]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge tag 'renesas-soc-cleanup3-for-v4.1' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28
29 #include "i40evf.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44 /**
45  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46  * @ring:      the ring that owns the buffer
47  * @tx_buffer: the buffer to free
48  **/
49 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50                                             struct i40e_tx_buffer *tx_buffer)
51 {
52         if (tx_buffer->skb) {
53                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54                         kfree(tx_buffer->raw_buf);
55                 else
56                         dev_kfree_skb_any(tx_buffer->skb);
57
58                 if (dma_unmap_len(tx_buffer, len))
59                         dma_unmap_single(ring->dev,
60                                          dma_unmap_addr(tx_buffer, dma),
61                                          dma_unmap_len(tx_buffer, len),
62                                          DMA_TO_DEVICE);
63         } else if (dma_unmap_len(tx_buffer, len)) {
64                 dma_unmap_page(ring->dev,
65                                dma_unmap_addr(tx_buffer, dma),
66                                dma_unmap_len(tx_buffer, len),
67                                DMA_TO_DEVICE);
68         }
69         tx_buffer->next_to_watch = NULL;
70         tx_buffer->skb = NULL;
71         dma_unmap_len_set(tx_buffer, len, 0);
72         /* tx_buffer must be completely set up in the transmit path */
73 }
74
75 /**
76  * i40evf_clean_tx_ring - Free any empty Tx buffers
77  * @tx_ring: ring to be cleaned
78  **/
79 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80 {
81         unsigned long bi_size;
82         u16 i;
83
84         /* ring already cleared, nothing to do */
85         if (!tx_ring->tx_bi)
86                 return;
87
88         /* Free all the Tx ring sk_buffs */
89         for (i = 0; i < tx_ring->count; i++)
90                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93         memset(tx_ring->tx_bi, 0, bi_size);
94
95         /* Zero out the descriptor ring */
96         memset(tx_ring->desc, 0, tx_ring->size);
97
98         tx_ring->next_to_use = 0;
99         tx_ring->next_to_clean = 0;
100
101         if (!tx_ring->netdev)
102                 return;
103
104         /* cleanup Tx queue statistics */
105         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106                                                   tx_ring->queue_index));
107 }
108
109 /**
110  * i40evf_free_tx_resources - Free Tx resources per queue
111  * @tx_ring: Tx descriptor ring for a specific queue
112  *
113  * Free all transmit software resources
114  **/
115 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116 {
117         i40evf_clean_tx_ring(tx_ring);
118         kfree(tx_ring->tx_bi);
119         tx_ring->tx_bi = NULL;
120
121         if (tx_ring->desc) {
122                 dma_free_coherent(tx_ring->dev, tx_ring->size,
123                                   tx_ring->desc, tx_ring->dma);
124                 tx_ring->desc = NULL;
125         }
126 }
127
128 /**
129  * i40e_get_tx_pending - how many tx descriptors not processed
130  * @tx_ring: the ring of descriptors
131  *
132  * Since there is no access to the ring head register
133  * in XL710, we need to use our local copies
134  **/
135 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136 {
137         u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138                         ? ring->next_to_use
139                         : ring->next_to_use + ring->count);
140         return ntu - ring->next_to_clean;
141 }
142
143 /**
144  * i40e_check_tx_hang - Is there a hang in the Tx queue
145  * @tx_ring: the ring of descriptors
146  **/
147 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148 {
149         u32 tx_pending = i40e_get_tx_pending(tx_ring);
150         bool ret = false;
151
152         clear_check_for_tx_hang(tx_ring);
153
154         /* Check for a hung queue, but be thorough. This verifies
155          * that a transmit has been completed since the previous
156          * check AND there is at least one packet pending. The
157          * ARMED bit is set to indicate a potential hang. The
158          * bit is cleared if a pause frame is received to remove
159          * false hang detection due to PFC or 802.3x frames. By
160          * requiring this to fail twice we avoid races with
161          * PFC clearing the ARMED bit and conditions where we
162          * run the check_tx_hang logic with a transmit completion
163          * pending but without time to complete it yet.
164          */
165         if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
166             (tx_pending >= I40E_MIN_DESC_PENDING)) {
167                 /* make sure it is true for two checks in a row */
168                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169                                        &tx_ring->state);
170         } else if (!(tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) ||
171                    !(tx_pending < I40E_MIN_DESC_PENDING) ||
172                    !(tx_pending > 0)) {
173                 /* update completed stats and disarm the hang check */
174                 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
175                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
176         }
177
178         return ret;
179 }
180
181 /**
182  * i40e_get_head - Retrieve head from head writeback
183  * @tx_ring:  tx ring to fetch head of
184  *
185  * Returns value of Tx ring head based on value stored
186  * in head write-back location
187  **/
188 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
189 {
190         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
191
192         return le32_to_cpu(*(volatile __le32 *)head);
193 }
194
195 #define WB_STRIDE 0x3
196
197 /**
198  * i40e_clean_tx_irq - Reclaim resources after transmit completes
199  * @tx_ring:  tx ring to clean
200  * @budget:   how many cleans we're allowed
201  *
202  * Returns true if there's any budget left (e.g. the clean is finished)
203  **/
204 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
205 {
206         u16 i = tx_ring->next_to_clean;
207         struct i40e_tx_buffer *tx_buf;
208         struct i40e_tx_desc *tx_head;
209         struct i40e_tx_desc *tx_desc;
210         unsigned int total_packets = 0;
211         unsigned int total_bytes = 0;
212
213         tx_buf = &tx_ring->tx_bi[i];
214         tx_desc = I40E_TX_DESC(tx_ring, i);
215         i -= tx_ring->count;
216
217         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
218
219         do {
220                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
221
222                 /* if next_to_watch is not set then there is no work pending */
223                 if (!eop_desc)
224                         break;
225
226                 /* prevent any other reads prior to eop_desc */
227                 read_barrier_depends();
228
229                 /* we have caught up to head, no work left to do */
230                 if (tx_head == tx_desc)
231                         break;
232
233                 /* clear next_to_watch to prevent false hangs */
234                 tx_buf->next_to_watch = NULL;
235
236                 /* update the statistics for this packet */
237                 total_bytes += tx_buf->bytecount;
238                 total_packets += tx_buf->gso_segs;
239
240                 /* free the skb */
241                 dev_kfree_skb_any(tx_buf->skb);
242
243                 /* unmap skb header data */
244                 dma_unmap_single(tx_ring->dev,
245                                  dma_unmap_addr(tx_buf, dma),
246                                  dma_unmap_len(tx_buf, len),
247                                  DMA_TO_DEVICE);
248
249                 /* clear tx_buffer data */
250                 tx_buf->skb = NULL;
251                 dma_unmap_len_set(tx_buf, len, 0);
252
253                 /* unmap remaining buffers */
254                 while (tx_desc != eop_desc) {
255
256                         tx_buf++;
257                         tx_desc++;
258                         i++;
259                         if (unlikely(!i)) {
260                                 i -= tx_ring->count;
261                                 tx_buf = tx_ring->tx_bi;
262                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
263                         }
264
265                         /* unmap any remaining paged data */
266                         if (dma_unmap_len(tx_buf, len)) {
267                                 dma_unmap_page(tx_ring->dev,
268                                                dma_unmap_addr(tx_buf, dma),
269                                                dma_unmap_len(tx_buf, len),
270                                                DMA_TO_DEVICE);
271                                 dma_unmap_len_set(tx_buf, len, 0);
272                         }
273                 }
274
275                 /* move us one more past the eop_desc for start of next pkt */
276                 tx_buf++;
277                 tx_desc++;
278                 i++;
279                 if (unlikely(!i)) {
280                         i -= tx_ring->count;
281                         tx_buf = tx_ring->tx_bi;
282                         tx_desc = I40E_TX_DESC(tx_ring, 0);
283                 }
284
285                 /* update budget accounting */
286                 budget--;
287         } while (likely(budget));
288
289         i += tx_ring->count;
290         tx_ring->next_to_clean = i;
291         u64_stats_update_begin(&tx_ring->syncp);
292         tx_ring->stats.bytes += total_bytes;
293         tx_ring->stats.packets += total_packets;
294         u64_stats_update_end(&tx_ring->syncp);
295         tx_ring->q_vector->tx.total_bytes += total_bytes;
296         tx_ring->q_vector->tx.total_packets += total_packets;
297
298         if (budget &&
299             !((i & WB_STRIDE) == WB_STRIDE) &&
300             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
301             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
302                 tx_ring->arm_wb = true;
303         else
304                 tx_ring->arm_wb = false;
305
306         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
307                 /* schedule immediate reset if we believe we hung */
308                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
309                          "  VSI                  <%d>\n"
310                          "  Tx Queue             <%d>\n"
311                          "  next_to_use          <%x>\n"
312                          "  next_to_clean        <%x>\n",
313                          tx_ring->vsi->seid,
314                          tx_ring->queue_index,
315                          tx_ring->next_to_use, i);
316                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
317                          "  time_stamp           <%lx>\n"
318                          "  jiffies              <%lx>\n",
319                          tx_ring->tx_bi[i].time_stamp, jiffies);
320
321                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
322
323                 dev_info(tx_ring->dev,
324                          "tx hang detected on queue %d, resetting adapter\n",
325                          tx_ring->queue_index);
326
327                 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
328
329                 /* the adapter is about to reset, no point in enabling stuff */
330                 return true;
331         }
332
333         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
334                                                       tx_ring->queue_index),
335                                   total_packets, total_bytes);
336
337 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
338         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
339                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
340                 /* Make sure that anybody stopping the queue after this
341                  * sees the new next_to_clean.
342                  */
343                 smp_mb();
344                 if (__netif_subqueue_stopped(tx_ring->netdev,
345                                              tx_ring->queue_index) &&
346                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
347                         netif_wake_subqueue(tx_ring->netdev,
348                                             tx_ring->queue_index);
349                         ++tx_ring->tx_stats.restart_queue;
350                 }
351         }
352
353         return budget > 0;
354 }
355
356 /**
357  * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
358  * @vsi: the VSI we care about
359  * @q_vector: the vector  on which to force writeback
360  *
361  **/
362 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
363 {
364         u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
365                   I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
366                   I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
367                   /* allow 00 to be written to the index */
368
369         wr32(&vsi->back->hw,
370              I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
371              val);
372 }
373
374 /**
375  * i40e_set_new_dynamic_itr - Find new ITR level
376  * @rc: structure containing ring performance data
377  *
378  * Stores a new ITR value based on packets and byte counts during
379  * the last interrupt.  The advantage of per interrupt computation
380  * is faster updates and more accurate ITR for the current traffic
381  * pattern.  Constants in this function were computed based on
382  * theoretical maximum wire speed and thresholds were set based on
383  * testing data as well as attempting to minimize response time
384  * while increasing bulk throughput.
385  **/
386 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
387 {
388         enum i40e_latency_range new_latency_range = rc->latency_range;
389         u32 new_itr = rc->itr;
390         int bytes_per_int;
391
392         if (rc->total_packets == 0 || !rc->itr)
393                 return;
394
395         /* simple throttlerate management
396          *   0-10MB/s   lowest (100000 ints/s)
397          *  10-20MB/s   low    (20000 ints/s)
398          *  20-1249MB/s bulk   (8000 ints/s)
399          */
400         bytes_per_int = rc->total_bytes / rc->itr;
401         switch (rc->itr) {
402         case I40E_LOWEST_LATENCY:
403                 if (bytes_per_int > 10)
404                         new_latency_range = I40E_LOW_LATENCY;
405                 break;
406         case I40E_LOW_LATENCY:
407                 if (bytes_per_int > 20)
408                         new_latency_range = I40E_BULK_LATENCY;
409                 else if (bytes_per_int <= 10)
410                         new_latency_range = I40E_LOWEST_LATENCY;
411                 break;
412         case I40E_BULK_LATENCY:
413                 if (bytes_per_int <= 20)
414                         rc->latency_range = I40E_LOW_LATENCY;
415                 break;
416         }
417
418         switch (new_latency_range) {
419         case I40E_LOWEST_LATENCY:
420                 new_itr = I40E_ITR_100K;
421                 break;
422         case I40E_LOW_LATENCY:
423                 new_itr = I40E_ITR_20K;
424                 break;
425         case I40E_BULK_LATENCY:
426                 new_itr = I40E_ITR_8K;
427                 break;
428         default:
429                 break;
430         }
431
432         if (new_itr != rc->itr) {
433                 /* do an exponential smoothing */
434                 new_itr = (10 * new_itr * rc->itr) /
435                           ((9 * new_itr) + rc->itr);
436                 rc->itr = new_itr & I40E_MAX_ITR;
437         }
438
439         rc->total_bytes = 0;
440         rc->total_packets = 0;
441 }
442
443 /**
444  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
445  * @q_vector: the vector to adjust
446  **/
447 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
448 {
449         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
450         struct i40e_hw *hw = &q_vector->vsi->back->hw;
451         u32 reg_addr;
452         u16 old_itr;
453
454         reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
455         old_itr = q_vector->rx.itr;
456         i40e_set_new_dynamic_itr(&q_vector->rx);
457         if (old_itr != q_vector->rx.itr)
458                 wr32(hw, reg_addr, q_vector->rx.itr);
459
460         reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
461         old_itr = q_vector->tx.itr;
462         i40e_set_new_dynamic_itr(&q_vector->tx);
463         if (old_itr != q_vector->tx.itr)
464                 wr32(hw, reg_addr, q_vector->tx.itr);
465 }
466
467 /**
468  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
469  * @tx_ring: the tx ring to set up
470  *
471  * Return 0 on success, negative on error
472  **/
473 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
474 {
475         struct device *dev = tx_ring->dev;
476         int bi_size;
477
478         if (!dev)
479                 return -ENOMEM;
480
481         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
482         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
483         if (!tx_ring->tx_bi)
484                 goto err;
485
486         /* round up to nearest 4K */
487         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
488         /* add u32 for head writeback, align after this takes care of
489          * guaranteeing this is at least one cache line in size
490          */
491         tx_ring->size += sizeof(u32);
492         tx_ring->size = ALIGN(tx_ring->size, 4096);
493         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
494                                            &tx_ring->dma, GFP_KERNEL);
495         if (!tx_ring->desc) {
496                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
497                          tx_ring->size);
498                 goto err;
499         }
500
501         tx_ring->next_to_use = 0;
502         tx_ring->next_to_clean = 0;
503         return 0;
504
505 err:
506         kfree(tx_ring->tx_bi);
507         tx_ring->tx_bi = NULL;
508         return -ENOMEM;
509 }
510
511 /**
512  * i40evf_clean_rx_ring - Free Rx buffers
513  * @rx_ring: ring to be cleaned
514  **/
515 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
516 {
517         struct device *dev = rx_ring->dev;
518         struct i40e_rx_buffer *rx_bi;
519         unsigned long bi_size;
520         u16 i;
521
522         /* ring already cleared, nothing to do */
523         if (!rx_ring->rx_bi)
524                 return;
525
526         /* Free all the Rx ring sk_buffs */
527         for (i = 0; i < rx_ring->count; i++) {
528                 rx_bi = &rx_ring->rx_bi[i];
529                 if (rx_bi->dma) {
530                         dma_unmap_single(dev,
531                                          rx_bi->dma,
532                                          rx_ring->rx_buf_len,
533                                          DMA_FROM_DEVICE);
534                         rx_bi->dma = 0;
535                 }
536                 if (rx_bi->skb) {
537                         dev_kfree_skb(rx_bi->skb);
538                         rx_bi->skb = NULL;
539                 }
540                 if (rx_bi->page) {
541                         if (rx_bi->page_dma) {
542                                 dma_unmap_page(dev,
543                                                rx_bi->page_dma,
544                                                PAGE_SIZE / 2,
545                                                DMA_FROM_DEVICE);
546                                 rx_bi->page_dma = 0;
547                         }
548                         __free_page(rx_bi->page);
549                         rx_bi->page = NULL;
550                         rx_bi->page_offset = 0;
551                 }
552         }
553
554         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
555         memset(rx_ring->rx_bi, 0, bi_size);
556
557         /* Zero out the descriptor ring */
558         memset(rx_ring->desc, 0, rx_ring->size);
559
560         rx_ring->next_to_clean = 0;
561         rx_ring->next_to_use = 0;
562 }
563
564 /**
565  * i40evf_free_rx_resources - Free Rx resources
566  * @rx_ring: ring to clean the resources from
567  *
568  * Free all receive software resources
569  **/
570 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
571 {
572         i40evf_clean_rx_ring(rx_ring);
573         kfree(rx_ring->rx_bi);
574         rx_ring->rx_bi = NULL;
575
576         if (rx_ring->desc) {
577                 dma_free_coherent(rx_ring->dev, rx_ring->size,
578                                   rx_ring->desc, rx_ring->dma);
579                 rx_ring->desc = NULL;
580         }
581 }
582
583 /**
584  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
585  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
586  *
587  * Returns 0 on success, negative on failure
588  **/
589 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
590 {
591         struct device *dev = rx_ring->dev;
592         int bi_size;
593
594         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
595         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
596         if (!rx_ring->rx_bi)
597                 goto err;
598
599         u64_stats_init(&rx_ring->syncp);
600
601         /* Round up to nearest 4K */
602         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
603                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
604                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
605         rx_ring->size = ALIGN(rx_ring->size, 4096);
606         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
607                                            &rx_ring->dma, GFP_KERNEL);
608
609         if (!rx_ring->desc) {
610                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
611                          rx_ring->size);
612                 goto err;
613         }
614
615         rx_ring->next_to_clean = 0;
616         rx_ring->next_to_use = 0;
617
618         return 0;
619 err:
620         kfree(rx_ring->rx_bi);
621         rx_ring->rx_bi = NULL;
622         return -ENOMEM;
623 }
624
625 /**
626  * i40e_release_rx_desc - Store the new tail and head values
627  * @rx_ring: ring to bump
628  * @val: new head index
629  **/
630 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
631 {
632         rx_ring->next_to_use = val;
633         /* Force memory writes to complete before letting h/w
634          * know there are new descriptors to fetch.  (Only
635          * applicable for weak-ordered memory model archs,
636          * such as IA-64).
637          */
638         wmb();
639         writel(val, rx_ring->tail);
640 }
641
642 /**
643  * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
644  * @rx_ring: ring to place buffers on
645  * @cleaned_count: number of buffers to replace
646  **/
647 void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
648 {
649         u16 i = rx_ring->next_to_use;
650         union i40e_rx_desc *rx_desc;
651         struct i40e_rx_buffer *bi;
652         struct sk_buff *skb;
653
654         /* do nothing if no valid netdev defined */
655         if (!rx_ring->netdev || !cleaned_count)
656                 return;
657
658         while (cleaned_count--) {
659                 rx_desc = I40E_RX_DESC(rx_ring, i);
660                 bi = &rx_ring->rx_bi[i];
661                 skb = bi->skb;
662
663                 if (!skb) {
664                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
665                                                         rx_ring->rx_buf_len);
666                         if (!skb) {
667                                 rx_ring->rx_stats.alloc_buff_failed++;
668                                 goto no_buffers;
669                         }
670                         /* initialize queue mapping */
671                         skb_record_rx_queue(skb, rx_ring->queue_index);
672                         bi->skb = skb;
673                 }
674
675                 if (!bi->dma) {
676                         bi->dma = dma_map_single(rx_ring->dev,
677                                                  skb->data,
678                                                  rx_ring->rx_buf_len,
679                                                  DMA_FROM_DEVICE);
680                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
681                                 rx_ring->rx_stats.alloc_buff_failed++;
682                                 bi->dma = 0;
683                                 goto no_buffers;
684                         }
685                 }
686
687                 if (ring_is_ps_enabled(rx_ring)) {
688                         if (!bi->page) {
689                                 bi->page = alloc_page(GFP_ATOMIC);
690                                 if (!bi->page) {
691                                         rx_ring->rx_stats.alloc_page_failed++;
692                                         goto no_buffers;
693                                 }
694                         }
695
696                         if (!bi->page_dma) {
697                                 /* use a half page if we're re-using */
698                                 bi->page_offset ^= PAGE_SIZE / 2;
699                                 bi->page_dma = dma_map_page(rx_ring->dev,
700                                                             bi->page,
701                                                             bi->page_offset,
702                                                             PAGE_SIZE / 2,
703                                                             DMA_FROM_DEVICE);
704                                 if (dma_mapping_error(rx_ring->dev,
705                                                       bi->page_dma)) {
706                                         rx_ring->rx_stats.alloc_page_failed++;
707                                         bi->page_dma = 0;
708                                         goto no_buffers;
709                                 }
710                         }
711
712                         /* Refresh the desc even if buffer_addrs didn't change
713                          * because each write-back erases this info.
714                          */
715                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
716                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
717                 } else {
718                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
719                         rx_desc->read.hdr_addr = 0;
720                 }
721                 i++;
722                 if (i == rx_ring->count)
723                         i = 0;
724         }
725
726 no_buffers:
727         if (rx_ring->next_to_use != i)
728                 i40e_release_rx_desc(rx_ring, i);
729 }
730
731 /**
732  * i40e_receive_skb - Send a completed packet up the stack
733  * @rx_ring:  rx ring in play
734  * @skb: packet to send up
735  * @vlan_tag: vlan tag for packet
736  **/
737 static void i40e_receive_skb(struct i40e_ring *rx_ring,
738                              struct sk_buff *skb, u16 vlan_tag)
739 {
740         struct i40e_q_vector *q_vector = rx_ring->q_vector;
741         struct i40e_vsi *vsi = rx_ring->vsi;
742         u64 flags = vsi->back->flags;
743
744         if (vlan_tag & VLAN_VID_MASK)
745                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
746
747         if (flags & I40E_FLAG_IN_NETPOLL)
748                 netif_rx(skb);
749         else
750                 napi_gro_receive(&q_vector->napi, skb);
751 }
752
753 /**
754  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
755  * @vsi: the VSI we care about
756  * @skb: skb currently being received and modified
757  * @rx_status: status value of last descriptor in packet
758  * @rx_error: error value of last descriptor in packet
759  * @rx_ptype: ptype value of last descriptor in packet
760  **/
761 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
762                                     struct sk_buff *skb,
763                                     u32 rx_status,
764                                     u32 rx_error,
765                                     u16 rx_ptype)
766 {
767         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
768         bool ipv4 = false, ipv6 = false;
769         bool ipv4_tunnel, ipv6_tunnel;
770         __wsum rx_udp_csum;
771         struct iphdr *iph;
772         __sum16 csum;
773
774         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
775                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
776         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
777                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
778
779         skb->ip_summed = CHECKSUM_NONE;
780
781         /* Rx csum enabled and ip headers found? */
782         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
783                 return;
784
785         /* did the hardware decode the packet and checksum? */
786         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
787                 return;
788
789         /* both known and outer_ip must be set for the below code to work */
790         if (!(decoded.known && decoded.outer_ip))
791                 return;
792
793         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
794             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
795                 ipv4 = true;
796         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
797                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
798                 ipv6 = true;
799
800         if (ipv4 &&
801             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
802                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
803                 goto checksum_fail;
804
805         /* likely incorrect csum if alternate IP extension headers found */
806         if (ipv6 &&
807             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
808                 /* don't increment checksum err here, non-fatal err */
809                 return;
810
811         /* there was some L4 error, count error and punt packet to the stack */
812         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
813                 goto checksum_fail;
814
815         /* handle packets that were not able to be checksummed due
816          * to arrival speed, in this case the stack can compute
817          * the csum.
818          */
819         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
820                 return;
821
822         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
823          * it in the driver, hardware does not do it for us.
824          * Since L3L4P bit was set we assume a valid IHL value (>=5)
825          * so the total length of IPv4 header is IHL*4 bytes
826          * The UDP_0 bit *may* bet set if the *inner* header is UDP
827          */
828         if (ipv4_tunnel &&
829             (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
830             !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
831                 skb->transport_header = skb->mac_header +
832                                         sizeof(struct ethhdr) +
833                                         (ip_hdr(skb)->ihl * 4);
834
835                 /* Add 4 bytes for VLAN tagged packets */
836                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
837                                           skb->protocol == htons(ETH_P_8021AD))
838                                           ? VLAN_HLEN : 0;
839
840                 rx_udp_csum = udp_csum(skb);
841                 iph = ip_hdr(skb);
842                 csum = csum_tcpudp_magic(
843                                 iph->saddr, iph->daddr,
844                                 (skb->len - skb_transport_offset(skb)),
845                                 IPPROTO_UDP, rx_udp_csum);
846
847                 if (udp_hdr(skb)->check != csum)
848                         goto checksum_fail;
849         }
850
851         skb->ip_summed = CHECKSUM_UNNECESSARY;
852         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
853
854         return;
855
856 checksum_fail:
857         vsi->back->hw_csum_rx_error++;
858 }
859
860 /**
861  * i40e_rx_hash - returns the hash value from the Rx descriptor
862  * @ring: descriptor ring
863  * @rx_desc: specific descriptor
864  **/
865 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
866                                union i40e_rx_desc *rx_desc)
867 {
868         const __le64 rss_mask =
869                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
870                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
871
872         if ((ring->netdev->features & NETIF_F_RXHASH) &&
873             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
874                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
875         else
876                 return 0;
877 }
878
879 /**
880  * i40e_ptype_to_hash - get a hash type
881  * @ptype: the ptype value from the descriptor
882  *
883  * Returns a hash type to be used by skb_set_hash
884  **/
885 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
886 {
887         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
888
889         if (!decoded.known)
890                 return PKT_HASH_TYPE_NONE;
891
892         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
893             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
894                 return PKT_HASH_TYPE_L4;
895         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
896                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
897                 return PKT_HASH_TYPE_L3;
898         else
899                 return PKT_HASH_TYPE_L2;
900 }
901
902 /**
903  * i40e_clean_rx_irq - Reclaim resources after receive completes
904  * @rx_ring:  rx ring to clean
905  * @budget:   how many cleans we're allowed
906  *
907  * Returns true if there's any budget left (e.g. the clean is finished)
908  **/
909 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
910 {
911         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
912         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
913         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
914         const int current_node = numa_node_id();
915         struct i40e_vsi *vsi = rx_ring->vsi;
916         u16 i = rx_ring->next_to_clean;
917         union i40e_rx_desc *rx_desc;
918         u32 rx_error, rx_status;
919         u8 rx_ptype;
920         u64 qword;
921
922         rx_desc = I40E_RX_DESC(rx_ring, i);
923         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
924         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
925                     I40E_RXD_QW1_STATUS_SHIFT;
926
927         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
928                 union i40e_rx_desc *next_rxd;
929                 struct i40e_rx_buffer *rx_bi;
930                 struct sk_buff *skb;
931                 u16 vlan_tag;
932                 rx_bi = &rx_ring->rx_bi[i];
933                 skb = rx_bi->skb;
934                 prefetch(skb->data);
935
936                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
937                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
938                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
939                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
940                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
941                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
942
943                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
944                            I40E_RXD_QW1_ERROR_SHIFT;
945                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
946                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
947
948                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
949                            I40E_RXD_QW1_PTYPE_SHIFT;
950                 rx_bi->skb = NULL;
951
952                 /* This memory barrier is needed to keep us from reading
953                  * any other fields out of the rx_desc until we know the
954                  * STATUS_DD bit is set
955                  */
956                 rmb();
957
958                 /* Get the header and possibly the whole packet
959                  * If this is an skb from previous receive dma will be 0
960                  */
961                 if (rx_bi->dma) {
962                         u16 len;
963
964                         if (rx_hbo)
965                                 len = I40E_RX_HDR_SIZE;
966                         else if (rx_sph)
967                                 len = rx_header_len;
968                         else if (rx_packet_len)
969                                 len = rx_packet_len;   /* 1buf/no split found */
970                         else
971                                 len = rx_header_len;   /* split always mode */
972
973                         skb_put(skb, len);
974                         dma_unmap_single(rx_ring->dev,
975                                          rx_bi->dma,
976                                          rx_ring->rx_buf_len,
977                                          DMA_FROM_DEVICE);
978                         rx_bi->dma = 0;
979                 }
980
981                 /* Get the rest of the data if this was a header split */
982                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
983
984                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
985                                            rx_bi->page,
986                                            rx_bi->page_offset,
987                                            rx_packet_len);
988
989                         skb->len += rx_packet_len;
990                         skb->data_len += rx_packet_len;
991                         skb->truesize += rx_packet_len;
992
993                         if ((page_count(rx_bi->page) == 1) &&
994                             (page_to_nid(rx_bi->page) == current_node))
995                                 get_page(rx_bi->page);
996                         else
997                                 rx_bi->page = NULL;
998
999                         dma_unmap_page(rx_ring->dev,
1000                                        rx_bi->page_dma,
1001                                        PAGE_SIZE / 2,
1002                                        DMA_FROM_DEVICE);
1003                         rx_bi->page_dma = 0;
1004                 }
1005                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1006
1007                 if (unlikely(
1008                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1009                         struct i40e_rx_buffer *next_buffer;
1010
1011                         next_buffer = &rx_ring->rx_bi[i];
1012
1013                         if (ring_is_ps_enabled(rx_ring)) {
1014                                 rx_bi->skb = next_buffer->skb;
1015                                 rx_bi->dma = next_buffer->dma;
1016                                 next_buffer->skb = skb;
1017                                 next_buffer->dma = 0;
1018                         }
1019                         rx_ring->rx_stats.non_eop_descs++;
1020                         goto next_desc;
1021                 }
1022
1023                 /* ERR_MASK will only have valid bits if EOP set */
1024                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1025                         dev_kfree_skb_any(skb);
1026                         /* TODO: shouldn't we increment a counter indicating the
1027                          * drop?
1028                          */
1029                         goto next_desc;
1030                 }
1031
1032                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1033                              i40e_ptype_to_hash(rx_ptype));
1034                 /* probably a little skewed due to removing CRC */
1035                 total_rx_bytes += skb->len;
1036                 total_rx_packets++;
1037
1038                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1039
1040                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1041
1042                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1043                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1044                          : 0;
1045                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1046
1047                 rx_ring->netdev->last_rx = jiffies;
1048                 budget--;
1049 next_desc:
1050                 rx_desc->wb.qword1.status_error_len = 0;
1051                 if (!budget)
1052                         break;
1053
1054                 cleaned_count++;
1055                 /* return some buffers to hardware, one at a time is too slow */
1056                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1057                         i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1058                         cleaned_count = 0;
1059                 }
1060
1061                 /* use prefetched values */
1062                 rx_desc = next_rxd;
1063                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1064                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1065                             I40E_RXD_QW1_STATUS_SHIFT;
1066         }
1067
1068         rx_ring->next_to_clean = i;
1069         u64_stats_update_begin(&rx_ring->syncp);
1070         rx_ring->stats.packets += total_rx_packets;
1071         rx_ring->stats.bytes += total_rx_bytes;
1072         u64_stats_update_end(&rx_ring->syncp);
1073         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1074         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1075
1076         if (cleaned_count)
1077                 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1078
1079         return budget > 0;
1080 }
1081
1082 /**
1083  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1084  * @napi: napi struct with our devices info in it
1085  * @budget: amount of work driver is allowed to do this pass, in packets
1086  *
1087  * This function will clean all queues associated with a q_vector.
1088  *
1089  * Returns the amount of work done
1090  **/
1091 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1092 {
1093         struct i40e_q_vector *q_vector =
1094                                container_of(napi, struct i40e_q_vector, napi);
1095         struct i40e_vsi *vsi = q_vector->vsi;
1096         struct i40e_ring *ring;
1097         bool clean_complete = true;
1098         bool arm_wb = false;
1099         int budget_per_ring;
1100
1101         if (test_bit(__I40E_DOWN, &vsi->state)) {
1102                 napi_complete(napi);
1103                 return 0;
1104         }
1105
1106         /* Since the actual Tx work is minimal, we can give the Tx a larger
1107          * budget and be more aggressive about cleaning up the Tx descriptors.
1108          */
1109         i40e_for_each_ring(ring, q_vector->tx) {
1110                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1111                 arm_wb |= ring->arm_wb;
1112         }
1113
1114         /* We attempt to distribute budget to each Rx queue fairly, but don't
1115          * allow the budget to go below 1 because that would exit polling early.
1116          */
1117         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1118
1119         i40e_for_each_ring(ring, q_vector->rx)
1120                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1121
1122         /* If work not completed, return budget and polling will return */
1123         if (!clean_complete) {
1124                 if (arm_wb)
1125                         i40e_force_wb(vsi, q_vector);
1126                 return budget;
1127         }
1128
1129         /* Work is done so exit the polling mode and re-enable the interrupt */
1130         napi_complete(napi);
1131         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1132             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1133                 i40e_update_dynamic_itr(q_vector);
1134
1135         if (!test_bit(__I40E_DOWN, &vsi->state))
1136                 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1137
1138         return 0;
1139 }
1140
1141 /**
1142  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1143  * @skb:     send buffer
1144  * @tx_ring: ring to send buffer on
1145  * @flags:   the tx flags to be set
1146  *
1147  * Checks the skb and set up correspondingly several generic transmit flags
1148  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1149  *
1150  * Returns error code indicate the frame should be dropped upon error and the
1151  * otherwise  returns 0 to indicate the flags has been set properly.
1152  **/
1153 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1154                                       struct i40e_ring *tx_ring,
1155                                       u32 *flags)
1156 {
1157         __be16 protocol = skb->protocol;
1158         u32  tx_flags = 0;
1159
1160         /* if we have a HW VLAN tag being added, default to the HW one */
1161         if (skb_vlan_tag_present(skb)) {
1162                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1163                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1164         /* else if it is a SW VLAN, check the next protocol and store the tag */
1165         } else if (protocol == htons(ETH_P_8021Q)) {
1166                 struct vlan_hdr *vhdr, _vhdr;
1167                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1168                 if (!vhdr)
1169                         return -EINVAL;
1170
1171                 protocol = vhdr->h_vlan_encapsulated_proto;
1172                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1173                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1174         }
1175
1176         *flags = tx_flags;
1177         return 0;
1178 }
1179
1180 /**
1181  * i40e_tso - set up the tso context descriptor
1182  * @tx_ring:  ptr to the ring to send
1183  * @skb:      ptr to the skb we're sending
1184  * @tx_flags: the collected send information
1185  * @protocol: the send protocol
1186  * @hdr_len:  ptr to the size of the packet header
1187  * @cd_tunneling: ptr to context descriptor bits
1188  *
1189  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1190  **/
1191 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1192                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1193                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1194 {
1195         u32 cd_cmd, cd_tso_len, cd_mss;
1196         struct ipv6hdr *ipv6h;
1197         struct tcphdr *tcph;
1198         struct iphdr *iph;
1199         u32 l4len;
1200         int err;
1201
1202         if (!skb_is_gso(skb))
1203                 return 0;
1204
1205         err = skb_cow_head(skb, 0);
1206         if (err < 0)
1207                 return err;
1208
1209         if (protocol == htons(ETH_P_IP)) {
1210                 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1211                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1212                 iph->tot_len = 0;
1213                 iph->check = 0;
1214                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1215                                                  0, IPPROTO_TCP, 0);
1216         } else if (skb_is_gso_v6(skb)) {
1217
1218                 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1219                                            : ipv6_hdr(skb);
1220                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1221                 ipv6h->payload_len = 0;
1222                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1223                                                0, IPPROTO_TCP, 0);
1224         }
1225
1226         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1227         *hdr_len = (skb->encapsulation
1228                     ? (skb_inner_transport_header(skb) - skb->data)
1229                     : skb_transport_offset(skb)) + l4len;
1230
1231         /* find the field values */
1232         cd_cmd = I40E_TX_CTX_DESC_TSO;
1233         cd_tso_len = skb->len - *hdr_len;
1234         cd_mss = skb_shinfo(skb)->gso_size;
1235         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1236                                 ((u64)cd_tso_len <<
1237                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1238                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1239         return 1;
1240 }
1241
1242 /**
1243  * i40e_tx_enable_csum - Enable Tx checksum offloads
1244  * @skb: send buffer
1245  * @tx_flags: Tx flags currently set
1246  * @td_cmd: Tx descriptor command bits to set
1247  * @td_offset: Tx descriptor header offsets to set
1248  * @cd_tunneling: ptr to context desc bits
1249  **/
1250 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1251                                 u32 *td_cmd, u32 *td_offset,
1252                                 struct i40e_ring *tx_ring,
1253                                 u32 *cd_tunneling)
1254 {
1255         struct ipv6hdr *this_ipv6_hdr;
1256         unsigned int this_tcp_hdrlen;
1257         struct iphdr *this_ip_hdr;
1258         u32 network_hdr_len;
1259         u8 l4_hdr = 0;
1260
1261         if (skb->encapsulation) {
1262                 network_hdr_len = skb_inner_network_header_len(skb);
1263                 this_ip_hdr = inner_ip_hdr(skb);
1264                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1265                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1266
1267                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1268
1269                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1270                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1271                                 ip_hdr(skb)->check = 0;
1272                         } else {
1273                                 *cd_tunneling |=
1274                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1275                         }
1276                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1277                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1278                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1279                                 ip_hdr(skb)->check = 0;
1280                         } else {
1281                                 *cd_tunneling |=
1282                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1283                         }
1284                 }
1285
1286                 /* Now set the ctx descriptor fields */
1287                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1288                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1289                                    I40E_TXD_CTX_UDP_TUNNELING            |
1290                                    ((skb_inner_network_offset(skb) -
1291                                         skb_transport_offset(skb)) >> 1) <<
1292                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1293
1294         } else {
1295                 network_hdr_len = skb_network_header_len(skb);
1296                 this_ip_hdr = ip_hdr(skb);
1297                 this_ipv6_hdr = ipv6_hdr(skb);
1298                 this_tcp_hdrlen = tcp_hdrlen(skb);
1299         }
1300
1301         /* Enable IP checksum offloads */
1302         if (tx_flags & I40E_TX_FLAGS_IPV4) {
1303                 l4_hdr = this_ip_hdr->protocol;
1304                 /* the stack computes the IP header already, the only time we
1305                  * need the hardware to recompute it is in the case of TSO.
1306                  */
1307                 if (tx_flags & I40E_TX_FLAGS_TSO) {
1308                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1309                         this_ip_hdr->check = 0;
1310                 } else {
1311                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1312                 }
1313                 /* Now set the td_offset for IP header length */
1314                 *td_offset = (network_hdr_len >> 2) <<
1315                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1316         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1317                 l4_hdr = this_ipv6_hdr->nexthdr;
1318                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1319                 /* Now set the td_offset for IP header length */
1320                 *td_offset = (network_hdr_len >> 2) <<
1321                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1322         }
1323         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1324         *td_offset |= (skb_network_offset(skb) >> 1) <<
1325                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1326
1327         /* Enable L4 checksum offloads */
1328         switch (l4_hdr) {
1329         case IPPROTO_TCP:
1330                 /* enable checksum offloads */
1331                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1332                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1333                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1334                 break;
1335         case IPPROTO_SCTP:
1336                 /* enable SCTP checksum offload */
1337                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1338                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1339                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1340                 break;
1341         case IPPROTO_UDP:
1342                 /* enable UDP checksum offload */
1343                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1344                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1345                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1346                 break;
1347         default:
1348                 break;
1349         }
1350 }
1351
1352 /**
1353  * i40e_create_tx_ctx Build the Tx context descriptor
1354  * @tx_ring:  ring to create the descriptor on
1355  * @cd_type_cmd_tso_mss: Quad Word 1
1356  * @cd_tunneling: Quad Word 0 - bits 0-31
1357  * @cd_l2tag2: Quad Word 0 - bits 32-63
1358  **/
1359 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1360                                const u64 cd_type_cmd_tso_mss,
1361                                const u32 cd_tunneling, const u32 cd_l2tag2)
1362 {
1363         struct i40e_tx_context_desc *context_desc;
1364         int i = tx_ring->next_to_use;
1365
1366         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1367             !cd_tunneling && !cd_l2tag2)
1368                 return;
1369
1370         /* grab the next descriptor */
1371         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1372
1373         i++;
1374         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1375
1376         /* cpu_to_le32 and assign to struct fields */
1377         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1378         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1379         context_desc->rsvd = cpu_to_le16(0);
1380         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1381 }
1382
1383 /**
1384  * i40e_tx_map - Build the Tx descriptor
1385  * @tx_ring:  ring to send buffer on
1386  * @skb:      send buffer
1387  * @first:    first buffer info buffer to use
1388  * @tx_flags: collected send information
1389  * @hdr_len:  size of the packet header
1390  * @td_cmd:   the command field in the descriptor
1391  * @td_offset: offset for checksum or crc
1392  **/
1393 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1394                         struct i40e_tx_buffer *first, u32 tx_flags,
1395                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
1396 {
1397         unsigned int data_len = skb->data_len;
1398         unsigned int size = skb_headlen(skb);
1399         struct skb_frag_struct *frag;
1400         struct i40e_tx_buffer *tx_bi;
1401         struct i40e_tx_desc *tx_desc;
1402         u16 i = tx_ring->next_to_use;
1403         u32 td_tag = 0;
1404         dma_addr_t dma;
1405         u16 gso_segs;
1406
1407         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1408                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1409                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1410                          I40E_TX_FLAGS_VLAN_SHIFT;
1411         }
1412
1413         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1414                 gso_segs = skb_shinfo(skb)->gso_segs;
1415         else
1416                 gso_segs = 1;
1417
1418         /* multiply data chunks by size of headers */
1419         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1420         first->gso_segs = gso_segs;
1421         first->skb = skb;
1422         first->tx_flags = tx_flags;
1423
1424         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1425
1426         tx_desc = I40E_TX_DESC(tx_ring, i);
1427         tx_bi = first;
1428
1429         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1430                 if (dma_mapping_error(tx_ring->dev, dma))
1431                         goto dma_error;
1432
1433                 /* record length, and DMA address */
1434                 dma_unmap_len_set(tx_bi, len, size);
1435                 dma_unmap_addr_set(tx_bi, dma, dma);
1436
1437                 tx_desc->buffer_addr = cpu_to_le64(dma);
1438
1439                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1440                         tx_desc->cmd_type_offset_bsz =
1441                                 build_ctob(td_cmd, td_offset,
1442                                            I40E_MAX_DATA_PER_TXD, td_tag);
1443
1444                         tx_desc++;
1445                         i++;
1446                         if (i == tx_ring->count) {
1447                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1448                                 i = 0;
1449                         }
1450
1451                         dma += I40E_MAX_DATA_PER_TXD;
1452                         size -= I40E_MAX_DATA_PER_TXD;
1453
1454                         tx_desc->buffer_addr = cpu_to_le64(dma);
1455                 }
1456
1457                 if (likely(!data_len))
1458                         break;
1459
1460                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1461                                                           size, td_tag);
1462
1463                 tx_desc++;
1464                 i++;
1465                 if (i == tx_ring->count) {
1466                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1467                         i = 0;
1468                 }
1469
1470                 size = skb_frag_size(frag);
1471                 data_len -= size;
1472
1473                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1474                                        DMA_TO_DEVICE);
1475
1476                 tx_bi = &tx_ring->tx_bi[i];
1477         }
1478
1479         /* Place RS bit on last descriptor of any packet that spans across the
1480          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1481          */
1482 #define WB_STRIDE 0x3
1483         if (((i & WB_STRIDE) != WB_STRIDE) &&
1484             (first <= &tx_ring->tx_bi[i]) &&
1485             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1486                 tx_desc->cmd_type_offset_bsz =
1487                         build_ctob(td_cmd, td_offset, size, td_tag) |
1488                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1489                                          I40E_TXD_QW1_CMD_SHIFT);
1490         } else {
1491                 tx_desc->cmd_type_offset_bsz =
1492                         build_ctob(td_cmd, td_offset, size, td_tag) |
1493                         cpu_to_le64((u64)I40E_TXD_CMD <<
1494                                          I40E_TXD_QW1_CMD_SHIFT);
1495         }
1496
1497         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1498                                                  tx_ring->queue_index),
1499                              first->bytecount);
1500
1501         /* set the timestamp */
1502         first->time_stamp = jiffies;
1503
1504         /* Force memory writes to complete before letting h/w
1505          * know there are new descriptors to fetch.  (Only
1506          * applicable for weak-ordered memory model archs,
1507          * such as IA-64).
1508          */
1509         wmb();
1510
1511         /* set next_to_watch value indicating a packet is present */
1512         first->next_to_watch = tx_desc;
1513
1514         i++;
1515         if (i == tx_ring->count)
1516                 i = 0;
1517
1518         tx_ring->next_to_use = i;
1519
1520         /* notify HW of packet */
1521         writel(i, tx_ring->tail);
1522
1523         return;
1524
1525 dma_error:
1526         dev_info(tx_ring->dev, "TX DMA map failed\n");
1527
1528         /* clear dma mappings for failed tx_bi map */
1529         for (;;) {
1530                 tx_bi = &tx_ring->tx_bi[i];
1531                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1532                 if (tx_bi == first)
1533                         break;
1534                 if (i == 0)
1535                         i = tx_ring->count;
1536                 i--;
1537         }
1538
1539         tx_ring->next_to_use = i;
1540 }
1541
1542 /**
1543  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1544  * @tx_ring: the ring to be checked
1545  * @size:    the size buffer we want to assure is available
1546  *
1547  * Returns -EBUSY if a stop is needed, else 0
1548  **/
1549 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1550 {
1551         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1552         /* Memory barrier before checking head and tail */
1553         smp_mb();
1554
1555         /* Check again in a case another CPU has just made room available. */
1556         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1557                 return -EBUSY;
1558
1559         /* A reprieve! - use start_queue because it doesn't call schedule */
1560         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1561         ++tx_ring->tx_stats.restart_queue;
1562         return 0;
1563 }
1564
1565 /**
1566  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1567  * @tx_ring: the ring to be checked
1568  * @size:    the size buffer we want to assure is available
1569  *
1570  * Returns 0 if stop is not needed
1571  **/
1572 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1573 {
1574         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1575                 return 0;
1576         return __i40e_maybe_stop_tx(tx_ring, size);
1577 }
1578
1579 /**
1580  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1581  * @skb:     send buffer
1582  * @tx_ring: ring to send buffer on
1583  *
1584  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1585  * there is not enough descriptors available in this ring since we need at least
1586  * one descriptor.
1587  **/
1588 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1589                                       struct i40e_ring *tx_ring)
1590 {
1591         unsigned int f;
1592         int count = 0;
1593
1594         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1595          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1596          *       + 4 desc gap to avoid the cache line where head is,
1597          *       + 1 desc for context descriptor,
1598          * otherwise try next time
1599          */
1600         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1601                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1602
1603         count += TXD_USE_COUNT(skb_headlen(skb));
1604         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1605                 tx_ring->tx_stats.tx_busy++;
1606                 return 0;
1607         }
1608         return count;
1609 }
1610
1611 /**
1612  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1613  * @skb:     send buffer
1614  * @tx_ring: ring to send buffer on
1615  *
1616  * Returns NETDEV_TX_OK if sent, else an error code
1617  **/
1618 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1619                                         struct i40e_ring *tx_ring)
1620 {
1621         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1622         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1623         struct i40e_tx_buffer *first;
1624         u32 td_offset = 0;
1625         u32 tx_flags = 0;
1626         __be16 protocol;
1627         u32 td_cmd = 0;
1628         u8 hdr_len = 0;
1629         int tso;
1630         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1631                 return NETDEV_TX_BUSY;
1632
1633         /* prepare the xmit flags */
1634         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1635                 goto out_drop;
1636
1637         /* obtain protocol of skb */
1638         protocol = vlan_get_protocol(skb);
1639
1640         /* record the location of the first descriptor for this packet */
1641         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1642
1643         /* setup IPv4/IPv6 offloads */
1644         if (protocol == htons(ETH_P_IP))
1645                 tx_flags |= I40E_TX_FLAGS_IPV4;
1646         else if (protocol == htons(ETH_P_IPV6))
1647                 tx_flags |= I40E_TX_FLAGS_IPV6;
1648
1649         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1650                        &cd_type_cmd_tso_mss, &cd_tunneling);
1651
1652         if (tso < 0)
1653                 goto out_drop;
1654         else if (tso)
1655                 tx_flags |= I40E_TX_FLAGS_TSO;
1656
1657         skb_tx_timestamp(skb);
1658
1659         /* always enable CRC insertion offload */
1660         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1661
1662         /* Always offload the checksum, since it's in the data descriptor */
1663         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1664                 tx_flags |= I40E_TX_FLAGS_CSUM;
1665
1666                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1667                                     tx_ring, &cd_tunneling);
1668         }
1669
1670         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1671                            cd_tunneling, cd_l2tag2);
1672
1673         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1674                     td_cmd, td_offset);
1675
1676         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1677
1678         return NETDEV_TX_OK;
1679
1680 out_drop:
1681         dev_kfree_skb_any(skb);
1682         return NETDEV_TX_OK;
1683 }
1684
1685 /**
1686  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1687  * @skb:    send buffer
1688  * @netdev: network interface device structure
1689  *
1690  * Returns NETDEV_TX_OK if sent, else an error code
1691  **/
1692 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1693 {
1694         struct i40evf_adapter *adapter = netdev_priv(netdev);
1695         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1696
1697         /* hardware can't handle really short frames, hardware padding works
1698          * beyond this point
1699          */
1700         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1701                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1702                         return NETDEV_TX_OK;
1703                 skb->len = I40E_MIN_TX_LEN;
1704                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1705         }
1706
1707         return i40e_xmit_frame_ring(skb, tx_ring);
1708 }