1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
46 char stat_string[ETH_GSTRING_LEN];
51 #define IGB_STAT(_name, _stat) { \
52 .stat_string = _name, \
53 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 .stat_offset = offsetof(struct igb_adapter, _stat) \
56 static const struct igb_stats igb_gstrings_stats[] = {
57 IGB_STAT("rx_packets", stats.gprc),
58 IGB_STAT("tx_packets", stats.gptc),
59 IGB_STAT("rx_bytes", stats.gorc),
60 IGB_STAT("tx_bytes", stats.gotc),
61 IGB_STAT("rx_broadcast", stats.bprc),
62 IGB_STAT("tx_broadcast", stats.bptc),
63 IGB_STAT("rx_multicast", stats.mprc),
64 IGB_STAT("tx_multicast", stats.mptc),
65 IGB_STAT("multicast", stats.mprc),
66 IGB_STAT("collisions", stats.colc),
67 IGB_STAT("rx_crc_errors", stats.crcerrs),
68 IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 IGB_STAT("rx_missed_errors", stats.mpc),
70 IGB_STAT("tx_aborted_errors", stats.ecol),
71 IGB_STAT("tx_carrier_errors", stats.tncrs),
72 IGB_STAT("tx_window_errors", stats.latecol),
73 IGB_STAT("tx_abort_late_coll", stats.latecol),
74 IGB_STAT("tx_deferred_ok", stats.dc),
75 IGB_STAT("tx_single_coll_ok", stats.scc),
76 IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 IGB_STAT("tx_timeout_count", tx_timeout_count),
78 IGB_STAT("rx_long_length_errors", stats.roc),
79 IGB_STAT("rx_short_length_errors", stats.ruc),
80 IGB_STAT("rx_align_errors", stats.algnerrc),
81 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 IGB_STAT("rx_long_byte_count", stats.gorc),
88 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 IGB_STAT("tx_smbus", stats.mgptc),
90 IGB_STAT("rx_smbus", stats.mgprc),
91 IGB_STAT("dropped_smbus", stats.mgpdc),
92 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 .stat_string = __stringify(_net_stat), \
102 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 IGB_NETDEV_STAT(rx_errors),
107 IGB_NETDEV_STAT(tx_errors),
108 IGB_NETDEV_STAT(tx_dropped),
109 IGB_NETDEV_STAT(rx_length_errors),
110 IGB_NETDEV_STAT(rx_over_errors),
111 IGB_NETDEV_STAT(rx_frame_errors),
112 IGB_NETDEV_STAT(rx_fifo_errors),
113 IGB_NETDEV_STAT(tx_fifo_errors),
114 IGB_NETDEV_STAT(tx_heartbeat_errors)
117 #define IGB_GLOBAL_STATS_LEN \
118 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN \
120 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
126 #define IGB_QUEUE_STATS_LEN \
127 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 IGB_RX_QUEUE_STATS_LEN) + \
129 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 "Register test (offline)", "Eeprom test (offline)",
136 "Interrupt test (offline)", "Loopback test (offline)",
137 "Link test (on/offline)"
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
143 struct igb_adapter *adapter = netdev_priv(netdev);
144 struct e1000_hw *hw = &adapter->hw;
145 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
149 if (hw->phy.media_type == e1000_media_type_copper) {
151 ecmd->supported = (SUPPORTED_10baseT_Half |
152 SUPPORTED_10baseT_Full |
153 SUPPORTED_100baseT_Half |
154 SUPPORTED_100baseT_Full |
155 SUPPORTED_1000baseT_Full|
159 ecmd->advertising = ADVERTISED_TP;
161 if (hw->mac.autoneg == 1) {
162 ecmd->advertising |= ADVERTISED_Autoneg;
163 /* the e1000 autoneg seems to match ethtool nicely */
164 ecmd->advertising |= hw->phy.autoneg_advertised;
167 ecmd->port = PORT_TP;
168 ecmd->phy_address = hw->phy.addr;
169 ecmd->transceiver = XCVR_INTERNAL;
171 ecmd->supported = (SUPPORTED_FIBRE |
174 ecmd->advertising = ADVERTISED_FIBRE;
176 if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
177 ecmd->supported |= SUPPORTED_1000baseT_Full;
178 ecmd->advertising |= ADVERTISED_1000baseT_Full;
180 if (eth_flags->e100_base_fx) {
181 ecmd->supported |= SUPPORTED_100baseT_Full;
182 ecmd->advertising |= ADVERTISED_100baseT_Full;
184 if (hw->mac.autoneg == 1)
185 ecmd->advertising |= ADVERTISED_Autoneg;
187 ecmd->port = PORT_FIBRE;
188 ecmd->transceiver = XCVR_EXTERNAL;
191 if (hw->mac.autoneg != 1)
192 ecmd->advertising &= ~(ADVERTISED_Pause |
193 ADVERTISED_Asym_Pause);
195 if (hw->fc.requested_mode == e1000_fc_full)
196 ecmd->advertising |= ADVERTISED_Pause;
197 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
198 ecmd->advertising |= (ADVERTISED_Pause |
199 ADVERTISED_Asym_Pause);
200 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
201 ecmd->advertising |= ADVERTISED_Asym_Pause;
203 ecmd->advertising &= ~(ADVERTISED_Pause |
204 ADVERTISED_Asym_Pause);
206 status = rd32(E1000_STATUS);
208 if (status & E1000_STATUS_LU) {
209 if (hw->mac.type == e1000_i354) {
210 if ((status & E1000_STATUS_2P5_SKU) &&
211 !(status & E1000_STATUS_2P5_SKU_OVER)) {
212 ecmd->supported = SUPPORTED_2500baseX_Full;
213 ecmd->advertising = ADVERTISED_2500baseX_Full;
214 ecmd->speed = SPEED_2500;
216 ecmd->supported = SUPPORTED_1000baseT_Full;
217 ecmd->advertising = ADVERTISED_1000baseT_Full;
219 } else if (status & E1000_STATUS_SPEED_1000) {
220 ecmd->speed = SPEED_1000;
221 } else if (status & E1000_STATUS_SPEED_100) {
222 ecmd->speed = SPEED_100;
224 ecmd->speed = SPEED_10;
226 if ((status & E1000_STATUS_FD) ||
227 hw->phy.media_type != e1000_media_type_copper)
228 ecmd->duplex = DUPLEX_FULL;
230 ecmd->duplex = DUPLEX_HALF;
236 if ((hw->phy.media_type == e1000_media_type_fiber) ||
238 ecmd->autoneg = AUTONEG_ENABLE;
240 ecmd->autoneg = AUTONEG_DISABLE;
242 /* MDI-X => 2; MDI =>1; Invalid =>0 */
243 if (hw->phy.media_type == e1000_media_type_copper)
244 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
249 if (hw->phy.mdix == AUTO_ALL_MODES)
250 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
252 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
257 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
259 struct igb_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
262 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 if (igb_check_reset_block(hw)) {
266 dev_err(&adapter->pdev->dev,
267 "Cannot change link characteristics when SoL/IDER is active.\n");
271 /* MDI setting is only allowed when autoneg enabled because
272 * some hardware doesn't allow MDI setting when speed or
275 if (ecmd->eth_tp_mdix_ctrl) {
276 if (hw->phy.media_type != e1000_media_type_copper)
279 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
280 (ecmd->autoneg != AUTONEG_ENABLE)) {
281 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
286 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289 if (ecmd->autoneg == AUTONEG_ENABLE) {
291 if (hw->phy.media_type == e1000_media_type_fiber) {
292 hw->phy.autoneg_advertised = ecmd->advertising |
295 switch (adapter->link_speed) {
297 hw->phy.autoneg_advertised =
298 ADVERTISED_2500baseX_Full;
301 hw->phy.autoneg_advertised =
302 ADVERTISED_1000baseT_Full;
305 hw->phy.autoneg_advertised =
306 ADVERTISED_100baseT_Full;
312 hw->phy.autoneg_advertised = ecmd->advertising |
316 ecmd->advertising = hw->phy.autoneg_advertised;
317 if (adapter->fc_autoneg)
318 hw->fc.requested_mode = e1000_fc_default;
320 u32 speed = ethtool_cmd_speed(ecmd);
321 /* calling this overrides forced MDI setting */
322 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
323 clear_bit(__IGB_RESETTING, &adapter->state);
328 /* MDI-X => 2; MDI => 1; Auto => 3 */
329 if (ecmd->eth_tp_mdix_ctrl) {
330 /* fix up the value for auto (3 => 0) as zero is mapped
333 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
334 hw->phy.mdix = AUTO_ALL_MODES;
336 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
340 if (netif_running(adapter->netdev)) {
346 clear_bit(__IGB_RESETTING, &adapter->state);
350 static u32 igb_get_link(struct net_device *netdev)
352 struct igb_adapter *adapter = netdev_priv(netdev);
353 struct e1000_mac_info *mac = &adapter->hw.mac;
355 /* If the link is not reported up to netdev, interrupts are disabled,
356 * and so the physical link state may have changed since we last
357 * looked. Set get_link_status to make sure that the true link
358 * state is interrogated, rather than pulling a cached and possibly
359 * stale link state from the driver.
361 if (!netif_carrier_ok(netdev))
362 mac->get_link_status = 1;
364 return igb_has_link(adapter);
367 static void igb_get_pauseparam(struct net_device *netdev,
368 struct ethtool_pauseparam *pause)
370 struct igb_adapter *adapter = netdev_priv(netdev);
371 struct e1000_hw *hw = &adapter->hw;
374 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
376 if (hw->fc.current_mode == e1000_fc_rx_pause)
378 else if (hw->fc.current_mode == e1000_fc_tx_pause)
380 else if (hw->fc.current_mode == e1000_fc_full) {
386 static int igb_set_pauseparam(struct net_device *netdev,
387 struct ethtool_pauseparam *pause)
389 struct igb_adapter *adapter = netdev_priv(netdev);
390 struct e1000_hw *hw = &adapter->hw;
393 /* 100basefx does not support setting link flow control */
394 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
397 adapter->fc_autoneg = pause->autoneg;
399 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
402 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
403 hw->fc.requested_mode = e1000_fc_default;
404 if (netif_running(adapter->netdev)) {
411 if (pause->rx_pause && pause->tx_pause)
412 hw->fc.requested_mode = e1000_fc_full;
413 else if (pause->rx_pause && !pause->tx_pause)
414 hw->fc.requested_mode = e1000_fc_rx_pause;
415 else if (!pause->rx_pause && pause->tx_pause)
416 hw->fc.requested_mode = e1000_fc_tx_pause;
417 else if (!pause->rx_pause && !pause->tx_pause)
418 hw->fc.requested_mode = e1000_fc_none;
420 hw->fc.current_mode = hw->fc.requested_mode;
422 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
423 igb_force_mac_fc(hw) : igb_setup_link(hw));
426 clear_bit(__IGB_RESETTING, &adapter->state);
430 static u32 igb_get_msglevel(struct net_device *netdev)
432 struct igb_adapter *adapter = netdev_priv(netdev);
433 return adapter->msg_enable;
436 static void igb_set_msglevel(struct net_device *netdev, u32 data)
438 struct igb_adapter *adapter = netdev_priv(netdev);
439 adapter->msg_enable = data;
442 static int igb_get_regs_len(struct net_device *netdev)
444 #define IGB_REGS_LEN 739
445 return IGB_REGS_LEN * sizeof(u32);
448 static void igb_get_regs(struct net_device *netdev,
449 struct ethtool_regs *regs, void *p)
451 struct igb_adapter *adapter = netdev_priv(netdev);
452 struct e1000_hw *hw = &adapter->hw;
456 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
458 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
460 /* General Registers */
461 regs_buff[0] = rd32(E1000_CTRL);
462 regs_buff[1] = rd32(E1000_STATUS);
463 regs_buff[2] = rd32(E1000_CTRL_EXT);
464 regs_buff[3] = rd32(E1000_MDIC);
465 regs_buff[4] = rd32(E1000_SCTL);
466 regs_buff[5] = rd32(E1000_CONNSW);
467 regs_buff[6] = rd32(E1000_VET);
468 regs_buff[7] = rd32(E1000_LEDCTL);
469 regs_buff[8] = rd32(E1000_PBA);
470 regs_buff[9] = rd32(E1000_PBS);
471 regs_buff[10] = rd32(E1000_FRTIMER);
472 regs_buff[11] = rd32(E1000_TCPTIMER);
475 regs_buff[12] = rd32(E1000_EECD);
478 /* Reading EICS for EICR because they read the
479 * same but EICS does not clear on read
481 regs_buff[13] = rd32(E1000_EICS);
482 regs_buff[14] = rd32(E1000_EICS);
483 regs_buff[15] = rd32(E1000_EIMS);
484 regs_buff[16] = rd32(E1000_EIMC);
485 regs_buff[17] = rd32(E1000_EIAC);
486 regs_buff[18] = rd32(E1000_EIAM);
487 /* Reading ICS for ICR because they read the
488 * same but ICS does not clear on read
490 regs_buff[19] = rd32(E1000_ICS);
491 regs_buff[20] = rd32(E1000_ICS);
492 regs_buff[21] = rd32(E1000_IMS);
493 regs_buff[22] = rd32(E1000_IMC);
494 regs_buff[23] = rd32(E1000_IAC);
495 regs_buff[24] = rd32(E1000_IAM);
496 regs_buff[25] = rd32(E1000_IMIRVP);
499 regs_buff[26] = rd32(E1000_FCAL);
500 regs_buff[27] = rd32(E1000_FCAH);
501 regs_buff[28] = rd32(E1000_FCTTV);
502 regs_buff[29] = rd32(E1000_FCRTL);
503 regs_buff[30] = rd32(E1000_FCRTH);
504 regs_buff[31] = rd32(E1000_FCRTV);
507 regs_buff[32] = rd32(E1000_RCTL);
508 regs_buff[33] = rd32(E1000_RXCSUM);
509 regs_buff[34] = rd32(E1000_RLPML);
510 regs_buff[35] = rd32(E1000_RFCTL);
511 regs_buff[36] = rd32(E1000_MRQC);
512 regs_buff[37] = rd32(E1000_VT_CTL);
515 regs_buff[38] = rd32(E1000_TCTL);
516 regs_buff[39] = rd32(E1000_TCTL_EXT);
517 regs_buff[40] = rd32(E1000_TIPG);
518 regs_buff[41] = rd32(E1000_DTXCTL);
521 regs_buff[42] = rd32(E1000_WUC);
522 regs_buff[43] = rd32(E1000_WUFC);
523 regs_buff[44] = rd32(E1000_WUS);
524 regs_buff[45] = rd32(E1000_IPAV);
525 regs_buff[46] = rd32(E1000_WUPL);
528 regs_buff[47] = rd32(E1000_PCS_CFG0);
529 regs_buff[48] = rd32(E1000_PCS_LCTL);
530 regs_buff[49] = rd32(E1000_PCS_LSTAT);
531 regs_buff[50] = rd32(E1000_PCS_ANADV);
532 regs_buff[51] = rd32(E1000_PCS_LPAB);
533 regs_buff[52] = rd32(E1000_PCS_NPTX);
534 regs_buff[53] = rd32(E1000_PCS_LPABNP);
537 regs_buff[54] = adapter->stats.crcerrs;
538 regs_buff[55] = adapter->stats.algnerrc;
539 regs_buff[56] = adapter->stats.symerrs;
540 regs_buff[57] = adapter->stats.rxerrc;
541 regs_buff[58] = adapter->stats.mpc;
542 regs_buff[59] = adapter->stats.scc;
543 regs_buff[60] = adapter->stats.ecol;
544 regs_buff[61] = adapter->stats.mcc;
545 regs_buff[62] = adapter->stats.latecol;
546 regs_buff[63] = adapter->stats.colc;
547 regs_buff[64] = adapter->stats.dc;
548 regs_buff[65] = adapter->stats.tncrs;
549 regs_buff[66] = adapter->stats.sec;
550 regs_buff[67] = adapter->stats.htdpmc;
551 regs_buff[68] = adapter->stats.rlec;
552 regs_buff[69] = adapter->stats.xonrxc;
553 regs_buff[70] = adapter->stats.xontxc;
554 regs_buff[71] = adapter->stats.xoffrxc;
555 regs_buff[72] = adapter->stats.xofftxc;
556 regs_buff[73] = adapter->stats.fcruc;
557 regs_buff[74] = adapter->stats.prc64;
558 regs_buff[75] = adapter->stats.prc127;
559 regs_buff[76] = adapter->stats.prc255;
560 regs_buff[77] = adapter->stats.prc511;
561 regs_buff[78] = adapter->stats.prc1023;
562 regs_buff[79] = adapter->stats.prc1522;
563 regs_buff[80] = adapter->stats.gprc;
564 regs_buff[81] = adapter->stats.bprc;
565 regs_buff[82] = adapter->stats.mprc;
566 regs_buff[83] = adapter->stats.gptc;
567 regs_buff[84] = adapter->stats.gorc;
568 regs_buff[86] = adapter->stats.gotc;
569 regs_buff[88] = adapter->stats.rnbc;
570 regs_buff[89] = adapter->stats.ruc;
571 regs_buff[90] = adapter->stats.rfc;
572 regs_buff[91] = adapter->stats.roc;
573 regs_buff[92] = adapter->stats.rjc;
574 regs_buff[93] = adapter->stats.mgprc;
575 regs_buff[94] = adapter->stats.mgpdc;
576 regs_buff[95] = adapter->stats.mgptc;
577 regs_buff[96] = adapter->stats.tor;
578 regs_buff[98] = adapter->stats.tot;
579 regs_buff[100] = adapter->stats.tpr;
580 regs_buff[101] = adapter->stats.tpt;
581 regs_buff[102] = adapter->stats.ptc64;
582 regs_buff[103] = adapter->stats.ptc127;
583 regs_buff[104] = adapter->stats.ptc255;
584 regs_buff[105] = adapter->stats.ptc511;
585 regs_buff[106] = adapter->stats.ptc1023;
586 regs_buff[107] = adapter->stats.ptc1522;
587 regs_buff[108] = adapter->stats.mptc;
588 regs_buff[109] = adapter->stats.bptc;
589 regs_buff[110] = adapter->stats.tsctc;
590 regs_buff[111] = adapter->stats.iac;
591 regs_buff[112] = adapter->stats.rpthc;
592 regs_buff[113] = adapter->stats.hgptc;
593 regs_buff[114] = adapter->stats.hgorc;
594 regs_buff[116] = adapter->stats.hgotc;
595 regs_buff[118] = adapter->stats.lenerrs;
596 regs_buff[119] = adapter->stats.scvpc;
597 regs_buff[120] = adapter->stats.hrmpc;
599 for (i = 0; i < 4; i++)
600 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
601 for (i = 0; i < 4; i++)
602 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
603 for (i = 0; i < 4; i++)
604 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
605 for (i = 0; i < 4; i++)
606 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
607 for (i = 0; i < 4; i++)
608 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
609 for (i = 0; i < 4; i++)
610 regs_buff[141 + i] = rd32(E1000_RDH(i));
611 for (i = 0; i < 4; i++)
612 regs_buff[145 + i] = rd32(E1000_RDT(i));
613 for (i = 0; i < 4; i++)
614 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
616 for (i = 0; i < 10; i++)
617 regs_buff[153 + i] = rd32(E1000_EITR(i));
618 for (i = 0; i < 8; i++)
619 regs_buff[163 + i] = rd32(E1000_IMIR(i));
620 for (i = 0; i < 8; i++)
621 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
622 for (i = 0; i < 16; i++)
623 regs_buff[179 + i] = rd32(E1000_RAL(i));
624 for (i = 0; i < 16; i++)
625 regs_buff[195 + i] = rd32(E1000_RAH(i));
627 for (i = 0; i < 4; i++)
628 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
629 for (i = 0; i < 4; i++)
630 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
631 for (i = 0; i < 4; i++)
632 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
633 for (i = 0; i < 4; i++)
634 regs_buff[223 + i] = rd32(E1000_TDH(i));
635 for (i = 0; i < 4; i++)
636 regs_buff[227 + i] = rd32(E1000_TDT(i));
637 for (i = 0; i < 4; i++)
638 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
639 for (i = 0; i < 4; i++)
640 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
641 for (i = 0; i < 4; i++)
642 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
643 for (i = 0; i < 4; i++)
644 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
646 for (i = 0; i < 4; i++)
647 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
648 for (i = 0; i < 4; i++)
649 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
650 for (i = 0; i < 32; i++)
651 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
652 for (i = 0; i < 128; i++)
653 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
654 for (i = 0; i < 128; i++)
655 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
656 for (i = 0; i < 4; i++)
657 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
659 regs_buff[547] = rd32(E1000_TDFH);
660 regs_buff[548] = rd32(E1000_TDFT);
661 regs_buff[549] = rd32(E1000_TDFHS);
662 regs_buff[550] = rd32(E1000_TDFPC);
664 if (hw->mac.type > e1000_82580) {
665 regs_buff[551] = adapter->stats.o2bgptc;
666 regs_buff[552] = adapter->stats.b2ospc;
667 regs_buff[553] = adapter->stats.o2bspc;
668 regs_buff[554] = adapter->stats.b2ogprc;
671 if (hw->mac.type != e1000_82576)
673 for (i = 0; i < 12; i++)
674 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
675 for (i = 0; i < 4; i++)
676 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
677 for (i = 0; i < 12; i++)
678 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
679 for (i = 0; i < 12; i++)
680 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
681 for (i = 0; i < 12; i++)
682 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
683 for (i = 0; i < 12; i++)
684 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
685 for (i = 0; i < 12; i++)
686 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
687 for (i = 0; i < 12; i++)
688 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
690 for (i = 0; i < 12; i++)
691 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
704 for (i = 0; i < 12; i++)
705 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
708 static int igb_get_eeprom_len(struct net_device *netdev)
710 struct igb_adapter *adapter = netdev_priv(netdev);
711 return adapter->hw.nvm.word_size * 2;
714 static int igb_get_eeprom(struct net_device *netdev,
715 struct ethtool_eeprom *eeprom, u8 *bytes)
717 struct igb_adapter *adapter = netdev_priv(netdev);
718 struct e1000_hw *hw = &adapter->hw;
720 int first_word, last_word;
724 if (eeprom->len == 0)
727 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
729 first_word = eeprom->offset >> 1;
730 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
732 eeprom_buff = kmalloc(sizeof(u16) *
733 (last_word - first_word + 1), GFP_KERNEL);
737 if (hw->nvm.type == e1000_nvm_eeprom_spi)
738 ret_val = hw->nvm.ops.read(hw, first_word,
739 last_word - first_word + 1,
742 for (i = 0; i < last_word - first_word + 1; i++) {
743 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
750 /* Device's eeprom is always little-endian, word addressable */
751 for (i = 0; i < last_word - first_word + 1; i++)
752 le16_to_cpus(&eeprom_buff[i]);
754 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
761 static int igb_set_eeprom(struct net_device *netdev,
762 struct ethtool_eeprom *eeprom, u8 *bytes)
764 struct igb_adapter *adapter = netdev_priv(netdev);
765 struct e1000_hw *hw = &adapter->hw;
768 int max_len, first_word, last_word, ret_val = 0;
771 if (eeprom->len == 0)
774 if (hw->mac.type == e1000_i211)
777 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
780 max_len = hw->nvm.word_size * 2;
782 first_word = eeprom->offset >> 1;
783 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
784 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
788 ptr = (void *)eeprom_buff;
790 if (eeprom->offset & 1) {
791 /* need read/modify/write of first changed EEPROM word
792 * only the second byte of the word is being modified
794 ret_val = hw->nvm.ops.read(hw, first_word, 1,
798 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
799 /* need read/modify/write of last changed EEPROM word
800 * only the first byte of the word is being modified
802 ret_val = hw->nvm.ops.read(hw, last_word, 1,
803 &eeprom_buff[last_word - first_word]);
806 /* Device's eeprom is always little-endian, word addressable */
807 for (i = 0; i < last_word - first_word + 1; i++)
808 le16_to_cpus(&eeprom_buff[i]);
810 memcpy(ptr, bytes, eeprom->len);
812 for (i = 0; i < last_word - first_word + 1; i++)
813 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
815 ret_val = hw->nvm.ops.write(hw, first_word,
816 last_word - first_word + 1, eeprom_buff);
818 /* Update the checksum if nvm write succeeded */
820 hw->nvm.ops.update(hw);
822 igb_set_fw_version(adapter);
827 static void igb_get_drvinfo(struct net_device *netdev,
828 struct ethtool_drvinfo *drvinfo)
830 struct igb_adapter *adapter = netdev_priv(netdev);
832 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
833 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
835 /* EEPROM image version # is reported as firmware version # for
838 strlcpy(drvinfo->fw_version, adapter->fw_version,
839 sizeof(drvinfo->fw_version));
840 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
841 sizeof(drvinfo->bus_info));
842 drvinfo->n_stats = IGB_STATS_LEN;
843 drvinfo->testinfo_len = IGB_TEST_LEN;
844 drvinfo->regdump_len = igb_get_regs_len(netdev);
845 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
848 static void igb_get_ringparam(struct net_device *netdev,
849 struct ethtool_ringparam *ring)
851 struct igb_adapter *adapter = netdev_priv(netdev);
853 ring->rx_max_pending = IGB_MAX_RXD;
854 ring->tx_max_pending = IGB_MAX_TXD;
855 ring->rx_pending = adapter->rx_ring_count;
856 ring->tx_pending = adapter->tx_ring_count;
859 static int igb_set_ringparam(struct net_device *netdev,
860 struct ethtool_ringparam *ring)
862 struct igb_adapter *adapter = netdev_priv(netdev);
863 struct igb_ring *temp_ring;
865 u16 new_rx_count, new_tx_count;
867 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
870 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
874 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
878 if ((new_tx_count == adapter->tx_ring_count) &&
879 (new_rx_count == adapter->rx_ring_count)) {
884 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
887 if (!netif_running(adapter->netdev)) {
888 for (i = 0; i < adapter->num_tx_queues; i++)
889 adapter->tx_ring[i]->count = new_tx_count;
890 for (i = 0; i < adapter->num_rx_queues; i++)
891 adapter->rx_ring[i]->count = new_rx_count;
892 adapter->tx_ring_count = new_tx_count;
893 adapter->rx_ring_count = new_rx_count;
897 if (adapter->num_tx_queues > adapter->num_rx_queues)
898 temp_ring = vmalloc(adapter->num_tx_queues *
899 sizeof(struct igb_ring));
901 temp_ring = vmalloc(adapter->num_rx_queues *
902 sizeof(struct igb_ring));
911 /* We can't just free everything and then setup again,
912 * because the ISRs in MSI-X mode get passed pointers
913 * to the Tx and Rx ring structs.
915 if (new_tx_count != adapter->tx_ring_count) {
916 for (i = 0; i < adapter->num_tx_queues; i++) {
917 memcpy(&temp_ring[i], adapter->tx_ring[i],
918 sizeof(struct igb_ring));
920 temp_ring[i].count = new_tx_count;
921 err = igb_setup_tx_resources(&temp_ring[i]);
925 igb_free_tx_resources(&temp_ring[i]);
931 for (i = 0; i < adapter->num_tx_queues; i++) {
932 igb_free_tx_resources(adapter->tx_ring[i]);
934 memcpy(adapter->tx_ring[i], &temp_ring[i],
935 sizeof(struct igb_ring));
938 adapter->tx_ring_count = new_tx_count;
941 if (new_rx_count != adapter->rx_ring_count) {
942 for (i = 0; i < adapter->num_rx_queues; i++) {
943 memcpy(&temp_ring[i], adapter->rx_ring[i],
944 sizeof(struct igb_ring));
946 temp_ring[i].count = new_rx_count;
947 err = igb_setup_rx_resources(&temp_ring[i]);
951 igb_free_rx_resources(&temp_ring[i]);
958 for (i = 0; i < adapter->num_rx_queues; i++) {
959 igb_free_rx_resources(adapter->rx_ring[i]);
961 memcpy(adapter->rx_ring[i], &temp_ring[i],
962 sizeof(struct igb_ring));
965 adapter->rx_ring_count = new_rx_count;
971 clear_bit(__IGB_RESETTING, &adapter->state);
975 /* ethtool register test data */
976 struct igb_reg_test {
985 /* In the hardware, registers are laid out either singly, in arrays
986 * spaced 0x100 bytes apart, or in contiguous tables. We assume
987 * most tests take place on arrays or single registers (handled
988 * as a single-element array) and special-case the tables.
989 * Table tests are always pattern tests.
991 * We also make provision for some required setup steps by specifying
992 * registers to be written without any read-back testing.
995 #define PATTERN_TEST 1
996 #define SET_READ_TEST 2
997 #define WRITE_NO_TEST 3
998 #define TABLE32_TEST 4
999 #define TABLE64_TEST_LO 5
1000 #define TABLE64_TEST_HI 6
1003 static struct igb_reg_test reg_test_i210[] = {
1004 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010 /* RDH is read-only for i210, only test RDT. */
1011 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1024 0xFFFFFFFF, 0xFFFFFFFF },
1025 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1026 0x900FFFFF, 0xFFFFFFFF },
1027 { E1000_MTA, 0, 128, TABLE32_TEST,
1028 0xFFFFFFFF, 0xFFFFFFFF },
1033 static struct igb_reg_test reg_test_i350[] = {
1034 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044 /* RDH is read-only for i350, only test RDT. */
1045 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1063 0xFFFFFFFF, 0xFFFFFFFF },
1064 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1065 0xC3FFFFFF, 0xFFFFFFFF },
1066 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1067 0xFFFFFFFF, 0xFFFFFFFF },
1068 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1069 0xC3FFFFFF, 0xFFFFFFFF },
1070 { E1000_MTA, 0, 128, TABLE32_TEST,
1071 0xFFFFFFFF, 0xFFFFFFFF },
1075 /* 82580 reg test */
1076 static struct igb_reg_test reg_test_82580[] = {
1077 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087 /* RDH is read-only for 82580, only test RDT. */
1088 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1106 0xFFFFFFFF, 0xFFFFFFFF },
1107 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1108 0x83FFFFFF, 0xFFFFFFFF },
1109 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1110 0xFFFFFFFF, 0xFFFFFFFF },
1111 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1112 0x83FFFFFF, 0xFFFFFFFF },
1113 { E1000_MTA, 0, 128, TABLE32_TEST,
1114 0xFFFFFFFF, 0xFFFFFFFF },
1118 /* 82576 reg test */
1119 static struct igb_reg_test reg_test_82576[] = {
1120 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130 /* Enable all RX queues before testing. */
1131 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1132 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1133 /* RDH is read-only for 82576, only test RDT. */
1134 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1135 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1137 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1138 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1139 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1141 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1144 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1148 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1149 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1150 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1159 /* 82575 register test */
1160 static struct igb_reg_test reg_test_82575[] = {
1161 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1162 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1163 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1168 /* Enable all four RX queues before testing. */
1169 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1170 /* RDH is read-only for 82575, only test RDT. */
1171 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1172 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1173 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1174 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1176 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1181 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1182 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1184 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1185 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1186 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1191 int reg, u32 mask, u32 write)
1193 struct e1000_hw *hw = &adapter->hw;
1195 static const u32 _test[] =
1196 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1197 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1198 wr32(reg, (_test[pat] & write));
1199 val = rd32(reg) & mask;
1200 if (val != (_test[pat] & write & mask)) {
1201 dev_err(&adapter->pdev->dev,
1202 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1203 reg, val, (_test[pat] & write & mask));
1212 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1213 int reg, u32 mask, u32 write)
1215 struct e1000_hw *hw = &adapter->hw;
1217 wr32(reg, write & mask);
1219 if ((write & mask) != (val & mask)) {
1220 dev_err(&adapter->pdev->dev,
1221 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1222 (val & mask), (write & mask));
1230 #define REG_PATTERN_TEST(reg, mask, write) \
1232 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1236 #define REG_SET_AND_CHECK(reg, mask, write) \
1238 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1242 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1244 struct e1000_hw *hw = &adapter->hw;
1245 struct igb_reg_test *test;
1246 u32 value, before, after;
1249 switch (adapter->hw.mac.type) {
1252 test = reg_test_i350;
1253 toggle = 0x7FEFF3FF;
1257 test = reg_test_i210;
1258 toggle = 0x7FEFF3FF;
1261 test = reg_test_82580;
1262 toggle = 0x7FEFF3FF;
1265 test = reg_test_82576;
1266 toggle = 0x7FFFF3FF;
1269 test = reg_test_82575;
1270 toggle = 0x7FFFF3FF;
1274 /* Because the status register is such a special case,
1275 * we handle it separately from the rest of the register
1276 * tests. Some bits are read-only, some toggle, and some
1277 * are writable on newer MACs.
1279 before = rd32(E1000_STATUS);
1280 value = (rd32(E1000_STATUS) & toggle);
1281 wr32(E1000_STATUS, toggle);
1282 after = rd32(E1000_STATUS) & toggle;
1283 if (value != after) {
1284 dev_err(&adapter->pdev->dev,
1285 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290 /* restore previous status */
1291 wr32(E1000_STATUS, before);
1293 /* Perform the remainder of the register test, looping through
1294 * the test table until we either fail or reach the null entry.
1297 for (i = 0; i < test->array_len; i++) {
1298 switch (test->test_type) {
1300 REG_PATTERN_TEST(test->reg +
1301 (i * test->reg_offset),
1306 REG_SET_AND_CHECK(test->reg +
1307 (i * test->reg_offset),
1313 (adapter->hw.hw_addr + test->reg)
1314 + (i * test->reg_offset));
1317 REG_PATTERN_TEST(test->reg + (i * 4),
1321 case TABLE64_TEST_LO:
1322 REG_PATTERN_TEST(test->reg + (i * 8),
1326 case TABLE64_TEST_HI:
1327 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1340 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1342 struct e1000_hw *hw = &adapter->hw;
1346 /* Validate eeprom on all parts but flashless */
1347 switch (hw->mac.type) {
1350 if (igb_get_flash_presence_i210(hw)) {
1351 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1364 static irqreturn_t igb_test_intr(int irq, void *data)
1366 struct igb_adapter *adapter = (struct igb_adapter *) data;
1367 struct e1000_hw *hw = &adapter->hw;
1369 adapter->test_icr |= rd32(E1000_ICR);
1374 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1376 struct e1000_hw *hw = &adapter->hw;
1377 struct net_device *netdev = adapter->netdev;
1378 u32 mask, ics_mask, i = 0, shared_int = true;
1379 u32 irq = adapter->pdev->irq;
1383 /* Hook up test interrupt handler just for this test */
1384 if (adapter->msix_entries) {
1385 if (request_irq(adapter->msix_entries[0].vector,
1386 igb_test_intr, 0, netdev->name, adapter)) {
1390 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1392 if (request_irq(irq,
1393 igb_test_intr, 0, netdev->name, adapter)) {
1397 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1398 netdev->name, adapter)) {
1400 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1401 netdev->name, adapter)) {
1405 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1406 (shared_int ? "shared" : "unshared"));
1408 /* Disable all the interrupts */
1409 wr32(E1000_IMC, ~0);
1413 /* Define all writable bits for ICS */
1414 switch (hw->mac.type) {
1416 ics_mask = 0x37F47EDD;
1419 ics_mask = 0x77D4FBFD;
1422 ics_mask = 0x77DCFED5;
1428 ics_mask = 0x77DCFED5;
1431 ics_mask = 0x7FFFFFFF;
1435 /* Test each interrupt */
1436 for (; i < 31; i++) {
1437 /* Interrupt to test */
1440 if (!(mask & ics_mask))
1444 /* Disable the interrupt to be reported in
1445 * the cause register and then force the same
1446 * interrupt and see if one gets posted. If
1447 * an interrupt was posted to the bus, the
1450 adapter->test_icr = 0;
1452 /* Flush any pending interrupts */
1453 wr32(E1000_ICR, ~0);
1455 wr32(E1000_IMC, mask);
1456 wr32(E1000_ICS, mask);
1460 if (adapter->test_icr & mask) {
1466 /* Enable the interrupt to be reported in
1467 * the cause register and then force the same
1468 * interrupt and see if one gets posted. If
1469 * an interrupt was not posted to the bus, the
1472 adapter->test_icr = 0;
1474 /* Flush any pending interrupts */
1475 wr32(E1000_ICR, ~0);
1477 wr32(E1000_IMS, mask);
1478 wr32(E1000_ICS, mask);
1482 if (!(adapter->test_icr & mask)) {
1488 /* Disable the other interrupts to be reported in
1489 * the cause register and then force the other
1490 * interrupts and see if any get posted. If
1491 * an interrupt was posted to the bus, the
1494 adapter->test_icr = 0;
1496 /* Flush any pending interrupts */
1497 wr32(E1000_ICR, ~0);
1499 wr32(E1000_IMC, ~mask);
1500 wr32(E1000_ICS, ~mask);
1504 if (adapter->test_icr & mask) {
1511 /* Disable all the interrupts */
1512 wr32(E1000_IMC, ~0);
1516 /* Unhook test interrupt handler */
1517 if (adapter->msix_entries)
1518 free_irq(adapter->msix_entries[0].vector, adapter);
1520 free_irq(irq, adapter);
1525 static void igb_free_desc_rings(struct igb_adapter *adapter)
1527 igb_free_tx_resources(&adapter->test_tx_ring);
1528 igb_free_rx_resources(&adapter->test_rx_ring);
1531 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1533 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1534 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1535 struct e1000_hw *hw = &adapter->hw;
1538 /* Setup Tx descriptor ring and Tx buffers */
1539 tx_ring->count = IGB_DEFAULT_TXD;
1540 tx_ring->dev = &adapter->pdev->dev;
1541 tx_ring->netdev = adapter->netdev;
1542 tx_ring->reg_idx = adapter->vfs_allocated_count;
1544 if (igb_setup_tx_resources(tx_ring)) {
1549 igb_setup_tctl(adapter);
1550 igb_configure_tx_ring(adapter, tx_ring);
1552 /* Setup Rx descriptor ring and Rx buffers */
1553 rx_ring->count = IGB_DEFAULT_RXD;
1554 rx_ring->dev = &adapter->pdev->dev;
1555 rx_ring->netdev = adapter->netdev;
1556 rx_ring->reg_idx = adapter->vfs_allocated_count;
1558 if (igb_setup_rx_resources(rx_ring)) {
1563 /* set the default queue to queue 0 of PF */
1564 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1566 /* enable receive ring */
1567 igb_setup_rctl(adapter);
1568 igb_configure_rx_ring(adapter, rx_ring);
1570 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575 igb_free_desc_rings(adapter);
1579 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1581 struct e1000_hw *hw = &adapter->hw;
1583 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1584 igb_write_phy_reg(hw, 29, 0x001F);
1585 igb_write_phy_reg(hw, 30, 0x8FFC);
1586 igb_write_phy_reg(hw, 29, 0x001A);
1587 igb_write_phy_reg(hw, 30, 0x8FF0);
1590 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1592 struct e1000_hw *hw = &adapter->hw;
1595 hw->mac.autoneg = false;
1597 if (hw->phy.type == e1000_phy_m88) {
1598 if (hw->phy.id != I210_I_PHY_ID) {
1599 /* Auto-MDI/MDIX Off */
1600 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1601 /* reset to update Auto-MDI/MDIX */
1602 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1604 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1606 /* force 1000, set loopback */
1607 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1608 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1610 } else if (hw->phy.type == e1000_phy_82580) {
1611 /* enable MII loopback */
1612 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1615 /* add small delay to avoid loopback test failure */
1618 /* force 1000, set loopback */
1619 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1621 /* Now set up the MAC to the same speed/duplex as the PHY. */
1622 ctrl_reg = rd32(E1000_CTRL);
1623 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1624 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1625 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1626 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1627 E1000_CTRL_FD | /* Force Duplex to FULL */
1628 E1000_CTRL_SLU); /* Set link up enable bit */
1630 if (hw->phy.type == e1000_phy_m88)
1631 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1633 wr32(E1000_CTRL, ctrl_reg);
1635 /* Disable the receiver on the PHY so when a cable is plugged in, the
1636 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1638 if (hw->phy.type == e1000_phy_m88)
1639 igb_phy_disable_receiver(adapter);
1645 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1647 return igb_integrated_phy_loopback(adapter);
1650 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1652 struct e1000_hw *hw = &adapter->hw;
1655 reg = rd32(E1000_CTRL_EXT);
1657 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1658 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1659 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1660 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1661 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1662 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1664 /* Enable DH89xxCC MPHY for near end loopback */
1665 reg = rd32(E1000_MPHY_ADDR_CTL);
1666 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1667 E1000_MPHY_PCS_CLK_REG_OFFSET;
1668 wr32(E1000_MPHY_ADDR_CTL, reg);
1670 reg = rd32(E1000_MPHY_DATA);
1671 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1672 wr32(E1000_MPHY_DATA, reg);
1675 reg = rd32(E1000_RCTL);
1676 reg |= E1000_RCTL_LBM_TCVR;
1677 wr32(E1000_RCTL, reg);
1679 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1681 reg = rd32(E1000_CTRL);
1682 reg &= ~(E1000_CTRL_RFCE |
1685 reg |= E1000_CTRL_SLU |
1687 wr32(E1000_CTRL, reg);
1689 /* Unset switch control to serdes energy detect */
1690 reg = rd32(E1000_CONNSW);
1691 reg &= ~E1000_CONNSW_ENRGSRC;
1692 wr32(E1000_CONNSW, reg);
1694 /* Unset sigdetect for SERDES loopback on
1695 * 82580 and newer devices.
1697 if (hw->mac.type >= e1000_82580) {
1698 reg = rd32(E1000_PCS_CFG0);
1699 reg |= E1000_PCS_CFG_IGN_SD;
1700 wr32(E1000_PCS_CFG0, reg);
1703 /* Set PCS register for forced speed */
1704 reg = rd32(E1000_PCS_LCTL);
1705 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1706 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1707 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1708 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1709 E1000_PCS_LCTL_FSD | /* Force Speed */
1710 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1711 wr32(E1000_PCS_LCTL, reg);
1716 return igb_set_phy_loopback(adapter);
1719 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1721 struct e1000_hw *hw = &adapter->hw;
1725 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1726 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1727 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1728 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1731 /* Disable near end loopback on DH89xxCC */
1732 reg = rd32(E1000_MPHY_ADDR_CTL);
1733 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1734 E1000_MPHY_PCS_CLK_REG_OFFSET;
1735 wr32(E1000_MPHY_ADDR_CTL, reg);
1737 reg = rd32(E1000_MPHY_DATA);
1738 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1739 wr32(E1000_MPHY_DATA, reg);
1742 rctl = rd32(E1000_RCTL);
1743 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1744 wr32(E1000_RCTL, rctl);
1746 hw->mac.autoneg = true;
1747 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1748 if (phy_reg & MII_CR_LOOPBACK) {
1749 phy_reg &= ~MII_CR_LOOPBACK;
1750 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1751 igb_phy_sw_reset(hw);
1755 static void igb_create_lbtest_frame(struct sk_buff *skb,
1756 unsigned int frame_size)
1758 memset(skb->data, 0xFF, frame_size);
1760 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1761 memset(&skb->data[frame_size + 10], 0xBE, 1);
1762 memset(&skb->data[frame_size + 12], 0xAF, 1);
1765 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1766 unsigned int frame_size)
1768 unsigned char *data;
1773 data = kmap(rx_buffer->page);
1775 if (data[3] != 0xFF ||
1776 data[frame_size + 10] != 0xBE ||
1777 data[frame_size + 12] != 0xAF)
1780 kunmap(rx_buffer->page);
1785 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1786 struct igb_ring *tx_ring,
1789 union e1000_adv_rx_desc *rx_desc;
1790 struct igb_rx_buffer *rx_buffer_info;
1791 struct igb_tx_buffer *tx_buffer_info;
1792 u16 rx_ntc, tx_ntc, count = 0;
1794 /* initialize next to clean and descriptor values */
1795 rx_ntc = rx_ring->next_to_clean;
1796 tx_ntc = tx_ring->next_to_clean;
1797 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1799 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1800 /* check Rx buffer */
1801 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1803 /* sync Rx buffer for CPU read */
1804 dma_sync_single_for_cpu(rx_ring->dev,
1805 rx_buffer_info->dma,
1809 /* verify contents of skb */
1810 if (igb_check_lbtest_frame(rx_buffer_info, size))
1813 /* sync Rx buffer for device write */
1814 dma_sync_single_for_device(rx_ring->dev,
1815 rx_buffer_info->dma,
1819 /* unmap buffer on Tx side */
1820 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1821 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1823 /* increment Rx/Tx next to clean counters */
1825 if (rx_ntc == rx_ring->count)
1828 if (tx_ntc == tx_ring->count)
1831 /* fetch next descriptor */
1832 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1835 netdev_tx_reset_queue(txring_txq(tx_ring));
1837 /* re-map buffers to ring, store next to clean values */
1838 igb_alloc_rx_buffers(rx_ring, count);
1839 rx_ring->next_to_clean = rx_ntc;
1840 tx_ring->next_to_clean = tx_ntc;
1845 static int igb_run_loopback_test(struct igb_adapter *adapter)
1847 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1848 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1849 u16 i, j, lc, good_cnt;
1851 unsigned int size = IGB_RX_HDR_LEN;
1852 netdev_tx_t tx_ret_val;
1853 struct sk_buff *skb;
1855 /* allocate test skb */
1856 skb = alloc_skb(size, GFP_KERNEL);
1860 /* place data into test skb */
1861 igb_create_lbtest_frame(skb, size);
1864 /* Calculate the loop count based on the largest descriptor ring
1865 * The idea is to wrap the largest ring a number of times using 64
1866 * send/receive pairs during each loop
1869 if (rx_ring->count <= tx_ring->count)
1870 lc = ((tx_ring->count / 64) * 2) + 1;
1872 lc = ((rx_ring->count / 64) * 2) + 1;
1874 for (j = 0; j <= lc; j++) { /* loop count loop */
1875 /* reset count of good packets */
1878 /* place 64 packets on the transmit queue*/
1879 for (i = 0; i < 64; i++) {
1881 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1882 if (tx_ret_val == NETDEV_TX_OK)
1886 if (good_cnt != 64) {
1891 /* allow 200 milliseconds for packets to go from Tx to Rx */
1894 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1895 if (good_cnt != 64) {
1899 } /* end loop count loop */
1901 /* free the original skb */
1907 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1909 /* PHY loopback cannot be performed if SoL/IDER
1910 * sessions are active
1912 if (igb_check_reset_block(&adapter->hw)) {
1913 dev_err(&adapter->pdev->dev,
1914 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1919 if (adapter->hw.mac.type == e1000_i354) {
1920 dev_info(&adapter->pdev->dev,
1921 "Loopback test not supported on i354.\n");
1925 *data = igb_setup_desc_rings(adapter);
1928 *data = igb_setup_loopback_test(adapter);
1931 *data = igb_run_loopback_test(adapter);
1932 igb_loopback_cleanup(adapter);
1935 igb_free_desc_rings(adapter);
1940 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1942 struct e1000_hw *hw = &adapter->hw;
1944 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1946 hw->mac.serdes_has_link = false;
1948 /* On some blade server designs, link establishment
1949 * could take as long as 2-3 minutes
1952 hw->mac.ops.check_for_link(&adapter->hw);
1953 if (hw->mac.serdes_has_link)
1956 } while (i++ < 3750);
1960 hw->mac.ops.check_for_link(&adapter->hw);
1961 if (hw->mac.autoneg)
1964 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1970 static void igb_diag_test(struct net_device *netdev,
1971 struct ethtool_test *eth_test, u64 *data)
1973 struct igb_adapter *adapter = netdev_priv(netdev);
1974 u16 autoneg_advertised;
1975 u8 forced_speed_duplex, autoneg;
1976 bool if_running = netif_running(netdev);
1978 set_bit(__IGB_TESTING, &adapter->state);
1979 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1982 /* save speed, duplex, autoneg settings */
1983 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1984 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1985 autoneg = adapter->hw.mac.autoneg;
1987 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1989 /* power up link for link test */
1990 igb_power_up_link(adapter);
1992 /* Link test performed before hardware reset so autoneg doesn't
1993 * interfere with test result
1995 if (igb_link_test(adapter, &data[4]))
1996 eth_test->flags |= ETH_TEST_FL_FAILED;
1999 /* indicate we're in test mode */
2004 if (igb_reg_test(adapter, &data[0]))
2005 eth_test->flags |= ETH_TEST_FL_FAILED;
2008 if (igb_eeprom_test(adapter, &data[1]))
2009 eth_test->flags |= ETH_TEST_FL_FAILED;
2012 if (igb_intr_test(adapter, &data[2]))
2013 eth_test->flags |= ETH_TEST_FL_FAILED;
2016 /* power up link for loopback test */
2017 igb_power_up_link(adapter);
2018 if (igb_loopback_test(adapter, &data[3]))
2019 eth_test->flags |= ETH_TEST_FL_FAILED;
2021 /* restore speed, duplex, autoneg settings */
2022 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2023 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2024 adapter->hw.mac.autoneg = autoneg;
2026 /* force this routine to wait until autoneg complete/timeout */
2027 adapter->hw.phy.autoneg_wait_to_complete = true;
2029 adapter->hw.phy.autoneg_wait_to_complete = false;
2031 clear_bit(__IGB_TESTING, &adapter->state);
2035 dev_info(&adapter->pdev->dev, "online testing starting\n");
2037 /* PHY is powered down when interface is down */
2038 if (if_running && igb_link_test(adapter, &data[4]))
2039 eth_test->flags |= ETH_TEST_FL_FAILED;
2043 /* Online tests aren't run; pass by default */
2049 clear_bit(__IGB_TESTING, &adapter->state);
2051 msleep_interruptible(4 * 1000);
2054 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2056 struct igb_adapter *adapter = netdev_priv(netdev);
2058 wol->supported = WAKE_UCAST | WAKE_MCAST |
2059 WAKE_BCAST | WAKE_MAGIC |
2063 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2066 /* apply any specific unsupported masks here */
2067 switch (adapter->hw.device_id) {
2072 if (adapter->wol & E1000_WUFC_EX)
2073 wol->wolopts |= WAKE_UCAST;
2074 if (adapter->wol & E1000_WUFC_MC)
2075 wol->wolopts |= WAKE_MCAST;
2076 if (adapter->wol & E1000_WUFC_BC)
2077 wol->wolopts |= WAKE_BCAST;
2078 if (adapter->wol & E1000_WUFC_MAG)
2079 wol->wolopts |= WAKE_MAGIC;
2080 if (adapter->wol & E1000_WUFC_LNKC)
2081 wol->wolopts |= WAKE_PHY;
2084 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2086 struct igb_adapter *adapter = netdev_priv(netdev);
2088 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2091 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2092 return wol->wolopts ? -EOPNOTSUPP : 0;
2094 /* these settings will always override what we currently have */
2097 if (wol->wolopts & WAKE_UCAST)
2098 adapter->wol |= E1000_WUFC_EX;
2099 if (wol->wolopts & WAKE_MCAST)
2100 adapter->wol |= E1000_WUFC_MC;
2101 if (wol->wolopts & WAKE_BCAST)
2102 adapter->wol |= E1000_WUFC_BC;
2103 if (wol->wolopts & WAKE_MAGIC)
2104 adapter->wol |= E1000_WUFC_MAG;
2105 if (wol->wolopts & WAKE_PHY)
2106 adapter->wol |= E1000_WUFC_LNKC;
2107 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2112 /* bit defines for adapter->led_status */
2113 #define IGB_LED_ON 0
2115 static int igb_set_phys_id(struct net_device *netdev,
2116 enum ethtool_phys_id_state state)
2118 struct igb_adapter *adapter = netdev_priv(netdev);
2119 struct e1000_hw *hw = &adapter->hw;
2122 case ETHTOOL_ID_ACTIVE:
2128 case ETHTOOL_ID_OFF:
2131 case ETHTOOL_ID_INACTIVE:
2133 clear_bit(IGB_LED_ON, &adapter->led_status);
2134 igb_cleanup_led(hw);
2141 static int igb_set_coalesce(struct net_device *netdev,
2142 struct ethtool_coalesce *ec)
2144 struct igb_adapter *adapter = netdev_priv(netdev);
2147 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2148 ((ec->rx_coalesce_usecs > 3) &&
2149 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2150 (ec->rx_coalesce_usecs == 2))
2153 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2154 ((ec->tx_coalesce_usecs > 3) &&
2155 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2156 (ec->tx_coalesce_usecs == 2))
2159 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2162 /* If ITR is disabled, disable DMAC */
2163 if (ec->rx_coalesce_usecs == 0) {
2164 if (adapter->flags & IGB_FLAG_DMAC)
2165 adapter->flags &= ~IGB_FLAG_DMAC;
2168 /* convert to rate of irq's per second */
2169 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2170 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2172 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2174 /* convert to rate of irq's per second */
2175 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2176 adapter->tx_itr_setting = adapter->rx_itr_setting;
2177 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2178 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2180 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2182 for (i = 0; i < adapter->num_q_vectors; i++) {
2183 struct igb_q_vector *q_vector = adapter->q_vector[i];
2184 q_vector->tx.work_limit = adapter->tx_work_limit;
2185 if (q_vector->rx.ring)
2186 q_vector->itr_val = adapter->rx_itr_setting;
2188 q_vector->itr_val = adapter->tx_itr_setting;
2189 if (q_vector->itr_val && q_vector->itr_val <= 3)
2190 q_vector->itr_val = IGB_START_ITR;
2191 q_vector->set_itr = 1;
2197 static int igb_get_coalesce(struct net_device *netdev,
2198 struct ethtool_coalesce *ec)
2200 struct igb_adapter *adapter = netdev_priv(netdev);
2202 if (adapter->rx_itr_setting <= 3)
2203 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2205 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2207 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2208 if (adapter->tx_itr_setting <= 3)
2209 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2211 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2217 static int igb_nway_reset(struct net_device *netdev)
2219 struct igb_adapter *adapter = netdev_priv(netdev);
2220 if (netif_running(netdev))
2221 igb_reinit_locked(adapter);
2225 static int igb_get_sset_count(struct net_device *netdev, int sset)
2229 return IGB_STATS_LEN;
2231 return IGB_TEST_LEN;
2237 static void igb_get_ethtool_stats(struct net_device *netdev,
2238 struct ethtool_stats *stats, u64 *data)
2240 struct igb_adapter *adapter = netdev_priv(netdev);
2241 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2243 struct igb_ring *ring;
2247 spin_lock(&adapter->stats64_lock);
2248 igb_update_stats(adapter, net_stats);
2250 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2251 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2252 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2253 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2255 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2256 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2257 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2258 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2260 for (j = 0; j < adapter->num_tx_queues; j++) {
2263 ring = adapter->tx_ring[j];
2265 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2266 data[i] = ring->tx_stats.packets;
2267 data[i+1] = ring->tx_stats.bytes;
2268 data[i+2] = ring->tx_stats.restart_queue;
2269 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2271 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2272 restart2 = ring->tx_stats.restart_queue2;
2273 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2274 data[i+2] += restart2;
2276 i += IGB_TX_QUEUE_STATS_LEN;
2278 for (j = 0; j < adapter->num_rx_queues; j++) {
2279 ring = adapter->rx_ring[j];
2281 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2282 data[i] = ring->rx_stats.packets;
2283 data[i+1] = ring->rx_stats.bytes;
2284 data[i+2] = ring->rx_stats.drops;
2285 data[i+3] = ring->rx_stats.csum_err;
2286 data[i+4] = ring->rx_stats.alloc_failed;
2287 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2288 i += IGB_RX_QUEUE_STATS_LEN;
2290 spin_unlock(&adapter->stats64_lock);
2293 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2295 struct igb_adapter *adapter = netdev_priv(netdev);
2299 switch (stringset) {
2301 memcpy(data, *igb_gstrings_test,
2302 IGB_TEST_LEN*ETH_GSTRING_LEN);
2305 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2306 memcpy(p, igb_gstrings_stats[i].stat_string,
2308 p += ETH_GSTRING_LEN;
2310 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2311 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2313 p += ETH_GSTRING_LEN;
2315 for (i = 0; i < adapter->num_tx_queues; i++) {
2316 sprintf(p, "tx_queue_%u_packets", i);
2317 p += ETH_GSTRING_LEN;
2318 sprintf(p, "tx_queue_%u_bytes", i);
2319 p += ETH_GSTRING_LEN;
2320 sprintf(p, "tx_queue_%u_restart", i);
2321 p += ETH_GSTRING_LEN;
2323 for (i = 0; i < adapter->num_rx_queues; i++) {
2324 sprintf(p, "rx_queue_%u_packets", i);
2325 p += ETH_GSTRING_LEN;
2326 sprintf(p, "rx_queue_%u_bytes", i);
2327 p += ETH_GSTRING_LEN;
2328 sprintf(p, "rx_queue_%u_drops", i);
2329 p += ETH_GSTRING_LEN;
2330 sprintf(p, "rx_queue_%u_csum_err", i);
2331 p += ETH_GSTRING_LEN;
2332 sprintf(p, "rx_queue_%u_alloc_failed", i);
2333 p += ETH_GSTRING_LEN;
2335 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2340 static int igb_get_ts_info(struct net_device *dev,
2341 struct ethtool_ts_info *info)
2343 struct igb_adapter *adapter = netdev_priv(dev);
2345 switch (adapter->hw.mac.type) {
2347 info->so_timestamping =
2348 SOF_TIMESTAMPING_TX_SOFTWARE |
2349 SOF_TIMESTAMPING_RX_SOFTWARE |
2350 SOF_TIMESTAMPING_SOFTWARE;
2358 info->so_timestamping =
2359 SOF_TIMESTAMPING_TX_SOFTWARE |
2360 SOF_TIMESTAMPING_RX_SOFTWARE |
2361 SOF_TIMESTAMPING_SOFTWARE |
2362 SOF_TIMESTAMPING_TX_HARDWARE |
2363 SOF_TIMESTAMPING_RX_HARDWARE |
2364 SOF_TIMESTAMPING_RAW_HARDWARE;
2366 if (adapter->ptp_clock)
2367 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2369 info->phc_index = -1;
2372 (1 << HWTSTAMP_TX_OFF) |
2373 (1 << HWTSTAMP_TX_ON);
2375 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2377 /* 82576 does not support timestamping all packets. */
2378 if (adapter->hw.mac.type >= e1000_82580)
2379 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2382 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2383 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2384 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2385 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2386 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2387 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2388 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2396 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2397 struct ethtool_rxnfc *cmd)
2401 /* Report default options for RSS on igb */
2402 switch (cmd->flow_type) {
2404 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2406 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2407 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2409 case AH_ESP_V4_FLOW:
2413 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2416 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2418 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2419 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2421 case AH_ESP_V6_FLOW:
2425 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2434 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2437 struct igb_adapter *adapter = netdev_priv(dev);
2438 int ret = -EOPNOTSUPP;
2441 case ETHTOOL_GRXRINGS:
2442 cmd->data = adapter->num_rx_queues;
2446 ret = igb_get_rss_hash_opts(adapter, cmd);
2455 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2456 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2457 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2458 struct ethtool_rxnfc *nfc)
2460 u32 flags = adapter->flags;
2462 /* RSS does not support anything other than hashing
2463 * to queues on src and dst IPs and ports
2465 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2466 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2469 switch (nfc->flow_type) {
2472 if (!(nfc->data & RXH_IP_SRC) ||
2473 !(nfc->data & RXH_IP_DST) ||
2474 !(nfc->data & RXH_L4_B_0_1) ||
2475 !(nfc->data & RXH_L4_B_2_3))
2479 if (!(nfc->data & RXH_IP_SRC) ||
2480 !(nfc->data & RXH_IP_DST))
2482 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2484 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2486 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2487 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2494 if (!(nfc->data & RXH_IP_SRC) ||
2495 !(nfc->data & RXH_IP_DST))
2497 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2499 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2501 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2502 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2508 case AH_ESP_V4_FLOW:
2512 case AH_ESP_V6_FLOW:
2516 if (!(nfc->data & RXH_IP_SRC) ||
2517 !(nfc->data & RXH_IP_DST) ||
2518 (nfc->data & RXH_L4_B_0_1) ||
2519 (nfc->data & RXH_L4_B_2_3))
2526 /* if we changed something we need to update flags */
2527 if (flags != adapter->flags) {
2528 struct e1000_hw *hw = &adapter->hw;
2529 u32 mrqc = rd32(E1000_MRQC);
2531 if ((flags & UDP_RSS_FLAGS) &&
2532 !(adapter->flags & UDP_RSS_FLAGS))
2533 dev_err(&adapter->pdev->dev,
2534 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2536 adapter->flags = flags;
2538 /* Perform hash on these packet types */
2539 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2540 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2541 E1000_MRQC_RSS_FIELD_IPV6 |
2542 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2544 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2545 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2547 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2548 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2550 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2551 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2553 wr32(E1000_MRQC, mrqc);
2559 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2561 struct igb_adapter *adapter = netdev_priv(dev);
2562 int ret = -EOPNOTSUPP;
2566 ret = igb_set_rss_hash_opt(adapter, cmd);
2575 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2577 struct igb_adapter *adapter = netdev_priv(netdev);
2578 struct e1000_hw *hw = &adapter->hw;
2579 u32 ipcnfg, eeer, ret_val;
2582 if ((hw->mac.type < e1000_i350) ||
2583 (hw->phy.media_type != e1000_media_type_copper))
2586 edata->supported = (SUPPORTED_1000baseT_Full |
2587 SUPPORTED_100baseT_Full);
2589 ipcnfg = rd32(E1000_IPCNFG);
2590 eeer = rd32(E1000_EEER);
2592 /* EEE status on negotiated link */
2593 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2594 edata->advertised = ADVERTISED_1000baseT_Full;
2596 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2597 edata->advertised |= ADVERTISED_100baseT_Full;
2599 /* EEE Link Partner Advertised */
2600 switch (hw->mac.type) {
2602 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2607 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2612 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2613 E1000_EEE_LP_ADV_DEV_I210,
2618 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2625 if (eeer & E1000_EEER_EEE_NEG)
2626 edata->eee_active = true;
2628 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2630 if (eeer & E1000_EEER_TX_LPI_EN)
2631 edata->tx_lpi_enabled = true;
2633 /* Report correct negotiated EEE status for devices that
2634 * wrongly report EEE at half-duplex
2636 if (adapter->link_duplex == HALF_DUPLEX) {
2637 edata->eee_enabled = false;
2638 edata->eee_active = false;
2639 edata->tx_lpi_enabled = false;
2640 edata->advertised &= ~edata->advertised;
2646 static int igb_set_eee(struct net_device *netdev,
2647 struct ethtool_eee *edata)
2649 struct igb_adapter *adapter = netdev_priv(netdev);
2650 struct e1000_hw *hw = &adapter->hw;
2651 struct ethtool_eee eee_curr;
2654 if ((hw->mac.type < e1000_i350) ||
2655 (hw->phy.media_type != e1000_media_type_copper))
2658 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2660 ret_val = igb_get_eee(netdev, &eee_curr);
2664 if (eee_curr.eee_enabled) {
2665 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2666 dev_err(&adapter->pdev->dev,
2667 "Setting EEE tx-lpi is not supported\n");
2671 /* Tx LPI timer is not implemented currently */
2672 if (edata->tx_lpi_timer) {
2673 dev_err(&adapter->pdev->dev,
2674 "Setting EEE Tx LPI timer is not supported\n");
2678 if (eee_curr.advertised != edata->advertised) {
2679 dev_err(&adapter->pdev->dev,
2680 "Setting EEE Advertisement is not supported\n");
2684 } else if (!edata->eee_enabled) {
2685 dev_err(&adapter->pdev->dev,
2686 "Setting EEE options are not supported with EEE disabled\n");
2690 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2691 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2692 igb_set_eee_i350(hw);
2695 if (netif_running(netdev))
2696 igb_reinit_locked(adapter);
2704 static int igb_get_module_info(struct net_device *netdev,
2705 struct ethtool_modinfo *modinfo)
2707 struct igb_adapter *adapter = netdev_priv(netdev);
2708 struct e1000_hw *hw = &adapter->hw;
2709 u32 status = E1000_SUCCESS;
2710 u16 sff8472_rev, addr_mode;
2711 bool page_swap = false;
2713 if ((hw->phy.media_type == e1000_media_type_copper) ||
2714 (hw->phy.media_type == e1000_media_type_unknown))
2717 /* Check whether we support SFF-8472 or not */
2718 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2719 if (status != E1000_SUCCESS)
2722 /* addressing mode is not supported */
2723 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2724 if (status != E1000_SUCCESS)
2727 /* addressing mode is not supported */
2728 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2729 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2733 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2734 /* We have an SFP, but it does not support SFF-8472 */
2735 modinfo->type = ETH_MODULE_SFF_8079;
2736 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2738 /* We have an SFP which supports a revision of SFF-8472 */
2739 modinfo->type = ETH_MODULE_SFF_8472;
2740 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2746 static int igb_get_module_eeprom(struct net_device *netdev,
2747 struct ethtool_eeprom *ee, u8 *data)
2749 struct igb_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 status = E1000_SUCCESS;
2753 u16 first_word, last_word;
2759 first_word = ee->offset >> 1;
2760 last_word = (ee->offset + ee->len - 1) >> 1;
2762 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2767 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2768 for (i = 0; i < last_word - first_word + 1; i++) {
2769 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2770 if (status != E1000_SUCCESS)
2771 /* Error occurred while reading module */
2774 be16_to_cpus(&dataword[i]);
2777 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2783 static int igb_ethtool_begin(struct net_device *netdev)
2785 struct igb_adapter *adapter = netdev_priv(netdev);
2786 pm_runtime_get_sync(&adapter->pdev->dev);
2790 static void igb_ethtool_complete(struct net_device *netdev)
2792 struct igb_adapter *adapter = netdev_priv(netdev);
2793 pm_runtime_put(&adapter->pdev->dev);
2796 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2798 return IGB_RETA_SIZE;
2801 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2803 struct igb_adapter *adapter = netdev_priv(netdev);
2806 for (i = 0; i < IGB_RETA_SIZE; i++)
2807 indir[i] = adapter->rss_indir_tbl[i];
2812 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2814 struct e1000_hw *hw = &adapter->hw;
2815 u32 reg = E1000_RETA(0);
2819 switch (hw->mac.type) {
2824 /* 82576 supports 2 RSS queues for SR-IOV */
2825 if (adapter->vfs_allocated_count)
2832 while (i < IGB_RETA_SIZE) {
2836 for (j = 3; j >= 0; j--) {
2838 val |= adapter->rss_indir_tbl[i + j];
2841 wr32(reg, val << shift);
2847 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2849 struct igb_adapter *adapter = netdev_priv(netdev);
2850 struct e1000_hw *hw = &adapter->hw;
2854 num_queues = adapter->rss_queues;
2856 switch (hw->mac.type) {
2858 /* 82576 supports 2 RSS queues for SR-IOV */
2859 if (adapter->vfs_allocated_count)
2866 /* Verify user input. */
2867 for (i = 0; i < IGB_RETA_SIZE; i++)
2868 if (indir[i] >= num_queues)
2872 for (i = 0; i < IGB_RETA_SIZE; i++)
2873 adapter->rss_indir_tbl[i] = indir[i];
2875 igb_write_rss_indir_tbl(adapter);
2880 static const struct ethtool_ops igb_ethtool_ops = {
2881 .get_settings = igb_get_settings,
2882 .set_settings = igb_set_settings,
2883 .get_drvinfo = igb_get_drvinfo,
2884 .get_regs_len = igb_get_regs_len,
2885 .get_regs = igb_get_regs,
2886 .get_wol = igb_get_wol,
2887 .set_wol = igb_set_wol,
2888 .get_msglevel = igb_get_msglevel,
2889 .set_msglevel = igb_set_msglevel,
2890 .nway_reset = igb_nway_reset,
2891 .get_link = igb_get_link,
2892 .get_eeprom_len = igb_get_eeprom_len,
2893 .get_eeprom = igb_get_eeprom,
2894 .set_eeprom = igb_set_eeprom,
2895 .get_ringparam = igb_get_ringparam,
2896 .set_ringparam = igb_set_ringparam,
2897 .get_pauseparam = igb_get_pauseparam,
2898 .set_pauseparam = igb_set_pauseparam,
2899 .self_test = igb_diag_test,
2900 .get_strings = igb_get_strings,
2901 .set_phys_id = igb_set_phys_id,
2902 .get_sset_count = igb_get_sset_count,
2903 .get_ethtool_stats = igb_get_ethtool_stats,
2904 .get_coalesce = igb_get_coalesce,
2905 .set_coalesce = igb_set_coalesce,
2906 .get_ts_info = igb_get_ts_info,
2907 .get_rxnfc = igb_get_rxnfc,
2908 .set_rxnfc = igb_set_rxnfc,
2909 .get_eee = igb_get_eee,
2910 .set_eee = igb_set_eee,
2911 .get_module_info = igb_get_module_info,
2912 .get_module_eeprom = igb_get_module_eeprom,
2913 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
2914 .get_rxfh_indir = igb_get_rxfh_indir,
2915 .set_rxfh_indir = igb_set_rxfh_indir,
2916 .begin = igb_ethtool_begin,
2917 .complete = igb_ethtool_complete,
2920 void igb_set_ethtool_ops(struct net_device *netdev)
2922 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);