]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
i40e: fix bug in dma sync
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Returns 0 if the filters were successfully added or removed
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 }
519         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522                                  rx_desc->wb.qword0.hi_dword.fd_id);
523         }
524 }
525
526 /**
527  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528  * @ring:      the ring that owns the buffer
529  * @tx_buffer: the buffer to free
530  **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532                                             struct i40e_tx_buffer *tx_buffer)
533 {
534         if (tx_buffer->skb) {
535                 dev_kfree_skb_any(tx_buffer->skb);
536                 if (dma_unmap_len(tx_buffer, len))
537                         dma_unmap_single(ring->dev,
538                                          dma_unmap_addr(tx_buffer, dma),
539                                          dma_unmap_len(tx_buffer, len),
540                                          DMA_TO_DEVICE);
541         } else if (dma_unmap_len(tx_buffer, len)) {
542                 dma_unmap_page(ring->dev,
543                                dma_unmap_addr(tx_buffer, dma),
544                                dma_unmap_len(tx_buffer, len),
545                                DMA_TO_DEVICE);
546         }
547
548         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549                 kfree(tx_buffer->raw_buf);
550
551         tx_buffer->next_to_watch = NULL;
552         tx_buffer->skb = NULL;
553         dma_unmap_len_set(tx_buffer, len, 0);
554         /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558  * i40e_clean_tx_ring - Free any empty Tx buffers
559  * @tx_ring: ring to be cleaned
560  **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563         unsigned long bi_size;
564         u16 i;
565
566         /* ring already cleared, nothing to do */
567         if (!tx_ring->tx_bi)
568                 return;
569
570         /* Free all the Tx ring sk_buffs */
571         for (i = 0; i < tx_ring->count; i++)
572                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575         memset(tx_ring->tx_bi, 0, bi_size);
576
577         /* Zero out the descriptor ring */
578         memset(tx_ring->desc, 0, tx_ring->size);
579
580         tx_ring->next_to_use = 0;
581         tx_ring->next_to_clean = 0;
582
583         if (!tx_ring->netdev)
584                 return;
585
586         /* cleanup Tx queue statistics */
587         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588                                                   tx_ring->queue_index));
589 }
590
591 /**
592  * i40e_free_tx_resources - Free Tx resources per queue
593  * @tx_ring: Tx descriptor ring for a specific queue
594  *
595  * Free all transmit software resources
596  **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599         i40e_clean_tx_ring(tx_ring);
600         kfree(tx_ring->tx_bi);
601         tx_ring->tx_bi = NULL;
602
603         if (tx_ring->desc) {
604                 dma_free_coherent(tx_ring->dev, tx_ring->size,
605                                   tx_ring->desc, tx_ring->dma);
606                 tx_ring->desc = NULL;
607         }
608 }
609
610 /**
611  * i40e_get_tx_pending - how many tx descriptors not processed
612  * @tx_ring: the ring of descriptors
613  *
614  * Since there is no access to the ring head register
615  * in XL710, we need to use our local copies
616  **/
617 u32 i40e_get_tx_pending(struct i40e_ring *ring)
618 {
619         u32 head, tail;
620
621         head = i40e_get_head(ring);
622         tail = readl(ring->tail);
623
624         if (head != tail)
625                 return (head < tail) ?
626                         tail - head : (tail + ring->count - head);
627
628         return 0;
629 }
630
631 #define WB_STRIDE 0x3
632
633 /**
634  * i40e_clean_tx_irq - Reclaim resources after transmit completes
635  * @tx_ring:  tx ring to clean
636  * @budget:   how many cleans we're allowed
637  *
638  * Returns true if there's any budget left (e.g. the clean is finished)
639  **/
640 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
641 {
642         u16 i = tx_ring->next_to_clean;
643         struct i40e_tx_buffer *tx_buf;
644         struct i40e_tx_desc *tx_head;
645         struct i40e_tx_desc *tx_desc;
646         unsigned int total_packets = 0;
647         unsigned int total_bytes = 0;
648
649         tx_buf = &tx_ring->tx_bi[i];
650         tx_desc = I40E_TX_DESC(tx_ring, i);
651         i -= tx_ring->count;
652
653         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
654
655         do {
656                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
657
658                 /* if next_to_watch is not set then there is no work pending */
659                 if (!eop_desc)
660                         break;
661
662                 /* prevent any other reads prior to eop_desc */
663                 read_barrier_depends();
664
665                 /* we have caught up to head, no work left to do */
666                 if (tx_head == tx_desc)
667                         break;
668
669                 /* clear next_to_watch to prevent false hangs */
670                 tx_buf->next_to_watch = NULL;
671
672                 /* update the statistics for this packet */
673                 total_bytes += tx_buf->bytecount;
674                 total_packets += tx_buf->gso_segs;
675
676                 /* free the skb */
677                 dev_consume_skb_any(tx_buf->skb);
678
679                 /* unmap skb header data */
680                 dma_unmap_single(tx_ring->dev,
681                                  dma_unmap_addr(tx_buf, dma),
682                                  dma_unmap_len(tx_buf, len),
683                                  DMA_TO_DEVICE);
684
685                 /* clear tx_buffer data */
686                 tx_buf->skb = NULL;
687                 dma_unmap_len_set(tx_buf, len, 0);
688
689                 /* unmap remaining buffers */
690                 while (tx_desc != eop_desc) {
691
692                         tx_buf++;
693                         tx_desc++;
694                         i++;
695                         if (unlikely(!i)) {
696                                 i -= tx_ring->count;
697                                 tx_buf = tx_ring->tx_bi;
698                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
699                         }
700
701                         /* unmap any remaining paged data */
702                         if (dma_unmap_len(tx_buf, len)) {
703                                 dma_unmap_page(tx_ring->dev,
704                                                dma_unmap_addr(tx_buf, dma),
705                                                dma_unmap_len(tx_buf, len),
706                                                DMA_TO_DEVICE);
707                                 dma_unmap_len_set(tx_buf, len, 0);
708                         }
709                 }
710
711                 /* move us one more past the eop_desc for start of next pkt */
712                 tx_buf++;
713                 tx_desc++;
714                 i++;
715                 if (unlikely(!i)) {
716                         i -= tx_ring->count;
717                         tx_buf = tx_ring->tx_bi;
718                         tx_desc = I40E_TX_DESC(tx_ring, 0);
719                 }
720
721                 prefetch(tx_desc);
722
723                 /* update budget accounting */
724                 budget--;
725         } while (likely(budget));
726
727         i += tx_ring->count;
728         tx_ring->next_to_clean = i;
729         u64_stats_update_begin(&tx_ring->syncp);
730         tx_ring->stats.bytes += total_bytes;
731         tx_ring->stats.packets += total_packets;
732         u64_stats_update_end(&tx_ring->syncp);
733         tx_ring->q_vector->tx.total_bytes += total_bytes;
734         tx_ring->q_vector->tx.total_packets += total_packets;
735
736         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
737                 unsigned int j = 0;
738
739                 /* check to see if there are < 4 descriptors
740                  * waiting to be written back, then kick the hardware to force
741                  * them to be written back in case we stay in NAPI.
742                  * In this mode on X722 we do not enable Interrupt.
743                  */
744                 j = i40e_get_tx_pending(tx_ring);
745
746                 if (budget &&
747                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
748                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
749                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
750                         tx_ring->arm_wb = true;
751         }
752
753         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
754                                                       tx_ring->queue_index),
755                                   total_packets, total_bytes);
756
757 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
758         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
759                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
760                 /* Make sure that anybody stopping the queue after this
761                  * sees the new next_to_clean.
762                  */
763                 smp_mb();
764                 if (__netif_subqueue_stopped(tx_ring->netdev,
765                                              tx_ring->queue_index) &&
766                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
767                         netif_wake_subqueue(tx_ring->netdev,
768                                             tx_ring->queue_index);
769                         ++tx_ring->tx_stats.restart_queue;
770                 }
771         }
772
773         return !!budget;
774 }
775
776 /**
777  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
778  * @vsi: the VSI we care about
779  * @q_vector: the vector  on which to force writeback
780  *
781  **/
782 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
783 {
784         u16 flags = q_vector->tx.ring[0].flags;
785
786         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
787                 u32 val;
788
789                 if (q_vector->arm_wb_state)
790                         return;
791
792                 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
793                         val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
794                               I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
795
796                         wr32(&vsi->back->hw,
797                              I40E_PFINT_DYN_CTLN(q_vector->v_idx +
798                                                  vsi->base_vector - 1),
799                              val);
800                 } else {
801                         val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
802                               I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
803
804                         wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
805                 }
806                 q_vector->arm_wb_state = true;
807         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
808                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
809                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
810                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
811                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
812                           /* allow 00 to be written to the index */
813
814                 wr32(&vsi->back->hw,
815                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
816                                          vsi->base_vector - 1), val);
817         } else {
818                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
819                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
820                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
821                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
822                         /* allow 00 to be written to the index */
823
824                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
825         }
826 }
827
828 /**
829  * i40e_set_new_dynamic_itr - Find new ITR level
830  * @rc: structure containing ring performance data
831  *
832  * Returns true if ITR changed, false if not
833  *
834  * Stores a new ITR value based on packets and byte counts during
835  * the last interrupt.  The advantage of per interrupt computation
836  * is faster updates and more accurate ITR for the current traffic
837  * pattern.  Constants in this function were computed based on
838  * theoretical maximum wire speed and thresholds were set based on
839  * testing data as well as attempting to minimize response time
840  * while increasing bulk throughput.
841  **/
842 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
843 {
844         enum i40e_latency_range new_latency_range = rc->latency_range;
845         struct i40e_q_vector *qv = rc->ring->q_vector;
846         u32 new_itr = rc->itr;
847         int bytes_per_int;
848         int usecs;
849
850         if (rc->total_packets == 0 || !rc->itr)
851                 return false;
852
853         /* simple throttlerate management
854          *   0-10MB/s   lowest (50000 ints/s)
855          *  10-20MB/s   low    (20000 ints/s)
856          *  20-1249MB/s bulk   (18000 ints/s)
857          *  > 40000 Rx packets per second (8000 ints/s)
858          *
859          * The math works out because the divisor is in 10^(-6) which
860          * turns the bytes/us input value into MB/s values, but
861          * make sure to use usecs, as the register values written
862          * are in 2 usec increments in the ITR registers, and make sure
863          * to use the smoothed values that the countdown timer gives us.
864          */
865         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
866         bytes_per_int = rc->total_bytes / usecs;
867
868         switch (new_latency_range) {
869         case I40E_LOWEST_LATENCY:
870                 if (bytes_per_int > 10)
871                         new_latency_range = I40E_LOW_LATENCY;
872                 break;
873         case I40E_LOW_LATENCY:
874                 if (bytes_per_int > 20)
875                         new_latency_range = I40E_BULK_LATENCY;
876                 else if (bytes_per_int <= 10)
877                         new_latency_range = I40E_LOWEST_LATENCY;
878                 break;
879         case I40E_BULK_LATENCY:
880         case I40E_ULTRA_LATENCY:
881         default:
882                 if (bytes_per_int <= 20)
883                         new_latency_range = I40E_LOW_LATENCY;
884                 break;
885         }
886
887         /* this is to adjust RX more aggressively when streaming small
888          * packets.  The value of 40000 was picked as it is just beyond
889          * what the hardware can receive per second if in low latency
890          * mode.
891          */
892 #define RX_ULTRA_PACKET_RATE 40000
893
894         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
895             (&qv->rx == rc))
896                 new_latency_range = I40E_ULTRA_LATENCY;
897
898         rc->latency_range = new_latency_range;
899
900         switch (new_latency_range) {
901         case I40E_LOWEST_LATENCY:
902                 new_itr = I40E_ITR_50K;
903                 break;
904         case I40E_LOW_LATENCY:
905                 new_itr = I40E_ITR_20K;
906                 break;
907         case I40E_BULK_LATENCY:
908                 new_itr = I40E_ITR_18K;
909                 break;
910         case I40E_ULTRA_LATENCY:
911                 new_itr = I40E_ITR_8K;
912                 break;
913         default:
914                 break;
915         }
916
917         rc->total_bytes = 0;
918         rc->total_packets = 0;
919
920         if (new_itr != rc->itr) {
921                 rc->itr = new_itr;
922                 return true;
923         }
924
925         return false;
926 }
927
928 /**
929  * i40e_clean_programming_status - clean the programming status descriptor
930  * @rx_ring: the rx ring that has this descriptor
931  * @rx_desc: the rx descriptor written back by HW
932  *
933  * Flow director should handle FD_FILTER_STATUS to check its filter programming
934  * status being successful or not and take actions accordingly. FCoE should
935  * handle its context/filter programming/invalidation status and take actions.
936  *
937  **/
938 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
939                                           union i40e_rx_desc *rx_desc)
940 {
941         u64 qw;
942         u8 id;
943
944         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
945         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
946                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
947
948         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
949                 i40e_fd_handle_status(rx_ring, rx_desc, id);
950 #ifdef I40E_FCOE
951         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
952                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
953                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
954 #endif
955 }
956
957 /**
958  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
959  * @tx_ring: the tx ring to set up
960  *
961  * Return 0 on success, negative on error
962  **/
963 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
964 {
965         struct device *dev = tx_ring->dev;
966         int bi_size;
967
968         if (!dev)
969                 return -ENOMEM;
970
971         /* warn if we are about to overwrite the pointer */
972         WARN_ON(tx_ring->tx_bi);
973         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
974         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
975         if (!tx_ring->tx_bi)
976                 goto err;
977
978         /* round up to nearest 4K */
979         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
980         /* add u32 for head writeback, align after this takes care of
981          * guaranteeing this is at least one cache line in size
982          */
983         tx_ring->size += sizeof(u32);
984         tx_ring->size = ALIGN(tx_ring->size, 4096);
985         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
986                                            &tx_ring->dma, GFP_KERNEL);
987         if (!tx_ring->desc) {
988                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
989                          tx_ring->size);
990                 goto err;
991         }
992
993         tx_ring->next_to_use = 0;
994         tx_ring->next_to_clean = 0;
995         return 0;
996
997 err:
998         kfree(tx_ring->tx_bi);
999         tx_ring->tx_bi = NULL;
1000         return -ENOMEM;
1001 }
1002
1003 /**
1004  * i40e_clean_rx_ring - Free Rx buffers
1005  * @rx_ring: ring to be cleaned
1006  **/
1007 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1008 {
1009         struct device *dev = rx_ring->dev;
1010         struct i40e_rx_buffer *rx_bi;
1011         unsigned long bi_size;
1012         u16 i;
1013
1014         /* ring already cleared, nothing to do */
1015         if (!rx_ring->rx_bi)
1016                 return;
1017
1018         if (ring_is_ps_enabled(rx_ring)) {
1019                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1020
1021                 rx_bi = &rx_ring->rx_bi[0];
1022                 if (rx_bi->hdr_buf) {
1023                         dma_free_coherent(dev,
1024                                           bufsz,
1025                                           rx_bi->hdr_buf,
1026                                           rx_bi->dma);
1027                         for (i = 0; i < rx_ring->count; i++) {
1028                                 rx_bi = &rx_ring->rx_bi[i];
1029                                 rx_bi->dma = 0;
1030                                 rx_bi->hdr_buf = NULL;
1031                         }
1032                 }
1033         }
1034         /* Free all the Rx ring sk_buffs */
1035         for (i = 0; i < rx_ring->count; i++) {
1036                 rx_bi = &rx_ring->rx_bi[i];
1037                 if (rx_bi->dma) {
1038                         dma_unmap_single(dev,
1039                                          rx_bi->dma,
1040                                          rx_ring->rx_buf_len,
1041                                          DMA_FROM_DEVICE);
1042                         rx_bi->dma = 0;
1043                 }
1044                 if (rx_bi->skb) {
1045                         dev_kfree_skb(rx_bi->skb);
1046                         rx_bi->skb = NULL;
1047                 }
1048                 if (rx_bi->page) {
1049                         if (rx_bi->page_dma) {
1050                                 dma_unmap_page(dev,
1051                                                rx_bi->page_dma,
1052                                                PAGE_SIZE / 2,
1053                                                DMA_FROM_DEVICE);
1054                                 rx_bi->page_dma = 0;
1055                         }
1056                         __free_page(rx_bi->page);
1057                         rx_bi->page = NULL;
1058                         rx_bi->page_offset = 0;
1059                 }
1060         }
1061
1062         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1063         memset(rx_ring->rx_bi, 0, bi_size);
1064
1065         /* Zero out the descriptor ring */
1066         memset(rx_ring->desc, 0, rx_ring->size);
1067
1068         rx_ring->next_to_clean = 0;
1069         rx_ring->next_to_use = 0;
1070 }
1071
1072 /**
1073  * i40e_free_rx_resources - Free Rx resources
1074  * @rx_ring: ring to clean the resources from
1075  *
1076  * Free all receive software resources
1077  **/
1078 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1079 {
1080         i40e_clean_rx_ring(rx_ring);
1081         kfree(rx_ring->rx_bi);
1082         rx_ring->rx_bi = NULL;
1083
1084         if (rx_ring->desc) {
1085                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1086                                   rx_ring->desc, rx_ring->dma);
1087                 rx_ring->desc = NULL;
1088         }
1089 }
1090
1091 /**
1092  * i40e_alloc_rx_headers - allocate rx header buffers
1093  * @rx_ring: ring to alloc buffers
1094  *
1095  * Allocate rx header buffers for the entire ring. As these are static,
1096  * this is only called when setting up a new ring.
1097  **/
1098 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1099 {
1100         struct device *dev = rx_ring->dev;
1101         struct i40e_rx_buffer *rx_bi;
1102         dma_addr_t dma;
1103         void *buffer;
1104         int buf_size;
1105         int i;
1106
1107         if (rx_ring->rx_bi[0].hdr_buf)
1108                 return;
1109         /* Make sure the buffers don't cross cache line boundaries. */
1110         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1111         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1112                                     &dma, GFP_KERNEL);
1113         if (!buffer)
1114                 return;
1115         for (i = 0; i < rx_ring->count; i++) {
1116                 rx_bi = &rx_ring->rx_bi[i];
1117                 rx_bi->dma = dma + (i * buf_size);
1118                 rx_bi->hdr_buf = buffer + (i * buf_size);
1119         }
1120 }
1121
1122 /**
1123  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1124  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1125  *
1126  * Returns 0 on success, negative on failure
1127  **/
1128 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1129 {
1130         struct device *dev = rx_ring->dev;
1131         int bi_size;
1132
1133         /* warn if we are about to overwrite the pointer */
1134         WARN_ON(rx_ring->rx_bi);
1135         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1136         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1137         if (!rx_ring->rx_bi)
1138                 goto err;
1139
1140         u64_stats_init(&rx_ring->syncp);
1141
1142         /* Round up to nearest 4K */
1143         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1144                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1145                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1146         rx_ring->size = ALIGN(rx_ring->size, 4096);
1147         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1148                                            &rx_ring->dma, GFP_KERNEL);
1149
1150         if (!rx_ring->desc) {
1151                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1152                          rx_ring->size);
1153                 goto err;
1154         }
1155
1156         rx_ring->next_to_clean = 0;
1157         rx_ring->next_to_use = 0;
1158
1159         return 0;
1160 err:
1161         kfree(rx_ring->rx_bi);
1162         rx_ring->rx_bi = NULL;
1163         return -ENOMEM;
1164 }
1165
1166 /**
1167  * i40e_release_rx_desc - Store the new tail and head values
1168  * @rx_ring: ring to bump
1169  * @val: new head index
1170  **/
1171 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1172 {
1173         rx_ring->next_to_use = val;
1174         /* Force memory writes to complete before letting h/w
1175          * know there are new descriptors to fetch.  (Only
1176          * applicable for weak-ordered memory model archs,
1177          * such as IA-64).
1178          */
1179         wmb();
1180         writel(val, rx_ring->tail);
1181 }
1182
1183 /**
1184  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1185  * @rx_ring: ring to place buffers on
1186  * @cleaned_count: number of buffers to replace
1187  **/
1188 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1189 {
1190         u16 i = rx_ring->next_to_use;
1191         union i40e_rx_desc *rx_desc;
1192         struct i40e_rx_buffer *bi;
1193
1194         /* do nothing if no valid netdev defined */
1195         if (!rx_ring->netdev || !cleaned_count)
1196                 return;
1197
1198         while (cleaned_count--) {
1199                 rx_desc = I40E_RX_DESC(rx_ring, i);
1200                 bi = &rx_ring->rx_bi[i];
1201
1202                 if (bi->skb) /* desc is in use */
1203                         goto no_buffers;
1204                 if (!bi->page) {
1205                         bi->page = alloc_page(GFP_ATOMIC);
1206                         if (!bi->page) {
1207                                 rx_ring->rx_stats.alloc_page_failed++;
1208                                 goto no_buffers;
1209                         }
1210                 }
1211
1212                 if (!bi->page_dma) {
1213                         /* use a half page if we're re-using */
1214                         bi->page_offset ^= PAGE_SIZE / 2;
1215                         bi->page_dma = dma_map_page(rx_ring->dev,
1216                                                     bi->page,
1217                                                     bi->page_offset,
1218                                                     PAGE_SIZE / 2,
1219                                                     DMA_FROM_DEVICE);
1220                         if (dma_mapping_error(rx_ring->dev,
1221                                               bi->page_dma)) {
1222                                 rx_ring->rx_stats.alloc_page_failed++;
1223                                 bi->page_dma = 0;
1224                                 goto no_buffers;
1225                         }
1226                 }
1227
1228                 dma_sync_single_range_for_device(rx_ring->dev,
1229                                                  rx_ring->rx_bi[0].dma,
1230                                                  i * rx_ring->rx_hdr_len,
1231                                                  rx_ring->rx_hdr_len,
1232                                                  DMA_FROM_DEVICE);
1233                 /* Refresh the desc even if buffer_addrs didn't change
1234                  * because each write-back erases this info.
1235                  */
1236                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1237                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1238                 i++;
1239                 if (i == rx_ring->count)
1240                         i = 0;
1241         }
1242
1243 no_buffers:
1244         if (rx_ring->next_to_use != i)
1245                 i40e_release_rx_desc(rx_ring, i);
1246 }
1247
1248 /**
1249  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1250  * @rx_ring: ring to place buffers on
1251  * @cleaned_count: number of buffers to replace
1252  **/
1253 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1254 {
1255         u16 i = rx_ring->next_to_use;
1256         union i40e_rx_desc *rx_desc;
1257         struct i40e_rx_buffer *bi;
1258         struct sk_buff *skb;
1259
1260         /* do nothing if no valid netdev defined */
1261         if (!rx_ring->netdev || !cleaned_count)
1262                 return;
1263
1264         while (cleaned_count--) {
1265                 rx_desc = I40E_RX_DESC(rx_ring, i);
1266                 bi = &rx_ring->rx_bi[i];
1267                 skb = bi->skb;
1268
1269                 if (!skb) {
1270                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1271                                                         rx_ring->rx_buf_len);
1272                         if (!skb) {
1273                                 rx_ring->rx_stats.alloc_buff_failed++;
1274                                 goto no_buffers;
1275                         }
1276                         /* initialize queue mapping */
1277                         skb_record_rx_queue(skb, rx_ring->queue_index);
1278                         bi->skb = skb;
1279                 }
1280
1281                 if (!bi->dma) {
1282                         bi->dma = dma_map_single(rx_ring->dev,
1283                                                  skb->data,
1284                                                  rx_ring->rx_buf_len,
1285                                                  DMA_FROM_DEVICE);
1286                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1287                                 rx_ring->rx_stats.alloc_buff_failed++;
1288                                 bi->dma = 0;
1289                                 goto no_buffers;
1290                         }
1291                 }
1292
1293                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1294                 rx_desc->read.hdr_addr = 0;
1295                 i++;
1296                 if (i == rx_ring->count)
1297                         i = 0;
1298         }
1299
1300 no_buffers:
1301         if (rx_ring->next_to_use != i)
1302                 i40e_release_rx_desc(rx_ring, i);
1303 }
1304
1305 /**
1306  * i40e_receive_skb - Send a completed packet up the stack
1307  * @rx_ring:  rx ring in play
1308  * @skb: packet to send up
1309  * @vlan_tag: vlan tag for packet
1310  **/
1311 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1312                              struct sk_buff *skb, u16 vlan_tag)
1313 {
1314         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1315
1316         if (vlan_tag & VLAN_VID_MASK)
1317                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1318
1319         napi_gro_receive(&q_vector->napi, skb);
1320 }
1321
1322 /**
1323  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1324  * @vsi: the VSI we care about
1325  * @skb: skb currently being received and modified
1326  * @rx_status: status value of last descriptor in packet
1327  * @rx_error: error value of last descriptor in packet
1328  * @rx_ptype: ptype value of last descriptor in packet
1329  **/
1330 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1331                                     struct sk_buff *skb,
1332                                     u32 rx_status,
1333                                     u32 rx_error,
1334                                     u16 rx_ptype)
1335 {
1336         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1337         bool ipv4 = false, ipv6 = false;
1338         bool ipv4_tunnel, ipv6_tunnel;
1339         __wsum rx_udp_csum;
1340         struct iphdr *iph;
1341         __sum16 csum;
1342
1343         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1344                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1345         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1346                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1347
1348         skb->ip_summed = CHECKSUM_NONE;
1349
1350         /* Rx csum enabled and ip headers found? */
1351         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1352                 return;
1353
1354         /* did the hardware decode the packet and checksum? */
1355         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1356                 return;
1357
1358         /* both known and outer_ip must be set for the below code to work */
1359         if (!(decoded.known && decoded.outer_ip))
1360                 return;
1361
1362         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1363             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1364                 ipv4 = true;
1365         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1366                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1367                 ipv6 = true;
1368
1369         if (ipv4 &&
1370             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1371                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1372                 goto checksum_fail;
1373
1374         /* likely incorrect csum if alternate IP extension headers found */
1375         if (ipv6 &&
1376             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1377                 /* don't increment checksum err here, non-fatal err */
1378                 return;
1379
1380         /* there was some L4 error, count error and punt packet to the stack */
1381         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1382                 goto checksum_fail;
1383
1384         /* handle packets that were not able to be checksummed due
1385          * to arrival speed, in this case the stack can compute
1386          * the csum.
1387          */
1388         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1389                 return;
1390
1391         /* If VXLAN/GENEVE traffic has an outer UDPv4 checksum we need to check
1392          * it in the driver, hardware does not do it for us.
1393          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1394          * so the total length of IPv4 header is IHL*4 bytes
1395          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1396          */
1397         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1398             (ipv4_tunnel)) {
1399                 skb->transport_header = skb->mac_header +
1400                                         sizeof(struct ethhdr) +
1401                                         (ip_hdr(skb)->ihl * 4);
1402
1403                 /* Add 4 bytes for VLAN tagged packets */
1404                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1405                                           skb->protocol == htons(ETH_P_8021AD))
1406                                           ? VLAN_HLEN : 0;
1407
1408                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1409                     (udp_hdr(skb)->check != 0)) {
1410                         rx_udp_csum = udp_csum(skb);
1411                         iph = ip_hdr(skb);
1412                         csum = csum_tcpudp_magic(
1413                                         iph->saddr, iph->daddr,
1414                                         (skb->len - skb_transport_offset(skb)),
1415                                         IPPROTO_UDP, rx_udp_csum);
1416
1417                         if (udp_hdr(skb)->check != csum)
1418                                 goto checksum_fail;
1419
1420                 } /* else its GRE and so no outer UDP header */
1421         }
1422
1423         skb->ip_summed = CHECKSUM_UNNECESSARY;
1424         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1425
1426         return;
1427
1428 checksum_fail:
1429         vsi->back->hw_csum_rx_error++;
1430 }
1431
1432 /**
1433  * i40e_ptype_to_htype - get a hash type
1434  * @ptype: the ptype value from the descriptor
1435  *
1436  * Returns a hash type to be used by skb_set_hash
1437  **/
1438 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1439 {
1440         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1441
1442         if (!decoded.known)
1443                 return PKT_HASH_TYPE_NONE;
1444
1445         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1446             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1447                 return PKT_HASH_TYPE_L4;
1448         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1449                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1450                 return PKT_HASH_TYPE_L3;
1451         else
1452                 return PKT_HASH_TYPE_L2;
1453 }
1454
1455 /**
1456  * i40e_rx_hash - set the hash value in the skb
1457  * @ring: descriptor ring
1458  * @rx_desc: specific descriptor
1459  **/
1460 static inline void i40e_rx_hash(struct i40e_ring *ring,
1461                                 union i40e_rx_desc *rx_desc,
1462                                 struct sk_buff *skb,
1463                                 u8 rx_ptype)
1464 {
1465         u32 hash;
1466         const __le64 rss_mask  =
1467                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1468                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1469
1470         if (ring->netdev->features & NETIF_F_RXHASH)
1471                 return;
1472
1473         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1474                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1475                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1476         }
1477 }
1478
1479 /**
1480  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1481  * @rx_ring:  rx ring to clean
1482  * @budget:   how many cleans we're allowed
1483  *
1484  * Returns true if there's any budget left (e.g. the clean is finished)
1485  **/
1486 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1487 {
1488         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1489         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1490         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1491         const int current_node = numa_mem_id();
1492         struct i40e_vsi *vsi = rx_ring->vsi;
1493         u16 i = rx_ring->next_to_clean;
1494         union i40e_rx_desc *rx_desc;
1495         u32 rx_error, rx_status;
1496         u8 rx_ptype;
1497         u64 qword;
1498
1499         if (budget <= 0)
1500                 return 0;
1501
1502         do {
1503                 struct i40e_rx_buffer *rx_bi;
1504                 struct sk_buff *skb;
1505                 u16 vlan_tag;
1506                 /* return some buffers to hardware, one at a time is too slow */
1507                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1508                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1509                         cleaned_count = 0;
1510                 }
1511
1512                 i = rx_ring->next_to_clean;
1513                 rx_desc = I40E_RX_DESC(rx_ring, i);
1514                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1515                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1516                         I40E_RXD_QW1_STATUS_SHIFT;
1517
1518                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1519                         break;
1520
1521                 /* This memory barrier is needed to keep us from reading
1522                  * any other fields out of the rx_desc until we know the
1523                  * DD bit is set.
1524                  */
1525                 dma_rmb();
1526                 if (i40e_rx_is_programming_status(qword)) {
1527                         i40e_clean_programming_status(rx_ring, rx_desc);
1528                         I40E_RX_INCREMENT(rx_ring, i);
1529                         continue;
1530                 }
1531                 rx_bi = &rx_ring->rx_bi[i];
1532                 skb = rx_bi->skb;
1533                 if (likely(!skb)) {
1534                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1535                                                         rx_ring->rx_hdr_len);
1536                         if (!skb) {
1537                                 rx_ring->rx_stats.alloc_buff_failed++;
1538                                 break;
1539                         }
1540
1541                         /* initialize queue mapping */
1542                         skb_record_rx_queue(skb, rx_ring->queue_index);
1543                         /* we are reusing so sync this buffer for CPU use */
1544                         dma_sync_single_range_for_cpu(rx_ring->dev,
1545                                                       rx_ring->rx_bi[0].dma,
1546                                                       i * rx_ring->rx_hdr_len,
1547                                                       rx_ring->rx_hdr_len,
1548                                                       DMA_FROM_DEVICE);
1549                 }
1550                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1551                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1552                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1553                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1554                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1555                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1556
1557                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1558                            I40E_RXD_QW1_ERROR_SHIFT;
1559                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1560                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1561
1562                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1563                            I40E_RXD_QW1_PTYPE_SHIFT;
1564                 prefetch(rx_bi->page);
1565                 rx_bi->skb = NULL;
1566                 cleaned_count++;
1567                 if (rx_hbo || rx_sph) {
1568                         int len;
1569
1570                         if (rx_hbo)
1571                                 len = I40E_RX_HDR_SIZE;
1572                         else
1573                                 len = rx_header_len;
1574                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1575                 } else if (skb->len == 0) {
1576                         int len;
1577
1578                         len = (rx_packet_len > skb_headlen(skb) ?
1579                                 skb_headlen(skb) : rx_packet_len);
1580                         memcpy(__skb_put(skb, len),
1581                                rx_bi->page + rx_bi->page_offset,
1582                                len);
1583                         rx_bi->page_offset += len;
1584                         rx_packet_len -= len;
1585                 }
1586
1587                 /* Get the rest of the data if this was a header split */
1588                 if (rx_packet_len) {
1589                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1590                                            rx_bi->page,
1591                                            rx_bi->page_offset,
1592                                            rx_packet_len);
1593
1594                         skb->len += rx_packet_len;
1595                         skb->data_len += rx_packet_len;
1596                         skb->truesize += rx_packet_len;
1597
1598                         if ((page_count(rx_bi->page) == 1) &&
1599                             (page_to_nid(rx_bi->page) == current_node))
1600                                 get_page(rx_bi->page);
1601                         else
1602                                 rx_bi->page = NULL;
1603
1604                         dma_unmap_page(rx_ring->dev,
1605                                        rx_bi->page_dma,
1606                                        PAGE_SIZE / 2,
1607                                        DMA_FROM_DEVICE);
1608                         rx_bi->page_dma = 0;
1609                 }
1610                 I40E_RX_INCREMENT(rx_ring, i);
1611
1612                 if (unlikely(
1613                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1614                         struct i40e_rx_buffer *next_buffer;
1615
1616                         next_buffer = &rx_ring->rx_bi[i];
1617                         next_buffer->skb = skb;
1618                         rx_ring->rx_stats.non_eop_descs++;
1619                         continue;
1620                 }
1621
1622                 /* ERR_MASK will only have valid bits if EOP set */
1623                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1624                         dev_kfree_skb_any(skb);
1625                         continue;
1626                 }
1627
1628                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1629
1630                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1631                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1632                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1633                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1634                         rx_ring->last_rx_timestamp = jiffies;
1635                 }
1636
1637                 /* probably a little skewed due to removing CRC */
1638                 total_rx_bytes += skb->len;
1639                 total_rx_packets++;
1640
1641                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1642
1643                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1644
1645                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1646                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1647                          : 0;
1648 #ifdef I40E_FCOE
1649                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1650                         dev_kfree_skb_any(skb);
1651                         continue;
1652                 }
1653 #endif
1654                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1655
1656                 rx_desc->wb.qword1.status_error_len = 0;
1657
1658         } while (likely(total_rx_packets < budget));
1659
1660         u64_stats_update_begin(&rx_ring->syncp);
1661         rx_ring->stats.packets += total_rx_packets;
1662         rx_ring->stats.bytes += total_rx_bytes;
1663         u64_stats_update_end(&rx_ring->syncp);
1664         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1665         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1666
1667         return total_rx_packets;
1668 }
1669
1670 /**
1671  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1672  * @rx_ring:  rx ring to clean
1673  * @budget:   how many cleans we're allowed
1674  *
1675  * Returns number of packets cleaned
1676  **/
1677 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1678 {
1679         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1680         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1681         struct i40e_vsi *vsi = rx_ring->vsi;
1682         union i40e_rx_desc *rx_desc;
1683         u32 rx_error, rx_status;
1684         u16 rx_packet_len;
1685         u8 rx_ptype;
1686         u64 qword;
1687         u16 i;
1688
1689         do {
1690                 struct i40e_rx_buffer *rx_bi;
1691                 struct sk_buff *skb;
1692                 u16 vlan_tag;
1693                 /* return some buffers to hardware, one at a time is too slow */
1694                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1695                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1696                         cleaned_count = 0;
1697                 }
1698
1699                 i = rx_ring->next_to_clean;
1700                 rx_desc = I40E_RX_DESC(rx_ring, i);
1701                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1702                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1703                         I40E_RXD_QW1_STATUS_SHIFT;
1704
1705                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1706                         break;
1707
1708                 /* This memory barrier is needed to keep us from reading
1709                  * any other fields out of the rx_desc until we know the
1710                  * DD bit is set.
1711                  */
1712                 dma_rmb();
1713
1714                 if (i40e_rx_is_programming_status(qword)) {
1715                         i40e_clean_programming_status(rx_ring, rx_desc);
1716                         I40E_RX_INCREMENT(rx_ring, i);
1717                         continue;
1718                 }
1719                 rx_bi = &rx_ring->rx_bi[i];
1720                 skb = rx_bi->skb;
1721                 prefetch(skb->data);
1722
1723                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1724                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1725
1726                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1727                            I40E_RXD_QW1_ERROR_SHIFT;
1728                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1729
1730                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1731                            I40E_RXD_QW1_PTYPE_SHIFT;
1732                 rx_bi->skb = NULL;
1733                 cleaned_count++;
1734
1735                 /* Get the header and possibly the whole packet
1736                  * If this is an skb from previous receive dma will be 0
1737                  */
1738                 skb_put(skb, rx_packet_len);
1739                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1740                                  DMA_FROM_DEVICE);
1741                 rx_bi->dma = 0;
1742
1743                 I40E_RX_INCREMENT(rx_ring, i);
1744
1745                 if (unlikely(
1746                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1747                         rx_ring->rx_stats.non_eop_descs++;
1748                         continue;
1749                 }
1750
1751                 /* ERR_MASK will only have valid bits if EOP set */
1752                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1753                         dev_kfree_skb_any(skb);
1754                         continue;
1755                 }
1756
1757                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1758                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1759                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1760                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1761                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1762                         rx_ring->last_rx_timestamp = jiffies;
1763                 }
1764
1765                 /* probably a little skewed due to removing CRC */
1766                 total_rx_bytes += skb->len;
1767                 total_rx_packets++;
1768
1769                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1770
1771                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1772
1773                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1774                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1775                          : 0;
1776 #ifdef I40E_FCOE
1777                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1778                         dev_kfree_skb_any(skb);
1779                         continue;
1780                 }
1781 #endif
1782                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1783
1784                 rx_desc->wb.qword1.status_error_len = 0;
1785         } while (likely(total_rx_packets < budget));
1786
1787         u64_stats_update_begin(&rx_ring->syncp);
1788         rx_ring->stats.packets += total_rx_packets;
1789         rx_ring->stats.bytes += total_rx_bytes;
1790         u64_stats_update_end(&rx_ring->syncp);
1791         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1792         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1793
1794         return total_rx_packets;
1795 }
1796
1797 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1798 {
1799         u32 val;
1800
1801         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1802               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1803               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1804               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1805
1806         return val;
1807 }
1808
1809 /* a small macro to shorten up some long lines */
1810 #define INTREG I40E_PFINT_DYN_CTLN
1811
1812 /**
1813  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1814  * @vsi: the VSI we care about
1815  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1816  *
1817  **/
1818 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1819                                           struct i40e_q_vector *q_vector)
1820 {
1821         struct i40e_hw *hw = &vsi->back->hw;
1822         bool rx = false, tx = false;
1823         u32 rxval, txval;
1824         int vector;
1825
1826         vector = (q_vector->v_idx + vsi->base_vector);
1827
1828         /* avoid dynamic calculation if in countdown mode OR if
1829          * all dynamic is disabled
1830          */
1831         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1832
1833         if (q_vector->itr_countdown > 0 ||
1834             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1835              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1836                 goto enable_int;
1837         }
1838
1839         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1840                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1841                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1842         }
1843
1844         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1845                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1846                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1847         }
1848
1849         if (rx || tx) {
1850                 /* get the higher of the two ITR adjustments and
1851                  * use the same value for both ITR registers
1852                  * when in adaptive mode (Rx and/or Tx)
1853                  */
1854                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1855
1856                 q_vector->tx.itr = q_vector->rx.itr = itr;
1857                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1858                 tx = true;
1859                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1860                 rx = true;
1861         }
1862
1863         /* only need to enable the interrupt once, but need
1864          * to possibly update both ITR values
1865          */
1866         if (rx) {
1867                 /* set the INTENA_MSK_MASK so that this first write
1868                  * won't actually enable the interrupt, instead just
1869                  * updating the ITR (it's bit 31 PF and VF)
1870                  */
1871                 rxval |= BIT(31);
1872                 /* don't check _DOWN because interrupt isn't being enabled */
1873                 wr32(hw, INTREG(vector - 1), rxval);
1874         }
1875
1876 enable_int:
1877         if (!test_bit(__I40E_DOWN, &vsi->state))
1878                 wr32(hw, INTREG(vector - 1), txval);
1879
1880         if (q_vector->itr_countdown)
1881                 q_vector->itr_countdown--;
1882         else
1883                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1884 }
1885
1886 /**
1887  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1888  * @napi: napi struct with our devices info in it
1889  * @budget: amount of work driver is allowed to do this pass, in packets
1890  *
1891  * This function will clean all queues associated with a q_vector.
1892  *
1893  * Returns the amount of work done
1894  **/
1895 int i40e_napi_poll(struct napi_struct *napi, int budget)
1896 {
1897         struct i40e_q_vector *q_vector =
1898                                container_of(napi, struct i40e_q_vector, napi);
1899         struct i40e_vsi *vsi = q_vector->vsi;
1900         struct i40e_ring *ring;
1901         bool clean_complete = true;
1902         bool arm_wb = false;
1903         int budget_per_ring;
1904         int work_done = 0;
1905
1906         if (test_bit(__I40E_DOWN, &vsi->state)) {
1907                 napi_complete(napi);
1908                 return 0;
1909         }
1910
1911         /* Clear hung_detected bit */
1912         clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1913         /* Since the actual Tx work is minimal, we can give the Tx a larger
1914          * budget and be more aggressive about cleaning up the Tx descriptors.
1915          */
1916         i40e_for_each_ring(ring, q_vector->tx) {
1917                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1918                 arm_wb = arm_wb || ring->arm_wb;
1919                 ring->arm_wb = false;
1920         }
1921
1922         /* Handle case where we are called by netpoll with a budget of 0 */
1923         if (budget <= 0)
1924                 goto tx_only;
1925
1926         /* We attempt to distribute budget to each Rx queue fairly, but don't
1927          * allow the budget to go below 1 because that would exit polling early.
1928          */
1929         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1930
1931         i40e_for_each_ring(ring, q_vector->rx) {
1932                 int cleaned;
1933
1934                 if (ring_is_ps_enabled(ring))
1935                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1936                 else
1937                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1938
1939                 work_done += cleaned;
1940                 /* if we didn't clean as many as budgeted, we must be done */
1941                 clean_complete &= (budget_per_ring != cleaned);
1942         }
1943
1944         /* If work not completed, return budget and polling will return */
1945         if (!clean_complete) {
1946 tx_only:
1947                 if (arm_wb) {
1948                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1949                         i40e_force_wb(vsi, q_vector);
1950                 }
1951                 return budget;
1952         }
1953
1954         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1955                 q_vector->arm_wb_state = false;
1956
1957         /* Work is done so exit the polling mode and re-enable the interrupt */
1958         napi_complete_done(napi, work_done);
1959         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1960                 i40e_update_enable_itr(vsi, q_vector);
1961         } else { /* Legacy mode */
1962                 struct i40e_hw *hw = &vsi->back->hw;
1963                 /* We re-enable the queue 0 cause, but
1964                  * don't worry about dynamic_enable
1965                  * because we left it on for the other
1966                  * possible interrupts during napi
1967                  */
1968                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1969                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1970
1971                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1972                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1973                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1974                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1975                 i40e_irq_dynamic_enable_icr0(vsi->back);
1976         }
1977         return 0;
1978 }
1979
1980 /**
1981  * i40e_atr - Add a Flow Director ATR filter
1982  * @tx_ring:  ring to add programming descriptor to
1983  * @skb:      send buffer
1984  * @tx_flags: send tx flags
1985  * @protocol: wire protocol
1986  **/
1987 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1988                      u32 tx_flags, __be16 protocol)
1989 {
1990         struct i40e_filter_program_desc *fdir_desc;
1991         struct i40e_pf *pf = tx_ring->vsi->back;
1992         union {
1993                 unsigned char *network;
1994                 struct iphdr *ipv4;
1995                 struct ipv6hdr *ipv6;
1996         } hdr;
1997         struct tcphdr *th;
1998         unsigned int hlen;
1999         u32 flex_ptype, dtype_cmd;
2000         u16 i;
2001
2002         /* make sure ATR is enabled */
2003         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2004                 return;
2005
2006         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2007                 return;
2008
2009         /* if sampling is disabled do nothing */
2010         if (!tx_ring->atr_sample_rate)
2011                 return;
2012
2013         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2014                 return;
2015
2016         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) {
2017                 /* snag network header to get L4 type and address */
2018                 hdr.network = skb_network_header(skb);
2019
2020                 /* Currently only IPv4/IPv6 with TCP is supported
2021                  * access ihl as u8 to avoid unaligned access on ia64
2022                  */
2023                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2024                         hlen = (hdr.network[0] & 0x0F) << 2;
2025                 else if (protocol == htons(ETH_P_IPV6))
2026                         hlen = sizeof(struct ipv6hdr);
2027                 else
2028                         return;
2029         } else {
2030                 hdr.network = skb_inner_network_header(skb);
2031                 hlen = skb_inner_network_header_len(skb);
2032         }
2033
2034         /* Currently only IPv4/IPv6 with TCP is supported
2035          * Note: tx_flags gets modified to reflect inner protocols in
2036          * tx_enable_csum function if encap is enabled.
2037          */
2038         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2039             (hdr.ipv4->protocol != IPPROTO_TCP))
2040                 return;
2041         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2042                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2043                 return;
2044
2045         th = (struct tcphdr *)(hdr.network + hlen);
2046
2047         /* Due to lack of space, no more new filters can be programmed */
2048         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2049                 return;
2050         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2051                 /* HW ATR eviction will take care of removing filters on FIN
2052                  * and RST packets.
2053                  */
2054                 if (th->fin || th->rst)
2055                         return;
2056         }
2057
2058         tx_ring->atr_count++;
2059
2060         /* sample on all syn/fin/rst packets or once every atr sample rate */
2061         if (!th->fin &&
2062             !th->syn &&
2063             !th->rst &&
2064             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2065                 return;
2066
2067         tx_ring->atr_count = 0;
2068
2069         /* grab the next descriptor */
2070         i = tx_ring->next_to_use;
2071         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2072
2073         i++;
2074         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2075
2076         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2077                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2078         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2079                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2080                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2081                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2082                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2083
2084         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2085
2086         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2087
2088         dtype_cmd |= (th->fin || th->rst) ?
2089                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2090                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2091                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2092                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2093
2094         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2095                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2096
2097         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2098                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2099
2100         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2101         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2102                 dtype_cmd |=
2103                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2104                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2105                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2106         else
2107                 dtype_cmd |=
2108                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2109                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2110                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2111
2112         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2113                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2114
2115         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2116         fdir_desc->rsvd = cpu_to_le32(0);
2117         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2118         fdir_desc->fd_id = cpu_to_le32(0);
2119 }
2120
2121 /**
2122  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2123  * @skb:     send buffer
2124  * @tx_ring: ring to send buffer on
2125  * @flags:   the tx flags to be set
2126  *
2127  * Checks the skb and set up correspondingly several generic transmit flags
2128  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2129  *
2130  * Returns error code indicate the frame should be dropped upon error and the
2131  * otherwise  returns 0 to indicate the flags has been set properly.
2132  **/
2133 #ifdef I40E_FCOE
2134 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2135                                       struct i40e_ring *tx_ring,
2136                                       u32 *flags)
2137 #else
2138 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2139                                              struct i40e_ring *tx_ring,
2140                                              u32 *flags)
2141 #endif
2142 {
2143         __be16 protocol = skb->protocol;
2144         u32  tx_flags = 0;
2145
2146         if (protocol == htons(ETH_P_8021Q) &&
2147             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2148                 /* When HW VLAN acceleration is turned off by the user the
2149                  * stack sets the protocol to 8021q so that the driver
2150                  * can take any steps required to support the SW only
2151                  * VLAN handling.  In our case the driver doesn't need
2152                  * to take any further steps so just set the protocol
2153                  * to the encapsulated ethertype.
2154                  */
2155                 skb->protocol = vlan_get_protocol(skb);
2156                 goto out;
2157         }
2158
2159         /* if we have a HW VLAN tag being added, default to the HW one */
2160         if (skb_vlan_tag_present(skb)) {
2161                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2162                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2163         /* else if it is a SW VLAN, check the next protocol and store the tag */
2164         } else if (protocol == htons(ETH_P_8021Q)) {
2165                 struct vlan_hdr *vhdr, _vhdr;
2166
2167                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2168                 if (!vhdr)
2169                         return -EINVAL;
2170
2171                 protocol = vhdr->h_vlan_encapsulated_proto;
2172                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2173                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2174         }
2175
2176         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2177                 goto out;
2178
2179         /* Insert 802.1p priority into VLAN header */
2180         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2181             (skb->priority != TC_PRIO_CONTROL)) {
2182                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2183                 tx_flags |= (skb->priority & 0x7) <<
2184                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2185                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2186                         struct vlan_ethhdr *vhdr;
2187                         int rc;
2188
2189                         rc = skb_cow_head(skb, 0);
2190                         if (rc < 0)
2191                                 return rc;
2192                         vhdr = (struct vlan_ethhdr *)skb->data;
2193                         vhdr->h_vlan_TCI = htons(tx_flags >>
2194                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2195                 } else {
2196                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2197                 }
2198         }
2199
2200 out:
2201         *flags = tx_flags;
2202         return 0;
2203 }
2204
2205 /**
2206  * i40e_tso - set up the tso context descriptor
2207  * @tx_ring:  ptr to the ring to send
2208  * @skb:      ptr to the skb we're sending
2209  * @hdr_len:  ptr to the size of the packet header
2210  * @cd_type_cmd_tso_mss: Quad Word 1
2211  *
2212  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2213  **/
2214 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2215                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2216 {
2217         u32 cd_cmd, cd_tso_len, cd_mss;
2218         struct ipv6hdr *ipv6h;
2219         struct tcphdr *tcph;
2220         struct iphdr *iph;
2221         u32 l4len;
2222         int err;
2223
2224         if (!skb_is_gso(skb))
2225                 return 0;
2226
2227         err = skb_cow_head(skb, 0);
2228         if (err < 0)
2229                 return err;
2230
2231         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2232         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2233
2234         if (iph->version == 4) {
2235                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2236                 iph->tot_len = 0;
2237                 iph->check = 0;
2238                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2239                                                  0, IPPROTO_TCP, 0);
2240         } else if (ipv6h->version == 6) {
2241                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2242                 ipv6h->payload_len = 0;
2243                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2244                                                0, IPPROTO_TCP, 0);
2245         }
2246
2247         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2248         *hdr_len = (skb->encapsulation
2249                     ? (skb_inner_transport_header(skb) - skb->data)
2250                     : skb_transport_offset(skb)) + l4len;
2251
2252         /* find the field values */
2253         cd_cmd = I40E_TX_CTX_DESC_TSO;
2254         cd_tso_len = skb->len - *hdr_len;
2255         cd_mss = skb_shinfo(skb)->gso_size;
2256         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2257                                 ((u64)cd_tso_len <<
2258                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2259                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2260         return 1;
2261 }
2262
2263 /**
2264  * i40e_tsyn - set up the tsyn context descriptor
2265  * @tx_ring:  ptr to the ring to send
2266  * @skb:      ptr to the skb we're sending
2267  * @tx_flags: the collected send information
2268  * @cd_type_cmd_tso_mss: Quad Word 1
2269  *
2270  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2271  **/
2272 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2273                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2274 {
2275         struct i40e_pf *pf;
2276
2277         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2278                 return 0;
2279
2280         /* Tx timestamps cannot be sampled when doing TSO */
2281         if (tx_flags & I40E_TX_FLAGS_TSO)
2282                 return 0;
2283
2284         /* only timestamp the outbound packet if the user has requested it and
2285          * we are not already transmitting a packet to be timestamped
2286          */
2287         pf = i40e_netdev_to_pf(tx_ring->netdev);
2288         if (!(pf->flags & I40E_FLAG_PTP))
2289                 return 0;
2290
2291         if (pf->ptp_tx &&
2292             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2293                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2294                 pf->ptp_tx_skb = skb_get(skb);
2295         } else {
2296                 return 0;
2297         }
2298
2299         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2300                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2301
2302         return 1;
2303 }
2304
2305 /**
2306  * i40e_tx_enable_csum - Enable Tx checksum offloads
2307  * @skb: send buffer
2308  * @tx_flags: pointer to Tx flags currently set
2309  * @td_cmd: Tx descriptor command bits to set
2310  * @td_offset: Tx descriptor header offsets to set
2311  * @tx_ring: Tx descriptor ring
2312  * @cd_tunneling: ptr to context desc bits
2313  **/
2314 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2315                                 u32 *td_cmd, u32 *td_offset,
2316                                 struct i40e_ring *tx_ring,
2317                                 u32 *cd_tunneling)
2318 {
2319         struct ipv6hdr *this_ipv6_hdr;
2320         unsigned int this_tcp_hdrlen;
2321         struct iphdr *this_ip_hdr;
2322         u32 network_hdr_len;
2323         u8 l4_hdr = 0;
2324         struct udphdr *oudph = NULL;
2325         struct iphdr *oiph = NULL;
2326         u32 l4_tunnel = 0;
2327
2328         if (skb->encapsulation) {
2329                 switch (ip_hdr(skb)->protocol) {
2330                 case IPPROTO_UDP:
2331                         oudph = udp_hdr(skb);
2332                         oiph = ip_hdr(skb);
2333                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2334                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2335                         break;
2336                 case IPPROTO_GRE:
2337                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2338                         break;
2339                 default:
2340                         return;
2341                 }
2342                 network_hdr_len = skb_inner_network_header_len(skb);
2343                 this_ip_hdr = inner_ip_hdr(skb);
2344                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2345                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2346
2347                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2348                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2349                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2350                                 ip_hdr(skb)->check = 0;
2351                         } else {
2352                                 *cd_tunneling |=
2353                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2354                         }
2355                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2356                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2357                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2358                                 ip_hdr(skb)->check = 0;
2359                 }
2360
2361                 /* Now set the ctx descriptor fields */
2362                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2363                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2364                                    l4_tunnel                             |
2365                                    ((skb_inner_network_offset(skb) -
2366                                         skb_transport_offset(skb)) >> 1) <<
2367                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2368                 if (this_ip_hdr->version == 6) {
2369                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2370                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2371                 }
2372                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2373                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2374                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2375                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2376                                         oiph->daddr,
2377                                         (skb->len - skb_transport_offset(skb)),
2378                                         IPPROTO_UDP, 0);
2379                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2380                 }
2381         } else {
2382                 network_hdr_len = skb_network_header_len(skb);
2383                 this_ip_hdr = ip_hdr(skb);
2384                 this_ipv6_hdr = ipv6_hdr(skb);
2385                 this_tcp_hdrlen = tcp_hdrlen(skb);
2386         }
2387
2388         /* Enable IP checksum offloads */
2389         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2390                 l4_hdr = this_ip_hdr->protocol;
2391                 /* the stack computes the IP header already, the only time we
2392                  * need the hardware to recompute it is in the case of TSO.
2393                  */
2394                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2395                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2396                         this_ip_hdr->check = 0;
2397                 } else {
2398                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2399                 }
2400                 /* Now set the td_offset for IP header length */
2401                 *td_offset = (network_hdr_len >> 2) <<
2402                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2403         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2404                 l4_hdr = this_ipv6_hdr->nexthdr;
2405                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2406                 /* Now set the td_offset for IP header length */
2407                 *td_offset = (network_hdr_len >> 2) <<
2408                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2409         }
2410         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2411         *td_offset |= (skb_network_offset(skb) >> 1) <<
2412                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2413
2414         /* Enable L4 checksum offloads */
2415         switch (l4_hdr) {
2416         case IPPROTO_TCP:
2417                 /* enable checksum offloads */
2418                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2419                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2420                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2421                 break;
2422         case IPPROTO_SCTP:
2423                 /* enable SCTP checksum offload */
2424                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2425                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2426                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2427                 break;
2428         case IPPROTO_UDP:
2429                 /* enable UDP checksum offload */
2430                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2431                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2432                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2433                 break;
2434         default:
2435                 break;
2436         }
2437 }
2438
2439 /**
2440  * i40e_create_tx_ctx Build the Tx context descriptor
2441  * @tx_ring:  ring to create the descriptor on
2442  * @cd_type_cmd_tso_mss: Quad Word 1
2443  * @cd_tunneling: Quad Word 0 - bits 0-31
2444  * @cd_l2tag2: Quad Word 0 - bits 32-63
2445  **/
2446 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2447                                const u64 cd_type_cmd_tso_mss,
2448                                const u32 cd_tunneling, const u32 cd_l2tag2)
2449 {
2450         struct i40e_tx_context_desc *context_desc;
2451         int i = tx_ring->next_to_use;
2452
2453         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2454             !cd_tunneling && !cd_l2tag2)
2455                 return;
2456
2457         /* grab the next descriptor */
2458         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2459
2460         i++;
2461         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2462
2463         /* cpu_to_le32 and assign to struct fields */
2464         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2465         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2466         context_desc->rsvd = cpu_to_le16(0);
2467         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2468 }
2469
2470 /**
2471  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2472  * @tx_ring: the ring to be checked
2473  * @size:    the size buffer we want to assure is available
2474  *
2475  * Returns -EBUSY if a stop is needed, else 0
2476  **/
2477 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2478 {
2479         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2480         /* Memory barrier before checking head and tail */
2481         smp_mb();
2482
2483         /* Check again in a case another CPU has just made room available. */
2484         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2485                 return -EBUSY;
2486
2487         /* A reprieve! - use start_queue because it doesn't call schedule */
2488         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2489         ++tx_ring->tx_stats.restart_queue;
2490         return 0;
2491 }
2492
2493 /**
2494  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2495  * @tx_ring: the ring to be checked
2496  * @size:    the size buffer we want to assure is available
2497  *
2498  * Returns 0 if stop is not needed
2499  **/
2500 #ifdef I40E_FCOE
2501 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2502 #else
2503 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2504 #endif
2505 {
2506         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2507                 return 0;
2508         return __i40e_maybe_stop_tx(tx_ring, size);
2509 }
2510
2511 /**
2512  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2513  * @skb:      send buffer
2514  * @tx_flags: collected send information
2515  *
2516  * Note: Our HW can't scatter-gather more than 8 fragments to build
2517  * a packet on the wire and so we need to figure out the cases where we
2518  * need to linearize the skb.
2519  **/
2520 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2521 {
2522         struct skb_frag_struct *frag;
2523         bool linearize = false;
2524         unsigned int size = 0;
2525         u16 num_frags;
2526         u16 gso_segs;
2527
2528         num_frags = skb_shinfo(skb)->nr_frags;
2529         gso_segs = skb_shinfo(skb)->gso_segs;
2530
2531         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2532                 u16 j = 0;
2533
2534                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2535                         goto linearize_chk_done;
2536                 /* try the simple math, if we have too many frags per segment */
2537                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2538                     I40E_MAX_BUFFER_TXD) {
2539                         linearize = true;
2540                         goto linearize_chk_done;
2541                 }
2542                 frag = &skb_shinfo(skb)->frags[0];
2543                 /* we might still have more fragments per segment */
2544                 do {
2545                         size += skb_frag_size(frag);
2546                         frag++; j++;
2547                         if ((size >= skb_shinfo(skb)->gso_size) &&
2548                             (j < I40E_MAX_BUFFER_TXD)) {
2549                                 size = (size % skb_shinfo(skb)->gso_size);
2550                                 j = (size) ? 1 : 0;
2551                         }
2552                         if (j == I40E_MAX_BUFFER_TXD) {
2553                                 linearize = true;
2554                                 break;
2555                         }
2556                         num_frags--;
2557                 } while (num_frags);
2558         } else {
2559                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2560                         linearize = true;
2561         }
2562
2563 linearize_chk_done:
2564         return linearize;
2565 }
2566
2567 /**
2568  * i40e_tx_map - Build the Tx descriptor
2569  * @tx_ring:  ring to send buffer on
2570  * @skb:      send buffer
2571  * @first:    first buffer info buffer to use
2572  * @tx_flags: collected send information
2573  * @hdr_len:  size of the packet header
2574  * @td_cmd:   the command field in the descriptor
2575  * @td_offset: offset for checksum or crc
2576  **/
2577 #ifdef I40E_FCOE
2578 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2579                         struct i40e_tx_buffer *first, u32 tx_flags,
2580                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2581 #else
2582 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2583                                struct i40e_tx_buffer *first, u32 tx_flags,
2584                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2585 #endif
2586 {
2587         unsigned int data_len = skb->data_len;
2588         unsigned int size = skb_headlen(skb);
2589         struct skb_frag_struct *frag;
2590         struct i40e_tx_buffer *tx_bi;
2591         struct i40e_tx_desc *tx_desc;
2592         u16 i = tx_ring->next_to_use;
2593         u32 td_tag = 0;
2594         dma_addr_t dma;
2595         u16 gso_segs;
2596         u16 desc_count = 0;
2597         bool tail_bump = true;
2598         bool do_rs = false;
2599
2600         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2601                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2602                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2603                          I40E_TX_FLAGS_VLAN_SHIFT;
2604         }
2605
2606         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2607                 gso_segs = skb_shinfo(skb)->gso_segs;
2608         else
2609                 gso_segs = 1;
2610
2611         /* multiply data chunks by size of headers */
2612         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2613         first->gso_segs = gso_segs;
2614         first->skb = skb;
2615         first->tx_flags = tx_flags;
2616
2617         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2618
2619         tx_desc = I40E_TX_DESC(tx_ring, i);
2620         tx_bi = first;
2621
2622         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2623                 if (dma_mapping_error(tx_ring->dev, dma))
2624                         goto dma_error;
2625
2626                 /* record length, and DMA address */
2627                 dma_unmap_len_set(tx_bi, len, size);
2628                 dma_unmap_addr_set(tx_bi, dma, dma);
2629
2630                 tx_desc->buffer_addr = cpu_to_le64(dma);
2631
2632                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2633                         tx_desc->cmd_type_offset_bsz =
2634                                 build_ctob(td_cmd, td_offset,
2635                                            I40E_MAX_DATA_PER_TXD, td_tag);
2636
2637                         tx_desc++;
2638                         i++;
2639                         desc_count++;
2640
2641                         if (i == tx_ring->count) {
2642                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2643                                 i = 0;
2644                         }
2645
2646                         dma += I40E_MAX_DATA_PER_TXD;
2647                         size -= I40E_MAX_DATA_PER_TXD;
2648
2649                         tx_desc->buffer_addr = cpu_to_le64(dma);
2650                 }
2651
2652                 if (likely(!data_len))
2653                         break;
2654
2655                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2656                                                           size, td_tag);
2657
2658                 tx_desc++;
2659                 i++;
2660                 desc_count++;
2661
2662                 if (i == tx_ring->count) {
2663                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2664                         i = 0;
2665                 }
2666
2667                 size = skb_frag_size(frag);
2668                 data_len -= size;
2669
2670                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2671                                        DMA_TO_DEVICE);
2672
2673                 tx_bi = &tx_ring->tx_bi[i];
2674         }
2675
2676         /* set next_to_watch value indicating a packet is present */
2677         first->next_to_watch = tx_desc;
2678
2679         i++;
2680         if (i == tx_ring->count)
2681                 i = 0;
2682
2683         tx_ring->next_to_use = i;
2684
2685         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2686                                                  tx_ring->queue_index),
2687                                                  first->bytecount);
2688         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2689
2690         /* Algorithm to optimize tail and RS bit setting:
2691          * if xmit_more is supported
2692          *      if xmit_more is true
2693          *              do not update tail and do not mark RS bit.
2694          *      if xmit_more is false and last xmit_more was false
2695          *              if every packet spanned less than 4 desc
2696          *                      then set RS bit on 4th packet and update tail
2697          *                      on every packet
2698          *              else
2699          *                      update tail and set RS bit on every packet.
2700          *      if xmit_more is false and last_xmit_more was true
2701          *              update tail and set RS bit.
2702          *
2703          * Optimization: wmb to be issued only in case of tail update.
2704          * Also optimize the Descriptor WB path for RS bit with the same
2705          * algorithm.
2706          *
2707          * Note: If there are less than 4 packets
2708          * pending and interrupts were disabled the service task will
2709          * trigger a force WB.
2710          */
2711         if (skb->xmit_more  &&
2712             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2713                                                     tx_ring->queue_index))) {
2714                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2715                 tail_bump = false;
2716         } else if (!skb->xmit_more &&
2717                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2718                                                        tx_ring->queue_index)) &&
2719                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2720                    (tx_ring->packet_stride < WB_STRIDE) &&
2721                    (desc_count < WB_STRIDE)) {
2722                 tx_ring->packet_stride++;
2723         } else {
2724                 tx_ring->packet_stride = 0;
2725                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2726                 do_rs = true;
2727         }
2728         if (do_rs)
2729                 tx_ring->packet_stride = 0;
2730
2731         tx_desc->cmd_type_offset_bsz =
2732                         build_ctob(td_cmd, td_offset, size, td_tag) |
2733                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2734                                                   I40E_TX_DESC_CMD_EOP) <<
2735                                                   I40E_TXD_QW1_CMD_SHIFT);
2736
2737         /* notify HW of packet */
2738         if (!tail_bump)
2739                 prefetchw(tx_desc + 1);
2740
2741         if (tail_bump) {
2742                 /* Force memory writes to complete before letting h/w
2743                  * know there are new descriptors to fetch.  (Only
2744                  * applicable for weak-ordered memory model archs,
2745                  * such as IA-64).
2746                  */
2747                 wmb();
2748                 writel(i, tx_ring->tail);
2749         }
2750
2751         return;
2752
2753 dma_error:
2754         dev_info(tx_ring->dev, "TX DMA map failed\n");
2755
2756         /* clear dma mappings for failed tx_bi map */
2757         for (;;) {
2758                 tx_bi = &tx_ring->tx_bi[i];
2759                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2760                 if (tx_bi == first)
2761                         break;
2762                 if (i == 0)
2763                         i = tx_ring->count;
2764                 i--;
2765         }
2766
2767         tx_ring->next_to_use = i;
2768 }
2769
2770 /**
2771  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2772  * @skb:     send buffer
2773  * @tx_ring: ring to send buffer on
2774  *
2775  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2776  * there is not enough descriptors available in this ring since we need at least
2777  * one descriptor.
2778  **/
2779 #ifdef I40E_FCOE
2780 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2781                                       struct i40e_ring *tx_ring)
2782 #else
2783 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2784                                              struct i40e_ring *tx_ring)
2785 #endif
2786 {
2787         unsigned int f;
2788         int count = 0;
2789
2790         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2791          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2792          *       + 4 desc gap to avoid the cache line where head is,
2793          *       + 1 desc for context descriptor,
2794          * otherwise try next time
2795          */
2796         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2797                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2798
2799         count += TXD_USE_COUNT(skb_headlen(skb));
2800         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2801                 tx_ring->tx_stats.tx_busy++;
2802                 return 0;
2803         }
2804         return count;
2805 }
2806
2807 /**
2808  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2809  * @skb:     send buffer
2810  * @tx_ring: ring to send buffer on
2811  *
2812  * Returns NETDEV_TX_OK if sent, else an error code
2813  **/
2814 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2815                                         struct i40e_ring *tx_ring)
2816 {
2817         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2818         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2819         struct i40e_tx_buffer *first;
2820         u32 td_offset = 0;
2821         u32 tx_flags = 0;
2822         __be16 protocol;
2823         u32 td_cmd = 0;
2824         u8 hdr_len = 0;
2825         int tsyn;
2826         int tso;
2827
2828         /* prefetch the data, we'll need it later */
2829         prefetch(skb->data);
2830
2831         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2832                 return NETDEV_TX_BUSY;
2833
2834         /* prepare the xmit flags */
2835         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2836                 goto out_drop;
2837
2838         /* obtain protocol of skb */
2839         protocol = vlan_get_protocol(skb);
2840
2841         /* record the location of the first descriptor for this packet */
2842         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2843
2844         /* setup IPv4/IPv6 offloads */
2845         if (protocol == htons(ETH_P_IP))
2846                 tx_flags |= I40E_TX_FLAGS_IPV4;
2847         else if (protocol == htons(ETH_P_IPV6))
2848                 tx_flags |= I40E_TX_FLAGS_IPV6;
2849
2850         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2851
2852         if (tso < 0)
2853                 goto out_drop;
2854         else if (tso)
2855                 tx_flags |= I40E_TX_FLAGS_TSO;
2856
2857         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2858
2859         if (tsyn)
2860                 tx_flags |= I40E_TX_FLAGS_TSYN;
2861
2862         if (i40e_chk_linearize(skb, tx_flags)) {
2863                 if (skb_linearize(skb))
2864                         goto out_drop;
2865                 tx_ring->tx_stats.tx_linearize++;
2866         }
2867         skb_tx_timestamp(skb);
2868
2869         /* always enable CRC insertion offload */
2870         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2871
2872         /* Always offload the checksum, since it's in the data descriptor */
2873         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2874                 tx_flags |= I40E_TX_FLAGS_CSUM;
2875
2876                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2877                                     tx_ring, &cd_tunneling);
2878         }
2879
2880         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2881                            cd_tunneling, cd_l2tag2);
2882
2883         /* Add Flow Director ATR if it's enabled.
2884          *
2885          * NOTE: this must always be directly before the data descriptor.
2886          */
2887         i40e_atr(tx_ring, skb, tx_flags, protocol);
2888
2889         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2890                     td_cmd, td_offset);
2891
2892         return NETDEV_TX_OK;
2893
2894 out_drop:
2895         dev_kfree_skb_any(skb);
2896         return NETDEV_TX_OK;
2897 }
2898
2899 /**
2900  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2901  * @skb:    send buffer
2902  * @netdev: network interface device structure
2903  *
2904  * Returns NETDEV_TX_OK if sent, else an error code
2905  **/
2906 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2907 {
2908         struct i40e_netdev_priv *np = netdev_priv(netdev);
2909         struct i40e_vsi *vsi = np->vsi;
2910         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2911
2912         /* hardware can't handle really short frames, hardware padding works
2913          * beyond this point
2914          */
2915         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2916                 return NETDEV_TX_OK;
2917
2918         return i40e_xmit_frame_ring(skb, tx_ring);
2919 }