]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
i40e/i40evf: use pages correctly in Rx
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Returns 0 if the filters were successfully added or removed
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 }
519         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522                                  rx_desc->wb.qword0.hi_dword.fd_id);
523         }
524 }
525
526 /**
527  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528  * @ring:      the ring that owns the buffer
529  * @tx_buffer: the buffer to free
530  **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532                                             struct i40e_tx_buffer *tx_buffer)
533 {
534         if (tx_buffer->skb) {
535                 dev_kfree_skb_any(tx_buffer->skb);
536                 if (dma_unmap_len(tx_buffer, len))
537                         dma_unmap_single(ring->dev,
538                                          dma_unmap_addr(tx_buffer, dma),
539                                          dma_unmap_len(tx_buffer, len),
540                                          DMA_TO_DEVICE);
541         } else if (dma_unmap_len(tx_buffer, len)) {
542                 dma_unmap_page(ring->dev,
543                                dma_unmap_addr(tx_buffer, dma),
544                                dma_unmap_len(tx_buffer, len),
545                                DMA_TO_DEVICE);
546         }
547
548         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549                 kfree(tx_buffer->raw_buf);
550
551         tx_buffer->next_to_watch = NULL;
552         tx_buffer->skb = NULL;
553         dma_unmap_len_set(tx_buffer, len, 0);
554         /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558  * i40e_clean_tx_ring - Free any empty Tx buffers
559  * @tx_ring: ring to be cleaned
560  **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563         unsigned long bi_size;
564         u16 i;
565
566         /* ring already cleared, nothing to do */
567         if (!tx_ring->tx_bi)
568                 return;
569
570         /* Free all the Tx ring sk_buffs */
571         for (i = 0; i < tx_ring->count; i++)
572                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575         memset(tx_ring->tx_bi, 0, bi_size);
576
577         /* Zero out the descriptor ring */
578         memset(tx_ring->desc, 0, tx_ring->size);
579
580         tx_ring->next_to_use = 0;
581         tx_ring->next_to_clean = 0;
582
583         if (!tx_ring->netdev)
584                 return;
585
586         /* cleanup Tx queue statistics */
587         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588                                                   tx_ring->queue_index));
589 }
590
591 /**
592  * i40e_free_tx_resources - Free Tx resources per queue
593  * @tx_ring: Tx descriptor ring for a specific queue
594  *
595  * Free all transmit software resources
596  **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599         i40e_clean_tx_ring(tx_ring);
600         kfree(tx_ring->tx_bi);
601         tx_ring->tx_bi = NULL;
602
603         if (tx_ring->desc) {
604                 dma_free_coherent(tx_ring->dev, tx_ring->size,
605                                   tx_ring->desc, tx_ring->dma);
606                 tx_ring->desc = NULL;
607         }
608 }
609
610 /**
611  * i40e_get_tx_pending - how many tx descriptors not processed
612  * @tx_ring: the ring of descriptors
613  *
614  * Since there is no access to the ring head register
615  * in XL710, we need to use our local copies
616  **/
617 u32 i40e_get_tx_pending(struct i40e_ring *ring)
618 {
619         u32 head, tail;
620
621         head = i40e_get_head(ring);
622         tail = readl(ring->tail);
623
624         if (head != tail)
625                 return (head < tail) ?
626                         tail - head : (tail + ring->count - head);
627
628         return 0;
629 }
630
631 #define WB_STRIDE 0x3
632
633 /**
634  * i40e_clean_tx_irq - Reclaim resources after transmit completes
635  * @tx_ring:  tx ring to clean
636  * @budget:   how many cleans we're allowed
637  *
638  * Returns true if there's any budget left (e.g. the clean is finished)
639  **/
640 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
641 {
642         u16 i = tx_ring->next_to_clean;
643         struct i40e_tx_buffer *tx_buf;
644         struct i40e_tx_desc *tx_head;
645         struct i40e_tx_desc *tx_desc;
646         unsigned int total_packets = 0;
647         unsigned int total_bytes = 0;
648
649         tx_buf = &tx_ring->tx_bi[i];
650         tx_desc = I40E_TX_DESC(tx_ring, i);
651         i -= tx_ring->count;
652
653         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
654
655         do {
656                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
657
658                 /* if next_to_watch is not set then there is no work pending */
659                 if (!eop_desc)
660                         break;
661
662                 /* prevent any other reads prior to eop_desc */
663                 read_barrier_depends();
664
665                 /* we have caught up to head, no work left to do */
666                 if (tx_head == tx_desc)
667                         break;
668
669                 /* clear next_to_watch to prevent false hangs */
670                 tx_buf->next_to_watch = NULL;
671
672                 /* update the statistics for this packet */
673                 total_bytes += tx_buf->bytecount;
674                 total_packets += tx_buf->gso_segs;
675
676                 /* free the skb */
677                 dev_consume_skb_any(tx_buf->skb);
678
679                 /* unmap skb header data */
680                 dma_unmap_single(tx_ring->dev,
681                                  dma_unmap_addr(tx_buf, dma),
682                                  dma_unmap_len(tx_buf, len),
683                                  DMA_TO_DEVICE);
684
685                 /* clear tx_buffer data */
686                 tx_buf->skb = NULL;
687                 dma_unmap_len_set(tx_buf, len, 0);
688
689                 /* unmap remaining buffers */
690                 while (tx_desc != eop_desc) {
691
692                         tx_buf++;
693                         tx_desc++;
694                         i++;
695                         if (unlikely(!i)) {
696                                 i -= tx_ring->count;
697                                 tx_buf = tx_ring->tx_bi;
698                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
699                         }
700
701                         /* unmap any remaining paged data */
702                         if (dma_unmap_len(tx_buf, len)) {
703                                 dma_unmap_page(tx_ring->dev,
704                                                dma_unmap_addr(tx_buf, dma),
705                                                dma_unmap_len(tx_buf, len),
706                                                DMA_TO_DEVICE);
707                                 dma_unmap_len_set(tx_buf, len, 0);
708                         }
709                 }
710
711                 /* move us one more past the eop_desc for start of next pkt */
712                 tx_buf++;
713                 tx_desc++;
714                 i++;
715                 if (unlikely(!i)) {
716                         i -= tx_ring->count;
717                         tx_buf = tx_ring->tx_bi;
718                         tx_desc = I40E_TX_DESC(tx_ring, 0);
719                 }
720
721                 prefetch(tx_desc);
722
723                 /* update budget accounting */
724                 budget--;
725         } while (likely(budget));
726
727         i += tx_ring->count;
728         tx_ring->next_to_clean = i;
729         u64_stats_update_begin(&tx_ring->syncp);
730         tx_ring->stats.bytes += total_bytes;
731         tx_ring->stats.packets += total_packets;
732         u64_stats_update_end(&tx_ring->syncp);
733         tx_ring->q_vector->tx.total_bytes += total_bytes;
734         tx_ring->q_vector->tx.total_packets += total_packets;
735
736         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
737                 unsigned int j = 0;
738
739                 /* check to see if there are < 4 descriptors
740                  * waiting to be written back, then kick the hardware to force
741                  * them to be written back in case we stay in NAPI.
742                  * In this mode on X722 we do not enable Interrupt.
743                  */
744                 j = i40e_get_tx_pending(tx_ring);
745
746                 if (budget &&
747                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
748                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
749                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
750                         tx_ring->arm_wb = true;
751         }
752
753         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
754                                                       tx_ring->queue_index),
755                                   total_packets, total_bytes);
756
757 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
758         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
759                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
760                 /* Make sure that anybody stopping the queue after this
761                  * sees the new next_to_clean.
762                  */
763                 smp_mb();
764                 if (__netif_subqueue_stopped(tx_ring->netdev,
765                                              tx_ring->queue_index) &&
766                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
767                         netif_wake_subqueue(tx_ring->netdev,
768                                             tx_ring->queue_index);
769                         ++tx_ring->tx_stats.restart_queue;
770                 }
771         }
772
773         return !!budget;
774 }
775
776 /**
777  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
778  * @vsi: the VSI we care about
779  * @q_vector: the vector on which to enable writeback
780  *
781  **/
782 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
783                                   struct i40e_q_vector *q_vector)
784 {
785         u16 flags = q_vector->tx.ring[0].flags;
786         u32 val;
787
788         if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
789                 return;
790
791         if (q_vector->arm_wb_state)
792                 return;
793
794         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
795                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
796                       I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
797
798                 wr32(&vsi->back->hw,
799                      I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
800                      val);
801         } else {
802                 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
803                       I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
804
805                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
806         }
807         q_vector->arm_wb_state = true;
808 }
809
810 /**
811  * i40e_force_wb - Issue SW Interrupt so HW does a wb
812  * @vsi: the VSI we care about
813  * @q_vector: the vector  on which to force writeback
814  *
815  **/
816 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
817 {
818         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
819                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
820                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
821                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
822                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
823                           /* allow 00 to be written to the index */
824
825                 wr32(&vsi->back->hw,
826                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
827                                          vsi->base_vector - 1), val);
828         } else {
829                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
830                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
831                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
832                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
833                         /* allow 00 to be written to the index */
834
835                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
836         }
837 }
838
839 /**
840  * i40e_set_new_dynamic_itr - Find new ITR level
841  * @rc: structure containing ring performance data
842  *
843  * Returns true if ITR changed, false if not
844  *
845  * Stores a new ITR value based on packets and byte counts during
846  * the last interrupt.  The advantage of per interrupt computation
847  * is faster updates and more accurate ITR for the current traffic
848  * pattern.  Constants in this function were computed based on
849  * theoretical maximum wire speed and thresholds were set based on
850  * testing data as well as attempting to minimize response time
851  * while increasing bulk throughput.
852  **/
853 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
854 {
855         enum i40e_latency_range new_latency_range = rc->latency_range;
856         struct i40e_q_vector *qv = rc->ring->q_vector;
857         u32 new_itr = rc->itr;
858         int bytes_per_int;
859         int usecs;
860
861         if (rc->total_packets == 0 || !rc->itr)
862                 return false;
863
864         /* simple throttlerate management
865          *   0-10MB/s   lowest (50000 ints/s)
866          *  10-20MB/s   low    (20000 ints/s)
867          *  20-1249MB/s bulk   (18000 ints/s)
868          *  > 40000 Rx packets per second (8000 ints/s)
869          *
870          * The math works out because the divisor is in 10^(-6) which
871          * turns the bytes/us input value into MB/s values, but
872          * make sure to use usecs, as the register values written
873          * are in 2 usec increments in the ITR registers, and make sure
874          * to use the smoothed values that the countdown timer gives us.
875          */
876         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
877         bytes_per_int = rc->total_bytes / usecs;
878
879         switch (new_latency_range) {
880         case I40E_LOWEST_LATENCY:
881                 if (bytes_per_int > 10)
882                         new_latency_range = I40E_LOW_LATENCY;
883                 break;
884         case I40E_LOW_LATENCY:
885                 if (bytes_per_int > 20)
886                         new_latency_range = I40E_BULK_LATENCY;
887                 else if (bytes_per_int <= 10)
888                         new_latency_range = I40E_LOWEST_LATENCY;
889                 break;
890         case I40E_BULK_LATENCY:
891         case I40E_ULTRA_LATENCY:
892         default:
893                 if (bytes_per_int <= 20)
894                         new_latency_range = I40E_LOW_LATENCY;
895                 break;
896         }
897
898         /* this is to adjust RX more aggressively when streaming small
899          * packets.  The value of 40000 was picked as it is just beyond
900          * what the hardware can receive per second if in low latency
901          * mode.
902          */
903 #define RX_ULTRA_PACKET_RATE 40000
904
905         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
906             (&qv->rx == rc))
907                 new_latency_range = I40E_ULTRA_LATENCY;
908
909         rc->latency_range = new_latency_range;
910
911         switch (new_latency_range) {
912         case I40E_LOWEST_LATENCY:
913                 new_itr = I40E_ITR_50K;
914                 break;
915         case I40E_LOW_LATENCY:
916                 new_itr = I40E_ITR_20K;
917                 break;
918         case I40E_BULK_LATENCY:
919                 new_itr = I40E_ITR_18K;
920                 break;
921         case I40E_ULTRA_LATENCY:
922                 new_itr = I40E_ITR_8K;
923                 break;
924         default:
925                 break;
926         }
927
928         rc->total_bytes = 0;
929         rc->total_packets = 0;
930
931         if (new_itr != rc->itr) {
932                 rc->itr = new_itr;
933                 return true;
934         }
935
936         return false;
937 }
938
939 /**
940  * i40e_clean_programming_status - clean the programming status descriptor
941  * @rx_ring: the rx ring that has this descriptor
942  * @rx_desc: the rx descriptor written back by HW
943  *
944  * Flow director should handle FD_FILTER_STATUS to check its filter programming
945  * status being successful or not and take actions accordingly. FCoE should
946  * handle its context/filter programming/invalidation status and take actions.
947  *
948  **/
949 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
950                                           union i40e_rx_desc *rx_desc)
951 {
952         u64 qw;
953         u8 id;
954
955         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
956         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
957                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
958
959         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
960                 i40e_fd_handle_status(rx_ring, rx_desc, id);
961 #ifdef I40E_FCOE
962         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
963                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
964                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
965 #endif
966 }
967
968 /**
969  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
970  * @tx_ring: the tx ring to set up
971  *
972  * Return 0 on success, negative on error
973  **/
974 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
975 {
976         struct device *dev = tx_ring->dev;
977         int bi_size;
978
979         if (!dev)
980                 return -ENOMEM;
981
982         /* warn if we are about to overwrite the pointer */
983         WARN_ON(tx_ring->tx_bi);
984         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
985         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
986         if (!tx_ring->tx_bi)
987                 goto err;
988
989         /* round up to nearest 4K */
990         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
991         /* add u32 for head writeback, align after this takes care of
992          * guaranteeing this is at least one cache line in size
993          */
994         tx_ring->size += sizeof(u32);
995         tx_ring->size = ALIGN(tx_ring->size, 4096);
996         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
997                                            &tx_ring->dma, GFP_KERNEL);
998         if (!tx_ring->desc) {
999                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1000                          tx_ring->size);
1001                 goto err;
1002         }
1003
1004         tx_ring->next_to_use = 0;
1005         tx_ring->next_to_clean = 0;
1006         return 0;
1007
1008 err:
1009         kfree(tx_ring->tx_bi);
1010         tx_ring->tx_bi = NULL;
1011         return -ENOMEM;
1012 }
1013
1014 /**
1015  * i40e_clean_rx_ring - Free Rx buffers
1016  * @rx_ring: ring to be cleaned
1017  **/
1018 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1019 {
1020         struct device *dev = rx_ring->dev;
1021         struct i40e_rx_buffer *rx_bi;
1022         unsigned long bi_size;
1023         u16 i;
1024
1025         /* ring already cleared, nothing to do */
1026         if (!rx_ring->rx_bi)
1027                 return;
1028
1029         if (ring_is_ps_enabled(rx_ring)) {
1030                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1031
1032                 rx_bi = &rx_ring->rx_bi[0];
1033                 if (rx_bi->hdr_buf) {
1034                         dma_free_coherent(dev,
1035                                           bufsz,
1036                                           rx_bi->hdr_buf,
1037                                           rx_bi->dma);
1038                         for (i = 0; i < rx_ring->count; i++) {
1039                                 rx_bi = &rx_ring->rx_bi[i];
1040                                 rx_bi->dma = 0;
1041                                 rx_bi->hdr_buf = NULL;
1042                         }
1043                 }
1044         }
1045         /* Free all the Rx ring sk_buffs */
1046         for (i = 0; i < rx_ring->count; i++) {
1047                 rx_bi = &rx_ring->rx_bi[i];
1048                 if (rx_bi->dma) {
1049                         dma_unmap_single(dev,
1050                                          rx_bi->dma,
1051                                          rx_ring->rx_buf_len,
1052                                          DMA_FROM_DEVICE);
1053                         rx_bi->dma = 0;
1054                 }
1055                 if (rx_bi->skb) {
1056                         dev_kfree_skb(rx_bi->skb);
1057                         rx_bi->skb = NULL;
1058                 }
1059                 if (rx_bi->page) {
1060                         if (rx_bi->page_dma) {
1061                                 dma_unmap_page(dev,
1062                                                rx_bi->page_dma,
1063                                                PAGE_SIZE,
1064                                                DMA_FROM_DEVICE);
1065                                 rx_bi->page_dma = 0;
1066                         }
1067                         __free_page(rx_bi->page);
1068                         rx_bi->page = NULL;
1069                         rx_bi->page_offset = 0;
1070                 }
1071         }
1072
1073         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1074         memset(rx_ring->rx_bi, 0, bi_size);
1075
1076         /* Zero out the descriptor ring */
1077         memset(rx_ring->desc, 0, rx_ring->size);
1078
1079         rx_ring->next_to_clean = 0;
1080         rx_ring->next_to_use = 0;
1081 }
1082
1083 /**
1084  * i40e_free_rx_resources - Free Rx resources
1085  * @rx_ring: ring to clean the resources from
1086  *
1087  * Free all receive software resources
1088  **/
1089 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1090 {
1091         i40e_clean_rx_ring(rx_ring);
1092         kfree(rx_ring->rx_bi);
1093         rx_ring->rx_bi = NULL;
1094
1095         if (rx_ring->desc) {
1096                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1097                                   rx_ring->desc, rx_ring->dma);
1098                 rx_ring->desc = NULL;
1099         }
1100 }
1101
1102 /**
1103  * i40e_alloc_rx_headers - allocate rx header buffers
1104  * @rx_ring: ring to alloc buffers
1105  *
1106  * Allocate rx header buffers for the entire ring. As these are static,
1107  * this is only called when setting up a new ring.
1108  **/
1109 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1110 {
1111         struct device *dev = rx_ring->dev;
1112         struct i40e_rx_buffer *rx_bi;
1113         dma_addr_t dma;
1114         void *buffer;
1115         int buf_size;
1116         int i;
1117
1118         if (rx_ring->rx_bi[0].hdr_buf)
1119                 return;
1120         /* Make sure the buffers don't cross cache line boundaries. */
1121         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1122         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1123                                     &dma, GFP_KERNEL);
1124         if (!buffer)
1125                 return;
1126         for (i = 0; i < rx_ring->count; i++) {
1127                 rx_bi = &rx_ring->rx_bi[i];
1128                 rx_bi->dma = dma + (i * buf_size);
1129                 rx_bi->hdr_buf = buffer + (i * buf_size);
1130         }
1131 }
1132
1133 /**
1134  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1135  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1136  *
1137  * Returns 0 on success, negative on failure
1138  **/
1139 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1140 {
1141         struct device *dev = rx_ring->dev;
1142         int bi_size;
1143
1144         /* warn if we are about to overwrite the pointer */
1145         WARN_ON(rx_ring->rx_bi);
1146         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1147         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1148         if (!rx_ring->rx_bi)
1149                 goto err;
1150
1151         u64_stats_init(&rx_ring->syncp);
1152
1153         /* Round up to nearest 4K */
1154         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1155                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1156                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1157         rx_ring->size = ALIGN(rx_ring->size, 4096);
1158         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1159                                            &rx_ring->dma, GFP_KERNEL);
1160
1161         if (!rx_ring->desc) {
1162                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1163                          rx_ring->size);
1164                 goto err;
1165         }
1166
1167         rx_ring->next_to_clean = 0;
1168         rx_ring->next_to_use = 0;
1169
1170         return 0;
1171 err:
1172         kfree(rx_ring->rx_bi);
1173         rx_ring->rx_bi = NULL;
1174         return -ENOMEM;
1175 }
1176
1177 /**
1178  * i40e_release_rx_desc - Store the new tail and head values
1179  * @rx_ring: ring to bump
1180  * @val: new head index
1181  **/
1182 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1183 {
1184         rx_ring->next_to_use = val;
1185         /* Force memory writes to complete before letting h/w
1186          * know there are new descriptors to fetch.  (Only
1187          * applicable for weak-ordered memory model archs,
1188          * such as IA-64).
1189          */
1190         wmb();
1191         writel(val, rx_ring->tail);
1192 }
1193
1194 /**
1195  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1196  * @rx_ring: ring to place buffers on
1197  * @cleaned_count: number of buffers to replace
1198  *
1199  * Returns true if any errors on allocation
1200  **/
1201 bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1202 {
1203         u16 i = rx_ring->next_to_use;
1204         union i40e_rx_desc *rx_desc;
1205         struct i40e_rx_buffer *bi;
1206         const int current_node = numa_node_id();
1207
1208         /* do nothing if no valid netdev defined */
1209         if (!rx_ring->netdev || !cleaned_count)
1210                 return false;
1211
1212         while (cleaned_count--) {
1213                 rx_desc = I40E_RX_DESC(rx_ring, i);
1214                 bi = &rx_ring->rx_bi[i];
1215
1216                 if (bi->skb) /* desc is in use */
1217                         goto no_buffers;
1218
1219         /* If we've been moved to a different NUMA node, release the
1220          * page so we can get a new one on the current node.
1221          */
1222                 if (bi->page &&  page_to_nid(bi->page) != current_node) {
1223                         dma_unmap_page(rx_ring->dev,
1224                                        bi->page_dma,
1225                                        PAGE_SIZE,
1226                                        DMA_FROM_DEVICE);
1227                         __free_page(bi->page);
1228                         bi->page = NULL;
1229                         bi->page_dma = 0;
1230                         rx_ring->rx_stats.realloc_count++;
1231                 } else if (bi->page) {
1232                         rx_ring->rx_stats.page_reuse_count++;
1233                 }
1234
1235                 if (!bi->page) {
1236                         bi->page = alloc_page(GFP_ATOMIC);
1237                         if (!bi->page) {
1238                                 rx_ring->rx_stats.alloc_page_failed++;
1239                                 goto no_buffers;
1240                         }
1241                         bi->page_dma = dma_map_page(rx_ring->dev,
1242                                                     bi->page,
1243                                                     0,
1244                                                     PAGE_SIZE,
1245                                                     DMA_FROM_DEVICE);
1246                         if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
1247                                 rx_ring->rx_stats.alloc_page_failed++;
1248                                 __free_page(bi->page);
1249                                 bi->page = NULL;
1250                                 bi->page_dma = 0;
1251                                 bi->page_offset = 0;
1252                                 goto no_buffers;
1253                         }
1254                         bi->page_offset = 0;
1255                 }
1256
1257                 /* Refresh the desc even if buffer_addrs didn't change
1258                  * because each write-back erases this info.
1259                  */
1260                 rx_desc->read.pkt_addr =
1261                                 cpu_to_le64(bi->page_dma + bi->page_offset);
1262                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1263                 i++;
1264                 if (i == rx_ring->count)
1265                         i = 0;
1266         }
1267
1268         if (rx_ring->next_to_use != i)
1269                 i40e_release_rx_desc(rx_ring, i);
1270
1271         return false;
1272
1273 no_buffers:
1274         if (rx_ring->next_to_use != i)
1275                 i40e_release_rx_desc(rx_ring, i);
1276
1277         /* make sure to come back via polling to try again after
1278          * allocation failure
1279          */
1280         return true;
1281 }
1282
1283 /**
1284  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1285  * @rx_ring: ring to place buffers on
1286  * @cleaned_count: number of buffers to replace
1287  *
1288  * Returns true if any errors on allocation
1289  **/
1290 bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1291 {
1292         u16 i = rx_ring->next_to_use;
1293         union i40e_rx_desc *rx_desc;
1294         struct i40e_rx_buffer *bi;
1295         struct sk_buff *skb;
1296
1297         /* do nothing if no valid netdev defined */
1298         if (!rx_ring->netdev || !cleaned_count)
1299                 return false;
1300
1301         while (cleaned_count--) {
1302                 rx_desc = I40E_RX_DESC(rx_ring, i);
1303                 bi = &rx_ring->rx_bi[i];
1304                 skb = bi->skb;
1305
1306                 if (!skb) {
1307                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1308                                                           rx_ring->rx_buf_len,
1309                                                           GFP_ATOMIC |
1310                                                           __GFP_NOWARN);
1311                         if (!skb) {
1312                                 rx_ring->rx_stats.alloc_buff_failed++;
1313                                 goto no_buffers;
1314                         }
1315                         /* initialize queue mapping */
1316                         skb_record_rx_queue(skb, rx_ring->queue_index);
1317                         bi->skb = skb;
1318                 }
1319
1320                 if (!bi->dma) {
1321                         bi->dma = dma_map_single(rx_ring->dev,
1322                                                  skb->data,
1323                                                  rx_ring->rx_buf_len,
1324                                                  DMA_FROM_DEVICE);
1325                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1326                                 rx_ring->rx_stats.alloc_buff_failed++;
1327                                 bi->dma = 0;
1328                                 dev_kfree_skb(bi->skb);
1329                                 bi->skb = NULL;
1330                                 goto no_buffers;
1331                         }
1332                 }
1333
1334                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1335                 rx_desc->read.hdr_addr = 0;
1336                 i++;
1337                 if (i == rx_ring->count)
1338                         i = 0;
1339         }
1340
1341         if (rx_ring->next_to_use != i)
1342                 i40e_release_rx_desc(rx_ring, i);
1343
1344         return false;
1345
1346 no_buffers:
1347         if (rx_ring->next_to_use != i)
1348                 i40e_release_rx_desc(rx_ring, i);
1349
1350         /* make sure to come back via polling to try again after
1351          * allocation failure
1352          */
1353         return true;
1354 }
1355
1356 /**
1357  * i40e_receive_skb - Send a completed packet up the stack
1358  * @rx_ring:  rx ring in play
1359  * @skb: packet to send up
1360  * @vlan_tag: vlan tag for packet
1361  **/
1362 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1363                              struct sk_buff *skb, u16 vlan_tag)
1364 {
1365         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1366
1367         if (vlan_tag & VLAN_VID_MASK)
1368                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1369
1370         napi_gro_receive(&q_vector->napi, skb);
1371 }
1372
1373 /**
1374  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1375  * @vsi: the VSI we care about
1376  * @skb: skb currently being received and modified
1377  * @rx_status: status value of last descriptor in packet
1378  * @rx_error: error value of last descriptor in packet
1379  * @rx_ptype: ptype value of last descriptor in packet
1380  **/
1381 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1382                                     struct sk_buff *skb,
1383                                     u32 rx_status,
1384                                     u32 rx_error,
1385                                     u16 rx_ptype)
1386 {
1387         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1388         bool ipv4 = false, ipv6 = false;
1389         bool ipv4_tunnel, ipv6_tunnel;
1390         __wsum rx_udp_csum;
1391         struct iphdr *iph;
1392         __sum16 csum;
1393
1394         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1395                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1396         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1397                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1398
1399         skb->ip_summed = CHECKSUM_NONE;
1400
1401         /* Rx csum enabled and ip headers found? */
1402         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1403                 return;
1404
1405         /* did the hardware decode the packet and checksum? */
1406         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1407                 return;
1408
1409         /* both known and outer_ip must be set for the below code to work */
1410         if (!(decoded.known && decoded.outer_ip))
1411                 return;
1412
1413         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1414             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1415                 ipv4 = true;
1416         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1417                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1418                 ipv6 = true;
1419
1420         if (ipv4 &&
1421             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1422                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1423                 goto checksum_fail;
1424
1425         /* likely incorrect csum if alternate IP extension headers found */
1426         if (ipv6 &&
1427             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1428                 /* don't increment checksum err here, non-fatal err */
1429                 return;
1430
1431         /* there was some L4 error, count error and punt packet to the stack */
1432         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1433                 goto checksum_fail;
1434
1435         /* handle packets that were not able to be checksummed due
1436          * to arrival speed, in this case the stack can compute
1437          * the csum.
1438          */
1439         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1440                 return;
1441
1442         /* If VXLAN/GENEVE traffic has an outer UDPv4 checksum we need to check
1443          * it in the driver, hardware does not do it for us.
1444          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1445          * so the total length of IPv4 header is IHL*4 bytes
1446          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1447          */
1448         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1449             (ipv4_tunnel)) {
1450                 skb->transport_header = skb->mac_header +
1451                                         sizeof(struct ethhdr) +
1452                                         (ip_hdr(skb)->ihl * 4);
1453
1454                 /* Add 4 bytes for VLAN tagged packets */
1455                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1456                                           skb->protocol == htons(ETH_P_8021AD))
1457                                           ? VLAN_HLEN : 0;
1458
1459                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1460                     (udp_hdr(skb)->check != 0)) {
1461                         rx_udp_csum = udp_csum(skb);
1462                         iph = ip_hdr(skb);
1463                         csum = csum_tcpudp_magic(
1464                                         iph->saddr, iph->daddr,
1465                                         (skb->len - skb_transport_offset(skb)),
1466                                         IPPROTO_UDP, rx_udp_csum);
1467
1468                         if (udp_hdr(skb)->check != csum)
1469                                 goto checksum_fail;
1470
1471                 } /* else its GRE and so no outer UDP header */
1472         }
1473
1474         skb->ip_summed = CHECKSUM_UNNECESSARY;
1475         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1476
1477         return;
1478
1479 checksum_fail:
1480         vsi->back->hw_csum_rx_error++;
1481 }
1482
1483 /**
1484  * i40e_ptype_to_htype - get a hash type
1485  * @ptype: the ptype value from the descriptor
1486  *
1487  * Returns a hash type to be used by skb_set_hash
1488  **/
1489 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1490 {
1491         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1492
1493         if (!decoded.known)
1494                 return PKT_HASH_TYPE_NONE;
1495
1496         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1497             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1498                 return PKT_HASH_TYPE_L4;
1499         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1500                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1501                 return PKT_HASH_TYPE_L3;
1502         else
1503                 return PKT_HASH_TYPE_L2;
1504 }
1505
1506 /**
1507  * i40e_rx_hash - set the hash value in the skb
1508  * @ring: descriptor ring
1509  * @rx_desc: specific descriptor
1510  **/
1511 static inline void i40e_rx_hash(struct i40e_ring *ring,
1512                                 union i40e_rx_desc *rx_desc,
1513                                 struct sk_buff *skb,
1514                                 u8 rx_ptype)
1515 {
1516         u32 hash;
1517         const __le64 rss_mask  =
1518                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1519                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1520
1521         if (ring->netdev->features & NETIF_F_RXHASH)
1522                 return;
1523
1524         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1525                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1526                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1527         }
1528 }
1529
1530 /**
1531  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1532  * @rx_ring:  rx ring to clean
1533  * @budget:   how many cleans we're allowed
1534  *
1535  * Returns true if there's any budget left (e.g. the clean is finished)
1536  **/
1537 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
1538 {
1539         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1540         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1541         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1542         struct i40e_vsi *vsi = rx_ring->vsi;
1543         u16 i = rx_ring->next_to_clean;
1544         union i40e_rx_desc *rx_desc;
1545         u32 rx_error, rx_status;
1546         bool failure = false;
1547         u8 rx_ptype;
1548         u64 qword;
1549         u32 copysize;
1550
1551         if (budget <= 0)
1552                 return 0;
1553
1554         do {
1555                 struct i40e_rx_buffer *rx_bi;
1556                 struct sk_buff *skb;
1557                 u16 vlan_tag;
1558                 /* return some buffers to hardware, one at a time is too slow */
1559                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1560                         failure = failure ||
1561                                   i40e_alloc_rx_buffers_ps(rx_ring,
1562                                                            cleaned_count);
1563                         cleaned_count = 0;
1564                 }
1565
1566                 i = rx_ring->next_to_clean;
1567                 rx_desc = I40E_RX_DESC(rx_ring, i);
1568                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1569                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1570                         I40E_RXD_QW1_STATUS_SHIFT;
1571
1572                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1573                         break;
1574
1575                 /* This memory barrier is needed to keep us from reading
1576                  * any other fields out of the rx_desc until we know the
1577                  * DD bit is set.
1578                  */
1579                 dma_rmb();
1580                 /* sync header buffer for reading */
1581                 dma_sync_single_range_for_cpu(rx_ring->dev,
1582                                               rx_ring->rx_bi[0].dma,
1583                                               i * rx_ring->rx_hdr_len,
1584                                               rx_ring->rx_hdr_len,
1585                                               DMA_FROM_DEVICE);
1586                 if (i40e_rx_is_programming_status(qword)) {
1587                         i40e_clean_programming_status(rx_ring, rx_desc);
1588                         I40E_RX_INCREMENT(rx_ring, i);
1589                         continue;
1590                 }
1591                 rx_bi = &rx_ring->rx_bi[i];
1592                 skb = rx_bi->skb;
1593                 if (likely(!skb)) {
1594                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1595                                                           rx_ring->rx_hdr_len,
1596                                                           GFP_ATOMIC |
1597                                                           __GFP_NOWARN);
1598                         if (!skb) {
1599                                 rx_ring->rx_stats.alloc_buff_failed++;
1600                                 failure = true;
1601                                 break;
1602                         }
1603
1604                         /* initialize queue mapping */
1605                         skb_record_rx_queue(skb, rx_ring->queue_index);
1606                         /* we are reusing so sync this buffer for CPU use */
1607                         dma_sync_single_range_for_cpu(rx_ring->dev,
1608                                                       rx_ring->rx_bi[0].dma,
1609                                                       i * rx_ring->rx_hdr_len,
1610                                                       rx_ring->rx_hdr_len,
1611                                                       DMA_FROM_DEVICE);
1612                 }
1613                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1614                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1615                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1616                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1617                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1618                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1619
1620                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1621                            I40E_RXD_QW1_ERROR_SHIFT;
1622                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1623                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1624
1625                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1626                            I40E_RXD_QW1_PTYPE_SHIFT;
1627                 /* sync half-page for reading */
1628                 dma_sync_single_range_for_cpu(rx_ring->dev,
1629                                               rx_bi->page_dma,
1630                                               rx_bi->page_offset,
1631                                               PAGE_SIZE / 2,
1632                                               DMA_FROM_DEVICE);
1633                 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1634                 rx_bi->skb = NULL;
1635                 cleaned_count++;
1636                 copysize = 0;
1637                 if (rx_hbo || rx_sph) {
1638                         int len;
1639
1640                         if (rx_hbo)
1641                                 len = I40E_RX_HDR_SIZE;
1642                         else
1643                                 len = rx_header_len;
1644                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1645                 } else if (skb->len == 0) {
1646                         int len;
1647                         unsigned char *va = page_address(rx_bi->page) +
1648                                             rx_bi->page_offset;
1649
1650                         len = min(rx_packet_len, rx_ring->rx_hdr_len);
1651                         memcpy(__skb_put(skb, len), va, len);
1652                         copysize = len;
1653                         rx_packet_len -= len;
1654                 }
1655                 /* Get the rest of the data if this was a header split */
1656                 if (rx_packet_len) {
1657                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1658                                         rx_bi->page,
1659                                         rx_bi->page_offset + copysize,
1660                                         rx_packet_len, I40E_RXBUFFER_2048);
1661
1662                         get_page(rx_bi->page);
1663                         /* switch to the other half-page here; the allocation
1664                          * code programs the right addr into HW. If we haven't
1665                          * used this half-page, the address won't be changed,
1666                          * and HW can just use it next time through.
1667                          */
1668                         rx_bi->page_offset ^= PAGE_SIZE / 2;
1669                         /* If the page count is more than 2, then both halves
1670                          * of the page are used and we need to free it. Do it
1671                          * here instead of in the alloc code. Otherwise one
1672                          * of the half-pages might be released between now and
1673                          * then, and we wouldn't know which one to use.
1674                          */
1675                         if (page_count(rx_bi->page) > 2) {
1676                                 dma_unmap_page(rx_ring->dev,
1677                                                rx_bi->page_dma,
1678                                                PAGE_SIZE,
1679                                                DMA_FROM_DEVICE);
1680                                 __free_page(rx_bi->page);
1681                                 rx_bi->page = NULL;
1682                                 rx_bi->page_dma = 0;
1683                                 rx_ring->rx_stats.realloc_count++;
1684                         }
1685
1686                 }
1687                 I40E_RX_INCREMENT(rx_ring, i);
1688
1689                 if (unlikely(
1690                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1691                         struct i40e_rx_buffer *next_buffer;
1692
1693                         next_buffer = &rx_ring->rx_bi[i];
1694                         next_buffer->skb = skb;
1695                         rx_ring->rx_stats.non_eop_descs++;
1696                         continue;
1697                 }
1698
1699                 /* ERR_MASK will only have valid bits if EOP set */
1700                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1701                         dev_kfree_skb_any(skb);
1702                         continue;
1703                 }
1704
1705                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1706
1707                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1708                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1709                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1710                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1711                         rx_ring->last_rx_timestamp = jiffies;
1712                 }
1713
1714                 /* probably a little skewed due to removing CRC */
1715                 total_rx_bytes += skb->len;
1716                 total_rx_packets++;
1717
1718                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1719
1720                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1721
1722                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1723                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1724                          : 0;
1725 #ifdef I40E_FCOE
1726                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1727                         dev_kfree_skb_any(skb);
1728                         continue;
1729                 }
1730 #endif
1731                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1732
1733                 rx_desc->wb.qword1.status_error_len = 0;
1734
1735         } while (likely(total_rx_packets < budget));
1736
1737         u64_stats_update_begin(&rx_ring->syncp);
1738         rx_ring->stats.packets += total_rx_packets;
1739         rx_ring->stats.bytes += total_rx_bytes;
1740         u64_stats_update_end(&rx_ring->syncp);
1741         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1742         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1743
1744         return failure ? budget : total_rx_packets;
1745 }
1746
1747 /**
1748  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1749  * @rx_ring:  rx ring to clean
1750  * @budget:   how many cleans we're allowed
1751  *
1752  * Returns number of packets cleaned
1753  **/
1754 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1755 {
1756         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1757         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1758         struct i40e_vsi *vsi = rx_ring->vsi;
1759         union i40e_rx_desc *rx_desc;
1760         u32 rx_error, rx_status;
1761         u16 rx_packet_len;
1762         bool failure = false;
1763         u8 rx_ptype;
1764         u64 qword;
1765         u16 i;
1766
1767         do {
1768                 struct i40e_rx_buffer *rx_bi;
1769                 struct sk_buff *skb;
1770                 u16 vlan_tag;
1771                 /* return some buffers to hardware, one at a time is too slow */
1772                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1773                         failure = failure ||
1774                                   i40e_alloc_rx_buffers_1buf(rx_ring,
1775                                                              cleaned_count);
1776                         cleaned_count = 0;
1777                 }
1778
1779                 i = rx_ring->next_to_clean;
1780                 rx_desc = I40E_RX_DESC(rx_ring, i);
1781                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1782                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1783                         I40E_RXD_QW1_STATUS_SHIFT;
1784
1785                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1786                         break;
1787
1788                 /* This memory barrier is needed to keep us from reading
1789                  * any other fields out of the rx_desc until we know the
1790                  * DD bit is set.
1791                  */
1792                 dma_rmb();
1793
1794                 if (i40e_rx_is_programming_status(qword)) {
1795                         i40e_clean_programming_status(rx_ring, rx_desc);
1796                         I40E_RX_INCREMENT(rx_ring, i);
1797                         continue;
1798                 }
1799                 rx_bi = &rx_ring->rx_bi[i];
1800                 skb = rx_bi->skb;
1801                 prefetch(skb->data);
1802
1803                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1804                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1805
1806                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1807                            I40E_RXD_QW1_ERROR_SHIFT;
1808                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1809
1810                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1811                            I40E_RXD_QW1_PTYPE_SHIFT;
1812                 rx_bi->skb = NULL;
1813                 cleaned_count++;
1814
1815                 /* Get the header and possibly the whole packet
1816                  * If this is an skb from previous receive dma will be 0
1817                  */
1818                 skb_put(skb, rx_packet_len);
1819                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1820                                  DMA_FROM_DEVICE);
1821                 rx_bi->dma = 0;
1822
1823                 I40E_RX_INCREMENT(rx_ring, i);
1824
1825                 if (unlikely(
1826                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1827                         rx_ring->rx_stats.non_eop_descs++;
1828                         continue;
1829                 }
1830
1831                 /* ERR_MASK will only have valid bits if EOP set */
1832                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1833                         dev_kfree_skb_any(skb);
1834                         continue;
1835                 }
1836
1837                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1838                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1839                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1840                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1841                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1842                         rx_ring->last_rx_timestamp = jiffies;
1843                 }
1844
1845                 /* probably a little skewed due to removing CRC */
1846                 total_rx_bytes += skb->len;
1847                 total_rx_packets++;
1848
1849                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1850
1851                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1852
1853                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1854                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1855                          : 0;
1856 #ifdef I40E_FCOE
1857                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1858                         dev_kfree_skb_any(skb);
1859                         continue;
1860                 }
1861 #endif
1862                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1863
1864                 rx_desc->wb.qword1.status_error_len = 0;
1865         } while (likely(total_rx_packets < budget));
1866
1867         u64_stats_update_begin(&rx_ring->syncp);
1868         rx_ring->stats.packets += total_rx_packets;
1869         rx_ring->stats.bytes += total_rx_bytes;
1870         u64_stats_update_end(&rx_ring->syncp);
1871         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1872         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1873
1874         return failure ? budget : total_rx_packets;
1875 }
1876
1877 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1878 {
1879         u32 val;
1880
1881         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1882               /* Don't clear PBA because that can cause lost interrupts that
1883                * came in while we were cleaning/polling
1884                */
1885               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1886               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1887
1888         return val;
1889 }
1890
1891 /* a small macro to shorten up some long lines */
1892 #define INTREG I40E_PFINT_DYN_CTLN
1893
1894 /**
1895  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1896  * @vsi: the VSI we care about
1897  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1898  *
1899  **/
1900 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1901                                           struct i40e_q_vector *q_vector)
1902 {
1903         struct i40e_hw *hw = &vsi->back->hw;
1904         bool rx = false, tx = false;
1905         u32 rxval, txval;
1906         int vector;
1907
1908         vector = (q_vector->v_idx + vsi->base_vector);
1909
1910         /* avoid dynamic calculation if in countdown mode OR if
1911          * all dynamic is disabled
1912          */
1913         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1914
1915         if (q_vector->itr_countdown > 0 ||
1916             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1917              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1918                 goto enable_int;
1919         }
1920
1921         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1922                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1923                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1924         }
1925
1926         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1927                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1928                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1929         }
1930
1931         if (rx || tx) {
1932                 /* get the higher of the two ITR adjustments and
1933                  * use the same value for both ITR registers
1934                  * when in adaptive mode (Rx and/or Tx)
1935                  */
1936                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1937
1938                 q_vector->tx.itr = q_vector->rx.itr = itr;
1939                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1940                 tx = true;
1941                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1942                 rx = true;
1943         }
1944
1945         /* only need to enable the interrupt once, but need
1946          * to possibly update both ITR values
1947          */
1948         if (rx) {
1949                 /* set the INTENA_MSK_MASK so that this first write
1950                  * won't actually enable the interrupt, instead just
1951                  * updating the ITR (it's bit 31 PF and VF)
1952                  */
1953                 rxval |= BIT(31);
1954                 /* don't check _DOWN because interrupt isn't being enabled */
1955                 wr32(hw, INTREG(vector - 1), rxval);
1956         }
1957
1958 enable_int:
1959         if (!test_bit(__I40E_DOWN, &vsi->state))
1960                 wr32(hw, INTREG(vector - 1), txval);
1961
1962         if (q_vector->itr_countdown)
1963                 q_vector->itr_countdown--;
1964         else
1965                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1966 }
1967
1968 /**
1969  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1970  * @napi: napi struct with our devices info in it
1971  * @budget: amount of work driver is allowed to do this pass, in packets
1972  *
1973  * This function will clean all queues associated with a q_vector.
1974  *
1975  * Returns the amount of work done
1976  **/
1977 int i40e_napi_poll(struct napi_struct *napi, int budget)
1978 {
1979         struct i40e_q_vector *q_vector =
1980                                container_of(napi, struct i40e_q_vector, napi);
1981         struct i40e_vsi *vsi = q_vector->vsi;
1982         struct i40e_ring *ring;
1983         bool clean_complete = true;
1984         bool arm_wb = false;
1985         int budget_per_ring;
1986         int work_done = 0;
1987
1988         if (test_bit(__I40E_DOWN, &vsi->state)) {
1989                 napi_complete(napi);
1990                 return 0;
1991         }
1992
1993         /* Clear hung_detected bit */
1994         clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1995         /* Since the actual Tx work is minimal, we can give the Tx a larger
1996          * budget and be more aggressive about cleaning up the Tx descriptors.
1997          */
1998         i40e_for_each_ring(ring, q_vector->tx) {
1999                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
2000                 arm_wb = arm_wb || ring->arm_wb;
2001                 ring->arm_wb = false;
2002         }
2003
2004         /* Handle case where we are called by netpoll with a budget of 0 */
2005         if (budget <= 0)
2006                 goto tx_only;
2007
2008         /* We attempt to distribute budget to each Rx queue fairly, but don't
2009          * allow the budget to go below 1 because that would exit polling early.
2010          */
2011         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2012
2013         i40e_for_each_ring(ring, q_vector->rx) {
2014                 int cleaned;
2015
2016                 if (ring_is_ps_enabled(ring))
2017                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
2018                 else
2019                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
2020
2021                 work_done += cleaned;
2022                 /* if we didn't clean as many as budgeted, we must be done */
2023                 clean_complete &= (budget_per_ring != cleaned);
2024         }
2025
2026         /* If work not completed, return budget and polling will return */
2027         if (!clean_complete) {
2028 tx_only:
2029                 if (arm_wb) {
2030                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2031                         i40e_enable_wb_on_itr(vsi, q_vector);
2032                 }
2033                 return budget;
2034         }
2035
2036         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2037                 q_vector->arm_wb_state = false;
2038
2039         /* Work is done so exit the polling mode and re-enable the interrupt */
2040         napi_complete_done(napi, work_done);
2041         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
2042                 i40e_update_enable_itr(vsi, q_vector);
2043         } else { /* Legacy mode */
2044                 struct i40e_hw *hw = &vsi->back->hw;
2045                 /* We re-enable the queue 0 cause, but
2046                  * don't worry about dynamic_enable
2047                  * because we left it on for the other
2048                  * possible interrupts during napi
2049                  */
2050                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
2051                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
2052
2053                 wr32(hw, I40E_QINT_RQCTL(0), qval);
2054                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
2055                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
2056                 wr32(hw, I40E_QINT_TQCTL(0), qval);
2057                 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2058         }
2059         return 0;
2060 }
2061
2062 /**
2063  * i40e_atr - Add a Flow Director ATR filter
2064  * @tx_ring:  ring to add programming descriptor to
2065  * @skb:      send buffer
2066  * @tx_flags: send tx flags
2067  * @protocol: wire protocol
2068  **/
2069 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2070                      u32 tx_flags, __be16 protocol)
2071 {
2072         struct i40e_filter_program_desc *fdir_desc;
2073         struct i40e_pf *pf = tx_ring->vsi->back;
2074         union {
2075                 unsigned char *network;
2076                 struct iphdr *ipv4;
2077                 struct ipv6hdr *ipv6;
2078         } hdr;
2079         struct tcphdr *th;
2080         unsigned int hlen;
2081         u32 flex_ptype, dtype_cmd;
2082         u16 i;
2083
2084         /* make sure ATR is enabled */
2085         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2086                 return;
2087
2088         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2089                 return;
2090
2091         /* if sampling is disabled do nothing */
2092         if (!tx_ring->atr_sample_rate)
2093                 return;
2094
2095         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2096                 return;
2097
2098         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) {
2099                 /* snag network header to get L4 type and address */
2100                 hdr.network = skb_network_header(skb);
2101
2102                 /* Currently only IPv4/IPv6 with TCP is supported
2103                  * access ihl as u8 to avoid unaligned access on ia64
2104                  */
2105                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2106                         hlen = (hdr.network[0] & 0x0F) << 2;
2107                 else if (protocol == htons(ETH_P_IPV6))
2108                         hlen = sizeof(struct ipv6hdr);
2109                 else
2110                         return;
2111         } else {
2112                 hdr.network = skb_inner_network_header(skb);
2113                 hlen = skb_inner_network_header_len(skb);
2114         }
2115
2116         /* Currently only IPv4/IPv6 with TCP is supported
2117          * Note: tx_flags gets modified to reflect inner protocols in
2118          * tx_enable_csum function if encap is enabled.
2119          */
2120         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2121             (hdr.ipv4->protocol != IPPROTO_TCP))
2122                 return;
2123         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2124                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2125                 return;
2126
2127         th = (struct tcphdr *)(hdr.network + hlen);
2128
2129         /* Due to lack of space, no more new filters can be programmed */
2130         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2131                 return;
2132         if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2133             (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2134                 /* HW ATR eviction will take care of removing filters on FIN
2135                  * and RST packets.
2136                  */
2137                 if (th->fin || th->rst)
2138                         return;
2139         }
2140
2141         tx_ring->atr_count++;
2142
2143         /* sample on all syn/fin/rst packets or once every atr sample rate */
2144         if (!th->fin &&
2145             !th->syn &&
2146             !th->rst &&
2147             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2148                 return;
2149
2150         tx_ring->atr_count = 0;
2151
2152         /* grab the next descriptor */
2153         i = tx_ring->next_to_use;
2154         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2155
2156         i++;
2157         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2158
2159         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2160                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2161         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2162                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2163                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2164                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2165                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2166
2167         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2168
2169         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2170
2171         dtype_cmd |= (th->fin || th->rst) ?
2172                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2173                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2174                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2175                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2176
2177         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2178                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2179
2180         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2181                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2182
2183         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2184         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2185                 dtype_cmd |=
2186                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2187                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2188                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2189         else
2190                 dtype_cmd |=
2191                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2192                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2193                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2194
2195         if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2196             (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2197                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2198
2199         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2200         fdir_desc->rsvd = cpu_to_le32(0);
2201         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2202         fdir_desc->fd_id = cpu_to_le32(0);
2203 }
2204
2205 /**
2206  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2207  * @skb:     send buffer
2208  * @tx_ring: ring to send buffer on
2209  * @flags:   the tx flags to be set
2210  *
2211  * Checks the skb and set up correspondingly several generic transmit flags
2212  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2213  *
2214  * Returns error code indicate the frame should be dropped upon error and the
2215  * otherwise  returns 0 to indicate the flags has been set properly.
2216  **/
2217 #ifdef I40E_FCOE
2218 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2219                                       struct i40e_ring *tx_ring,
2220                                       u32 *flags)
2221 #else
2222 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2223                                              struct i40e_ring *tx_ring,
2224                                              u32 *flags)
2225 #endif
2226 {
2227         __be16 protocol = skb->protocol;
2228         u32  tx_flags = 0;
2229
2230         if (protocol == htons(ETH_P_8021Q) &&
2231             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2232                 /* When HW VLAN acceleration is turned off by the user the
2233                  * stack sets the protocol to 8021q so that the driver
2234                  * can take any steps required to support the SW only
2235                  * VLAN handling.  In our case the driver doesn't need
2236                  * to take any further steps so just set the protocol
2237                  * to the encapsulated ethertype.
2238                  */
2239                 skb->protocol = vlan_get_protocol(skb);
2240                 goto out;
2241         }
2242
2243         /* if we have a HW VLAN tag being added, default to the HW one */
2244         if (skb_vlan_tag_present(skb)) {
2245                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2246                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2247         /* else if it is a SW VLAN, check the next protocol and store the tag */
2248         } else if (protocol == htons(ETH_P_8021Q)) {
2249                 struct vlan_hdr *vhdr, _vhdr;
2250
2251                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2252                 if (!vhdr)
2253                         return -EINVAL;
2254
2255                 protocol = vhdr->h_vlan_encapsulated_proto;
2256                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2257                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2258         }
2259
2260         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2261                 goto out;
2262
2263         /* Insert 802.1p priority into VLAN header */
2264         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2265             (skb->priority != TC_PRIO_CONTROL)) {
2266                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2267                 tx_flags |= (skb->priority & 0x7) <<
2268                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2269                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2270                         struct vlan_ethhdr *vhdr;
2271                         int rc;
2272
2273                         rc = skb_cow_head(skb, 0);
2274                         if (rc < 0)
2275                                 return rc;
2276                         vhdr = (struct vlan_ethhdr *)skb->data;
2277                         vhdr->h_vlan_TCI = htons(tx_flags >>
2278                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2279                 } else {
2280                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2281                 }
2282         }
2283
2284 out:
2285         *flags = tx_flags;
2286         return 0;
2287 }
2288
2289 /**
2290  * i40e_tso - set up the tso context descriptor
2291  * @tx_ring:  ptr to the ring to send
2292  * @skb:      ptr to the skb we're sending
2293  * @hdr_len:  ptr to the size of the packet header
2294  * @cd_type_cmd_tso_mss: Quad Word 1
2295  *
2296  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2297  **/
2298 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2299                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2300 {
2301         u32 cd_cmd, cd_tso_len, cd_mss;
2302         struct ipv6hdr *ipv6h;
2303         struct tcphdr *tcph;
2304         struct iphdr *iph;
2305         u32 l4len;
2306         int err;
2307
2308         if (skb->ip_summed != CHECKSUM_PARTIAL)
2309                 return 0;
2310
2311         if (!skb_is_gso(skb))
2312                 return 0;
2313
2314         err = skb_cow_head(skb, 0);
2315         if (err < 0)
2316                 return err;
2317
2318         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2319         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2320
2321         if (iph->version == 4) {
2322                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2323                 iph->tot_len = 0;
2324                 iph->check = 0;
2325                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2326                                                  0, IPPROTO_TCP, 0);
2327         } else if (ipv6h->version == 6) {
2328                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2329                 ipv6h->payload_len = 0;
2330                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2331                                                0, IPPROTO_TCP, 0);
2332         }
2333
2334         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2335         *hdr_len = (skb->encapsulation
2336                     ? (skb_inner_transport_header(skb) - skb->data)
2337                     : skb_transport_offset(skb)) + l4len;
2338
2339         /* find the field values */
2340         cd_cmd = I40E_TX_CTX_DESC_TSO;
2341         cd_tso_len = skb->len - *hdr_len;
2342         cd_mss = skb_shinfo(skb)->gso_size;
2343         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2344                                 ((u64)cd_tso_len <<
2345                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2346                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2347         return 1;
2348 }
2349
2350 /**
2351  * i40e_tsyn - set up the tsyn context descriptor
2352  * @tx_ring:  ptr to the ring to send
2353  * @skb:      ptr to the skb we're sending
2354  * @tx_flags: the collected send information
2355  * @cd_type_cmd_tso_mss: Quad Word 1
2356  *
2357  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2358  **/
2359 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2360                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2361 {
2362         struct i40e_pf *pf;
2363
2364         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2365                 return 0;
2366
2367         /* Tx timestamps cannot be sampled when doing TSO */
2368         if (tx_flags & I40E_TX_FLAGS_TSO)
2369                 return 0;
2370
2371         /* only timestamp the outbound packet if the user has requested it and
2372          * we are not already transmitting a packet to be timestamped
2373          */
2374         pf = i40e_netdev_to_pf(tx_ring->netdev);
2375         if (!(pf->flags & I40E_FLAG_PTP))
2376                 return 0;
2377
2378         if (pf->ptp_tx &&
2379             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2380                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2381                 pf->ptp_tx_skb = skb_get(skb);
2382         } else {
2383                 return 0;
2384         }
2385
2386         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2387                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2388
2389         return 1;
2390 }
2391
2392 /**
2393  * i40e_tx_enable_csum - Enable Tx checksum offloads
2394  * @skb: send buffer
2395  * @tx_flags: pointer to Tx flags currently set
2396  * @td_cmd: Tx descriptor command bits to set
2397  * @td_offset: Tx descriptor header offsets to set
2398  * @tx_ring: Tx descriptor ring
2399  * @cd_tunneling: ptr to context desc bits
2400  **/
2401 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2402                                 u32 *td_cmd, u32 *td_offset,
2403                                 struct i40e_ring *tx_ring,
2404                                 u32 *cd_tunneling)
2405 {
2406         struct ipv6hdr *this_ipv6_hdr;
2407         unsigned int this_tcp_hdrlen;
2408         struct iphdr *this_ip_hdr;
2409         u32 network_hdr_len;
2410         u8 l4_hdr = 0;
2411         struct udphdr *oudph = NULL;
2412         struct iphdr *oiph = NULL;
2413         u32 l4_tunnel = 0;
2414
2415         if (skb->encapsulation) {
2416                 switch (ip_hdr(skb)->protocol) {
2417                 case IPPROTO_UDP:
2418                         oudph = udp_hdr(skb);
2419                         oiph = ip_hdr(skb);
2420                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2421                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2422                         break;
2423                 case IPPROTO_GRE:
2424                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2425                         break;
2426                 default:
2427                         return;
2428                 }
2429                 network_hdr_len = skb_inner_network_header_len(skb);
2430                 this_ip_hdr = inner_ip_hdr(skb);
2431                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2432                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2433
2434                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2435                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2436                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2437                                 ip_hdr(skb)->check = 0;
2438                         } else {
2439                                 *cd_tunneling |=
2440                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2441                         }
2442                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2443                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2444                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2445                                 ip_hdr(skb)->check = 0;
2446                 }
2447
2448                 /* Now set the ctx descriptor fields */
2449                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2450                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2451                                    l4_tunnel                             |
2452                                    ((skb_inner_network_offset(skb) -
2453                                         skb_transport_offset(skb)) >> 1) <<
2454                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2455                 if (this_ip_hdr->version == 6) {
2456                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2457                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2458                 }
2459                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2460                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2461                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2462                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2463                                         oiph->daddr,
2464                                         (skb->len - skb_transport_offset(skb)),
2465                                         IPPROTO_UDP, 0);
2466                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2467                 }
2468         } else {
2469                 network_hdr_len = skb_network_header_len(skb);
2470                 this_ip_hdr = ip_hdr(skb);
2471                 this_ipv6_hdr = ipv6_hdr(skb);
2472                 this_tcp_hdrlen = tcp_hdrlen(skb);
2473         }
2474
2475         /* Enable IP checksum offloads */
2476         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2477                 l4_hdr = this_ip_hdr->protocol;
2478                 /* the stack computes the IP header already, the only time we
2479                  * need the hardware to recompute it is in the case of TSO.
2480                  */
2481                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2482                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2483                         this_ip_hdr->check = 0;
2484                 } else {
2485                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2486                 }
2487                 /* Now set the td_offset for IP header length */
2488                 *td_offset = (network_hdr_len >> 2) <<
2489                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2490         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2491                 l4_hdr = this_ipv6_hdr->nexthdr;
2492                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2493                 /* Now set the td_offset for IP header length */
2494                 *td_offset = (network_hdr_len >> 2) <<
2495                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2496         }
2497         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2498         *td_offset |= (skb_network_offset(skb) >> 1) <<
2499                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2500
2501         /* Enable L4 checksum offloads */
2502         switch (l4_hdr) {
2503         case IPPROTO_TCP:
2504                 /* enable checksum offloads */
2505                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2506                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2507                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2508                 break;
2509         case IPPROTO_SCTP:
2510                 /* enable SCTP checksum offload */
2511                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2512                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2513                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2514                 break;
2515         case IPPROTO_UDP:
2516                 /* enable UDP checksum offload */
2517                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2518                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2519                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2520                 break;
2521         default:
2522                 break;
2523         }
2524 }
2525
2526 /**
2527  * i40e_create_tx_ctx Build the Tx context descriptor
2528  * @tx_ring:  ring to create the descriptor on
2529  * @cd_type_cmd_tso_mss: Quad Word 1
2530  * @cd_tunneling: Quad Word 0 - bits 0-31
2531  * @cd_l2tag2: Quad Word 0 - bits 32-63
2532  **/
2533 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2534                                const u64 cd_type_cmd_tso_mss,
2535                                const u32 cd_tunneling, const u32 cd_l2tag2)
2536 {
2537         struct i40e_tx_context_desc *context_desc;
2538         int i = tx_ring->next_to_use;
2539
2540         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2541             !cd_tunneling && !cd_l2tag2)
2542                 return;
2543
2544         /* grab the next descriptor */
2545         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2546
2547         i++;
2548         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2549
2550         /* cpu_to_le32 and assign to struct fields */
2551         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2552         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2553         context_desc->rsvd = cpu_to_le16(0);
2554         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2555 }
2556
2557 /**
2558  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2559  * @tx_ring: the ring to be checked
2560  * @size:    the size buffer we want to assure is available
2561  *
2562  * Returns -EBUSY if a stop is needed, else 0
2563  **/
2564 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2565 {
2566         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2567         /* Memory barrier before checking head and tail */
2568         smp_mb();
2569
2570         /* Check again in a case another CPU has just made room available. */
2571         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2572                 return -EBUSY;
2573
2574         /* A reprieve! - use start_queue because it doesn't call schedule */
2575         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2576         ++tx_ring->tx_stats.restart_queue;
2577         return 0;
2578 }
2579
2580 /**
2581  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2582  * @tx_ring: the ring to be checked
2583  * @size:    the size buffer we want to assure is available
2584  *
2585  * Returns 0 if stop is not needed
2586  **/
2587 #ifdef I40E_FCOE
2588 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2589 #else
2590 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2591 #endif
2592 {
2593         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2594                 return 0;
2595         return __i40e_maybe_stop_tx(tx_ring, size);
2596 }
2597
2598 /**
2599  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2600  * @skb:      send buffer
2601  * @tx_flags: collected send information
2602  *
2603  * Note: Our HW can't scatter-gather more than 8 fragments to build
2604  * a packet on the wire and so we need to figure out the cases where we
2605  * need to linearize the skb.
2606  **/
2607 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2608 {
2609         struct skb_frag_struct *frag;
2610         bool linearize = false;
2611         unsigned int size = 0;
2612         u16 num_frags;
2613         u16 gso_segs;
2614
2615         num_frags = skb_shinfo(skb)->nr_frags;
2616         gso_segs = skb_shinfo(skb)->gso_segs;
2617
2618         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2619                 u16 j = 0;
2620
2621                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2622                         goto linearize_chk_done;
2623                 /* try the simple math, if we have too many frags per segment */
2624                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2625                     I40E_MAX_BUFFER_TXD) {
2626                         linearize = true;
2627                         goto linearize_chk_done;
2628                 }
2629                 frag = &skb_shinfo(skb)->frags[0];
2630                 /* we might still have more fragments per segment */
2631                 do {
2632                         size += skb_frag_size(frag);
2633                         frag++; j++;
2634                         if ((size >= skb_shinfo(skb)->gso_size) &&
2635                             (j < I40E_MAX_BUFFER_TXD)) {
2636                                 size = (size % skb_shinfo(skb)->gso_size);
2637                                 j = (size) ? 1 : 0;
2638                         }
2639                         if (j == I40E_MAX_BUFFER_TXD) {
2640                                 linearize = true;
2641                                 break;
2642                         }
2643                         num_frags--;
2644                 } while (num_frags);
2645         } else {
2646                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2647                         linearize = true;
2648         }
2649
2650 linearize_chk_done:
2651         return linearize;
2652 }
2653
2654 /**
2655  * i40e_tx_map - Build the Tx descriptor
2656  * @tx_ring:  ring to send buffer on
2657  * @skb:      send buffer
2658  * @first:    first buffer info buffer to use
2659  * @tx_flags: collected send information
2660  * @hdr_len:  size of the packet header
2661  * @td_cmd:   the command field in the descriptor
2662  * @td_offset: offset for checksum or crc
2663  **/
2664 #ifdef I40E_FCOE
2665 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2666                         struct i40e_tx_buffer *first, u32 tx_flags,
2667                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2668 #else
2669 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2670                                struct i40e_tx_buffer *first, u32 tx_flags,
2671                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2672 #endif
2673 {
2674         unsigned int data_len = skb->data_len;
2675         unsigned int size = skb_headlen(skb);
2676         struct skb_frag_struct *frag;
2677         struct i40e_tx_buffer *tx_bi;
2678         struct i40e_tx_desc *tx_desc;
2679         u16 i = tx_ring->next_to_use;
2680         u32 td_tag = 0;
2681         dma_addr_t dma;
2682         u16 gso_segs;
2683         u16 desc_count = 0;
2684         bool tail_bump = true;
2685         bool do_rs = false;
2686
2687         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2688                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2689                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2690                          I40E_TX_FLAGS_VLAN_SHIFT;
2691         }
2692
2693         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2694                 gso_segs = skb_shinfo(skb)->gso_segs;
2695         else
2696                 gso_segs = 1;
2697
2698         /* multiply data chunks by size of headers */
2699         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2700         first->gso_segs = gso_segs;
2701         first->skb = skb;
2702         first->tx_flags = tx_flags;
2703
2704         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2705
2706         tx_desc = I40E_TX_DESC(tx_ring, i);
2707         tx_bi = first;
2708
2709         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2710                 if (dma_mapping_error(tx_ring->dev, dma))
2711                         goto dma_error;
2712
2713                 /* record length, and DMA address */
2714                 dma_unmap_len_set(tx_bi, len, size);
2715                 dma_unmap_addr_set(tx_bi, dma, dma);
2716
2717                 tx_desc->buffer_addr = cpu_to_le64(dma);
2718
2719                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2720                         tx_desc->cmd_type_offset_bsz =
2721                                 build_ctob(td_cmd, td_offset,
2722                                            I40E_MAX_DATA_PER_TXD, td_tag);
2723
2724                         tx_desc++;
2725                         i++;
2726                         desc_count++;
2727
2728                         if (i == tx_ring->count) {
2729                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2730                                 i = 0;
2731                         }
2732
2733                         dma += I40E_MAX_DATA_PER_TXD;
2734                         size -= I40E_MAX_DATA_PER_TXD;
2735
2736                         tx_desc->buffer_addr = cpu_to_le64(dma);
2737                 }
2738
2739                 if (likely(!data_len))
2740                         break;
2741
2742                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2743                                                           size, td_tag);
2744
2745                 tx_desc++;
2746                 i++;
2747                 desc_count++;
2748
2749                 if (i == tx_ring->count) {
2750                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2751                         i = 0;
2752                 }
2753
2754                 size = skb_frag_size(frag);
2755                 data_len -= size;
2756
2757                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2758                                        DMA_TO_DEVICE);
2759
2760                 tx_bi = &tx_ring->tx_bi[i];
2761         }
2762
2763         /* set next_to_watch value indicating a packet is present */
2764         first->next_to_watch = tx_desc;
2765
2766         i++;
2767         if (i == tx_ring->count)
2768                 i = 0;
2769
2770         tx_ring->next_to_use = i;
2771
2772         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2773                                                  tx_ring->queue_index),
2774                                                  first->bytecount);
2775         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2776
2777         /* Algorithm to optimize tail and RS bit setting:
2778          * if xmit_more is supported
2779          *      if xmit_more is true
2780          *              do not update tail and do not mark RS bit.
2781          *      if xmit_more is false and last xmit_more was false
2782          *              if every packet spanned less than 4 desc
2783          *                      then set RS bit on 4th packet and update tail
2784          *                      on every packet
2785          *              else
2786          *                      update tail and set RS bit on every packet.
2787          *      if xmit_more is false and last_xmit_more was true
2788          *              update tail and set RS bit.
2789          *
2790          * Optimization: wmb to be issued only in case of tail update.
2791          * Also optimize the Descriptor WB path for RS bit with the same
2792          * algorithm.
2793          *
2794          * Note: If there are less than 4 packets
2795          * pending and interrupts were disabled the service task will
2796          * trigger a force WB.
2797          */
2798         if (skb->xmit_more  &&
2799             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2800                                                     tx_ring->queue_index))) {
2801                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2802                 tail_bump = false;
2803         } else if (!skb->xmit_more &&
2804                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2805                                                        tx_ring->queue_index)) &&
2806                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2807                    (tx_ring->packet_stride < WB_STRIDE) &&
2808                    (desc_count < WB_STRIDE)) {
2809                 tx_ring->packet_stride++;
2810         } else {
2811                 tx_ring->packet_stride = 0;
2812                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2813                 do_rs = true;
2814         }
2815         if (do_rs)
2816                 tx_ring->packet_stride = 0;
2817
2818         tx_desc->cmd_type_offset_bsz =
2819                         build_ctob(td_cmd, td_offset, size, td_tag) |
2820                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2821                                                   I40E_TX_DESC_CMD_EOP) <<
2822                                                   I40E_TXD_QW1_CMD_SHIFT);
2823
2824         /* notify HW of packet */
2825         if (!tail_bump)
2826                 prefetchw(tx_desc + 1);
2827
2828         if (tail_bump) {
2829                 /* Force memory writes to complete before letting h/w
2830                  * know there are new descriptors to fetch.  (Only
2831                  * applicable for weak-ordered memory model archs,
2832                  * such as IA-64).
2833                  */
2834                 wmb();
2835                 writel(i, tx_ring->tail);
2836         }
2837
2838         return;
2839
2840 dma_error:
2841         dev_info(tx_ring->dev, "TX DMA map failed\n");
2842
2843         /* clear dma mappings for failed tx_bi map */
2844         for (;;) {
2845                 tx_bi = &tx_ring->tx_bi[i];
2846                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2847                 if (tx_bi == first)
2848                         break;
2849                 if (i == 0)
2850                         i = tx_ring->count;
2851                 i--;
2852         }
2853
2854         tx_ring->next_to_use = i;
2855 }
2856
2857 /**
2858  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2859  * @skb:     send buffer
2860  * @tx_ring: ring to send buffer on
2861  *
2862  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2863  * there is not enough descriptors available in this ring since we need at least
2864  * one descriptor.
2865  **/
2866 #ifdef I40E_FCOE
2867 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2868                                       struct i40e_ring *tx_ring)
2869 #else
2870 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2871                                              struct i40e_ring *tx_ring)
2872 #endif
2873 {
2874         unsigned int f;
2875         int count = 0;
2876
2877         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2878          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2879          *       + 4 desc gap to avoid the cache line where head is,
2880          *       + 1 desc for context descriptor,
2881          * otherwise try next time
2882          */
2883         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2884                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2885
2886         count += TXD_USE_COUNT(skb_headlen(skb));
2887         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2888                 tx_ring->tx_stats.tx_busy++;
2889                 return 0;
2890         }
2891         return count;
2892 }
2893
2894 /**
2895  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2896  * @skb:     send buffer
2897  * @tx_ring: ring to send buffer on
2898  *
2899  * Returns NETDEV_TX_OK if sent, else an error code
2900  **/
2901 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2902                                         struct i40e_ring *tx_ring)
2903 {
2904         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2905         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2906         struct i40e_tx_buffer *first;
2907         u32 td_offset = 0;
2908         u32 tx_flags = 0;
2909         __be16 protocol;
2910         u32 td_cmd = 0;
2911         u8 hdr_len = 0;
2912         int tsyn;
2913         int tso;
2914
2915         /* prefetch the data, we'll need it later */
2916         prefetch(skb->data);
2917
2918         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2919                 return NETDEV_TX_BUSY;
2920
2921         /* prepare the xmit flags */
2922         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2923                 goto out_drop;
2924
2925         /* obtain protocol of skb */
2926         protocol = vlan_get_protocol(skb);
2927
2928         /* record the location of the first descriptor for this packet */
2929         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2930
2931         /* setup IPv4/IPv6 offloads */
2932         if (protocol == htons(ETH_P_IP))
2933                 tx_flags |= I40E_TX_FLAGS_IPV4;
2934         else if (protocol == htons(ETH_P_IPV6))
2935                 tx_flags |= I40E_TX_FLAGS_IPV6;
2936
2937         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2938
2939         if (tso < 0)
2940                 goto out_drop;
2941         else if (tso)
2942                 tx_flags |= I40E_TX_FLAGS_TSO;
2943
2944         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2945
2946         if (tsyn)
2947                 tx_flags |= I40E_TX_FLAGS_TSYN;
2948
2949         if (i40e_chk_linearize(skb, tx_flags)) {
2950                 if (skb_linearize(skb))
2951                         goto out_drop;
2952                 tx_ring->tx_stats.tx_linearize++;
2953         }
2954         skb_tx_timestamp(skb);
2955
2956         /* always enable CRC insertion offload */
2957         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2958
2959         /* Always offload the checksum, since it's in the data descriptor */
2960         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2961                 tx_flags |= I40E_TX_FLAGS_CSUM;
2962
2963                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2964                                     tx_ring, &cd_tunneling);
2965         }
2966
2967         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2968                            cd_tunneling, cd_l2tag2);
2969
2970         /* Add Flow Director ATR if it's enabled.
2971          *
2972          * NOTE: this must always be directly before the data descriptor.
2973          */
2974         i40e_atr(tx_ring, skb, tx_flags, protocol);
2975
2976         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2977                     td_cmd, td_offset);
2978
2979         return NETDEV_TX_OK;
2980
2981 out_drop:
2982         dev_kfree_skb_any(skb);
2983         return NETDEV_TX_OK;
2984 }
2985
2986 /**
2987  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2988  * @skb:    send buffer
2989  * @netdev: network interface device structure
2990  *
2991  * Returns NETDEV_TX_OK if sent, else an error code
2992  **/
2993 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2994 {
2995         struct i40e_netdev_priv *np = netdev_priv(netdev);
2996         struct i40e_vsi *vsi = np->vsi;
2997         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2998
2999         /* hardware can't handle really short frames, hardware padding works
3000          * beyond this point
3001          */
3002         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3003                 return NETDEV_TX_OK;
3004
3005         return i40e_xmit_frame_ring(skb, tx_ring);
3006 }