]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge remote-tracking branch 'regmap/for-next'
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34                                 u32 td_tag)
35 {
36         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51                                             struct i40e_tx_buffer *tx_buffer)
52 {
53         if (tx_buffer->skb) {
54                 dev_kfree_skb_any(tx_buffer->skb);
55                 if (dma_unmap_len(tx_buffer, len))
56                         dma_unmap_single(ring->dev,
57                                          dma_unmap_addr(tx_buffer, dma),
58                                          dma_unmap_len(tx_buffer, len),
59                                          DMA_TO_DEVICE);
60         } else if (dma_unmap_len(tx_buffer, len)) {
61                 dma_unmap_page(ring->dev,
62                                dma_unmap_addr(tx_buffer, dma),
63                                dma_unmap_len(tx_buffer, len),
64                                DMA_TO_DEVICE);
65         }
66
67         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68                 kfree(tx_buffer->raw_buf);
69
70         tx_buffer->next_to_watch = NULL;
71         tx_buffer->skb = NULL;
72         dma_unmap_len_set(tx_buffer, len, 0);
73         /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82         unsigned long bi_size;
83         u16 i;
84
85         /* ring already cleared, nothing to do */
86         if (!tx_ring->tx_bi)
87                 return;
88
89         /* Free all the Tx ring sk_buffs */
90         for (i = 0; i < tx_ring->count; i++)
91                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94         memset(tx_ring->tx_bi, 0, bi_size);
95
96         /* Zero out the descriptor ring */
97         memset(tx_ring->desc, 0, tx_ring->size);
98
99         tx_ring->next_to_use = 0;
100         tx_ring->next_to_clean = 0;
101
102         if (!tx_ring->netdev)
103                 return;
104
105         /* cleanup Tx queue statistics */
106         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107                                                   tx_ring->queue_index));
108 }
109
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118         i40evf_clean_tx_ring(tx_ring);
119         kfree(tx_ring->tx_bi);
120         tx_ring->tx_bi = NULL;
121
122         if (tx_ring->desc) {
123                 dma_free_coherent(tx_ring->dev, tx_ring->size,
124                                   tx_ring->desc, tx_ring->dma);
125                 tx_ring->desc = NULL;
126         }
127 }
128
129 /**
130  * i40evf_get_tx_pending - how many Tx descriptors not processed
131  * @tx_ring: the ring of descriptors
132  *
133  * Since there is no access to the ring head register
134  * in XL710, we need to use our local copies
135  **/
136 u32 i40evf_get_tx_pending(struct i40e_ring *ring)
137 {
138         u32 head, tail;
139
140         head = i40e_get_head(ring);
141         tail = readl(ring->tail);
142
143         if (head != tail)
144                 return (head < tail) ?
145                         tail - head : (tail + ring->count - head);
146
147         return 0;
148 }
149
150 #define WB_STRIDE 0x3
151
152 /**
153  * i40e_clean_tx_irq - Reclaim resources after transmit completes
154  * @tx_ring:  tx ring to clean
155  * @budget:   how many cleans we're allowed
156  *
157  * Returns true if there's any budget left (e.g. the clean is finished)
158  **/
159 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
160 {
161         u16 i = tx_ring->next_to_clean;
162         struct i40e_tx_buffer *tx_buf;
163         struct i40e_tx_desc *tx_head;
164         struct i40e_tx_desc *tx_desc;
165         unsigned int total_packets = 0;
166         unsigned int total_bytes = 0;
167
168         tx_buf = &tx_ring->tx_bi[i];
169         tx_desc = I40E_TX_DESC(tx_ring, i);
170         i -= tx_ring->count;
171
172         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
173
174         do {
175                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177                 /* if next_to_watch is not set then there is no work pending */
178                 if (!eop_desc)
179                         break;
180
181                 /* prevent any other reads prior to eop_desc */
182                 read_barrier_depends();
183
184                 /* we have caught up to head, no work left to do */
185                 if (tx_head == tx_desc)
186                         break;
187
188                 /* clear next_to_watch to prevent false hangs */
189                 tx_buf->next_to_watch = NULL;
190
191                 /* update the statistics for this packet */
192                 total_bytes += tx_buf->bytecount;
193                 total_packets += tx_buf->gso_segs;
194
195                 /* free the skb */
196                 dev_kfree_skb_any(tx_buf->skb);
197
198                 /* unmap skb header data */
199                 dma_unmap_single(tx_ring->dev,
200                                  dma_unmap_addr(tx_buf, dma),
201                                  dma_unmap_len(tx_buf, len),
202                                  DMA_TO_DEVICE);
203
204                 /* clear tx_buffer data */
205                 tx_buf->skb = NULL;
206                 dma_unmap_len_set(tx_buf, len, 0);
207
208                 /* unmap remaining buffers */
209                 while (tx_desc != eop_desc) {
210
211                         tx_buf++;
212                         tx_desc++;
213                         i++;
214                         if (unlikely(!i)) {
215                                 i -= tx_ring->count;
216                                 tx_buf = tx_ring->tx_bi;
217                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
218                         }
219
220                         /* unmap any remaining paged data */
221                         if (dma_unmap_len(tx_buf, len)) {
222                                 dma_unmap_page(tx_ring->dev,
223                                                dma_unmap_addr(tx_buf, dma),
224                                                dma_unmap_len(tx_buf, len),
225                                                DMA_TO_DEVICE);
226                                 dma_unmap_len_set(tx_buf, len, 0);
227                         }
228                 }
229
230                 /* move us one more past the eop_desc for start of next pkt */
231                 tx_buf++;
232                 tx_desc++;
233                 i++;
234                 if (unlikely(!i)) {
235                         i -= tx_ring->count;
236                         tx_buf = tx_ring->tx_bi;
237                         tx_desc = I40E_TX_DESC(tx_ring, 0);
238                 }
239
240                 prefetch(tx_desc);
241
242                 /* update budget accounting */
243                 budget--;
244         } while (likely(budget));
245
246         i += tx_ring->count;
247         tx_ring->next_to_clean = i;
248         u64_stats_update_begin(&tx_ring->syncp);
249         tx_ring->stats.bytes += total_bytes;
250         tx_ring->stats.packets += total_packets;
251         u64_stats_update_end(&tx_ring->syncp);
252         tx_ring->q_vector->tx.total_bytes += total_bytes;
253         tx_ring->q_vector->tx.total_packets += total_packets;
254
255         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
256                 unsigned int j = 0;
257                 /* check to see if there are < 4 descriptors
258                  * waiting to be written back, then kick the hardware to force
259                  * them to be written back in case we stay in NAPI.
260                  * In this mode on X722 we do not enable Interrupt.
261                  */
262                 j = i40evf_get_tx_pending(tx_ring);
263
264                 if (budget &&
265                     ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
266                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
267                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
268                         tx_ring->arm_wb = true;
269         }
270
271         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
272                                                       tx_ring->queue_index),
273                                   total_packets, total_bytes);
274
275 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
276         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
277                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
278                 /* Make sure that anybody stopping the queue after this
279                  * sees the new next_to_clean.
280                  */
281                 smp_mb();
282                 if (__netif_subqueue_stopped(tx_ring->netdev,
283                                              tx_ring->queue_index) &&
284                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
285                         netif_wake_subqueue(tx_ring->netdev,
286                                             tx_ring->queue_index);
287                         ++tx_ring->tx_stats.restart_queue;
288                 }
289         }
290
291         return !!budget;
292 }
293
294 /**
295  * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
296  * @vsi: the VSI we care about
297  * @q_vector: the vector  on which to force writeback
298  *
299  **/
300 static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
301 {
302         u16 flags = q_vector->tx.ring[0].flags;
303
304         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
305                 u32 val;
306
307                 if (q_vector->arm_wb_state)
308                         return;
309
310                 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
311
312                 wr32(&vsi->back->hw,
313                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
314                                           vsi->base_vector - 1),
315                      val);
316                 q_vector->arm_wb_state = true;
317         } else {
318                 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
319                           I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
320                           I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
321                           I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
322                           /* allow 00 to be written to the index */
323
324                 wr32(&vsi->back->hw,
325                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
326                                           vsi->base_vector - 1), val);
327         }
328 }
329
330 /**
331  * i40e_set_new_dynamic_itr - Find new ITR level
332  * @rc: structure containing ring performance data
333  *
334  * Returns true if ITR changed, false if not
335  *
336  * Stores a new ITR value based on packets and byte counts during
337  * the last interrupt.  The advantage of per interrupt computation
338  * is faster updates and more accurate ITR for the current traffic
339  * pattern.  Constants in this function were computed based on
340  * theoretical maximum wire speed and thresholds were set based on
341  * testing data as well as attempting to minimize response time
342  * while increasing bulk throughput.
343  **/
344 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
345 {
346         enum i40e_latency_range new_latency_range = rc->latency_range;
347         struct i40e_q_vector *qv = rc->ring->q_vector;
348         u32 new_itr = rc->itr;
349         int bytes_per_int;
350         int usecs;
351
352         if (rc->total_packets == 0 || !rc->itr)
353                 return false;
354
355         /* simple throttlerate management
356          *   0-10MB/s   lowest (50000 ints/s)
357          *  10-20MB/s   low    (20000 ints/s)
358          *  20-1249MB/s bulk   (18000 ints/s)
359          *  > 40000 Rx packets per second (8000 ints/s)
360          *
361          * The math works out because the divisor is in 10^(-6) which
362          * turns the bytes/us input value into MB/s values, but
363          * make sure to use usecs, as the register values written
364          * are in 2 usec increments in the ITR registers, and make sure
365          * to use the smoothed values that the countdown timer gives us.
366          */
367         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
368         bytes_per_int = rc->total_bytes / usecs;
369
370         switch (new_latency_range) {
371         case I40E_LOWEST_LATENCY:
372                 if (bytes_per_int > 10)
373                         new_latency_range = I40E_LOW_LATENCY;
374                 break;
375         case I40E_LOW_LATENCY:
376                 if (bytes_per_int > 20)
377                         new_latency_range = I40E_BULK_LATENCY;
378                 else if (bytes_per_int <= 10)
379                         new_latency_range = I40E_LOWEST_LATENCY;
380                 break;
381         case I40E_BULK_LATENCY:
382         case I40E_ULTRA_LATENCY:
383         default:
384                 if (bytes_per_int <= 20)
385                         new_latency_range = I40E_LOW_LATENCY;
386                 break;
387         }
388
389         /* this is to adjust RX more aggressively when streaming small
390          * packets.  The value of 40000 was picked as it is just beyond
391          * what the hardware can receive per second if in low latency
392          * mode.
393          */
394 #define RX_ULTRA_PACKET_RATE 40000
395
396         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
397             (&qv->rx == rc))
398                 new_latency_range = I40E_ULTRA_LATENCY;
399
400         rc->latency_range = new_latency_range;
401
402         switch (new_latency_range) {
403         case I40E_LOWEST_LATENCY:
404                 new_itr = I40E_ITR_50K;
405                 break;
406         case I40E_LOW_LATENCY:
407                 new_itr = I40E_ITR_20K;
408                 break;
409         case I40E_BULK_LATENCY:
410                 new_itr = I40E_ITR_18K;
411                 break;
412         case I40E_ULTRA_LATENCY:
413                 new_itr = I40E_ITR_8K;
414                 break;
415         default:
416                 break;
417         }
418
419         rc->total_bytes = 0;
420         rc->total_packets = 0;
421
422         if (new_itr != rc->itr) {
423                 rc->itr = new_itr;
424                 return true;
425         }
426
427         return false;
428 }
429
430 /**
431  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
432  * @tx_ring: the tx ring to set up
433  *
434  * Return 0 on success, negative on error
435  **/
436 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
437 {
438         struct device *dev = tx_ring->dev;
439         int bi_size;
440
441         if (!dev)
442                 return -ENOMEM;
443
444         /* warn if we are about to overwrite the pointer */
445         WARN_ON(tx_ring->tx_bi);
446         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
447         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
448         if (!tx_ring->tx_bi)
449                 goto err;
450
451         /* round up to nearest 4K */
452         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
453         /* add u32 for head writeback, align after this takes care of
454          * guaranteeing this is at least one cache line in size
455          */
456         tx_ring->size += sizeof(u32);
457         tx_ring->size = ALIGN(tx_ring->size, 4096);
458         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
459                                            &tx_ring->dma, GFP_KERNEL);
460         if (!tx_ring->desc) {
461                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
462                          tx_ring->size);
463                 goto err;
464         }
465
466         tx_ring->next_to_use = 0;
467         tx_ring->next_to_clean = 0;
468         return 0;
469
470 err:
471         kfree(tx_ring->tx_bi);
472         tx_ring->tx_bi = NULL;
473         return -ENOMEM;
474 }
475
476 /**
477  * i40evf_clean_rx_ring - Free Rx buffers
478  * @rx_ring: ring to be cleaned
479  **/
480 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
481 {
482         struct device *dev = rx_ring->dev;
483         struct i40e_rx_buffer *rx_bi;
484         unsigned long bi_size;
485         u16 i;
486
487         /* ring already cleared, nothing to do */
488         if (!rx_ring->rx_bi)
489                 return;
490
491         if (ring_is_ps_enabled(rx_ring)) {
492                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
493
494                 rx_bi = &rx_ring->rx_bi[0];
495                 if (rx_bi->hdr_buf) {
496                         dma_free_coherent(dev,
497                                           bufsz,
498                                           rx_bi->hdr_buf,
499                                           rx_bi->dma);
500                         for (i = 0; i < rx_ring->count; i++) {
501                                 rx_bi = &rx_ring->rx_bi[i];
502                                 rx_bi->dma = 0;
503                                 rx_bi->hdr_buf = NULL;
504                         }
505                 }
506         }
507         /* Free all the Rx ring sk_buffs */
508         for (i = 0; i < rx_ring->count; i++) {
509                 rx_bi = &rx_ring->rx_bi[i];
510                 if (rx_bi->dma) {
511                         dma_unmap_single(dev,
512                                          rx_bi->dma,
513                                          rx_ring->rx_buf_len,
514                                          DMA_FROM_DEVICE);
515                         rx_bi->dma = 0;
516                 }
517                 if (rx_bi->skb) {
518                         dev_kfree_skb(rx_bi->skb);
519                         rx_bi->skb = NULL;
520                 }
521                 if (rx_bi->page) {
522                         if (rx_bi->page_dma) {
523                                 dma_unmap_page(dev,
524                                                rx_bi->page_dma,
525                                                PAGE_SIZE / 2,
526                                                DMA_FROM_DEVICE);
527                                 rx_bi->page_dma = 0;
528                         }
529                         __free_page(rx_bi->page);
530                         rx_bi->page = NULL;
531                         rx_bi->page_offset = 0;
532                 }
533         }
534
535         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
536         memset(rx_ring->rx_bi, 0, bi_size);
537
538         /* Zero out the descriptor ring */
539         memset(rx_ring->desc, 0, rx_ring->size);
540
541         rx_ring->next_to_clean = 0;
542         rx_ring->next_to_use = 0;
543 }
544
545 /**
546  * i40evf_free_rx_resources - Free Rx resources
547  * @rx_ring: ring to clean the resources from
548  *
549  * Free all receive software resources
550  **/
551 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
552 {
553         i40evf_clean_rx_ring(rx_ring);
554         kfree(rx_ring->rx_bi);
555         rx_ring->rx_bi = NULL;
556
557         if (rx_ring->desc) {
558                 dma_free_coherent(rx_ring->dev, rx_ring->size,
559                                   rx_ring->desc, rx_ring->dma);
560                 rx_ring->desc = NULL;
561         }
562 }
563
564 /**
565  * i40evf_alloc_rx_headers - allocate rx header buffers
566  * @rx_ring: ring to alloc buffers
567  *
568  * Allocate rx header buffers for the entire ring. As these are static,
569  * this is only called when setting up a new ring.
570  **/
571 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
572 {
573         struct device *dev = rx_ring->dev;
574         struct i40e_rx_buffer *rx_bi;
575         dma_addr_t dma;
576         void *buffer;
577         int buf_size;
578         int i;
579
580         if (rx_ring->rx_bi[0].hdr_buf)
581                 return;
582         /* Make sure the buffers don't cross cache line boundaries. */
583         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
584         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
585                                     &dma, GFP_KERNEL);
586         if (!buffer)
587                 return;
588         for (i = 0; i < rx_ring->count; i++) {
589                 rx_bi = &rx_ring->rx_bi[i];
590                 rx_bi->dma = dma + (i * buf_size);
591                 rx_bi->hdr_buf = buffer + (i * buf_size);
592         }
593 }
594
595 /**
596  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
597  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
598  *
599  * Returns 0 on success, negative on failure
600  **/
601 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
602 {
603         struct device *dev = rx_ring->dev;
604         int bi_size;
605
606         /* warn if we are about to overwrite the pointer */
607         WARN_ON(rx_ring->rx_bi);
608         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
609         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
610         if (!rx_ring->rx_bi)
611                 goto err;
612
613         u64_stats_init(&rx_ring->syncp);
614
615         /* Round up to nearest 4K */
616         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
617                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
618                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
619         rx_ring->size = ALIGN(rx_ring->size, 4096);
620         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
621                                            &rx_ring->dma, GFP_KERNEL);
622
623         if (!rx_ring->desc) {
624                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
625                          rx_ring->size);
626                 goto err;
627         }
628
629         rx_ring->next_to_clean = 0;
630         rx_ring->next_to_use = 0;
631
632         return 0;
633 err:
634         kfree(rx_ring->rx_bi);
635         rx_ring->rx_bi = NULL;
636         return -ENOMEM;
637 }
638
639 /**
640  * i40e_release_rx_desc - Store the new tail and head values
641  * @rx_ring: ring to bump
642  * @val: new head index
643  **/
644 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
645 {
646         rx_ring->next_to_use = val;
647         /* Force memory writes to complete before letting h/w
648          * know there are new descriptors to fetch.  (Only
649          * applicable for weak-ordered memory model archs,
650          * such as IA-64).
651          */
652         wmb();
653         writel(val, rx_ring->tail);
654 }
655
656 /**
657  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
658  * @rx_ring: ring to place buffers on
659  * @cleaned_count: number of buffers to replace
660  **/
661 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
662 {
663         u16 i = rx_ring->next_to_use;
664         union i40e_rx_desc *rx_desc;
665         struct i40e_rx_buffer *bi;
666
667         /* do nothing if no valid netdev defined */
668         if (!rx_ring->netdev || !cleaned_count)
669                 return;
670
671         while (cleaned_count--) {
672                 rx_desc = I40E_RX_DESC(rx_ring, i);
673                 bi = &rx_ring->rx_bi[i];
674
675                 if (bi->skb) /* desc is in use */
676                         goto no_buffers;
677                 if (!bi->page) {
678                         bi->page = alloc_page(GFP_ATOMIC);
679                         if (!bi->page) {
680                                 rx_ring->rx_stats.alloc_page_failed++;
681                                 goto no_buffers;
682                         }
683                 }
684
685                 if (!bi->page_dma) {
686                         /* use a half page if we're re-using */
687                         bi->page_offset ^= PAGE_SIZE / 2;
688                         bi->page_dma = dma_map_page(rx_ring->dev,
689                                                     bi->page,
690                                                     bi->page_offset,
691                                                     PAGE_SIZE / 2,
692                                                     DMA_FROM_DEVICE);
693                         if (dma_mapping_error(rx_ring->dev,
694                                               bi->page_dma)) {
695                                 rx_ring->rx_stats.alloc_page_failed++;
696                                 bi->page_dma = 0;
697                                 goto no_buffers;
698                         }
699                 }
700
701                 dma_sync_single_range_for_device(rx_ring->dev,
702                                                  bi->dma,
703                                                  0,
704                                                  rx_ring->rx_hdr_len,
705                                                  DMA_FROM_DEVICE);
706                 /* Refresh the desc even if buffer_addrs didn't change
707                  * because each write-back erases this info.
708                  */
709                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
710                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
711                 i++;
712                 if (i == rx_ring->count)
713                         i = 0;
714         }
715
716 no_buffers:
717         if (rx_ring->next_to_use != i)
718                 i40e_release_rx_desc(rx_ring, i);
719 }
720
721 /**
722  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
723  * @rx_ring: ring to place buffers on
724  * @cleaned_count: number of buffers to replace
725  **/
726 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
727 {
728         u16 i = rx_ring->next_to_use;
729         union i40e_rx_desc *rx_desc;
730         struct i40e_rx_buffer *bi;
731         struct sk_buff *skb;
732
733         /* do nothing if no valid netdev defined */
734         if (!rx_ring->netdev || !cleaned_count)
735                 return;
736
737         while (cleaned_count--) {
738                 rx_desc = I40E_RX_DESC(rx_ring, i);
739                 bi = &rx_ring->rx_bi[i];
740                 skb = bi->skb;
741
742                 if (!skb) {
743                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
744                                                         rx_ring->rx_buf_len);
745                         if (!skb) {
746                                 rx_ring->rx_stats.alloc_buff_failed++;
747                                 goto no_buffers;
748                         }
749                         /* initialize queue mapping */
750                         skb_record_rx_queue(skb, rx_ring->queue_index);
751                         bi->skb = skb;
752                 }
753
754                 if (!bi->dma) {
755                         bi->dma = dma_map_single(rx_ring->dev,
756                                                  skb->data,
757                                                  rx_ring->rx_buf_len,
758                                                  DMA_FROM_DEVICE);
759                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
760                                 rx_ring->rx_stats.alloc_buff_failed++;
761                                 bi->dma = 0;
762                                 goto no_buffers;
763                         }
764                 }
765
766                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
767                 rx_desc->read.hdr_addr = 0;
768                 i++;
769                 if (i == rx_ring->count)
770                         i = 0;
771         }
772
773 no_buffers:
774         if (rx_ring->next_to_use != i)
775                 i40e_release_rx_desc(rx_ring, i);
776 }
777
778 /**
779  * i40e_receive_skb - Send a completed packet up the stack
780  * @rx_ring:  rx ring in play
781  * @skb: packet to send up
782  * @vlan_tag: vlan tag for packet
783  **/
784 static void i40e_receive_skb(struct i40e_ring *rx_ring,
785                              struct sk_buff *skb, u16 vlan_tag)
786 {
787         struct i40e_q_vector *q_vector = rx_ring->q_vector;
788
789         if (vlan_tag & VLAN_VID_MASK)
790                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
791
792         napi_gro_receive(&q_vector->napi, skb);
793 }
794
795 /**
796  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
797  * @vsi: the VSI we care about
798  * @skb: skb currently being received and modified
799  * @rx_status: status value of last descriptor in packet
800  * @rx_error: error value of last descriptor in packet
801  * @rx_ptype: ptype value of last descriptor in packet
802  **/
803 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
804                                     struct sk_buff *skb,
805                                     u32 rx_status,
806                                     u32 rx_error,
807                                     u16 rx_ptype)
808 {
809         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
810         bool ipv4 = false, ipv6 = false;
811         bool ipv4_tunnel, ipv6_tunnel;
812         __wsum rx_udp_csum;
813         struct iphdr *iph;
814         __sum16 csum;
815
816         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
817                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
818         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
819                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
820
821         skb->ip_summed = CHECKSUM_NONE;
822
823         /* Rx csum enabled and ip headers found? */
824         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
825                 return;
826
827         /* did the hardware decode the packet and checksum? */
828         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
829                 return;
830
831         /* both known and outer_ip must be set for the below code to work */
832         if (!(decoded.known && decoded.outer_ip))
833                 return;
834
835         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
836             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
837                 ipv4 = true;
838         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
839                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
840                 ipv6 = true;
841
842         if (ipv4 &&
843             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
844                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
845                 goto checksum_fail;
846
847         /* likely incorrect csum if alternate IP extension headers found */
848         if (ipv6 &&
849             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
850                 /* don't increment checksum err here, non-fatal err */
851                 return;
852
853         /* there was some L4 error, count error and punt packet to the stack */
854         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
855                 goto checksum_fail;
856
857         /* handle packets that were not able to be checksummed due
858          * to arrival speed, in this case the stack can compute
859          * the csum.
860          */
861         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
862                 return;
863
864         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
865          * it in the driver, hardware does not do it for us.
866          * Since L3L4P bit was set we assume a valid IHL value (>=5)
867          * so the total length of IPv4 header is IHL*4 bytes
868          * The UDP_0 bit *may* bet set if the *inner* header is UDP
869          */
870         if (ipv4_tunnel) {
871                 skb->transport_header = skb->mac_header +
872                                         sizeof(struct ethhdr) +
873                                         (ip_hdr(skb)->ihl * 4);
874
875                 /* Add 4 bytes for VLAN tagged packets */
876                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
877                                           skb->protocol == htons(ETH_P_8021AD))
878                                           ? VLAN_HLEN : 0;
879
880                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
881                     (udp_hdr(skb)->check != 0)) {
882                         rx_udp_csum = udp_csum(skb);
883                         iph = ip_hdr(skb);
884                         csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
885                                                  (skb->len -
886                                                   skb_transport_offset(skb)),
887                                                  IPPROTO_UDP, rx_udp_csum);
888
889                         if (udp_hdr(skb)->check != csum)
890                                 goto checksum_fail;
891
892                 } /* else its GRE and so no outer UDP header */
893         }
894
895         skb->ip_summed = CHECKSUM_UNNECESSARY;
896         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
897
898         return;
899
900 checksum_fail:
901         vsi->back->hw_csum_rx_error++;
902 }
903
904 /**
905  * i40e_ptype_to_htype - get a hash type
906  * @ptype: the ptype value from the descriptor
907  *
908  * Returns a hash type to be used by skb_set_hash
909  **/
910 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
911 {
912         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
913
914         if (!decoded.known)
915                 return PKT_HASH_TYPE_NONE;
916
917         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
918             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
919                 return PKT_HASH_TYPE_L4;
920         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
921                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
922                 return PKT_HASH_TYPE_L3;
923         else
924                 return PKT_HASH_TYPE_L2;
925 }
926
927 /**
928  * i40e_rx_hash - set the hash value in the skb
929  * @ring: descriptor ring
930  * @rx_desc: specific descriptor
931  **/
932 static inline void i40e_rx_hash(struct i40e_ring *ring,
933                                 union i40e_rx_desc *rx_desc,
934                                 struct sk_buff *skb,
935                                 u8 rx_ptype)
936 {
937         u32 hash;
938         const __le64 rss_mask  =
939                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
940                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
941
942         if (ring->netdev->features & NETIF_F_RXHASH)
943                 return;
944
945         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
946                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
947                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
948         }
949 }
950
951 /**
952  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
953  * @rx_ring:  rx ring to clean
954  * @budget:   how many cleans we're allowed
955  *
956  * Returns true if there's any budget left (e.g. the clean is finished)
957  **/
958 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
959 {
960         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
961         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
962         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
963         const int current_node = numa_mem_id();
964         struct i40e_vsi *vsi = rx_ring->vsi;
965         u16 i = rx_ring->next_to_clean;
966         union i40e_rx_desc *rx_desc;
967         u32 rx_error, rx_status;
968         u8 rx_ptype;
969         u64 qword;
970
971         do {
972                 struct i40e_rx_buffer *rx_bi;
973                 struct sk_buff *skb;
974                 u16 vlan_tag;
975                 /* return some buffers to hardware, one at a time is too slow */
976                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
977                         i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
978                         cleaned_count = 0;
979                 }
980
981                 i = rx_ring->next_to_clean;
982                 rx_desc = I40E_RX_DESC(rx_ring, i);
983                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
984                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
985                         I40E_RXD_QW1_STATUS_SHIFT;
986
987                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
988                         break;
989
990                 /* This memory barrier is needed to keep us from reading
991                  * any other fields out of the rx_desc until we know the
992                  * DD bit is set.
993                  */
994                 dma_rmb();
995                 rx_bi = &rx_ring->rx_bi[i];
996                 skb = rx_bi->skb;
997                 if (likely(!skb)) {
998                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
999                                                         rx_ring->rx_hdr_len);
1000                         if (!skb) {
1001                                 rx_ring->rx_stats.alloc_buff_failed++;
1002                                 break;
1003                         }
1004
1005                         /* initialize queue mapping */
1006                         skb_record_rx_queue(skb, rx_ring->queue_index);
1007                         /* we are reusing so sync this buffer for CPU use */
1008                         dma_sync_single_range_for_cpu(rx_ring->dev,
1009                                                       rx_bi->dma,
1010                                                       0,
1011                                                       rx_ring->rx_hdr_len,
1012                                                       DMA_FROM_DEVICE);
1013                 }
1014                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1015                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1016                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1017                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1018                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1019                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1020
1021                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1022                            I40E_RXD_QW1_ERROR_SHIFT;
1023                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1024                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1025
1026                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1027                            I40E_RXD_QW1_PTYPE_SHIFT;
1028                 prefetch(rx_bi->page);
1029                 rx_bi->skb = NULL;
1030                 cleaned_count++;
1031                 if (rx_hbo || rx_sph) {
1032                         int len;
1033
1034                         if (rx_hbo)
1035                                 len = I40E_RX_HDR_SIZE;
1036                         else
1037                                 len = rx_header_len;
1038                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1039                 } else if (skb->len == 0) {
1040                         int len;
1041
1042                         len = (rx_packet_len > skb_headlen(skb) ?
1043                                 skb_headlen(skb) : rx_packet_len);
1044                         memcpy(__skb_put(skb, len),
1045                                rx_bi->page + rx_bi->page_offset,
1046                                len);
1047                         rx_bi->page_offset += len;
1048                         rx_packet_len -= len;
1049                 }
1050
1051                 /* Get the rest of the data if this was a header split */
1052                 if (rx_packet_len) {
1053                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1054                                            rx_bi->page,
1055                                            rx_bi->page_offset,
1056                                            rx_packet_len);
1057
1058                         skb->len += rx_packet_len;
1059                         skb->data_len += rx_packet_len;
1060                         skb->truesize += rx_packet_len;
1061
1062                         if ((page_count(rx_bi->page) == 1) &&
1063                             (page_to_nid(rx_bi->page) == current_node))
1064                                 get_page(rx_bi->page);
1065                         else
1066                                 rx_bi->page = NULL;
1067
1068                         dma_unmap_page(rx_ring->dev,
1069                                        rx_bi->page_dma,
1070                                        PAGE_SIZE / 2,
1071                                        DMA_FROM_DEVICE);
1072                         rx_bi->page_dma = 0;
1073                 }
1074                 I40E_RX_INCREMENT(rx_ring, i);
1075
1076                 if (unlikely(
1077                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1078                         struct i40e_rx_buffer *next_buffer;
1079
1080                         next_buffer = &rx_ring->rx_bi[i];
1081                         next_buffer->skb = skb;
1082                         rx_ring->rx_stats.non_eop_descs++;
1083                         continue;
1084                 }
1085
1086                 /* ERR_MASK will only have valid bits if EOP set */
1087                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1088                         dev_kfree_skb_any(skb);
1089                         continue;
1090                 }
1091
1092                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1093
1094                 /* probably a little skewed due to removing CRC */
1095                 total_rx_bytes += skb->len;
1096                 total_rx_packets++;
1097
1098                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1099
1100                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1101
1102                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1103                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1104                          : 0;
1105 #ifdef I40E_FCOE
1106                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1107                         dev_kfree_skb_any(skb);
1108                         continue;
1109                 }
1110 #endif
1111                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1112
1113                 rx_desc->wb.qword1.status_error_len = 0;
1114
1115         } while (likely(total_rx_packets < budget));
1116
1117         u64_stats_update_begin(&rx_ring->syncp);
1118         rx_ring->stats.packets += total_rx_packets;
1119         rx_ring->stats.bytes += total_rx_bytes;
1120         u64_stats_update_end(&rx_ring->syncp);
1121         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1122         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1123
1124         return total_rx_packets;
1125 }
1126
1127 /**
1128  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1129  * @rx_ring:  rx ring to clean
1130  * @budget:   how many cleans we're allowed
1131  *
1132  * Returns number of packets cleaned
1133  **/
1134 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1135 {
1136         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1137         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1138         struct i40e_vsi *vsi = rx_ring->vsi;
1139         union i40e_rx_desc *rx_desc;
1140         u32 rx_error, rx_status;
1141         u16 rx_packet_len;
1142         u8 rx_ptype;
1143         u64 qword;
1144         u16 i;
1145
1146         do {
1147                 struct i40e_rx_buffer *rx_bi;
1148                 struct sk_buff *skb;
1149                 u16 vlan_tag;
1150                 /* return some buffers to hardware, one at a time is too slow */
1151                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1152                         i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1153                         cleaned_count = 0;
1154                 }
1155
1156                 i = rx_ring->next_to_clean;
1157                 rx_desc = I40E_RX_DESC(rx_ring, i);
1158                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1159                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1160                         I40E_RXD_QW1_STATUS_SHIFT;
1161
1162                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1163                         break;
1164
1165                 /* This memory barrier is needed to keep us from reading
1166                  * any other fields out of the rx_desc until we know the
1167                  * DD bit is set.
1168                  */
1169                 dma_rmb();
1170
1171                 rx_bi = &rx_ring->rx_bi[i];
1172                 skb = rx_bi->skb;
1173                 prefetch(skb->data);
1174
1175                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1176                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1177
1178                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1179                            I40E_RXD_QW1_ERROR_SHIFT;
1180                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1181
1182                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1183                            I40E_RXD_QW1_PTYPE_SHIFT;
1184                 rx_bi->skb = NULL;
1185                 cleaned_count++;
1186
1187                 /* Get the header and possibly the whole packet
1188                  * If this is an skb from previous receive dma will be 0
1189                  */
1190                 skb_put(skb, rx_packet_len);
1191                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1192                                  DMA_FROM_DEVICE);
1193                 rx_bi->dma = 0;
1194
1195                 I40E_RX_INCREMENT(rx_ring, i);
1196
1197                 if (unlikely(
1198                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1199                         rx_ring->rx_stats.non_eop_descs++;
1200                         continue;
1201                 }
1202
1203                 /* ERR_MASK will only have valid bits if EOP set */
1204                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1205                         dev_kfree_skb_any(skb);
1206                         continue;
1207                 }
1208
1209                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1210                 /* probably a little skewed due to removing CRC */
1211                 total_rx_bytes += skb->len;
1212                 total_rx_packets++;
1213
1214                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1215
1216                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1217
1218                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1219                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1220                          : 0;
1221                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1222
1223                 rx_desc->wb.qword1.status_error_len = 0;
1224         } while (likely(total_rx_packets < budget));
1225
1226         u64_stats_update_begin(&rx_ring->syncp);
1227         rx_ring->stats.packets += total_rx_packets;
1228         rx_ring->stats.bytes += total_rx_bytes;
1229         u64_stats_update_end(&rx_ring->syncp);
1230         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1231         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1232
1233         return total_rx_packets;
1234 }
1235
1236 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1237 {
1238         u32 val;
1239
1240         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1241               I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1242               (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1243               (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1244
1245         return val;
1246 }
1247
1248 /* a small macro to shorten up some long lines */
1249 #define INTREG I40E_VFINT_DYN_CTLN1
1250
1251 /**
1252  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1253  * @vsi: the VSI we care about
1254  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1255  *
1256  **/
1257 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1258                                           struct i40e_q_vector *q_vector)
1259 {
1260         struct i40e_hw *hw = &vsi->back->hw;
1261         bool rx = false, tx = false;
1262         u32 rxval, txval;
1263         int vector;
1264
1265         vector = (q_vector->v_idx + vsi->base_vector);
1266
1267         /* avoid dynamic calculation if in countdown mode OR if
1268          * all dynamic is disabled
1269          */
1270         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1271
1272         if (q_vector->itr_countdown > 0 ||
1273             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1274              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1275                 goto enable_int;
1276         }
1277
1278         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1279                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1280                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1281         }
1282
1283         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1284                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1285                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1286         }
1287
1288         if (rx || tx) {
1289                 /* get the higher of the two ITR adjustments and
1290                  * use the same value for both ITR registers
1291                  * when in adaptive mode (Rx and/or Tx)
1292                  */
1293                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1294
1295                 q_vector->tx.itr = q_vector->rx.itr = itr;
1296                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1297                 tx = true;
1298                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1299                 rx = true;
1300         }
1301
1302         /* only need to enable the interrupt once, but need
1303          * to possibly update both ITR values
1304          */
1305         if (rx) {
1306                 /* set the INTENA_MSK_MASK so that this first write
1307                  * won't actually enable the interrupt, instead just
1308                  * updating the ITR (it's bit 31 PF and VF)
1309                  */
1310                 rxval |= BIT(31);
1311                 /* don't check _DOWN because interrupt isn't being enabled */
1312                 wr32(hw, INTREG(vector - 1), rxval);
1313         }
1314
1315 enable_int:
1316         if (!test_bit(__I40E_DOWN, &vsi->state))
1317                 wr32(hw, INTREG(vector - 1), txval);
1318
1319         if (q_vector->itr_countdown)
1320                 q_vector->itr_countdown--;
1321         else
1322                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1323 }
1324
1325 /**
1326  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1327  * @napi: napi struct with our devices info in it
1328  * @budget: amount of work driver is allowed to do this pass, in packets
1329  *
1330  * This function will clean all queues associated with a q_vector.
1331  *
1332  * Returns the amount of work done
1333  **/
1334 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1335 {
1336         struct i40e_q_vector *q_vector =
1337                                container_of(napi, struct i40e_q_vector, napi);
1338         struct i40e_vsi *vsi = q_vector->vsi;
1339         struct i40e_ring *ring;
1340         bool clean_complete = true;
1341         bool arm_wb = false;
1342         int budget_per_ring;
1343         int work_done = 0;
1344
1345         if (test_bit(__I40E_DOWN, &vsi->state)) {
1346                 napi_complete(napi);
1347                 return 0;
1348         }
1349
1350         /* Since the actual Tx work is minimal, we can give the Tx a larger
1351          * budget and be more aggressive about cleaning up the Tx descriptors.
1352          */
1353         i40e_for_each_ring(ring, q_vector->tx) {
1354                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1355                 arm_wb = arm_wb || ring->arm_wb;
1356                 ring->arm_wb = false;
1357         }
1358
1359         /* Handle case where we are called by netpoll with a budget of 0 */
1360         if (budget <= 0)
1361                 goto tx_only;
1362
1363         /* We attempt to distribute budget to each Rx queue fairly, but don't
1364          * allow the budget to go below 1 because that would exit polling early.
1365          */
1366         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1367
1368         i40e_for_each_ring(ring, q_vector->rx) {
1369                 int cleaned;
1370
1371                 if (ring_is_ps_enabled(ring))
1372                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1373                 else
1374                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1375
1376                 work_done += cleaned;
1377                 /* if we didn't clean as many as budgeted, we must be done */
1378                 clean_complete &= (budget_per_ring != cleaned);
1379         }
1380
1381         /* If work not completed, return budget and polling will return */
1382         if (!clean_complete) {
1383 tx_only:
1384                 if (arm_wb) {
1385                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1386                         i40evf_force_wb(vsi, q_vector);
1387                 }
1388                 return budget;
1389         }
1390
1391         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1392                 q_vector->arm_wb_state = false;
1393
1394         /* Work is done so exit the polling mode and re-enable the interrupt */
1395         napi_complete_done(napi, work_done);
1396         i40e_update_enable_itr(vsi, q_vector);
1397         return 0;
1398 }
1399
1400 /**
1401  * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1402  * @skb:     send buffer
1403  * @tx_ring: ring to send buffer on
1404  * @flags:   the tx flags to be set
1405  *
1406  * Checks the skb and set up correspondingly several generic transmit flags
1407  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1408  *
1409  * Returns error code indicate the frame should be dropped upon error and the
1410  * otherwise  returns 0 to indicate the flags has been set properly.
1411  **/
1412 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1413                                                struct i40e_ring *tx_ring,
1414                                                u32 *flags)
1415 {
1416         __be16 protocol = skb->protocol;
1417         u32  tx_flags = 0;
1418
1419         if (protocol == htons(ETH_P_8021Q) &&
1420             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1421                 /* When HW VLAN acceleration is turned off by the user the
1422                  * stack sets the protocol to 8021q so that the driver
1423                  * can take any steps required to support the SW only
1424                  * VLAN handling.  In our case the driver doesn't need
1425                  * to take any further steps so just set the protocol
1426                  * to the encapsulated ethertype.
1427                  */
1428                 skb->protocol = vlan_get_protocol(skb);
1429                 goto out;
1430         }
1431
1432         /* if we have a HW VLAN tag being added, default to the HW one */
1433         if (skb_vlan_tag_present(skb)) {
1434                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1435                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1436         /* else if it is a SW VLAN, check the next protocol and store the tag */
1437         } else if (protocol == htons(ETH_P_8021Q)) {
1438                 struct vlan_hdr *vhdr, _vhdr;
1439
1440                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1441                 if (!vhdr)
1442                         return -EINVAL;
1443
1444                 protocol = vhdr->h_vlan_encapsulated_proto;
1445                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1446                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1447         }
1448
1449 out:
1450         *flags = tx_flags;
1451         return 0;
1452 }
1453
1454 /**
1455  * i40e_tso - set up the tso context descriptor
1456  * @tx_ring:  ptr to the ring to send
1457  * @skb:      ptr to the skb we're sending
1458  * @hdr_len:  ptr to the size of the packet header
1459  * @cd_type_cmd_tso_mss: Quad Word 1
1460  *
1461  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1462  **/
1463 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1464                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1465 {
1466         u32 cd_cmd, cd_tso_len, cd_mss;
1467         struct ipv6hdr *ipv6h;
1468         struct tcphdr *tcph;
1469         struct iphdr *iph;
1470         u32 l4len;
1471         int err;
1472
1473         if (!skb_is_gso(skb))
1474                 return 0;
1475
1476         err = skb_cow_head(skb, 0);
1477         if (err < 0)
1478                 return err;
1479
1480         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1481         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1482
1483         if (iph->version == 4) {
1484                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1485                 iph->tot_len = 0;
1486                 iph->check = 0;
1487                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1488                                                  0, IPPROTO_TCP, 0);
1489         } else if (ipv6h->version == 6) {
1490                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1491                 ipv6h->payload_len = 0;
1492                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1493                                                0, IPPROTO_TCP, 0);
1494         }
1495
1496         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1497         *hdr_len = (skb->encapsulation
1498                     ? (skb_inner_transport_header(skb) - skb->data)
1499                     : skb_transport_offset(skb)) + l4len;
1500
1501         /* find the field values */
1502         cd_cmd = I40E_TX_CTX_DESC_TSO;
1503         cd_tso_len = skb->len - *hdr_len;
1504         cd_mss = skb_shinfo(skb)->gso_size;
1505         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1506                                 ((u64)cd_tso_len <<
1507                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1508                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1509         return 1;
1510 }
1511
1512 /**
1513  * i40e_tx_enable_csum - Enable Tx checksum offloads
1514  * @skb: send buffer
1515  * @tx_flags: pointer to Tx flags currently set
1516  * @td_cmd: Tx descriptor command bits to set
1517  * @td_offset: Tx descriptor header offsets to set
1518  * @cd_tunneling: ptr to context desc bits
1519  **/
1520 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1521                                 u32 *td_cmd, u32 *td_offset,
1522                                 struct i40e_ring *tx_ring,
1523                                 u32 *cd_tunneling)
1524 {
1525         struct ipv6hdr *this_ipv6_hdr;
1526         unsigned int this_tcp_hdrlen;
1527         struct iphdr *this_ip_hdr;
1528         u32 network_hdr_len;
1529         u8 l4_hdr = 0;
1530         struct udphdr *oudph;
1531         struct iphdr *oiph;
1532         u32 l4_tunnel = 0;
1533
1534         if (skb->encapsulation) {
1535                 switch (ip_hdr(skb)->protocol) {
1536                 case IPPROTO_UDP:
1537                         oudph = udp_hdr(skb);
1538                         oiph = ip_hdr(skb);
1539                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1540                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1541                         break;
1542                 default:
1543                         return;
1544                 }
1545                 network_hdr_len = skb_inner_network_header_len(skb);
1546                 this_ip_hdr = inner_ip_hdr(skb);
1547                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1548                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1549
1550                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1551                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
1552                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1553                                 ip_hdr(skb)->check = 0;
1554                         } else {
1555                                 *cd_tunneling |=
1556                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1557                         }
1558                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1559                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1560                         if (*tx_flags & I40E_TX_FLAGS_TSO)
1561                                 ip_hdr(skb)->check = 0;
1562                 }
1563
1564                 /* Now set the ctx descriptor fields */
1565                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1566                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1567                                    l4_tunnel                             |
1568                                    ((skb_inner_network_offset(skb) -
1569                                         skb_transport_offset(skb)) >> 1) <<
1570                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1571                 if (this_ip_hdr->version == 6) {
1572                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1573                         *tx_flags |= I40E_TX_FLAGS_IPV6;
1574                 }
1575
1576                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1577                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
1578                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1579                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1580                                         oiph->daddr,
1581                                         (skb->len - skb_transport_offset(skb)),
1582                                         IPPROTO_UDP, 0);
1583                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1584                 }
1585         } else {
1586                 network_hdr_len = skb_network_header_len(skb);
1587                 this_ip_hdr = ip_hdr(skb);
1588                 this_ipv6_hdr = ipv6_hdr(skb);
1589                 this_tcp_hdrlen = tcp_hdrlen(skb);
1590         }
1591
1592         /* Enable IP checksum offloads */
1593         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1594                 l4_hdr = this_ip_hdr->protocol;
1595                 /* the stack computes the IP header already, the only time we
1596                  * need the hardware to recompute it is in the case of TSO.
1597                  */
1598                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
1599                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1600                         this_ip_hdr->check = 0;
1601                 } else {
1602                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1603                 }
1604                 /* Now set the td_offset for IP header length */
1605                 *td_offset = (network_hdr_len >> 2) <<
1606                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1607         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1608                 l4_hdr = this_ipv6_hdr->nexthdr;
1609                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1610                 /* Now set the td_offset for IP header length */
1611                 *td_offset = (network_hdr_len >> 2) <<
1612                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1613         }
1614         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1615         *td_offset |= (skb_network_offset(skb) >> 1) <<
1616                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1617
1618         /* Enable L4 checksum offloads */
1619         switch (l4_hdr) {
1620         case IPPROTO_TCP:
1621                 /* enable checksum offloads */
1622                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1623                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1624                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1625                 break;
1626         case IPPROTO_SCTP:
1627                 /* enable SCTP checksum offload */
1628                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1629                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1630                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1631                 break;
1632         case IPPROTO_UDP:
1633                 /* enable UDP checksum offload */
1634                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1635                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1636                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1637                 break;
1638         default:
1639                 break;
1640         }
1641 }
1642
1643 /**
1644  * i40e_create_tx_ctx Build the Tx context descriptor
1645  * @tx_ring:  ring to create the descriptor on
1646  * @cd_type_cmd_tso_mss: Quad Word 1
1647  * @cd_tunneling: Quad Word 0 - bits 0-31
1648  * @cd_l2tag2: Quad Word 0 - bits 32-63
1649  **/
1650 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1651                                const u64 cd_type_cmd_tso_mss,
1652                                const u32 cd_tunneling, const u32 cd_l2tag2)
1653 {
1654         struct i40e_tx_context_desc *context_desc;
1655         int i = tx_ring->next_to_use;
1656
1657         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1658             !cd_tunneling && !cd_l2tag2)
1659                 return;
1660
1661         /* grab the next descriptor */
1662         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1663
1664         i++;
1665         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1666
1667         /* cpu_to_le32 and assign to struct fields */
1668         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1669         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1670         context_desc->rsvd = cpu_to_le16(0);
1671         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1672 }
1673
1674 /**
1675  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1676  * @skb:      send buffer
1677  * @tx_flags: collected send information
1678  *
1679  * Note: Our HW can't scatter-gather more than 8 fragments to build
1680  * a packet on the wire and so we need to figure out the cases where we
1681  * need to linearize the skb.
1682  **/
1683 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1684 {
1685         struct skb_frag_struct *frag;
1686         bool linearize = false;
1687         unsigned int size = 0;
1688         u16 num_frags;
1689         u16 gso_segs;
1690
1691         num_frags = skb_shinfo(skb)->nr_frags;
1692         gso_segs = skb_shinfo(skb)->gso_segs;
1693
1694         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1695                 u16 j = 0;
1696
1697                 if (num_frags < (I40E_MAX_BUFFER_TXD))
1698                         goto linearize_chk_done;
1699                 /* try the simple math, if we have too many frags per segment */
1700                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1701                     I40E_MAX_BUFFER_TXD) {
1702                         linearize = true;
1703                         goto linearize_chk_done;
1704                 }
1705                 frag = &skb_shinfo(skb)->frags[0];
1706                 /* we might still have more fragments per segment */
1707                 do {
1708                         size += skb_frag_size(frag);
1709                         frag++; j++;
1710                         if ((size >= skb_shinfo(skb)->gso_size) &&
1711                             (j < I40E_MAX_BUFFER_TXD)) {
1712                                 size = (size % skb_shinfo(skb)->gso_size);
1713                                 j = (size) ? 1 : 0;
1714                         }
1715                         if (j == I40E_MAX_BUFFER_TXD) {
1716                                 linearize = true;
1717                                 break;
1718                         }
1719                         num_frags--;
1720                 } while (num_frags);
1721         } else {
1722                 if (num_frags >= I40E_MAX_BUFFER_TXD)
1723                         linearize = true;
1724         }
1725
1726 linearize_chk_done:
1727         return linearize;
1728 }
1729
1730 /**
1731  * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1732  * @tx_ring: the ring to be checked
1733  * @size:    the size buffer we want to assure is available
1734  *
1735  * Returns -EBUSY if a stop is needed, else 0
1736  **/
1737 static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1738 {
1739         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1740         /* Memory barrier before checking head and tail */
1741         smp_mb();
1742
1743         /* Check again in a case another CPU has just made room available. */
1744         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1745                 return -EBUSY;
1746
1747         /* A reprieve! - use start_queue because it doesn't call schedule */
1748         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1749         ++tx_ring->tx_stats.restart_queue;
1750         return 0;
1751 }
1752
1753 /**
1754  * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1755  * @tx_ring: the ring to be checked
1756  * @size:    the size buffer we want to assure is available
1757  *
1758  * Returns 0 if stop is not needed
1759  **/
1760 static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1761 {
1762         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1763                 return 0;
1764         return __i40evf_maybe_stop_tx(tx_ring, size);
1765 }
1766
1767 /**
1768  * i40evf_tx_map - Build the Tx descriptor
1769  * @tx_ring:  ring to send buffer on
1770  * @skb:      send buffer
1771  * @first:    first buffer info buffer to use
1772  * @tx_flags: collected send information
1773  * @hdr_len:  size of the packet header
1774  * @td_cmd:   the command field in the descriptor
1775  * @td_offset: offset for checksum or crc
1776  **/
1777 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1778                                  struct i40e_tx_buffer *first, u32 tx_flags,
1779                                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
1780 {
1781         unsigned int data_len = skb->data_len;
1782         unsigned int size = skb_headlen(skb);
1783         struct skb_frag_struct *frag;
1784         struct i40e_tx_buffer *tx_bi;
1785         struct i40e_tx_desc *tx_desc;
1786         u16 i = tx_ring->next_to_use;
1787         u32 td_tag = 0;
1788         dma_addr_t dma;
1789         u16 gso_segs;
1790         u16 desc_count = 0;
1791         bool tail_bump = true;
1792         bool do_rs = false;
1793
1794         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1795                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1796                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1797                          I40E_TX_FLAGS_VLAN_SHIFT;
1798         }
1799
1800         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1801                 gso_segs = skb_shinfo(skb)->gso_segs;
1802         else
1803                 gso_segs = 1;
1804
1805         /* multiply data chunks by size of headers */
1806         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1807         first->gso_segs = gso_segs;
1808         first->skb = skb;
1809         first->tx_flags = tx_flags;
1810
1811         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1812
1813         tx_desc = I40E_TX_DESC(tx_ring, i);
1814         tx_bi = first;
1815
1816         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1817                 if (dma_mapping_error(tx_ring->dev, dma))
1818                         goto dma_error;
1819
1820                 /* record length, and DMA address */
1821                 dma_unmap_len_set(tx_bi, len, size);
1822                 dma_unmap_addr_set(tx_bi, dma, dma);
1823
1824                 tx_desc->buffer_addr = cpu_to_le64(dma);
1825
1826                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1827                         tx_desc->cmd_type_offset_bsz =
1828                                 build_ctob(td_cmd, td_offset,
1829                                            I40E_MAX_DATA_PER_TXD, td_tag);
1830
1831                         tx_desc++;
1832                         i++;
1833                         desc_count++;
1834
1835                         if (i == tx_ring->count) {
1836                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1837                                 i = 0;
1838                         }
1839
1840                         dma += I40E_MAX_DATA_PER_TXD;
1841                         size -= I40E_MAX_DATA_PER_TXD;
1842
1843                         tx_desc->buffer_addr = cpu_to_le64(dma);
1844                 }
1845
1846                 if (likely(!data_len))
1847                         break;
1848
1849                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1850                                                           size, td_tag);
1851
1852                 tx_desc++;
1853                 i++;
1854                 desc_count++;
1855
1856                 if (i == tx_ring->count) {
1857                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1858                         i = 0;
1859                 }
1860
1861                 size = skb_frag_size(frag);
1862                 data_len -= size;
1863
1864                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1865                                        DMA_TO_DEVICE);
1866
1867                 tx_bi = &tx_ring->tx_bi[i];
1868         }
1869
1870         /* set next_to_watch value indicating a packet is present */
1871         first->next_to_watch = tx_desc;
1872
1873         i++;
1874         if (i == tx_ring->count)
1875                 i = 0;
1876
1877         tx_ring->next_to_use = i;
1878
1879         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1880                                                  tx_ring->queue_index),
1881                                                  first->bytecount);
1882         i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1883
1884         /* Algorithm to optimize tail and RS bit setting:
1885          * if xmit_more is supported
1886          *      if xmit_more is true
1887          *              do not update tail and do not mark RS bit.
1888          *      if xmit_more is false and last xmit_more was false
1889          *              if every packet spanned less than 4 desc
1890          *                      then set RS bit on 4th packet and update tail
1891          *                      on every packet
1892          *              else
1893          *                      update tail and set RS bit on every packet.
1894          *      if xmit_more is false and last_xmit_more was true
1895          *              update tail and set RS bit.
1896          *
1897          * Optimization: wmb to be issued only in case of tail update.
1898          * Also optimize the Descriptor WB path for RS bit with the same
1899          * algorithm.
1900          *
1901          * Note: If there are less than 4 packets
1902          * pending and interrupts were disabled the service task will
1903          * trigger a force WB.
1904          */
1905         if (skb->xmit_more  &&
1906             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1907                                                     tx_ring->queue_index))) {
1908                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1909                 tail_bump = false;
1910         } else if (!skb->xmit_more &&
1911                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1912                                                        tx_ring->queue_index)) &&
1913                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
1914                    (tx_ring->packet_stride < WB_STRIDE) &&
1915                    (desc_count < WB_STRIDE)) {
1916                 tx_ring->packet_stride++;
1917         } else {
1918                 tx_ring->packet_stride = 0;
1919                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1920                 do_rs = true;
1921         }
1922         if (do_rs)
1923                 tx_ring->packet_stride = 0;
1924
1925         tx_desc->cmd_type_offset_bsz =
1926                         build_ctob(td_cmd, td_offset, size, td_tag) |
1927                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
1928                                                   I40E_TX_DESC_CMD_EOP) <<
1929                                                   I40E_TXD_QW1_CMD_SHIFT);
1930
1931         /* notify HW of packet */
1932         if (!tail_bump)
1933                 prefetchw(tx_desc + 1);
1934
1935         if (tail_bump) {
1936                 /* Force memory writes to complete before letting h/w
1937                  * know there are new descriptors to fetch.  (Only
1938                  * applicable for weak-ordered memory model archs,
1939                  * such as IA-64).
1940                  */
1941                 wmb();
1942                 writel(i, tx_ring->tail);
1943         }
1944
1945         return;
1946
1947 dma_error:
1948         dev_info(tx_ring->dev, "TX DMA map failed\n");
1949
1950         /* clear dma mappings for failed tx_bi map */
1951         for (;;) {
1952                 tx_bi = &tx_ring->tx_bi[i];
1953                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1954                 if (tx_bi == first)
1955                         break;
1956                 if (i == 0)
1957                         i = tx_ring->count;
1958                 i--;
1959         }
1960
1961         tx_ring->next_to_use = i;
1962 }
1963
1964 /**
1965  * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1966  * @skb:     send buffer
1967  * @tx_ring: ring to send buffer on
1968  *
1969  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1970  * there is not enough descriptors available in this ring since we need at least
1971  * one descriptor.
1972  **/
1973 static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1974                                                struct i40e_ring *tx_ring)
1975 {
1976         unsigned int f;
1977         int count = 0;
1978
1979         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1980          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1981          *       + 4 desc gap to avoid the cache line where head is,
1982          *       + 1 desc for context descriptor,
1983          * otherwise try next time
1984          */
1985         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1986                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1987
1988         count += TXD_USE_COUNT(skb_headlen(skb));
1989         if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1990                 tx_ring->tx_stats.tx_busy++;
1991                 return 0;
1992         }
1993         return count;
1994 }
1995
1996 /**
1997  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1998  * @skb:     send buffer
1999  * @tx_ring: ring to send buffer on
2000  *
2001  * Returns NETDEV_TX_OK if sent, else an error code
2002  **/
2003 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2004                                         struct i40e_ring *tx_ring)
2005 {
2006         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2007         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2008         struct i40e_tx_buffer *first;
2009         u32 td_offset = 0;
2010         u32 tx_flags = 0;
2011         __be16 protocol;
2012         u32 td_cmd = 0;
2013         u8 hdr_len = 0;
2014         int tso;
2015
2016         /* prefetch the data, we'll need it later */
2017         prefetch(skb->data);
2018
2019         if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
2020                 return NETDEV_TX_BUSY;
2021
2022         /* prepare the xmit flags */
2023         if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2024                 goto out_drop;
2025
2026         /* obtain protocol of skb */
2027         protocol = vlan_get_protocol(skb);
2028
2029         /* record the location of the first descriptor for this packet */
2030         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2031
2032         /* setup IPv4/IPv6 offloads */
2033         if (protocol == htons(ETH_P_IP))
2034                 tx_flags |= I40E_TX_FLAGS_IPV4;
2035         else if (protocol == htons(ETH_P_IPV6))
2036                 tx_flags |= I40E_TX_FLAGS_IPV6;
2037
2038         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2039
2040         if (tso < 0)
2041                 goto out_drop;
2042         else if (tso)
2043                 tx_flags |= I40E_TX_FLAGS_TSO;
2044
2045         if (i40e_chk_linearize(skb, tx_flags)) {
2046                 if (skb_linearize(skb))
2047                         goto out_drop;
2048                 tx_ring->tx_stats.tx_linearize++;
2049         }
2050         skb_tx_timestamp(skb);
2051
2052         /* always enable CRC insertion offload */
2053         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2054
2055         /* Always offload the checksum, since it's in the data descriptor */
2056         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2057                 tx_flags |= I40E_TX_FLAGS_CSUM;
2058
2059                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2060                                     tx_ring, &cd_tunneling);
2061         }
2062
2063         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2064                            cd_tunneling, cd_l2tag2);
2065
2066         i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2067                       td_cmd, td_offset);
2068
2069         return NETDEV_TX_OK;
2070
2071 out_drop:
2072         dev_kfree_skb_any(skb);
2073         return NETDEV_TX_OK;
2074 }
2075
2076 /**
2077  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2078  * @skb:    send buffer
2079  * @netdev: network interface device structure
2080  *
2081  * Returns NETDEV_TX_OK if sent, else an error code
2082  **/
2083 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2084 {
2085         struct i40evf_adapter *adapter = netdev_priv(netdev);
2086         struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2087
2088         /* hardware can't handle really short frames, hardware padding works
2089          * beyond this point
2090          */
2091         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2092                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2093                         return NETDEV_TX_OK;
2094                 skb->len = I40E_MIN_TX_LEN;
2095                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2096         }
2097
2098         return i40e_xmit_frame_ring(skb, tx_ring);
2099 }