fin || th->rst) ?
2077                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2078                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2079                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2080                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2081
2082         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2083                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2084
2085         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2086                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2087
2088         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2089         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2090                 dtype_cmd |=
2091                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2092                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2093                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2094         else
2095                 dtype_cmd |=
2096                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2097                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2098                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2099
2100         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2101                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2102
2103         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2104         fdir_desc->rsvd = cpu_to_le32(0);
2105         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2106         fdir_desc->fd_id = cpu_to_le32(0);
2107 }
2108
2109 /**
2110  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2111  * @skb:     send buffer
2112  * @tx_ring: ring to send buffer on
2113  * @flags:   the tx flags to be set
2114  *
2115  * Checks the skb and set up correspondingly several generic transmit flags
2116  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2117  *
2118  * Returns error code indicate the frame should be dropped upon error and the
2119  * otherwise  returns 0 to indicate the flags has been set properly.
2120  **/
2121 #ifdef I40E_FCOE
2122 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2123                                       struct i40e_ring *tx_ring,
2124                                       u32 *flags)
2125 #else
2126 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2127                                              struct i40e_ring *tx_ring,
2128                                              u32 *flags)
2129 #endif
2130 {
2131         __be16 protocol = skb->protocol;
2132         u32  tx_flags = 0;
2133
2134         if (protocol == htons(ETH_P_8021Q) &&
2135             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2136                 /* When HW VLAN acceleration is turned off by the user the
2137                  * stack sets the protocol to 8021q so that the driver
2138                  * can take any steps required to support the SW only
2139                  * VLAN handling.  In our case the driver doesn't need
2140                  * to take any further steps so just set the protocol
2141                  * to the encapsulated ethertype.
2142                  */
2143                 skb->protocol = vlan_get_protocol(skb);
2144                 goto out;
2145         }
2146
2147         /* if we have a HW VLAN tag being added, default to the HW one */
2148         if (skb_vlan_tag_present(skb)) {
2149                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2150                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2151         /* else if it is a SW VLAN, check the next protocol and store the tag */
2152         } else if (protocol == htons(ETH_P_8021Q)) {
2153                 struct vlan_hdr *vhdr, _vhdr;
2154
2155                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2156                 if (!vhdr)
2157                         return -EINVAL;
2158
2159                 protocol = vhdr->h_vlan_encapsulated_proto;
2160                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2161                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2162         }
2163
2164         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2165                 goto out;
2166
2167         /* Insert 802.1p priority into VLAN header */
2168         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2169             (skb->priority != TC_PRIO_CONTROL)) {
2170                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2171                 tx_flags |= (skb->priority & 0x7) <<
2172                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2173                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2174                         struct vlan_ethhdr *vhdr;
2175                         int rc;
2176
2177                         rc = skb_cow_head(skb, 0);
2178                         if (rc < 0)
2179                                 return rc;
2180                         vhdr = (struct vlan_ethhdr *)skb->data;
2181                         vhdr->h_vlan_TCI = htons(tx_flags >>
2182                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2183                 } else {
2184                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2185                 }
2186         }
2187
2188 out:
2189         *flags = tx_flags;
2190         return 0;
2191 }
2192
2193 /**
2194  * i40e_tso - set up the tso context descriptor
2195  * @tx_ring:  ptr to the ring to send
2196  * @skb:      ptr to the skb we're sending
2197  * @hdr_len:  ptr to the size of the packet header
2198  * @cd_type_cmd_tso_mss: Quad Word 1
2199  *
2200  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2201  **/
2202 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2203                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2204 {
2205         u32 cd_cmd, cd_tso_len, cd_mss;
2206         struct ipv6hdr *ipv6h;
2207         struct tcphdr *tcph;
2208         struct iphdr *iph;
2209         u32 l4len;
2210         int err;
2211
2212         if (!skb_is_gso(skb))
2213                 return 0;
2214
2215         err = skb_cow_head(skb, 0);
2216         if (err < 0)
2217                 return err;
2218
2219         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2220         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2221
2222         if (iph->version == 4) {
2223                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2224                 iph->tot_len = 0;
2225                 iph->check = 0;
2226                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2227                                                  0, IPPROTO_TCP, 0);
2228         } else if (ipv6h->version == 6) {
2229                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2230                 ipv6h->payload_len = 0;
2231                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2232                                                0, IPPROTO_TCP, 0);
2233         }
2234
2235         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2236         *hdr_len = (skb->encapsulation
2237                     ? (skb_inner_transport_header(skb) - skb->data)
2238                     : skb_transport_offset(skb)) + l4len;
2239
2240         /* find the field values */
2241         cd_cmd = I40E_TX_CTX_DESC_TSO;
2242         cd_tso_len = skb->len - *hdr_len;
2243         cd_mss = skb_shinfo(skb)->gso_size;
2244         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2245                                 ((u64)cd_tso_len <<
2246                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2247                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2248         return 1;
2249 }
2250
2251 /**
2252  * i40e_tsyn - set up the tsyn context descriptor
2253  * @tx_ring:  ptr to the ring to send
2254  * @skb:      ptr to the skb we're sending
2255  * @tx_flags: the collected send information
2256  * @cd_type_cmd_tso_mss: Quad Word 1
2257  *
2258  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2259  **/
2260 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2261                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2262 {
2263         struct i40e_pf *pf;
2264
2265         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2266                 return 0;
2267
2268         /* Tx timestamps cannot be sampled when doing TSO */
2269         if (tx_flags & I40E_TX_FLAGS_TSO)
2270                 return 0;
2271
2272         /* only timestamp the outbound packet if the user has requested it and
2273          * we are not already transmitting a packet to be timestamped
2274          */
2275         pf = i40e_netdev_to_pf(tx_ring->netdev);
2276         if (!(pf->flags & I40E_FLAG_PTP))
2277                 return 0;
2278
2279         if (pf->ptp_tx &&
2280             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2281                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2282                 pf->ptp_tx_skb = skb_get(skb);
2283         } else {
2284                 return 0;
2285         }
2286
2287         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2288                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2289
2290         return 1;
2291 }
2292
2293 /**
2294  * i40e_tx_enable_csum - Enable Tx checksum offloads
2295  * @skb: send buffer
2296  * @tx_flags: pointer to Tx flags currently set
2297  * @td_cmd: Tx descriptor command bits to set
2298  * @td_offset: Tx descriptor header offsets to set
2299  * @tx_ring: Tx descriptor ring
2300  * @cd_tunneling: ptr to context desc bits
2301  **/
2302 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2303                                 u32 *td_cmd, u32 *td_offset,
2304                                 struct i40e_ring *tx_ring,
2305                                 u32 *cd_tunneling)
2306 {
2307         struct ipv6hdr *this_ipv6_hdr;
2308         unsigned int this_tcp_hdrlen;
2309         struct iphdr *this_ip_hdr;
2310         u32 network_hdr_len;
2311         u8 l4_hdr = 0;
2312         struct udphdr *oudph;
2313         struct iphdr *oiph;
2314         u32 l4_tunnel = 0;
2315
2316         if (skb->encapsulation) {
2317                 switch (ip_hdr(skb)->protocol) {
2318                 case IPPROTO_UDP:
2319                         oudph = udp_hdr(skb);
2320                         oiph = ip_hdr(skb);
2321                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2322                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2323                         break;
2324                 case IPPROTO_GRE:
2325                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2326                         break;
2327                 default:
2328                         return;
2329                 }
2330                 network_hdr_len = skb_inner_network_header_len(skb);
2331                 this_ip_hdr = inner_ip_hdr(skb);
2332                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2333                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2334
2335                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2336                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2337                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2338                                 ip_hdr(skb)->check = 0;
2339                         } else {
2340                                 *cd_tunneling |=
2341                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2342                         }
2343                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2344                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2345                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2346                                 ip_hdr(skb)->check = 0;
2347                 }
2348
2349                 /* Now set the ctx descriptor fields */
2350                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2351                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2352                                    l4_tunnel                             |
2353                                    ((skb_inner_network_offset(skb) -
2354                                         skb_transport_offset(skb)) >> 1) <<
2355                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2356                 if (this_ip_hdr->version == 6) {
2357                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2358                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2359                 }
2360                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2361                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2362                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2363                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2364                                         oiph->daddr,
2365                                         (skb->len - skb_transport_offset(skb)),
2366                                         IPPROTO_UDP, 0);
2367                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2368                 }
2369         } else {
2370                 network_hdr_len = skb_network_header_len(skb);
2371                 this_ip_hdr = ip_hdr(skb);
2372                 this_ipv6_hdr = ipv6_hdr(skb);
2373                 this_tcp_hdrlen = tcp_hdrlen(skb);
2374         }
2375
2376         /* Enable IP checksum offloads */
2377         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2378                 l4_hdr = this_ip_hdr->protocol;
2379                 /* the stack computes the IP header already, the only time we
2380                  * need the hardware to recompute it is in the case of TSO.
2381                  */
2382                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2383                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2384                         this_ip_hdr->check = 0;
2385                 } else {
2386                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2387                 }
2388                 /* Now set the td_offset for IP header length */
2389                 *td_offset = (network_hdr_len >> 2) <<
2390                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2391         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2392                 l4_hdr = this_ipv6_hdr->nexthdr;
2393                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2394                 /* Now set the td_offset for IP header length */
2395                 *td_offset = (network_hdr_len >> 2) <<
2396                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2397         }
2398         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2399         *td_offset |= (skb_network_offset(skb) >> 1) <<
2400                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2401
2402         /* Enable L4 checksum offloads */
2403         switch (l4_hdr) {
2404         case IPPROTO_TCP:
2405                 /* enable checksum offloads */
2406                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2407                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2408                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2409                 break;
2410         case IPPROTO_SCTP:
2411                 /* enable SCTP checksum offload */
2412                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2413                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2414                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2415                 break;
2416         case IPPROTO_UDP:
2417                 /* enable UDP checksum offload */
2418                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2419                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2420                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2421                 break;
2422         default:
2423                 break;
2424         }
2425 }
2426
2427 /**
2428  * i40e_create_tx_ctx Build the Tx context descriptor
2429  * @tx_ring:  ring to create the descriptor on
2430  * @cd_type_cmd_tso_mss: Quad Word 1
2431  * @cd_tunneling: Quad Word 0 - bits 0-31
2432  * @cd_l2tag2: Quad Word 0 - bits 32-63
2433  **/
2434 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2435                                const u64 cd_type_cmd_tso_mss,
2436                                const u32 cd_tunneling, const u32 cd_l2tag2)
2437 {
2438         struct i40e_tx_context_desc *context_desc;
2439         int i = tx_ring->next_to_use;
2440
2441         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2442             !cd_tunneling && !cd_l2tag2)
2443                 return;
2444
2445         /* grab the next descriptor */
2446         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2447
2448         i++;
2449         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2450
2451         /* cpu_to_le32 and assign to struct fields */
2452         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2453         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2454         context_desc->rsvd = cpu_to_le16(0);
2455         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2456 }
2457
2458 /**
2459  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2460  * @tx_ring: the ring to be checked
2461  * @size:    the size buffer we want to assure is available
2462  *
2463  * Returns -EBUSY if a stop is needed, else 0
2464  **/
2465 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2466 {
2467         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2468         /* Memory barrier before checking head and tail */
2469         smp_mb();
2470
2471         /* Check again in a case another CPU has just made room available. */
2472         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2473                 return -EBUSY;
2474
2475         /* A reprieve! - use start_queue because it doesn't call schedule */
2476         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2477         ++tx_ring->tx_stats.restart_queue;
2478         return 0;
2479 }
2480
2481 /**
2482  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2483  * @tx_ring: the ring to be checked
2484  * @size:    the size buffer we want to assure is available
2485  *
2486  * Returns 0 if stop is not needed
2487  **/
2488 #ifdef I40E_FCOE
2489 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2490 #else
2491 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2492 #endif
2493 {
2494         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2495                 return 0;
2496         return __i40e_maybe_stop_tx(tx_ring, size);
2497 }
2498
2499 /**
2500  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2501  * @skb:      send buffer
2502  * @tx_flags: collected send information
2503  *
2504  * Note: Our HW can't scatter-gather more than 8 fragments to build
2505  * a packet on the wire and so we need to figure out the cases where we
2506  * need to linearize the skb.
2507  **/
2508 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2509 {
2510         struct skb_frag_struct *frag;
2511         bool linearize = false;
2512         unsigned int size = 0;
2513         u16 num_frags;
2514         u16 gso_segs;
2515
2516         num_frags = skb_shinfo(skb)->nr_frags;
2517         gso_segs = skb_shinfo(skb)->gso_segs;
2518
2519         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2520                 u16 j = 0;
2521
2522                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2523                         goto linearize_chk_done;
2524                 /* try the simple math, if we have too many frags per segment */
2525                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2526                     I40E_MAX_BUFFER_TXD) {
2527                         linearize = true;
2528                         goto linearize_chk_done;
2529                 }
2530                 frag = &skb_shinfo(skb)->frags[0];
2531                 /* we might still have more fragments per segment */
2532                 do {
2533                         size += skb_frag_size(frag);
2534                         frag++; j++;
2535                         if ((size >= skb_shinfo(skb)->gso_size) &&
2536                             (j < I40E_MAX_BUFFER_TXD)) {
2537                                 size = (size % skb_shinfo(skb)->gso_size);
2538                                 j = (size) ? 1 : 0;
2539                         }
2540                         if (j == I40E_MAX_BUFFER_TXD) {
2541                                 linearize = true;
2542                                 break;
2543                         }
2544                         num_frags--;
2545                 } while (num_frags);
2546         } else {
2547                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2548                         linearize = true;
2549         }
2550
2551 linearize_chk_done:
2552         return linearize;
2553 }
2554
2555 /**
2556  * i40e_tx_map - Build the Tx descriptor
2557  * @tx_ring:  ring to send buffer on
2558  * @skb:      send buffer
2559  * @first:    first buffer info buffer to use
2560  * @tx_flags: collected send information
2561  * @hdr_len:  size of the packet header
2562  * @td_cmd:   the command field in the descriptor
2563  * @td_offset: offset for checksum or crc
2564  **/
2565 #ifdef I40E_FCOE
2566 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2567                         struct i40e_tx_buffer *first, u32 tx_flags,
2568                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2569 #else
2570 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2571                                struct i40e_tx_buffer *first, u32 tx_flags,
2572                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2573 #endif
2574 {
2575         unsigned int data_len = skb->data_len;
2576         unsigned int size = skb_headlen(skb);
2577         struct skb_frag_struct *frag;
2578         struct i40e_tx_buffer *tx_bi;
2579         struct i40e_tx_desc *tx_desc;
2580         u16 i = tx_ring->next_to_use;
2581         u32 td_tag = 0;
2582         dma_addr_t dma;
2583         u16 gso_segs;
2584         u16 desc_count = 0;
2585         bool tail_bump = true;
2586         bool do_rs = false;
2587
2588         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2589                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2590                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2591                          I40E_TX_FLAGS_VLAN_SHIFT;
2592         }
2593
2594         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2595                 gso_segs = skb_shinfo(skb)->gso_segs;
2596         else
2597                 gso_segs = 1;
2598
2599         /* multiply data chunks by size of headers */
2600         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2601         first->gso_segs = gso_segs;
2602         first->skb = skb;
2603         first->tx_flags = tx_flags;
2604
2605         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2606
2607         tx_desc = I40E_TX_DESC(tx_ring, i);
2608         tx_bi = first;
2609
2610         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2611                 if (dma_mapping_error(tx_ring->dev, dma))
2612                         goto dma_error;
2613
2614                 /* record length, and DMA address */
2615                 dma_unmap_len_set(tx_bi, len, size);
2616                 dma_unmap_addr_set(tx_bi, dma, dma);
2617
2618                 tx_desc->buffer_addr = cpu_to_le64(dma);
2619
2620                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2621                         tx_desc->cmd_type_offset_bsz =
2622                                 build_ctob(td_cmd, td_offset,
2623                                            I40E_MAX_DATA_PER_TXD, td_tag);
2624
2625                         tx_desc++;
2626                         i++;
2627                         desc_count++;
2628
2629                         if (i == tx_ring->count) {
2630                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2631                                 i = 0;
2632                         }
2633
2634                         dma += I40E_MAX_DATA_PER_TXD;
2635                         size -= I40E_MAX_DATA_PER_TXD;
2636
2637                         tx_desc->buffer_addr = cpu_to_le64(dma);
2638                 }
2639
2640                 if (likely(!data_len))
2641                         break;
2642
2643                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2644                                                           size, td_tag);
2645
2646                 tx_desc++;
2647                 i++;
2648                 desc_count++;
2649
2650                 if (i == tx_ring->count) {
2651                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2652                         i = 0;
2653                 }
2654
2655                 size = skb_frag_size(frag);
2656                 data_len -= size;
2657
2658                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2659                                        DMA_TO_DEVICE);
2660
2661                 tx_bi = &tx_ring->tx_bi[i];
2662         }
2663
2664         /* set next_to_watch value indicating a packet is present */
2665         first->next_to_watch = tx_desc;
2666
2667         i++;
2668         if (i == tx_ring->count)
2669                 i = 0;
2670
2671         tx_ring->next_to_use = i;
2672
2673         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2674                                                  tx_ring->queue_index),
2675                                                  first->bytecount);
2676         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2677
2678         /* Algorithm to optimize tail and RS bit setting:
2679          * if xmit_more is supported
2680          *      if xmit_more is true
2681          *              do not update tail and do not mark RS bit.
2682          *      if xmit_more is false and last xmit_more was false
2683          *              if every packet spanned less than 4 desc
2684          *                      then set RS bit on 4th packet and update tail
2685          *                      on every packet
2686          *              else
2687          *                      update tail and set RS bit on every packet.
2688          *      if xmit_more is false and last_xmit_more was true
2689          *              update tail and set RS bit.
2690          *
2691          * Optimization: wmb to be issued only in case of tail update.
2692          * Also optimize the Descriptor WB path for RS bit with the same
2693          * algorithm.
2694          *
2695          * Note: If there are less than 4 packets
2696          * pending and interrupts were disabled the service task will
2697          * trigger a force WB.
2698          */
2699         if (skb->xmit_more  &&
2700             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2701                                                     tx_ring->queue_index))) {
2702                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2703                 tail_bump = false;
2704         } else if (!skb->xmit_more &&
2705                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2706                                                        tx_ring->queue_index)) &&
2707                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2708                    (tx_ring->packet_stride < WB_STRIDE) &&
2709                    (desc_count < WB_STRIDE)) {
2710                 tx_ring->packet_stride++;
2711         } else {
2712                 tx_ring->packet_stride = 0;
2713                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2714                 do_rs = true;
2715         }
2716         if (do_rs)
2717                 tx_ring->packet_stride = 0;
2718
2719         tx_desc->cmd_type_offset_bsz =
2720                         build_ctob(td_cmd, td_offset, size, td_tag) |
2721                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2722                                                   I40E_TX_DESC_CMD_EOP) <<
2723                                                   I40E_TXD_QW1_CMD_SHIFT);
2724
2725         /* notify HW of packet */
2726         if (!tail_bump)
2727                 prefetchw(tx_desc + 1);
2728
2729         if (tail_bump) {
2730                 /* Force memory writes to complete before letting h/w
2731                  * know there are new descriptors to fetch.  (Only
2732                  * applicable for weak-ordered memory model archs,
2733                  * such as IA-64).
2734                  */
2735                 wmb();
2736                 writel(i, tx_ring->tail);
2737         }
2738
2739         return;
2740
2741 dma_error:
2742         dev_info(tx_ring->dev, "TX DMA map failed\n");
2743
2744         /* clear dma mappings for failed tx_bi map */
2745         for (;;) {
2746                 tx_bi = &tx_ring->tx_bi[i];
2747                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2748                 if (tx_bi == first)
2749                         break;
2750                 if (i == 0)
2751                         i = tx_ring->count;
2752                 i--;
2753         }
2754
2755         tx_ring->next_to_use = i;
2756 }
2757
2758 /**
2759  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2760  * @skb:     send buffer
2761  * @tx_ring: ring to send buffer on
2762  *
2763  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2764  * there is not enough descriptors available in this ring since we need at least
2765  * one descriptor.
2766  **/
2767 #ifdef I40E_FCOE
2768 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2769                                       struct i40e_ring *tx_ring)
2770 #else
2771 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2772                                              struct i40e_ring *tx_ring)
2773 #endif
2774 {
2775         unsigned int f;
2776         int count = 0;
2777
2778         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2779          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2780          *       + 4 desc gap to avoid the cache line where head is,
2781          *       + 1 desc for context descriptor,
2782          * otherwise try next time
2783          */
2784         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2785                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2786
2787         count += TXD_USE_COUNT(skb_headlen(skb));
2788         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2789                 tx_ring->tx_stats.tx_busy++;
2790                 return 0;
2791         }
2792         return count;
2793 }
2794
2795 /**
2796  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2797  * @skb:     send buffer
2798  * @tx_ring: ring to send buffer on
2799  *
2800  * Returns NETDEV_TX_OK if sent, else an error code
2801  **/
2802 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2803                                         struct i40e_ring *tx_ring)
2804 {
2805         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2806         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2807         struct i40e_tx_buffer *first;
2808         u32 td_offset = 0;
2809         u32 tx_flags = 0;
2810         __be16 protocol;
2811         u32 td_cmd = 0;
2812         u8 hdr_len = 0;
2813         int tsyn;
2814         int tso;
2815
2816         /* prefetch the data, we'll need it later */
2817         prefetch(skb->data);
2818
2819         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2820                 return NETDEV_TX_BUSY;
2821
2822         /* prepare the xmit flags */
2823         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2824                 goto out_drop;
2825
2826         /* obtain protocol of skb */
2827         protocol = vlan_get_protocol(skb);
2828
2829         /* record the location of the first descriptor for this packet */
2830         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2831
2832         /* setup IPv4/IPv6 offloads */
2833         if (protocol == htons(ETH_P_IP))
2834                 tx_flags |= I40E_TX_FLAGS_IPV4;
2835         else if (protocol == htons(ETH_P_IPV6))
2836                 tx_flags |= I40E_TX_FLAGS_IPV6;
2837
2838         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2839
2840         if (tso < 0)
2841                 goto out_drop;
2842         else if (tso)
2843                 tx_flags |= I40E_TX_FLAGS_TSO;
2844
2845         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2846
2847         if (tsyn)
2848                 tx_flags |= I40E_TX_FLAGS_TSYN;
2849
2850         if (i40e_chk_linearize(skb, tx_flags)) {
2851                 if (skb_linearize(skb))
2852                         goto out_drop;
2853                 tx_ring->tx_stats.tx_linearize++;
2854         }
2855         skb_tx_timestamp(skb);
2856
2857         /* always enable CRC insertion offload */
2858         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2859
2860         /* Always offload the checksum, since it's in the data descriptor */
2861         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2862                 tx_flags |= I40E_TX_FLAGS_CSUM;
2863
2864                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2865                                     tx_ring, &cd_tunneling);
2866         }
2867
2868         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2869                            cd_tunneling, cd_l2tag2);
2870
2871         /* Add Flow Director ATR if it's enabled.
2872          *
2873          * NOTE: this must always be directly before the data descriptor.
2874          */
2875         i40e_atr(tx_ring, skb, tx_flags, protocol);
2876
2877         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2878                     td_cmd, td_offset);
2879
2880         return NETDEV_TX_OK;
2881
2882 out_drop:
2883         dev_kfree_skb_any(skb);
2884         return NETDEV_TX_OK;
2885 }
2886
2887 /**
2888  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2889  * @skb:    send buffer
2890  * @netdev: network interface device structure
2891  *
2892  * Returns NETDEV_TX_OK if sent, else an error code
2893  **/
2894 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2895 {
2896         struct i40e_netdev_priv *np = netdev_priv(netdev);
2897         struct i40e_vsi *vsi = np->vsi;
2898         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2899
2900         /* hardware can't handle really short frames, hardware padding works
2901          * beyond this point
2902          */
2903         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2904                 return NETDEV_TX_OK;
2905
2906         return i40e_xmit_frame_ring(skb, tx_ring);
2907 }