]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
3b56f809967c8f524fd25e509ed496f9e18dcc85
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter, bool set);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static int igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197                         igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205         .notifier_call  = igb_notify_dca,
206         .next           = NULL,
207         .priority       = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221                      pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226         .error_detected = igb_io_error_detected,
227         .slot_reset = igb_io_slot_reset,
228         .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234         .name     = igb_driver_name,
235         .id_table = igb_pci_tbl,
236         .probe    = igb_probe,
237         .remove   = igb_remove,
238 #ifdef CONFIG_PM
239         .driver.pm = &igb_pm_ops,
240 #endif
241         .shutdown = igb_shutdown,
242         .sriov_configure = igb_pci_sriov_configure,
243         .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257         u32 ofs;
258         char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263         /* General Registers */
264         {E1000_CTRL, "CTRL"},
265         {E1000_STATUS, "STATUS"},
266         {E1000_CTRL_EXT, "CTRL_EXT"},
267
268         /* Interrupt Registers */
269         {E1000_ICR, "ICR"},
270
271         /* RX Registers */
272         {E1000_RCTL, "RCTL"},
273         {E1000_RDLEN(0), "RDLEN"},
274         {E1000_RDH(0), "RDH"},
275         {E1000_RDT(0), "RDT"},
276         {E1000_RXDCTL(0), "RXDCTL"},
277         {E1000_RDBAL(0), "RDBAL"},
278         {E1000_RDBAH(0), "RDBAH"},
279
280         /* TX Registers */
281         {E1000_TCTL, "TCTL"},
282         {E1000_TDBAL(0), "TDBAL"},
283         {E1000_TDBAH(0), "TDBAH"},
284         {E1000_TDLEN(0), "TDLEN"},
285         {E1000_TDH(0), "TDH"},
286         {E1000_TDT(0), "TDT"},
287         {E1000_TXDCTL(0), "TXDCTL"},
288         {E1000_TDFH, "TDFH"},
289         {E1000_TDFT, "TDFT"},
290         {E1000_TDFHS, "TDFHS"},
291         {E1000_TDFPC, "TDFPC"},
292
293         /* List Terminator */
294         {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300         int n = 0;
301         char rname[16];
302         u32 regs[8];
303
304         switch (reginfo->ofs) {
305         case E1000_RDLEN(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RDLEN(n));
308                 break;
309         case E1000_RDH(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDH(n));
312                 break;
313         case E1000_RDT(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDT(n));
316                 break;
317         case E1000_RXDCTL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RXDCTL(n));
320                 break;
321         case E1000_RDBAL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDBAL(n));
324                 break;
325         case E1000_RDBAH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAH(n));
328                 break;
329         case E1000_TDBAL(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAL(n));
332                 break;
333         case E1000_TDBAH(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDBAH(n));
336                 break;
337         case E1000_TDLEN(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDLEN(n));
340                 break;
341         case E1000_TDH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDH(n));
344                 break;
345         case E1000_TDT(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDT(n));
348                 break;
349         case E1000_TXDCTL(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TXDCTL(n));
352                 break;
353         default:
354                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355                 return;
356         }
357
358         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360                 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         struct e1000_hw *hw = &adapter->hw;
368         struct igb_reg_info *reginfo;
369         struct igb_ring *tx_ring;
370         union e1000_adv_tx_desc *tx_desc;
371         struct my_u0 { u64 a; u64 b; } *u0;
372         struct igb_ring *rx_ring;
373         union e1000_adv_rx_desc *rx_desc;
374         u32 staterr;
375         u16 i, n;
376
377         if (!netif_msg_hw(adapter))
378                 return;
379
380         /* Print netdevice Info */
381         if (netdev) {
382                 dev_info(&adapter->pdev->dev, "Net device Info\n");
383                 pr_info("Device Name     state            trans_start      last_rx\n");
384                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385                         netdev->state, netdev->trans_start, netdev->last_rx);
386         }
387
388         /* Print Registers */
389         dev_info(&adapter->pdev->dev, "Register Dump\n");
390         pr_info(" Register Name   Value\n");
391         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392              reginfo->name; reginfo++) {
393                 igb_regdump(hw, reginfo);
394         }
395
396         /* Print TX Ring Summary */
397         if (!netdev || !netif_running(netdev))
398                 goto exit;
399
400         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402         for (n = 0; n < adapter->num_tx_queues; n++) {
403                 struct igb_tx_buffer *buffer_info;
404                 tx_ring = adapter->tx_ring[n];
405                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
408                         (u64)dma_unmap_addr(buffer_info, dma),
409                         dma_unmap_len(buffer_info, len),
410                         buffer_info->next_to_watch,
411                         (u64)buffer_info->time_stamp);
412         }
413
414         /* Print TX Rings */
415         if (!netif_msg_tx_done(adapter))
416                 goto rx_ring_summary;
417
418         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420         /* Transmit Descriptor Formats
421          *
422          * Advanced Transmit Descriptor
423          *   +--------------------------------------------------------------+
424          * 0 |         Buffer Address [63:0]                                |
425          *   +--------------------------------------------------------------+
426          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427          *   +--------------------------------------------------------------+
428          *   63      46 45    40 39 38 36 35 32 31   24             15       0
429          */
430
431         for (n = 0; n < adapter->num_tx_queues; n++) {
432                 tx_ring = adapter->tx_ring[n];
433                 pr_info("------------------------------------\n");
434                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435                 pr_info("------------------------------------\n");
436                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455                                 i, le64_to_cpu(u0->a),
456                                 le64_to_cpu(u0->b),
457                                 (u64)dma_unmap_addr(buffer_info, dma),
458                                 dma_unmap_len(buffer_info, len),
459                                 buffer_info->next_to_watch,
460                                 (u64)buffer_info->time_stamp,
461                                 buffer_info->skb, next_desc);
462
463                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
464                                 print_hex_dump(KERN_INFO, "",
465                                         DUMP_PREFIX_ADDRESS,
466                                         16, 1, buffer_info->skb->data,
467                                         dma_unmap_len(buffer_info, len),
468                                         true);
469                 }
470         }
471
472         /* Print RX Rings Summary */
473 rx_ring_summary:
474         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475         pr_info("Queue [NTU] [NTC]\n");
476         for (n = 0; n < adapter->num_rx_queues; n++) {
477                 rx_ring = adapter->rx_ring[n];
478                 pr_info(" %5d %5X %5X\n",
479                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
480         }
481
482         /* Print RX Rings */
483         if (!netif_msg_rx_status(adapter))
484                 goto exit;
485
486         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488         /* Advanced Receive Descriptor (Read) Format
489          *    63                                           1        0
490          *    +-----------------------------------------------------+
491          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492          *    +----------------------------------------------+------+
493          *  8 |       Header Buffer Address [63:1]           |  DD  |
494          *    +-----------------------------------------------------+
495          *
496          *
497          * Advanced Receive Descriptor (Write-Back) Format
498          *
499          *   63       48 47    32 31  30      21 20 17 16   4 3     0
500          *   +------------------------------------------------------+
501          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502          *   | Checksum   Ident  |   |           |    | Type | Type |
503          *   +------------------------------------------------------+
504          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505          *   +------------------------------------------------------+
506          *   63       48 47    32 31            20 19               0
507          */
508
509         for (n = 0; n < adapter->num_rx_queues; n++) {
510                 rx_ring = adapter->rx_ring[n];
511                 pr_info("------------------------------------\n");
512                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513                 pr_info("------------------------------------\n");
514                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517                 for (i = 0; i < rx_ring->count; i++) {
518                         const char *next_desc;
519                         struct igb_rx_buffer *buffer_info;
520                         buffer_info = &rx_ring->rx_buffer_info[i];
521                         rx_desc = IGB_RX_DESC(rx_ring, i);
522                         u0 = (struct my_u0 *)rx_desc;
523                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525                         if (i == rx_ring->next_to_use)
526                                 next_desc = " NTU";
527                         else if (i == rx_ring->next_to_clean)
528                                 next_desc = " NTC";
529                         else
530                                 next_desc = "";
531
532                         if (staterr & E1000_RXD_STAT_DD) {
533                                 /* Descriptor Done */
534                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535                                         "RWB", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         next_desc);
539                         } else {
540                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541                                         "R  ", i,
542                                         le64_to_cpu(u0->a),
543                                         le64_to_cpu(u0->b),
544                                         (u64)buffer_info->dma,
545                                         next_desc);
546
547                                 if (netif_msg_pktdata(adapter) &&
548                                     buffer_info->dma && buffer_info->page) {
549                                         print_hex_dump(KERN_INFO, "",
550                                           DUMP_PREFIX_ADDRESS,
551                                           16, 1,
552                                           page_address(buffer_info->page) +
553                                                       buffer_info->page_offset,
554                                           IGB_RX_BUFSZ, true);
555                                 }
556                         }
557                 }
558         }
559
560 exit:
561         return;
562 }
563
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573         struct igb_adapter *adapter = (struct igb_adapter *)data;
574         struct e1000_hw *hw = &adapter->hw;
575         s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577         return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589         struct igb_adapter *adapter = (struct igb_adapter *)data;
590         struct e1000_hw *hw = &adapter->hw;
591         s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593         if (state)
594                 i2cctl |= E1000_I2C_DATA_OUT;
595         else
596                 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598         i2cctl &= ~E1000_I2C_DATA_OE_N;
599         i2cctl |= E1000_I2C_CLK_OE_N;
600         wr32(E1000_I2CPARAMS, i2cctl);
601         wrfl();
602
603 }
604
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614         struct igb_adapter *adapter = (struct igb_adapter *)data;
615         struct e1000_hw *hw = &adapter->hw;
616         s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618         if (state) {
619                 i2cctl |= E1000_I2C_CLK_OUT;
620                 i2cctl &= ~E1000_I2C_CLK_OE_N;
621         } else {
622                 i2cctl &= ~E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         }
625         wr32(E1000_I2CPARAMS, i2cctl);
626         wrfl();
627 }
628
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637         struct igb_adapter *adapter = (struct igb_adapter *)data;
638         struct e1000_hw *hw = &adapter->hw;
639         s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641         return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645         .setsda         = igb_set_i2c_data,
646         .setscl         = igb_set_i2c_clk,
647         .getsda         = igb_get_i2c_data,
648         .getscl         = igb_get_i2c_clk,
649         .udelay         = 5,
650         .timeout        = 20,
651 };
652
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661         struct igb_adapter *adapter = hw->back;
662         return adapter->netdev;
663 }
664
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673         int ret;
674
675         pr_info("%s - version %s\n",
676                igb_driver_string, igb_driver_version);
677         pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680         dca_register_notify(&dca_notifier);
681 #endif
682         ret = pci_register_driver(&igb_driver);
683         return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697         dca_unregister_notify(&dca_notifier);
698 #endif
699         pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714         int i = 0, j = 0;
715         u32 rbase_offset = adapter->vfs_allocated_count;
716
717         switch (adapter->hw.mac.type) {
718         case e1000_82576:
719                 /* The queues are allocated for virtualization such that VF 0
720                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721                  * In order to avoid collision we start at the first free queue
722                  * and continue consuming queues in the same sequence
723                  */
724                 if (adapter->vfs_allocated_count) {
725                         for (; i < adapter->rss_queues; i++)
726                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
727                                                                Q_IDX_82576(i);
728                 }
729                 /* Fall through */
730         case e1000_82575:
731         case e1000_82580:
732         case e1000_i350:
733         case e1000_i354:
734         case e1000_i210:
735         case e1000_i211:
736                 /* Fall through */
737         default:
738                 for (; i < adapter->num_rx_queues; i++)
739                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740                 for (; j < adapter->num_tx_queues; j++)
741                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742                 break;
743         }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750         u32 value = 0;
751
752         if (E1000_REMOVED(hw_addr))
753                 return ~value;
754
755         value = readl(&hw_addr[reg]);
756
757         /* reads should not return all F's */
758         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759                 struct net_device *netdev = igb->netdev;
760                 hw->hw_addr = NULL;
761                 netif_device_detach(netdev);
762                 netdev_err(netdev, "PCIe link lost, device now detached\n");
763         }
764
765         return value;
766 }
767
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781                            int index, int offset)
782 {
783         u32 ivar = array_rd32(E1000_IVAR0, index);
784
785         /* clear any bits that are currently set */
786         ivar &= ~((u32)0xFF << offset);
787
788         /* write vector and valid bit */
789         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791         array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797         struct igb_adapter *adapter = q_vector->adapter;
798         struct e1000_hw *hw = &adapter->hw;
799         int rx_queue = IGB_N0_QUEUE;
800         int tx_queue = IGB_N0_QUEUE;
801         u32 msixbm = 0;
802
803         if (q_vector->rx.ring)
804                 rx_queue = q_vector->rx.ring->reg_idx;
805         if (q_vector->tx.ring)
806                 tx_queue = q_vector->tx.ring->reg_idx;
807
808         switch (hw->mac.type) {
809         case e1000_82575:
810                 /* The 82575 assigns vectors using a bitmask, which matches the
811                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812                  * or more queues to a vector, we write the appropriate bits
813                  * into the MSIXBM register for that vector.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817                 if (tx_queue > IGB_N0_QUEUE)
818                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820                         msixbm |= E1000_EIMS_OTHER;
821                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822                 q_vector->eims_value = msixbm;
823                 break;
824         case e1000_82576:
825                 /* 82576 uses a table that essentially consists of 2 columns
826                  * with 8 rows.  The ordering is column-major so we use the
827                  * lower 3 bits as the row index, and the 4th bit as the
828                  * column offset.
829                  */
830                 if (rx_queue > IGB_N0_QUEUE)
831                         igb_write_ivar(hw, msix_vector,
832                                        rx_queue & 0x7,
833                                        (rx_queue & 0x8) << 1);
834                 if (tx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        tx_queue & 0x7,
837                                        ((tx_queue & 0x8) << 1) + 8);
838                 q_vector->eims_value = 1 << msix_vector;
839                 break;
840         case e1000_82580:
841         case e1000_i350:
842         case e1000_i354:
843         case e1000_i210:
844         case e1000_i211:
845                 /* On 82580 and newer adapters the scheme is similar to 82576
846                  * however instead of ordering column-major we have things
847                  * ordered row-major.  So we traverse the table by using
848                  * bit 0 as the column offset, and the remaining bits as the
849                  * row index.
850                  */
851                 if (rx_queue > IGB_N0_QUEUE)
852                         igb_write_ivar(hw, msix_vector,
853                                        rx_queue >> 1,
854                                        (rx_queue & 0x1) << 4);
855                 if (tx_queue > IGB_N0_QUEUE)
856                         igb_write_ivar(hw, msix_vector,
857                                        tx_queue >> 1,
858                                        ((tx_queue & 0x1) << 4) + 8);
859                 q_vector->eims_value = 1 << msix_vector;
860                 break;
861         default:
862                 BUG();
863                 break;
864         }
865
866         /* add q_vector eims value to global eims_enable_mask */
867         adapter->eims_enable_mask |= q_vector->eims_value;
868
869         /* configure q_vector to set itr on first interrupt */
870         q_vector->set_itr = 1;
871 }
872
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882         u32 tmp;
883         int i, vector = 0;
884         struct e1000_hw *hw = &adapter->hw;
885
886         adapter->eims_enable_mask = 0;
887
888         /* set vector for other causes, i.e. link changes */
889         switch (hw->mac.type) {
890         case e1000_82575:
891                 tmp = rd32(E1000_CTRL_EXT);
892                 /* enable MSI-X PBA support*/
893                 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895                 /* Auto-Mask interrupts upon ICR read. */
896                 tmp |= E1000_CTRL_EXT_EIAME;
897                 tmp |= E1000_CTRL_EXT_IRCA;
898
899                 wr32(E1000_CTRL_EXT, tmp);
900
901                 /* enable msix_other interrupt */
902                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903                 adapter->eims_other = E1000_EIMS_OTHER;
904
905                 break;
906
907         case e1000_82576:
908         case e1000_82580:
909         case e1000_i350:
910         case e1000_i354:
911         case e1000_i210:
912         case e1000_i211:
913                 /* Turn on MSI-X capability first, or our settings
914                  * won't stick.  And it will take days to debug.
915                  */
916                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
918                      E1000_GPIE_NSICR);
919
920                 /* enable msix_other interrupt */
921                 adapter->eims_other = 1 << vector;
922                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924                 wr32(E1000_IVAR_MISC, tmp);
925                 break;
926         default:
927                 /* do nothing, since nothing else supports MSI-X */
928                 break;
929         } /* switch (hw->mac.type) */
930
931         adapter->eims_enable_mask |= adapter->eims_other;
932
933         for (i = 0; i < adapter->num_q_vectors; i++)
934                 igb_assign_vector(adapter->q_vector[i], vector++);
935
936         wrfl();
937 }
938
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948         struct net_device *netdev = adapter->netdev;
949         int i, err = 0, vector = 0, free_vector = 0;
950
951         err = request_irq(adapter->msix_entries[vector].vector,
952                           igb_msix_other, 0, netdev->name, adapter);
953         if (err)
954                 goto err_out;
955
956         for (i = 0; i < adapter->num_q_vectors; i++) {
957                 struct igb_q_vector *q_vector = adapter->q_vector[i];
958
959                 vector++;
960
961                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
962
963                 if (q_vector->rx.ring && q_vector->tx.ring)
964                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
965                                 q_vector->rx.ring->queue_index);
966                 else if (q_vector->tx.ring)
967                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
968                                 q_vector->tx.ring->queue_index);
969                 else if (q_vector->rx.ring)
970                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
971                                 q_vector->rx.ring->queue_index);
972                 else
973                         sprintf(q_vector->name, "%s-unused", netdev->name);
974
975                 err = request_irq(adapter->msix_entries[vector].vector,
976                                   igb_msix_ring, 0, q_vector->name,
977                                   q_vector);
978                 if (err)
979                         goto err_free;
980         }
981
982         igb_configure_msix(adapter);
983         return 0;
984
985 err_free:
986         /* free already assigned IRQs */
987         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988
989         vector--;
990         for (i = 0; i < vector; i++) {
991                 free_irq(adapter->msix_entries[free_vector++].vector,
992                          adapter->q_vector[i]);
993         }
994 err_out:
995         return err;
996 }
997
998 /**
999  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000  *  @adapter: board private structure to initialize
1001  *  @v_idx: Index of vector to be freed
1002  *
1003  *  This function frees the memory allocated to the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009         adapter->q_vector[v_idx] = NULL;
1010
1011         /* igb_get_stats64() might access the rings on this vector,
1012          * we must wait a grace period before freeing it.
1013          */
1014         if (q_vector)
1015                 kfree_rcu(q_vector, rcu);
1016 }
1017
1018 /**
1019  *  igb_reset_q_vector - Reset config for interrupt vector
1020  *  @adapter: board private structure to initialize
1021  *  @v_idx: Index of vector to be reset
1022  *
1023  *  If NAPI is enabled it will delete any references to the
1024  *  NAPI struct. This is preparation for igb_free_q_vector.
1025  **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031          * allocated. So, q_vector is NULL so we should stop here.
1032          */
1033         if (!q_vector)
1034                 return;
1035
1036         if (q_vector->tx.ring)
1037                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039         if (q_vector->rx.ring)
1040                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042         netif_napi_del(&q_vector->napi);
1043
1044 }
1045
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048         int v_idx = adapter->num_q_vectors;
1049
1050         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051                 pci_disable_msix(adapter->pdev);
1052         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053                 pci_disable_msi(adapter->pdev);
1054
1055         while (v_idx--)
1056                 igb_reset_q_vector(adapter, v_idx);
1057 }
1058
1059 /**
1060  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061  *  @adapter: board private structure to initialize
1062  *
1063  *  This function frees the memory allocated to the q_vectors.  In addition if
1064  *  NAPI is enabled it will delete any references to the NAPI struct prior
1065  *  to freeing the q_vector.
1066  **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069         int v_idx = adapter->num_q_vectors;
1070
1071         adapter->num_tx_queues = 0;
1072         adapter->num_rx_queues = 0;
1073         adapter->num_q_vectors = 0;
1074
1075         while (v_idx--) {
1076                 igb_reset_q_vector(adapter, v_idx);
1077                 igb_free_q_vector(adapter, v_idx);
1078         }
1079 }
1080
1081 /**
1082  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083  *  @adapter: board private structure to initialize
1084  *
1085  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086  *  MSI-X interrupts allocated.
1087  */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090         igb_free_q_vectors(adapter);
1091         igb_reset_interrupt_capability(adapter);
1092 }
1093
1094 /**
1095  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096  *  @adapter: board private structure to initialize
1097  *  @msix: boolean value of MSIX capability
1098  *
1099  *  Attempt to configure interrupts using the best available
1100  *  capabilities of the hardware and kernel.
1101  **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104         int err;
1105         int numvecs, i;
1106
1107         if (!msix)
1108                 goto msi_only;
1109         adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111         /* Number of supported queues. */
1112         adapter->num_rx_queues = adapter->rss_queues;
1113         if (adapter->vfs_allocated_count)
1114                 adapter->num_tx_queues = 1;
1115         else
1116                 adapter->num_tx_queues = adapter->rss_queues;
1117
1118         /* start with one vector for every Rx queue */
1119         numvecs = adapter->num_rx_queues;
1120
1121         /* if Tx handler is separate add 1 for every Tx queue */
1122         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123                 numvecs += adapter->num_tx_queues;
1124
1125         /* store the number of vectors reserved for queues */
1126         adapter->num_q_vectors = numvecs;
1127
1128         /* add 1 vector for link status interrupts */
1129         numvecs++;
1130         for (i = 0; i < numvecs; i++)
1131                 adapter->msix_entries[i].entry = i;
1132
1133         err = pci_enable_msix_range(adapter->pdev,
1134                                     adapter->msix_entries,
1135                                     numvecs,
1136                                     numvecs);
1137         if (err > 0)
1138                 return;
1139
1140         igb_reset_interrupt_capability(adapter);
1141
1142         /* If we can't do MSI-X, try MSI */
1143 msi_only:
1144         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146         /* disable SR-IOV for non MSI-X configurations */
1147         if (adapter->vf_data) {
1148                 struct e1000_hw *hw = &adapter->hw;
1149                 /* disable iov and allow time for transactions to clear */
1150                 pci_disable_sriov(adapter->pdev);
1151                 msleep(500);
1152
1153                 kfree(adapter->vf_data);
1154                 adapter->vf_data = NULL;
1155                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156                 wrfl();
1157                 msleep(100);
1158                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159         }
1160 #endif
1161         adapter->vfs_allocated_count = 0;
1162         adapter->rss_queues = 1;
1163         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164         adapter->num_rx_queues = 1;
1165         adapter->num_tx_queues = 1;
1166         adapter->num_q_vectors = 1;
1167         if (!pci_enable_msi(adapter->pdev))
1168                 adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170
1171 static void igb_add_ring(struct igb_ring *ring,
1172                          struct igb_ring_container *head)
1173 {
1174         head->ring = ring;
1175         head->count++;
1176 }
1177
1178 /**
1179  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180  *  @adapter: board private structure to initialize
1181  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182  *  @v_idx: index of vector in adapter struct
1183  *  @txr_count: total number of Tx rings to allocate
1184  *  @txr_idx: index of first Tx ring to allocate
1185  *  @rxr_count: total number of Rx rings to allocate
1186  *  @rxr_idx: index of first Rx ring to allocate
1187  *
1188  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189  **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191                               int v_count, int v_idx,
1192                               int txr_count, int txr_idx,
1193                               int rxr_count, int rxr_idx)
1194 {
1195         struct igb_q_vector *q_vector;
1196         struct igb_ring *ring;
1197         int ring_count, size;
1198
1199         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200         if (txr_count > 1 || rxr_count > 1)
1201                 return -ENOMEM;
1202
1203         ring_count = txr_count + rxr_count;
1204         size = sizeof(struct igb_q_vector) +
1205                (sizeof(struct igb_ring) * ring_count);
1206
1207         /* allocate q_vector and rings */
1208         q_vector = adapter->q_vector[v_idx];
1209         if (!q_vector) {
1210                 q_vector = kzalloc(size, GFP_KERNEL);
1211         } else if (size > ksize(q_vector)) {
1212                 kfree_rcu(q_vector, rcu);
1213                 q_vector = kzalloc(size, GFP_KERNEL);
1214         } else {
1215                 memset(q_vector, 0, size);
1216         }
1217         if (!q_vector)
1218                 return -ENOMEM;
1219
1220         /* initialize NAPI */
1221         netif_napi_add(adapter->netdev, &q_vector->napi,
1222                        igb_poll, 64);
1223
1224         /* tie q_vector and adapter together */
1225         adapter->q_vector[v_idx] = q_vector;
1226         q_vector->adapter = adapter;
1227
1228         /* initialize work limits */
1229         q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231         /* initialize ITR configuration */
1232         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233         q_vector->itr_val = IGB_START_ITR;
1234
1235         /* initialize pointer to rings */
1236         ring = q_vector->ring;
1237
1238         /* intialize ITR */
1239         if (rxr_count) {
1240                 /* rx or rx/tx vector */
1241                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242                         q_vector->itr_val = adapter->rx_itr_setting;
1243         } else {
1244                 /* tx only vector */
1245                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246                         q_vector->itr_val = adapter->tx_itr_setting;
1247         }
1248
1249         if (txr_count) {
1250                 /* assign generic ring traits */
1251                 ring->dev = &adapter->pdev->dev;
1252                 ring->netdev = adapter->netdev;
1253
1254                 /* configure backlink on ring */
1255                 ring->q_vector = q_vector;
1256
1257                 /* update q_vector Tx values */
1258                 igb_add_ring(ring, &q_vector->tx);
1259
1260                 /* For 82575, context index must be unique per ring. */
1261                 if (adapter->hw.mac.type == e1000_82575)
1262                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264                 /* apply Tx specific ring traits */
1265                 ring->count = adapter->tx_ring_count;
1266                 ring->queue_index = txr_idx;
1267
1268                 u64_stats_init(&ring->tx_syncp);
1269                 u64_stats_init(&ring->tx_syncp2);
1270
1271                 /* assign ring to adapter */
1272                 adapter->tx_ring[txr_idx] = ring;
1273
1274                 /* push pointer to next ring */
1275                 ring++;
1276         }
1277
1278         if (rxr_count) {
1279                 /* assign generic ring traits */
1280                 ring->dev = &adapter->pdev->dev;
1281                 ring->netdev = adapter->netdev;
1282
1283                 /* configure backlink on ring */
1284                 ring->q_vector = q_vector;
1285
1286                 /* update q_vector Rx values */
1287                 igb_add_ring(ring, &q_vector->rx);
1288
1289                 /* set flag indicating ring supports SCTP checksum offload */
1290                 if (adapter->hw.mac.type >= e1000_82576)
1291                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293                 /* On i350, i354, i210, and i211, loopback VLAN packets
1294                  * have the tag byte-swapped.
1295                  */
1296                 if (adapter->hw.mac.type >= e1000_i350)
1297                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299                 /* apply Rx specific ring traits */
1300                 ring->count = adapter->rx_ring_count;
1301                 ring->queue_index = rxr_idx;
1302
1303                 u64_stats_init(&ring->rx_syncp);
1304
1305                 /* assign ring to adapter */
1306                 adapter->rx_ring[rxr_idx] = ring;
1307         }
1308
1309         return 0;
1310 }
1311
1312
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322         int q_vectors = adapter->num_q_vectors;
1323         int rxr_remaining = adapter->num_rx_queues;
1324         int txr_remaining = adapter->num_tx_queues;
1325         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326         int err;
1327
1328         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329                 for (; rxr_remaining; v_idx++) {
1330                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331                                                  0, 0, 1, rxr_idx);
1332
1333                         if (err)
1334                                 goto err_out;
1335
1336                         /* update counts and index */
1337                         rxr_remaining--;
1338                         rxr_idx++;
1339                 }
1340         }
1341
1342         for (; v_idx < q_vectors; v_idx++) {
1343                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347                                          tqpv, txr_idx, rqpv, rxr_idx);
1348
1349                 if (err)
1350                         goto err_out;
1351
1352                 /* update counts and index */
1353                 rxr_remaining -= rqpv;
1354                 txr_remaining -= tqpv;
1355                 rxr_idx++;
1356                 txr_idx++;
1357         }
1358
1359         return 0;
1360
1361 err_out:
1362         adapter->num_tx_queues = 0;
1363         adapter->num_rx_queues = 0;
1364         adapter->num_q_vectors = 0;
1365
1366         while (v_idx--)
1367                 igb_free_q_vector(adapter, v_idx);
1368
1369         return -ENOMEM;
1370 }
1371
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381         struct pci_dev *pdev = adapter->pdev;
1382         int err;
1383
1384         igb_set_interrupt_capability(adapter, msix);
1385
1386         err = igb_alloc_q_vectors(adapter);
1387         if (err) {
1388                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389                 goto err_alloc_q_vectors;
1390         }
1391
1392         igb_cache_ring_register(adapter);
1393
1394         return 0;
1395
1396 err_alloc_q_vectors:
1397         igb_reset_interrupt_capability(adapter);
1398         return err;
1399 }
1400
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410         struct net_device *netdev = adapter->netdev;
1411         struct pci_dev *pdev = adapter->pdev;
1412         int err = 0;
1413
1414         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415                 err = igb_request_msix(adapter);
1416                 if (!err)
1417                         goto request_done;
1418                 /* fall back to MSI */
1419                 igb_free_all_tx_resources(adapter);
1420                 igb_free_all_rx_resources(adapter);
1421
1422                 igb_clear_interrupt_scheme(adapter);
1423                 err = igb_init_interrupt_scheme(adapter, false);
1424                 if (err)
1425                         goto request_done;
1426
1427                 igb_setup_all_tx_resources(adapter);
1428                 igb_setup_all_rx_resources(adapter);
1429                 igb_configure(adapter);
1430         }
1431
1432         igb_assign_vector(adapter->q_vector[0], 0);
1433
1434         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1436                                   netdev->name, adapter);
1437                 if (!err)
1438                         goto request_done;
1439
1440                 /* fall back to legacy interrupts */
1441                 igb_reset_interrupt_capability(adapter);
1442                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443         }
1444
1445         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446                           netdev->name, adapter);
1447
1448         if (err)
1449                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450                         err);
1451
1452 request_done:
1453         return err;
1454 }
1455
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459                 int vector = 0, i;
1460
1461                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463                 for (i = 0; i < adapter->num_q_vectors; i++)
1464                         free_irq(adapter->msix_entries[vector++].vector,
1465                                  adapter->q_vector[i]);
1466         } else {
1467                 free_irq(adapter->pdev->irq, adapter);
1468         }
1469 }
1470
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477         struct e1000_hw *hw = &adapter->hw;
1478
1479         /* we need to be careful when disabling interrupts.  The VFs are also
1480          * mapped into these registers and so clearing the bits can cause
1481          * issues on the VF drivers so we only need to clear what we set
1482          */
1483         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484                 u32 regval = rd32(E1000_EIAM);
1485
1486                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1488                 regval = rd32(E1000_EIAC);
1489                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490         }
1491
1492         wr32(E1000_IAM, 0);
1493         wr32(E1000_IMC, ~0);
1494         wrfl();
1495         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496                 int i;
1497
1498                 for (i = 0; i < adapter->num_q_vectors; i++)
1499                         synchronize_irq(adapter->msix_entries[i].vector);
1500         } else {
1501                 synchronize_irq(adapter->pdev->irq);
1502         }
1503 }
1504
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512
1513         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515                 u32 regval = rd32(E1000_EIAC);
1516
1517                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518                 regval = rd32(E1000_EIAM);
1519                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1521                 if (adapter->vfs_allocated_count) {
1522                         wr32(E1000_MBVFIMR, 0xFF);
1523                         ims |= E1000_IMS_VMMB;
1524                 }
1525                 wr32(E1000_IMS, ims);
1526         } else {
1527                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1528                                 E1000_IMS_DRSTA);
1529                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1530                                 E1000_IMS_DRSTA);
1531         }
1532 }
1533
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536         struct e1000_hw *hw = &adapter->hw;
1537         u16 pf_id = adapter->vfs_allocated_count;
1538         u16 vid = adapter->hw.mng_cookie.vlan_id;
1539         u16 old_vid = adapter->mng_vlan_id;
1540
1541         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542                 /* add VID to filter table */
1543                 igb_vfta_set(hw, vid, pf_id, true, true);
1544                 adapter->mng_vlan_id = vid;
1545         } else {
1546                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547         }
1548
1549         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550             (vid != old_vid) &&
1551             !test_bit(old_vid, adapter->active_vlans)) {
1552                 /* remove VID from filter table */
1553                 igb_vfta_set(hw, vid, pf_id, false, true);
1554         }
1555 }
1556
1557 /**
1558  *  igb_release_hw_control - release control of the h/w to f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that the
1563  *  driver is no longer loaded.
1564  **/
1565 static void igb_release_hw_control(struct igb_adapter *adapter)
1566 {
1567         struct e1000_hw *hw = &adapter->hw;
1568         u32 ctrl_ext;
1569
1570         /* Let firmware take over control of h/w */
1571         ctrl_ext = rd32(E1000_CTRL_EXT);
1572         wr32(E1000_CTRL_EXT,
1573                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575
1576 /**
1577  *  igb_get_hw_control - get control of the h/w from f/w
1578  *  @adapter: address of board private structure
1579  *
1580  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581  *  For ASF and Pass Through versions of f/w this means that
1582  *  the driver is loaded.
1583  **/
1584 static void igb_get_hw_control(struct igb_adapter *adapter)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587         u32 ctrl_ext;
1588
1589         /* Let firmware know the driver has taken over */
1590         ctrl_ext = rd32(E1000_CTRL_EXT);
1591         wr32(E1000_CTRL_EXT,
1592                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593 }
1594
1595 /**
1596  *  igb_configure - configure the hardware for RX and TX
1597  *  @adapter: private board structure
1598  **/
1599 static void igb_configure(struct igb_adapter *adapter)
1600 {
1601         struct net_device *netdev = adapter->netdev;
1602         int i;
1603
1604         igb_get_hw_control(adapter);
1605         igb_set_rx_mode(netdev);
1606
1607         igb_restore_vlan(adapter);
1608
1609         igb_setup_tctl(adapter);
1610         igb_setup_mrqc(adapter);
1611         igb_setup_rctl(adapter);
1612
1613         igb_configure_tx(adapter);
1614         igb_configure_rx(adapter);
1615
1616         igb_rx_fifo_flush_82575(&adapter->hw);
1617
1618         /* call igb_desc_unused which always leaves
1619          * at least 1 descriptor unused to make sure
1620          * next_to_use != next_to_clean
1621          */
1622         for (i = 0; i < adapter->num_rx_queues; i++) {
1623                 struct igb_ring *ring = adapter->rx_ring[i];
1624                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625         }
1626 }
1627
1628 /**
1629  *  igb_power_up_link - Power up the phy/serdes link
1630  *  @adapter: address of board private structure
1631  **/
1632 void igb_power_up_link(struct igb_adapter *adapter)
1633 {
1634         igb_reset_phy(&adapter->hw);
1635
1636         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637                 igb_power_up_phy_copper(&adapter->hw);
1638         else
1639                 igb_power_up_serdes_link_82575(&adapter->hw);
1640
1641         igb_setup_link(&adapter->hw);
1642 }
1643
1644 /**
1645  *  igb_power_down_link - Power down the phy/serdes link
1646  *  @adapter: address of board private structure
1647  */
1648 static void igb_power_down_link(struct igb_adapter *adapter)
1649 {
1650         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651                 igb_power_down_phy_copper_82575(&adapter->hw);
1652         else
1653                 igb_shutdown_serdes_link_82575(&adapter->hw);
1654 }
1655
1656 /**
1657  * Detect and switch function for Media Auto Sense
1658  * @adapter: address of the board private structure
1659  **/
1660 static void igb_check_swap_media(struct igb_adapter *adapter)
1661 {
1662         struct e1000_hw *hw = &adapter->hw;
1663         u32 ctrl_ext, connsw;
1664         bool swap_now = false;
1665
1666         ctrl_ext = rd32(E1000_CTRL_EXT);
1667         connsw = rd32(E1000_CONNSW);
1668
1669         /* need to live swap if current media is copper and we have fiber/serdes
1670          * to go to.
1671          */
1672
1673         if ((hw->phy.media_type == e1000_media_type_copper) &&
1674             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675                 swap_now = true;
1676         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677                 /* copper signal takes time to appear */
1678                 if (adapter->copper_tries < 4) {
1679                         adapter->copper_tries++;
1680                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681                         wr32(E1000_CONNSW, connsw);
1682                         return;
1683                 } else {
1684                         adapter->copper_tries = 0;
1685                         if ((connsw & E1000_CONNSW_PHYSD) &&
1686                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687                                 swap_now = true;
1688                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689                                 wr32(E1000_CONNSW, connsw);
1690                         }
1691                 }
1692         }
1693
1694         if (!swap_now)
1695                 return;
1696
1697         switch (hw->phy.media_type) {
1698         case e1000_media_type_copper:
1699                 netdev_info(adapter->netdev,
1700                         "MAS: changing media to fiber/serdes\n");
1701                 ctrl_ext |=
1702                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704                 adapter->copper_tries = 0;
1705                 break;
1706         case e1000_media_type_internal_serdes:
1707         case e1000_media_type_fiber:
1708                 netdev_info(adapter->netdev,
1709                         "MAS: changing media to copper\n");
1710                 ctrl_ext &=
1711                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713                 break;
1714         default:
1715                 /* shouldn't get here during regular operation */
1716                 netdev_err(adapter->netdev,
1717                         "AMS: Invalid media type found, returning\n");
1718                 break;
1719         }
1720         wr32(E1000_CTRL_EXT, ctrl_ext);
1721 }
1722
1723 /**
1724  *  igb_up - Open the interface and prepare it to handle traffic
1725  *  @adapter: board private structure
1726  **/
1727 int igb_up(struct igb_adapter *adapter)
1728 {
1729         struct e1000_hw *hw = &adapter->hw;
1730         int i;
1731
1732         /* hardware has been reset, we need to reload some things */
1733         igb_configure(adapter);
1734
1735         clear_bit(__IGB_DOWN, &adapter->state);
1736
1737         for (i = 0; i < adapter->num_q_vectors; i++)
1738                 napi_enable(&(adapter->q_vector[i]->napi));
1739
1740         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741                 igb_configure_msix(adapter);
1742         else
1743                 igb_assign_vector(adapter->q_vector[0], 0);
1744
1745         /* Clear any pending interrupts. */
1746         rd32(E1000_ICR);
1747         igb_irq_enable(adapter);
1748
1749         /* notify VFs that reset has been completed */
1750         if (adapter->vfs_allocated_count) {
1751                 u32 reg_data = rd32(E1000_CTRL_EXT);
1752
1753                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1754                 wr32(E1000_CTRL_EXT, reg_data);
1755         }
1756
1757         netif_tx_start_all_queues(adapter->netdev);
1758
1759         /* start the watchdog. */
1760         hw->mac.get_link_status = 1;
1761         schedule_work(&adapter->watchdog_task);
1762
1763         if ((adapter->flags & IGB_FLAG_EEE) &&
1764             (!hw->dev_spec._82575.eee_disable))
1765                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
1767         return 0;
1768 }
1769
1770 void igb_down(struct igb_adapter *adapter)
1771 {
1772         struct net_device *netdev = adapter->netdev;
1773         struct e1000_hw *hw = &adapter->hw;
1774         u32 tctl, rctl;
1775         int i;
1776
1777         /* signal that we're down so the interrupt handler does not
1778          * reschedule our watchdog timer
1779          */
1780         set_bit(__IGB_DOWN, &adapter->state);
1781
1782         /* disable receives in the hardware */
1783         rctl = rd32(E1000_RCTL);
1784         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785         /* flush and sleep below */
1786
1787         netif_carrier_off(netdev);
1788         netif_tx_stop_all_queues(netdev);
1789
1790         /* disable transmits in the hardware */
1791         tctl = rd32(E1000_TCTL);
1792         tctl &= ~E1000_TCTL_EN;
1793         wr32(E1000_TCTL, tctl);
1794         /* flush both disables and wait for them to finish */
1795         wrfl();
1796         usleep_range(10000, 11000);
1797
1798         igb_irq_disable(adapter);
1799
1800         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
1802         for (i = 0; i < adapter->num_q_vectors; i++) {
1803                 if (adapter->q_vector[i]) {
1804                         napi_synchronize(&adapter->q_vector[i]->napi);
1805                         napi_disable(&adapter->q_vector[i]->napi);
1806                 }
1807         }
1808
1809         del_timer_sync(&adapter->watchdog_timer);
1810         del_timer_sync(&adapter->phy_info_timer);
1811
1812         /* record the stats before reset*/
1813         spin_lock(&adapter->stats64_lock);
1814         igb_update_stats(adapter, &adapter->stats64);
1815         spin_unlock(&adapter->stats64_lock);
1816
1817         adapter->link_speed = 0;
1818         adapter->link_duplex = 0;
1819
1820         if (!pci_channel_offline(adapter->pdev))
1821                 igb_reset(adapter);
1822
1823         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1824         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1825
1826         igb_clean_all_tx_rings(adapter);
1827         igb_clean_all_rx_rings(adapter);
1828 #ifdef CONFIG_IGB_DCA
1829
1830         /* since we reset the hardware DCA settings were cleared */
1831         igb_setup_dca(adapter);
1832 #endif
1833 }
1834
1835 void igb_reinit_locked(struct igb_adapter *adapter)
1836 {
1837         WARN_ON(in_interrupt());
1838         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1839                 usleep_range(1000, 2000);
1840         igb_down(adapter);
1841         igb_up(adapter);
1842         clear_bit(__IGB_RESETTING, &adapter->state);
1843 }
1844
1845 /** igb_enable_mas - Media Autosense re-enable after swap
1846  *
1847  * @adapter: adapter struct
1848  **/
1849 static void igb_enable_mas(struct igb_adapter *adapter)
1850 {
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 connsw = rd32(E1000_CONNSW);
1853
1854         /* configure for SerDes media detect */
1855         if ((hw->phy.media_type == e1000_media_type_copper) &&
1856             (!(connsw & E1000_CONNSW_SERDESD))) {
1857                 connsw |= E1000_CONNSW_ENRGSRC;
1858                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1859                 wr32(E1000_CONNSW, connsw);
1860                 wrfl();
1861         }
1862 }
1863
1864 void igb_reset(struct igb_adapter *adapter)
1865 {
1866         struct pci_dev *pdev = adapter->pdev;
1867         struct e1000_hw *hw = &adapter->hw;
1868         struct e1000_mac_info *mac = &hw->mac;
1869         struct e1000_fc_info *fc = &hw->fc;
1870         u32 pba, hwm;
1871
1872         /* Repartition Pba for greater than 9k mtu
1873          * To take effect CTRL.RST is required.
1874          */
1875         switch (mac->type) {
1876         case e1000_i350:
1877         case e1000_i354:
1878         case e1000_82580:
1879                 pba = rd32(E1000_RXPBS);
1880                 pba = igb_rxpbs_adjust_82580(pba);
1881                 break;
1882         case e1000_82576:
1883                 pba = rd32(E1000_RXPBS);
1884                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1885                 break;
1886         case e1000_82575:
1887         case e1000_i210:
1888         case e1000_i211:
1889         default:
1890                 pba = E1000_PBA_34K;
1891                 break;
1892         }
1893
1894         if (mac->type == e1000_82575) {
1895                 u32 min_rx_space, min_tx_space, needed_tx_space;
1896
1897                 /* write Rx PBA so that hardware can report correct Tx PBA */
1898                 wr32(E1000_PBA, pba);
1899
1900                 /* To maintain wire speed transmits, the Tx FIFO should be
1901                  * large enough to accommodate two full transmit packets,
1902                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1903                  * the Rx FIFO should be large enough to accommodate at least
1904                  * one full receive packet and is similarly rounded up and
1905                  * expressed in KB.
1906                  */
1907                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1908
1909                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1910                  * but don't include Ethernet FCS because hardware appends it.
1911                  * We only need to round down to the nearest 512 byte block
1912                  * count since the value we care about is 2 frames, not 1.
1913                  */
1914                 min_tx_space = adapter->max_frame_size;
1915                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1916                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1917
1918                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1919                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1920
1921                 /* If current Tx allocation is less than the min Tx FIFO size,
1922                  * and the min Tx FIFO size is less than the current Rx FIFO
1923                  * allocation, take space away from current Rx allocation.
1924                  */
1925                 if (needed_tx_space < pba) {
1926                         pba -= needed_tx_space;
1927
1928                         /* if short on Rx space, Rx wins and must trump Tx
1929                          * adjustment
1930                          */
1931                         if (pba < min_rx_space)
1932                                 pba = min_rx_space;
1933                 }
1934
1935                 /* adjust PBA for jumbo frames */
1936                 wr32(E1000_PBA, pba);
1937         }
1938
1939         /* flow control settings
1940          * The high water mark must be low enough to fit one full frame
1941          * after transmitting the pause frame.  As such we must have enough
1942          * space to allow for us to complete our current transmit and then
1943          * receive the frame that is in progress from the link partner.
1944          * Set it to:
1945          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1946          */
1947         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1948
1949         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1950         fc->low_water = fc->high_water - 16;
1951         fc->pause_time = 0xFFFF;
1952         fc->send_xon = 1;
1953         fc->current_mode = fc->requested_mode;
1954
1955         /* disable receive for all VFs and wait one second */
1956         if (adapter->vfs_allocated_count) {
1957                 int i;
1958
1959                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1960                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1961
1962                 /* ping all the active vfs to let them know we are going down */
1963                 igb_ping_all_vfs(adapter);
1964
1965                 /* disable transmits and receives */
1966                 wr32(E1000_VFRE, 0);
1967                 wr32(E1000_VFTE, 0);
1968         }
1969
1970         /* Allow time for pending master requests to run */
1971         hw->mac.ops.reset_hw(hw);
1972         wr32(E1000_WUC, 0);
1973
1974         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1975                 /* need to resetup here after media swap */
1976                 adapter->ei.get_invariants(hw);
1977                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1978         }
1979         if ((mac->type == e1000_82575) &&
1980             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1981                 igb_enable_mas(adapter);
1982         }
1983         if (hw->mac.ops.init_hw(hw))
1984                 dev_err(&pdev->dev, "Hardware Error\n");
1985
1986         /* Flow control settings reset on hardware reset, so guarantee flow
1987          * control is off when forcing speed.
1988          */
1989         if (!hw->mac.autoneg)
1990                 igb_force_mac_fc(hw);
1991
1992         igb_init_dmac(adapter, pba);
1993 #ifdef CONFIG_IGB_HWMON
1994         /* Re-initialize the thermal sensor on i350 devices. */
1995         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997                         /* If present, re-initialize the external thermal sensor
1998                          * interface.
1999                          */
2000                         if (adapter->ets)
2001                                 mac->ops.init_thermal_sensor_thresh(hw);
2002                 }
2003         }
2004 #endif
2005         /* Re-establish EEE setting */
2006         if (hw->phy.media_type == e1000_media_type_copper) {
2007                 switch (mac->type) {
2008                 case e1000_i350:
2009                 case e1000_i210:
2010                 case e1000_i211:
2011                         igb_set_eee_i350(hw, true, true);
2012                         break;
2013                 case e1000_i354:
2014                         igb_set_eee_i354(hw, true, true);
2015                         break;
2016                 default:
2017                         break;
2018                 }
2019         }
2020         if (!netif_running(adapter->netdev))
2021                 igb_power_down_link(adapter);
2022
2023         igb_update_mng_vlan(adapter);
2024
2025         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
2028         /* Re-enable PTP, where applicable. */
2029         igb_ptp_reset(adapter);
2030
2031         igb_get_phy_info(hw);
2032 }
2033
2034 static netdev_features_t igb_fix_features(struct net_device *netdev,
2035         netdev_features_t features)
2036 {
2037         /* Since there is no support for separate Rx/Tx vlan accel
2038          * enable/disable make sure Tx flag is always in same state as Rx.
2039          */
2040         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2042         else
2043                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044
2045         return features;
2046 }
2047
2048 static int igb_set_features(struct net_device *netdev,
2049         netdev_features_t features)
2050 {
2051         netdev_features_t changed = netdev->features ^ features;
2052         struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055                 igb_vlan_mode(netdev, features);
2056
2057         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2058                 return 0;
2059
2060         netdev->features = features;
2061
2062         if (netif_running(netdev))
2063                 igb_reinit_locked(adapter);
2064         else
2065                 igb_reset(adapter);
2066
2067         return 0;
2068 }
2069
2070 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2071                            struct net_device *dev,
2072                            const unsigned char *addr, u16 vid,
2073                            u16 flags)
2074 {
2075         /* guarantee we can provide a unique filter for the unicast address */
2076         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2077                 struct igb_adapter *adapter = netdev_priv(dev);
2078                 struct e1000_hw *hw = &adapter->hw;
2079                 int vfn = adapter->vfs_allocated_count;
2080                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2081
2082                 if (netdev_uc_count(dev) >= rar_entries)
2083                         return -ENOMEM;
2084         }
2085
2086         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2087 }
2088
2089 static const struct net_device_ops igb_netdev_ops = {
2090         .ndo_open               = igb_open,
2091         .ndo_stop               = igb_close,
2092         .ndo_start_xmit         = igb_xmit_frame,
2093         .ndo_get_stats64        = igb_get_stats64,
2094         .ndo_set_rx_mode        = igb_set_rx_mode,
2095         .ndo_set_mac_address    = igb_set_mac,
2096         .ndo_change_mtu         = igb_change_mtu,
2097         .ndo_do_ioctl           = igb_ioctl,
2098         .ndo_tx_timeout         = igb_tx_timeout,
2099         .ndo_validate_addr      = eth_validate_addr,
2100         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2101         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2102         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2103         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2104         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2105         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2106         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2107 #ifdef CONFIG_NET_POLL_CONTROLLER
2108         .ndo_poll_controller    = igb_netpoll,
2109 #endif
2110         .ndo_fix_features       = igb_fix_features,
2111         .ndo_set_features       = igb_set_features,
2112         .ndo_fdb_add            = igb_ndo_fdb_add,
2113         .ndo_features_check     = passthru_features_check,
2114 };
2115
2116 /**
2117  * igb_set_fw_version - Configure version string for ethtool
2118  * @adapter: adapter struct
2119  **/
2120 void igb_set_fw_version(struct igb_adapter *adapter)
2121 {
2122         struct e1000_hw *hw = &adapter->hw;
2123         struct e1000_fw_version fw;
2124
2125         igb_get_fw_version(hw, &fw);
2126
2127         switch (hw->mac.type) {
2128         case e1000_i210:
2129         case e1000_i211:
2130                 if (!(igb_get_flash_presence_i210(hw))) {
2131                         snprintf(adapter->fw_version,
2132                                  sizeof(adapter->fw_version),
2133                                  "%2d.%2d-%d",
2134                                  fw.invm_major, fw.invm_minor,
2135                                  fw.invm_img_type);
2136                         break;
2137                 }
2138                 /* fall through */
2139         default:
2140                 /* if option is rom valid, display its version too */
2141                 if (fw.or_valid) {
2142                         snprintf(adapter->fw_version,
2143                                  sizeof(adapter->fw_version),
2144                                  "%d.%d, 0x%08x, %d.%d.%d",
2145                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2146                                  fw.or_major, fw.or_build, fw.or_patch);
2147                 /* no option rom */
2148                 } else if (fw.etrack_id != 0X0000) {
2149                         snprintf(adapter->fw_version,
2150                             sizeof(adapter->fw_version),
2151                             "%d.%d, 0x%08x",
2152                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2153                 } else {
2154                 snprintf(adapter->fw_version,
2155                     sizeof(adapter->fw_version),
2156                     "%d.%d.%d",
2157                     fw.eep_major, fw.eep_minor, fw.eep_build);
2158                 }
2159                 break;
2160         }
2161 }
2162
2163 /**
2164  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2165  *
2166  * @adapter: adapter struct
2167  **/
2168 static void igb_init_mas(struct igb_adapter *adapter)
2169 {
2170         struct e1000_hw *hw = &adapter->hw;
2171         u16 eeprom_data;
2172
2173         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2174         switch (hw->bus.func) {
2175         case E1000_FUNC_0:
2176                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2177                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178                         netdev_info(adapter->netdev,
2179                                 "MAS: Enabling Media Autosense for port %d\n",
2180                                 hw->bus.func);
2181                 }
2182                 break;
2183         case E1000_FUNC_1:
2184                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2185                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186                         netdev_info(adapter->netdev,
2187                                 "MAS: Enabling Media Autosense for port %d\n",
2188                                 hw->bus.func);
2189                 }
2190                 break;
2191         case E1000_FUNC_2:
2192                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2193                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2194                         netdev_info(adapter->netdev,
2195                                 "MAS: Enabling Media Autosense for port %d\n",
2196                                 hw->bus.func);
2197                 }
2198                 break;
2199         case E1000_FUNC_3:
2200                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2201                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2202                         netdev_info(adapter->netdev,
2203                                 "MAS: Enabling Media Autosense for port %d\n",
2204                                 hw->bus.func);
2205                 }
2206                 break;
2207         default:
2208                 /* Shouldn't get here */
2209                 netdev_err(adapter->netdev,
2210                         "MAS: Invalid port configuration, returning\n");
2211                 break;
2212         }
2213 }
2214
2215 /**
2216  *  igb_init_i2c - Init I2C interface
2217  *  @adapter: pointer to adapter structure
2218  **/
2219 static s32 igb_init_i2c(struct igb_adapter *adapter)
2220 {
2221         s32 status = 0;
2222
2223         /* I2C interface supported on i350 devices */
2224         if (adapter->hw.mac.type != e1000_i350)
2225                 return 0;
2226
2227         /* Initialize the i2c bus which is controlled by the registers.
2228          * This bus will use the i2c_algo_bit structue that implements
2229          * the protocol through toggling of the 4 bits in the register.
2230          */
2231         adapter->i2c_adap.owner = THIS_MODULE;
2232         adapter->i2c_algo = igb_i2c_algo;
2233         adapter->i2c_algo.data = adapter;
2234         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2235         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2236         strlcpy(adapter->i2c_adap.name, "igb BB",
2237                 sizeof(adapter->i2c_adap.name));
2238         status = i2c_bit_add_bus(&adapter->i2c_adap);
2239         return status;
2240 }
2241
2242 /**
2243  *  igb_probe - Device Initialization Routine
2244  *  @pdev: PCI device information struct
2245  *  @ent: entry in igb_pci_tbl
2246  *
2247  *  Returns 0 on success, negative on failure
2248  *
2249  *  igb_probe initializes an adapter identified by a pci_dev structure.
2250  *  The OS initialization, configuring of the adapter private structure,
2251  *  and a hardware reset occur.
2252  **/
2253 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2254 {
2255         struct net_device *netdev;
2256         struct igb_adapter *adapter;
2257         struct e1000_hw *hw;
2258         u16 eeprom_data = 0;
2259         s32 ret_val;
2260         static int global_quad_port_a; /* global quad port a indication */
2261         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2262         int err, pci_using_dac;
2263         u8 part_str[E1000_PBANUM_LENGTH];
2264
2265         /* Catch broken hardware that put the wrong VF device ID in
2266          * the PCIe SR-IOV capability.
2267          */
2268         if (pdev->is_virtfn) {
2269                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2270                         pci_name(pdev), pdev->vendor, pdev->device);
2271                 return -EINVAL;
2272         }
2273
2274         err = pci_enable_device_mem(pdev);
2275         if (err)
2276                 return err;
2277
2278         pci_using_dac = 0;
2279         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2280         if (!err) {
2281                 pci_using_dac = 1;
2282         } else {
2283                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2284                 if (err) {
2285                         dev_err(&pdev->dev,
2286                                 "No usable DMA configuration, aborting\n");
2287                         goto err_dma;
2288                 }
2289         }
2290
2291         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2292                                            IORESOURCE_MEM),
2293                                            igb_driver_name);
2294         if (err)
2295                 goto err_pci_reg;
2296
2297         pci_enable_pcie_error_reporting(pdev);
2298
2299         pci_set_master(pdev);
2300         pci_save_state(pdev);
2301
2302         err = -ENOMEM;
2303         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2304                                    IGB_MAX_TX_QUEUES);
2305         if (!netdev)
2306                 goto err_alloc_etherdev;
2307
2308         SET_NETDEV_DEV(netdev, &pdev->dev);
2309
2310         pci_set_drvdata(pdev, netdev);
2311         adapter = netdev_priv(netdev);
2312         adapter->netdev = netdev;
2313         adapter->pdev = pdev;
2314         hw = &adapter->hw;
2315         hw->back = adapter;
2316         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2317
2318         err = -EIO;
2319         adapter->io_addr = pci_iomap(pdev, 0, 0);
2320         if (!adapter->io_addr)
2321                 goto err_ioremap;
2322         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2323         hw->hw_addr = adapter->io_addr;
2324
2325         netdev->netdev_ops = &igb_netdev_ops;
2326         igb_set_ethtool_ops(netdev);
2327         netdev->watchdog_timeo = 5 * HZ;
2328
2329         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2330
2331         netdev->mem_start = pci_resource_start(pdev, 0);
2332         netdev->mem_end = pci_resource_end(pdev, 0);
2333
2334         /* PCI config space info */
2335         hw->vendor_id = pdev->vendor;
2336         hw->device_id = pdev->device;
2337         hw->revision_id = pdev->revision;
2338         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2339         hw->subsystem_device_id = pdev->subsystem_device;
2340
2341         /* Copy the default MAC, PHY and NVM function pointers */
2342         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2343         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2344         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2345         /* Initialize skew-specific constants */
2346         err = ei->get_invariants(hw);
2347         if (err)
2348                 goto err_sw_init;
2349
2350         /* setup the private structure */
2351         err = igb_sw_init(adapter);
2352         if (err)
2353                 goto err_sw_init;
2354
2355         igb_get_bus_info_pcie(hw);
2356
2357         hw->phy.autoneg_wait_to_complete = false;
2358
2359         /* Copper options */
2360         if (hw->phy.media_type == e1000_media_type_copper) {
2361                 hw->phy.mdix = AUTO_ALL_MODES;
2362                 hw->phy.disable_polarity_correction = false;
2363                 hw->phy.ms_type = e1000_ms_hw_default;
2364         }
2365
2366         if (igb_check_reset_block(hw))
2367                 dev_info(&pdev->dev,
2368                         "PHY reset is blocked due to SOL/IDER session.\n");
2369
2370         /* features is initialized to 0 in allocation, it might have bits
2371          * set by igb_sw_init so we should use an or instead of an
2372          * assignment.
2373          */
2374         netdev->features |= NETIF_F_SG |
2375                             NETIF_F_TSO |
2376                             NETIF_F_TSO6 |
2377                             NETIF_F_RXHASH |
2378                             NETIF_F_RXCSUM |
2379                             NETIF_F_HW_CSUM |
2380                             NETIF_F_HW_VLAN_CTAG_RX |
2381                             NETIF_F_HW_VLAN_CTAG_TX;
2382
2383         if (hw->mac.type >= e1000_82576)
2384                 netdev->features |= NETIF_F_SCTP_CRC;
2385
2386         /* copy netdev features into list of user selectable features */
2387         netdev->hw_features |= netdev->features;
2388         netdev->hw_features |= NETIF_F_RXALL;
2389
2390         if (hw->mac.type >= e1000_i350)
2391                 netdev->hw_features |= NETIF_F_NTUPLE;
2392
2393         /* set this bit last since it cannot be part of hw_features */
2394         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2395
2396         netdev->vlan_features |= NETIF_F_SG |
2397                                  NETIF_F_TSO |
2398                                  NETIF_F_TSO6 |
2399                                  NETIF_F_HW_CSUM |
2400                                  NETIF_F_SCTP_CRC;
2401
2402         netdev->mpls_features |= NETIF_F_HW_CSUM;
2403         netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2404
2405         netdev->priv_flags |= IFF_SUPP_NOFCS;
2406
2407         if (pci_using_dac) {
2408                 netdev->features |= NETIF_F_HIGHDMA;
2409                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2410         }
2411
2412         netdev->priv_flags |= IFF_UNICAST_FLT;
2413
2414         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2415
2416         /* before reading the NVM, reset the controller to put the device in a
2417          * known good starting state
2418          */
2419         hw->mac.ops.reset_hw(hw);
2420
2421         /* make sure the NVM is good , i211/i210 parts can have special NVM
2422          * that doesn't contain a checksum
2423          */
2424         switch (hw->mac.type) {
2425         case e1000_i210:
2426         case e1000_i211:
2427                 if (igb_get_flash_presence_i210(hw)) {
2428                         if (hw->nvm.ops.validate(hw) < 0) {
2429                                 dev_err(&pdev->dev,
2430                                         "The NVM Checksum Is Not Valid\n");
2431                                 err = -EIO;
2432                                 goto err_eeprom;
2433                         }
2434                 }
2435                 break;
2436         default:
2437                 if (hw->nvm.ops.validate(hw) < 0) {
2438                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2439                         err = -EIO;
2440                         goto err_eeprom;
2441                 }
2442                 break;
2443         }
2444
2445         /* copy the MAC address out of the NVM */
2446         if (hw->mac.ops.read_mac_addr(hw))
2447                 dev_err(&pdev->dev, "NVM Read Error\n");
2448
2449         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2450
2451         if (!is_valid_ether_addr(netdev->dev_addr)) {
2452                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2453                 err = -EIO;
2454                 goto err_eeprom;
2455         }
2456
2457         /* get firmware version for ethtool -i */
2458         igb_set_fw_version(adapter);
2459
2460         /* configure RXPBSIZE and TXPBSIZE */
2461         if (hw->mac.type == e1000_i210) {
2462                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2463                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2464         }
2465
2466         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2467                     (unsigned long) adapter);
2468         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2469                     (unsigned long) adapter);
2470
2471         INIT_WORK(&adapter->reset_task, igb_reset_task);
2472         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2473
2474         /* Initialize link properties that are user-changeable */
2475         adapter->fc_autoneg = true;
2476         hw->mac.autoneg = true;
2477         hw->phy.autoneg_advertised = 0x2f;
2478
2479         hw->fc.requested_mode = e1000_fc_default;
2480         hw->fc.current_mode = e1000_fc_default;
2481
2482         igb_validate_mdi_setting(hw);
2483
2484         /* By default, support wake on port A */
2485         if (hw->bus.func == 0)
2486                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2487
2488         /* Check the NVM for wake support on non-port A ports */
2489         if (hw->mac.type >= e1000_82580)
2490                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2491                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2492                                  &eeprom_data);
2493         else if (hw->bus.func == 1)
2494                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2495
2496         if (eeprom_data & IGB_EEPROM_APME)
2497                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2498
2499         /* now that we have the eeprom settings, apply the special cases where
2500          * the eeprom may be wrong or the board simply won't support wake on
2501          * lan on a particular port
2502          */
2503         switch (pdev->device) {
2504         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2505                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2506                 break;
2507         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2508         case E1000_DEV_ID_82576_FIBER:
2509         case E1000_DEV_ID_82576_SERDES:
2510                 /* Wake events only supported on port A for dual fiber
2511                  * regardless of eeprom setting
2512                  */
2513                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2514                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2515                 break;
2516         case E1000_DEV_ID_82576_QUAD_COPPER:
2517         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2518                 /* if quad port adapter, disable WoL on all but port A */
2519                 if (global_quad_port_a != 0)
2520                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2521                 else
2522                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2523                 /* Reset for multiple quad port adapters */
2524                 if (++global_quad_port_a == 4)
2525                         global_quad_port_a = 0;
2526                 break;
2527         default:
2528                 /* If the device can't wake, don't set software support */
2529                 if (!device_can_wakeup(&adapter->pdev->dev))
2530                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2531         }
2532
2533         /* initialize the wol settings based on the eeprom settings */
2534         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2535                 adapter->wol |= E1000_WUFC_MAG;
2536
2537         /* Some vendors want WoL disabled by default, but still supported */
2538         if ((hw->mac.type == e1000_i350) &&
2539             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2540                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541                 adapter->wol = 0;
2542         }
2543
2544         /* Some vendors want the ability to Use the EEPROM setting as
2545          * enable/disable only, and not for capability
2546          */
2547         if (((hw->mac.type == e1000_i350) ||
2548              (hw->mac.type == e1000_i354)) &&
2549             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2550                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2551                 adapter->wol = 0;
2552         }
2553         if (hw->mac.type == e1000_i350) {
2554                 if (((pdev->subsystem_device == 0x5001) ||
2555                      (pdev->subsystem_device == 0x5002)) &&
2556                                 (hw->bus.func == 0)) {
2557                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2558                         adapter->wol = 0;
2559                 }
2560                 if (pdev->subsystem_device == 0x1F52)
2561                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2562         }
2563
2564         device_set_wakeup_enable(&adapter->pdev->dev,
2565                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2566
2567         /* reset the hardware with the new settings */
2568         igb_reset(adapter);
2569
2570         /* Init the I2C interface */
2571         err = igb_init_i2c(adapter);
2572         if (err) {
2573                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2574                 goto err_eeprom;
2575         }
2576
2577         /* let the f/w know that the h/w is now under the control of the
2578          * driver.
2579          */
2580         igb_get_hw_control(adapter);
2581
2582         strcpy(netdev->name, "eth%d");
2583         err = register_netdev(netdev);
2584         if (err)
2585                 goto err_register;
2586
2587         /* carrier off reporting is important to ethtool even BEFORE open */
2588         netif_carrier_off(netdev);
2589
2590 #ifdef CONFIG_IGB_DCA
2591         if (dca_add_requester(&pdev->dev) == 0) {
2592                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2593                 dev_info(&pdev->dev, "DCA enabled\n");
2594                 igb_setup_dca(adapter);
2595         }
2596
2597 #endif
2598 #ifdef CONFIG_IGB_HWMON
2599         /* Initialize the thermal sensor on i350 devices. */
2600         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2601                 u16 ets_word;
2602
2603                 /* Read the NVM to determine if this i350 device supports an
2604                  * external thermal sensor.
2605                  */
2606                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2607                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2608                         adapter->ets = true;
2609                 else
2610                         adapter->ets = false;
2611                 if (igb_sysfs_init(adapter))
2612                         dev_err(&pdev->dev,
2613                                 "failed to allocate sysfs resources\n");
2614         } else {
2615                 adapter->ets = false;
2616         }
2617 #endif
2618         /* Check if Media Autosense is enabled */
2619         adapter->ei = *ei;
2620         if (hw->dev_spec._82575.mas_capable)
2621                 igb_init_mas(adapter);
2622
2623         /* do hw tstamp init after resetting */
2624         igb_ptp_init(adapter);
2625
2626         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2627         /* print bus type/speed/width info, not applicable to i354 */
2628         if (hw->mac.type != e1000_i354) {
2629                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2630                          netdev->name,
2631                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2632                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2633                            "unknown"),
2634                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2635                           "Width x4" :
2636                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2637                           "Width x2" :
2638                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2639                           "Width x1" : "unknown"), netdev->dev_addr);
2640         }
2641
2642         if ((hw->mac.type >= e1000_i210 ||
2643              igb_get_flash_presence_i210(hw))) {
2644                 ret_val = igb_read_part_string(hw, part_str,
2645                                                E1000_PBANUM_LENGTH);
2646         } else {
2647                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2648         }
2649
2650         if (ret_val)
2651                 strcpy(part_str, "Unknown");
2652         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2653         dev_info(&pdev->dev,
2654                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2655                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2656                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2657                 adapter->num_rx_queues, adapter->num_tx_queues);
2658         if (hw->phy.media_type == e1000_media_type_copper) {
2659                 switch (hw->mac.type) {
2660                 case e1000_i350:
2661                 case e1000_i210:
2662                 case e1000_i211:
2663                         /* Enable EEE for internal copper PHY devices */
2664                         err = igb_set_eee_i350(hw, true, true);
2665                         if ((!err) &&
2666                             (!hw->dev_spec._82575.eee_disable)) {
2667                                 adapter->eee_advert =
2668                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2669                                 adapter->flags |= IGB_FLAG_EEE;
2670                         }
2671                         break;
2672                 case e1000_i354:
2673                         if ((rd32(E1000_CTRL_EXT) &
2674                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2675                                 err = igb_set_eee_i354(hw, true, true);
2676                                 if ((!err) &&
2677                                         (!hw->dev_spec._82575.eee_disable)) {
2678                                         adapter->eee_advert =
2679                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2680                                         adapter->flags |= IGB_FLAG_EEE;
2681                                 }
2682                         }
2683                         break;
2684                 default:
2685                         break;
2686                 }
2687         }
2688         pm_runtime_put_noidle(&pdev->dev);
2689         return 0;
2690
2691 err_register:
2692         igb_release_hw_control(adapter);
2693         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2694 err_eeprom:
2695         if (!igb_check_reset_block(hw))
2696                 igb_reset_phy(hw);
2697
2698         if (hw->flash_address)
2699                 iounmap(hw->flash_address);
2700 err_sw_init:
2701         kfree(adapter->shadow_vfta);
2702         igb_clear_interrupt_scheme(adapter);
2703 #ifdef CONFIG_PCI_IOV
2704         igb_disable_sriov(pdev);
2705 #endif
2706         pci_iounmap(pdev, adapter->io_addr);
2707 err_ioremap:
2708         free_netdev(netdev);
2709 err_alloc_etherdev:
2710         pci_release_selected_regions(pdev,
2711                                      pci_select_bars(pdev, IORESOURCE_MEM));
2712 err_pci_reg:
2713 err_dma:
2714         pci_disable_device(pdev);
2715         return err;
2716 }
2717
2718 #ifdef CONFIG_PCI_IOV
2719 static int igb_disable_sriov(struct pci_dev *pdev)
2720 {
2721         struct net_device *netdev = pci_get_drvdata(pdev);
2722         struct igb_adapter *adapter = netdev_priv(netdev);
2723         struct e1000_hw *hw = &adapter->hw;
2724
2725         /* reclaim resources allocated to VFs */
2726         if (adapter->vf_data) {
2727                 /* disable iov and allow time for transactions to clear */
2728                 if (pci_vfs_assigned(pdev)) {
2729                         dev_warn(&pdev->dev,
2730                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2731                         return -EPERM;
2732                 } else {
2733                         pci_disable_sriov(pdev);
2734                         msleep(500);
2735                 }
2736
2737                 kfree(adapter->vf_data);
2738                 adapter->vf_data = NULL;
2739                 adapter->vfs_allocated_count = 0;
2740                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2741                 wrfl();
2742                 msleep(100);
2743                 dev_info(&pdev->dev, "IOV Disabled\n");
2744
2745                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2746                 adapter->flags |= IGB_FLAG_DMAC;
2747         }
2748
2749         return 0;
2750 }
2751
2752 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2753 {
2754         struct net_device *netdev = pci_get_drvdata(pdev);
2755         struct igb_adapter *adapter = netdev_priv(netdev);
2756         int old_vfs = pci_num_vf(pdev);
2757         int err = 0;
2758         int i;
2759
2760         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2761                 err = -EPERM;
2762                 goto out;
2763         }
2764         if (!num_vfs)
2765                 goto out;
2766
2767         if (old_vfs) {
2768                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2769                          old_vfs, max_vfs);
2770                 adapter->vfs_allocated_count = old_vfs;
2771         } else
2772                 adapter->vfs_allocated_count = num_vfs;
2773
2774         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2775                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2776
2777         /* if allocation failed then we do not support SR-IOV */
2778         if (!adapter->vf_data) {
2779                 adapter->vfs_allocated_count = 0;
2780                 dev_err(&pdev->dev,
2781                         "Unable to allocate memory for VF Data Storage\n");
2782                 err = -ENOMEM;
2783                 goto out;
2784         }
2785
2786         /* only call pci_enable_sriov() if no VFs are allocated already */
2787         if (!old_vfs) {
2788                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2789                 if (err)
2790                         goto err_out;
2791         }
2792         dev_info(&pdev->dev, "%d VFs allocated\n",
2793                  adapter->vfs_allocated_count);
2794         for (i = 0; i < adapter->vfs_allocated_count; i++)
2795                 igb_vf_configure(adapter, i);
2796
2797         /* DMA Coalescing is not supported in IOV mode. */
2798         adapter->flags &= ~IGB_FLAG_DMAC;
2799         goto out;
2800
2801 err_out:
2802         kfree(adapter->vf_data);
2803         adapter->vf_data = NULL;
2804         adapter->vfs_allocated_count = 0;
2805 out:
2806         return err;
2807 }
2808
2809 #endif
2810 /**
2811  *  igb_remove_i2c - Cleanup  I2C interface
2812  *  @adapter: pointer to adapter structure
2813  **/
2814 static void igb_remove_i2c(struct igb_adapter *adapter)
2815 {
2816         /* free the adapter bus structure */
2817         i2c_del_adapter(&adapter->i2c_adap);
2818 }
2819
2820 /**
2821  *  igb_remove - Device Removal Routine
2822  *  @pdev: PCI device information struct
2823  *
2824  *  igb_remove is called by the PCI subsystem to alert the driver
2825  *  that it should release a PCI device.  The could be caused by a
2826  *  Hot-Plug event, or because the driver is going to be removed from
2827  *  memory.
2828  **/
2829 static void igb_remove(struct pci_dev *pdev)
2830 {
2831         struct net_device *netdev = pci_get_drvdata(pdev);
2832         struct igb_adapter *adapter = netdev_priv(netdev);
2833         struct e1000_hw *hw = &adapter->hw;
2834
2835         pm_runtime_get_noresume(&pdev->dev);
2836 #ifdef CONFIG_IGB_HWMON
2837         igb_sysfs_exit(adapter);
2838 #endif
2839         igb_remove_i2c(adapter);
2840         igb_ptp_stop(adapter);
2841         /* The watchdog timer may be rescheduled, so explicitly
2842          * disable watchdog from being rescheduled.
2843          */
2844         set_bit(__IGB_DOWN, &adapter->state);
2845         del_timer_sync(&adapter->watchdog_timer);
2846         del_timer_sync(&adapter->phy_info_timer);
2847
2848         cancel_work_sync(&adapter->reset_task);
2849         cancel_work_sync(&adapter->watchdog_task);
2850
2851 #ifdef CONFIG_IGB_DCA
2852         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2853                 dev_info(&pdev->dev, "DCA disabled\n");
2854                 dca_remove_requester(&pdev->dev);
2855                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2856                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2857         }
2858 #endif
2859
2860         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2861          * would have already happened in close and is redundant.
2862          */
2863         igb_release_hw_control(adapter);
2864
2865 #ifdef CONFIG_PCI_IOV
2866         igb_disable_sriov(pdev);
2867 #endif
2868
2869         unregister_netdev(netdev);
2870
2871         igb_clear_interrupt_scheme(adapter);
2872
2873         pci_iounmap(pdev, adapter->io_addr);
2874         if (hw->flash_address)
2875                 iounmap(hw->flash_address);
2876         pci_release_selected_regions(pdev,
2877                                      pci_select_bars(pdev, IORESOURCE_MEM));
2878
2879         kfree(adapter->shadow_vfta);
2880         free_netdev(netdev);
2881
2882         pci_disable_pcie_error_reporting(pdev);
2883
2884         pci_disable_device(pdev);
2885 }
2886
2887 /**
2888  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2889  *  @adapter: board private structure to initialize
2890  *
2891  *  This function initializes the vf specific data storage and then attempts to
2892  *  allocate the VFs.  The reason for ordering it this way is because it is much
2893  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2894  *  the memory for the VFs.
2895  **/
2896 static void igb_probe_vfs(struct igb_adapter *adapter)
2897 {
2898 #ifdef CONFIG_PCI_IOV
2899         struct pci_dev *pdev = adapter->pdev;
2900         struct e1000_hw *hw = &adapter->hw;
2901
2902         /* Virtualization features not supported on i210 family. */
2903         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2904                 return;
2905
2906         /* Of the below we really only want the effect of getting
2907          * IGB_FLAG_HAS_MSIX set (if available), without which
2908          * igb_enable_sriov() has no effect.
2909          */
2910         igb_set_interrupt_capability(adapter, true);
2911         igb_reset_interrupt_capability(adapter);
2912
2913         pci_sriov_set_totalvfs(pdev, 7);
2914         igb_enable_sriov(pdev, max_vfs);
2915
2916 #endif /* CONFIG_PCI_IOV */
2917 }
2918
2919 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2920 {
2921         struct e1000_hw *hw = &adapter->hw;
2922         u32 max_rss_queues;
2923
2924         /* Determine the maximum number of RSS queues supported. */
2925         switch (hw->mac.type) {
2926         case e1000_i211:
2927                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2928                 break;
2929         case e1000_82575:
2930         case e1000_i210:
2931                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2932                 break;
2933         case e1000_i350:
2934                 /* I350 cannot do RSS and SR-IOV at the same time */
2935                 if (!!adapter->vfs_allocated_count) {
2936                         max_rss_queues = 1;
2937                         break;
2938                 }
2939                 /* fall through */
2940         case e1000_82576:
2941                 if (!!adapter->vfs_allocated_count) {
2942                         max_rss_queues = 2;
2943                         break;
2944                 }
2945                 /* fall through */
2946         case e1000_82580:
2947         case e1000_i354:
2948         default:
2949                 max_rss_queues = IGB_MAX_RX_QUEUES;
2950                 break;
2951         }
2952
2953         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2954
2955         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2956 }
2957
2958 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2959                               const u32 max_rss_queues)
2960 {
2961         struct e1000_hw *hw = &adapter->hw;
2962
2963         /* Determine if we need to pair queues. */
2964         switch (hw->mac.type) {
2965         case e1000_82575:
2966         case e1000_i211:
2967                 /* Device supports enough interrupts without queue pairing. */
2968                 break;
2969         case e1000_82576:
2970         case e1000_82580:
2971         case e1000_i350:
2972         case e1000_i354:
2973         case e1000_i210:
2974         default:
2975                 /* If rss_queues > half of max_rss_queues, pair the queues in
2976                  * order to conserve interrupts due to limited supply.
2977                  */
2978                 if (adapter->rss_queues > (max_rss_queues / 2))
2979                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2980                 else
2981                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
2982                 break;
2983         }
2984 }
2985
2986 /**
2987  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2988  *  @adapter: board private structure to initialize
2989  *
2990  *  igb_sw_init initializes the Adapter private data structure.
2991  *  Fields are initialized based on PCI device information and
2992  *  OS network device settings (MTU size).
2993  **/
2994 static int igb_sw_init(struct igb_adapter *adapter)
2995 {
2996         struct e1000_hw *hw = &adapter->hw;
2997         struct net_device *netdev = adapter->netdev;
2998         struct pci_dev *pdev = adapter->pdev;
2999
3000         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3001
3002         /* set default ring sizes */
3003         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3004         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3005
3006         /* set default ITR values */
3007         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3008         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3009
3010         /* set default work limits */
3011         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3012
3013         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3014                                   VLAN_HLEN;
3015         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3016
3017         spin_lock_init(&adapter->stats64_lock);
3018 #ifdef CONFIG_PCI_IOV
3019         switch (hw->mac.type) {
3020         case e1000_82576:
3021         case e1000_i350:
3022                 if (max_vfs > 7) {
3023                         dev_warn(&pdev->dev,
3024                                  "Maximum of 7 VFs per PF, using max\n");
3025                         max_vfs = adapter->vfs_allocated_count = 7;
3026                 } else
3027                         adapter->vfs_allocated_count = max_vfs;
3028                 if (adapter->vfs_allocated_count)
3029                         dev_warn(&pdev->dev,
3030                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3031                 break;
3032         default:
3033                 break;
3034         }
3035 #endif /* CONFIG_PCI_IOV */
3036
3037         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3038         adapter->flags |= IGB_FLAG_HAS_MSIX;
3039
3040         igb_probe_vfs(adapter);
3041
3042         igb_init_queue_configuration(adapter);
3043
3044         /* Setup and initialize a copy of the hw vlan table array */
3045         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3046                                        GFP_ATOMIC);
3047
3048         /* This call may decrease the number of queues */
3049         if (igb_init_interrupt_scheme(adapter, true)) {
3050                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3051                 return -ENOMEM;
3052         }
3053
3054         /* Explicitly disable IRQ since the NIC can be in any state. */
3055         igb_irq_disable(adapter);
3056
3057         if (hw->mac.type >= e1000_i350)
3058                 adapter->flags &= ~IGB_FLAG_DMAC;
3059
3060         set_bit(__IGB_DOWN, &adapter->state);
3061         return 0;
3062 }
3063
3064 /**
3065  *  igb_open - Called when a network interface is made active
3066  *  @netdev: network interface device structure
3067  *
3068  *  Returns 0 on success, negative value on failure
3069  *
3070  *  The open entry point is called when a network interface is made
3071  *  active by the system (IFF_UP).  At this point all resources needed
3072  *  for transmit and receive operations are allocated, the interrupt
3073  *  handler is registered with the OS, the watchdog timer is started,
3074  *  and the stack is notified that the interface is ready.
3075  **/
3076 static int __igb_open(struct net_device *netdev, bool resuming)
3077 {
3078         struct igb_adapter *adapter = netdev_priv(netdev);
3079         struct e1000_hw *hw = &adapter->hw;
3080         struct pci_dev *pdev = adapter->pdev;
3081         int err;
3082         int i;
3083
3084         /* disallow open during test */
3085         if (test_bit(__IGB_TESTING, &adapter->state)) {
3086                 WARN_ON(resuming);
3087                 return -EBUSY;
3088         }
3089
3090         if (!resuming)
3091                 pm_runtime_get_sync(&pdev->dev);
3092
3093         netif_carrier_off(netdev);
3094
3095         /* allocate transmit descriptors */
3096         err = igb_setup_all_tx_resources(adapter);
3097         if (err)
3098                 goto err_setup_tx;
3099
3100         /* allocate receive descriptors */
3101         err = igb_setup_all_rx_resources(adapter);
3102         if (err)
3103                 goto err_setup_rx;
3104
3105         igb_power_up_link(adapter);
3106
3107         /* before we allocate an interrupt, we must be ready to handle it.
3108          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3109          * as soon as we call pci_request_irq, so we have to setup our
3110          * clean_rx handler before we do so.
3111          */
3112         igb_configure(adapter);
3113
3114         err = igb_request_irq(adapter);
3115         if (err)
3116                 goto err_req_irq;
3117
3118         /* Notify the stack of the actual queue counts. */
3119         err = netif_set_real_num_tx_queues(adapter->netdev,
3120                                            adapter->num_tx_queues);
3121         if (err)
3122                 goto err_set_queues;
3123
3124         err = netif_set_real_num_rx_queues(adapter->netdev,
3125                                            adapter->num_rx_queues);
3126         if (err)
3127                 goto err_set_queues;
3128
3129         /* From here on the code is the same as igb_up() */
3130         clear_bit(__IGB_DOWN, &adapter->state);
3131
3132         for (i = 0; i < adapter->num_q_vectors; i++)
3133                 napi_enable(&(adapter->q_vector[i]->napi));
3134
3135         /* Clear any pending interrupts. */
3136         rd32(E1000_ICR);
3137
3138         igb_irq_enable(adapter);
3139
3140         /* notify VFs that reset has been completed */
3141         if (adapter->vfs_allocated_count) {
3142                 u32 reg_data = rd32(E1000_CTRL_EXT);
3143
3144                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3145                 wr32(E1000_CTRL_EXT, reg_data);
3146         }
3147
3148         netif_tx_start_all_queues(netdev);
3149
3150         if (!resuming)
3151                 pm_runtime_put(&pdev->dev);
3152
3153         /* start the watchdog. */
3154         hw->mac.get_link_status = 1;
3155         schedule_work(&adapter->watchdog_task);
3156
3157         return 0;
3158
3159 err_set_queues:
3160         igb_free_irq(adapter);
3161 err_req_irq:
3162         igb_release_hw_control(adapter);
3163         igb_power_down_link(adapter);
3164         igb_free_all_rx_resources(adapter);
3165 err_setup_rx:
3166         igb_free_all_tx_resources(adapter);
3167 err_setup_tx:
3168         igb_reset(adapter);
3169         if (!resuming)
3170                 pm_runtime_put(&pdev->dev);
3171
3172         return err;
3173 }
3174
3175 static int igb_open(struct net_device *netdev)
3176 {
3177         return __igb_open(netdev, false);
3178 }
3179
3180 /**
3181  *  igb_close - Disables a network interface
3182  *  @netdev: network interface device structure
3183  *
3184  *  Returns 0, this is not allowed to fail
3185  *
3186  *  The close entry point is called when an interface is de-activated
3187  *  by the OS.  The hardware is still under the driver's control, but
3188  *  needs to be disabled.  A global MAC reset is issued to stop the
3189  *  hardware, and all transmit and receive resources are freed.
3190  **/
3191 static int __igb_close(struct net_device *netdev, bool suspending)
3192 {
3193         struct igb_adapter *adapter = netdev_priv(netdev);
3194         struct pci_dev *pdev = adapter->pdev;
3195
3196         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3197
3198         if (!suspending)
3199                 pm_runtime_get_sync(&pdev->dev);
3200
3201         igb_down(adapter);
3202         igb_free_irq(adapter);
3203
3204         igb_free_all_tx_resources(adapter);
3205         igb_free_all_rx_resources(adapter);
3206
3207         if (!suspending)
3208                 pm_runtime_put_sync(&pdev->dev);
3209         return 0;
3210 }
3211
3212 static int igb_close(struct net_device *netdev)
3213 {
3214         return __igb_close(netdev, false);
3215 }
3216
3217 /**
3218  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3219  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3220  *
3221  *  Return 0 on success, negative on failure
3222  **/
3223 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3224 {
3225         struct device *dev = tx_ring->dev;
3226         int size;
3227
3228         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3229
3230         tx_ring->tx_buffer_info = vzalloc(size);
3231         if (!tx_ring->tx_buffer_info)
3232                 goto err;
3233
3234         /* round up to nearest 4K */
3235         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3236         tx_ring->size = ALIGN(tx_ring->size, 4096);
3237
3238         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3239                                            &tx_ring->dma, GFP_KERNEL);
3240         if (!tx_ring->desc)
3241                 goto err;
3242
3243         tx_ring->next_to_use = 0;
3244         tx_ring->next_to_clean = 0;
3245
3246         return 0;
3247
3248 err:
3249         vfree(tx_ring->tx_buffer_info);
3250         tx_ring->tx_buffer_info = NULL;
3251         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3252         return -ENOMEM;
3253 }
3254
3255 /**
3256  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3257  *                               (Descriptors) for all queues
3258  *  @adapter: board private structure
3259  *
3260  *  Return 0 on success, negative on failure
3261  **/
3262 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3263 {
3264         struct pci_dev *pdev = adapter->pdev;
3265         int i, err = 0;
3266
3267         for (i = 0; i < adapter->num_tx_queues; i++) {
3268                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3269                 if (err) {
3270                         dev_err(&pdev->dev,
3271                                 "Allocation for Tx Queue %u failed\n", i);
3272                         for (i--; i >= 0; i--)
3273                                 igb_free_tx_resources(adapter->tx_ring[i]);
3274                         break;
3275                 }
3276         }
3277
3278         return err;
3279 }
3280
3281 /**
3282  *  igb_setup_tctl - configure the transmit control registers
3283  *  @adapter: Board private structure
3284  **/
3285 void igb_setup_tctl(struct igb_adapter *adapter)
3286 {
3287         struct e1000_hw *hw = &adapter->hw;
3288         u32 tctl;
3289
3290         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3291         wr32(E1000_TXDCTL(0), 0);
3292
3293         /* Program the Transmit Control Register */
3294         tctl = rd32(E1000_TCTL);
3295         tctl &= ~E1000_TCTL_CT;
3296         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3297                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3298
3299         igb_config_collision_dist(hw);
3300
3301         /* Enable transmits */
3302         tctl |= E1000_TCTL_EN;
3303
3304         wr32(E1000_TCTL, tctl);
3305 }
3306
3307 /**
3308  *  igb_configure_tx_ring - Configure transmit ring after Reset
3309  *  @adapter: board private structure
3310  *  @ring: tx ring to configure
3311  *
3312  *  Configure a transmit ring after a reset.
3313  **/
3314 void igb_configure_tx_ring(struct igb_adapter *adapter,
3315                            struct igb_ring *ring)
3316 {
3317         struct e1000_hw *hw = &adapter->hw;
3318         u32 txdctl = 0;
3319         u64 tdba = ring->dma;
3320         int reg_idx = ring->reg_idx;
3321
3322         /* disable the queue */
3323         wr32(E1000_TXDCTL(reg_idx), 0);
3324         wrfl();
3325         mdelay(10);
3326
3327         wr32(E1000_TDLEN(reg_idx),
3328              ring->count * sizeof(union e1000_adv_tx_desc));
3329         wr32(E1000_TDBAL(reg_idx),
3330              tdba & 0x00000000ffffffffULL);
3331         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3332
3333         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3334         wr32(E1000_TDH(reg_idx), 0);
3335         writel(0, ring->tail);
3336
3337         txdctl |= IGB_TX_PTHRESH;
3338         txdctl |= IGB_TX_HTHRESH << 8;
3339         txdctl |= IGB_TX_WTHRESH << 16;
3340
3341         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3342         wr32(E1000_TXDCTL(reg_idx), txdctl);
3343 }
3344
3345 /**
3346  *  igb_configure_tx - Configure transmit Unit after Reset
3347  *  @adapter: board private structure
3348  *
3349  *  Configure the Tx unit of the MAC after a reset.
3350  **/
3351 static void igb_configure_tx(struct igb_adapter *adapter)
3352 {
3353         int i;
3354
3355         for (i = 0; i < adapter->num_tx_queues; i++)
3356                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3357 }
3358
3359 /**
3360  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3361  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3362  *
3363  *  Returns 0 on success, negative on failure
3364  **/
3365 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3366 {
3367         struct device *dev = rx_ring->dev;
3368         int size;
3369
3370         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3371
3372         rx_ring->rx_buffer_info = vzalloc(size);
3373         if (!rx_ring->rx_buffer_info)
3374                 goto err;
3375
3376         /* Round up to nearest 4K */
3377         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3378         rx_ring->size = ALIGN(rx_ring->size, 4096);
3379
3380         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3381                                            &rx_ring->dma, GFP_KERNEL);
3382         if (!rx_ring->desc)
3383                 goto err;
3384
3385         rx_ring->next_to_alloc = 0;
3386         rx_ring->next_to_clean = 0;
3387         rx_ring->next_to_use = 0;
3388
3389         return 0;
3390
3391 err:
3392         vfree(rx_ring->rx_buffer_info);
3393         rx_ring->rx_buffer_info = NULL;
3394         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3395         return -ENOMEM;
3396 }
3397
3398 /**
3399  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3400  *                               (Descriptors) for all queues
3401  *  @adapter: board private structure
3402  *
3403  *  Return 0 on success, negative on failure
3404  **/
3405 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3406 {
3407         struct pci_dev *pdev = adapter->pdev;
3408         int i, err = 0;
3409
3410         for (i = 0; i < adapter->num_rx_queues; i++) {
3411                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3412                 if (err) {
3413                         dev_err(&pdev->dev,
3414                                 "Allocation for Rx Queue %u failed\n", i);
3415                         for (i--; i >= 0; i--)
3416                                 igb_free_rx_resources(adapter->rx_ring[i]);
3417                         break;
3418                 }
3419         }
3420
3421         return err;
3422 }
3423
3424 /**
3425  *  igb_setup_mrqc - configure the multiple receive queue control registers
3426  *  @adapter: Board private structure
3427  **/
3428 static void igb_setup_mrqc(struct igb_adapter *adapter)
3429 {
3430         struct e1000_hw *hw = &adapter->hw;
3431         u32 mrqc, rxcsum;
3432         u32 j, num_rx_queues;
3433         u32 rss_key[10];
3434
3435         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3436         for (j = 0; j < 10; j++)
3437                 wr32(E1000_RSSRK(j), rss_key[j]);
3438
3439         num_rx_queues = adapter->rss_queues;
3440
3441         switch (hw->mac.type) {
3442         case e1000_82576:
3443                 /* 82576 supports 2 RSS queues for SR-IOV */
3444                 if (adapter->vfs_allocated_count)
3445                         num_rx_queues = 2;
3446                 break;
3447         default:
3448                 break;
3449         }
3450
3451         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3452                 for (j = 0; j < IGB_RETA_SIZE; j++)
3453                         adapter->rss_indir_tbl[j] =
3454                         (j * num_rx_queues) / IGB_RETA_SIZE;
3455                 adapter->rss_indir_tbl_init = num_rx_queues;
3456         }
3457         igb_write_rss_indir_tbl(adapter);
3458
3459         /* Disable raw packet checksumming so that RSS hash is placed in
3460          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3461          * offloads as they are enabled by default
3462          */
3463         rxcsum = rd32(E1000_RXCSUM);
3464         rxcsum |= E1000_RXCSUM_PCSD;
3465
3466         if (adapter->hw.mac.type >= e1000_82576)
3467                 /* Enable Receive Checksum Offload for SCTP */
3468                 rxcsum |= E1000_RXCSUM_CRCOFL;
3469
3470         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3471         wr32(E1000_RXCSUM, rxcsum);
3472
3473         /* Generate RSS hash based on packet types, TCP/UDP
3474          * port numbers and/or IPv4/v6 src and dst addresses
3475          */
3476         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3477                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478                E1000_MRQC_RSS_FIELD_IPV6 |
3479                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3481
3482         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3483                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3484         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3485                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3486
3487         /* If VMDq is enabled then we set the appropriate mode for that, else
3488          * we default to RSS so that an RSS hash is calculated per packet even
3489          * if we are only using one queue
3490          */
3491         if (adapter->vfs_allocated_count) {
3492                 if (hw->mac.type > e1000_82575) {
3493                         /* Set the default pool for the PF's first queue */
3494                         u32 vtctl = rd32(E1000_VT_CTL);
3495
3496                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3497                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3498                         vtctl |= adapter->vfs_allocated_count <<
3499                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3500                         wr32(E1000_VT_CTL, vtctl);
3501                 }
3502                 if (adapter->rss_queues > 1)
3503                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3504                 else
3505                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3506         } else {
3507                 if (hw->mac.type != e1000_i211)
3508                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3509         }
3510         igb_vmm_control(adapter);
3511
3512         wr32(E1000_MRQC, mrqc);
3513 }
3514
3515 /**
3516  *  igb_setup_rctl - configure the receive control registers
3517  *  @adapter: Board private structure
3518  **/
3519 void igb_setup_rctl(struct igb_adapter *adapter)
3520 {
3521         struct e1000_hw *hw = &adapter->hw;
3522         u32 rctl;
3523
3524         rctl = rd32(E1000_RCTL);
3525
3526         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3527         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3528
3529         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3530                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3531
3532         /* enable stripping of CRC. It's unlikely this will break BMC
3533          * redirection as it did with e1000. Newer features require
3534          * that the HW strips the CRC.
3535          */
3536         rctl |= E1000_RCTL_SECRC;
3537
3538         /* disable store bad packets and clear size bits. */
3539         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3540
3541         /* enable LPE to allow for reception of jumbo frames */
3542         rctl |= E1000_RCTL_LPE;
3543
3544         /* disable queue 0 to prevent tail write w/o re-config */
3545         wr32(E1000_RXDCTL(0), 0);
3546
3547         /* Attention!!!  For SR-IOV PF driver operations you must enable
3548          * queue drop for all VF and PF queues to prevent head of line blocking
3549          * if an un-trusted VF does not provide descriptors to hardware.
3550          */
3551         if (adapter->vfs_allocated_count) {
3552                 /* set all queue drop enable bits */
3553                 wr32(E1000_QDE, ALL_QUEUES);
3554         }
3555
3556         /* This is useful for sniffing bad packets. */
3557         if (adapter->netdev->features & NETIF_F_RXALL) {
3558                 /* UPE and MPE will be handled by normal PROMISC logic
3559                  * in e1000e_set_rx_mode
3560                  */
3561                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3562                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3563                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3564
3565                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3566                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3567                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3568                  * and that breaks VLANs.
3569                  */
3570         }
3571
3572         wr32(E1000_RCTL, rctl);
3573 }
3574
3575 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3576                                    int vfn)
3577 {
3578         struct e1000_hw *hw = &adapter->hw;
3579         u32 vmolr;
3580
3581         if (size > MAX_JUMBO_FRAME_SIZE)
3582                 size = MAX_JUMBO_FRAME_SIZE;
3583
3584         vmolr = rd32(E1000_VMOLR(vfn));
3585         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3586         vmolr |= size | E1000_VMOLR_LPE;
3587         wr32(E1000_VMOLR(vfn), vmolr);
3588
3589         return 0;
3590 }
3591
3592 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3593                                          int vfn, bool enable)
3594 {
3595         struct e1000_hw *hw = &adapter->hw;
3596         u32 val, reg;
3597
3598         if (hw->mac.type < e1000_82576)
3599                 return;
3600
3601         if (hw->mac.type == e1000_i350)
3602                 reg = E1000_DVMOLR(vfn);
3603         else
3604                 reg = E1000_VMOLR(vfn);
3605
3606         val = rd32(reg);
3607         if (enable)
3608                 val |= E1000_VMOLR_STRVLAN;
3609         else
3610                 val &= ~(E1000_VMOLR_STRVLAN);
3611         wr32(reg, val);
3612 }
3613
3614 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3615                                  int vfn, bool aupe)
3616 {
3617         struct e1000_hw *hw = &adapter->hw;
3618         u32 vmolr;
3619
3620         /* This register exists only on 82576 and newer so if we are older then
3621          * we should exit and do nothing
3622          */
3623         if (hw->mac.type < e1000_82576)
3624                 return;
3625
3626         vmolr = rd32(E1000_VMOLR(vfn));
3627         if (aupe)
3628                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3629         else
3630                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3631
3632         /* clear all bits that might not be set */
3633         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3634
3635         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3636                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3637         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3638          * multicast packets
3639          */
3640         if (vfn <= adapter->vfs_allocated_count)
3641                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3642
3643         wr32(E1000_VMOLR(vfn), vmolr);
3644 }
3645
3646 /**
3647  *  igb_configure_rx_ring - Configure a receive ring after Reset
3648  *  @adapter: board private structure
3649  *  @ring: receive ring to be configured
3650  *
3651  *  Configure the Rx unit of the MAC after a reset.
3652  **/
3653 void igb_configure_rx_ring(struct igb_adapter *adapter,
3654                            struct igb_ring *ring)
3655 {
3656         struct e1000_hw *hw = &adapter->hw;
3657         u64 rdba = ring->dma;
3658         int reg_idx = ring->reg_idx;
3659         u32 srrctl = 0, rxdctl = 0;
3660
3661         /* disable the queue */
3662         wr32(E1000_RXDCTL(reg_idx), 0);
3663
3664         /* Set DMA base address registers */
3665         wr32(E1000_RDBAL(reg_idx),
3666              rdba & 0x00000000ffffffffULL);
3667         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3668         wr32(E1000_RDLEN(reg_idx),
3669              ring->count * sizeof(union e1000_adv_rx_desc));
3670
3671         /* initialize head and tail */
3672         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3673         wr32(E1000_RDH(reg_idx), 0);
3674         writel(0, ring->tail);
3675
3676         /* set descriptor configuration */
3677         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3678         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3679         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3680         if (hw->mac.type >= e1000_82580)
3681                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3682         /* Only set Drop Enable if we are supporting multiple queues */
3683         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3684                 srrctl |= E1000_SRRCTL_DROP_EN;
3685
3686         wr32(E1000_SRRCTL(reg_idx), srrctl);
3687
3688         /* set filtering for VMDQ pools */
3689         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3690
3691         rxdctl |= IGB_RX_PTHRESH;
3692         rxdctl |= IGB_RX_HTHRESH << 8;
3693         rxdctl |= IGB_RX_WTHRESH << 16;
3694
3695         /* enable receive descriptor fetching */
3696         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3697         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3698 }
3699
3700 /**
3701  *  igb_configure_rx - Configure receive Unit after Reset
3702  *  @adapter: board private structure
3703  *
3704  *  Configure the Rx unit of the MAC after a reset.
3705  **/
3706 static void igb_configure_rx(struct igb_adapter *adapter)
3707 {
3708         int i;
3709
3710         /* set the correct pool for the PF default MAC address in entry 0 */
3711         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3712                          adapter->vfs_allocated_count);
3713
3714         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3715          * the Base and Length of the Rx Descriptor Ring
3716          */
3717         for (i = 0; i < adapter->num_rx_queues; i++)
3718                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3719 }
3720
3721 /**
3722  *  igb_free_tx_resources - Free Tx Resources per Queue
3723  *  @tx_ring: Tx descriptor ring for a specific queue
3724  *
3725  *  Free all transmit software resources
3726  **/
3727 void igb_free_tx_resources(struct igb_ring *tx_ring)
3728 {
3729         igb_clean_tx_ring(tx_ring);
3730
3731         vfree(tx_ring->tx_buffer_info);
3732         tx_ring->tx_buffer_info = NULL;
3733
3734         /* if not set, then don't free */
3735         if (!tx_ring->desc)
3736                 return;
3737
3738         dma_free_coherent(tx_ring->dev, tx_ring->size,
3739                           tx_ring->desc, tx_ring->dma);
3740
3741         tx_ring->desc = NULL;
3742 }
3743
3744 /**
3745  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3746  *  @adapter: board private structure
3747  *
3748  *  Free all transmit software resources
3749  **/
3750 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3751 {
3752         int i;
3753
3754         for (i = 0; i < adapter->num_tx_queues; i++)
3755                 if (adapter->tx_ring[i])
3756                         igb_free_tx_resources(adapter->tx_ring[i]);
3757 }
3758
3759 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3760                                     struct igb_tx_buffer *tx_buffer)
3761 {
3762         if (tx_buffer->skb) {
3763                 dev_kfree_skb_any(tx_buffer->skb);
3764                 if (dma_unmap_len(tx_buffer, len))
3765                         dma_unmap_single(ring->dev,
3766                                          dma_unmap_addr(tx_buffer, dma),
3767                                          dma_unmap_len(tx_buffer, len),
3768                                          DMA_TO_DEVICE);
3769         } else if (dma_unmap_len(tx_buffer, len)) {
3770                 dma_unmap_page(ring->dev,
3771                                dma_unmap_addr(tx_buffer, dma),
3772                                dma_unmap_len(tx_buffer, len),
3773                                DMA_TO_DEVICE);
3774         }
3775         tx_buffer->next_to_watch = NULL;
3776         tx_buffer->skb = NULL;
3777         dma_unmap_len_set(tx_buffer, len, 0);
3778         /* buffer_info must be completely set up in the transmit path */
3779 }
3780
3781 /**
3782  *  igb_clean_tx_ring - Free Tx Buffers
3783  *  @tx_ring: ring to be cleaned
3784  **/
3785 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3786 {
3787         struct igb_tx_buffer *buffer_info;
3788         unsigned long size;
3789         u16 i;
3790
3791         if (!tx_ring->tx_buffer_info)
3792                 return;
3793         /* Free all the Tx ring sk_buffs */
3794
3795         for (i = 0; i < tx_ring->count; i++) {
3796                 buffer_info = &tx_ring->tx_buffer_info[i];
3797                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3798         }
3799
3800         netdev_tx_reset_queue(txring_txq(tx_ring));
3801
3802         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3803         memset(tx_ring->tx_buffer_info, 0, size);
3804
3805         /* Zero out the descriptor ring */
3806         memset(tx_ring->desc, 0, tx_ring->size);
3807
3808         tx_ring->next_to_use = 0;
3809         tx_ring->next_to_clean = 0;
3810 }
3811
3812 /**
3813  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3814  *  @adapter: board private structure
3815  **/
3816 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3817 {
3818         int i;
3819
3820         for (i = 0; i < adapter->num_tx_queues; i++)
3821                 if (adapter->tx_ring[i])
3822                         igb_clean_tx_ring(adapter->tx_ring[i]);
3823 }
3824
3825 /**
3826  *  igb_free_rx_resources - Free Rx Resources
3827  *  @rx_ring: ring to clean the resources from
3828  *
3829  *  Free all receive software resources
3830  **/
3831 void igb_free_rx_resources(struct igb_ring *rx_ring)
3832 {
3833         igb_clean_rx_ring(rx_ring);
3834
3835         vfree(rx_ring->rx_buffer_info);
3836         rx_ring->rx_buffer_info = NULL;
3837
3838         /* if not set, then don't free */
3839         if (!rx_ring->desc)
3840                 return;
3841
3842         dma_free_coherent(rx_ring->dev, rx_ring->size,
3843                           rx_ring->desc, rx_ring->dma);
3844
3845         rx_ring->desc = NULL;
3846 }
3847
3848 /**
3849  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3850  *  @adapter: board private structure
3851  *
3852  *  Free all receive software resources
3853  **/
3854 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3855 {
3856         int i;
3857
3858         for (i = 0; i < adapter->num_rx_queues; i++)
3859                 if (adapter->rx_ring[i])
3860                         igb_free_rx_resources(adapter->rx_ring[i]);
3861 }
3862
3863 /**
3864  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3865  *  @rx_ring: ring to free buffers from
3866  **/
3867 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3868 {
3869         unsigned long size;
3870         u16 i;
3871
3872         if (rx_ring->skb)
3873                 dev_kfree_skb(rx_ring->skb);
3874         rx_ring->skb = NULL;
3875
3876         if (!rx_ring->rx_buffer_info)
3877                 return;
3878
3879         /* Free all the Rx ring sk_buffs */
3880         for (i = 0; i < rx_ring->count; i++) {
3881                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3882
3883                 if (!buffer_info->page)
3884                         continue;
3885
3886                 dma_unmap_page(rx_ring->dev,
3887                                buffer_info->dma,
3888                                PAGE_SIZE,
3889                                DMA_FROM_DEVICE);
3890                 __free_page(buffer_info->page);
3891
3892                 buffer_info->page = NULL;
3893         }
3894
3895         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3896         memset(rx_ring->rx_buffer_info, 0, size);
3897
3898         /* Zero out the descriptor ring */
3899         memset(rx_ring->desc, 0, rx_ring->size);
3900
3901         rx_ring->next_to_alloc = 0;
3902         rx_ring->next_to_clean = 0;
3903         rx_ring->next_to_use = 0;
3904 }
3905
3906 /**
3907  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3908  *  @adapter: board private structure
3909  **/
3910 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3911 {
3912         int i;
3913
3914         for (i = 0; i < adapter->num_rx_queues; i++)
3915                 if (adapter->rx_ring[i])
3916                         igb_clean_rx_ring(adapter->rx_ring[i]);
3917 }
3918
3919 /**
3920  *  igb_set_mac - Change the Ethernet Address of the NIC
3921  *  @netdev: network interface device structure
3922  *  @p: pointer to an address structure
3923  *
3924  *  Returns 0 on success, negative on failure
3925  **/
3926 static int igb_set_mac(struct net_device *netdev, void *p)
3927 {
3928         struct igb_adapter *adapter = netdev_priv(netdev);
3929         struct e1000_hw *hw = &adapter->hw;
3930         struct sockaddr *addr = p;
3931
3932         if (!is_valid_ether_addr(addr->sa_data))
3933                 return -EADDRNOTAVAIL;
3934
3935         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3936         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3937
3938         /* set the correct pool for the new PF MAC address in entry 0 */
3939         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3940                          adapter->vfs_allocated_count);
3941
3942         return 0;
3943 }
3944
3945 /**
3946  *  igb_write_mc_addr_list - write multicast addresses to MTA
3947  *  @netdev: network interface device structure
3948  *
3949  *  Writes multicast address list to the MTA hash table.
3950  *  Returns: -ENOMEM on failure
3951  *           0 on no addresses written
3952  *           X on writing X addresses to MTA
3953  **/
3954 static int igb_write_mc_addr_list(struct net_device *netdev)
3955 {
3956         struct igb_adapter *adapter = netdev_priv(netdev);
3957         struct e1000_hw *hw = &adapter->hw;
3958         struct netdev_hw_addr *ha;
3959         u8  *mta_list;
3960         int i;
3961
3962         if (netdev_mc_empty(netdev)) {
3963                 /* nothing to program, so clear mc list */
3964                 igb_update_mc_addr_list(hw, NULL, 0);
3965                 igb_restore_vf_multicasts(adapter);
3966                 return 0;
3967         }
3968
3969         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3970         if (!mta_list)
3971                 return -ENOMEM;
3972
3973         /* The shared function expects a packed array of only addresses. */
3974         i = 0;
3975         netdev_for_each_mc_addr(ha, netdev)
3976                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3977
3978         igb_update_mc_addr_list(hw, mta_list, i);
3979         kfree(mta_list);
3980
3981         return netdev_mc_count(netdev);
3982 }
3983
3984 /**
3985  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3986  *  @netdev: network interface device structure
3987  *
3988  *  Writes unicast address list to the RAR table.
3989  *  Returns: -ENOMEM on failure/insufficient address space
3990  *           0 on no addresses written
3991  *           X on writing X addresses to the RAR table
3992  **/
3993 static int igb_write_uc_addr_list(struct net_device *netdev)
3994 {
3995         struct igb_adapter *adapter = netdev_priv(netdev);
3996         struct e1000_hw *hw = &adapter->hw;
3997         unsigned int vfn = adapter->vfs_allocated_count;
3998         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3999         int count = 0;
4000
4001         /* return ENOMEM indicating insufficient memory for addresses */
4002         if (netdev_uc_count(netdev) > rar_entries)
4003                 return -ENOMEM;
4004
4005         if (!netdev_uc_empty(netdev) && rar_entries) {
4006                 struct netdev_hw_addr *ha;
4007
4008                 netdev_for_each_uc_addr(ha, netdev) {
4009                         if (!rar_entries)
4010                                 break;
4011                         igb_rar_set_qsel(adapter, ha->addr,
4012                                          rar_entries--,
4013                                          vfn);
4014                         count++;
4015                 }
4016         }
4017         /* write the addresses in reverse order to avoid write combining */
4018         for (; rar_entries > 0 ; rar_entries--) {
4019                 wr32(E1000_RAH(rar_entries), 0);
4020                 wr32(E1000_RAL(rar_entries), 0);
4021         }
4022         wrfl();
4023
4024         return count;
4025 }
4026
4027 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4028 {
4029         struct e1000_hw *hw = &adapter->hw;
4030         u32 i, pf_id;
4031
4032         switch (hw->mac.type) {
4033         case e1000_i210:
4034         case e1000_i211:
4035         case e1000_i350:
4036                 /* VLAN filtering needed for VLAN prio filter */
4037                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4038                         break;
4039                 /* fall through */
4040         case e1000_82576:
4041         case e1000_82580:
4042         case e1000_i354:
4043                 /* VLAN filtering needed for pool filtering */
4044                 if (adapter->vfs_allocated_count)
4045                         break;
4046                 /* fall through */
4047         default:
4048                 return 1;
4049         }
4050
4051         /* We are already in VLAN promisc, nothing to do */
4052         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4053                 return 0;
4054
4055         if (!adapter->vfs_allocated_count)
4056                 goto set_vfta;
4057
4058         /* Add PF to all active pools */
4059         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4060
4061         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4062                 u32 vlvf = rd32(E1000_VLVF(i));
4063
4064                 vlvf |= 1 << pf_id;
4065                 wr32(E1000_VLVF(i), vlvf);
4066         }
4067
4068 set_vfta:
4069         /* Set all bits in the VLAN filter table array */
4070         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4071                 hw->mac.ops.write_vfta(hw, i, ~0U);
4072
4073         /* Set flag so we don't redo unnecessary work */
4074         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4075
4076         return 0;
4077 }
4078
4079 #define VFTA_BLOCK_SIZE 8
4080 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4081 {
4082         struct e1000_hw *hw = &adapter->hw;
4083         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4084         u32 vid_start = vfta_offset * 32;
4085         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4086         u32 i, vid, word, bits, pf_id;
4087
4088         /* guarantee that we don't scrub out management VLAN */
4089         vid = adapter->mng_vlan_id;
4090         if (vid >= vid_start && vid < vid_end)
4091                 vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4092
4093         if (!adapter->vfs_allocated_count)
4094                 goto set_vfta;
4095
4096         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4097
4098         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4099                 u32 vlvf = rd32(E1000_VLVF(i));
4100
4101                 /* pull VLAN ID from VLVF */
4102                 vid = vlvf & VLAN_VID_MASK;
4103
4104                 /* only concern ourselves with a certain range */
4105                 if (vid < vid_start || vid >= vid_end)
4106                         continue;
4107
4108                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4109                         /* record VLAN ID in VFTA */
4110                         vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4111
4112                         /* if PF is part of this then continue */
4113                         if (test_bit(vid, adapter->active_vlans))
4114                                 continue;
4115                 }
4116
4117                 /* remove PF from the pool */
4118                 bits = ~(1 << pf_id);
4119                 bits &= rd32(E1000_VLVF(i));
4120                 wr32(E1000_VLVF(i), bits);
4121         }
4122
4123 set_vfta:
4124         /* extract values from active_vlans and write back to VFTA */
4125         for (i = VFTA_BLOCK_SIZE; i--;) {
4126                 vid = (vfta_offset + i) * 32;
4127                 word = vid / BITS_PER_LONG;
4128                 bits = vid % BITS_PER_LONG;
4129
4130                 vfta[i] |= adapter->active_vlans[word] >> bits;
4131
4132                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4133         }
4134 }
4135
4136 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4137 {
4138         u32 i;
4139
4140         /* We are not in VLAN promisc, nothing to do */
4141         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4142                 return;
4143
4144         /* Set flag so we don't redo unnecessary work */
4145         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4146
4147         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4148                 igb_scrub_vfta(adapter, i);
4149 }
4150
4151 /**
4152  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4153  *  @netdev: network interface device structure
4154  *
4155  *  The set_rx_mode entry point is called whenever the unicast or multicast
4156  *  address lists or the network interface flags are updated.  This routine is
4157  *  responsible for configuring the hardware for proper unicast, multicast,
4158  *  promiscuous mode, and all-multi behavior.
4159  **/
4160 static void igb_set_rx_mode(struct net_device *netdev)
4161 {
4162         struct igb_adapter *adapter = netdev_priv(netdev);
4163         struct e1000_hw *hw = &adapter->hw;
4164         unsigned int vfn = adapter->vfs_allocated_count;
4165         u32 rctl = 0, vmolr = 0;
4166         int count;
4167
4168         /* Check for Promiscuous and All Multicast modes */
4169         if (netdev->flags & IFF_PROMISC) {
4170                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4171                 vmolr |= E1000_VMOLR_MPME;
4172
4173                 /* enable use of UTA filter to force packets to default pool */
4174                 if (hw->mac.type == e1000_82576)
4175                         vmolr |= E1000_VMOLR_ROPE;
4176         } else {
4177                 if (netdev->flags & IFF_ALLMULTI) {
4178                         rctl |= E1000_RCTL_MPE;
4179                         vmolr |= E1000_VMOLR_MPME;
4180                 } else {
4181                         /* Write addresses to the MTA, if the attempt fails
4182                          * then we should just turn on promiscuous mode so
4183                          * that we can at least receive multicast traffic
4184                          */
4185                         count = igb_write_mc_addr_list(netdev);
4186                         if (count < 0) {
4187                                 rctl |= E1000_RCTL_MPE;
4188                                 vmolr |= E1000_VMOLR_MPME;
4189                         } else if (count) {
4190                                 vmolr |= E1000_VMOLR_ROMPE;
4191                         }
4192                 }
4193         }
4194
4195         /* Write addresses to available RAR registers, if there is not
4196          * sufficient space to store all the addresses then enable
4197          * unicast promiscuous mode
4198          */
4199         count = igb_write_uc_addr_list(netdev);
4200         if (count < 0) {
4201                 rctl |= E1000_RCTL_UPE;
4202                 vmolr |= E1000_VMOLR_ROPE;
4203         }
4204
4205         /* enable VLAN filtering by default */
4206         rctl |= E1000_RCTL_VFE;
4207
4208         /* disable VLAN filtering for modes that require it */
4209         if ((netdev->flags & IFF_PROMISC) ||
4210             (netdev->features & NETIF_F_RXALL)) {
4211                 /* if we fail to set all rules then just clear VFE */
4212                 if (igb_vlan_promisc_enable(adapter))
4213                         rctl &= ~E1000_RCTL_VFE;
4214         } else {
4215                 igb_vlan_promisc_disable(adapter);
4216         }
4217
4218         /* update state of unicast, multicast, and VLAN filtering modes */
4219         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4220                                      E1000_RCTL_VFE);
4221         wr32(E1000_RCTL, rctl);
4222
4223         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4224          * the VMOLR to enable the appropriate modes.  Without this workaround
4225          * we will have issues with VLAN tag stripping not being done for frames
4226          * that are only arriving because we are the default pool
4227          */
4228         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4229                 return;
4230
4231         /* set UTA to appropriate mode */
4232         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4233
4234         vmolr |= rd32(E1000_VMOLR(vfn)) &
4235                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4236
4237         /* enable Rx jumbo frames, no need for restriction */
4238         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4239         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4240
4241         wr32(E1000_VMOLR(vfn), vmolr);
4242         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4243
4244         igb_restore_vf_multicasts(adapter);
4245 }
4246
4247 static void igb_check_wvbr(struct igb_adapter *adapter)
4248 {
4249         struct e1000_hw *hw = &adapter->hw;
4250         u32 wvbr = 0;
4251
4252         switch (hw->mac.type) {
4253         case e1000_82576:
4254         case e1000_i350:
4255                 wvbr = rd32(E1000_WVBR);
4256                 if (!wvbr)
4257                         return;
4258                 break;
4259         default:
4260                 break;
4261         }
4262
4263         adapter->wvbr |= wvbr;
4264 }
4265
4266 #define IGB_STAGGERED_QUEUE_OFFSET 8
4267
4268 static void igb_spoof_check(struct igb_adapter *adapter)
4269 {
4270         int j;
4271
4272         if (!adapter->wvbr)
4273                 return;
4274
4275         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4276                 if (adapter->wvbr & (1 << j) ||
4277                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4278                         dev_warn(&adapter->pdev->dev,
4279                                 "Spoof event(s) detected on VF %d\n", j);
4280                         adapter->wvbr &=
4281                                 ~((1 << j) |
4282                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4283                 }
4284         }
4285 }
4286
4287 /* Need to wait a few seconds after link up to get diagnostic information from
4288  * the phy
4289  */
4290 static void igb_update_phy_info(unsigned long data)
4291 {
4292         struct igb_adapter *adapter = (struct igb_adapter *) data;
4293         igb_get_phy_info(&adapter->hw);
4294 }
4295
4296 /**
4297  *  igb_has_link - check shared code for link and determine up/down
4298  *  @adapter: pointer to driver private info
4299  **/
4300 bool igb_has_link(struct igb_adapter *adapter)
4301 {
4302         struct e1000_hw *hw = &adapter->hw;
4303         bool link_active = false;
4304
4305         /* get_link_status is set on LSC (link status) interrupt or
4306          * rx sequence error interrupt.  get_link_status will stay
4307          * false until the e1000_check_for_link establishes link
4308          * for copper adapters ONLY
4309          */
4310         switch (hw->phy.media_type) {
4311         case e1000_media_type_copper:
4312                 if (!hw->mac.get_link_status)
4313                         return true;
4314         case e1000_media_type_internal_serdes:
4315                 hw->mac.ops.check_for_link(hw);
4316                 link_active = !hw->mac.get_link_status;
4317                 break;
4318         default:
4319         case e1000_media_type_unknown:
4320                 break;
4321         }
4322
4323         if (((hw->mac.type == e1000_i210) ||
4324              (hw->mac.type == e1000_i211)) &&
4325              (hw->phy.id == I210_I_PHY_ID)) {
4326                 if (!netif_carrier_ok(adapter->netdev)) {
4327                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4328                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4329                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4330                         adapter->link_check_timeout = jiffies;
4331                 }
4332         }
4333
4334         return link_active;
4335 }
4336
4337 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4338 {
4339         bool ret = false;
4340         u32 ctrl_ext, thstat;
4341
4342         /* check for thermal sensor event on i350 copper only */
4343         if (hw->mac.type == e1000_i350) {
4344                 thstat = rd32(E1000_THSTAT);
4345                 ctrl_ext = rd32(E1000_CTRL_EXT);
4346
4347                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4348                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4349                         ret = !!(thstat & event);
4350         }
4351
4352         return ret;
4353 }
4354
4355 /**
4356  *  igb_check_lvmmc - check for malformed packets received
4357  *  and indicated in LVMMC register
4358  *  @adapter: pointer to adapter
4359  **/
4360 static void igb_check_lvmmc(struct igb_adapter *adapter)
4361 {
4362         struct e1000_hw *hw = &adapter->hw;
4363         u32 lvmmc;
4364
4365         lvmmc = rd32(E1000_LVMMC);
4366         if (lvmmc) {
4367                 if (unlikely(net_ratelimit())) {
4368                         netdev_warn(adapter->netdev,
4369                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4370                                     lvmmc);
4371                 }
4372         }
4373 }
4374
4375 /**
4376  *  igb_watchdog - Timer Call-back
4377  *  @data: pointer to adapter cast into an unsigned long
4378  **/
4379 static void igb_watchdog(unsigned long data)
4380 {
4381         struct igb_adapter *adapter = (struct igb_adapter *)data;
4382         /* Do the rest outside of interrupt context */
4383         schedule_work(&adapter->watchdog_task);
4384 }
4385
4386 static void igb_watchdog_task(struct work_struct *work)
4387 {
4388         struct igb_adapter *adapter = container_of(work,
4389                                                    struct igb_adapter,
4390                                                    watchdog_task);
4391         struct e1000_hw *hw = &adapter->hw;
4392         struct e1000_phy_info *phy = &hw->phy;
4393         struct net_device *netdev = adapter->netdev;
4394         u32 link;
4395         int i;
4396         u32 connsw;
4397         u16 phy_data, retry_count = 20;
4398
4399         link = igb_has_link(adapter);
4400
4401         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4402                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4403                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404                 else
4405                         link = false;
4406         }
4407
4408         /* Force link down if we have fiber to swap to */
4409         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4410                 if (hw->phy.media_type == e1000_media_type_copper) {
4411                         connsw = rd32(E1000_CONNSW);
4412                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4413                                 link = 0;
4414                 }
4415         }
4416         if (link) {
4417                 /* Perform a reset if the media type changed. */
4418                 if (hw->dev_spec._82575.media_changed) {
4419                         hw->dev_spec._82575.media_changed = false;
4420                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4421                         igb_reset(adapter);
4422                 }
4423                 /* Cancel scheduled suspend requests. */
4424                 pm_runtime_resume(netdev->dev.parent);
4425
4426                 if (!netif_carrier_ok(netdev)) {
4427                         u32 ctrl;
4428
4429                         hw->mac.ops.get_speed_and_duplex(hw,
4430                                                          &adapter->link_speed,
4431                                                          &adapter->link_duplex);
4432
4433                         ctrl = rd32(E1000_CTRL);
4434                         /* Links status message must follow this format */
4435                         netdev_info(netdev,
4436                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4437                                netdev->name,
4438                                adapter->link_speed,
4439                                adapter->link_duplex == FULL_DUPLEX ?
4440                                "Full" : "Half",
4441                                (ctrl & E1000_CTRL_TFCE) &&
4442                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4443                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4444                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4445
4446                         /* disable EEE if enabled */
4447                         if ((adapter->flags & IGB_FLAG_EEE) &&
4448                                 (adapter->link_duplex == HALF_DUPLEX)) {
4449                                 dev_info(&adapter->pdev->dev,
4450                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4451                                 adapter->hw.dev_spec._82575.eee_disable = true;
4452                                 adapter->flags &= ~IGB_FLAG_EEE;
4453                         }
4454
4455                         /* check if SmartSpeed worked */
4456                         igb_check_downshift(hw);
4457                         if (phy->speed_downgraded)
4458                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4459
4460                         /* check for thermal sensor event */
4461                         if (igb_thermal_sensor_event(hw,
4462                             E1000_THSTAT_LINK_THROTTLE))
4463                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4464
4465                         /* adjust timeout factor according to speed/duplex */
4466                         adapter->tx_timeout_factor = 1;
4467                         switch (adapter->link_speed) {
4468                         case SPEED_10:
4469                                 adapter->tx_timeout_factor = 14;
4470                                 break;
4471                         case SPEED_100:
4472                                 /* maybe add some timeout factor ? */
4473                                 break;
4474                         }
4475
4476                         if (adapter->link_speed != SPEED_1000)
4477                                 goto no_wait;
4478
4479                         /* wait for Remote receiver status OK */
4480 retry_read_status:
4481                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4482                                               &phy_data)) {
4483                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4484                                     retry_count) {
4485                                         msleep(100);
4486                                         retry_count--;
4487                                         goto retry_read_status;
4488                                 } else if (!retry_count) {
4489                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4490                                 }
4491                         } else {
4492                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4493                         }
4494 no_wait:
4495                         netif_carrier_on(netdev);
4496
4497                         igb_ping_all_vfs(adapter);
4498                         igb_check_vf_rate_limit(adapter);
4499
4500                         /* link state has changed, schedule phy info update */
4501                         if (!test_bit(__IGB_DOWN, &adapter->state))
4502                                 mod_timer(&adapter->phy_info_timer,
4503                                           round_jiffies(jiffies + 2 * HZ));
4504                 }
4505         } else {
4506                 if (netif_carrier_ok(netdev)) {
4507                         adapter->link_speed = 0;
4508                         adapter->link_duplex = 0;
4509
4510                         /* check for thermal sensor event */
4511                         if (igb_thermal_sensor_event(hw,
4512                             E1000_THSTAT_PWR_DOWN)) {
4513                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4514                         }
4515
4516                         /* Links status message must follow this format */
4517                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4518                                netdev->name);
4519                         netif_carrier_off(netdev);
4520
4521                         igb_ping_all_vfs(adapter);
4522
4523                         /* link state has changed, schedule phy info update */
4524                         if (!test_bit(__IGB_DOWN, &adapter->state))
4525                                 mod_timer(&adapter->phy_info_timer,
4526                                           round_jiffies(jiffies + 2 * HZ));
4527
4528                         /* link is down, time to check for alternate media */
4529                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4530                                 igb_check_swap_media(adapter);
4531                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4532                                         schedule_work(&adapter->reset_task);
4533                                         /* return immediately */
4534                                         return;
4535                                 }
4536                         }
4537                         pm_schedule_suspend(netdev->dev.parent,
4538                                             MSEC_PER_SEC * 5);
4539
4540                 /* also check for alternate media here */
4541                 } else if (!netif_carrier_ok(netdev) &&
4542                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4543                         igb_check_swap_media(adapter);
4544                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4545                                 schedule_work(&adapter->reset_task);
4546                                 /* return immediately */
4547                                 return;
4548                         }
4549                 }
4550         }
4551
4552         spin_lock(&adapter->stats64_lock);
4553         igb_update_stats(adapter, &adapter->stats64);
4554         spin_unlock(&adapter->stats64_lock);
4555
4556         for (i = 0; i < adapter->num_tx_queues; i++) {
4557                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4558                 if (!netif_carrier_ok(netdev)) {
4559                         /* We've lost link, so the controller stops DMA,
4560                          * but we've got queued Tx work that's never going
4561                          * to get done, so reset controller to flush Tx.
4562                          * (Do the reset outside of interrupt context).
4563                          */
4564                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4565                                 adapter->tx_timeout_count++;
4566                                 schedule_work(&adapter->reset_task);
4567                                 /* return immediately since reset is imminent */
4568                                 return;
4569                         }
4570                 }
4571
4572                 /* Force detection of hung controller every watchdog period */
4573                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4574         }
4575
4576         /* Cause software interrupt to ensure Rx ring is cleaned */
4577         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4578                 u32 eics = 0;
4579
4580                 for (i = 0; i < adapter->num_q_vectors; i++)
4581                         eics |= adapter->q_vector[i]->eims_value;
4582                 wr32(E1000_EICS, eics);
4583         } else {
4584                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4585         }
4586
4587         igb_spoof_check(adapter);
4588         igb_ptp_rx_hang(adapter);
4589
4590         /* Check LVMMC register on i350/i354 only */
4591         if ((adapter->hw.mac.type == e1000_i350) ||
4592             (adapter->hw.mac.type == e1000_i354))
4593                 igb_check_lvmmc(adapter);
4594
4595         /* Reset the timer */
4596         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4597                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4598                         mod_timer(&adapter->watchdog_timer,
4599                                   round_jiffies(jiffies +  HZ));
4600                 else
4601                         mod_timer(&adapter->watchdog_timer,
4602                                   round_jiffies(jiffies + 2 * HZ));
4603         }
4604 }
4605
4606 enum latency_range {
4607         lowest_latency = 0,
4608         low_latency = 1,
4609         bulk_latency = 2,
4610         latency_invalid = 255
4611 };
4612
4613 /**
4614  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4615  *  @q_vector: pointer to q_vector
4616  *
4617  *  Stores a new ITR value based on strictly on packet size.  This
4618  *  algorithm is less sophisticated than that used in igb_update_itr,
4619  *  due to the difficulty of synchronizing statistics across multiple
4620  *  receive rings.  The divisors and thresholds used by this function
4621  *  were determined based on theoretical maximum wire speed and testing
4622  *  data, in order to minimize response time while increasing bulk
4623  *  throughput.
4624  *  This functionality is controlled by ethtool's coalescing settings.
4625  *  NOTE:  This function is called only when operating in a multiqueue
4626  *         receive environment.
4627  **/
4628 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4629 {
4630         int new_val = q_vector->itr_val;
4631         int avg_wire_size = 0;
4632         struct igb_adapter *adapter = q_vector->adapter;
4633         unsigned int packets;
4634
4635         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4636          * ints/sec - ITR timer value of 120 ticks.
4637          */
4638         if (adapter->link_speed != SPEED_1000) {
4639                 new_val = IGB_4K_ITR;
4640                 goto set_itr_val;
4641         }
4642
4643         packets = q_vector->rx.total_packets;
4644         if (packets)
4645                 avg_wire_size = q_vector->rx.total_bytes / packets;
4646
4647         packets = q_vector->tx.total_packets;
4648         if (packets)
4649                 avg_wire_size = max_t(u32, avg_wire_size,
4650                                       q_vector->tx.total_bytes / packets);
4651
4652         /* if avg_wire_size isn't set no work was done */
4653         if (!avg_wire_size)
4654                 goto clear_counts;
4655
4656         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4657         avg_wire_size += 24;
4658
4659         /* Don't starve jumbo frames */
4660         avg_wire_size = min(avg_wire_size, 3000);
4661
4662         /* Give a little boost to mid-size frames */
4663         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4664                 new_val = avg_wire_size / 3;
4665         else
4666                 new_val = avg_wire_size / 2;
4667
4668         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4669         if (new_val < IGB_20K_ITR &&
4670             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4671              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4672                 new_val = IGB_20K_ITR;
4673
4674 set_itr_val:
4675         if (new_val != q_vector->itr_val) {
4676                 q_vector->itr_val = new_val;
4677                 q_vector->set_itr = 1;
4678         }
4679 clear_counts:
4680         q_vector->rx.total_bytes = 0;
4681         q_vector->rx.total_packets = 0;
4682         q_vector->tx.total_bytes = 0;
4683         q_vector->tx.total_packets = 0;
4684 }
4685
4686 /**
4687  *  igb_update_itr - update the dynamic ITR value based on statistics
4688  *  @q_vector: pointer to q_vector
4689  *  @ring_container: ring info to update the itr for
4690  *
4691  *  Stores a new ITR value based on packets and byte
4692  *  counts during the last interrupt.  The advantage of per interrupt
4693  *  computation is faster updates and more accurate ITR for the current
4694  *  traffic pattern.  Constants in this function were computed
4695  *  based on theoretical maximum wire speed and thresholds were set based
4696  *  on testing data as well as attempting to minimize response time
4697  *  while increasing bulk throughput.
4698  *  This functionality is controlled by ethtool's coalescing settings.
4699  *  NOTE:  These calculations are only valid when operating in a single-
4700  *         queue environment.
4701  **/
4702 static void igb_update_itr(struct igb_q_vector *q_vector,
4703                            struct igb_ring_container *ring_container)
4704 {
4705         unsigned int packets = ring_container->total_packets;
4706         unsigned int bytes = ring_container->total_bytes;
4707         u8 itrval = ring_container->itr;
4708
4709         /* no packets, exit with status unchanged */
4710         if (packets == 0)
4711                 return;
4712
4713         switch (itrval) {
4714         case lowest_latency:
4715                 /* handle TSO and jumbo frames */
4716                 if (bytes/packets > 8000)
4717                         itrval = bulk_latency;
4718                 else if ((packets < 5) && (bytes > 512))
4719                         itrval = low_latency;
4720                 break;
4721         case low_latency:  /* 50 usec aka 20000 ints/s */
4722                 if (bytes > 10000) {
4723                         /* this if handles the TSO accounting */
4724                         if (bytes/packets > 8000)
4725                                 itrval = bulk_latency;
4726                         else if ((packets < 10) || ((bytes/packets) > 1200))
4727                                 itrval = bulk_latency;
4728                         else if ((packets > 35))
4729                                 itrval = lowest_latency;
4730                 } else if (bytes/packets > 2000) {
4731                         itrval = bulk_latency;
4732                 } else if (packets <= 2 && bytes < 512) {
4733                         itrval = lowest_latency;
4734                 }
4735                 break;
4736         case bulk_latency: /* 250 usec aka 4000 ints/s */
4737                 if (bytes > 25000) {
4738                         if (packets > 35)
4739                                 itrval = low_latency;
4740                 } else if (bytes < 1500) {
4741                         itrval = low_latency;
4742                 }
4743                 break;
4744         }
4745
4746         /* clear work counters since we have the values we need */
4747         ring_container->total_bytes = 0;
4748         ring_container->total_packets = 0;
4749
4750         /* write updated itr to ring container */
4751         ring_container->itr = itrval;
4752 }
4753
4754 static void igb_set_itr(struct igb_q_vector *q_vector)
4755 {
4756         struct igb_adapter *adapter = q_vector->adapter;
4757         u32 new_itr = q_vector->itr_val;
4758         u8 current_itr = 0;
4759
4760         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4761         if (adapter->link_speed != SPEED_1000) {
4762                 current_itr = 0;
4763                 new_itr = IGB_4K_ITR;
4764                 goto set_itr_now;
4765         }
4766
4767         igb_update_itr(q_vector, &q_vector->tx);
4768         igb_update_itr(q_vector, &q_vector->rx);
4769
4770         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4771
4772         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4773         if (current_itr == lowest_latency &&
4774             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4775              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4776                 current_itr = low_latency;
4777
4778         switch (current_itr) {
4779         /* counts and packets in update_itr are dependent on these numbers */
4780         case lowest_latency:
4781                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4782                 break;
4783         case low_latency:
4784                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4785                 break;
4786         case bulk_latency:
4787                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4788                 break;
4789         default:
4790                 break;
4791         }
4792
4793 set_itr_now:
4794         if (new_itr != q_vector->itr_val) {
4795                 /* this attempts to bias the interrupt rate towards Bulk
4796                  * by adding intermediate steps when interrupt rate is
4797                  * increasing
4798                  */
4799                 new_itr = new_itr > q_vector->itr_val ?
4800                           max((new_itr * q_vector->itr_val) /
4801                           (new_itr + (q_vector->itr_val >> 2)),
4802                           new_itr) : new_itr;
4803                 /* Don't write the value here; it resets the adapter's
4804                  * internal timer, and causes us to delay far longer than
4805                  * we should between interrupts.  Instead, we write the ITR
4806                  * value at the beginning of the next interrupt so the timing
4807                  * ends up being correct.
4808                  */
4809                 q_vector->itr_val = new_itr;
4810                 q_vector->set_itr = 1;
4811         }
4812 }
4813
4814 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4815                             u32 type_tucmd, u32 mss_l4len_idx)
4816 {
4817         struct e1000_adv_tx_context_desc *context_desc;
4818         u16 i = tx_ring->next_to_use;
4819
4820         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4821
4822         i++;
4823         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4824
4825         /* set bits to identify this as an advanced context descriptor */
4826         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4827
4828         /* For 82575, context index must be unique per ring. */
4829         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4830                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4831
4832         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4833         context_desc->seqnum_seed       = 0;
4834         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4835         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4836 }
4837
4838 static int igb_tso(struct igb_ring *tx_ring,
4839                    struct igb_tx_buffer *first,
4840                    u8 *hdr_len)
4841 {
4842         struct sk_buff *skb = first->skb;
4843         u32 vlan_macip_lens, type_tucmd;
4844         u32 mss_l4len_idx, l4len;
4845         int err;
4846
4847         if (skb->ip_summed != CHECKSUM_PARTIAL)
4848                 return 0;
4849
4850         if (!skb_is_gso(skb))
4851                 return 0;
4852
4853         err = skb_cow_head(skb, 0);
4854         if (err < 0)
4855                 return err;
4856
4857         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4858         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4859
4860         if (first->protocol == htons(ETH_P_IP)) {
4861                 struct iphdr *iph = ip_hdr(skb);
4862                 iph->tot_len = 0;
4863                 iph->check = 0;
4864                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4865                                                          iph->daddr, 0,
4866                                                          IPPROTO_TCP,
4867                                                          0);
4868                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4869                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4870                                    IGB_TX_FLAGS_CSUM |
4871                                    IGB_TX_FLAGS_IPV4;
4872         } else if (skb_is_gso_v6(skb)) {
4873                 ipv6_hdr(skb)->payload_len = 0;
4874                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4875                                                        &ipv6_hdr(skb)->daddr,
4876                                                        0, IPPROTO_TCP, 0);
4877                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4878                                    IGB_TX_FLAGS_CSUM;
4879         }
4880
4881         /* compute header lengths */
4882         l4len = tcp_hdrlen(skb);
4883         *hdr_len = skb_transport_offset(skb) + l4len;
4884
4885         /* update gso size and bytecount with header size */
4886         first->gso_segs = skb_shinfo(skb)->gso_segs;
4887         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4888
4889         /* MSS L4LEN IDX */
4890         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4891         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4892
4893         /* VLAN MACLEN IPLEN */
4894         vlan_macip_lens = skb_network_header_len(skb);
4895         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4896         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4897
4898         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4899
4900         return 1;
4901 }
4902
4903 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4904 {
4905         unsigned int offset = 0;
4906
4907         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4908
4909         return offset == skb_checksum_start_offset(skb);
4910 }
4911
4912 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4913 {
4914         struct sk_buff *skb = first->skb;
4915         u32 vlan_macip_lens = 0;
4916         u32 type_tucmd = 0;
4917
4918         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4919 csum_failed:
4920                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4921                         return;
4922                 goto no_csum;
4923         }
4924
4925         switch (skb->csum_offset) {
4926         case offsetof(struct tcphdr, check):
4927                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4928                 /* fall through */
4929         case offsetof(struct udphdr, check):
4930                 break;
4931         case offsetof(struct sctphdr, checksum):
4932                 /* validate that this is actually an SCTP request */
4933                 if (((first->protocol == htons(ETH_P_IP)) &&
4934                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4935                     ((first->protocol == htons(ETH_P_IPV6)) &&
4936                      igb_ipv6_csum_is_sctp(skb))) {
4937                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4938                         break;
4939                 }
4940         default:
4941                 skb_checksum_help(skb);
4942                 goto csum_failed;
4943         }
4944
4945         /* update TX checksum flag */
4946         first->tx_flags |= IGB_TX_FLAGS_CSUM;
4947         vlan_macip_lens = skb_checksum_start_offset(skb) -
4948                           skb_network_offset(skb);
4949 no_csum:
4950         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4951         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4952
4953         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
4954 }
4955
4956 #define IGB_SET_FLAG(_input, _flag, _result) \
4957         ((_flag <= _result) ? \
4958          ((u32)(_input & _flag) * (_result / _flag)) : \
4959          ((u32)(_input & _flag) / (_flag / _result)))
4960
4961 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4962 {
4963         /* set type for advanced descriptor with frame checksum insertion */
4964         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4965                        E1000_ADVTXD_DCMD_DEXT |
4966                        E1000_ADVTXD_DCMD_IFCS;
4967
4968         /* set HW vlan bit if vlan is present */
4969         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4970                                  (E1000_ADVTXD_DCMD_VLE));
4971
4972         /* set segmentation bits for TSO */
4973         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4974                                  (E1000_ADVTXD_DCMD_TSE));
4975
4976         /* set timestamp bit if present */
4977         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4978                                  (E1000_ADVTXD_MAC_TSTAMP));
4979
4980         /* insert frame checksum */
4981         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4982
4983         return cmd_type;
4984 }
4985
4986 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4987                                  union e1000_adv_tx_desc *tx_desc,
4988                                  u32 tx_flags, unsigned int paylen)
4989 {
4990         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4991
4992         /* 82575 requires a unique index per ring */
4993         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4994                 olinfo_status |= tx_ring->reg_idx << 4;
4995
4996         /* insert L4 checksum */
4997         olinfo_status |= IGB_SET_FLAG(tx_flags,
4998                                       IGB_TX_FLAGS_CSUM,
4999                                       (E1000_TXD_POPTS_TXSM << 8));
5000
5001         /* insert IPv4 checksum */
5002         olinfo_status |= IGB_SET_FLAG(tx_flags,
5003                                       IGB_TX_FLAGS_IPV4,
5004                                       (E1000_TXD_POPTS_IXSM << 8));
5005
5006         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5007 }
5008
5009 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5010 {
5011         struct net_device *netdev = tx_ring->netdev;
5012
5013         netif_stop_subqueue(netdev, tx_ring->queue_index);
5014
5015         /* Herbert's original patch had:
5016          *  smp_mb__after_netif_stop_queue();
5017          * but since that doesn't exist yet, just open code it.
5018          */
5019         smp_mb();
5020
5021         /* We need to check again in a case another CPU has just
5022          * made room available.
5023          */
5024         if (igb_desc_unused(tx_ring) < size)
5025                 return -EBUSY;
5026
5027         /* A reprieve! */
5028         netif_wake_subqueue(netdev, tx_ring->queue_index);
5029
5030         u64_stats_update_begin(&tx_ring->tx_syncp2);
5031         tx_ring->tx_stats.restart_queue2++;
5032         u64_stats_update_end(&tx_ring->tx_syncp2);
5033
5034         return 0;
5035 }
5036
5037 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5038 {
5039         if (igb_desc_unused(tx_ring) >= size)
5040                 return 0;
5041         return __igb_maybe_stop_tx(tx_ring, size);
5042 }
5043
5044 static void igb_tx_map(struct igb_ring *tx_ring,
5045                        struct igb_tx_buffer *first,
5046                        const u8 hdr_len)
5047 {
5048         struct sk_buff *skb = first->skb;
5049         struct igb_tx_buffer *tx_buffer;
5050         union e1000_adv_tx_desc *tx_desc;
5051         struct skb_frag_struct *frag;
5052         dma_addr_t dma;
5053         unsigned int data_len, size;
5054         u32 tx_flags = first->tx_flags;
5055         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5056         u16 i = tx_ring->next_to_use;
5057
5058         tx_desc = IGB_TX_DESC(tx_ring, i);
5059
5060         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5061
5062         size = skb_headlen(skb);
5063         data_len = skb->data_len;
5064
5065         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5066
5067         tx_buffer = first;
5068
5069         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5070                 if (dma_mapping_error(tx_ring->dev, dma))
5071                         goto dma_error;
5072
5073                 /* record length, and DMA address */
5074                 dma_unmap_len_set(tx_buffer, len, size);
5075                 dma_unmap_addr_set(tx_buffer, dma, dma);
5076
5077                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5078
5079                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5080                         tx_desc->read.cmd_type_len =
5081                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5082
5083                         i++;
5084                         tx_desc++;
5085                         if (i == tx_ring->count) {
5086                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5087                                 i = 0;
5088                         }
5089                         tx_desc->read.olinfo_status = 0;
5090
5091                         dma += IGB_MAX_DATA_PER_TXD;
5092                         size -= IGB_MAX_DATA_PER_TXD;
5093
5094                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5095                 }
5096
5097                 if (likely(!data_len))
5098                         break;
5099
5100                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5101
5102                 i++;
5103                 tx_desc++;
5104                 if (i == tx_ring->count) {
5105                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5106                         i = 0;
5107                 }
5108                 tx_desc->read.olinfo_status = 0;
5109
5110                 size = skb_frag_size(frag);
5111                 data_len -= size;
5112
5113                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5114                                        size, DMA_TO_DEVICE);
5115
5116                 tx_buffer = &tx_ring->tx_buffer_info[i];
5117         }
5118
5119         /* write last descriptor with RS and EOP bits */
5120         cmd_type |= size | IGB_TXD_DCMD;
5121         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5122
5123         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5124
5125         /* set the timestamp */
5126         first->time_stamp = jiffies;
5127
5128         /* Force memory writes to complete before letting h/w know there
5129          * are new descriptors to fetch.  (Only applicable for weak-ordered
5130          * memory model archs, such as IA-64).
5131          *
5132          * We also need this memory barrier to make certain all of the
5133          * status bits have been updated before next_to_watch is written.
5134          */
5135         wmb();
5136
5137         /* set next_to_watch value indicating a packet is present */
5138         first->next_to_watch = tx_desc;
5139
5140         i++;
5141         if (i == tx_ring->count)
5142                 i = 0;
5143
5144         tx_ring->next_to_use = i;
5145
5146         /* Make sure there is space in the ring for the next send. */
5147         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5148
5149         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5150                 writel(i, tx_ring->tail);
5151
5152                 /* we need this if more than one processor can write to our tail
5153                  * at a time, it synchronizes IO on IA64/Altix systems
5154                  */
5155                 mmiowb();
5156         }
5157         return;
5158
5159 dma_error:
5160         dev_err(tx_ring->dev, "TX DMA map failed\n");
5161
5162         /* clear dma mappings for failed tx_buffer_info map */
5163         for (;;) {
5164                 tx_buffer = &tx_ring->tx_buffer_info[i];
5165                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5166                 if (tx_buffer == first)
5167                         break;
5168                 if (i == 0)
5169                         i = tx_ring->count;
5170                 i--;
5171         }
5172
5173         tx_ring->next_to_use = i;
5174 }
5175
5176 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5177                                 struct igb_ring *tx_ring)
5178 {
5179         struct igb_tx_buffer *first;
5180         int tso;
5181         u32 tx_flags = 0;
5182         unsigned short f;
5183         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5184         __be16 protocol = vlan_get_protocol(skb);
5185         u8 hdr_len = 0;
5186
5187         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5188          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5189          *       + 2 desc gap to keep tail from touching head,
5190          *       + 1 desc for context descriptor,
5191          * otherwise try next time
5192          */
5193         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5194                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5195
5196         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5197                 /* this is a hard error */
5198                 return NETDEV_TX_BUSY;
5199         }
5200
5201         /* record the location of the first descriptor for this packet */
5202         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5203         first->skb = skb;
5204         first->bytecount = skb->len;
5205         first->gso_segs = 1;
5206
5207         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5208                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5209
5210                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5211                                            &adapter->state)) {
5212                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5213                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5214
5215                         adapter->ptp_tx_skb = skb_get(skb);
5216                         adapter->ptp_tx_start = jiffies;
5217                         if (adapter->hw.mac.type == e1000_82576)
5218                                 schedule_work(&adapter->ptp_tx_work);
5219                 }
5220         }
5221
5222         skb_tx_timestamp(skb);
5223
5224         if (skb_vlan_tag_present(skb)) {
5225                 tx_flags |= IGB_TX_FLAGS_VLAN;
5226                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5227         }
5228
5229         /* record initial flags and protocol */
5230         first->tx_flags = tx_flags;
5231         first->protocol = protocol;
5232
5233         tso = igb_tso(tx_ring, first, &hdr_len);
5234         if (tso < 0)
5235                 goto out_drop;
5236         else if (!tso)
5237                 igb_tx_csum(tx_ring, first);
5238
5239         igb_tx_map(tx_ring, first, hdr_len);
5240
5241         return NETDEV_TX_OK;
5242
5243 out_drop:
5244         igb_unmap_and_free_tx_resource(tx_ring, first);
5245
5246         return NETDEV_TX_OK;
5247 }
5248
5249 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5250                                                     struct sk_buff *skb)
5251 {
5252         unsigned int r_idx = skb->queue_mapping;
5253
5254         if (r_idx >= adapter->num_tx_queues)
5255                 r_idx = r_idx % adapter->num_tx_queues;
5256
5257         return adapter->tx_ring[r_idx];
5258 }
5259
5260 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5261                                   struct net_device *netdev)
5262 {
5263         struct igb_adapter *adapter = netdev_priv(netdev);
5264
5265         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5266          * in order to meet this minimum size requirement.
5267          */
5268         if (skb_put_padto(skb, 17))
5269                 return NETDEV_TX_OK;
5270
5271         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5272 }
5273
5274 /**
5275  *  igb_tx_timeout - Respond to a Tx Hang
5276  *  @netdev: network interface device structure
5277  **/
5278 static void igb_tx_timeout(struct net_device *netdev)
5279 {
5280         struct igb_adapter *adapter = netdev_priv(netdev);
5281         struct e1000_hw *hw = &adapter->hw;
5282
5283         /* Do the reset outside of interrupt context */
5284         adapter->tx_timeout_count++;
5285
5286         if (hw->mac.type >= e1000_82580)
5287                 hw->dev_spec._82575.global_device_reset = true;
5288
5289         schedule_work(&adapter->reset_task);
5290         wr32(E1000_EICS,
5291              (adapter->eims_enable_mask & ~adapter->eims_other));
5292 }
5293
5294 static void igb_reset_task(struct work_struct *work)
5295 {
5296         struct igb_adapter *adapter;
5297         adapter = container_of(work, struct igb_adapter, reset_task);
5298
5299         igb_dump(adapter);
5300         netdev_err(adapter->netdev, "Reset adapter\n");
5301         igb_reinit_locked(adapter);
5302 }
5303
5304 /**
5305  *  igb_get_stats64 - Get System Network Statistics
5306  *  @netdev: network interface device structure
5307  *  @stats: rtnl_link_stats64 pointer
5308  **/
5309 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5310                                                 struct rtnl_link_stats64 *stats)
5311 {
5312         struct igb_adapter *adapter = netdev_priv(netdev);
5313
5314         spin_lock(&adapter->stats64_lock);
5315         igb_update_stats(adapter, &adapter->stats64);
5316         memcpy(stats, &adapter->stats64, sizeof(*stats));
5317         spin_unlock(&adapter->stats64_lock);
5318
5319         return stats;
5320 }
5321
5322 /**
5323  *  igb_change_mtu - Change the Maximum Transfer Unit
5324  *  @netdev: network interface device structure
5325  *  @new_mtu: new value for maximum frame size
5326  *
5327  *  Returns 0 on success, negative on failure
5328  **/
5329 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5330 {
5331         struct igb_adapter *adapter = netdev_priv(netdev);
5332         struct pci_dev *pdev = adapter->pdev;
5333         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5334
5335         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5336                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5337                 return -EINVAL;
5338         }
5339
5340 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5341         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5342                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5343                 return -EINVAL;
5344         }
5345
5346         /* adjust max frame to be at least the size of a standard frame */
5347         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5348                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5349
5350         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5351                 usleep_range(1000, 2000);
5352
5353         /* igb_down has a dependency on max_frame_size */
5354         adapter->max_frame_size = max_frame;
5355
5356         if (netif_running(netdev))
5357                 igb_down(adapter);
5358
5359         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5360                  netdev->mtu, new_mtu);
5361         netdev->mtu = new_mtu;
5362
5363         if (netif_running(netdev))
5364                 igb_up(adapter);
5365         else
5366                 igb_reset(adapter);
5367
5368         clear_bit(__IGB_RESETTING, &adapter->state);
5369
5370         return 0;
5371 }
5372
5373 /**
5374  *  igb_update_stats - Update the board statistics counters
5375  *  @adapter: board private structure
5376  **/
5377 void igb_update_stats(struct igb_adapter *adapter,
5378                       struct rtnl_link_stats64 *net_stats)
5379 {
5380         struct e1000_hw *hw = &adapter->hw;
5381         struct pci_dev *pdev = adapter->pdev;
5382         u32 reg, mpc;
5383         int i;
5384         u64 bytes, packets;
5385         unsigned int start;
5386         u64 _bytes, _packets;
5387
5388         /* Prevent stats update while adapter is being reset, or if the pci
5389          * connection is down.
5390          */
5391         if (adapter->link_speed == 0)
5392                 return;
5393         if (pci_channel_offline(pdev))
5394                 return;
5395
5396         bytes = 0;
5397         packets = 0;
5398
5399         rcu_read_lock();
5400         for (i = 0; i < adapter->num_rx_queues; i++) {
5401                 struct igb_ring *ring = adapter->rx_ring[i];
5402                 u32 rqdpc = rd32(E1000_RQDPC(i));
5403                 if (hw->mac.type >= e1000_i210)
5404                         wr32(E1000_RQDPC(i), 0);
5405
5406                 if (rqdpc) {
5407                         ring->rx_stats.drops += rqdpc;
5408                         net_stats->rx_fifo_errors += rqdpc;
5409                 }
5410
5411                 do {
5412                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5413                         _bytes = ring->rx_stats.bytes;
5414                         _packets = ring->rx_stats.packets;
5415                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5416                 bytes += _bytes;
5417                 packets += _packets;
5418         }
5419
5420         net_stats->rx_bytes = bytes;
5421         net_stats->rx_packets = packets;
5422
5423         bytes = 0;
5424         packets = 0;
5425         for (i = 0; i < adapter->num_tx_queues; i++) {
5426                 struct igb_ring *ring = adapter->tx_ring[i];
5427                 do {
5428                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5429                         _bytes = ring->tx_stats.bytes;
5430                         _packets = ring->tx_stats.packets;
5431                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5432                 bytes += _bytes;
5433                 packets += _packets;
5434         }
5435         net_stats->tx_bytes = bytes;
5436         net_stats->tx_packets = packets;
5437         rcu_read_unlock();
5438
5439         /* read stats registers */
5440         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5441         adapter->stats.gprc += rd32(E1000_GPRC);
5442         adapter->stats.gorc += rd32(E1000_GORCL);
5443         rd32(E1000_GORCH); /* clear GORCL */
5444         adapter->stats.bprc += rd32(E1000_BPRC);
5445         adapter->stats.mprc += rd32(E1000_MPRC);
5446         adapter->stats.roc += rd32(E1000_ROC);
5447
5448         adapter->stats.prc64 += rd32(E1000_PRC64);
5449         adapter->stats.prc127 += rd32(E1000_PRC127);
5450         adapter->stats.prc255 += rd32(E1000_PRC255);
5451         adapter->stats.prc511 += rd32(E1000_PRC511);
5452         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5453         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5454         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5455         adapter->stats.sec += rd32(E1000_SEC);
5456
5457         mpc = rd32(E1000_MPC);
5458         adapter->stats.mpc += mpc;
5459         net_stats->rx_fifo_errors += mpc;
5460         adapter->stats.scc += rd32(E1000_SCC);
5461         adapter->stats.ecol += rd32(E1000_ECOL);
5462         adapter->stats.mcc += rd32(E1000_MCC);
5463         adapter->stats.latecol += rd32(E1000_LATECOL);
5464         adapter->stats.dc += rd32(E1000_DC);
5465         adapter->stats.rlec += rd32(E1000_RLEC);
5466         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5467         adapter->stats.xontxc += rd32(E1000_XONTXC);
5468         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5469         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5470         adapter->stats.fcruc += rd32(E1000_FCRUC);
5471         adapter->stats.gptc += rd32(E1000_GPTC);
5472         adapter->stats.gotc += rd32(E1000_GOTCL);
5473         rd32(E1000_GOTCH); /* clear GOTCL */
5474         adapter->stats.rnbc += rd32(E1000_RNBC);
5475         adapter->stats.ruc += rd32(E1000_RUC);
5476         adapter->stats.rfc += rd32(E1000_RFC);
5477         adapter->stats.rjc += rd32(E1000_RJC);
5478         adapter->stats.tor += rd32(E1000_TORH);
5479         adapter->stats.tot += rd32(E1000_TOTH);
5480         adapter->stats.tpr += rd32(E1000_TPR);
5481
5482         adapter->stats.ptc64 += rd32(E1000_PTC64);
5483         adapter->stats.ptc127 += rd32(E1000_PTC127);
5484         adapter->stats.ptc255 += rd32(E1000_PTC255);
5485         adapter->stats.ptc511 += rd32(E1000_PTC511);
5486         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5487         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5488
5489         adapter->stats.mptc += rd32(E1000_MPTC);
5490         adapter->stats.bptc += rd32(E1000_BPTC);
5491
5492         adapter->stats.tpt += rd32(E1000_TPT);
5493         adapter->stats.colc += rd32(E1000_COLC);
5494
5495         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5496         /* read internal phy specific stats */
5497         reg = rd32(E1000_CTRL_EXT);
5498         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5499                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5500
5501                 /* this stat has invalid values on i210/i211 */
5502                 if ((hw->mac.type != e1000_i210) &&
5503                     (hw->mac.type != e1000_i211))
5504                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5505         }
5506
5507         adapter->stats.tsctc += rd32(E1000_TSCTC);
5508         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5509
5510         adapter->stats.iac += rd32(E1000_IAC);
5511         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5512         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5513         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5514         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5515         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5516         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5517         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5518         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5519
5520         /* Fill out the OS statistics structure */
5521         net_stats->multicast = adapter->stats.mprc;
5522         net_stats->collisions = adapter->stats.colc;
5523
5524         /* Rx Errors */
5525
5526         /* RLEC on some newer hardware can be incorrect so build
5527          * our own version based on RUC and ROC
5528          */
5529         net_stats->rx_errors = adapter->stats.rxerrc +
5530                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5531                 adapter->stats.ruc + adapter->stats.roc +
5532                 adapter->stats.cexterr;
5533         net_stats->rx_length_errors = adapter->stats.ruc +
5534                                       adapter->stats.roc;
5535         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5536         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5537         net_stats->rx_missed_errors = adapter->stats.mpc;
5538
5539         /* Tx Errors */
5540         net_stats->tx_errors = adapter->stats.ecol +
5541                                adapter->stats.latecol;
5542         net_stats->tx_aborted_errors = adapter->stats.ecol;
5543         net_stats->tx_window_errors = adapter->stats.latecol;
5544         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5545
5546         /* Tx Dropped needs to be maintained elsewhere */
5547
5548         /* Management Stats */
5549         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5550         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5551         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5552
5553         /* OS2BMC Stats */
5554         reg = rd32(E1000_MANC);
5555         if (reg & E1000_MANC_EN_BMC2OS) {
5556                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5557                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5558                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5559                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5560         }
5561 }
5562
5563 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5564 {
5565         struct e1000_hw *hw = &adapter->hw;
5566         struct ptp_clock_event event;
5567         struct timespec64 ts;
5568         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5569
5570         if (tsicr & TSINTR_SYS_WRAP) {
5571                 event.type = PTP_CLOCK_PPS;
5572                 if (adapter->ptp_caps.pps)
5573                         ptp_clock_event(adapter->ptp_clock, &event);
5574                 else
5575                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5576                 ack |= TSINTR_SYS_WRAP;
5577         }
5578
5579         if (tsicr & E1000_TSICR_TXTS) {
5580                 /* retrieve hardware timestamp */
5581                 schedule_work(&adapter->ptp_tx_work);
5582                 ack |= E1000_TSICR_TXTS;
5583         }
5584
5585         if (tsicr & TSINTR_TT0) {
5586                 spin_lock(&adapter->tmreg_lock);
5587                 ts = timespec64_add(adapter->perout[0].start,
5588                                     adapter->perout[0].period);
5589                 /* u32 conversion of tv_sec is safe until y2106 */
5590                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5591                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5592                 tsauxc = rd32(E1000_TSAUXC);
5593                 tsauxc |= TSAUXC_EN_TT0;
5594                 wr32(E1000_TSAUXC, tsauxc);
5595                 adapter->perout[0].start = ts;
5596                 spin_unlock(&adapter->tmreg_lock);
5597                 ack |= TSINTR_TT0;
5598         }
5599
5600         if (tsicr & TSINTR_TT1) {
5601                 spin_lock(&adapter->tmreg_lock);
5602                 ts = timespec64_add(adapter->perout[1].start,
5603                                     adapter->perout[1].period);
5604                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5605                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5606                 tsauxc = rd32(E1000_TSAUXC);
5607                 tsauxc |= TSAUXC_EN_TT1;
5608                 wr32(E1000_TSAUXC, tsauxc);
5609                 adapter->perout[1].start = ts;
5610                 spin_unlock(&adapter->tmreg_lock);
5611                 ack |= TSINTR_TT1;
5612         }
5613
5614         if (tsicr & TSINTR_AUTT0) {
5615                 nsec = rd32(E1000_AUXSTMPL0);
5616                 sec  = rd32(E1000_AUXSTMPH0);
5617                 event.type = PTP_CLOCK_EXTTS;
5618                 event.index = 0;
5619                 event.timestamp = sec * 1000000000ULL + nsec;
5620                 ptp_clock_event(adapter->ptp_clock, &event);
5621                 ack |= TSINTR_AUTT0;
5622         }
5623
5624         if (tsicr & TSINTR_AUTT1) {
5625                 nsec = rd32(E1000_AUXSTMPL1);
5626                 sec  = rd32(E1000_AUXSTMPH1);
5627                 event.type = PTP_CLOCK_EXTTS;
5628                 event.index = 1;
5629                 event.timestamp = sec * 1000000000ULL + nsec;
5630                 ptp_clock_event(adapter->ptp_clock, &event);
5631                 ack |= TSINTR_AUTT1;
5632         }
5633
5634         /* acknowledge the interrupts */
5635         wr32(E1000_TSICR, ack);
5636 }
5637
5638 static irqreturn_t igb_msix_other(int irq, void *data)
5639 {
5640         struct igb_adapter *adapter = data;
5641         struct e1000_hw *hw = &adapter->hw;
5642         u32 icr = rd32(E1000_ICR);
5643         /* reading ICR causes bit 31 of EICR to be cleared */
5644
5645         if (icr & E1000_ICR_DRSTA)
5646                 schedule_work(&adapter->reset_task);
5647
5648         if (icr & E1000_ICR_DOUTSYNC) {
5649                 /* HW is reporting DMA is out of sync */
5650                 adapter->stats.doosync++;
5651                 /* The DMA Out of Sync is also indication of a spoof event
5652                  * in IOV mode. Check the Wrong VM Behavior register to
5653                  * see if it is really a spoof event.
5654                  */
5655                 igb_check_wvbr(adapter);
5656         }
5657
5658         /* Check for a mailbox event */
5659         if (icr & E1000_ICR_VMMB)
5660                 igb_msg_task(adapter);
5661
5662         if (icr & E1000_ICR_LSC) {
5663                 hw->mac.get_link_status = 1;
5664                 /* guard against interrupt when we're going down */
5665                 if (!test_bit(__IGB_DOWN, &adapter->state))
5666                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5667         }
5668
5669         if (icr & E1000_ICR_TS)
5670                 igb_tsync_interrupt(adapter);
5671
5672         wr32(E1000_EIMS, adapter->eims_other);
5673
5674         return IRQ_HANDLED;
5675 }
5676
5677 static void igb_write_itr(struct igb_q_vector *q_vector)
5678 {
5679         struct igb_adapter *adapter = q_vector->adapter;
5680         u32 itr_val = q_vector->itr_val & 0x7FFC;
5681
5682         if (!q_vector->set_itr)
5683                 return;
5684
5685         if (!itr_val)
5686                 itr_val = 0x4;
5687
5688         if (adapter->hw.mac.type == e1000_82575)
5689                 itr_val |= itr_val << 16;
5690         else
5691                 itr_val |= E1000_EITR_CNT_IGNR;
5692
5693         writel(itr_val, q_vector->itr_register);
5694         q_vector->set_itr = 0;
5695 }
5696
5697 static irqreturn_t igb_msix_ring(int irq, void *data)
5698 {
5699         struct igb_q_vector *q_vector = data;
5700
5701         /* Write the ITR value calculated from the previous interrupt. */
5702         igb_write_itr(q_vector);
5703
5704         napi_schedule(&q_vector->napi);
5705
5706         return IRQ_HANDLED;
5707 }
5708
5709 #ifdef CONFIG_IGB_DCA
5710 static void igb_update_tx_dca(struct igb_adapter *adapter,
5711                               struct igb_ring *tx_ring,
5712                               int cpu)
5713 {
5714         struct e1000_hw *hw = &adapter->hw;
5715         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5716
5717         if (hw->mac.type != e1000_82575)
5718                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5719
5720         /* We can enable relaxed ordering for reads, but not writes when
5721          * DCA is enabled.  This is due to a known issue in some chipsets
5722          * which will cause the DCA tag to be cleared.
5723          */
5724         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5725                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5726                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5727
5728         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5729 }
5730
5731 static void igb_update_rx_dca(struct igb_adapter *adapter,
5732                               struct igb_ring *rx_ring,
5733                               int cpu)
5734 {
5735         struct e1000_hw *hw = &adapter->hw;
5736         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5737
5738         if (hw->mac.type != e1000_82575)
5739                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5740
5741         /* We can enable relaxed ordering for reads, but not writes when
5742          * DCA is enabled.  This is due to a known issue in some chipsets
5743          * which will cause the DCA tag to be cleared.
5744          */
5745         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5746                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5747
5748         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5749 }
5750
5751 static void igb_update_dca(struct igb_q_vector *q_vector)
5752 {
5753         struct igb_adapter *adapter = q_vector->adapter;
5754         int cpu = get_cpu();
5755
5756         if (q_vector->cpu == cpu)
5757                 goto out_no_update;
5758
5759         if (q_vector->tx.ring)
5760                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5761
5762         if (q_vector->rx.ring)
5763                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5764
5765         q_vector->cpu = cpu;
5766 out_no_update:
5767         put_cpu();
5768 }
5769
5770 static void igb_setup_dca(struct igb_adapter *adapter)
5771 {
5772         struct e1000_hw *hw = &adapter->hw;
5773         int i;
5774
5775         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5776                 return;
5777
5778         /* Always use CB2 mode, difference is masked in the CB driver. */
5779         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5780
5781         for (i = 0; i < adapter->num_q_vectors; i++) {
5782                 adapter->q_vector[i]->cpu = -1;
5783                 igb_update_dca(adapter->q_vector[i]);
5784         }
5785 }
5786
5787 static int __igb_notify_dca(struct device *dev, void *data)
5788 {
5789         struct net_device *netdev = dev_get_drvdata(dev);
5790         struct igb_adapter *adapter = netdev_priv(netdev);
5791         struct pci_dev *pdev = adapter->pdev;
5792         struct e1000_hw *hw = &adapter->hw;
5793         unsigned long event = *(unsigned long *)data;
5794
5795         switch (event) {
5796         case DCA_PROVIDER_ADD:
5797                 /* if already enabled, don't do it again */
5798                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5799                         break;
5800                 if (dca_add_requester(dev) == 0) {
5801                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5802                         dev_info(&pdev->dev, "DCA enabled\n");
5803                         igb_setup_dca(adapter);
5804                         break;
5805                 }
5806                 /* Fall Through since DCA is disabled. */
5807         case DCA_PROVIDER_REMOVE:
5808                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5809                         /* without this a class_device is left
5810                          * hanging around in the sysfs model
5811                          */
5812                         dca_remove_requester(dev);
5813                         dev_info(&pdev->dev, "DCA disabled\n");
5814                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5815                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5816                 }
5817                 break;
5818         }
5819
5820         return 0;
5821 }
5822
5823 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5824                           void *p)
5825 {
5826         int ret_val;
5827
5828         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5829                                          __igb_notify_dca);
5830
5831         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5832 }
5833 #endif /* CONFIG_IGB_DCA */
5834
5835 #ifdef CONFIG_PCI_IOV
5836 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5837 {
5838         unsigned char mac_addr[ETH_ALEN];
5839
5840         eth_zero_addr(mac_addr);
5841         igb_set_vf_mac(adapter, vf, mac_addr);
5842
5843         /* By default spoof check is enabled for all VFs */
5844         adapter->vf_data[vf].spoofchk_enabled = true;
5845
5846         return 0;
5847 }
5848
5849 #endif
5850 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5851 {
5852         struct e1000_hw *hw = &adapter->hw;
5853         u32 ping;
5854         int i;
5855
5856         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5857                 ping = E1000_PF_CONTROL_MSG;
5858                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5859                         ping |= E1000_VT_MSGTYPE_CTS;
5860                 igb_write_mbx(hw, &ping, 1, i);
5861         }
5862 }
5863
5864 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5865 {
5866         struct e1000_hw *hw = &adapter->hw;
5867         u32 vmolr = rd32(E1000_VMOLR(vf));
5868         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5869
5870         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5871                             IGB_VF_FLAG_MULTI_PROMISC);
5872         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5873
5874         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5875                 vmolr |= E1000_VMOLR_MPME;
5876                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5877                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5878         } else {
5879                 /* if we have hashes and we are clearing a multicast promisc
5880                  * flag we need to write the hashes to the MTA as this step
5881                  * was previously skipped
5882                  */
5883                 if (vf_data->num_vf_mc_hashes > 30) {
5884                         vmolr |= E1000_VMOLR_MPME;
5885                 } else if (vf_data->num_vf_mc_hashes) {
5886                         int j;
5887
5888                         vmolr |= E1000_VMOLR_ROMPE;
5889                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5890                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5891                 }
5892         }
5893
5894         wr32(E1000_VMOLR(vf), vmolr);
5895
5896         /* there are flags left unprocessed, likely not supported */
5897         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5898                 return -EINVAL;
5899
5900         return 0;
5901 }
5902
5903 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5904                                   u32 *msgbuf, u32 vf)
5905 {
5906         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5907         u16 *hash_list = (u16 *)&msgbuf[1];
5908         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5909         int i;
5910
5911         /* salt away the number of multicast addresses assigned
5912          * to this VF for later use to restore when the PF multi cast
5913          * list changes
5914          */
5915         vf_data->num_vf_mc_hashes = n;
5916
5917         /* only up to 30 hash values supported */
5918         if (n > 30)
5919                 n = 30;
5920
5921         /* store the hashes for later use */
5922         for (i = 0; i < n; i++)
5923                 vf_data->vf_mc_hashes[i] = hash_list[i];
5924
5925         /* Flush and reset the mta with the new values */
5926         igb_set_rx_mode(adapter->netdev);
5927
5928         return 0;
5929 }
5930
5931 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5932 {
5933         struct e1000_hw *hw = &adapter->hw;
5934         struct vf_data_storage *vf_data;
5935         int i, j;
5936
5937         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5938                 u32 vmolr = rd32(E1000_VMOLR(i));
5939
5940                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5941
5942                 vf_data = &adapter->vf_data[i];
5943
5944                 if ((vf_data->num_vf_mc_hashes > 30) ||
5945                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5946                         vmolr |= E1000_VMOLR_MPME;
5947                 } else if (vf_data->num_vf_mc_hashes) {
5948                         vmolr |= E1000_VMOLR_ROMPE;
5949                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5950                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5951                 }
5952                 wr32(E1000_VMOLR(i), vmolr);
5953         }
5954 }
5955
5956 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5957 {
5958         struct e1000_hw *hw = &adapter->hw;
5959         u32 pool_mask, vlvf_mask, i;
5960
5961         /* create mask for VF and other pools */
5962         pool_mask = E1000_VLVF_POOLSEL_MASK;
5963         vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5964
5965         /* drop PF from pool bits */
5966         pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
5967                              adapter->vfs_allocated_count));
5968
5969         /* Find the vlan filter for this id */
5970         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5971                 u32 vlvf = rd32(E1000_VLVF(i));
5972                 u32 vfta_mask, vid, vfta;
5973
5974                 /* remove the vf from the pool */
5975                 if (!(vlvf & vlvf_mask))
5976                         continue;
5977
5978                 /* clear out bit from VLVF */
5979                 vlvf ^= vlvf_mask;
5980
5981                 /* if other pools are present, just remove ourselves */
5982                 if (vlvf & pool_mask)
5983                         goto update_vlvfb;
5984
5985                 /* if PF is present, leave VFTA */
5986                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
5987                         goto update_vlvf;
5988
5989                 vid = vlvf & E1000_VLVF_VLANID_MASK;
5990                 vfta_mask = 1 << (vid % 32);
5991
5992                 /* clear bit from VFTA */
5993                 vfta = adapter->shadow_vfta[vid / 32];
5994                 if (vfta & vfta_mask)
5995                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5996 update_vlvf:
5997                 /* clear pool selection enable */
5998                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5999                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6000                 else
6001                         vlvf = 0;
6002 update_vlvfb:
6003                 /* clear pool bits */
6004                 wr32(E1000_VLVF(i), vlvf);
6005         }
6006 }
6007
6008 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6009 {
6010         u32 vlvf;
6011         int idx;
6012
6013         /* short cut the special case */
6014         if (vlan == 0)
6015                 return 0;
6016
6017         /* Search for the VLAN id in the VLVF entries */
6018         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6019                 vlvf = rd32(E1000_VLVF(idx));
6020                 if ((vlvf & VLAN_VID_MASK) == vlan)
6021                         break;
6022         }
6023
6024         return idx;
6025 }
6026
6027 void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6028 {
6029         struct e1000_hw *hw = &adapter->hw;
6030         u32 bits, pf_id;
6031         int idx;
6032
6033         idx = igb_find_vlvf_entry(hw, vid);
6034         if (!idx)
6035                 return;
6036
6037         /* See if any other pools are set for this VLAN filter
6038          * entry other than the PF.
6039          */
6040         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6041         bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
6042         bits &= rd32(E1000_VLVF(idx));
6043
6044         /* Disable the filter so this falls into the default pool. */
6045         if (!bits) {
6046                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6047                         wr32(E1000_VLVF(idx), 1 << pf_id);
6048                 else
6049                         wr32(E1000_VLVF(idx), 0);
6050         }
6051 }
6052
6053 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6054                            bool add, u32 vf)
6055 {
6056         int pf_id = adapter->vfs_allocated_count;
6057         struct e1000_hw *hw = &adapter->hw;
6058         int err;
6059
6060         /* If VLAN overlaps with one the PF is currently monitoring make
6061          * sure that we are able to allocate a VLVF entry.  This may be
6062          * redundant but it guarantees PF will maintain visibility to
6063          * the VLAN.
6064          */
6065         if (add && test_bit(vid, adapter->active_vlans)) {
6066                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6067                 if (err)
6068                         return err;
6069         }
6070
6071         err = igb_vfta_set(hw, vid, vf, add, false);
6072
6073         if (add && !err)
6074                 return err;
6075
6076         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6077          * we may need to drop the PF pool bit in order to allow us to free
6078          * up the VLVF resources.
6079          */
6080         if (test_bit(vid, adapter->active_vlans) ||
6081             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6082                 igb_update_pf_vlvf(adapter, vid);
6083
6084         return err;
6085 }
6086
6087 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6088 {
6089         struct e1000_hw *hw = &adapter->hw;
6090
6091         if (vid)
6092                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6093         else
6094                 wr32(E1000_VMVIR(vf), 0);
6095 }
6096
6097 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6098                                 u16 vlan, u8 qos)
6099 {
6100         int err;
6101
6102         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6103         if (err)
6104                 return err;
6105
6106         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6107         igb_set_vmolr(adapter, vf, !vlan);
6108
6109         /* revoke access to previous VLAN */
6110         if (vlan != adapter->vf_data[vf].pf_vlan)
6111                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6112                                 false, vf);
6113
6114         adapter->vf_data[vf].pf_vlan = vlan;
6115         adapter->vf_data[vf].pf_qos = qos;
6116         igb_set_vf_vlan_strip(adapter, vf, true);
6117         dev_info(&adapter->pdev->dev,
6118                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6119         if (test_bit(__IGB_DOWN, &adapter->state)) {
6120                 dev_warn(&adapter->pdev->dev,
6121                          "The VF VLAN has been set, but the PF device is not up.\n");
6122                 dev_warn(&adapter->pdev->dev,
6123                          "Bring the PF device up before attempting to use the VF device.\n");
6124         }
6125
6126         return err;
6127 }
6128
6129 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6130 {
6131         /* Restore tagless access via VLAN 0 */
6132         igb_set_vf_vlan(adapter, 0, true, vf);
6133
6134         igb_set_vmvir(adapter, 0, vf);
6135         igb_set_vmolr(adapter, vf, true);
6136
6137         /* Remove any PF assigned VLAN */
6138         if (adapter->vf_data[vf].pf_vlan)
6139                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6140                                 false, vf);
6141
6142         adapter->vf_data[vf].pf_vlan = 0;
6143         adapter->vf_data[vf].pf_qos = 0;
6144         igb_set_vf_vlan_strip(adapter, vf, false);
6145
6146         return 0;
6147 }
6148
6149 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6150                                int vf, u16 vlan, u8 qos)
6151 {
6152         struct igb_adapter *adapter = netdev_priv(netdev);
6153
6154         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6155                 return -EINVAL;
6156
6157         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6158                                igb_disable_port_vlan(adapter, vf);
6159 }
6160
6161 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6162 {
6163         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6164         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6165         int ret;
6166
6167         if (adapter->vf_data[vf].pf_vlan)
6168                 return -1;
6169
6170         /* VLAN 0 is a special case, don't allow it to be removed */
6171         if (!vid && !add)
6172                 return 0;
6173
6174         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6175         if (!ret)
6176                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6177         return ret;
6178 }
6179
6180 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6181 {
6182         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6183
6184         /* clear flags - except flag that indicates PF has set the MAC */
6185         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6186         vf_data->last_nack = jiffies;
6187
6188         /* reset vlans for device */
6189         igb_clear_vf_vfta(adapter, vf);
6190         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6191         igb_set_vmvir(adapter, vf_data->pf_vlan |
6192                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6193         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6194         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6195
6196         /* reset multicast table array for vf */
6197         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6198
6199         /* Flush and reset the mta with the new values */
6200         igb_set_rx_mode(adapter->netdev);
6201 }
6202
6203 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6204 {
6205         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6206
6207         /* clear mac address as we were hotplug removed/added */
6208         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6209                 eth_zero_addr(vf_mac);
6210
6211         /* process remaining reset events */
6212         igb_vf_reset(adapter, vf);
6213 }
6214
6215 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6216 {
6217         struct e1000_hw *hw = &adapter->hw;
6218         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6219         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6220         u32 reg, msgbuf[3];
6221         u8 *addr = (u8 *)(&msgbuf[1]);
6222
6223         /* process all the same items cleared in a function level reset */
6224         igb_vf_reset(adapter, vf);
6225
6226         /* set vf mac address */
6227         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6228
6229         /* enable transmit and receive for vf */
6230         reg = rd32(E1000_VFTE);
6231         wr32(E1000_VFTE, reg | (1 << vf));
6232         reg = rd32(E1000_VFRE);
6233         wr32(E1000_VFRE, reg | (1 << vf));
6234
6235         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6236
6237         /* reply to reset with ack and vf mac address */
6238         if (!is_zero_ether_addr(vf_mac)) {
6239                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6240                 memcpy(addr, vf_mac, ETH_ALEN);
6241         } else {
6242                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6243         }
6244         igb_write_mbx(hw, msgbuf, 3, vf);
6245 }
6246
6247 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6248 {
6249         /* The VF MAC Address is stored in a packed array of bytes
6250          * starting at the second 32 bit word of the msg array
6251          */
6252         unsigned char *addr = (char *)&msg[1];
6253         int err = -1;
6254
6255         if (is_valid_ether_addr(addr))
6256                 err = igb_set_vf_mac(adapter, vf, addr);
6257
6258         return err;
6259 }
6260
6261 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6262 {
6263         struct e1000_hw *hw = &adapter->hw;
6264         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6265         u32 msg = E1000_VT_MSGTYPE_NACK;
6266
6267         /* if device isn't clear to send it shouldn't be reading either */
6268         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6269             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6270                 igb_write_mbx(hw, &msg, 1, vf);
6271                 vf_data->last_nack = jiffies;
6272         }
6273 }
6274
6275 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6276 {
6277         struct pci_dev *pdev = adapter->pdev;
6278         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6279         struct e1000_hw *hw = &adapter->hw;
6280         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6281         s32 retval;
6282
6283         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6284
6285         if (retval) {
6286                 /* if receive failed revoke VF CTS stats and restart init */
6287                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6288                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6289                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6290                         return;
6291                 goto out;
6292         }
6293
6294         /* this is a message we already processed, do nothing */
6295         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6296                 return;
6297
6298         /* until the vf completes a reset it should not be
6299          * allowed to start any configuration.
6300          */
6301         if (msgbuf[0] == E1000_VF_RESET) {
6302                 igb_vf_reset_msg(adapter, vf);
6303                 return;
6304         }
6305
6306         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6307                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6308                         return;
6309                 retval = -1;
6310                 goto out;
6311         }
6312
6313         switch ((msgbuf[0] & 0xFFFF)) {
6314         case E1000_VF_SET_MAC_ADDR:
6315                 retval = -EINVAL;
6316                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6317                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6318                 else
6319                         dev_warn(&pdev->dev,
6320                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6321                                  vf);
6322                 break;
6323         case E1000_VF_SET_PROMISC:
6324                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6325                 break;
6326         case E1000_VF_SET_MULTICAST:
6327                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6328                 break;
6329         case E1000_VF_SET_LPE:
6330                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6331                 break;
6332         case E1000_VF_SET_VLAN:
6333                 retval = -1;
6334                 if (vf_data->pf_vlan)
6335                         dev_warn(&pdev->dev,
6336                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6337                                  vf);
6338                 else
6339                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6340                 break;
6341         default:
6342                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6343                 retval = -1;
6344                 break;
6345         }
6346
6347         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6348 out:
6349         /* notify the VF of the results of what it sent us */
6350         if (retval)
6351                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6352         else
6353                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6354
6355         igb_write_mbx(hw, msgbuf, 1, vf);
6356 }
6357
6358 static void igb_msg_task(struct igb_adapter *adapter)
6359 {
6360         struct e1000_hw *hw = &adapter->hw;
6361         u32 vf;
6362
6363         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6364                 /* process any reset requests */
6365                 if (!igb_check_for_rst(hw, vf))
6366                         igb_vf_reset_event(adapter, vf);
6367
6368                 /* process any messages pending */
6369                 if (!igb_check_for_msg(hw, vf))
6370                         igb_rcv_msg_from_vf(adapter, vf);
6371
6372                 /* process any acks */
6373                 if (!igb_check_for_ack(hw, vf))
6374                         igb_rcv_ack_from_vf(adapter, vf);
6375         }
6376 }
6377
6378 /**
6379  *  igb_set_uta - Set unicast filter table address
6380  *  @adapter: board private structure
6381  *  @set: boolean indicating if we are setting or clearing bits
6382  *
6383  *  The unicast table address is a register array of 32-bit registers.
6384  *  The table is meant to be used in a way similar to how the MTA is used
6385  *  however due to certain limitations in the hardware it is necessary to
6386  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6387  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6388  **/
6389 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6390 {
6391         struct e1000_hw *hw = &adapter->hw;
6392         u32 uta = set ? ~0 : 0;
6393         int i;
6394
6395         /* we only need to do this if VMDq is enabled */
6396         if (!adapter->vfs_allocated_count)
6397                 return;
6398
6399         for (i = hw->mac.uta_reg_count; i--;)
6400                 array_wr32(E1000_UTA, i, uta);
6401 }
6402
6403 /**
6404  *  igb_intr_msi - Interrupt Handler
6405  *  @irq: interrupt number
6406  *  @data: pointer to a network interface device structure
6407  **/
6408 static irqreturn_t igb_intr_msi(int irq, void *data)
6409 {
6410         struct igb_adapter *adapter = data;
6411         struct igb_q_vector *q_vector = adapter->q_vector[0];
6412         struct e1000_hw *hw = &adapter->hw;
6413         /* read ICR disables interrupts using IAM */
6414         u32 icr = rd32(E1000_ICR);
6415
6416         igb_write_itr(q_vector);
6417
6418         if (icr & E1000_ICR_DRSTA)
6419                 schedule_work(&adapter->reset_task);
6420
6421         if (icr & E1000_ICR_DOUTSYNC) {
6422                 /* HW is reporting DMA is out of sync */
6423                 adapter->stats.doosync++;
6424         }
6425
6426         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6427                 hw->mac.get_link_status = 1;
6428                 if (!test_bit(__IGB_DOWN, &adapter->state))
6429                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6430         }
6431
6432         if (icr & E1000_ICR_TS)
6433                 igb_tsync_interrupt(adapter);
6434
6435         napi_schedule(&q_vector->napi);
6436
6437         return IRQ_HANDLED;
6438 }
6439
6440 /**
6441  *  igb_intr - Legacy Interrupt Handler
6442  *  @irq: interrupt number
6443  *  @data: pointer to a network interface device structure
6444  **/
6445 static irqreturn_t igb_intr(int irq, void *data)
6446 {
6447         struct igb_adapter *adapter = data;
6448         struct igb_q_vector *q_vector = adapter->q_vector[0];
6449         struct e1000_hw *hw = &adapter->hw;
6450         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6451          * need for the IMC write
6452          */
6453         u32 icr = rd32(E1000_ICR);
6454
6455         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6456          * not set, then the adapter didn't send an interrupt
6457          */
6458         if (!(icr & E1000_ICR_INT_ASSERTED))
6459                 return IRQ_NONE;
6460
6461         igb_write_itr(q_vector);
6462
6463         if (icr & E1000_ICR_DRSTA)
6464                 schedule_work(&adapter->reset_task);
6465
6466         if (icr & E1000_ICR_DOUTSYNC) {
6467                 /* HW is reporting DMA is out of sync */
6468                 adapter->stats.doosync++;
6469         }
6470
6471         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6472                 hw->mac.get_link_status = 1;
6473                 /* guard against interrupt when we're going down */
6474                 if (!test_bit(__IGB_DOWN, &adapter->state))
6475                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6476         }
6477
6478         if (icr & E1000_ICR_TS)
6479                 igb_tsync_interrupt(adapter);
6480
6481         napi_schedule(&q_vector->napi);
6482
6483         return IRQ_HANDLED;
6484 }
6485
6486 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6487 {
6488         struct igb_adapter *adapter = q_vector->adapter;
6489         struct e1000_hw *hw = &adapter->hw;
6490
6491         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6492             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6493                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6494                         igb_set_itr(q_vector);
6495                 else
6496                         igb_update_ring_itr(q_vector);
6497         }
6498
6499         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6500                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6501                         wr32(E1000_EIMS, q_vector->eims_value);
6502                 else
6503                         igb_irq_enable(adapter);
6504         }
6505 }
6506
6507 /**
6508  *  igb_poll - NAPI Rx polling callback
6509  *  @napi: napi polling structure
6510  *  @budget: count of how many packets we should handle
6511  **/
6512 static int igb_poll(struct napi_struct *napi, int budget)
6513 {
6514         struct igb_q_vector *q_vector = container_of(napi,
6515                                                      struct igb_q_vector,
6516                                                      napi);
6517         bool clean_complete = true;
6518         int work_done = 0;
6519
6520 #ifdef CONFIG_IGB_DCA
6521         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6522                 igb_update_dca(q_vector);
6523 #endif
6524         if (q_vector->tx.ring)
6525                 clean_complete = igb_clean_tx_irq(q_vector);
6526
6527         if (q_vector->rx.ring) {
6528                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6529
6530                 work_done += cleaned;
6531                 clean_complete &= (cleaned < budget);
6532         }
6533
6534         /* If all work not completed, return budget and keep polling */
6535         if (!clean_complete)
6536                 return budget;
6537
6538         /* If not enough Rx work done, exit the polling mode */
6539         napi_complete_done(napi, work_done);
6540         igb_ring_irq_enable(q_vector);
6541
6542         return 0;
6543 }
6544
6545 /**
6546  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6547  *  @q_vector: pointer to q_vector containing needed info
6548  *
6549  *  returns true if ring is completely cleaned
6550  **/
6551 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6552 {
6553         struct igb_adapter *adapter = q_vector->adapter;
6554         struct igb_ring *tx_ring = q_vector->tx.ring;
6555         struct igb_tx_buffer *tx_buffer;
6556         union e1000_adv_tx_desc *tx_desc;
6557         unsigned int total_bytes = 0, total_packets = 0;
6558         unsigned int budget = q_vector->tx.work_limit;
6559         unsigned int i = tx_ring->next_to_clean;
6560
6561         if (test_bit(__IGB_DOWN, &adapter->state))
6562                 return true;
6563
6564         tx_buffer = &tx_ring->tx_buffer_info[i];
6565         tx_desc = IGB_TX_DESC(tx_ring, i);
6566         i -= tx_ring->count;
6567
6568         do {
6569                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6570
6571                 /* if next_to_watch is not set then there is no work pending */
6572                 if (!eop_desc)
6573                         break;
6574
6575                 /* prevent any other reads prior to eop_desc */
6576                 read_barrier_depends();
6577
6578                 /* if DD is not set pending work has not been completed */
6579                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6580                         break;
6581
6582                 /* clear next_to_watch to prevent false hangs */
6583                 tx_buffer->next_to_watch = NULL;
6584
6585                 /* update the statistics for this packet */
6586                 total_bytes += tx_buffer->bytecount;
6587                 total_packets += tx_buffer->gso_segs;
6588
6589                 /* free the skb */
6590                 dev_consume_skb_any(tx_buffer->skb);
6591
6592                 /* unmap skb header data */
6593                 dma_unmap_single(tx_ring->dev,
6594                                  dma_unmap_addr(tx_buffer, dma),
6595                                  dma_unmap_len(tx_buffer, len),
6596                                  DMA_TO_DEVICE);
6597
6598                 /* clear tx_buffer data */
6599                 tx_buffer->skb = NULL;
6600                 dma_unmap_len_set(tx_buffer, len, 0);
6601
6602                 /* clear last DMA location and unmap remaining buffers */
6603                 while (tx_desc != eop_desc) {
6604                         tx_buffer++;
6605                         tx_desc++;
6606                         i++;
6607                         if (unlikely(!i)) {
6608                                 i -= tx_ring->count;
6609                                 tx_buffer = tx_ring->tx_buffer_info;
6610                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6611                         }
6612
6613                         /* unmap any remaining paged data */
6614                         if (dma_unmap_len(tx_buffer, len)) {
6615                                 dma_unmap_page(tx_ring->dev,
6616                                                dma_unmap_addr(tx_buffer, dma),
6617                                                dma_unmap_len(tx_buffer, len),
6618                                                DMA_TO_DEVICE);
6619                                 dma_unmap_len_set(tx_buffer, len, 0);
6620                         }
6621                 }
6622
6623                 /* move us one more past the eop_desc for start of next pkt */
6624                 tx_buffer++;
6625                 tx_desc++;
6626                 i++;
6627                 if (unlikely(!i)) {
6628                         i -= tx_ring->count;
6629                         tx_buffer = tx_ring->tx_buffer_info;
6630                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6631                 }
6632
6633                 /* issue prefetch for next Tx descriptor */
6634                 prefetch(tx_desc);
6635
6636                 /* update budget accounting */
6637                 budget--;
6638         } while (likely(budget));
6639
6640         netdev_tx_completed_queue(txring_txq(tx_ring),
6641                                   total_packets, total_bytes);
6642         i += tx_ring->count;
6643         tx_ring->next_to_clean = i;
6644         u64_stats_update_begin(&tx_ring->tx_syncp);
6645         tx_ring->tx_stats.bytes += total_bytes;
6646         tx_ring->tx_stats.packets += total_packets;
6647         u64_stats_update_end(&tx_ring->tx_syncp);
6648         q_vector->tx.total_bytes += total_bytes;
6649         q_vector->tx.total_packets += total_packets;
6650
6651         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6652                 struct e1000_hw *hw = &adapter->hw;
6653
6654                 /* Detect a transmit hang in hardware, this serializes the
6655                  * check with the clearing of time_stamp and movement of i
6656                  */
6657                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6658                 if (tx_buffer->next_to_watch &&
6659                     time_after(jiffies, tx_buffer->time_stamp +
6660                                (adapter->tx_timeout_factor * HZ)) &&
6661                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6662
6663                         /* detected Tx unit hang */
6664                         dev_err(tx_ring->dev,
6665                                 "Detected Tx Unit Hang\n"
6666                                 "  Tx Queue             <%d>\n"
6667                                 "  TDH                  <%x>\n"
6668                                 "  TDT                  <%x>\n"
6669                                 "  next_to_use          <%x>\n"
6670                                 "  next_to_clean        <%x>\n"
6671                                 "buffer_info[next_to_clean]\n"
6672                                 "  time_stamp           <%lx>\n"
6673                                 "  next_to_watch        <%p>\n"
6674                                 "  jiffies              <%lx>\n"
6675                                 "  desc.status          <%x>\n",
6676                                 tx_ring->queue_index,
6677                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6678                                 readl(tx_ring->tail),
6679                                 tx_ring->next_to_use,
6680                                 tx_ring->next_to_clean,
6681                                 tx_buffer->time_stamp,
6682                                 tx_buffer->next_to_watch,
6683                                 jiffies,
6684                                 tx_buffer->next_to_watch->wb.status);
6685                         netif_stop_subqueue(tx_ring->netdev,
6686                                             tx_ring->queue_index);
6687
6688                         /* we are about to reset, no point in enabling stuff */
6689                         return true;
6690                 }
6691         }
6692
6693 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6694         if (unlikely(total_packets &&
6695             netif_carrier_ok(tx_ring->netdev) &&
6696             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6697                 /* Make sure that anybody stopping the queue after this
6698                  * sees the new next_to_clean.
6699                  */
6700                 smp_mb();
6701                 if (__netif_subqueue_stopped(tx_ring->netdev,
6702                                              tx_ring->queue_index) &&
6703                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6704                         netif_wake_subqueue(tx_ring->netdev,
6705                                             tx_ring->queue_index);
6706
6707                         u64_stats_update_begin(&tx_ring->tx_syncp);
6708                         tx_ring->tx_stats.restart_queue++;
6709                         u64_stats_update_end(&tx_ring->tx_syncp);
6710                 }
6711         }
6712
6713         return !!budget;
6714 }
6715
6716 /**
6717  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6718  *  @rx_ring: rx descriptor ring to store buffers on
6719  *  @old_buff: donor buffer to have page reused
6720  *
6721  *  Synchronizes page for reuse by the adapter
6722  **/
6723 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6724                               struct igb_rx_buffer *old_buff)
6725 {
6726         struct igb_rx_buffer *new_buff;
6727         u16 nta = rx_ring->next_to_alloc;
6728
6729         new_buff = &rx_ring->rx_buffer_info[nta];
6730
6731         /* update, and store next to alloc */
6732         nta++;
6733         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6734
6735         /* transfer page from old buffer to new buffer */
6736         *new_buff = *old_buff;
6737
6738         /* sync the buffer for use by the device */
6739         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6740                                          old_buff->page_offset,
6741                                          IGB_RX_BUFSZ,
6742                                          DMA_FROM_DEVICE);
6743 }
6744
6745 static inline bool igb_page_is_reserved(struct page *page)
6746 {
6747         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6748 }
6749
6750 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6751                                   struct page *page,
6752                                   unsigned int truesize)
6753 {
6754         /* avoid re-using remote pages */
6755         if (unlikely(igb_page_is_reserved(page)))
6756                 return false;
6757
6758 #if (PAGE_SIZE < 8192)
6759         /* if we are only owner of page we can reuse it */
6760         if (unlikely(page_count(page) != 1))
6761                 return false;
6762
6763         /* flip page offset to other buffer */
6764         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6765 #else
6766         /* move offset up to the next cache line */
6767         rx_buffer->page_offset += truesize;
6768
6769         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6770                 return false;
6771 #endif
6772
6773         /* Even if we own the page, we are not allowed to use atomic_set()
6774          * This would break get_page_unless_zero() users.
6775          */
6776         atomic_inc(&page->_count);
6777
6778         return true;
6779 }
6780
6781 /**
6782  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6783  *  @rx_ring: rx descriptor ring to transact packets on
6784  *  @rx_buffer: buffer containing page to add
6785  *  @rx_desc: descriptor containing length of buffer written by hardware
6786  *  @skb: sk_buff to place the data into
6787  *
6788  *  This function will add the data contained in rx_buffer->page to the skb.
6789  *  This is done either through a direct copy if the data in the buffer is
6790  *  less than the skb header size, otherwise it will just attach the page as
6791  *  a frag to the skb.
6792  *
6793  *  The function will then update the page offset if necessary and return
6794  *  true if the buffer can be reused by the adapter.
6795  **/
6796 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6797                             struct igb_rx_buffer *rx_buffer,
6798                             union e1000_adv_rx_desc *rx_desc,
6799                             struct sk_buff *skb)
6800 {
6801         struct page *page = rx_buffer->page;
6802         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6803         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6804 #if (PAGE_SIZE < 8192)
6805         unsigned int truesize = IGB_RX_BUFSZ;
6806 #else
6807         unsigned int truesize = SKB_DATA_ALIGN(size);
6808 #endif
6809         unsigned int pull_len;
6810
6811         if (unlikely(skb_is_nonlinear(skb)))
6812                 goto add_tail_frag;
6813
6814         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6815                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6816                 va += IGB_TS_HDR_LEN;
6817                 size -= IGB_TS_HDR_LEN;
6818         }
6819
6820         if (likely(size <= IGB_RX_HDR_LEN)) {
6821                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6822
6823                 /* page is not reserved, we can reuse buffer as-is */
6824                 if (likely(!igb_page_is_reserved(page)))
6825                         return true;
6826
6827                 /* this page cannot be reused so discard it */
6828                 __free_page(page);
6829                 return false;
6830         }
6831
6832         /* we need the header to contain the greater of either ETH_HLEN or
6833          * 60 bytes if the skb->len is less than 60 for skb_pad.
6834          */
6835         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6836
6837         /* align pull length to size of long to optimize memcpy performance */
6838         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6839
6840         /* update all of the pointers */
6841         va += pull_len;
6842         size -= pull_len;
6843
6844 add_tail_frag:
6845         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6846                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6847
6848         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6849 }
6850
6851 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6852                                            union e1000_adv_rx_desc *rx_desc,
6853                                            struct sk_buff *skb)
6854 {
6855         struct igb_rx_buffer *rx_buffer;
6856         struct page *page;
6857
6858         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6859         page = rx_buffer->page;
6860         prefetchw(page);
6861
6862         if (likely(!skb)) {
6863                 void *page_addr = page_address(page) +
6864                                   rx_buffer->page_offset;
6865
6866                 /* prefetch first cache line of first page */
6867                 prefetch(page_addr);
6868 #if L1_CACHE_BYTES < 128
6869                 prefetch(page_addr + L1_CACHE_BYTES);
6870 #endif
6871
6872                 /* allocate a skb to store the frags */
6873                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6874                 if (unlikely(!skb)) {
6875                         rx_ring->rx_stats.alloc_failed++;
6876                         return NULL;
6877                 }
6878
6879                 /* we will be copying header into skb->data in
6880                  * pskb_may_pull so it is in our interest to prefetch
6881                  * it now to avoid a possible cache miss
6882                  */
6883                 prefetchw(skb->data);
6884         }
6885
6886         /* we are reusing so sync this buffer for CPU use */
6887         dma_sync_single_range_for_cpu(rx_ring->dev,
6888                                       rx_buffer->dma,
6889                                       rx_buffer->page_offset,
6890                                       IGB_RX_BUFSZ,
6891                                       DMA_FROM_DEVICE);
6892
6893         /* pull page into skb */
6894         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6895                 /* hand second half of page back to the ring */
6896                 igb_reuse_rx_page(rx_ring, rx_buffer);
6897         } else {
6898                 /* we are not reusing the buffer so unmap it */
6899                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6900                                PAGE_SIZE, DMA_FROM_DEVICE);
6901         }
6902
6903         /* clear contents of rx_buffer */
6904         rx_buffer->page = NULL;
6905
6906         return skb;
6907 }
6908
6909 static inline void igb_rx_checksum(struct igb_ring *ring,
6910                                    union e1000_adv_rx_desc *rx_desc,
6911                                    struct sk_buff *skb)
6912 {
6913         skb_checksum_none_assert(skb);
6914
6915         /* Ignore Checksum bit is set */
6916         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6917                 return;
6918
6919         /* Rx checksum disabled via ethtool */
6920         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6921                 return;
6922
6923         /* TCP/UDP checksum error bit is set */
6924         if (igb_test_staterr(rx_desc,
6925                              E1000_RXDEXT_STATERR_TCPE |
6926                              E1000_RXDEXT_STATERR_IPE)) {
6927                 /* work around errata with sctp packets where the TCPE aka
6928                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6929                  * packets, (aka let the stack check the crc32c)
6930                  */
6931                 if (!((skb->len == 60) &&
6932                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6933                         u64_stats_update_begin(&ring->rx_syncp);
6934                         ring->rx_stats.csum_err++;
6935                         u64_stats_update_end(&ring->rx_syncp);
6936                 }
6937                 /* let the stack verify checksum errors */
6938                 return;
6939         }
6940         /* It must be a TCP or UDP packet with a valid checksum */
6941         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6942                                       E1000_RXD_STAT_UDPCS))
6943                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6944
6945         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6946                 le32_to_cpu(rx_desc->wb.upper.status_error));
6947 }
6948
6949 static inline void igb_rx_hash(struct igb_ring *ring,
6950                                union e1000_adv_rx_desc *rx_desc,
6951                                struct sk_buff *skb)
6952 {
6953         if (ring->netdev->features & NETIF_F_RXHASH)
6954                 skb_set_hash(skb,
6955                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6956                              PKT_HASH_TYPE_L3);
6957 }
6958
6959 /**
6960  *  igb_is_non_eop - process handling of non-EOP buffers
6961  *  @rx_ring: Rx ring being processed
6962  *  @rx_desc: Rx descriptor for current buffer
6963  *  @skb: current socket buffer containing buffer in progress
6964  *
6965  *  This function updates next to clean.  If the buffer is an EOP buffer
6966  *  this function exits returning false, otherwise it will place the
6967  *  sk_buff in the next buffer to be chained and return true indicating
6968  *  that this is in fact a non-EOP buffer.
6969  **/
6970 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6971                            union e1000_adv_rx_desc *rx_desc)
6972 {
6973         u32 ntc = rx_ring->next_to_clean + 1;
6974
6975         /* fetch, update, and store next to clean */
6976         ntc = (ntc < rx_ring->count) ? ntc : 0;
6977         rx_ring->next_to_clean = ntc;
6978
6979         prefetch(IGB_RX_DESC(rx_ring, ntc));
6980
6981         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6982                 return false;
6983
6984         return true;
6985 }
6986
6987 /**
6988  *  igb_cleanup_headers - Correct corrupted or empty headers
6989  *  @rx_ring: rx descriptor ring packet is being transacted on
6990  *  @rx_desc: pointer to the EOP Rx descriptor
6991  *  @skb: pointer to current skb being fixed
6992  *
6993  *  Address the case where we are pulling data in on pages only
6994  *  and as such no data is present in the skb header.
6995  *
6996  *  In addition if skb is not at least 60 bytes we need to pad it so that
6997  *  it is large enough to qualify as a valid Ethernet frame.
6998  *
6999  *  Returns true if an error was encountered and skb was freed.
7000  **/
7001 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7002                                 union e1000_adv_rx_desc *rx_desc,
7003                                 struct sk_buff *skb)
7004 {
7005         if (unlikely((igb_test_staterr(rx_desc,
7006                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7007                 struct net_device *netdev = rx_ring->netdev;
7008                 if (!(netdev->features & NETIF_F_RXALL)) {
7009                         dev_kfree_skb_any(skb);
7010                         return true;
7011                 }
7012         }
7013
7014         /* if eth_skb_pad returns an error the skb was freed */
7015         if (eth_skb_pad(skb))
7016                 return true;
7017
7018         return false;
7019 }
7020
7021 /**
7022  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7023  *  @rx_ring: rx descriptor ring packet is being transacted on
7024  *  @rx_desc: pointer to the EOP Rx descriptor
7025  *  @skb: pointer to current skb being populated
7026  *
7027  *  This function checks the ring, descriptor, and packet information in
7028  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7029  *  other fields within the skb.
7030  **/
7031 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7032                                    union e1000_adv_rx_desc *rx_desc,
7033                                    struct sk_buff *skb)
7034 {
7035         struct net_device *dev = rx_ring->netdev;
7036
7037         igb_rx_hash(rx_ring, rx_desc, skb);
7038
7039         igb_rx_checksum(rx_ring, rx_desc, skb);
7040
7041         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7042             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7043                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7044
7045         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7046             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7047                 u16 vid;
7048
7049                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7050                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7051                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7052                 else
7053                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7054
7055                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7056         }
7057
7058         skb_record_rx_queue(skb, rx_ring->queue_index);
7059
7060         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7061 }
7062
7063 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7064 {
7065         struct igb_ring *rx_ring = q_vector->rx.ring;
7066         struct sk_buff *skb = rx_ring->skb;
7067         unsigned int total_bytes = 0, total_packets = 0;
7068         u16 cleaned_count = igb_desc_unused(rx_ring);
7069
7070         while (likely(total_packets < budget)) {
7071                 union e1000_adv_rx_desc *rx_desc;
7072
7073                 /* return some buffers to hardware, one at a time is too slow */
7074                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7075                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7076                         cleaned_count = 0;
7077                 }
7078
7079                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7080
7081                 if (!rx_desc->wb.upper.status_error)
7082                         break;
7083
7084                 /* This memory barrier is needed to keep us from reading
7085                  * any other fields out of the rx_desc until we know the
7086                  * descriptor has been written back
7087                  */
7088                 dma_rmb();
7089
7090                 /* retrieve a buffer from the ring */
7091                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7092
7093                 /* exit if we failed to retrieve a buffer */
7094                 if (!skb)
7095                         break;
7096
7097                 cleaned_count++;
7098
7099                 /* fetch next buffer in frame if non-eop */
7100                 if (igb_is_non_eop(rx_ring, rx_desc))
7101                         continue;
7102
7103                 /* verify the packet layout is correct */
7104                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7105                         skb = NULL;
7106                         continue;
7107                 }
7108
7109                 /* probably a little skewed due to removing CRC */
7110                 total_bytes += skb->len;
7111
7112                 /* populate checksum, timestamp, VLAN, and protocol */
7113                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7114
7115                 napi_gro_receive(&q_vector->napi, skb);
7116
7117                 /* reset skb pointer */
7118                 skb = NULL;
7119
7120                 /* update budget accounting */
7121                 total_packets++;
7122         }
7123
7124         /* place incomplete frames back on ring for completion */
7125         rx_ring->skb = skb;
7126
7127         u64_stats_update_begin(&rx_ring->rx_syncp);
7128         rx_ring->rx_stats.packets += total_packets;
7129         rx_ring->rx_stats.bytes += total_bytes;
7130         u64_stats_update_end(&rx_ring->rx_syncp);
7131         q_vector->rx.total_packets += total_packets;
7132         q_vector->rx.total_bytes += total_bytes;
7133
7134         if (cleaned_count)
7135                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136
7137         return total_packets;
7138 }
7139
7140 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7141                                   struct igb_rx_buffer *bi)
7142 {
7143         struct page *page = bi->page;
7144         dma_addr_t dma;
7145
7146         /* since we are recycling buffers we should seldom need to alloc */
7147         if (likely(page))
7148                 return true;
7149
7150         /* alloc new page for storage */
7151         page = dev_alloc_page();
7152         if (unlikely(!page)) {
7153                 rx_ring->rx_stats.alloc_failed++;
7154                 return false;
7155         }
7156
7157         /* map page for use */
7158         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7159
7160         /* if mapping failed free memory back to system since
7161          * there isn't much point in holding memory we can't use
7162          */
7163         if (dma_mapping_error(rx_ring->dev, dma)) {
7164                 __free_page(page);
7165
7166                 rx_ring->rx_stats.alloc_failed++;
7167                 return false;
7168         }
7169
7170         bi->dma = dma;
7171         bi->page = page;
7172         bi->page_offset = 0;
7173
7174         return true;
7175 }
7176
7177 /**
7178  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7179  *  @adapter: address of board private structure
7180  **/
7181 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7182 {
7183         union e1000_adv_rx_desc *rx_desc;
7184         struct igb_rx_buffer *bi;
7185         u16 i = rx_ring->next_to_use;
7186
7187         /* nothing to do */
7188         if (!cleaned_count)
7189                 return;
7190
7191         rx_desc = IGB_RX_DESC(rx_ring, i);
7192         bi = &rx_ring->rx_buffer_info[i];
7193         i -= rx_ring->count;
7194
7195         do {
7196                 if (!igb_alloc_mapped_page(rx_ring, bi))
7197                         break;
7198
7199                 /* Refresh the desc even if buffer_addrs didn't change
7200                  * because each write-back erases this info.
7201                  */
7202                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7203
7204                 rx_desc++;
7205                 bi++;
7206                 i++;
7207                 if (unlikely(!i)) {
7208                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7209                         bi = rx_ring->rx_buffer_info;
7210                         i -= rx_ring->count;
7211                 }
7212
7213                 /* clear the status bits for the next_to_use descriptor */
7214                 rx_desc->wb.upper.status_error = 0;
7215
7216                 cleaned_count--;
7217         } while (cleaned_count);
7218
7219         i += rx_ring->count;
7220
7221         if (rx_ring->next_to_use != i) {
7222                 /* record the next descriptor to use */
7223                 rx_ring->next_to_use = i;
7224
7225                 /* update next to alloc since we have filled the ring */
7226                 rx_ring->next_to_alloc = i;
7227
7228                 /* Force memory writes to complete before letting h/w
7229                  * know there are new descriptors to fetch.  (Only
7230                  * applicable for weak-ordered memory model archs,
7231                  * such as IA-64).
7232                  */
7233                 wmb();
7234                 writel(i, rx_ring->tail);
7235         }
7236 }
7237
7238 /**
7239  * igb_mii_ioctl -
7240  * @netdev:
7241  * @ifreq:
7242  * @cmd:
7243  **/
7244 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7245 {
7246         struct igb_adapter *adapter = netdev_priv(netdev);
7247         struct mii_ioctl_data *data = if_mii(ifr);
7248
7249         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7250                 return -EOPNOTSUPP;
7251
7252         switch (cmd) {
7253         case SIOCGMIIPHY:
7254                 data->phy_id = adapter->hw.phy.addr;
7255                 break;
7256         case SIOCGMIIREG:
7257                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7258                                      &data->val_out))
7259                         return -EIO;
7260                 break;
7261         case SIOCSMIIREG:
7262         default:
7263                 return -EOPNOTSUPP;
7264         }
7265         return 0;
7266 }
7267
7268 /**
7269  * igb_ioctl -
7270  * @netdev:
7271  * @ifreq:
7272  * @cmd:
7273  **/
7274 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7275 {
7276         switch (cmd) {
7277         case SIOCGMIIPHY:
7278         case SIOCGMIIREG:
7279         case SIOCSMIIREG:
7280                 return igb_mii_ioctl(netdev, ifr, cmd);
7281         case SIOCGHWTSTAMP:
7282                 return igb_ptp_get_ts_config(netdev, ifr);
7283         case SIOCSHWTSTAMP:
7284                 return igb_ptp_set_ts_config(netdev, ifr);
7285         default:
7286                 return -EOPNOTSUPP;
7287         }
7288 }
7289
7290 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7291 {
7292         struct igb_adapter *adapter = hw->back;
7293
7294         pci_read_config_word(adapter->pdev, reg, value);
7295 }
7296
7297 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7298 {
7299         struct igb_adapter *adapter = hw->back;
7300
7301         pci_write_config_word(adapter->pdev, reg, *value);
7302 }
7303
7304 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7305 {
7306         struct igb_adapter *adapter = hw->back;
7307
7308         if (pcie_capability_read_word(adapter->pdev, reg, value))
7309                 return -E1000_ERR_CONFIG;
7310
7311         return 0;
7312 }
7313
7314 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7315 {
7316         struct igb_adapter *adapter = hw->back;
7317
7318         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7319                 return -E1000_ERR_CONFIG;
7320
7321         return 0;
7322 }
7323
7324 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7325 {
7326         struct igb_adapter *adapter = netdev_priv(netdev);
7327         struct e1000_hw *hw = &adapter->hw;
7328         u32 ctrl, rctl;
7329         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7330
7331         if (enable) {
7332                 /* enable VLAN tag insert/strip */
7333                 ctrl = rd32(E1000_CTRL);
7334                 ctrl |= E1000_CTRL_VME;
7335                 wr32(E1000_CTRL, ctrl);
7336
7337                 /* Disable CFI check */
7338                 rctl = rd32(E1000_RCTL);
7339                 rctl &= ~E1000_RCTL_CFIEN;
7340                 wr32(E1000_RCTL, rctl);
7341         } else {
7342                 /* disable VLAN tag insert/strip */
7343                 ctrl = rd32(E1000_CTRL);
7344                 ctrl &= ~E1000_CTRL_VME;
7345                 wr32(E1000_CTRL, ctrl);
7346         }
7347
7348         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7349 }
7350
7351 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7352                                __be16 proto, u16 vid)
7353 {
7354         struct igb_adapter *adapter = netdev_priv(netdev);
7355         struct e1000_hw *hw = &adapter->hw;
7356         int pf_id = adapter->vfs_allocated_count;
7357
7358         /* add the filter since PF can receive vlans w/o entry in vlvf */
7359         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7360                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7361
7362         set_bit(vid, adapter->active_vlans);
7363
7364         return 0;
7365 }
7366
7367 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7368                                 __be16 proto, u16 vid)
7369 {
7370         struct igb_adapter *adapter = netdev_priv(netdev);
7371         int pf_id = adapter->vfs_allocated_count;
7372         struct e1000_hw *hw = &adapter->hw;
7373
7374         /* remove VID from filter table */
7375         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7376                 igb_vfta_set(hw, vid, pf_id, false, true);
7377
7378         clear_bit(vid, adapter->active_vlans);
7379
7380         return 0;
7381 }
7382
7383 static void igb_restore_vlan(struct igb_adapter *adapter)
7384 {
7385         u16 vid = 1;
7386
7387         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7388         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7389
7390         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7391                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7392 }
7393
7394 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7395 {
7396         struct pci_dev *pdev = adapter->pdev;
7397         struct e1000_mac_info *mac = &adapter->hw.mac;
7398
7399         mac->autoneg = 0;
7400
7401         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7402          * for the switch() below to work
7403          */
7404         if ((spd & 1) || (dplx & ~1))
7405                 goto err_inval;
7406
7407         /* Fiber NIC's only allow 1000 gbps Full duplex
7408          * and 100Mbps Full duplex for 100baseFx sfp
7409          */
7410         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7411                 switch (spd + dplx) {
7412                 case SPEED_10 + DUPLEX_HALF:
7413                 case SPEED_10 + DUPLEX_FULL:
7414                 case SPEED_100 + DUPLEX_HALF:
7415                         goto err_inval;
7416                 default:
7417                         break;
7418                 }
7419         }
7420
7421         switch (spd + dplx) {
7422         case SPEED_10 + DUPLEX_HALF:
7423                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7424                 break;
7425         case SPEED_10 + DUPLEX_FULL:
7426                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7427                 break;
7428         case SPEED_100 + DUPLEX_HALF:
7429                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7430                 break;
7431         case SPEED_100 + DUPLEX_FULL:
7432                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7433                 break;
7434         case SPEED_1000 + DUPLEX_FULL:
7435                 mac->autoneg = 1;
7436                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7437                 break;
7438         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7439         default:
7440                 goto err_inval;
7441         }
7442
7443         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7444         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7445
7446         return 0;
7447
7448 err_inval:
7449         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7450         return -EINVAL;
7451 }
7452
7453 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7454                           bool runtime)
7455 {
7456         struct net_device *netdev = pci_get_drvdata(pdev);
7457         struct igb_adapter *adapter = netdev_priv(netdev);
7458         struct e1000_hw *hw = &adapter->hw;
7459         u32 ctrl, rctl, status;
7460         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7461 #ifdef CONFIG_PM
7462         int retval = 0;
7463 #endif
7464
7465         netif_device_detach(netdev);
7466
7467         if (netif_running(netdev))
7468                 __igb_close(netdev, true);
7469
7470         igb_clear_interrupt_scheme(adapter);
7471
7472 #ifdef CONFIG_PM
7473         retval = pci_save_state(pdev);
7474         if (retval)
7475                 return retval;
7476 #endif
7477
7478         status = rd32(E1000_STATUS);
7479         if (status & E1000_STATUS_LU)
7480                 wufc &= ~E1000_WUFC_LNKC;
7481
7482         if (wufc) {
7483                 igb_setup_rctl(adapter);
7484                 igb_set_rx_mode(netdev);
7485
7486                 /* turn on all-multi mode if wake on multicast is enabled */
7487                 if (wufc & E1000_WUFC_MC) {
7488                         rctl = rd32(E1000_RCTL);
7489                         rctl |= E1000_RCTL_MPE;
7490                         wr32(E1000_RCTL, rctl);
7491                 }
7492
7493                 ctrl = rd32(E1000_CTRL);
7494                 /* advertise wake from D3Cold */
7495                 #define E1000_CTRL_ADVD3WUC 0x00100000
7496                 /* phy power management enable */
7497                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7498                 ctrl |= E1000_CTRL_ADVD3WUC;
7499                 wr32(E1000_CTRL, ctrl);
7500
7501                 /* Allow time for pending master requests to run */
7502                 igb_disable_pcie_master(hw);
7503
7504                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7505                 wr32(E1000_WUFC, wufc);
7506         } else {
7507                 wr32(E1000_WUC, 0);
7508                 wr32(E1000_WUFC, 0);
7509         }
7510
7511         *enable_wake = wufc || adapter->en_mng_pt;
7512         if (!*enable_wake)
7513                 igb_power_down_link(adapter);
7514         else
7515                 igb_power_up_link(adapter);
7516
7517         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7518          * would have already happened in close and is redundant.
7519          */
7520         igb_release_hw_control(adapter);
7521
7522         pci_disable_device(pdev);
7523
7524         return 0;
7525 }
7526
7527 #ifdef CONFIG_PM
7528 #ifdef CONFIG_PM_SLEEP
7529 static int igb_suspend(struct device *dev)
7530 {
7531         int retval;
7532         bool wake;
7533         struct pci_dev *pdev = to_pci_dev(dev);
7534
7535         retval = __igb_shutdown(pdev, &wake, 0);
7536         if (retval)
7537                 return retval;
7538
7539         if (wake) {
7540                 pci_prepare_to_sleep(pdev);
7541         } else {
7542                 pci_wake_from_d3(pdev, false);
7543                 pci_set_power_state(pdev, PCI_D3hot);
7544         }
7545
7546         return 0;
7547 }
7548 #endif /* CONFIG_PM_SLEEP */
7549
7550 static int igb_resume(struct device *dev)
7551 {
7552         struct pci_dev *pdev = to_pci_dev(dev);
7553         struct net_device *netdev = pci_get_drvdata(pdev);
7554         struct igb_adapter *adapter = netdev_priv(netdev);
7555         struct e1000_hw *hw = &adapter->hw;
7556         u32 err;
7557
7558         pci_set_power_state(pdev, PCI_D0);
7559         pci_restore_state(pdev);
7560         pci_save_state(pdev);
7561
7562         if (!pci_device_is_present(pdev))
7563                 return -ENODEV;
7564         err = pci_enable_device_mem(pdev);
7565         if (err) {
7566                 dev_err(&pdev->dev,
7567                         "igb: Cannot enable PCI device from suspend\n");
7568                 return err;
7569         }
7570         pci_set_master(pdev);
7571
7572         pci_enable_wake(pdev, PCI_D3hot, 0);
7573         pci_enable_wake(pdev, PCI_D3cold, 0);
7574
7575         if (igb_init_interrupt_scheme(adapter, true)) {
7576                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7577                 rtnl_unlock();
7578                 return -ENOMEM;
7579         }
7580
7581         igb_reset(adapter);
7582
7583         /* let the f/w know that the h/w is now under the control of the
7584          * driver.
7585          */
7586         igb_get_hw_control(adapter);
7587
7588         wr32(E1000_WUS, ~0);
7589
7590         if (netdev->flags & IFF_UP) {
7591                 rtnl_lock();
7592                 err = __igb_open(netdev, true);
7593                 rtnl_unlock();
7594                 if (err)
7595                         return err;
7596         }
7597
7598         netif_device_attach(netdev);
7599         return 0;
7600 }
7601
7602 static int igb_runtime_idle(struct device *dev)
7603 {
7604         struct pci_dev *pdev = to_pci_dev(dev);
7605         struct net_device *netdev = pci_get_drvdata(pdev);
7606         struct igb_adapter *adapter = netdev_priv(netdev);
7607
7608         if (!igb_has_link(adapter))
7609                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7610
7611         return -EBUSY;
7612 }
7613
7614 static int igb_runtime_suspend(struct device *dev)
7615 {
7616         struct pci_dev *pdev = to_pci_dev(dev);
7617         int retval;
7618         bool wake;
7619
7620         retval = __igb_shutdown(pdev, &wake, 1);
7621         if (retval)
7622                 return retval;
7623
7624         if (wake) {
7625                 pci_prepare_to_sleep(pdev);
7626         } else {
7627                 pci_wake_from_d3(pdev, false);
7628                 pci_set_power_state(pdev, PCI_D3hot);
7629         }
7630
7631         return 0;
7632 }
7633
7634 static int igb_runtime_resume(struct device *dev)
7635 {
7636         return igb_resume(dev);
7637 }
7638 #endif /* CONFIG_PM */
7639
7640 static void igb_shutdown(struct pci_dev *pdev)
7641 {
7642         bool wake;
7643
7644         __igb_shutdown(pdev, &wake, 0);
7645
7646         if (system_state == SYSTEM_POWER_OFF) {
7647                 pci_wake_from_d3(pdev, wake);
7648                 pci_set_power_state(pdev, PCI_D3hot);
7649         }
7650 }
7651
7652 #ifdef CONFIG_PCI_IOV
7653 static int igb_sriov_reinit(struct pci_dev *dev)
7654 {
7655         struct net_device *netdev = pci_get_drvdata(dev);
7656         struct igb_adapter *adapter = netdev_priv(netdev);
7657         struct pci_dev *pdev = adapter->pdev;
7658
7659         rtnl_lock();
7660
7661         if (netif_running(netdev))
7662                 igb_close(netdev);
7663         else
7664                 igb_reset(adapter);
7665
7666         igb_clear_interrupt_scheme(adapter);
7667
7668         igb_init_queue_configuration(adapter);
7669
7670         if (igb_init_interrupt_scheme(adapter, true)) {
7671                 rtnl_unlock();
7672                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7673                 return -ENOMEM;
7674         }
7675
7676         if (netif_running(netdev))
7677                 igb_open(netdev);
7678
7679         rtnl_unlock();
7680
7681         return 0;
7682 }
7683
7684 static int igb_pci_disable_sriov(struct pci_dev *dev)
7685 {
7686         int err = igb_disable_sriov(dev);
7687
7688         if (!err)
7689                 err = igb_sriov_reinit(dev);
7690
7691         return err;
7692 }
7693
7694 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7695 {
7696         int err = igb_enable_sriov(dev, num_vfs);
7697
7698         if (err)
7699                 goto out;
7700
7701         err = igb_sriov_reinit(dev);
7702         if (!err)
7703                 return num_vfs;
7704
7705 out:
7706         return err;
7707 }
7708
7709 #endif
7710 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7711 {
7712 #ifdef CONFIG_PCI_IOV
7713         if (num_vfs == 0)
7714                 return igb_pci_disable_sriov(dev);
7715         else
7716                 return igb_pci_enable_sriov(dev, num_vfs);
7717 #endif
7718         return 0;
7719 }
7720
7721 #ifdef CONFIG_NET_POLL_CONTROLLER
7722 /* Polling 'interrupt' - used by things like netconsole to send skbs
7723  * without having to re-enable interrupts. It's not called while
7724  * the interrupt routine is executing.
7725  */
7726 static void igb_netpoll(struct net_device *netdev)
7727 {
7728         struct igb_adapter *adapter = netdev_priv(netdev);
7729         struct e1000_hw *hw = &adapter->hw;
7730         struct igb_q_vector *q_vector;
7731         int i;
7732
7733         for (i = 0; i < adapter->num_q_vectors; i++) {
7734                 q_vector = adapter->q_vector[i];
7735                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7736                         wr32(E1000_EIMC, q_vector->eims_value);
7737                 else
7738                         igb_irq_disable(adapter);
7739                 napi_schedule(&q_vector->napi);
7740         }
7741 }
7742 #endif /* CONFIG_NET_POLL_CONTROLLER */
7743
7744 /**
7745  *  igb_io_error_detected - called when PCI error is detected
7746  *  @pdev: Pointer to PCI device
7747  *  @state: The current pci connection state
7748  *
7749  *  This function is called after a PCI bus error affecting
7750  *  this device has been detected.
7751  **/
7752 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7753                                               pci_channel_state_t state)
7754 {
7755         struct net_device *netdev = pci_get_drvdata(pdev);
7756         struct igb_adapter *adapter = netdev_priv(netdev);
7757
7758         netif_device_detach(netdev);
7759
7760         if (state == pci_channel_io_perm_failure)
7761                 return PCI_ERS_RESULT_DISCONNECT;
7762
7763         if (netif_running(netdev))
7764                 igb_down(adapter);
7765         pci_disable_device(pdev);
7766
7767         /* Request a slot slot reset. */
7768         return PCI_ERS_RESULT_NEED_RESET;
7769 }
7770
7771 /**
7772  *  igb_io_slot_reset - called after the pci bus has been reset.
7773  *  @pdev: Pointer to PCI device
7774  *
7775  *  Restart the card from scratch, as if from a cold-boot. Implementation
7776  *  resembles the first-half of the igb_resume routine.
7777  **/
7778 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7779 {
7780         struct net_device *netdev = pci_get_drvdata(pdev);
7781         struct igb_adapter *adapter = netdev_priv(netdev);
7782         struct e1000_hw *hw = &adapter->hw;
7783         pci_ers_result_t result;
7784         int err;
7785
7786         if (pci_enable_device_mem(pdev)) {
7787                 dev_err(&pdev->dev,
7788                         "Cannot re-enable PCI device after reset.\n");
7789                 result = PCI_ERS_RESULT_DISCONNECT;
7790         } else {
7791                 pci_set_master(pdev);
7792                 pci_restore_state(pdev);
7793                 pci_save_state(pdev);
7794
7795                 pci_enable_wake(pdev, PCI_D3hot, 0);
7796                 pci_enable_wake(pdev, PCI_D3cold, 0);
7797
7798                 igb_reset(adapter);
7799                 wr32(E1000_WUS, ~0);
7800                 result = PCI_ERS_RESULT_RECOVERED;
7801         }
7802
7803         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7804         if (err) {
7805                 dev_err(&pdev->dev,
7806                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7807                         err);
7808                 /* non-fatal, continue */
7809         }
7810
7811         return result;
7812 }
7813
7814 /**
7815  *  igb_io_resume - called when traffic can start flowing again.
7816  *  @pdev: Pointer to PCI device
7817  *
7818  *  This callback is called when the error recovery driver tells us that
7819  *  its OK to resume normal operation. Implementation resembles the
7820  *  second-half of the igb_resume routine.
7821  */
7822 static void igb_io_resume(struct pci_dev *pdev)
7823 {
7824         struct net_device *netdev = pci_get_drvdata(pdev);
7825         struct igb_adapter *adapter = netdev_priv(netdev);
7826
7827         if (netif_running(netdev)) {
7828                 if (igb_up(adapter)) {
7829                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7830                         return;
7831                 }
7832         }
7833
7834         netif_device_attach(netdev);
7835
7836         /* let the f/w know that the h/w is now under the control of the
7837          * driver.
7838          */
7839         igb_get_hw_control(adapter);
7840 }
7841
7842 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7843                              u8 qsel)
7844 {
7845         struct e1000_hw *hw = &adapter->hw;
7846         u32 rar_low, rar_high;
7847
7848         /* HW expects these in little endian so we reverse the byte order
7849          * from network order (big endian) to CPU endian
7850          */
7851         rar_low = le32_to_cpup((__be32 *)(addr));
7852         rar_high = le16_to_cpup((__be16 *)(addr + 4));
7853
7854         /* Indicate to hardware the Address is Valid. */
7855         rar_high |= E1000_RAH_AV;
7856
7857         if (hw->mac.type == e1000_82575)
7858                 rar_high |= E1000_RAH_POOL_1 * qsel;
7859         else
7860                 rar_high |= E1000_RAH_POOL_1 << qsel;
7861
7862         wr32(E1000_RAL(index), rar_low);
7863         wrfl();
7864         wr32(E1000_RAH(index), rar_high);
7865         wrfl();
7866 }
7867
7868 static int igb_set_vf_mac(struct igb_adapter *adapter,
7869                           int vf, unsigned char *mac_addr)
7870 {
7871         struct e1000_hw *hw = &adapter->hw;
7872         /* VF MAC addresses start at end of receive addresses and moves
7873          * towards the first, as a result a collision should not be possible
7874          */
7875         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7876
7877         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7878
7879         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7880
7881         return 0;
7882 }
7883
7884 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7885 {
7886         struct igb_adapter *adapter = netdev_priv(netdev);
7887         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7888                 return -EINVAL;
7889         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7890         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7891         dev_info(&adapter->pdev->dev,
7892                  "Reload the VF driver to make this change effective.");
7893         if (test_bit(__IGB_DOWN, &adapter->state)) {
7894                 dev_warn(&adapter->pdev->dev,
7895                          "The VF MAC address has been set, but the PF device is not up.\n");
7896                 dev_warn(&adapter->pdev->dev,
7897                          "Bring the PF device up before attempting to use the VF device.\n");
7898         }
7899         return igb_set_vf_mac(adapter, vf, mac);
7900 }
7901
7902 static int igb_link_mbps(int internal_link_speed)
7903 {
7904         switch (internal_link_speed) {
7905         case SPEED_100:
7906                 return 100;
7907         case SPEED_1000:
7908                 return 1000;
7909         default:
7910                 return 0;
7911         }
7912 }
7913
7914 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7915                                   int link_speed)
7916 {
7917         int rf_dec, rf_int;
7918         u32 bcnrc_val;
7919
7920         if (tx_rate != 0) {
7921                 /* Calculate the rate factor values to set */
7922                 rf_int = link_speed / tx_rate;
7923                 rf_dec = (link_speed - (rf_int * tx_rate));
7924                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7925                          tx_rate;
7926
7927                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7928                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7929                               E1000_RTTBCNRC_RF_INT_MASK);
7930                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7931         } else {
7932                 bcnrc_val = 0;
7933         }
7934
7935         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7936         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7937          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7938          */
7939         wr32(E1000_RTTBCNRM, 0x14);
7940         wr32(E1000_RTTBCNRC, bcnrc_val);
7941 }
7942
7943 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7944 {
7945         int actual_link_speed, i;
7946         bool reset_rate = false;
7947
7948         /* VF TX rate limit was not set or not supported */
7949         if ((adapter->vf_rate_link_speed == 0) ||
7950             (adapter->hw.mac.type != e1000_82576))
7951                 return;
7952
7953         actual_link_speed = igb_link_mbps(adapter->link_speed);
7954         if (actual_link_speed != adapter->vf_rate_link_speed) {
7955                 reset_rate = true;
7956                 adapter->vf_rate_link_speed = 0;
7957                 dev_info(&adapter->pdev->dev,
7958                          "Link speed has been changed. VF Transmit rate is disabled\n");
7959         }
7960
7961         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7962                 if (reset_rate)
7963                         adapter->vf_data[i].tx_rate = 0;
7964
7965                 igb_set_vf_rate_limit(&adapter->hw, i,
7966                                       adapter->vf_data[i].tx_rate,
7967                                       actual_link_speed);
7968         }
7969 }
7970
7971 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7972                              int min_tx_rate, int max_tx_rate)
7973 {
7974         struct igb_adapter *adapter = netdev_priv(netdev);
7975         struct e1000_hw *hw = &adapter->hw;
7976         int actual_link_speed;
7977
7978         if (hw->mac.type != e1000_82576)
7979                 return -EOPNOTSUPP;
7980
7981         if (min_tx_rate)
7982                 return -EINVAL;
7983
7984         actual_link_speed = igb_link_mbps(adapter->link_speed);
7985         if ((vf >= adapter->vfs_allocated_count) ||
7986             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7987             (max_tx_rate < 0) ||
7988             (max_tx_rate > actual_link_speed))
7989                 return -EINVAL;
7990
7991         adapter->vf_rate_link_speed = actual_link_speed;
7992         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7993         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7994
7995         return 0;
7996 }
7997
7998 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7999                                    bool setting)
8000 {
8001         struct igb_adapter *adapter = netdev_priv(netdev);
8002         struct e1000_hw *hw = &adapter->hw;
8003         u32 reg_val, reg_offset;
8004
8005         if (!adapter->vfs_allocated_count)
8006                 return -EOPNOTSUPP;
8007
8008         if (vf >= adapter->vfs_allocated_count)
8009                 return -EINVAL;
8010
8011         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8012         reg_val = rd32(reg_offset);
8013         if (setting)
8014                 reg_val |= ((1 << vf) |
8015                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8016         else
8017                 reg_val &= ~((1 << vf) |
8018                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8019         wr32(reg_offset, reg_val);
8020
8021         adapter->vf_data[vf].spoofchk_enabled = setting;
8022         return 0;
8023 }
8024
8025 static int igb_ndo_get_vf_config(struct net_device *netdev,
8026                                  int vf, struct ifla_vf_info *ivi)
8027 {
8028         struct igb_adapter *adapter = netdev_priv(netdev);
8029         if (vf >= adapter->vfs_allocated_count)
8030                 return -EINVAL;
8031         ivi->vf = vf;
8032         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8033         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8034         ivi->min_tx_rate = 0;
8035         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8036         ivi->qos = adapter->vf_data[vf].pf_qos;
8037         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8038         return 0;
8039 }
8040
8041 static void igb_vmm_control(struct igb_adapter *adapter)
8042 {
8043         struct e1000_hw *hw = &adapter->hw;
8044         u32 reg;
8045
8046         switch (hw->mac.type) {
8047         case e1000_82575:
8048         case e1000_i210:
8049         case e1000_i211:
8050         case e1000_i354:
8051         default:
8052                 /* replication is not supported for 82575 */
8053                 return;
8054         case e1000_82576:
8055                 /* notify HW that the MAC is adding vlan tags */
8056                 reg = rd32(E1000_DTXCTL);
8057                 reg |= E1000_DTXCTL_VLAN_ADDED;
8058                 wr32(E1000_DTXCTL, reg);
8059                 /* Fall through */
8060         case e1000_82580:
8061                 /* enable replication vlan tag stripping */
8062                 reg = rd32(E1000_RPLOLR);
8063                 reg |= E1000_RPLOLR_STRVLAN;
8064                 wr32(E1000_RPLOLR, reg);
8065                 /* Fall through */
8066         case e1000_i350:
8067                 /* none of the above registers are supported by i350 */
8068                 break;
8069         }
8070
8071         if (adapter->vfs_allocated_count) {
8072                 igb_vmdq_set_loopback_pf(hw, true);
8073                 igb_vmdq_set_replication_pf(hw, true);
8074                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8075                                               adapter->vfs_allocated_count);
8076         } else {
8077                 igb_vmdq_set_loopback_pf(hw, false);
8078                 igb_vmdq_set_replication_pf(hw, false);
8079         }
8080 }
8081
8082 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8083 {
8084         struct e1000_hw *hw = &adapter->hw;
8085         u32 dmac_thr;
8086         u16 hwm;
8087
8088         if (hw->mac.type > e1000_82580) {
8089                 if (adapter->flags & IGB_FLAG_DMAC) {
8090                         u32 reg;
8091
8092                         /* force threshold to 0. */
8093                         wr32(E1000_DMCTXTH, 0);
8094
8095                         /* DMA Coalescing high water mark needs to be greater
8096                          * than the Rx threshold. Set hwm to PBA - max frame
8097                          * size in 16B units, capping it at PBA - 6KB.
8098                          */
8099                         hwm = 64 * (pba - 6);
8100                         reg = rd32(E1000_FCRTC);
8101                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8102                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8103                                 & E1000_FCRTC_RTH_COAL_MASK);
8104                         wr32(E1000_FCRTC, reg);
8105
8106                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8107                          * frame size, capping it at PBA - 10KB.
8108                          */
8109                         dmac_thr = pba - 10;
8110                         reg = rd32(E1000_DMACR);
8111                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8112                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8113                                 & E1000_DMACR_DMACTHR_MASK);
8114
8115                         /* transition to L0x or L1 if available..*/
8116                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8117
8118                         /* watchdog timer= +-1000 usec in 32usec intervals */
8119                         reg |= (1000 >> 5);
8120
8121                         /* Disable BMC-to-OS Watchdog Enable */
8122                         if (hw->mac.type != e1000_i354)
8123                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8124
8125                         wr32(E1000_DMACR, reg);
8126
8127                         /* no lower threshold to disable
8128                          * coalescing(smart fifb)-UTRESH=0
8129                          */
8130                         wr32(E1000_DMCRTRH, 0);
8131
8132                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8133
8134                         wr32(E1000_DMCTLX, reg);
8135
8136                         /* free space in tx packet buffer to wake from
8137                          * DMA coal
8138                          */
8139                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8140                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8141
8142                         /* make low power state decision controlled
8143                          * by DMA coal
8144                          */
8145                         reg = rd32(E1000_PCIEMISC);
8146                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8147                         wr32(E1000_PCIEMISC, reg);
8148                 } /* endif adapter->dmac is not disabled */
8149         } else if (hw->mac.type == e1000_82580) {
8150                 u32 reg = rd32(E1000_PCIEMISC);
8151
8152                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8153                 wr32(E1000_DMACR, 0);
8154         }
8155 }
8156
8157 /**
8158  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8159  *  @hw: pointer to hardware structure
8160  *  @byte_offset: byte offset to read
8161  *  @dev_addr: device address
8162  *  @data: value read
8163  *
8164  *  Performs byte read operation over I2C interface at
8165  *  a specified device address.
8166  **/
8167 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8168                       u8 dev_addr, u8 *data)
8169 {
8170         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8171         struct i2c_client *this_client = adapter->i2c_client;
8172         s32 status;
8173         u16 swfw_mask = 0;
8174
8175         if (!this_client)
8176                 return E1000_ERR_I2C;
8177
8178         swfw_mask = E1000_SWFW_PHY0_SM;
8179
8180         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8181                 return E1000_ERR_SWFW_SYNC;
8182
8183         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8184         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8185
8186         if (status < 0)
8187                 return E1000_ERR_I2C;
8188         else {
8189                 *data = status;
8190                 return 0;
8191         }
8192 }
8193
8194 /**
8195  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8196  *  @hw: pointer to hardware structure
8197  *  @byte_offset: byte offset to write
8198  *  @dev_addr: device address
8199  *  @data: value to write
8200  *
8201  *  Performs byte write operation over I2C interface at
8202  *  a specified device address.
8203  **/
8204 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8205                        u8 dev_addr, u8 data)
8206 {
8207         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8208         struct i2c_client *this_client = adapter->i2c_client;
8209         s32 status;
8210         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8211
8212         if (!this_client)
8213                 return E1000_ERR_I2C;
8214
8215         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8216                 return E1000_ERR_SWFW_SYNC;
8217         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8218         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8219
8220         if (status)
8221                 return E1000_ERR_I2C;
8222         else
8223                 return 0;
8224
8225 }
8226
8227 int igb_reinit_queues(struct igb_adapter *adapter)
8228 {
8229         struct net_device *netdev = adapter->netdev;
8230         struct pci_dev *pdev = adapter->pdev;
8231         int err = 0;
8232
8233         if (netif_running(netdev))
8234                 igb_close(netdev);
8235
8236         igb_reset_interrupt_capability(adapter);
8237
8238         if (igb_init_interrupt_scheme(adapter, true)) {
8239                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8240                 return -ENOMEM;
8241         }
8242
8243         if (netif_running(netdev))
8244                 err = igb_open(netdev);
8245
8246         return err;
8247 }
8248 /* igb_main.c */