]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
Merge branches 'atomicio-apei', 'hotplug', 'sony-nvs-nosave' and 'thermal-netlink...
[mv-sheeva.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50         .stat_string = _name, \
51         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52         .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55         IGB_STAT("rx_packets", stats.gprc),
56         IGB_STAT("tx_packets", stats.gptc),
57         IGB_STAT("rx_bytes", stats.gorc),
58         IGB_STAT("tx_bytes", stats.gotc),
59         IGB_STAT("rx_broadcast", stats.bprc),
60         IGB_STAT("tx_broadcast", stats.bptc),
61         IGB_STAT("rx_multicast", stats.mprc),
62         IGB_STAT("tx_multicast", stats.mptc),
63         IGB_STAT("multicast", stats.mprc),
64         IGB_STAT("collisions", stats.colc),
65         IGB_STAT("rx_crc_errors", stats.crcerrs),
66         IGB_STAT("rx_no_buffer_count", stats.rnbc),
67         IGB_STAT("rx_missed_errors", stats.mpc),
68         IGB_STAT("tx_aborted_errors", stats.ecol),
69         IGB_STAT("tx_carrier_errors", stats.tncrs),
70         IGB_STAT("tx_window_errors", stats.latecol),
71         IGB_STAT("tx_abort_late_coll", stats.latecol),
72         IGB_STAT("tx_deferred_ok", stats.dc),
73         IGB_STAT("tx_single_coll_ok", stats.scc),
74         IGB_STAT("tx_multi_coll_ok", stats.mcc),
75         IGB_STAT("tx_timeout_count", tx_timeout_count),
76         IGB_STAT("rx_long_length_errors", stats.roc),
77         IGB_STAT("rx_short_length_errors", stats.ruc),
78         IGB_STAT("rx_align_errors", stats.algnerrc),
79         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83         IGB_STAT("tx_flow_control_xon", stats.xontxc),
84         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85         IGB_STAT("rx_long_byte_count", stats.gorc),
86         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87         IGB_STAT("tx_smbus", stats.mgptc),
88         IGB_STAT("rx_smbus", stats.mgprc),
89         IGB_STAT("dropped_smbus", stats.mgpdc),
90         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         u32 status;
142
143         if (hw->phy.media_type == e1000_media_type_copper) {
144
145                 ecmd->supported = (SUPPORTED_10baseT_Half |
146                                    SUPPORTED_10baseT_Full |
147                                    SUPPORTED_100baseT_Half |
148                                    SUPPORTED_100baseT_Full |
149                                    SUPPORTED_1000baseT_Full|
150                                    SUPPORTED_Autoneg |
151                                    SUPPORTED_TP);
152                 ecmd->advertising = (ADVERTISED_TP |
153                                      ADVERTISED_Pause);
154
155                 if (hw->mac.autoneg == 1) {
156                         ecmd->advertising |= ADVERTISED_Autoneg;
157                         /* the e1000 autoneg seems to match ethtool nicely */
158                         ecmd->advertising |= hw->phy.autoneg_advertised;
159                 }
160
161                 ecmd->port = PORT_TP;
162                 ecmd->phy_address = hw->phy.addr;
163         } else {
164                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
165                                      SUPPORTED_FIBRE |
166                                      SUPPORTED_Autoneg);
167
168                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169                                      ADVERTISED_FIBRE |
170                                      ADVERTISED_Autoneg |
171                                      ADVERTISED_Pause);
172
173                 ecmd->port = PORT_FIBRE;
174         }
175
176         ecmd->transceiver = XCVR_INTERNAL;
177
178         status = rd32(E1000_STATUS);
179
180         if (status & E1000_STATUS_LU) {
181
182                 if ((status & E1000_STATUS_SPEED_1000) ||
183                     hw->phy.media_type != e1000_media_type_copper)
184                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
185                 else if (status & E1000_STATUS_SPEED_100)
186                         ethtool_cmd_speed_set(ecmd, SPEED_100);
187                 else
188                         ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190                 if ((status & E1000_STATUS_FD) ||
191                     hw->phy.media_type != e1000_media_type_copper)
192                         ecmd->duplex = DUPLEX_FULL;
193                 else
194                         ecmd->duplex = DUPLEX_HALF;
195         } else {
196                 ethtool_cmd_speed_set(ecmd, -1);
197                 ecmd->duplex = -1;
198         }
199
200         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201         return 0;
202 }
203
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206         struct igb_adapter *adapter = netdev_priv(netdev);
207         struct e1000_hw *hw = &adapter->hw;
208
209         /* When SoL/IDER sessions are active, autoneg/speed/duplex
210          * cannot be changed */
211         if (igb_check_reset_block(hw)) {
212                 dev_err(&adapter->pdev->dev, "Cannot change link "
213                         "characteristics when SoL/IDER is active.\n");
214                 return -EINVAL;
215         }
216
217         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218                 msleep(1);
219
220         if (ecmd->autoneg == AUTONEG_ENABLE) {
221                 hw->mac.autoneg = 1;
222                 hw->phy.autoneg_advertised = ecmd->advertising |
223                                              ADVERTISED_TP |
224                                              ADVERTISED_Autoneg;
225                 ecmd->advertising = hw->phy.autoneg_advertised;
226                 if (adapter->fc_autoneg)
227                         hw->fc.requested_mode = e1000_fc_default;
228         } else {
229                 u32 speed = ethtool_cmd_speed(ecmd);
230                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231                         clear_bit(__IGB_RESETTING, &adapter->state);
232                         return -EINVAL;
233                 }
234         }
235
236         /* reset the link */
237         if (netif_running(adapter->netdev)) {
238                 igb_down(adapter);
239                 igb_up(adapter);
240         } else
241                 igb_reset(adapter);
242
243         clear_bit(__IGB_RESETTING, &adapter->state);
244         return 0;
245 }
246
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249         struct igb_adapter *adapter = netdev_priv(netdev);
250         struct e1000_mac_info *mac = &adapter->hw.mac;
251
252         /*
253          * If the link is not reported up to netdev, interrupts are disabled,
254          * and so the physical link state may have changed since we last
255          * looked. Set get_link_status to make sure that the true link
256          * state is interrogated, rather than pulling a cached and possibly
257          * stale link state from the driver.
258          */
259         if (!netif_carrier_ok(netdev))
260                 mac->get_link_status = 1;
261
262         return igb_has_link(adapter);
263 }
264
265 static void igb_get_pauseparam(struct net_device *netdev,
266                                struct ethtool_pauseparam *pause)
267 {
268         struct igb_adapter *adapter = netdev_priv(netdev);
269         struct e1000_hw *hw = &adapter->hw;
270
271         pause->autoneg =
272                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274         if (hw->fc.current_mode == e1000_fc_rx_pause)
275                 pause->rx_pause = 1;
276         else if (hw->fc.current_mode == e1000_fc_tx_pause)
277                 pause->tx_pause = 1;
278         else if (hw->fc.current_mode == e1000_fc_full) {
279                 pause->rx_pause = 1;
280                 pause->tx_pause = 1;
281         }
282 }
283
284 static int igb_set_pauseparam(struct net_device *netdev,
285                               struct ethtool_pauseparam *pause)
286 {
287         struct igb_adapter *adapter = netdev_priv(netdev);
288         struct e1000_hw *hw = &adapter->hw;
289         int retval = 0;
290
291         adapter->fc_autoneg = pause->autoneg;
292
293         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294                 msleep(1);
295
296         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297                 hw->fc.requested_mode = e1000_fc_default;
298                 if (netif_running(adapter->netdev)) {
299                         igb_down(adapter);
300                         igb_up(adapter);
301                 } else {
302                         igb_reset(adapter);
303                 }
304         } else {
305                 if (pause->rx_pause && pause->tx_pause)
306                         hw->fc.requested_mode = e1000_fc_full;
307                 else if (pause->rx_pause && !pause->tx_pause)
308                         hw->fc.requested_mode = e1000_fc_rx_pause;
309                 else if (!pause->rx_pause && pause->tx_pause)
310                         hw->fc.requested_mode = e1000_fc_tx_pause;
311                 else if (!pause->rx_pause && !pause->tx_pause)
312                         hw->fc.requested_mode = e1000_fc_none;
313
314                 hw->fc.current_mode = hw->fc.requested_mode;
315
316                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317                           igb_force_mac_fc(hw) : igb_setup_link(hw));
318         }
319
320         clear_bit(__IGB_RESETTING, &adapter->state);
321         return retval;
322 }
323
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326         struct igb_adapter *adapter = netdev_priv(netdev);
327         return adapter->msg_enable;
328 }
329
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332         struct igb_adapter *adapter = netdev_priv(netdev);
333         adapter->msg_enable = data;
334 }
335
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 551
339         return IGB_REGS_LEN * sizeof(u32);
340 }
341
342 static void igb_get_regs(struct net_device *netdev,
343                          struct ethtool_regs *regs, void *p)
344 {
345         struct igb_adapter *adapter = netdev_priv(netdev);
346         struct e1000_hw *hw = &adapter->hw;
347         u32 *regs_buff = p;
348         u8 i;
349
350         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354         /* General Registers */
355         regs_buff[0] = rd32(E1000_CTRL);
356         regs_buff[1] = rd32(E1000_STATUS);
357         regs_buff[2] = rd32(E1000_CTRL_EXT);
358         regs_buff[3] = rd32(E1000_MDIC);
359         regs_buff[4] = rd32(E1000_SCTL);
360         regs_buff[5] = rd32(E1000_CONNSW);
361         regs_buff[6] = rd32(E1000_VET);
362         regs_buff[7] = rd32(E1000_LEDCTL);
363         regs_buff[8] = rd32(E1000_PBA);
364         regs_buff[9] = rd32(E1000_PBS);
365         regs_buff[10] = rd32(E1000_FRTIMER);
366         regs_buff[11] = rd32(E1000_TCPTIMER);
367
368         /* NVM Register */
369         regs_buff[12] = rd32(E1000_EECD);
370
371         /* Interrupt */
372         /* Reading EICS for EICR because they read the
373          * same but EICS does not clear on read */
374         regs_buff[13] = rd32(E1000_EICS);
375         regs_buff[14] = rd32(E1000_EICS);
376         regs_buff[15] = rd32(E1000_EIMS);
377         regs_buff[16] = rd32(E1000_EIMC);
378         regs_buff[17] = rd32(E1000_EIAC);
379         regs_buff[18] = rd32(E1000_EIAM);
380         /* Reading ICS for ICR because they read the
381          * same but ICS does not clear on read */
382         regs_buff[19] = rd32(E1000_ICS);
383         regs_buff[20] = rd32(E1000_ICS);
384         regs_buff[21] = rd32(E1000_IMS);
385         regs_buff[22] = rd32(E1000_IMC);
386         regs_buff[23] = rd32(E1000_IAC);
387         regs_buff[24] = rd32(E1000_IAM);
388         regs_buff[25] = rd32(E1000_IMIRVP);
389
390         /* Flow Control */
391         regs_buff[26] = rd32(E1000_FCAL);
392         regs_buff[27] = rd32(E1000_FCAH);
393         regs_buff[28] = rd32(E1000_FCTTV);
394         regs_buff[29] = rd32(E1000_FCRTL);
395         regs_buff[30] = rd32(E1000_FCRTH);
396         regs_buff[31] = rd32(E1000_FCRTV);
397
398         /* Receive */
399         regs_buff[32] = rd32(E1000_RCTL);
400         regs_buff[33] = rd32(E1000_RXCSUM);
401         regs_buff[34] = rd32(E1000_RLPML);
402         regs_buff[35] = rd32(E1000_RFCTL);
403         regs_buff[36] = rd32(E1000_MRQC);
404         regs_buff[37] = rd32(E1000_VT_CTL);
405
406         /* Transmit */
407         regs_buff[38] = rd32(E1000_TCTL);
408         regs_buff[39] = rd32(E1000_TCTL_EXT);
409         regs_buff[40] = rd32(E1000_TIPG);
410         regs_buff[41] = rd32(E1000_DTXCTL);
411
412         /* Wake Up */
413         regs_buff[42] = rd32(E1000_WUC);
414         regs_buff[43] = rd32(E1000_WUFC);
415         regs_buff[44] = rd32(E1000_WUS);
416         regs_buff[45] = rd32(E1000_IPAV);
417         regs_buff[46] = rd32(E1000_WUPL);
418
419         /* MAC */
420         regs_buff[47] = rd32(E1000_PCS_CFG0);
421         regs_buff[48] = rd32(E1000_PCS_LCTL);
422         regs_buff[49] = rd32(E1000_PCS_LSTAT);
423         regs_buff[50] = rd32(E1000_PCS_ANADV);
424         regs_buff[51] = rd32(E1000_PCS_LPAB);
425         regs_buff[52] = rd32(E1000_PCS_NPTX);
426         regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428         /* Statistics */
429         regs_buff[54] = adapter->stats.crcerrs;
430         regs_buff[55] = adapter->stats.algnerrc;
431         regs_buff[56] = adapter->stats.symerrs;
432         regs_buff[57] = adapter->stats.rxerrc;
433         regs_buff[58] = adapter->stats.mpc;
434         regs_buff[59] = adapter->stats.scc;
435         regs_buff[60] = adapter->stats.ecol;
436         regs_buff[61] = adapter->stats.mcc;
437         regs_buff[62] = adapter->stats.latecol;
438         regs_buff[63] = adapter->stats.colc;
439         regs_buff[64] = adapter->stats.dc;
440         regs_buff[65] = adapter->stats.tncrs;
441         regs_buff[66] = adapter->stats.sec;
442         regs_buff[67] = adapter->stats.htdpmc;
443         regs_buff[68] = adapter->stats.rlec;
444         regs_buff[69] = adapter->stats.xonrxc;
445         regs_buff[70] = adapter->stats.xontxc;
446         regs_buff[71] = adapter->stats.xoffrxc;
447         regs_buff[72] = adapter->stats.xofftxc;
448         regs_buff[73] = adapter->stats.fcruc;
449         regs_buff[74] = adapter->stats.prc64;
450         regs_buff[75] = adapter->stats.prc127;
451         regs_buff[76] = adapter->stats.prc255;
452         regs_buff[77] = adapter->stats.prc511;
453         regs_buff[78] = adapter->stats.prc1023;
454         regs_buff[79] = adapter->stats.prc1522;
455         regs_buff[80] = adapter->stats.gprc;
456         regs_buff[81] = adapter->stats.bprc;
457         regs_buff[82] = adapter->stats.mprc;
458         regs_buff[83] = adapter->stats.gptc;
459         regs_buff[84] = adapter->stats.gorc;
460         regs_buff[86] = adapter->stats.gotc;
461         regs_buff[88] = adapter->stats.rnbc;
462         regs_buff[89] = adapter->stats.ruc;
463         regs_buff[90] = adapter->stats.rfc;
464         regs_buff[91] = adapter->stats.roc;
465         regs_buff[92] = adapter->stats.rjc;
466         regs_buff[93] = adapter->stats.mgprc;
467         regs_buff[94] = adapter->stats.mgpdc;
468         regs_buff[95] = adapter->stats.mgptc;
469         regs_buff[96] = adapter->stats.tor;
470         regs_buff[98] = adapter->stats.tot;
471         regs_buff[100] = adapter->stats.tpr;
472         regs_buff[101] = adapter->stats.tpt;
473         regs_buff[102] = adapter->stats.ptc64;
474         regs_buff[103] = adapter->stats.ptc127;
475         regs_buff[104] = adapter->stats.ptc255;
476         regs_buff[105] = adapter->stats.ptc511;
477         regs_buff[106] = adapter->stats.ptc1023;
478         regs_buff[107] = adapter->stats.ptc1522;
479         regs_buff[108] = adapter->stats.mptc;
480         regs_buff[109] = adapter->stats.bptc;
481         regs_buff[110] = adapter->stats.tsctc;
482         regs_buff[111] = adapter->stats.iac;
483         regs_buff[112] = adapter->stats.rpthc;
484         regs_buff[113] = adapter->stats.hgptc;
485         regs_buff[114] = adapter->stats.hgorc;
486         regs_buff[116] = adapter->stats.hgotc;
487         regs_buff[118] = adapter->stats.lenerrs;
488         regs_buff[119] = adapter->stats.scvpc;
489         regs_buff[120] = adapter->stats.hrmpc;
490
491         for (i = 0; i < 4; i++)
492                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493         for (i = 0; i < 4; i++)
494                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495         for (i = 0; i < 4; i++)
496                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497         for (i = 0; i < 4; i++)
498                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499         for (i = 0; i < 4; i++)
500                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501         for (i = 0; i < 4; i++)
502                 regs_buff[141 + i] = rd32(E1000_RDH(i));
503         for (i = 0; i < 4; i++)
504                 regs_buff[145 + i] = rd32(E1000_RDT(i));
505         for (i = 0; i < 4; i++)
506                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508         for (i = 0; i < 10; i++)
509                 regs_buff[153 + i] = rd32(E1000_EITR(i));
510         for (i = 0; i < 8; i++)
511                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
512         for (i = 0; i < 8; i++)
513                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514         for (i = 0; i < 16; i++)
515                 regs_buff[179 + i] = rd32(E1000_RAL(i));
516         for (i = 0; i < 16; i++)
517                 regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519         for (i = 0; i < 4; i++)
520                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523         for (i = 0; i < 4; i++)
524                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525         for (i = 0; i < 4; i++)
526                 regs_buff[223 + i] = rd32(E1000_TDH(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[227 + i] = rd32(E1000_TDT(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531         for (i = 0; i < 4; i++)
532                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533         for (i = 0; i < 4; i++)
534                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538         for (i = 0; i < 4; i++)
539                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542         for (i = 0; i < 32; i++)
543                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544         for (i = 0; i < 128; i++)
545                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546         for (i = 0; i < 128; i++)
547                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551         regs_buff[547] = rd32(E1000_TDFH);
552         regs_buff[548] = rd32(E1000_TDFT);
553         regs_buff[549] = rd32(E1000_TDFHS);
554         regs_buff[550] = rd32(E1000_TDFPC);
555         regs_buff[551] = adapter->stats.o2bgptc;
556         regs_buff[552] = adapter->stats.b2ospc;
557         regs_buff[553] = adapter->stats.o2bspc;
558         regs_buff[554] = adapter->stats.b2ogprc;
559 }
560
561 static int igb_get_eeprom_len(struct net_device *netdev)
562 {
563         struct igb_adapter *adapter = netdev_priv(netdev);
564         return adapter->hw.nvm.word_size * 2;
565 }
566
567 static int igb_get_eeprom(struct net_device *netdev,
568                           struct ethtool_eeprom *eeprom, u8 *bytes)
569 {
570         struct igb_adapter *adapter = netdev_priv(netdev);
571         struct e1000_hw *hw = &adapter->hw;
572         u16 *eeprom_buff;
573         int first_word, last_word;
574         int ret_val = 0;
575         u16 i;
576
577         if (eeprom->len == 0)
578                 return -EINVAL;
579
580         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
581
582         first_word = eeprom->offset >> 1;
583         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584
585         eeprom_buff = kmalloc(sizeof(u16) *
586                         (last_word - first_word + 1), GFP_KERNEL);
587         if (!eeprom_buff)
588                 return -ENOMEM;
589
590         if (hw->nvm.type == e1000_nvm_eeprom_spi)
591                 ret_val = hw->nvm.ops.read(hw, first_word,
592                                             last_word - first_word + 1,
593                                             eeprom_buff);
594         else {
595                 for (i = 0; i < last_word - first_word + 1; i++) {
596                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
597                                                     &eeprom_buff[i]);
598                         if (ret_val)
599                                 break;
600                 }
601         }
602
603         /* Device's eeprom is always little-endian, word addressable */
604         for (i = 0; i < last_word - first_word + 1; i++)
605                 le16_to_cpus(&eeprom_buff[i]);
606
607         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
608                         eeprom->len);
609         kfree(eeprom_buff);
610
611         return ret_val;
612 }
613
614 static int igb_set_eeprom(struct net_device *netdev,
615                           struct ethtool_eeprom *eeprom, u8 *bytes)
616 {
617         struct igb_adapter *adapter = netdev_priv(netdev);
618         struct e1000_hw *hw = &adapter->hw;
619         u16 *eeprom_buff;
620         void *ptr;
621         int max_len, first_word, last_word, ret_val = 0;
622         u16 i;
623
624         if (eeprom->len == 0)
625                 return -EOPNOTSUPP;
626
627         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
628                 return -EFAULT;
629
630         max_len = hw->nvm.word_size * 2;
631
632         first_word = eeprom->offset >> 1;
633         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
634         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
635         if (!eeprom_buff)
636                 return -ENOMEM;
637
638         ptr = (void *)eeprom_buff;
639
640         if (eeprom->offset & 1) {
641                 /* need read/modify/write of first changed EEPROM word */
642                 /* only the second byte of the word is being modified */
643                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
644                                             &eeprom_buff[0]);
645                 ptr++;
646         }
647         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
648                 /* need read/modify/write of last changed EEPROM word */
649                 /* only the first byte of the word is being modified */
650                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
651                                    &eeprom_buff[last_word - first_word]);
652         }
653
654         /* Device's eeprom is always little-endian, word addressable */
655         for (i = 0; i < last_word - first_word + 1; i++)
656                 le16_to_cpus(&eeprom_buff[i]);
657
658         memcpy(ptr, bytes, eeprom->len);
659
660         for (i = 0; i < last_word - first_word + 1; i++)
661                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
662
663         ret_val = hw->nvm.ops.write(hw, first_word,
664                                      last_word - first_word + 1, eeprom_buff);
665
666         /* Update the checksum over the first part of the EEPROM if needed
667          * and flush shadow RAM for 82573 controllers */
668         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
669                 hw->nvm.ops.update(hw);
670
671         kfree(eeprom_buff);
672         return ret_val;
673 }
674
675 static void igb_get_drvinfo(struct net_device *netdev,
676                             struct ethtool_drvinfo *drvinfo)
677 {
678         struct igb_adapter *adapter = netdev_priv(netdev);
679         u16 eeprom_data;
680
681         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
682         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
683
684         /* EEPROM image version # is reported as firmware version # for
685          * 82575 controllers */
686         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
687         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
688                 "%d.%d-%d",
689                 (eeprom_data & 0xF000) >> 12,
690                 (eeprom_data & 0x0FF0) >> 4,
691                 eeprom_data & 0x000F);
692
693         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
694                 sizeof(drvinfo->bus_info));
695         drvinfo->n_stats = IGB_STATS_LEN;
696         drvinfo->testinfo_len = IGB_TEST_LEN;
697         drvinfo->regdump_len = igb_get_regs_len(netdev);
698         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
699 }
700
701 static void igb_get_ringparam(struct net_device *netdev,
702                               struct ethtool_ringparam *ring)
703 {
704         struct igb_adapter *adapter = netdev_priv(netdev);
705
706         ring->rx_max_pending = IGB_MAX_RXD;
707         ring->tx_max_pending = IGB_MAX_TXD;
708         ring->rx_pending = adapter->rx_ring_count;
709         ring->tx_pending = adapter->tx_ring_count;
710 }
711
712 static int igb_set_ringparam(struct net_device *netdev,
713                              struct ethtool_ringparam *ring)
714 {
715         struct igb_adapter *adapter = netdev_priv(netdev);
716         struct igb_ring *temp_ring;
717         int i, err = 0;
718         u16 new_rx_count, new_tx_count;
719
720         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
721                 return -EINVAL;
722
723         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
724         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
725         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
726
727         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
728         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
729         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
730
731         if ((new_tx_count == adapter->tx_ring_count) &&
732             (new_rx_count == adapter->rx_ring_count)) {
733                 /* nothing to do */
734                 return 0;
735         }
736
737         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
738                 msleep(1);
739
740         if (!netif_running(adapter->netdev)) {
741                 for (i = 0; i < adapter->num_tx_queues; i++)
742                         adapter->tx_ring[i]->count = new_tx_count;
743                 for (i = 0; i < adapter->num_rx_queues; i++)
744                         adapter->rx_ring[i]->count = new_rx_count;
745                 adapter->tx_ring_count = new_tx_count;
746                 adapter->rx_ring_count = new_rx_count;
747                 goto clear_reset;
748         }
749
750         if (adapter->num_tx_queues > adapter->num_rx_queues)
751                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
752         else
753                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
754
755         if (!temp_ring) {
756                 err = -ENOMEM;
757                 goto clear_reset;
758         }
759
760         igb_down(adapter);
761
762         /*
763          * We can't just free everything and then setup again,
764          * because the ISRs in MSI-X mode get passed pointers
765          * to the tx and rx ring structs.
766          */
767         if (new_tx_count != adapter->tx_ring_count) {
768                 for (i = 0; i < adapter->num_tx_queues; i++) {
769                         memcpy(&temp_ring[i], adapter->tx_ring[i],
770                                sizeof(struct igb_ring));
771
772                         temp_ring[i].count = new_tx_count;
773                         err = igb_setup_tx_resources(&temp_ring[i]);
774                         if (err) {
775                                 while (i) {
776                                         i--;
777                                         igb_free_tx_resources(&temp_ring[i]);
778                                 }
779                                 goto err_setup;
780                         }
781                 }
782
783                 for (i = 0; i < adapter->num_tx_queues; i++) {
784                         igb_free_tx_resources(adapter->tx_ring[i]);
785
786                         memcpy(adapter->tx_ring[i], &temp_ring[i],
787                                sizeof(struct igb_ring));
788                 }
789
790                 adapter->tx_ring_count = new_tx_count;
791         }
792
793         if (new_rx_count != adapter->rx_ring_count) {
794                 for (i = 0; i < adapter->num_rx_queues; i++) {
795                         memcpy(&temp_ring[i], adapter->rx_ring[i],
796                                sizeof(struct igb_ring));
797
798                         temp_ring[i].count = new_rx_count;
799                         err = igb_setup_rx_resources(&temp_ring[i]);
800                         if (err) {
801                                 while (i) {
802                                         i--;
803                                         igb_free_rx_resources(&temp_ring[i]);
804                                 }
805                                 goto err_setup;
806                         }
807
808                 }
809
810                 for (i = 0; i < adapter->num_rx_queues; i++) {
811                         igb_free_rx_resources(adapter->rx_ring[i]);
812
813                         memcpy(adapter->rx_ring[i], &temp_ring[i],
814                                sizeof(struct igb_ring));
815                 }
816
817                 adapter->rx_ring_count = new_rx_count;
818         }
819 err_setup:
820         igb_up(adapter);
821         vfree(temp_ring);
822 clear_reset:
823         clear_bit(__IGB_RESETTING, &adapter->state);
824         return err;
825 }
826
827 /* ethtool register test data */
828 struct igb_reg_test {
829         u16 reg;
830         u16 reg_offset;
831         u16 array_len;
832         u16 test_type;
833         u32 mask;
834         u32 write;
835 };
836
837 /* In the hardware, registers are laid out either singly, in arrays
838  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
839  * most tests take place on arrays or single registers (handled
840  * as a single-element array) and special-case the tables.
841  * Table tests are always pattern tests.
842  *
843  * We also make provision for some required setup steps by specifying
844  * registers to be written without any read-back testing.
845  */
846
847 #define PATTERN_TEST    1
848 #define SET_READ_TEST   2
849 #define WRITE_NO_TEST   3
850 #define TABLE32_TEST    4
851 #define TABLE64_TEST_LO 5
852 #define TABLE64_TEST_HI 6
853
854 /* i350 reg test */
855 static struct igb_reg_test reg_test_i350[] = {
856         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
857         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
858         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
859         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
860         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
861         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
862         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
863         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
864         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
866         /* RDH is read-only for i350, only test RDT. */
867         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
869         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
870         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
871         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
872         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
875         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
876         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
877         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
878         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
880         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
881         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
882         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
883         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
884         { E1000_RA,        0, 16, TABLE64_TEST_LO,
885                                                 0xFFFFFFFF, 0xFFFFFFFF },
886         { E1000_RA,        0, 16, TABLE64_TEST_HI,
887                                                 0xC3FFFFFF, 0xFFFFFFFF },
888         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
889                                                 0xFFFFFFFF, 0xFFFFFFFF },
890         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
891                                                 0xC3FFFFFF, 0xFFFFFFFF },
892         { E1000_MTA,       0, 128, TABLE32_TEST,
893                                                 0xFFFFFFFF, 0xFFFFFFFF },
894         { 0, 0, 0, 0 }
895 };
896
897 /* 82580 reg test */
898 static struct igb_reg_test reg_test_82580[] = {
899         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
902         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
906         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
909         /* RDH is read-only for 82580, only test RDT. */
910         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
911         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
912         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
913         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
914         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
915         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
916         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
917         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
918         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
919         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
921         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
922         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
923         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
924         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
925         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
926         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
927         { E1000_RA,        0, 16, TABLE64_TEST_LO,
928                                                 0xFFFFFFFF, 0xFFFFFFFF },
929         { E1000_RA,        0, 16, TABLE64_TEST_HI,
930                                                 0x83FFFFFF, 0xFFFFFFFF },
931         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
932                                                 0xFFFFFFFF, 0xFFFFFFFF },
933         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
934                                                 0x83FFFFFF, 0xFFFFFFFF },
935         { E1000_MTA,       0, 128, TABLE32_TEST,
936                                                 0xFFFFFFFF, 0xFFFFFFFF },
937         { 0, 0, 0, 0 }
938 };
939
940 /* 82576 reg test */
941 static struct igb_reg_test reg_test_82576[] = {
942         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
944         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
945         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
947         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
948         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
949         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
950         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
951         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
952         /* Enable all RX queues before testing. */
953         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
954         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
955         /* RDH is read-only for 82576, only test RDT. */
956         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
957         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
958         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
959         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
960         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
961         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
963         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
964         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
966         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
969         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
970         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
971         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
972         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
973         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
974         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
975         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
976         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
977         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
978         { 0, 0, 0, 0 }
979 };
980
981 /* 82575 register test */
982 static struct igb_reg_test reg_test_82575[] = {
983         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
984         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
986         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
987         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
990         /* Enable all four RX queues before testing. */
991         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
992         /* RDH is read-only for 82575, only test RDT. */
993         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
995         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
996         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
998         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1001         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1002         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1003         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1004         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1005         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1006         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1007         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1008         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009         { 0, 0, 0, 0 }
1010 };
1011
1012 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1013                              int reg, u32 mask, u32 write)
1014 {
1015         struct e1000_hw *hw = &adapter->hw;
1016         u32 pat, val;
1017         static const u32 _test[] =
1018                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1019         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1020                 wr32(reg, (_test[pat] & write));
1021                 val = rd32(reg) & mask;
1022                 if (val != (_test[pat] & write & mask)) {
1023                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1024                                 "failed: got 0x%08X expected 0x%08X\n",
1025                                 reg, val, (_test[pat] & write & mask));
1026                         *data = reg;
1027                         return 1;
1028                 }
1029         }
1030
1031         return 0;
1032 }
1033
1034 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1035                               int reg, u32 mask, u32 write)
1036 {
1037         struct e1000_hw *hw = &adapter->hw;
1038         u32 val;
1039         wr32(reg, write & mask);
1040         val = rd32(reg);
1041         if ((write & mask) != (val & mask)) {
1042                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1043                         " got 0x%08X expected 0x%08X\n", reg,
1044                         (val & mask), (write & mask));
1045                 *data = reg;
1046                 return 1;
1047         }
1048
1049         return 0;
1050 }
1051
1052 #define REG_PATTERN_TEST(reg, mask, write) \
1053         do { \
1054                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1055                         return 1; \
1056         } while (0)
1057
1058 #define REG_SET_AND_CHECK(reg, mask, write) \
1059         do { \
1060                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1061                         return 1; \
1062         } while (0)
1063
1064 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1065 {
1066         struct e1000_hw *hw = &adapter->hw;
1067         struct igb_reg_test *test;
1068         u32 value, before, after;
1069         u32 i, toggle;
1070
1071         switch (adapter->hw.mac.type) {
1072         case e1000_i350:
1073                 test = reg_test_i350;
1074                 toggle = 0x7FEFF3FF;
1075                 break;
1076         case e1000_82580:
1077                 test = reg_test_82580;
1078                 toggle = 0x7FEFF3FF;
1079                 break;
1080         case e1000_82576:
1081                 test = reg_test_82576;
1082                 toggle = 0x7FFFF3FF;
1083                 break;
1084         default:
1085                 test = reg_test_82575;
1086                 toggle = 0x7FFFF3FF;
1087                 break;
1088         }
1089
1090         /* Because the status register is such a special case,
1091          * we handle it separately from the rest of the register
1092          * tests.  Some bits are read-only, some toggle, and some
1093          * are writable on newer MACs.
1094          */
1095         before = rd32(E1000_STATUS);
1096         value = (rd32(E1000_STATUS) & toggle);
1097         wr32(E1000_STATUS, toggle);
1098         after = rd32(E1000_STATUS) & toggle;
1099         if (value != after) {
1100                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1101                         "got: 0x%08X expected: 0x%08X\n", after, value);
1102                 *data = 1;
1103                 return 1;
1104         }
1105         /* restore previous status */
1106         wr32(E1000_STATUS, before);
1107
1108         /* Perform the remainder of the register test, looping through
1109          * the test table until we either fail or reach the null entry.
1110          */
1111         while (test->reg) {
1112                 for (i = 0; i < test->array_len; i++) {
1113                         switch (test->test_type) {
1114                         case PATTERN_TEST:
1115                                 REG_PATTERN_TEST(test->reg +
1116                                                 (i * test->reg_offset),
1117                                                 test->mask,
1118                                                 test->write);
1119                                 break;
1120                         case SET_READ_TEST:
1121                                 REG_SET_AND_CHECK(test->reg +
1122                                                 (i * test->reg_offset),
1123                                                 test->mask,
1124                                                 test->write);
1125                                 break;
1126                         case WRITE_NO_TEST:
1127                                 writel(test->write,
1128                                     (adapter->hw.hw_addr + test->reg)
1129                                         + (i * test->reg_offset));
1130                                 break;
1131                         case TABLE32_TEST:
1132                                 REG_PATTERN_TEST(test->reg + (i * 4),
1133                                                 test->mask,
1134                                                 test->write);
1135                                 break;
1136                         case TABLE64_TEST_LO:
1137                                 REG_PATTERN_TEST(test->reg + (i * 8),
1138                                                 test->mask,
1139                                                 test->write);
1140                                 break;
1141                         case TABLE64_TEST_HI:
1142                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1143                                                 test->mask,
1144                                                 test->write);
1145                                 break;
1146                         }
1147                 }
1148                 test++;
1149         }
1150
1151         *data = 0;
1152         return 0;
1153 }
1154
1155 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1156 {
1157         u16 temp;
1158         u16 checksum = 0;
1159         u16 i;
1160
1161         *data = 0;
1162         /* Read and add up the contents of the EEPROM */
1163         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1164                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1165                         *data = 1;
1166                         break;
1167                 }
1168                 checksum += temp;
1169         }
1170
1171         /* If Checksum is not Correct return error else test passed */
1172         if ((checksum != (u16) NVM_SUM) && !(*data))
1173                 *data = 2;
1174
1175         return *data;
1176 }
1177
1178 static irqreturn_t igb_test_intr(int irq, void *data)
1179 {
1180         struct igb_adapter *adapter = (struct igb_adapter *) data;
1181         struct e1000_hw *hw = &adapter->hw;
1182
1183         adapter->test_icr |= rd32(E1000_ICR);
1184
1185         return IRQ_HANDLED;
1186 }
1187
1188 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1189 {
1190         struct e1000_hw *hw = &adapter->hw;
1191         struct net_device *netdev = adapter->netdev;
1192         u32 mask, ics_mask, i = 0, shared_int = true;
1193         u32 irq = adapter->pdev->irq;
1194
1195         *data = 0;
1196
1197         /* Hook up test interrupt handler just for this test */
1198         if (adapter->msix_entries) {
1199                 if (request_irq(adapter->msix_entries[0].vector,
1200                                 igb_test_intr, 0, netdev->name, adapter)) {
1201                         *data = 1;
1202                         return -1;
1203                 }
1204         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1205                 shared_int = false;
1206                 if (request_irq(irq,
1207                                 igb_test_intr, 0, netdev->name, adapter)) {
1208                         *data = 1;
1209                         return -1;
1210                 }
1211         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1212                                 netdev->name, adapter)) {
1213                 shared_int = false;
1214         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1215                  netdev->name, adapter)) {
1216                 *data = 1;
1217                 return -1;
1218         }
1219         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1220                 (shared_int ? "shared" : "unshared"));
1221
1222         /* Disable all the interrupts */
1223         wr32(E1000_IMC, ~0);
1224         wrfl();
1225         msleep(10);
1226
1227         /* Define all writable bits for ICS */
1228         switch (hw->mac.type) {
1229         case e1000_82575:
1230                 ics_mask = 0x37F47EDD;
1231                 break;
1232         case e1000_82576:
1233                 ics_mask = 0x77D4FBFD;
1234                 break;
1235         case e1000_82580:
1236                 ics_mask = 0x77DCFED5;
1237                 break;
1238         case e1000_i350:
1239                 ics_mask = 0x77DCFED5;
1240                 break;
1241         default:
1242                 ics_mask = 0x7FFFFFFF;
1243                 break;
1244         }
1245
1246         /* Test each interrupt */
1247         for (; i < 31; i++) {
1248                 /* Interrupt to test */
1249                 mask = 1 << i;
1250
1251                 if (!(mask & ics_mask))
1252                         continue;
1253
1254                 if (!shared_int) {
1255                         /* Disable the interrupt to be reported in
1256                          * the cause register and then force the same
1257                          * interrupt and see if one gets posted.  If
1258                          * an interrupt was posted to the bus, the
1259                          * test failed.
1260                          */
1261                         adapter->test_icr = 0;
1262
1263                         /* Flush any pending interrupts */
1264                         wr32(E1000_ICR, ~0);
1265
1266                         wr32(E1000_IMC, mask);
1267                         wr32(E1000_ICS, mask);
1268                         wrfl();
1269                         msleep(10);
1270
1271                         if (adapter->test_icr & mask) {
1272                                 *data = 3;
1273                                 break;
1274                         }
1275                 }
1276
1277                 /* Enable the interrupt to be reported in
1278                  * the cause register and then force the same
1279                  * interrupt and see if one gets posted.  If
1280                  * an interrupt was not posted to the bus, the
1281                  * test failed.
1282                  */
1283                 adapter->test_icr = 0;
1284
1285                 /* Flush any pending interrupts */
1286                 wr32(E1000_ICR, ~0);
1287
1288                 wr32(E1000_IMS, mask);
1289                 wr32(E1000_ICS, mask);
1290                 wrfl();
1291                 msleep(10);
1292
1293                 if (!(adapter->test_icr & mask)) {
1294                         *data = 4;
1295                         break;
1296                 }
1297
1298                 if (!shared_int) {
1299                         /* Disable the other interrupts to be reported in
1300                          * the cause register and then force the other
1301                          * interrupts and see if any get posted.  If
1302                          * an interrupt was posted to the bus, the
1303                          * test failed.
1304                          */
1305                         adapter->test_icr = 0;
1306
1307                         /* Flush any pending interrupts */
1308                         wr32(E1000_ICR, ~0);
1309
1310                         wr32(E1000_IMC, ~mask);
1311                         wr32(E1000_ICS, ~mask);
1312                         wrfl();
1313                         msleep(10);
1314
1315                         if (adapter->test_icr & mask) {
1316                                 *data = 5;
1317                                 break;
1318                         }
1319                 }
1320         }
1321
1322         /* Disable all the interrupts */
1323         wr32(E1000_IMC, ~0);
1324         wrfl();
1325         msleep(10);
1326
1327         /* Unhook test interrupt handler */
1328         if (adapter->msix_entries)
1329                 free_irq(adapter->msix_entries[0].vector, adapter);
1330         else
1331                 free_irq(irq, adapter);
1332
1333         return *data;
1334 }
1335
1336 static void igb_free_desc_rings(struct igb_adapter *adapter)
1337 {
1338         igb_free_tx_resources(&adapter->test_tx_ring);
1339         igb_free_rx_resources(&adapter->test_rx_ring);
1340 }
1341
1342 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1343 {
1344         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1345         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1346         struct e1000_hw *hw = &adapter->hw;
1347         int ret_val;
1348
1349         /* Setup Tx descriptor ring and Tx buffers */
1350         tx_ring->count = IGB_DEFAULT_TXD;
1351         tx_ring->dev = &adapter->pdev->dev;
1352         tx_ring->netdev = adapter->netdev;
1353         tx_ring->reg_idx = adapter->vfs_allocated_count;
1354
1355         if (igb_setup_tx_resources(tx_ring)) {
1356                 ret_val = 1;
1357                 goto err_nomem;
1358         }
1359
1360         igb_setup_tctl(adapter);
1361         igb_configure_tx_ring(adapter, tx_ring);
1362
1363         /* Setup Rx descriptor ring and Rx buffers */
1364         rx_ring->count = IGB_DEFAULT_RXD;
1365         rx_ring->dev = &adapter->pdev->dev;
1366         rx_ring->netdev = adapter->netdev;
1367         rx_ring->reg_idx = adapter->vfs_allocated_count;
1368
1369         if (igb_setup_rx_resources(rx_ring)) {
1370                 ret_val = 3;
1371                 goto err_nomem;
1372         }
1373
1374         /* set the default queue to queue 0 of PF */
1375         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1376
1377         /* enable receive ring */
1378         igb_setup_rctl(adapter);
1379         igb_configure_rx_ring(adapter, rx_ring);
1380
1381         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1382
1383         return 0;
1384
1385 err_nomem:
1386         igb_free_desc_rings(adapter);
1387         return ret_val;
1388 }
1389
1390 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393
1394         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1395         igb_write_phy_reg(hw, 29, 0x001F);
1396         igb_write_phy_reg(hw, 30, 0x8FFC);
1397         igb_write_phy_reg(hw, 29, 0x001A);
1398         igb_write_phy_reg(hw, 30, 0x8FF0);
1399 }
1400
1401 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         u32 ctrl_reg = 0;
1405
1406         hw->mac.autoneg = false;
1407
1408         if (hw->phy.type == e1000_phy_m88) {
1409                 /* Auto-MDI/MDIX Off */
1410                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1411                 /* reset to update Auto-MDI/MDIX */
1412                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1413                 /* autoneg off */
1414                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1415         } else if (hw->phy.type == e1000_phy_82580) {
1416                 /* enable MII loopback */
1417                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1418         }
1419
1420         ctrl_reg = rd32(E1000_CTRL);
1421
1422         /* force 1000, set loopback */
1423         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1424
1425         /* Now set up the MAC to the same speed/duplex as the PHY. */
1426         ctrl_reg = rd32(E1000_CTRL);
1427         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1428         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1429                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1430                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1431                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1432                      E1000_CTRL_SLU);    /* Set link up enable bit */
1433
1434         if (hw->phy.type == e1000_phy_m88)
1435                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1436
1437         wr32(E1000_CTRL, ctrl_reg);
1438
1439         /* Disable the receiver on the PHY so when a cable is plugged in, the
1440          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441          */
1442         if (hw->phy.type == e1000_phy_m88)
1443                 igb_phy_disable_receiver(adapter);
1444
1445         udelay(500);
1446
1447         return 0;
1448 }
1449
1450 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1451 {
1452         return igb_integrated_phy_loopback(adapter);
1453 }
1454
1455 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1456 {
1457         struct e1000_hw *hw = &adapter->hw;
1458         u32 reg;
1459
1460         reg = rd32(E1000_CTRL_EXT);
1461
1462         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1463         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1464                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1465                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1466                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1467                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1468
1469                         /* Enable DH89xxCC MPHY for near end loopback */
1470                         reg = rd32(E1000_MPHY_ADDR_CTL);
1471                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1472                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1473                         wr32(E1000_MPHY_ADDR_CTL, reg);
1474
1475                         reg = rd32(E1000_MPHY_DATA);
1476                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1477                         wr32(E1000_MPHY_DATA, reg);
1478                 }
1479
1480                 reg = rd32(E1000_RCTL);
1481                 reg |= E1000_RCTL_LBM_TCVR;
1482                 wr32(E1000_RCTL, reg);
1483
1484                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1485
1486                 reg = rd32(E1000_CTRL);
1487                 reg &= ~(E1000_CTRL_RFCE |
1488                          E1000_CTRL_TFCE |
1489                          E1000_CTRL_LRST);
1490                 reg |= E1000_CTRL_SLU |
1491                        E1000_CTRL_FD;
1492                 wr32(E1000_CTRL, reg);
1493
1494                 /* Unset switch control to serdes energy detect */
1495                 reg = rd32(E1000_CONNSW);
1496                 reg &= ~E1000_CONNSW_ENRGSRC;
1497                 wr32(E1000_CONNSW, reg);
1498
1499                 /* Set PCS register for forced speed */
1500                 reg = rd32(E1000_PCS_LCTL);
1501                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1502                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1503                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1504                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1505                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1506                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1507                 wr32(E1000_PCS_LCTL, reg);
1508
1509                 return 0;
1510         }
1511
1512         return igb_set_phy_loopback(adapter);
1513 }
1514
1515 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1516 {
1517         struct e1000_hw *hw = &adapter->hw;
1518         u32 rctl;
1519         u16 phy_reg;
1520
1521         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1522         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1523         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1524         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1525                 u32 reg;
1526
1527                 /* Disable near end loopback on DH89xxCC */
1528                 reg = rd32(E1000_MPHY_ADDR_CTL);
1529                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1530                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1531                 wr32(E1000_MPHY_ADDR_CTL, reg);
1532
1533                 reg = rd32(E1000_MPHY_DATA);
1534                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1535                 wr32(E1000_MPHY_DATA, reg);
1536         }
1537
1538         rctl = rd32(E1000_RCTL);
1539         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1540         wr32(E1000_RCTL, rctl);
1541
1542         hw->mac.autoneg = true;
1543         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1544         if (phy_reg & MII_CR_LOOPBACK) {
1545                 phy_reg &= ~MII_CR_LOOPBACK;
1546                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1547                 igb_phy_sw_reset(hw);
1548         }
1549 }
1550
1551 static void igb_create_lbtest_frame(struct sk_buff *skb,
1552                                     unsigned int frame_size)
1553 {
1554         memset(skb->data, 0xFF, frame_size);
1555         frame_size /= 2;
1556         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1557         memset(&skb->data[frame_size + 10], 0xBE, 1);
1558         memset(&skb->data[frame_size + 12], 0xAF, 1);
1559 }
1560
1561 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1562 {
1563         frame_size /= 2;
1564         if (*(skb->data + 3) == 0xFF) {
1565                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1566                    (*(skb->data + frame_size + 12) == 0xAF)) {
1567                         return 0;
1568                 }
1569         }
1570         return 13;
1571 }
1572
1573 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1574                                 struct igb_ring *tx_ring,
1575                                 unsigned int size)
1576 {
1577         union e1000_adv_rx_desc *rx_desc;
1578         struct igb_rx_buffer *rx_buffer_info;
1579         struct igb_tx_buffer *tx_buffer_info;
1580         u16 rx_ntc, tx_ntc, count = 0;
1581
1582         /* initialize next to clean and descriptor values */
1583         rx_ntc = rx_ring->next_to_clean;
1584         tx_ntc = tx_ring->next_to_clean;
1585         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1586
1587         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1588                 /* check rx buffer */
1589                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1590
1591                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1592                 dma_unmap_single(rx_ring->dev,
1593                                  rx_buffer_info->dma,
1594                                  IGB_RX_HDR_LEN,
1595                                  DMA_FROM_DEVICE);
1596                 rx_buffer_info->dma = 0;
1597
1598                 /* verify contents of skb */
1599                 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1600                         count++;
1601
1602                 /* unmap buffer on tx side */
1603                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1604                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1605
1606                 /* increment rx/tx next to clean counters */
1607                 rx_ntc++;
1608                 if (rx_ntc == rx_ring->count)
1609                         rx_ntc = 0;
1610                 tx_ntc++;
1611                 if (tx_ntc == tx_ring->count)
1612                         tx_ntc = 0;
1613
1614                 /* fetch next descriptor */
1615                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1616         }
1617
1618         /* re-map buffers to ring, store next to clean values */
1619         igb_alloc_rx_buffers(rx_ring, count);
1620         rx_ring->next_to_clean = rx_ntc;
1621         tx_ring->next_to_clean = tx_ntc;
1622
1623         return count;
1624 }
1625
1626 static int igb_run_loopback_test(struct igb_adapter *adapter)
1627 {
1628         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1629         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1630         u16 i, j, lc, good_cnt;
1631         int ret_val = 0;
1632         unsigned int size = IGB_RX_HDR_LEN;
1633         netdev_tx_t tx_ret_val;
1634         struct sk_buff *skb;
1635
1636         /* allocate test skb */
1637         skb = alloc_skb(size, GFP_KERNEL);
1638         if (!skb)
1639                 return 11;
1640
1641         /* place data into test skb */
1642         igb_create_lbtest_frame(skb, size);
1643         skb_put(skb, size);
1644
1645         /*
1646          * Calculate the loop count based on the largest descriptor ring
1647          * The idea is to wrap the largest ring a number of times using 64
1648          * send/receive pairs during each loop
1649          */
1650
1651         if (rx_ring->count <= tx_ring->count)
1652                 lc = ((tx_ring->count / 64) * 2) + 1;
1653         else
1654                 lc = ((rx_ring->count / 64) * 2) + 1;
1655
1656         for (j = 0; j <= lc; j++) { /* loop count loop */
1657                 /* reset count of good packets */
1658                 good_cnt = 0;
1659
1660                 /* place 64 packets on the transmit queue*/
1661                 for (i = 0; i < 64; i++) {
1662                         skb_get(skb);
1663                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1664                         if (tx_ret_val == NETDEV_TX_OK)
1665                                 good_cnt++;
1666                 }
1667
1668                 if (good_cnt != 64) {
1669                         ret_val = 12;
1670                         break;
1671                 }
1672
1673                 /* allow 200 milliseconds for packets to go from tx to rx */
1674                 msleep(200);
1675
1676                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1677                 if (good_cnt != 64) {
1678                         ret_val = 13;
1679                         break;
1680                 }
1681         } /* end loop count loop */
1682
1683         /* free the original skb */
1684         kfree_skb(skb);
1685
1686         return ret_val;
1687 }
1688
1689 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1690 {
1691         /* PHY loopback cannot be performed if SoL/IDER
1692          * sessions are active */
1693         if (igb_check_reset_block(&adapter->hw)) {
1694                 dev_err(&adapter->pdev->dev,
1695                         "Cannot do PHY loopback test "
1696                         "when SoL/IDER is active.\n");
1697                 *data = 0;
1698                 goto out;
1699         }
1700         *data = igb_setup_desc_rings(adapter);
1701         if (*data)
1702                 goto out;
1703         *data = igb_setup_loopback_test(adapter);
1704         if (*data)
1705                 goto err_loopback;
1706         *data = igb_run_loopback_test(adapter);
1707         igb_loopback_cleanup(adapter);
1708
1709 err_loopback:
1710         igb_free_desc_rings(adapter);
1711 out:
1712         return *data;
1713 }
1714
1715 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1716 {
1717         struct e1000_hw *hw = &adapter->hw;
1718         *data = 0;
1719         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1720                 int i = 0;
1721                 hw->mac.serdes_has_link = false;
1722
1723                 /* On some blade server designs, link establishment
1724                  * could take as long as 2-3 minutes */
1725                 do {
1726                         hw->mac.ops.check_for_link(&adapter->hw);
1727                         if (hw->mac.serdes_has_link)
1728                                 return *data;
1729                         msleep(20);
1730                 } while (i++ < 3750);
1731
1732                 *data = 1;
1733         } else {
1734                 hw->mac.ops.check_for_link(&adapter->hw);
1735                 if (hw->mac.autoneg)
1736                         msleep(4000);
1737
1738                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1739                         *data = 1;
1740         }
1741         return *data;
1742 }
1743
1744 static void igb_diag_test(struct net_device *netdev,
1745                           struct ethtool_test *eth_test, u64 *data)
1746 {
1747         struct igb_adapter *adapter = netdev_priv(netdev);
1748         u16 autoneg_advertised;
1749         u8 forced_speed_duplex, autoneg;
1750         bool if_running = netif_running(netdev);
1751
1752         set_bit(__IGB_TESTING, &adapter->state);
1753         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1754                 /* Offline tests */
1755
1756                 /* save speed, duplex, autoneg settings */
1757                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1758                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1759                 autoneg = adapter->hw.mac.autoneg;
1760
1761                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1762
1763                 /* power up link for link test */
1764                 igb_power_up_link(adapter);
1765
1766                 /* Link test performed before hardware reset so autoneg doesn't
1767                  * interfere with test result */
1768                 if (igb_link_test(adapter, &data[4]))
1769                         eth_test->flags |= ETH_TEST_FL_FAILED;
1770
1771                 if (if_running)
1772                         /* indicate we're in test mode */
1773                         dev_close(netdev);
1774                 else
1775                         igb_reset(adapter);
1776
1777                 if (igb_reg_test(adapter, &data[0]))
1778                         eth_test->flags |= ETH_TEST_FL_FAILED;
1779
1780                 igb_reset(adapter);
1781                 if (igb_eeprom_test(adapter, &data[1]))
1782                         eth_test->flags |= ETH_TEST_FL_FAILED;
1783
1784                 igb_reset(adapter);
1785                 if (igb_intr_test(adapter, &data[2]))
1786                         eth_test->flags |= ETH_TEST_FL_FAILED;
1787
1788                 igb_reset(adapter);
1789                 /* power up link for loopback test */
1790                 igb_power_up_link(adapter);
1791                 if (igb_loopback_test(adapter, &data[3]))
1792                         eth_test->flags |= ETH_TEST_FL_FAILED;
1793
1794                 /* restore speed, duplex, autoneg settings */
1795                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1796                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1797                 adapter->hw.mac.autoneg = autoneg;
1798
1799                 /* force this routine to wait until autoneg complete/timeout */
1800                 adapter->hw.phy.autoneg_wait_to_complete = true;
1801                 igb_reset(adapter);
1802                 adapter->hw.phy.autoneg_wait_to_complete = false;
1803
1804                 clear_bit(__IGB_TESTING, &adapter->state);
1805                 if (if_running)
1806                         dev_open(netdev);
1807         } else {
1808                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1809
1810                 /* PHY is powered down when interface is down */
1811                 if (if_running && igb_link_test(adapter, &data[4]))
1812                         eth_test->flags |= ETH_TEST_FL_FAILED;
1813                 else
1814                         data[4] = 0;
1815
1816                 /* Online tests aren't run; pass by default */
1817                 data[0] = 0;
1818                 data[1] = 0;
1819                 data[2] = 0;
1820                 data[3] = 0;
1821
1822                 clear_bit(__IGB_TESTING, &adapter->state);
1823         }
1824         msleep_interruptible(4 * 1000);
1825 }
1826
1827 static int igb_wol_exclusion(struct igb_adapter *adapter,
1828                              struct ethtool_wolinfo *wol)
1829 {
1830         struct e1000_hw *hw = &adapter->hw;
1831         int retval = 1; /* fail by default */
1832
1833         switch (hw->device_id) {
1834         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1835                 /* WoL not supported */
1836                 wol->supported = 0;
1837                 break;
1838         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1839         case E1000_DEV_ID_82576_FIBER:
1840         case E1000_DEV_ID_82576_SERDES:
1841                 /* Wake events not supported on port B */
1842                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1843                         wol->supported = 0;
1844                         break;
1845                 }
1846                 /* return success for non excluded adapter ports */
1847                 retval = 0;
1848                 break;
1849         case E1000_DEV_ID_82576_QUAD_COPPER:
1850         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1851                 /* quad port adapters only support WoL on port A */
1852                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1853                         wol->supported = 0;
1854                         break;
1855                 }
1856                 /* return success for non excluded adapter ports */
1857                 retval = 0;
1858                 break;
1859         default:
1860                 /* dual port cards only support WoL on port A from now on
1861                  * unless it was enabled in the eeprom for port B
1862                  * so exclude FUNC_1 ports from having WoL enabled */
1863                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1864                     !adapter->eeprom_wol) {
1865                         wol->supported = 0;
1866                         break;
1867                 }
1868
1869                 retval = 0;
1870         }
1871
1872         return retval;
1873 }
1874
1875 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1876 {
1877         struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879         wol->supported = WAKE_UCAST | WAKE_MCAST |
1880                          WAKE_BCAST | WAKE_MAGIC |
1881                          WAKE_PHY;
1882         wol->wolopts = 0;
1883
1884         /* this function will set ->supported = 0 and return 1 if wol is not
1885          * supported by this hardware */
1886         if (igb_wol_exclusion(adapter, wol) ||
1887             !device_can_wakeup(&adapter->pdev->dev))
1888                 return;
1889
1890         /* apply any specific unsupported masks here */
1891         switch (adapter->hw.device_id) {
1892         default:
1893                 break;
1894         }
1895
1896         if (adapter->wol & E1000_WUFC_EX)
1897                 wol->wolopts |= WAKE_UCAST;
1898         if (adapter->wol & E1000_WUFC_MC)
1899                 wol->wolopts |= WAKE_MCAST;
1900         if (adapter->wol & E1000_WUFC_BC)
1901                 wol->wolopts |= WAKE_BCAST;
1902         if (adapter->wol & E1000_WUFC_MAG)
1903                 wol->wolopts |= WAKE_MAGIC;
1904         if (adapter->wol & E1000_WUFC_LNKC)
1905                 wol->wolopts |= WAKE_PHY;
1906 }
1907
1908 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1909 {
1910         struct igb_adapter *adapter = netdev_priv(netdev);
1911
1912         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1913                 return -EOPNOTSUPP;
1914
1915         if (igb_wol_exclusion(adapter, wol) ||
1916             !device_can_wakeup(&adapter->pdev->dev))
1917                 return wol->wolopts ? -EOPNOTSUPP : 0;
1918
1919         /* these settings will always override what we currently have */
1920         adapter->wol = 0;
1921
1922         if (wol->wolopts & WAKE_UCAST)
1923                 adapter->wol |= E1000_WUFC_EX;
1924         if (wol->wolopts & WAKE_MCAST)
1925                 adapter->wol |= E1000_WUFC_MC;
1926         if (wol->wolopts & WAKE_BCAST)
1927                 adapter->wol |= E1000_WUFC_BC;
1928         if (wol->wolopts & WAKE_MAGIC)
1929                 adapter->wol |= E1000_WUFC_MAG;
1930         if (wol->wolopts & WAKE_PHY)
1931                 adapter->wol |= E1000_WUFC_LNKC;
1932         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1933
1934         return 0;
1935 }
1936
1937 /* bit defines for adapter->led_status */
1938 #define IGB_LED_ON              0
1939
1940 static int igb_set_phys_id(struct net_device *netdev,
1941                            enum ethtool_phys_id_state state)
1942 {
1943         struct igb_adapter *adapter = netdev_priv(netdev);
1944         struct e1000_hw *hw = &adapter->hw;
1945
1946         switch (state) {
1947         case ETHTOOL_ID_ACTIVE:
1948                 igb_blink_led(hw);
1949                 return 2;
1950         case ETHTOOL_ID_ON:
1951                 igb_blink_led(hw);
1952                 break;
1953         case ETHTOOL_ID_OFF:
1954                 igb_led_off(hw);
1955                 break;
1956         case ETHTOOL_ID_INACTIVE:
1957                 igb_led_off(hw);
1958                 clear_bit(IGB_LED_ON, &adapter->led_status);
1959                 igb_cleanup_led(hw);
1960                 break;
1961         }
1962
1963         return 0;
1964 }
1965
1966 static int igb_set_coalesce(struct net_device *netdev,
1967                             struct ethtool_coalesce *ec)
1968 {
1969         struct igb_adapter *adapter = netdev_priv(netdev);
1970         int i;
1971
1972         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1973             ((ec->rx_coalesce_usecs > 3) &&
1974              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1975             (ec->rx_coalesce_usecs == 2))
1976                 return -EINVAL;
1977
1978         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1979             ((ec->tx_coalesce_usecs > 3) &&
1980              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1981             (ec->tx_coalesce_usecs == 2))
1982                 return -EINVAL;
1983
1984         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1985                 return -EINVAL;
1986
1987         /* If ITR is disabled, disable DMAC */
1988         if (ec->rx_coalesce_usecs == 0) {
1989                 if (adapter->flags & IGB_FLAG_DMAC)
1990                         adapter->flags &= ~IGB_FLAG_DMAC;
1991         }
1992
1993         /* convert to rate of irq's per second */
1994         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
1995                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
1996         else
1997                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
1998
1999         /* convert to rate of irq's per second */
2000         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2001                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2002         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2003                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2004         else
2005                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2006
2007         for (i = 0; i < adapter->num_q_vectors; i++) {
2008                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2009                 q_vector->tx.work_limit = adapter->tx_work_limit;
2010                 if (q_vector->rx.ring)
2011                         q_vector->itr_val = adapter->rx_itr_setting;
2012                 else
2013                         q_vector->itr_val = adapter->tx_itr_setting;
2014                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2015                         q_vector->itr_val = IGB_START_ITR;
2016                 q_vector->set_itr = 1;
2017         }
2018
2019         return 0;
2020 }
2021
2022 static int igb_get_coalesce(struct net_device *netdev,
2023                             struct ethtool_coalesce *ec)
2024 {
2025         struct igb_adapter *adapter = netdev_priv(netdev);
2026
2027         if (adapter->rx_itr_setting <= 3)
2028                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2029         else
2030                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2031
2032         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2033                 if (adapter->tx_itr_setting <= 3)
2034                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2035                 else
2036                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2037         }
2038
2039         return 0;
2040 }
2041
2042 static int igb_nway_reset(struct net_device *netdev)
2043 {
2044         struct igb_adapter *adapter = netdev_priv(netdev);
2045         if (netif_running(netdev))
2046                 igb_reinit_locked(adapter);
2047         return 0;
2048 }
2049
2050 static int igb_get_sset_count(struct net_device *netdev, int sset)
2051 {
2052         switch (sset) {
2053         case ETH_SS_STATS:
2054                 return IGB_STATS_LEN;
2055         case ETH_SS_TEST:
2056                 return IGB_TEST_LEN;
2057         default:
2058                 return -ENOTSUPP;
2059         }
2060 }
2061
2062 static void igb_get_ethtool_stats(struct net_device *netdev,
2063                                   struct ethtool_stats *stats, u64 *data)
2064 {
2065         struct igb_adapter *adapter = netdev_priv(netdev);
2066         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2067         unsigned int start;
2068         struct igb_ring *ring;
2069         int i, j;
2070         char *p;
2071
2072         spin_lock(&adapter->stats64_lock);
2073         igb_update_stats(adapter, net_stats);
2074
2075         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2076                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2077                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2078                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2079         }
2080         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2081                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2082                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2083                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2084         }
2085         for (j = 0; j < adapter->num_tx_queues; j++) {
2086                 u64     restart2;
2087
2088                 ring = adapter->tx_ring[j];
2089                 do {
2090                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2091                         data[i]   = ring->tx_stats.packets;
2092                         data[i+1] = ring->tx_stats.bytes;
2093                         data[i+2] = ring->tx_stats.restart_queue;
2094                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2095                 do {
2096                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2097                         restart2  = ring->tx_stats.restart_queue2;
2098                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2099                 data[i+2] += restart2;
2100
2101                 i += IGB_TX_QUEUE_STATS_LEN;
2102         }
2103         for (j = 0; j < adapter->num_rx_queues; j++) {
2104                 ring = adapter->rx_ring[j];
2105                 do {
2106                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2107                         data[i]   = ring->rx_stats.packets;
2108                         data[i+1] = ring->rx_stats.bytes;
2109                         data[i+2] = ring->rx_stats.drops;
2110                         data[i+3] = ring->rx_stats.csum_err;
2111                         data[i+4] = ring->rx_stats.alloc_failed;
2112                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2113                 i += IGB_RX_QUEUE_STATS_LEN;
2114         }
2115         spin_unlock(&adapter->stats64_lock);
2116 }
2117
2118 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2119 {
2120         struct igb_adapter *adapter = netdev_priv(netdev);
2121         u8 *p = data;
2122         int i;
2123
2124         switch (stringset) {
2125         case ETH_SS_TEST:
2126                 memcpy(data, *igb_gstrings_test,
2127                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2128                 break;
2129         case ETH_SS_STATS:
2130                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2131                         memcpy(p, igb_gstrings_stats[i].stat_string,
2132                                ETH_GSTRING_LEN);
2133                         p += ETH_GSTRING_LEN;
2134                 }
2135                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2136                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2137                                ETH_GSTRING_LEN);
2138                         p += ETH_GSTRING_LEN;
2139                 }
2140                 for (i = 0; i < adapter->num_tx_queues; i++) {
2141                         sprintf(p, "tx_queue_%u_packets", i);
2142                         p += ETH_GSTRING_LEN;
2143                         sprintf(p, "tx_queue_%u_bytes", i);
2144                         p += ETH_GSTRING_LEN;
2145                         sprintf(p, "tx_queue_%u_restart", i);
2146                         p += ETH_GSTRING_LEN;
2147                 }
2148                 for (i = 0; i < adapter->num_rx_queues; i++) {
2149                         sprintf(p, "rx_queue_%u_packets", i);
2150                         p += ETH_GSTRING_LEN;
2151                         sprintf(p, "rx_queue_%u_bytes", i);
2152                         p += ETH_GSTRING_LEN;
2153                         sprintf(p, "rx_queue_%u_drops", i);
2154                         p += ETH_GSTRING_LEN;
2155                         sprintf(p, "rx_queue_%u_csum_err", i);
2156                         p += ETH_GSTRING_LEN;
2157                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2158                         p += ETH_GSTRING_LEN;
2159                 }
2160 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2161                 break;
2162         }
2163 }
2164
2165 static int igb_ethtool_begin(struct net_device *netdev)
2166 {
2167         struct igb_adapter *adapter = netdev_priv(netdev);
2168         pm_runtime_get_sync(&adapter->pdev->dev);
2169         return 0;
2170 }
2171
2172 static void igb_ethtool_complete(struct net_device *netdev)
2173 {
2174         struct igb_adapter *adapter = netdev_priv(netdev);
2175         pm_runtime_put(&adapter->pdev->dev);
2176 }
2177
2178 static const struct ethtool_ops igb_ethtool_ops = {
2179         .get_settings           = igb_get_settings,
2180         .set_settings           = igb_set_settings,
2181         .get_drvinfo            = igb_get_drvinfo,
2182         .get_regs_len           = igb_get_regs_len,
2183         .get_regs               = igb_get_regs,
2184         .get_wol                = igb_get_wol,
2185         .set_wol                = igb_set_wol,
2186         .get_msglevel           = igb_get_msglevel,
2187         .set_msglevel           = igb_set_msglevel,
2188         .nway_reset             = igb_nway_reset,
2189         .get_link               = igb_get_link,
2190         .get_eeprom_len         = igb_get_eeprom_len,
2191         .get_eeprom             = igb_get_eeprom,
2192         .set_eeprom             = igb_set_eeprom,
2193         .get_ringparam          = igb_get_ringparam,
2194         .set_ringparam          = igb_set_ringparam,
2195         .get_pauseparam         = igb_get_pauseparam,
2196         .set_pauseparam         = igb_set_pauseparam,
2197         .self_test              = igb_diag_test,
2198         .get_strings            = igb_get_strings,
2199         .set_phys_id            = igb_set_phys_id,
2200         .get_sset_count         = igb_get_sset_count,
2201         .get_ethtool_stats      = igb_get_ethtool_stats,
2202         .get_coalesce           = igb_get_coalesce,
2203         .set_coalesce           = igb_set_coalesce,
2204         .begin                  = igb_ethtool_begin,
2205         .complete               = igb_ethtool_complete,
2206 };
2207
2208 void igb_set_ethtool_ops(struct net_device *netdev)
2209 {
2210         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2211 }