]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge remote-tracking branch 'signal/for-next'
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61
62 #define MAJ 4
63 #define MIN 0
64 #define BUILD 17
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70                                 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73 static const struct e1000_info *igb_info_tbl[] = {
74         [board_82575] = &e1000_82575_info,
75 };
76
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108         /* required last entry */
109         {0, }
110 };
111
112 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114 void igb_reset(struct igb_adapter *);
115 static int igb_setup_all_tx_resources(struct igb_adapter *);
116 static int igb_setup_all_rx_resources(struct igb_adapter *);
117 static void igb_free_all_tx_resources(struct igb_adapter *);
118 static void igb_free_all_rx_resources(struct igb_adapter *);
119 static void igb_setup_mrqc(struct igb_adapter *);
120 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121 static void __devexit igb_remove(struct pci_dev *pdev);
122 static int igb_sw_init(struct igb_adapter *);
123 static int igb_open(struct net_device *);
124 static int igb_close(struct net_device *);
125 static void igb_configure_tx(struct igb_adapter *);
126 static void igb_configure_rx(struct igb_adapter *);
127 static void igb_clean_all_tx_rings(struct igb_adapter *);
128 static void igb_clean_all_rx_rings(struct igb_adapter *);
129 static void igb_clean_tx_ring(struct igb_ring *);
130 static void igb_clean_rx_ring(struct igb_ring *);
131 static void igb_set_rx_mode(struct net_device *);
132 static void igb_update_phy_info(unsigned long);
133 static void igb_watchdog(unsigned long);
134 static void igb_watchdog_task(struct work_struct *);
135 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137                                                  struct rtnl_link_stats64 *stats);
138 static int igb_change_mtu(struct net_device *, int);
139 static int igb_set_mac(struct net_device *, void *);
140 static void igb_set_uta(struct igb_adapter *adapter);
141 static irqreturn_t igb_intr(int irq, void *);
142 static irqreturn_t igb_intr_msi(int irq, void *);
143 static irqreturn_t igb_msix_other(int irq, void *);
144 static irqreturn_t igb_msix_ring(int irq, void *);
145 #ifdef CONFIG_IGB_DCA
146 static void igb_update_dca(struct igb_q_vector *);
147 static void igb_setup_dca(struct igb_adapter *);
148 #endif /* CONFIG_IGB_DCA */
149 static int igb_poll(struct napi_struct *, int);
150 static bool igb_clean_tx_irq(struct igb_q_vector *);
151 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153 static void igb_tx_timeout(struct net_device *);
154 static void igb_reset_task(struct work_struct *);
155 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 static int igb_vlan_rx_add_vid(struct net_device *, u16);
157 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158 static void igb_restore_vlan(struct igb_adapter *);
159 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 static void igb_ping_all_vfs(struct igb_adapter *);
161 static void igb_msg_task(struct igb_adapter *);
162 static void igb_vmm_control(struct igb_adapter *);
163 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167                                int vf, u16 vlan, u8 qos);
168 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170                                  struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173 #ifdef CONFIG_PCI_IOV
174 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176 #endif
177
178 #ifdef CONFIG_PM
179 #ifdef CONFIG_PM_SLEEP
180 static int igb_suspend(struct device *);
181 #endif
182 static int igb_resume(struct device *);
183 #ifdef CONFIG_PM_RUNTIME
184 static int igb_runtime_suspend(struct device *dev);
185 static int igb_runtime_resume(struct device *dev);
186 static int igb_runtime_idle(struct device *dev);
187 #endif
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 #endif
194 static void igb_shutdown(struct pci_dev *);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 /* for netdump / net console */
205 static void igb_netpoll(struct net_device *);
206 #endif
207 #ifdef CONFIG_PCI_IOV
208 static unsigned int max_vfs = 0;
209 module_param(max_vfs, uint, 0);
210 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211                  "per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215                      pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220         .error_detected = igb_io_error_detected,
221         .slot_reset = igb_io_slot_reset,
222         .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228         .name     = igb_driver_name,
229         .id_table = igb_pci_tbl,
230         .probe    = igb_probe,
231         .remove   = __devexit_p(igb_remove),
232 #ifdef CONFIG_PM
233         .driver.pm = &igb_pm_ops,
234 #endif
235         .shutdown = igb_shutdown,
236         .err_handler = &igb_err_handler
237 };
238
239 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241 MODULE_LICENSE("GPL");
242 MODULE_VERSION(DRV_VERSION);
243
244 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249 struct igb_reg_info {
250         u32 ofs;
251         char *name;
252 };
253
254 static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256         /* General Registers */
257         {E1000_CTRL, "CTRL"},
258         {E1000_STATUS, "STATUS"},
259         {E1000_CTRL_EXT, "CTRL_EXT"},
260
261         /* Interrupt Registers */
262         {E1000_ICR, "ICR"},
263
264         /* RX Registers */
265         {E1000_RCTL, "RCTL"},
266         {E1000_RDLEN(0), "RDLEN"},
267         {E1000_RDH(0), "RDH"},
268         {E1000_RDT(0), "RDT"},
269         {E1000_RXDCTL(0), "RXDCTL"},
270         {E1000_RDBAL(0), "RDBAL"},
271         {E1000_RDBAH(0), "RDBAH"},
272
273         /* TX Registers */
274         {E1000_TCTL, "TCTL"},
275         {E1000_TDBAL(0), "TDBAL"},
276         {E1000_TDBAH(0), "TDBAH"},
277         {E1000_TDLEN(0), "TDLEN"},
278         {E1000_TDH(0), "TDH"},
279         {E1000_TDT(0), "TDT"},
280         {E1000_TXDCTL(0), "TXDCTL"},
281         {E1000_TDFH, "TDFH"},
282         {E1000_TDFT, "TDFT"},
283         {E1000_TDFHS, "TDFHS"},
284         {E1000_TDFPC, "TDFPC"},
285
286         /* List Terminator */
287         {}
288 };
289
290 /*
291  * igb_regdump - register printout routine
292  */
293 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294 {
295         int n = 0;
296         char rname[16];
297         u32 regs[8];
298
299         switch (reginfo->ofs) {
300         case E1000_RDLEN(0):
301                 for (n = 0; n < 4; n++)
302                         regs[n] = rd32(E1000_RDLEN(n));
303                 break;
304         case E1000_RDH(0):
305                 for (n = 0; n < 4; n++)
306                         regs[n] = rd32(E1000_RDH(n));
307                 break;
308         case E1000_RDT(0):
309                 for (n = 0; n < 4; n++)
310                         regs[n] = rd32(E1000_RDT(n));
311                 break;
312         case E1000_RXDCTL(0):
313                 for (n = 0; n < 4; n++)
314                         regs[n] = rd32(E1000_RXDCTL(n));
315                 break;
316         case E1000_RDBAL(0):
317                 for (n = 0; n < 4; n++)
318                         regs[n] = rd32(E1000_RDBAL(n));
319                 break;
320         case E1000_RDBAH(0):
321                 for (n = 0; n < 4; n++)
322                         regs[n] = rd32(E1000_RDBAH(n));
323                 break;
324         case E1000_TDBAL(0):
325                 for (n = 0; n < 4; n++)
326                         regs[n] = rd32(E1000_RDBAL(n));
327                 break;
328         case E1000_TDBAH(0):
329                 for (n = 0; n < 4; n++)
330                         regs[n] = rd32(E1000_TDBAH(n));
331                 break;
332         case E1000_TDLEN(0):
333                 for (n = 0; n < 4; n++)
334                         regs[n] = rd32(E1000_TDLEN(n));
335                 break;
336         case E1000_TDH(0):
337                 for (n = 0; n < 4; n++)
338                         regs[n] = rd32(E1000_TDH(n));
339                 break;
340         case E1000_TDT(0):
341                 for (n = 0; n < 4; n++)
342                         regs[n] = rd32(E1000_TDT(n));
343                 break;
344         case E1000_TXDCTL(0):
345                 for (n = 0; n < 4; n++)
346                         regs[n] = rd32(E1000_TXDCTL(n));
347                 break;
348         default:
349                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350                 return;
351         }
352
353         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355                 regs[2], regs[3]);
356 }
357
358 /*
359  * igb_dump - Print registers, tx-rings and rx-rings
360  */
361 static void igb_dump(struct igb_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         struct e1000_hw *hw = &adapter->hw;
365         struct igb_reg_info *reginfo;
366         struct igb_ring *tx_ring;
367         union e1000_adv_tx_desc *tx_desc;
368         struct my_u0 { u64 a; u64 b; } *u0;
369         struct igb_ring *rx_ring;
370         union e1000_adv_rx_desc *rx_desc;
371         u32 staterr;
372         u16 i, n;
373
374         if (!netif_msg_hw(adapter))
375                 return;
376
377         /* Print netdevice Info */
378         if (netdev) {
379                 dev_info(&adapter->pdev->dev, "Net device Info\n");
380                 pr_info("Device Name     state            trans_start      "
381                         "last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
435                         "[bi->dma       ] leng  ntw timestamp        "
436                         "bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
455                                 " %04X  %p %016llX %p%s\n", i,
456                                 le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
516                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
517                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520                 for (i = 0; i < rx_ring->count; i++) {
521                         const char *next_desc;
522                         struct igb_rx_buffer *buffer_info;
523                         buffer_info = &rx_ring->rx_buffer_info[i];
524                         rx_desc = IGB_RX_DESC(rx_ring, i);
525                         u0 = (struct my_u0 *)rx_desc;
526                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528                         if (i == rx_ring->next_to_use)
529                                 next_desc = " NTU";
530                         else if (i == rx_ring->next_to_clean)
531                                 next_desc = " NTC";
532                         else
533                                 next_desc = "";
534
535                         if (staterr & E1000_RXD_STAT_DD) {
536                                 /* Descriptor Done */
537                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538                                         "RWB", i,
539                                         le64_to_cpu(u0->a),
540                                         le64_to_cpu(u0->b),
541                                         next_desc);
542                         } else {
543                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544                                         "R  ", i,
545                                         le64_to_cpu(u0->a),
546                                         le64_to_cpu(u0->b),
547                                         (u64)buffer_info->dma,
548                                         next_desc);
549
550                                 if (netif_msg_pktdata(adapter) &&
551                                     buffer_info->dma && buffer_info->page) {
552                                         print_hex_dump(KERN_INFO, "",
553                                           DUMP_PREFIX_ADDRESS,
554                                           16, 1,
555                                           page_address(buffer_info->page) +
556                                                       buffer_info->page_offset,
557                                           IGB_RX_BUFSZ, true);
558                                 }
559                         }
560                 }
561         }
562
563 exit:
564         return;
565 }
566
567 /**
568  * igb_get_hw_dev - return device
569  * used by hardware layer to print debugging information
570  **/
571 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
572 {
573         struct igb_adapter *adapter = hw->back;
574         return adapter->netdev;
575 }
576
577 /**
578  * igb_init_module - Driver Registration Routine
579  *
580  * igb_init_module is the first routine called when the driver is
581  * loaded. All it does is register with the PCI subsystem.
582  **/
583 static int __init igb_init_module(void)
584 {
585         int ret;
586         pr_info("%s - version %s\n",
587                igb_driver_string, igb_driver_version);
588
589         pr_info("%s\n", igb_copyright);
590
591 #ifdef CONFIG_IGB_DCA
592         dca_register_notify(&dca_notifier);
593 #endif
594         ret = pci_register_driver(&igb_driver);
595         return ret;
596 }
597
598 module_init(igb_init_module);
599
600 /**
601  * igb_exit_module - Driver Exit Cleanup Routine
602  *
603  * igb_exit_module is called just before the driver is removed
604  * from memory.
605  **/
606 static void __exit igb_exit_module(void)
607 {
608 #ifdef CONFIG_IGB_DCA
609         dca_unregister_notify(&dca_notifier);
610 #endif
611         pci_unregister_driver(&igb_driver);
612 }
613
614 module_exit(igb_exit_module);
615
616 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
617 /**
618  * igb_cache_ring_register - Descriptor ring to register mapping
619  * @adapter: board private structure to initialize
620  *
621  * Once we know the feature-set enabled for the device, we'll cache
622  * the register offset the descriptor ring is assigned to.
623  **/
624 static void igb_cache_ring_register(struct igb_adapter *adapter)
625 {
626         int i = 0, j = 0;
627         u32 rbase_offset = adapter->vfs_allocated_count;
628
629         switch (adapter->hw.mac.type) {
630         case e1000_82576:
631                 /* The queues are allocated for virtualization such that VF 0
632                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633                  * In order to avoid collision we start at the first free queue
634                  * and continue consuming queues in the same sequence
635                  */
636                 if (adapter->vfs_allocated_count) {
637                         for (; i < adapter->rss_queues; i++)
638                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
639                                                                Q_IDX_82576(i);
640                 }
641         case e1000_82575:
642         case e1000_82580:
643         case e1000_i350:
644         case e1000_i210:
645         case e1000_i211:
646         default:
647                 for (; i < adapter->num_rx_queues; i++)
648                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
649                 for (; j < adapter->num_tx_queues; j++)
650                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
651                 break;
652         }
653 }
654
655 /**
656  *  igb_write_ivar - configure ivar for given MSI-X vector
657  *  @hw: pointer to the HW structure
658  *  @msix_vector: vector number we are allocating to a given ring
659  *  @index: row index of IVAR register to write within IVAR table
660  *  @offset: column offset of in IVAR, should be multiple of 8
661  *
662  *  This function is intended to handle the writing of the IVAR register
663  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
664  *  each containing an cause allocation for an Rx and Tx ring, and a
665  *  variable number of rows depending on the number of queues supported.
666  **/
667 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
668                            int index, int offset)
669 {
670         u32 ivar = array_rd32(E1000_IVAR0, index);
671
672         /* clear any bits that are currently set */
673         ivar &= ~((u32)0xFF << offset);
674
675         /* write vector and valid bit */
676         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
677
678         array_wr32(E1000_IVAR0, index, ivar);
679 }
680
681 #define IGB_N0_QUEUE -1
682 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
683 {
684         struct igb_adapter *adapter = q_vector->adapter;
685         struct e1000_hw *hw = &adapter->hw;
686         int rx_queue = IGB_N0_QUEUE;
687         int tx_queue = IGB_N0_QUEUE;
688         u32 msixbm = 0;
689
690         if (q_vector->rx.ring)
691                 rx_queue = q_vector->rx.ring->reg_idx;
692         if (q_vector->tx.ring)
693                 tx_queue = q_vector->tx.ring->reg_idx;
694
695         switch (hw->mac.type) {
696         case e1000_82575:
697                 /* The 82575 assigns vectors using a bitmask, which matches the
698                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
699                    or more queues to a vector, we write the appropriate bits
700                    into the MSIXBM register for that vector. */
701                 if (rx_queue > IGB_N0_QUEUE)
702                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
703                 if (tx_queue > IGB_N0_QUEUE)
704                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
705                 if (!adapter->msix_entries && msix_vector == 0)
706                         msixbm |= E1000_EIMS_OTHER;
707                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
708                 q_vector->eims_value = msixbm;
709                 break;
710         case e1000_82576:
711                 /*
712                  * 82576 uses a table that essentially consists of 2 columns
713                  * with 8 rows.  The ordering is column-major so we use the
714                  * lower 3 bits as the row index, and the 4th bit as the
715                  * column offset.
716                  */
717                 if (rx_queue > IGB_N0_QUEUE)
718                         igb_write_ivar(hw, msix_vector,
719                                        rx_queue & 0x7,
720                                        (rx_queue & 0x8) << 1);
721                 if (tx_queue > IGB_N0_QUEUE)
722                         igb_write_ivar(hw, msix_vector,
723                                        tx_queue & 0x7,
724                                        ((tx_queue & 0x8) << 1) + 8);
725                 q_vector->eims_value = 1 << msix_vector;
726                 break;
727         case e1000_82580:
728         case e1000_i350:
729         case e1000_i210:
730         case e1000_i211:
731                 /*
732                  * On 82580 and newer adapters the scheme is similar to 82576
733                  * however instead of ordering column-major we have things
734                  * ordered row-major.  So we traverse the table by using
735                  * bit 0 as the column offset, and the remaining bits as the
736                  * row index.
737                  */
738                 if (rx_queue > IGB_N0_QUEUE)
739                         igb_write_ivar(hw, msix_vector,
740                                        rx_queue >> 1,
741                                        (rx_queue & 0x1) << 4);
742                 if (tx_queue > IGB_N0_QUEUE)
743                         igb_write_ivar(hw, msix_vector,
744                                        tx_queue >> 1,
745                                        ((tx_queue & 0x1) << 4) + 8);
746                 q_vector->eims_value = 1 << msix_vector;
747                 break;
748         default:
749                 BUG();
750                 break;
751         }
752
753         /* add q_vector eims value to global eims_enable_mask */
754         adapter->eims_enable_mask |= q_vector->eims_value;
755
756         /* configure q_vector to set itr on first interrupt */
757         q_vector->set_itr = 1;
758 }
759
760 /**
761  * igb_configure_msix - Configure MSI-X hardware
762  *
763  * igb_configure_msix sets up the hardware to properly
764  * generate MSI-X interrupts.
765  **/
766 static void igb_configure_msix(struct igb_adapter *adapter)
767 {
768         u32 tmp;
769         int i, vector = 0;
770         struct e1000_hw *hw = &adapter->hw;
771
772         adapter->eims_enable_mask = 0;
773
774         /* set vector for other causes, i.e. link changes */
775         switch (hw->mac.type) {
776         case e1000_82575:
777                 tmp = rd32(E1000_CTRL_EXT);
778                 /* enable MSI-X PBA support*/
779                 tmp |= E1000_CTRL_EXT_PBA_CLR;
780
781                 /* Auto-Mask interrupts upon ICR read. */
782                 tmp |= E1000_CTRL_EXT_EIAME;
783                 tmp |= E1000_CTRL_EXT_IRCA;
784
785                 wr32(E1000_CTRL_EXT, tmp);
786
787                 /* enable msix_other interrupt */
788                 array_wr32(E1000_MSIXBM(0), vector++,
789                                       E1000_EIMS_OTHER);
790                 adapter->eims_other = E1000_EIMS_OTHER;
791
792                 break;
793
794         case e1000_82576:
795         case e1000_82580:
796         case e1000_i350:
797         case e1000_i210:
798         case e1000_i211:
799                 /* Turn on MSI-X capability first, or our settings
800                  * won't stick.  And it will take days to debug. */
801                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
802                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
803                                 E1000_GPIE_NSICR);
804
805                 /* enable msix_other interrupt */
806                 adapter->eims_other = 1 << vector;
807                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
808
809                 wr32(E1000_IVAR_MISC, tmp);
810                 break;
811         default:
812                 /* do nothing, since nothing else supports MSI-X */
813                 break;
814         } /* switch (hw->mac.type) */
815
816         adapter->eims_enable_mask |= adapter->eims_other;
817
818         for (i = 0; i < adapter->num_q_vectors; i++)
819                 igb_assign_vector(adapter->q_vector[i], vector++);
820
821         wrfl();
822 }
823
824 /**
825  * igb_request_msix - Initialize MSI-X interrupts
826  *
827  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
828  * kernel.
829  **/
830 static int igb_request_msix(struct igb_adapter *adapter)
831 {
832         struct net_device *netdev = adapter->netdev;
833         struct e1000_hw *hw = &adapter->hw;
834         int i, err = 0, vector = 0;
835
836         err = request_irq(adapter->msix_entries[vector].vector,
837                           igb_msix_other, 0, netdev->name, adapter);
838         if (err)
839                 goto out;
840         vector++;
841
842         for (i = 0; i < adapter->num_q_vectors; i++) {
843                 struct igb_q_vector *q_vector = adapter->q_vector[i];
844
845                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
846
847                 if (q_vector->rx.ring && q_vector->tx.ring)
848                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
849                                 q_vector->rx.ring->queue_index);
850                 else if (q_vector->tx.ring)
851                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
852                                 q_vector->tx.ring->queue_index);
853                 else if (q_vector->rx.ring)
854                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
855                                 q_vector->rx.ring->queue_index);
856                 else
857                         sprintf(q_vector->name, "%s-unused", netdev->name);
858
859                 err = request_irq(adapter->msix_entries[vector].vector,
860                                   igb_msix_ring, 0, q_vector->name,
861                                   q_vector);
862                 if (err)
863                         goto out;
864                 vector++;
865         }
866
867         igb_configure_msix(adapter);
868         return 0;
869 out:
870         return err;
871 }
872
873 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
874 {
875         if (adapter->msix_entries) {
876                 pci_disable_msix(adapter->pdev);
877                 kfree(adapter->msix_entries);
878                 adapter->msix_entries = NULL;
879         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
880                 pci_disable_msi(adapter->pdev);
881         }
882 }
883
884 /**
885  * igb_free_q_vector - Free memory allocated for specific interrupt vector
886  * @adapter: board private structure to initialize
887  * @v_idx: Index of vector to be freed
888  *
889  * This function frees the memory allocated to the q_vector.  In addition if
890  * NAPI is enabled it will delete any references to the NAPI struct prior
891  * to freeing the q_vector.
892  **/
893 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
894 {
895         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
896
897         if (q_vector->tx.ring)
898                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
899
900         if (q_vector->rx.ring)
901                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
902
903         adapter->q_vector[v_idx] = NULL;
904         netif_napi_del(&q_vector->napi);
905
906         /*
907          * ixgbe_get_stats64() might access the rings on this vector,
908          * we must wait a grace period before freeing it.
909          */
910         kfree_rcu(q_vector, rcu);
911 }
912
913 /**
914  * igb_free_q_vectors - Free memory allocated for interrupt vectors
915  * @adapter: board private structure to initialize
916  *
917  * This function frees the memory allocated to the q_vectors.  In addition if
918  * NAPI is enabled it will delete any references to the NAPI struct prior
919  * to freeing the q_vector.
920  **/
921 static void igb_free_q_vectors(struct igb_adapter *adapter)
922 {
923         int v_idx = adapter->num_q_vectors;
924
925         adapter->num_tx_queues = 0;
926         adapter->num_rx_queues = 0;
927         adapter->num_q_vectors = 0;
928
929         while (v_idx--)
930                 igb_free_q_vector(adapter, v_idx);
931 }
932
933 /**
934  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
935  *
936  * This function resets the device so that it has 0 rx queues, tx queues, and
937  * MSI-X interrupts allocated.
938  */
939 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
940 {
941         igb_free_q_vectors(adapter);
942         igb_reset_interrupt_capability(adapter);
943 }
944
945 /**
946  * igb_set_interrupt_capability - set MSI or MSI-X if supported
947  *
948  * Attempt to configure interrupts using the best available
949  * capabilities of the hardware and kernel.
950  **/
951 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
952 {
953         int err;
954         int numvecs, i;
955
956         /* Number of supported queues. */
957         adapter->num_rx_queues = adapter->rss_queues;
958         if (adapter->vfs_allocated_count)
959                 adapter->num_tx_queues = 1;
960         else
961                 adapter->num_tx_queues = adapter->rss_queues;
962
963         /* start with one vector for every rx queue */
964         numvecs = adapter->num_rx_queues;
965
966         /* if tx handler is separate add 1 for every tx queue */
967         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
968                 numvecs += adapter->num_tx_queues;
969
970         /* store the number of vectors reserved for queues */
971         adapter->num_q_vectors = numvecs;
972
973         /* add 1 vector for link status interrupts */
974         numvecs++;
975         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
976                                         GFP_KERNEL);
977
978         if (!adapter->msix_entries)
979                 goto msi_only;
980
981         for (i = 0; i < numvecs; i++)
982                 adapter->msix_entries[i].entry = i;
983
984         err = pci_enable_msix(adapter->pdev,
985                               adapter->msix_entries,
986                               numvecs);
987         if (err == 0)
988                 return;
989
990         igb_reset_interrupt_capability(adapter);
991
992         /* If we can't do MSI-X, try MSI */
993 msi_only:
994 #ifdef CONFIG_PCI_IOV
995         /* disable SR-IOV for non MSI-X configurations */
996         if (adapter->vf_data) {
997                 struct e1000_hw *hw = &adapter->hw;
998                 /* disable iov and allow time for transactions to clear */
999                 pci_disable_sriov(adapter->pdev);
1000                 msleep(500);
1001
1002                 kfree(adapter->vf_data);
1003                 adapter->vf_data = NULL;
1004                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1005                 wrfl();
1006                 msleep(100);
1007                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1008         }
1009 #endif
1010         adapter->vfs_allocated_count = 0;
1011         adapter->rss_queues = 1;
1012         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1013         adapter->num_rx_queues = 1;
1014         adapter->num_tx_queues = 1;
1015         adapter->num_q_vectors = 1;
1016         if (!pci_enable_msi(adapter->pdev))
1017                 adapter->flags |= IGB_FLAG_HAS_MSI;
1018 }
1019
1020 static void igb_add_ring(struct igb_ring *ring,
1021                          struct igb_ring_container *head)
1022 {
1023         head->ring = ring;
1024         head->count++;
1025 }
1026
1027 /**
1028  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1029  * @adapter: board private structure to initialize
1030  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1031  * @v_idx: index of vector in adapter struct
1032  * @txr_count: total number of Tx rings to allocate
1033  * @txr_idx: index of first Tx ring to allocate
1034  * @rxr_count: total number of Rx rings to allocate
1035  * @rxr_idx: index of first Rx ring to allocate
1036  *
1037  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1038  **/
1039 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1040                               int v_count, int v_idx,
1041                               int txr_count, int txr_idx,
1042                               int rxr_count, int rxr_idx)
1043 {
1044         struct igb_q_vector *q_vector;
1045         struct igb_ring *ring;
1046         int ring_count, size;
1047
1048         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1049         if (txr_count > 1 || rxr_count > 1)
1050                 return -ENOMEM;
1051
1052         ring_count = txr_count + rxr_count;
1053         size = sizeof(struct igb_q_vector) +
1054                (sizeof(struct igb_ring) * ring_count);
1055
1056         /* allocate q_vector and rings */
1057         q_vector = kzalloc(size, GFP_KERNEL);
1058         if (!q_vector)
1059                 return -ENOMEM;
1060
1061         /* initialize NAPI */
1062         netif_napi_add(adapter->netdev, &q_vector->napi,
1063                        igb_poll, 64);
1064
1065         /* tie q_vector and adapter together */
1066         adapter->q_vector[v_idx] = q_vector;
1067         q_vector->adapter = adapter;
1068
1069         /* initialize work limits */
1070         q_vector->tx.work_limit = adapter->tx_work_limit;
1071
1072         /* initialize ITR configuration */
1073         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1074         q_vector->itr_val = IGB_START_ITR;
1075
1076         /* initialize pointer to rings */
1077         ring = q_vector->ring;
1078
1079         if (txr_count) {
1080                 /* assign generic ring traits */
1081                 ring->dev = &adapter->pdev->dev;
1082                 ring->netdev = adapter->netdev;
1083
1084                 /* configure backlink on ring */
1085                 ring->q_vector = q_vector;
1086
1087                 /* update q_vector Tx values */
1088                 igb_add_ring(ring, &q_vector->tx);
1089
1090                 /* For 82575, context index must be unique per ring. */
1091                 if (adapter->hw.mac.type == e1000_82575)
1092                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1093
1094                 /* apply Tx specific ring traits */
1095                 ring->count = adapter->tx_ring_count;
1096                 ring->queue_index = txr_idx;
1097
1098                 /* assign ring to adapter */
1099                 adapter->tx_ring[txr_idx] = ring;
1100
1101                 /* push pointer to next ring */
1102                 ring++;
1103         }
1104
1105         if (rxr_count) {
1106                 /* assign generic ring traits */
1107                 ring->dev = &adapter->pdev->dev;
1108                 ring->netdev = adapter->netdev;
1109
1110                 /* configure backlink on ring */
1111                 ring->q_vector = q_vector;
1112
1113                 /* update q_vector Rx values */
1114                 igb_add_ring(ring, &q_vector->rx);
1115
1116                 /* set flag indicating ring supports SCTP checksum offload */
1117                 if (adapter->hw.mac.type >= e1000_82576)
1118                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1119
1120                 /*
1121                  * On i350, i210, and i211, loopback VLAN packets
1122                  * have the tag byte-swapped.
1123                  * */
1124                 if (adapter->hw.mac.type >= e1000_i350)
1125                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1126
1127                 /* apply Rx specific ring traits */
1128                 ring->count = adapter->rx_ring_count;
1129                 ring->queue_index = rxr_idx;
1130
1131                 /* assign ring to adapter */
1132                 adapter->rx_ring[rxr_idx] = ring;
1133         }
1134
1135         return 0;
1136 }
1137
1138
1139 /**
1140  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1141  * @adapter: board private structure to initialize
1142  *
1143  * We allocate one q_vector per queue interrupt.  If allocation fails we
1144  * return -ENOMEM.
1145  **/
1146 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1147 {
1148         int q_vectors = adapter->num_q_vectors;
1149         int rxr_remaining = adapter->num_rx_queues;
1150         int txr_remaining = adapter->num_tx_queues;
1151         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1152         int err;
1153
1154         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1155                 for (; rxr_remaining; v_idx++) {
1156                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1157                                                  0, 0, 1, rxr_idx);
1158
1159                         if (err)
1160                                 goto err_out;
1161
1162                         /* update counts and index */
1163                         rxr_remaining--;
1164                         rxr_idx++;
1165                 }
1166         }
1167
1168         for (; v_idx < q_vectors; v_idx++) {
1169                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1170                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1171                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1172                                          tqpv, txr_idx, rqpv, rxr_idx);
1173
1174                 if (err)
1175                         goto err_out;
1176
1177                 /* update counts and index */
1178                 rxr_remaining -= rqpv;
1179                 txr_remaining -= tqpv;
1180                 rxr_idx++;
1181                 txr_idx++;
1182         }
1183
1184         return 0;
1185
1186 err_out:
1187         adapter->num_tx_queues = 0;
1188         adapter->num_rx_queues = 0;
1189         adapter->num_q_vectors = 0;
1190
1191         while (v_idx--)
1192                 igb_free_q_vector(adapter, v_idx);
1193
1194         return -ENOMEM;
1195 }
1196
1197 /**
1198  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1199  *
1200  * This function initializes the interrupts and allocates all of the queues.
1201  **/
1202 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1203 {
1204         struct pci_dev *pdev = adapter->pdev;
1205         int err;
1206
1207         igb_set_interrupt_capability(adapter);
1208
1209         err = igb_alloc_q_vectors(adapter);
1210         if (err) {
1211                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1212                 goto err_alloc_q_vectors;
1213         }
1214
1215         igb_cache_ring_register(adapter);
1216
1217         return 0;
1218
1219 err_alloc_q_vectors:
1220         igb_reset_interrupt_capability(adapter);
1221         return err;
1222 }
1223
1224 /**
1225  * igb_request_irq - initialize interrupts
1226  *
1227  * Attempts to configure interrupts using the best available
1228  * capabilities of the hardware and kernel.
1229  **/
1230 static int igb_request_irq(struct igb_adapter *adapter)
1231 {
1232         struct net_device *netdev = adapter->netdev;
1233         struct pci_dev *pdev = adapter->pdev;
1234         int err = 0;
1235
1236         if (adapter->msix_entries) {
1237                 err = igb_request_msix(adapter);
1238                 if (!err)
1239                         goto request_done;
1240                 /* fall back to MSI */
1241                 igb_free_all_tx_resources(adapter);
1242                 igb_free_all_rx_resources(adapter);
1243                 igb_clear_interrupt_scheme(adapter);
1244                 if (!pci_enable_msi(pdev))
1245                         adapter->flags |= IGB_FLAG_HAS_MSI;
1246                 adapter->num_tx_queues = 1;
1247                 adapter->num_rx_queues = 1;
1248                 adapter->num_q_vectors = 1;
1249                 err = igb_alloc_q_vectors(adapter);
1250                 if (err) {
1251                         dev_err(&pdev->dev,
1252                                 "Unable to allocate memory for vectors\n");
1253                         goto request_done;
1254                 }
1255                 igb_setup_all_tx_resources(adapter);
1256                 igb_setup_all_rx_resources(adapter);
1257         }
1258
1259         igb_assign_vector(adapter->q_vector[0], 0);
1260
1261         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1262                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1263                                   netdev->name, adapter);
1264                 if (!err)
1265                         goto request_done;
1266
1267                 /* fall back to legacy interrupts */
1268                 igb_reset_interrupt_capability(adapter);
1269                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1270         }
1271
1272         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1273                           netdev->name, adapter);
1274
1275         if (err)
1276                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1277                         err);
1278
1279 request_done:
1280         return err;
1281 }
1282
1283 static void igb_free_irq(struct igb_adapter *adapter)
1284 {
1285         if (adapter->msix_entries) {
1286                 int vector = 0, i;
1287
1288                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1289
1290                 for (i = 0; i < adapter->num_q_vectors; i++)
1291                         free_irq(adapter->msix_entries[vector++].vector,
1292                                  adapter->q_vector[i]);
1293         } else {
1294                 free_irq(adapter->pdev->irq, adapter);
1295         }
1296 }
1297
1298 /**
1299  * igb_irq_disable - Mask off interrupt generation on the NIC
1300  * @adapter: board private structure
1301  **/
1302 static void igb_irq_disable(struct igb_adapter *adapter)
1303 {
1304         struct e1000_hw *hw = &adapter->hw;
1305
1306         /*
1307          * we need to be careful when disabling interrupts.  The VFs are also
1308          * mapped into these registers and so clearing the bits can cause
1309          * issues on the VF drivers so we only need to clear what we set
1310          */
1311         if (adapter->msix_entries) {
1312                 u32 regval = rd32(E1000_EIAM);
1313                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1314                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1315                 regval = rd32(E1000_EIAC);
1316                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1317         }
1318
1319         wr32(E1000_IAM, 0);
1320         wr32(E1000_IMC, ~0);
1321         wrfl();
1322         if (adapter->msix_entries) {
1323                 int i;
1324                 for (i = 0; i < adapter->num_q_vectors; i++)
1325                         synchronize_irq(adapter->msix_entries[i].vector);
1326         } else {
1327                 synchronize_irq(adapter->pdev->irq);
1328         }
1329 }
1330
1331 /**
1332  * igb_irq_enable - Enable default interrupt generation settings
1333  * @adapter: board private structure
1334  **/
1335 static void igb_irq_enable(struct igb_adapter *adapter)
1336 {
1337         struct e1000_hw *hw = &adapter->hw;
1338
1339         if (adapter->msix_entries) {
1340                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1341                 u32 regval = rd32(E1000_EIAC);
1342                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1343                 regval = rd32(E1000_EIAM);
1344                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1345                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1346                 if (adapter->vfs_allocated_count) {
1347                         wr32(E1000_MBVFIMR, 0xFF);
1348                         ims |= E1000_IMS_VMMB;
1349                 }
1350                 wr32(E1000_IMS, ims);
1351         } else {
1352                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1353                                 E1000_IMS_DRSTA);
1354                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1355                                 E1000_IMS_DRSTA);
1356         }
1357 }
1358
1359 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         u16 vid = adapter->hw.mng_cookie.vlan_id;
1363         u16 old_vid = adapter->mng_vlan_id;
1364
1365         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1366                 /* add VID to filter table */
1367                 igb_vfta_set(hw, vid, true);
1368                 adapter->mng_vlan_id = vid;
1369         } else {
1370                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1371         }
1372
1373         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1374             (vid != old_vid) &&
1375             !test_bit(old_vid, adapter->active_vlans)) {
1376                 /* remove VID from filter table */
1377                 igb_vfta_set(hw, old_vid, false);
1378         }
1379 }
1380
1381 /**
1382  * igb_release_hw_control - release control of the h/w to f/w
1383  * @adapter: address of board private structure
1384  *
1385  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1386  * For ASF and Pass Through versions of f/w this means that the
1387  * driver is no longer loaded.
1388  *
1389  **/
1390 static void igb_release_hw_control(struct igb_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393         u32 ctrl_ext;
1394
1395         /* Let firmware take over control of h/w */
1396         ctrl_ext = rd32(E1000_CTRL_EXT);
1397         wr32(E1000_CTRL_EXT,
1398                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1399 }
1400
1401 /**
1402  * igb_get_hw_control - get control of the h/w from f/w
1403  * @adapter: address of board private structure
1404  *
1405  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1406  * For ASF and Pass Through versions of f/w this means that
1407  * the driver is loaded.
1408  *
1409  **/
1410 static void igb_get_hw_control(struct igb_adapter *adapter)
1411 {
1412         struct e1000_hw *hw = &adapter->hw;
1413         u32 ctrl_ext;
1414
1415         /* Let firmware know the driver has taken over */
1416         ctrl_ext = rd32(E1000_CTRL_EXT);
1417         wr32(E1000_CTRL_EXT,
1418                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1419 }
1420
1421 /**
1422  * igb_configure - configure the hardware for RX and TX
1423  * @adapter: private board structure
1424  **/
1425 static void igb_configure(struct igb_adapter *adapter)
1426 {
1427         struct net_device *netdev = adapter->netdev;
1428         int i;
1429
1430         igb_get_hw_control(adapter);
1431         igb_set_rx_mode(netdev);
1432
1433         igb_restore_vlan(adapter);
1434
1435         igb_setup_tctl(adapter);
1436         igb_setup_mrqc(adapter);
1437         igb_setup_rctl(adapter);
1438
1439         igb_configure_tx(adapter);
1440         igb_configure_rx(adapter);
1441
1442         igb_rx_fifo_flush_82575(&adapter->hw);
1443
1444         /* call igb_desc_unused which always leaves
1445          * at least 1 descriptor unused to make sure
1446          * next_to_use != next_to_clean */
1447         for (i = 0; i < adapter->num_rx_queues; i++) {
1448                 struct igb_ring *ring = adapter->rx_ring[i];
1449                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450         }
1451 }
1452
1453 /**
1454  * igb_power_up_link - Power up the phy/serdes link
1455  * @adapter: address of board private structure
1456  **/
1457 void igb_power_up_link(struct igb_adapter *adapter)
1458 {
1459         igb_reset_phy(&adapter->hw);
1460
1461         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462                 igb_power_up_phy_copper(&adapter->hw);
1463         else
1464                 igb_power_up_serdes_link_82575(&adapter->hw);
1465 }
1466
1467 /**
1468  * igb_power_down_link - Power down the phy/serdes link
1469  * @adapter: address of board private structure
1470  */
1471 static void igb_power_down_link(struct igb_adapter *adapter)
1472 {
1473         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1474                 igb_power_down_phy_copper_82575(&adapter->hw);
1475         else
1476                 igb_shutdown_serdes_link_82575(&adapter->hw);
1477 }
1478
1479 /**
1480  * igb_up - Open the interface and prepare it to handle traffic
1481  * @adapter: board private structure
1482  **/
1483 int igb_up(struct igb_adapter *adapter)
1484 {
1485         struct e1000_hw *hw = &adapter->hw;
1486         int i;
1487
1488         /* hardware has been reset, we need to reload some things */
1489         igb_configure(adapter);
1490
1491         clear_bit(__IGB_DOWN, &adapter->state);
1492
1493         for (i = 0; i < adapter->num_q_vectors; i++)
1494                 napi_enable(&(adapter->q_vector[i]->napi));
1495
1496         if (adapter->msix_entries)
1497                 igb_configure_msix(adapter);
1498         else
1499                 igb_assign_vector(adapter->q_vector[0], 0);
1500
1501         /* Clear any pending interrupts. */
1502         rd32(E1000_ICR);
1503         igb_irq_enable(adapter);
1504
1505         /* notify VFs that reset has been completed */
1506         if (adapter->vfs_allocated_count) {
1507                 u32 reg_data = rd32(E1000_CTRL_EXT);
1508                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1509                 wr32(E1000_CTRL_EXT, reg_data);
1510         }
1511
1512         netif_tx_start_all_queues(adapter->netdev);
1513
1514         /* start the watchdog. */
1515         hw->mac.get_link_status = 1;
1516         schedule_work(&adapter->watchdog_task);
1517
1518         return 0;
1519 }
1520
1521 void igb_down(struct igb_adapter *adapter)
1522 {
1523         struct net_device *netdev = adapter->netdev;
1524         struct e1000_hw *hw = &adapter->hw;
1525         u32 tctl, rctl;
1526         int i;
1527
1528         /* signal that we're down so the interrupt handler does not
1529          * reschedule our watchdog timer */
1530         set_bit(__IGB_DOWN, &adapter->state);
1531
1532         /* disable receives in the hardware */
1533         rctl = rd32(E1000_RCTL);
1534         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1535         /* flush and sleep below */
1536
1537         netif_tx_stop_all_queues(netdev);
1538
1539         /* disable transmits in the hardware */
1540         tctl = rd32(E1000_TCTL);
1541         tctl &= ~E1000_TCTL_EN;
1542         wr32(E1000_TCTL, tctl);
1543         /* flush both disables and wait for them to finish */
1544         wrfl();
1545         msleep(10);
1546
1547         for (i = 0; i < adapter->num_q_vectors; i++)
1548                 napi_disable(&(adapter->q_vector[i]->napi));
1549
1550         igb_irq_disable(adapter);
1551
1552         del_timer_sync(&adapter->watchdog_timer);
1553         del_timer_sync(&adapter->phy_info_timer);
1554
1555         netif_carrier_off(netdev);
1556
1557         /* record the stats before reset*/
1558         spin_lock(&adapter->stats64_lock);
1559         igb_update_stats(adapter, &adapter->stats64);
1560         spin_unlock(&adapter->stats64_lock);
1561
1562         adapter->link_speed = 0;
1563         adapter->link_duplex = 0;
1564
1565         if (!pci_channel_offline(adapter->pdev))
1566                 igb_reset(adapter);
1567         igb_clean_all_tx_rings(adapter);
1568         igb_clean_all_rx_rings(adapter);
1569 #ifdef CONFIG_IGB_DCA
1570
1571         /* since we reset the hardware DCA settings were cleared */
1572         igb_setup_dca(adapter);
1573 #endif
1574 }
1575
1576 void igb_reinit_locked(struct igb_adapter *adapter)
1577 {
1578         WARN_ON(in_interrupt());
1579         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1580                 msleep(1);
1581         igb_down(adapter);
1582         igb_up(adapter);
1583         clear_bit(__IGB_RESETTING, &adapter->state);
1584 }
1585
1586 void igb_reset(struct igb_adapter *adapter)
1587 {
1588         struct pci_dev *pdev = adapter->pdev;
1589         struct e1000_hw *hw = &adapter->hw;
1590         struct e1000_mac_info *mac = &hw->mac;
1591         struct e1000_fc_info *fc = &hw->fc;
1592         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1593         u16 hwm;
1594
1595         /* Repartition Pba for greater than 9k mtu
1596          * To take effect CTRL.RST is required.
1597          */
1598         switch (mac->type) {
1599         case e1000_i350:
1600         case e1000_82580:
1601                 pba = rd32(E1000_RXPBS);
1602                 pba = igb_rxpbs_adjust_82580(pba);
1603                 break;
1604         case e1000_82576:
1605                 pba = rd32(E1000_RXPBS);
1606                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1607                 break;
1608         case e1000_82575:
1609         case e1000_i210:
1610         case e1000_i211:
1611         default:
1612                 pba = E1000_PBA_34K;
1613                 break;
1614         }
1615
1616         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1617             (mac->type < e1000_82576)) {
1618                 /* adjust PBA for jumbo frames */
1619                 wr32(E1000_PBA, pba);
1620
1621                 /* To maintain wire speed transmits, the Tx FIFO should be
1622                  * large enough to accommodate two full transmit packets,
1623                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1624                  * the Rx FIFO should be large enough to accommodate at least
1625                  * one full receive packet and is similarly rounded up and
1626                  * expressed in KB. */
1627                 pba = rd32(E1000_PBA);
1628                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1629                 tx_space = pba >> 16;
1630                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1631                 pba &= 0xffff;
1632                 /* the tx fifo also stores 16 bytes of information about the tx
1633                  * but don't include ethernet FCS because hardware appends it */
1634                 min_tx_space = (adapter->max_frame_size +
1635                                 sizeof(union e1000_adv_tx_desc) -
1636                                 ETH_FCS_LEN) * 2;
1637                 min_tx_space = ALIGN(min_tx_space, 1024);
1638                 min_tx_space >>= 10;
1639                 /* software strips receive CRC, so leave room for it */
1640                 min_rx_space = adapter->max_frame_size;
1641                 min_rx_space = ALIGN(min_rx_space, 1024);
1642                 min_rx_space >>= 10;
1643
1644                 /* If current Tx allocation is less than the min Tx FIFO size,
1645                  * and the min Tx FIFO size is less than the current Rx FIFO
1646                  * allocation, take space away from current Rx allocation */
1647                 if (tx_space < min_tx_space &&
1648                     ((min_tx_space - tx_space) < pba)) {
1649                         pba = pba - (min_tx_space - tx_space);
1650
1651                         /* if short on rx space, rx wins and must trump tx
1652                          * adjustment */
1653                         if (pba < min_rx_space)
1654                                 pba = min_rx_space;
1655                 }
1656                 wr32(E1000_PBA, pba);
1657         }
1658
1659         /* flow control settings */
1660         /* The high water mark must be low enough to fit one full frame
1661          * (or the size used for early receive) above it in the Rx FIFO.
1662          * Set it to the lower of:
1663          * - 90% of the Rx FIFO size, or
1664          * - the full Rx FIFO size minus one full frame */
1665         hwm = min(((pba << 10) * 9 / 10),
1666                         ((pba << 10) - 2 * adapter->max_frame_size));
1667
1668         fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1669         fc->low_water = fc->high_water - 16;
1670         fc->pause_time = 0xFFFF;
1671         fc->send_xon = 1;
1672         fc->current_mode = fc->requested_mode;
1673
1674         /* disable receive for all VFs and wait one second */
1675         if (adapter->vfs_allocated_count) {
1676                 int i;
1677                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1678                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1679
1680                 /* ping all the active vfs to let them know we are going down */
1681                 igb_ping_all_vfs(adapter);
1682
1683                 /* disable transmits and receives */
1684                 wr32(E1000_VFRE, 0);
1685                 wr32(E1000_VFTE, 0);
1686         }
1687
1688         /* Allow time for pending master requests to run */
1689         hw->mac.ops.reset_hw(hw);
1690         wr32(E1000_WUC, 0);
1691
1692         if (hw->mac.ops.init_hw(hw))
1693                 dev_err(&pdev->dev, "Hardware Error\n");
1694
1695         /*
1696          * Flow control settings reset on hardware reset, so guarantee flow
1697          * control is off when forcing speed.
1698          */
1699         if (!hw->mac.autoneg)
1700                 igb_force_mac_fc(hw);
1701
1702         igb_init_dmac(adapter, pba);
1703         if (!netif_running(adapter->netdev))
1704                 igb_power_down_link(adapter);
1705
1706         igb_update_mng_vlan(adapter);
1707
1708         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1709         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1710
1711 #ifdef CONFIG_IGB_PTP
1712         /* Re-enable PTP, where applicable. */
1713         igb_ptp_reset(adapter);
1714 #endif /* CONFIG_IGB_PTP */
1715
1716         igb_get_phy_info(hw);
1717 }
1718
1719 static netdev_features_t igb_fix_features(struct net_device *netdev,
1720         netdev_features_t features)
1721 {
1722         /*
1723          * Since there is no support for separate rx/tx vlan accel
1724          * enable/disable make sure tx flag is always in same state as rx.
1725          */
1726         if (features & NETIF_F_HW_VLAN_RX)
1727                 features |= NETIF_F_HW_VLAN_TX;
1728         else
1729                 features &= ~NETIF_F_HW_VLAN_TX;
1730
1731         return features;
1732 }
1733
1734 static int igb_set_features(struct net_device *netdev,
1735         netdev_features_t features)
1736 {
1737         netdev_features_t changed = netdev->features ^ features;
1738         struct igb_adapter *adapter = netdev_priv(netdev);
1739
1740         if (changed & NETIF_F_HW_VLAN_RX)
1741                 igb_vlan_mode(netdev, features);
1742
1743         if (!(changed & NETIF_F_RXALL))
1744                 return 0;
1745
1746         netdev->features = features;
1747
1748         if (netif_running(netdev))
1749                 igb_reinit_locked(adapter);
1750         else
1751                 igb_reset(adapter);
1752
1753         return 0;
1754 }
1755
1756 static const struct net_device_ops igb_netdev_ops = {
1757         .ndo_open               = igb_open,
1758         .ndo_stop               = igb_close,
1759         .ndo_start_xmit         = igb_xmit_frame,
1760         .ndo_get_stats64        = igb_get_stats64,
1761         .ndo_set_rx_mode        = igb_set_rx_mode,
1762         .ndo_set_mac_address    = igb_set_mac,
1763         .ndo_change_mtu         = igb_change_mtu,
1764         .ndo_do_ioctl           = igb_ioctl,
1765         .ndo_tx_timeout         = igb_tx_timeout,
1766         .ndo_validate_addr      = eth_validate_addr,
1767         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1768         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1769         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1770         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1771         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1772         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1773 #ifdef CONFIG_NET_POLL_CONTROLLER
1774         .ndo_poll_controller    = igb_netpoll,
1775 #endif
1776         .ndo_fix_features       = igb_fix_features,
1777         .ndo_set_features       = igb_set_features,
1778 };
1779
1780 /**
1781  * igb_set_fw_version - Configure version string for ethtool
1782  * @adapter: adapter struct
1783  *
1784  **/
1785 void igb_set_fw_version(struct igb_adapter *adapter)
1786 {
1787         struct e1000_hw *hw = &adapter->hw;
1788         u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1789         u16 major, build, patch, fw_version;
1790         u32 etrack_id;
1791
1792         hw->nvm.ops.read(hw, 5, 1, &fw_version);
1793         if (adapter->hw.mac.type != e1000_i211) {
1794                 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1795                 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1796                 etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1797
1798                 /* combo image version needs to be found */
1799                 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1800                 if ((comb_offset != 0x0) &&
1801                     (comb_offset != IGB_NVM_VER_INVALID)) {
1802                         hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1803                                          + 1), 1, &comb_verh);
1804                         hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1805                                          1, &comb_verl);
1806
1807                         /* Only display Option Rom if it exists and is valid */
1808                         if ((comb_verh && comb_verl) &&
1809                             ((comb_verh != IGB_NVM_VER_INVALID) &&
1810                              (comb_verl != IGB_NVM_VER_INVALID))) {
1811                                 major = comb_verl >> IGB_COMB_VER_SHFT;
1812                                 build = (comb_verl << IGB_COMB_VER_SHFT) |
1813                                         (comb_verh >> IGB_COMB_VER_SHFT);
1814                                 patch = comb_verh & IGB_COMB_VER_MASK;
1815                                 snprintf(adapter->fw_version,
1816                                          sizeof(adapter->fw_version),
1817                                          "%d.%d%d, 0x%08x, %d.%d.%d",
1818                                          (fw_version & IGB_MAJOR_MASK) >>
1819                                          IGB_MAJOR_SHIFT,
1820                                          (fw_version & IGB_MINOR_MASK) >>
1821                                          IGB_MINOR_SHIFT,
1822                                          (fw_version & IGB_BUILD_MASK),
1823                                          etrack_id, major, build, patch);
1824                                 goto out;
1825                         }
1826                 }
1827                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1828                          "%d.%d%d, 0x%08x",
1829                          (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1830                          (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1831                          (fw_version & IGB_BUILD_MASK), etrack_id);
1832         } else {
1833                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1834                          "%d.%d%d",
1835                          (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1836                          (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1837                          (fw_version & IGB_BUILD_MASK));
1838         }
1839 out:
1840         return;
1841 }
1842
1843 /**
1844  * igb_probe - Device Initialization Routine
1845  * @pdev: PCI device information struct
1846  * @ent: entry in igb_pci_tbl
1847  *
1848  * Returns 0 on success, negative on failure
1849  *
1850  * igb_probe initializes an adapter identified by a pci_dev structure.
1851  * The OS initialization, configuring of the adapter private structure,
1852  * and a hardware reset occur.
1853  **/
1854 static int __devinit igb_probe(struct pci_dev *pdev,
1855                                const struct pci_device_id *ent)
1856 {
1857         struct net_device *netdev;
1858         struct igb_adapter *adapter;
1859         struct e1000_hw *hw;
1860         u16 eeprom_data = 0;
1861         s32 ret_val;
1862         static int global_quad_port_a; /* global quad port a indication */
1863         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1864         unsigned long mmio_start, mmio_len;
1865         int err, pci_using_dac;
1866         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1867         u8 part_str[E1000_PBANUM_LENGTH];
1868
1869         /* Catch broken hardware that put the wrong VF device ID in
1870          * the PCIe SR-IOV capability.
1871          */
1872         if (pdev->is_virtfn) {
1873                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1874                         pci_name(pdev), pdev->vendor, pdev->device);
1875                 return -EINVAL;
1876         }
1877
1878         err = pci_enable_device_mem(pdev);
1879         if (err)
1880                 return err;
1881
1882         pci_using_dac = 0;
1883         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1884         if (!err) {
1885                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1886                 if (!err)
1887                         pci_using_dac = 1;
1888         } else {
1889                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1890                 if (err) {
1891                         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1892                         if (err) {
1893                                 dev_err(&pdev->dev, "No usable DMA "
1894                                         "configuration, aborting\n");
1895                                 goto err_dma;
1896                         }
1897                 }
1898         }
1899
1900         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1901                                            IORESOURCE_MEM),
1902                                            igb_driver_name);
1903         if (err)
1904                 goto err_pci_reg;
1905
1906         pci_enable_pcie_error_reporting(pdev);
1907
1908         pci_set_master(pdev);
1909         pci_save_state(pdev);
1910
1911         err = -ENOMEM;
1912         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1913                                    IGB_MAX_TX_QUEUES);
1914         if (!netdev)
1915                 goto err_alloc_etherdev;
1916
1917         SET_NETDEV_DEV(netdev, &pdev->dev);
1918
1919         pci_set_drvdata(pdev, netdev);
1920         adapter = netdev_priv(netdev);
1921         adapter->netdev = netdev;
1922         adapter->pdev = pdev;
1923         hw = &adapter->hw;
1924         hw->back = adapter;
1925         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1926
1927         mmio_start = pci_resource_start(pdev, 0);
1928         mmio_len = pci_resource_len(pdev, 0);
1929
1930         err = -EIO;
1931         hw->hw_addr = ioremap(mmio_start, mmio_len);
1932         if (!hw->hw_addr)
1933                 goto err_ioremap;
1934
1935         netdev->netdev_ops = &igb_netdev_ops;
1936         igb_set_ethtool_ops(netdev);
1937         netdev->watchdog_timeo = 5 * HZ;
1938
1939         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1940
1941         netdev->mem_start = mmio_start;
1942         netdev->mem_end = mmio_start + mmio_len;
1943
1944         /* PCI config space info */
1945         hw->vendor_id = pdev->vendor;
1946         hw->device_id = pdev->device;
1947         hw->revision_id = pdev->revision;
1948         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1949         hw->subsystem_device_id = pdev->subsystem_device;
1950
1951         /* Copy the default MAC, PHY and NVM function pointers */
1952         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1953         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1954         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1955         /* Initialize skew-specific constants */
1956         err = ei->get_invariants(hw);
1957         if (err)
1958                 goto err_sw_init;
1959
1960         /* setup the private structure */
1961         err = igb_sw_init(adapter);
1962         if (err)
1963                 goto err_sw_init;
1964
1965         igb_get_bus_info_pcie(hw);
1966
1967         hw->phy.autoneg_wait_to_complete = false;
1968
1969         /* Copper options */
1970         if (hw->phy.media_type == e1000_media_type_copper) {
1971                 hw->phy.mdix = AUTO_ALL_MODES;
1972                 hw->phy.disable_polarity_correction = false;
1973                 hw->phy.ms_type = e1000_ms_hw_default;
1974         }
1975
1976         if (igb_check_reset_block(hw))
1977                 dev_info(&pdev->dev,
1978                         "PHY reset is blocked due to SOL/IDER session.\n");
1979
1980         /*
1981          * features is initialized to 0 in allocation, it might have bits
1982          * set by igb_sw_init so we should use an or instead of an
1983          * assignment.
1984          */
1985         netdev->features |= NETIF_F_SG |
1986                             NETIF_F_IP_CSUM |
1987                             NETIF_F_IPV6_CSUM |
1988                             NETIF_F_TSO |
1989                             NETIF_F_TSO6 |
1990                             NETIF_F_RXHASH |
1991                             NETIF_F_RXCSUM |
1992                             NETIF_F_HW_VLAN_RX |
1993                             NETIF_F_HW_VLAN_TX;
1994
1995         /* copy netdev features into list of user selectable features */
1996         netdev->hw_features |= netdev->features;
1997         netdev->hw_features |= NETIF_F_RXALL;
1998
1999         /* set this bit last since it cannot be part of hw_features */
2000         netdev->features |= NETIF_F_HW_VLAN_FILTER;
2001
2002         netdev->vlan_features |= NETIF_F_TSO |
2003                                  NETIF_F_TSO6 |
2004                                  NETIF_F_IP_CSUM |
2005                                  NETIF_F_IPV6_CSUM |
2006                                  NETIF_F_SG;
2007
2008         netdev->priv_flags |= IFF_SUPP_NOFCS;
2009
2010         if (pci_using_dac) {
2011                 netdev->features |= NETIF_F_HIGHDMA;
2012                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2013         }
2014
2015         if (hw->mac.type >= e1000_82576) {
2016                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2017                 netdev->features |= NETIF_F_SCTP_CSUM;
2018         }
2019
2020         netdev->priv_flags |= IFF_UNICAST_FLT;
2021
2022         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2023
2024         /* before reading the NVM, reset the controller to put the device in a
2025          * known good starting state */
2026         hw->mac.ops.reset_hw(hw);
2027
2028         /*
2029          * make sure the NVM is good , i211 parts have special NVM that
2030          * doesn't contain a checksum
2031          */
2032         if (hw->mac.type != e1000_i211) {
2033                 if (hw->nvm.ops.validate(hw) < 0) {
2034                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2035                         err = -EIO;
2036                         goto err_eeprom;
2037                 }
2038         }
2039
2040         /* copy the MAC address out of the NVM */
2041         if (hw->mac.ops.read_mac_addr(hw))
2042                 dev_err(&pdev->dev, "NVM Read Error\n");
2043
2044         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2045         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2046
2047         if (!is_valid_ether_addr(netdev->perm_addr)) {
2048                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2049                 err = -EIO;
2050                 goto err_eeprom;
2051         }
2052
2053         /* get firmware version for ethtool -i */
2054         igb_set_fw_version(adapter);
2055
2056         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2057                     (unsigned long) adapter);
2058         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2059                     (unsigned long) adapter);
2060
2061         INIT_WORK(&adapter->reset_task, igb_reset_task);
2062         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2063
2064         /* Initialize link properties that are user-changeable */
2065         adapter->fc_autoneg = true;
2066         hw->mac.autoneg = true;
2067         hw->phy.autoneg_advertised = 0x2f;
2068
2069         hw->fc.requested_mode = e1000_fc_default;
2070         hw->fc.current_mode = e1000_fc_default;
2071
2072         igb_validate_mdi_setting(hw);
2073
2074         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2075          * enable the ACPI Magic Packet filter
2076          */
2077
2078         if (hw->bus.func == 0)
2079                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2080         else if (hw->mac.type >= e1000_82580)
2081                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2082                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2083                                  &eeprom_data);
2084         else if (hw->bus.func == 1)
2085                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2086
2087         if (eeprom_data & eeprom_apme_mask)
2088                 adapter->eeprom_wol |= E1000_WUFC_MAG;
2089
2090         /* now that we have the eeprom settings, apply the special cases where
2091          * the eeprom may be wrong or the board simply won't support wake on
2092          * lan on a particular port */
2093         switch (pdev->device) {
2094         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2095                 adapter->eeprom_wol = 0;
2096                 break;
2097         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2098         case E1000_DEV_ID_82576_FIBER:
2099         case E1000_DEV_ID_82576_SERDES:
2100                 /* Wake events only supported on port A for dual fiber
2101                  * regardless of eeprom setting */
2102                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2103                         adapter->eeprom_wol = 0;
2104                 break;
2105         case E1000_DEV_ID_82576_QUAD_COPPER:
2106         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2107                 /* if quad port adapter, disable WoL on all but port A */
2108                 if (global_quad_port_a != 0)
2109                         adapter->eeprom_wol = 0;
2110                 else
2111                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2112                 /* Reset for multiple quad port adapters */
2113                 if (++global_quad_port_a == 4)
2114                         global_quad_port_a = 0;
2115                 break;
2116         }
2117
2118         /* initialize the wol settings based on the eeprom settings */
2119         adapter->wol = adapter->eeprom_wol;
2120         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2121
2122         /* reset the hardware with the new settings */
2123         igb_reset(adapter);
2124
2125         /* let the f/w know that the h/w is now under the control of the
2126          * driver. */
2127         igb_get_hw_control(adapter);
2128
2129         strcpy(netdev->name, "eth%d");
2130         err = register_netdev(netdev);
2131         if (err)
2132                 goto err_register;
2133
2134         /* carrier off reporting is important to ethtool even BEFORE open */
2135         netif_carrier_off(netdev);
2136
2137 #ifdef CONFIG_IGB_DCA
2138         if (dca_add_requester(&pdev->dev) == 0) {
2139                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2140                 dev_info(&pdev->dev, "DCA enabled\n");
2141                 igb_setup_dca(adapter);
2142         }
2143
2144 #endif
2145
2146 #ifdef CONFIG_IGB_PTP
2147         /* do hw tstamp init after resetting */
2148         igb_ptp_init(adapter);
2149 #endif /* CONFIG_IGB_PTP */
2150
2151         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2152         /* print bus type/speed/width info */
2153         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2154                  netdev->name,
2155                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2156                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2157                                                             "unknown"),
2158                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2159                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2160                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2161                    "unknown"),
2162                  netdev->dev_addr);
2163
2164         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2165         if (ret_val)
2166                 strcpy(part_str, "Unknown");
2167         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2168         dev_info(&pdev->dev,
2169                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2170                 adapter->msix_entries ? "MSI-X" :
2171                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2172                 adapter->num_rx_queues, adapter->num_tx_queues);
2173         switch (hw->mac.type) {
2174         case e1000_i350:
2175         case e1000_i210:
2176         case e1000_i211:
2177                 igb_set_eee_i350(hw);
2178                 break;
2179         default:
2180                 break;
2181         }
2182
2183         pm_runtime_put_noidle(&pdev->dev);
2184         return 0;
2185
2186 err_register:
2187         igb_release_hw_control(adapter);
2188 err_eeprom:
2189         if (!igb_check_reset_block(hw))
2190                 igb_reset_phy(hw);
2191
2192         if (hw->flash_address)
2193                 iounmap(hw->flash_address);
2194 err_sw_init:
2195         igb_clear_interrupt_scheme(adapter);
2196         iounmap(hw->hw_addr);
2197 err_ioremap:
2198         free_netdev(netdev);
2199 err_alloc_etherdev:
2200         pci_release_selected_regions(pdev,
2201                                      pci_select_bars(pdev, IORESOURCE_MEM));
2202 err_pci_reg:
2203 err_dma:
2204         pci_disable_device(pdev);
2205         return err;
2206 }
2207
2208 /**
2209  * igb_remove - Device Removal Routine
2210  * @pdev: PCI device information struct
2211  *
2212  * igb_remove is called by the PCI subsystem to alert the driver
2213  * that it should release a PCI device.  The could be caused by a
2214  * Hot-Plug event, or because the driver is going to be removed from
2215  * memory.
2216  **/
2217 static void __devexit igb_remove(struct pci_dev *pdev)
2218 {
2219         struct net_device *netdev = pci_get_drvdata(pdev);
2220         struct igb_adapter *adapter = netdev_priv(netdev);
2221         struct e1000_hw *hw = &adapter->hw;
2222
2223         pm_runtime_get_noresume(&pdev->dev);
2224 #ifdef CONFIG_IGB_PTP
2225         igb_ptp_stop(adapter);
2226 #endif /* CONFIG_IGB_PTP */
2227
2228         /*
2229          * The watchdog timer may be rescheduled, so explicitly
2230          * disable watchdog from being rescheduled.
2231          */
2232         set_bit(__IGB_DOWN, &adapter->state);
2233         del_timer_sync(&adapter->watchdog_timer);
2234         del_timer_sync(&adapter->phy_info_timer);
2235
2236         cancel_work_sync(&adapter->reset_task);
2237         cancel_work_sync(&adapter->watchdog_task);
2238
2239 #ifdef CONFIG_IGB_DCA
2240         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2241                 dev_info(&pdev->dev, "DCA disabled\n");
2242                 dca_remove_requester(&pdev->dev);
2243                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2244                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2245         }
2246 #endif
2247
2248         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2249          * would have already happened in close and is redundant. */
2250         igb_release_hw_control(adapter);
2251
2252         unregister_netdev(netdev);
2253
2254         igb_clear_interrupt_scheme(adapter);
2255
2256 #ifdef CONFIG_PCI_IOV
2257         /* reclaim resources allocated to VFs */
2258         if (adapter->vf_data) {
2259                 /* disable iov and allow time for transactions to clear */
2260                 if (igb_vfs_are_assigned(adapter)) {
2261                         dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2262                 } else {
2263                         pci_disable_sriov(pdev);
2264                         msleep(500);
2265                 }
2266
2267                 kfree(adapter->vf_data);
2268                 adapter->vf_data = NULL;
2269                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2270                 wrfl();
2271                 msleep(100);
2272                 dev_info(&pdev->dev, "IOV Disabled\n");
2273         }
2274 #endif
2275
2276         iounmap(hw->hw_addr);
2277         if (hw->flash_address)
2278                 iounmap(hw->flash_address);
2279         pci_release_selected_regions(pdev,
2280                                      pci_select_bars(pdev, IORESOURCE_MEM));
2281
2282         kfree(adapter->shadow_vfta);
2283         free_netdev(netdev);
2284
2285         pci_disable_pcie_error_reporting(pdev);
2286
2287         pci_disable_device(pdev);
2288 }
2289
2290 /**
2291  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2292  * @adapter: board private structure to initialize
2293  *
2294  * This function initializes the vf specific data storage and then attempts to
2295  * allocate the VFs.  The reason for ordering it this way is because it is much
2296  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2297  * the memory for the VFs.
2298  **/
2299 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2300 {
2301 #ifdef CONFIG_PCI_IOV
2302         struct pci_dev *pdev = adapter->pdev;
2303         struct e1000_hw *hw = &adapter->hw;
2304         int old_vfs = pci_num_vf(adapter->pdev);
2305         int i;
2306
2307         /* Virtualization features not supported on i210 family. */
2308         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2309                 return;
2310
2311         if (old_vfs) {
2312                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2313                          "max_vfs setting of %d\n", old_vfs, max_vfs);
2314                 adapter->vfs_allocated_count = old_vfs;
2315         }
2316
2317         if (!adapter->vfs_allocated_count)
2318                 return;
2319
2320         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2321                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2322
2323         /* if allocation failed then we do not support SR-IOV */
2324         if (!adapter->vf_data) {
2325                 adapter->vfs_allocated_count = 0;
2326                 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2327                         "Data Storage\n");
2328                 goto out;
2329         }
2330
2331         if (!old_vfs) {
2332                 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2333                         goto err_out;
2334         }
2335         dev_info(&pdev->dev, "%d VFs allocated\n",
2336                  adapter->vfs_allocated_count);
2337         for (i = 0; i < adapter->vfs_allocated_count; i++)
2338                 igb_vf_configure(adapter, i);
2339
2340         /* DMA Coalescing is not supported in IOV mode. */
2341         adapter->flags &= ~IGB_FLAG_DMAC;
2342         goto out;
2343 err_out:
2344         kfree(adapter->vf_data);
2345         adapter->vf_data = NULL;
2346         adapter->vfs_allocated_count = 0;
2347 out:
2348         return;
2349 #endif /* CONFIG_PCI_IOV */
2350 }
2351
2352 /**
2353  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2354  * @adapter: board private structure to initialize
2355  *
2356  * igb_sw_init initializes the Adapter private data structure.
2357  * Fields are initialized based on PCI device information and
2358  * OS network device settings (MTU size).
2359  **/
2360 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2361 {
2362         struct e1000_hw *hw = &adapter->hw;
2363         struct net_device *netdev = adapter->netdev;
2364         struct pci_dev *pdev = adapter->pdev;
2365         u32 max_rss_queues;
2366
2367         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2368
2369         /* set default ring sizes */
2370         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2371         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2372
2373         /* set default ITR values */
2374         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2375         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2376
2377         /* set default work limits */
2378         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2379
2380         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2381                                   VLAN_HLEN;
2382         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2383
2384         spin_lock_init(&adapter->stats64_lock);
2385 #ifdef CONFIG_PCI_IOV
2386         switch (hw->mac.type) {
2387         case e1000_82576:
2388         case e1000_i350:
2389                 if (max_vfs > 7) {
2390                         dev_warn(&pdev->dev,
2391                                  "Maximum of 7 VFs per PF, using max\n");
2392                         adapter->vfs_allocated_count = 7;
2393                 } else
2394                         adapter->vfs_allocated_count = max_vfs;
2395                 break;
2396         default:
2397                 break;
2398         }
2399 #endif /* CONFIG_PCI_IOV */
2400
2401         /* Determine the maximum number of RSS queues supported. */
2402         switch (hw->mac.type) {
2403         case e1000_i211:
2404                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2405                 break;
2406         case e1000_82575:
2407         case e1000_i210:
2408                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2409                 break;
2410         case e1000_i350:
2411                 /* I350 cannot do RSS and SR-IOV at the same time */
2412                 if (!!adapter->vfs_allocated_count) {
2413                         max_rss_queues = 1;
2414                         break;
2415                 }
2416                 /* fall through */
2417         case e1000_82576:
2418                 if (!!adapter->vfs_allocated_count) {
2419                         max_rss_queues = 2;
2420                         break;
2421                 }
2422                 /* fall through */
2423         case e1000_82580:
2424         default:
2425                 max_rss_queues = IGB_MAX_RX_QUEUES;
2426                 break;
2427         }
2428
2429         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2430
2431         /* Determine if we need to pair queues. */
2432         switch (hw->mac.type) {
2433         case e1000_82575:
2434         case e1000_i211:
2435                 /* Device supports enough interrupts without queue pairing. */
2436                 break;
2437         case e1000_82576:
2438                 /*
2439                  * If VFs are going to be allocated with RSS queues then we
2440                  * should pair the queues in order to conserve interrupts due
2441                  * to limited supply.
2442                  */
2443                 if ((adapter->rss_queues > 1) &&
2444                     (adapter->vfs_allocated_count > 6))
2445                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2446                 /* fall through */
2447         case e1000_82580:
2448         case e1000_i350:
2449         case e1000_i210:
2450         default:
2451                 /*
2452                  * If rss_queues > half of max_rss_queues, pair the queues in
2453                  * order to conserve interrupts due to limited supply.
2454                  */
2455                 if (adapter->rss_queues > (max_rss_queues / 2))
2456                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2457                 break;
2458         }
2459
2460         /* Setup and initialize a copy of the hw vlan table array */
2461         adapter->shadow_vfta = kzalloc(sizeof(u32) *
2462                                 E1000_VLAN_FILTER_TBL_SIZE,
2463                                 GFP_ATOMIC);
2464
2465         /* This call may decrease the number of queues */
2466         if (igb_init_interrupt_scheme(adapter)) {
2467                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2468                 return -ENOMEM;
2469         }
2470
2471         igb_probe_vfs(adapter);
2472
2473         /* Explicitly disable IRQ since the NIC can be in any state. */
2474         igb_irq_disable(adapter);
2475
2476         if (hw->mac.type >= e1000_i350)
2477                 adapter->flags &= ~IGB_FLAG_DMAC;
2478
2479         set_bit(__IGB_DOWN, &adapter->state);
2480         return 0;
2481 }
2482
2483 /**
2484  * igb_open - Called when a network interface is made active
2485  * @netdev: network interface device structure
2486  *
2487  * Returns 0 on success, negative value on failure
2488  *
2489  * The open entry point is called when a network interface is made
2490  * active by the system (IFF_UP).  At this point all resources needed
2491  * for transmit and receive operations are allocated, the interrupt
2492  * handler is registered with the OS, the watchdog timer is started,
2493  * and the stack is notified that the interface is ready.
2494  **/
2495 static int __igb_open(struct net_device *netdev, bool resuming)
2496 {
2497         struct igb_adapter *adapter = netdev_priv(netdev);
2498         struct e1000_hw *hw = &adapter->hw;
2499         struct pci_dev *pdev = adapter->pdev;
2500         int err;
2501         int i;
2502
2503         /* disallow open during test */
2504         if (test_bit(__IGB_TESTING, &adapter->state)) {
2505                 WARN_ON(resuming);
2506                 return -EBUSY;
2507         }
2508
2509         if (!resuming)
2510                 pm_runtime_get_sync(&pdev->dev);
2511
2512         netif_carrier_off(netdev);
2513
2514         /* allocate transmit descriptors */
2515         err = igb_setup_all_tx_resources(adapter);
2516         if (err)
2517                 goto err_setup_tx;
2518
2519         /* allocate receive descriptors */
2520         err = igb_setup_all_rx_resources(adapter);
2521         if (err)
2522                 goto err_setup_rx;
2523
2524         igb_power_up_link(adapter);
2525
2526         /* before we allocate an interrupt, we must be ready to handle it.
2527          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2528          * as soon as we call pci_request_irq, so we have to setup our
2529          * clean_rx handler before we do so.  */
2530         igb_configure(adapter);
2531
2532         err = igb_request_irq(adapter);
2533         if (err)
2534                 goto err_req_irq;
2535
2536         /* Notify the stack of the actual queue counts. */
2537         err = netif_set_real_num_tx_queues(adapter->netdev,
2538                                            adapter->num_tx_queues);
2539         if (err)
2540                 goto err_set_queues;
2541
2542         err = netif_set_real_num_rx_queues(adapter->netdev,
2543                                            adapter->num_rx_queues);
2544         if (err)
2545                 goto err_set_queues;
2546
2547         /* From here on the code is the same as igb_up() */
2548         clear_bit(__IGB_DOWN, &adapter->state);
2549
2550         for (i = 0; i < adapter->num_q_vectors; i++)
2551                 napi_enable(&(adapter->q_vector[i]->napi));
2552
2553         /* Clear any pending interrupts. */
2554         rd32(E1000_ICR);
2555
2556         igb_irq_enable(adapter);
2557
2558         /* notify VFs that reset has been completed */
2559         if (adapter->vfs_allocated_count) {
2560                 u32 reg_data = rd32(E1000_CTRL_EXT);
2561                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2562                 wr32(E1000_CTRL_EXT, reg_data);
2563         }
2564
2565         netif_tx_start_all_queues(netdev);
2566
2567         if (!resuming)
2568                 pm_runtime_put(&pdev->dev);
2569
2570         /* start the watchdog. */
2571         hw->mac.get_link_status = 1;
2572         schedule_work(&adapter->watchdog_task);
2573
2574         return 0;
2575
2576 err_set_queues:
2577         igb_free_irq(adapter);
2578 err_req_irq:
2579         igb_release_hw_control(adapter);
2580         igb_power_down_link(adapter);
2581         igb_free_all_rx_resources(adapter);
2582 err_setup_rx:
2583         igb_free_all_tx_resources(adapter);
2584 err_setup_tx:
2585         igb_reset(adapter);
2586         if (!resuming)
2587                 pm_runtime_put(&pdev->dev);
2588
2589         return err;
2590 }
2591
2592 static int igb_open(struct net_device *netdev)
2593 {
2594         return __igb_open(netdev, false);
2595 }
2596
2597 /**
2598  * igb_close - Disables a network interface
2599  * @netdev: network interface device structure
2600  *
2601  * Returns 0, this is not allowed to fail
2602  *
2603  * The close entry point is called when an interface is de-activated
2604  * by the OS.  The hardware is still under the driver's control, but
2605  * needs to be disabled.  A global MAC reset is issued to stop the
2606  * hardware, and all transmit and receive resources are freed.
2607  **/
2608 static int __igb_close(struct net_device *netdev, bool suspending)
2609 {
2610         struct igb_adapter *adapter = netdev_priv(netdev);
2611         struct pci_dev *pdev = adapter->pdev;
2612
2613         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2614
2615         if (!suspending)
2616                 pm_runtime_get_sync(&pdev->dev);
2617
2618         igb_down(adapter);
2619         igb_free_irq(adapter);
2620
2621         igb_free_all_tx_resources(adapter);
2622         igb_free_all_rx_resources(adapter);
2623
2624         if (!suspending)
2625                 pm_runtime_put_sync(&pdev->dev);
2626         return 0;
2627 }
2628
2629 static int igb_close(struct net_device *netdev)
2630 {
2631         return __igb_close(netdev, false);
2632 }
2633
2634 /**
2635  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2636  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2637  *
2638  * Return 0 on success, negative on failure
2639  **/
2640 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2641 {
2642         struct device *dev = tx_ring->dev;
2643         int size;
2644
2645         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2646
2647         tx_ring->tx_buffer_info = vzalloc(size);
2648         if (!tx_ring->tx_buffer_info)
2649                 goto err;
2650
2651         /* round up to nearest 4K */
2652         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2653         tx_ring->size = ALIGN(tx_ring->size, 4096);
2654
2655         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2656                                            &tx_ring->dma, GFP_KERNEL);
2657         if (!tx_ring->desc)
2658                 goto err;
2659
2660         tx_ring->next_to_use = 0;
2661         tx_ring->next_to_clean = 0;
2662
2663         return 0;
2664
2665 err:
2666         vfree(tx_ring->tx_buffer_info);
2667         tx_ring->tx_buffer_info = NULL;
2668         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2669         return -ENOMEM;
2670 }
2671
2672 /**
2673  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2674  *                                (Descriptors) for all queues
2675  * @adapter: board private structure
2676  *
2677  * Return 0 on success, negative on failure
2678  **/
2679 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2680 {
2681         struct pci_dev *pdev = adapter->pdev;
2682         int i, err = 0;
2683
2684         for (i = 0; i < adapter->num_tx_queues; i++) {
2685                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2686                 if (err) {
2687                         dev_err(&pdev->dev,
2688                                 "Allocation for Tx Queue %u failed\n", i);
2689                         for (i--; i >= 0; i--)
2690                                 igb_free_tx_resources(adapter->tx_ring[i]);
2691                         break;
2692                 }
2693         }
2694
2695         return err;
2696 }
2697
2698 /**
2699  * igb_setup_tctl - configure the transmit control registers
2700  * @adapter: Board private structure
2701  **/
2702 void igb_setup_tctl(struct igb_adapter *adapter)
2703 {
2704         struct e1000_hw *hw = &adapter->hw;
2705         u32 tctl;
2706
2707         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2708         wr32(E1000_TXDCTL(0), 0);
2709
2710         /* Program the Transmit Control Register */
2711         tctl = rd32(E1000_TCTL);
2712         tctl &= ~E1000_TCTL_CT;
2713         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2714                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2715
2716         igb_config_collision_dist(hw);
2717
2718         /* Enable transmits */
2719         tctl |= E1000_TCTL_EN;
2720
2721         wr32(E1000_TCTL, tctl);
2722 }
2723
2724 /**
2725  * igb_configure_tx_ring - Configure transmit ring after Reset
2726  * @adapter: board private structure
2727  * @ring: tx ring to configure
2728  *
2729  * Configure a transmit ring after a reset.
2730  **/
2731 void igb_configure_tx_ring(struct igb_adapter *adapter,
2732                            struct igb_ring *ring)
2733 {
2734         struct e1000_hw *hw = &adapter->hw;
2735         u32 txdctl = 0;
2736         u64 tdba = ring->dma;
2737         int reg_idx = ring->reg_idx;
2738
2739         /* disable the queue */
2740         wr32(E1000_TXDCTL(reg_idx), 0);
2741         wrfl();
2742         mdelay(10);
2743
2744         wr32(E1000_TDLEN(reg_idx),
2745                         ring->count * sizeof(union e1000_adv_tx_desc));
2746         wr32(E1000_TDBAL(reg_idx),
2747                         tdba & 0x00000000ffffffffULL);
2748         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2749
2750         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2751         wr32(E1000_TDH(reg_idx), 0);
2752         writel(0, ring->tail);
2753
2754         txdctl |= IGB_TX_PTHRESH;
2755         txdctl |= IGB_TX_HTHRESH << 8;
2756         txdctl |= IGB_TX_WTHRESH << 16;
2757
2758         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2759         wr32(E1000_TXDCTL(reg_idx), txdctl);
2760 }
2761
2762 /**
2763  * igb_configure_tx - Configure transmit Unit after Reset
2764  * @adapter: board private structure
2765  *
2766  * Configure the Tx unit of the MAC after a reset.
2767  **/
2768 static void igb_configure_tx(struct igb_adapter *adapter)
2769 {
2770         int i;
2771
2772         for (i = 0; i < adapter->num_tx_queues; i++)
2773                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2774 }
2775
2776 /**
2777  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2778  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2779  *
2780  * Returns 0 on success, negative on failure
2781  **/
2782 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2783 {
2784         struct device *dev = rx_ring->dev;
2785         int size;
2786
2787         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2788
2789         rx_ring->rx_buffer_info = vzalloc(size);
2790         if (!rx_ring->rx_buffer_info)
2791                 goto err;
2792
2793         /* Round up to nearest 4K */
2794         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2795         rx_ring->size = ALIGN(rx_ring->size, 4096);
2796
2797         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2798                                            &rx_ring->dma, GFP_KERNEL);
2799         if (!rx_ring->desc)
2800                 goto err;
2801
2802         rx_ring->next_to_alloc = 0;
2803         rx_ring->next_to_clean = 0;
2804         rx_ring->next_to_use = 0;
2805
2806         return 0;
2807
2808 err:
2809         vfree(rx_ring->rx_buffer_info);
2810         rx_ring->rx_buffer_info = NULL;
2811         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2812         return -ENOMEM;
2813 }
2814
2815 /**
2816  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2817  *                                (Descriptors) for all queues
2818  * @adapter: board private structure
2819  *
2820  * Return 0 on success, negative on failure
2821  **/
2822 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2823 {
2824         struct pci_dev *pdev = adapter->pdev;
2825         int i, err = 0;
2826
2827         for (i = 0; i < adapter->num_rx_queues; i++) {
2828                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2829                 if (err) {
2830                         dev_err(&pdev->dev,
2831                                 "Allocation for Rx Queue %u failed\n", i);
2832                         for (i--; i >= 0; i--)
2833                                 igb_free_rx_resources(adapter->rx_ring[i]);
2834                         break;
2835                 }
2836         }
2837
2838         return err;
2839 }
2840
2841 /**
2842  * igb_setup_mrqc - configure the multiple receive queue control registers
2843  * @adapter: Board private structure
2844  **/
2845 static void igb_setup_mrqc(struct igb_adapter *adapter)
2846 {
2847         struct e1000_hw *hw = &adapter->hw;
2848         u32 mrqc, rxcsum;
2849         u32 j, num_rx_queues, shift = 0;
2850         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2851                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2852                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2853                                         0xFA01ACBE };
2854
2855         /* Fill out hash function seeds */
2856         for (j = 0; j < 10; j++)
2857                 wr32(E1000_RSSRK(j), rsskey[j]);
2858
2859         num_rx_queues = adapter->rss_queues;
2860
2861         switch (hw->mac.type) {
2862         case e1000_82575:
2863                 shift = 6;
2864                 break;
2865         case e1000_82576:
2866                 /* 82576 supports 2 RSS queues for SR-IOV */
2867                 if (adapter->vfs_allocated_count) {
2868                         shift = 3;
2869                         num_rx_queues = 2;
2870                 }
2871                 break;
2872         default:
2873                 break;
2874         }
2875
2876         /*
2877          * Populate the indirection table 4 entries at a time.  To do this
2878          * we are generating the results for n and n+2 and then interleaving
2879          * those with the results with n+1 and n+3.
2880          */
2881         for (j = 0; j < 32; j++) {
2882                 /* first pass generates n and n+2 */
2883                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2884                 u32 reta = (base & 0x07800780) >> (7 - shift);
2885
2886                 /* second pass generates n+1 and n+3 */
2887                 base += 0x00010001 * num_rx_queues;
2888                 reta |= (base & 0x07800780) << (1 + shift);
2889
2890                 wr32(E1000_RETA(j), reta);
2891         }
2892
2893         /*
2894          * Disable raw packet checksumming so that RSS hash is placed in
2895          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2896          * offloads as they are enabled by default
2897          */
2898         rxcsum = rd32(E1000_RXCSUM);
2899         rxcsum |= E1000_RXCSUM_PCSD;
2900
2901         if (adapter->hw.mac.type >= e1000_82576)
2902                 /* Enable Receive Checksum Offload for SCTP */
2903                 rxcsum |= E1000_RXCSUM_CRCOFL;
2904
2905         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2906         wr32(E1000_RXCSUM, rxcsum);
2907         /*
2908          * Generate RSS hash based on TCP port numbers and/or
2909          * IPv4/v6 src and dst addresses since UDP cannot be
2910          * hashed reliably due to IP fragmentation
2911          */
2912
2913         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2914                E1000_MRQC_RSS_FIELD_IPV4_TCP |
2915                E1000_MRQC_RSS_FIELD_IPV6 |
2916                E1000_MRQC_RSS_FIELD_IPV6_TCP |
2917                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2918
2919         /* If VMDq is enabled then we set the appropriate mode for that, else
2920          * we default to RSS so that an RSS hash is calculated per packet even
2921          * if we are only using one queue */
2922         if (adapter->vfs_allocated_count) {
2923                 if (hw->mac.type > e1000_82575) {
2924                         /* Set the default pool for the PF's first queue */
2925                         u32 vtctl = rd32(E1000_VT_CTL);
2926                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2927                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2928                         vtctl |= adapter->vfs_allocated_count <<
2929                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2930                         wr32(E1000_VT_CTL, vtctl);
2931                 }
2932                 if (adapter->rss_queues > 1)
2933                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2934                 else
2935                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2936         } else {
2937                 if (hw->mac.type != e1000_i211)
2938                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2939         }
2940         igb_vmm_control(adapter);
2941
2942         wr32(E1000_MRQC, mrqc);
2943 }
2944
2945 /**
2946  * igb_setup_rctl - configure the receive control registers
2947  * @adapter: Board private structure
2948  **/
2949 void igb_setup_rctl(struct igb_adapter *adapter)
2950 {
2951         struct e1000_hw *hw = &adapter->hw;
2952         u32 rctl;
2953
2954         rctl = rd32(E1000_RCTL);
2955
2956         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2957         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2958
2959         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2960                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2961
2962         /*
2963          * enable stripping of CRC. It's unlikely this will break BMC
2964          * redirection as it did with e1000. Newer features require
2965          * that the HW strips the CRC.
2966          */
2967         rctl |= E1000_RCTL_SECRC;
2968
2969         /* disable store bad packets and clear size bits. */
2970         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2971
2972         /* enable LPE to prevent packets larger than max_frame_size */
2973         rctl |= E1000_RCTL_LPE;
2974
2975         /* disable queue 0 to prevent tail write w/o re-config */
2976         wr32(E1000_RXDCTL(0), 0);
2977
2978         /* Attention!!!  For SR-IOV PF driver operations you must enable
2979          * queue drop for all VF and PF queues to prevent head of line blocking
2980          * if an un-trusted VF does not provide descriptors to hardware.
2981          */
2982         if (adapter->vfs_allocated_count) {
2983                 /* set all queue drop enable bits */
2984                 wr32(E1000_QDE, ALL_QUEUES);
2985         }
2986
2987         /* This is useful for sniffing bad packets. */
2988         if (adapter->netdev->features & NETIF_F_RXALL) {
2989                 /* UPE and MPE will be handled by normal PROMISC logic
2990                  * in e1000e_set_rx_mode */
2991                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2992                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
2993                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2994
2995                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2996                           E1000_RCTL_DPF | /* Allow filtered pause */
2997                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2998                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2999                  * and that breaks VLANs.
3000                  */
3001         }
3002
3003         wr32(E1000_RCTL, rctl);
3004 }
3005
3006 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3007                                    int vfn)
3008 {
3009         struct e1000_hw *hw = &adapter->hw;
3010         u32 vmolr;
3011
3012         /* if it isn't the PF check to see if VFs are enabled and
3013          * increase the size to support vlan tags */
3014         if (vfn < adapter->vfs_allocated_count &&
3015             adapter->vf_data[vfn].vlans_enabled)
3016                 size += VLAN_TAG_SIZE;
3017
3018         vmolr = rd32(E1000_VMOLR(vfn));
3019         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3020         vmolr |= size | E1000_VMOLR_LPE;
3021         wr32(E1000_VMOLR(vfn), vmolr);
3022
3023         return 0;
3024 }
3025
3026 /**
3027  * igb_rlpml_set - set maximum receive packet size
3028  * @adapter: board private structure
3029  *
3030  * Configure maximum receivable packet size.
3031  **/
3032 static void igb_rlpml_set(struct igb_adapter *adapter)
3033 {
3034         u32 max_frame_size = adapter->max_frame_size;
3035         struct e1000_hw *hw = &adapter->hw;
3036         u16 pf_id = adapter->vfs_allocated_count;
3037
3038         if (pf_id) {
3039                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3040                 /*
3041                  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3042                  * to our max jumbo frame size, in case we need to enable
3043                  * jumbo frames on one of the rings later.
3044                  * This will not pass over-length frames into the default
3045                  * queue because it's gated by the VMOLR.RLPML.
3046                  */
3047                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3048         }
3049
3050         wr32(E1000_RLPML, max_frame_size);
3051 }
3052
3053 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3054                                  int vfn, bool aupe)
3055 {
3056         struct e1000_hw *hw = &adapter->hw;
3057         u32 vmolr;
3058
3059         /*
3060          * This register exists only on 82576 and newer so if we are older then
3061          * we should exit and do nothing
3062          */
3063         if (hw->mac.type < e1000_82576)
3064                 return;
3065
3066         vmolr = rd32(E1000_VMOLR(vfn));
3067         vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3068         if (aupe)
3069                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3070         else
3071                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3072
3073         /* clear all bits that might not be set */
3074         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3075
3076         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3077                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3078         /*
3079          * for VMDq only allow the VFs and pool 0 to accept broadcast and
3080          * multicast packets
3081          */
3082         if (vfn <= adapter->vfs_allocated_count)
3083                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
3084
3085         wr32(E1000_VMOLR(vfn), vmolr);
3086 }
3087
3088 /**
3089  * igb_configure_rx_ring - Configure a receive ring after Reset
3090  * @adapter: board private structure
3091  * @ring: receive ring to be configured
3092  *
3093  * Configure the Rx unit of the MAC after a reset.
3094  **/
3095 void igb_configure_rx_ring(struct igb_adapter *adapter,
3096                            struct igb_ring *ring)
3097 {
3098         struct e1000_hw *hw = &adapter->hw;
3099         u64 rdba = ring->dma;
3100         int reg_idx = ring->reg_idx;
3101         u32 srrctl = 0, rxdctl = 0;
3102
3103         /* disable the queue */
3104         wr32(E1000_RXDCTL(reg_idx), 0);
3105
3106         /* Set DMA base address registers */
3107         wr32(E1000_RDBAL(reg_idx),
3108              rdba & 0x00000000ffffffffULL);
3109         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3110         wr32(E1000_RDLEN(reg_idx),
3111                        ring->count * sizeof(union e1000_adv_rx_desc));
3112
3113         /* initialize head and tail */
3114         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3115         wr32(E1000_RDH(reg_idx), 0);
3116         writel(0, ring->tail);
3117
3118         /* set descriptor configuration */
3119         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3120         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3121         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3122 #ifdef CONFIG_IGB_PTP
3123         if (hw->mac.type >= e1000_82580)
3124                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3125 #endif /* CONFIG_IGB_PTP */
3126         /* Only set Drop Enable if we are supporting multiple queues */
3127         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3128                 srrctl |= E1000_SRRCTL_DROP_EN;
3129
3130         wr32(E1000_SRRCTL(reg_idx), srrctl);
3131
3132         /* set filtering for VMDQ pools */
3133         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3134
3135         rxdctl |= IGB_RX_PTHRESH;
3136         rxdctl |= IGB_RX_HTHRESH << 8;
3137         rxdctl |= IGB_RX_WTHRESH << 16;
3138
3139         /* enable receive descriptor fetching */
3140         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3141         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3142 }
3143
3144 /**
3145  * igb_configure_rx - Configure receive Unit after Reset
3146  * @adapter: board private structure
3147  *
3148  * Configure the Rx unit of the MAC after a reset.
3149  **/
3150 static void igb_configure_rx(struct igb_adapter *adapter)
3151 {
3152         int i;
3153
3154         /* set UTA to appropriate mode */
3155         igb_set_uta(adapter);
3156
3157         /* set the correct pool for the PF default MAC address in entry 0 */
3158         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3159                          adapter->vfs_allocated_count);
3160
3161         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3162          * the Base and Length of the Rx Descriptor Ring */
3163         for (i = 0; i < adapter->num_rx_queues; i++)
3164                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3165 }
3166
3167 /**
3168  * igb_free_tx_resources - Free Tx Resources per Queue
3169  * @tx_ring: Tx descriptor ring for a specific queue
3170  *
3171  * Free all transmit software resources
3172  **/
3173 void igb_free_tx_resources(struct igb_ring *tx_ring)
3174 {
3175         igb_clean_tx_ring(tx_ring);
3176
3177         vfree(tx_ring->tx_buffer_info);
3178         tx_ring->tx_buffer_info = NULL;
3179
3180         /* if not set, then don't free */
3181         if (!tx_ring->desc)
3182                 return;
3183
3184         dma_free_coherent(tx_ring->dev, tx_ring->size,
3185                           tx_ring->desc, tx_ring->dma);
3186
3187         tx_ring->desc = NULL;
3188 }
3189
3190 /**
3191  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3192  * @adapter: board private structure
3193  *
3194  * Free all transmit software resources
3195  **/
3196 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3197 {
3198         int i;
3199
3200         for (i = 0; i < adapter->num_tx_queues; i++)
3201                 igb_free_tx_resources(adapter->tx_ring[i]);
3202 }
3203
3204 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3205                                     struct igb_tx_buffer *tx_buffer)
3206 {
3207         if (tx_buffer->skb) {
3208                 dev_kfree_skb_any(tx_buffer->skb);
3209                 if (dma_unmap_len(tx_buffer, len))
3210                         dma_unmap_single(ring->dev,
3211                                          dma_unmap_addr(tx_buffer, dma),
3212                                          dma_unmap_len(tx_buffer, len),
3213                                          DMA_TO_DEVICE);
3214         } else if (dma_unmap_len(tx_buffer, len)) {
3215                 dma_unmap_page(ring->dev,
3216                                dma_unmap_addr(tx_buffer, dma),
3217                                dma_unmap_len(tx_buffer, len),
3218                                DMA_TO_DEVICE);
3219         }
3220         tx_buffer->next_to_watch = NULL;
3221         tx_buffer->skb = NULL;
3222         dma_unmap_len_set(tx_buffer, len, 0);
3223         /* buffer_info must be completely set up in the transmit path */
3224 }
3225
3226 /**
3227  * igb_clean_tx_ring - Free Tx Buffers
3228  * @tx_ring: ring to be cleaned
3229  **/
3230 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3231 {
3232         struct igb_tx_buffer *buffer_info;
3233         unsigned long size;
3234         u16 i;
3235
3236         if (!tx_ring->tx_buffer_info)
3237                 return;
3238         /* Free all the Tx ring sk_buffs */
3239
3240         for (i = 0; i < tx_ring->count; i++) {
3241                 buffer_info = &tx_ring->tx_buffer_info[i];
3242                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3243         }
3244
3245         netdev_tx_reset_queue(txring_txq(tx_ring));
3246
3247         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3248         memset(tx_ring->tx_buffer_info, 0, size);
3249
3250         /* Zero out the descriptor ring */
3251         memset(tx_ring->desc, 0, tx_ring->size);
3252
3253         tx_ring->next_to_use = 0;
3254         tx_ring->next_to_clean = 0;
3255 }
3256
3257 /**
3258  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3259  * @adapter: board private structure
3260  **/
3261 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3262 {
3263         int i;
3264
3265         for (i = 0; i < adapter->num_tx_queues; i++)
3266                 igb_clean_tx_ring(adapter->tx_ring[i]);
3267 }
3268
3269 /**
3270  * igb_free_rx_resources - Free Rx Resources
3271  * @rx_ring: ring to clean the resources from
3272  *
3273  * Free all receive software resources
3274  **/
3275 void igb_free_rx_resources(struct igb_ring *rx_ring)
3276 {
3277         igb_clean_rx_ring(rx_ring);
3278
3279         vfree(rx_ring->rx_buffer_info);
3280         rx_ring->rx_buffer_info = NULL;
3281
3282         /* if not set, then don't free */
3283         if (!rx_ring->desc)
3284                 return;
3285
3286         dma_free_coherent(rx_ring->dev, rx_ring->size,
3287                           rx_ring->desc, rx_ring->dma);
3288
3289         rx_ring->desc = NULL;
3290 }
3291
3292 /**
3293  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3294  * @adapter: board private structure
3295  *
3296  * Free all receive software resources
3297  **/
3298 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3299 {
3300         int i;
3301
3302         for (i = 0; i < adapter->num_rx_queues; i++)
3303                 igb_free_rx_resources(adapter->rx_ring[i]);
3304 }
3305
3306 /**
3307  * igb_clean_rx_ring - Free Rx Buffers per Queue
3308  * @rx_ring: ring to free buffers from
3309  **/
3310 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3311 {
3312         unsigned long size;
3313         u16 i;
3314
3315         if (rx_ring->skb)
3316                 dev_kfree_skb(rx_ring->skb);
3317         rx_ring->skb = NULL;
3318
3319         if (!rx_ring->rx_buffer_info)
3320                 return;
3321
3322         /* Free all the Rx ring sk_buffs */
3323         for (i = 0; i < rx_ring->count; i++) {
3324                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3325
3326                 if (!buffer_info->page)
3327                         continue;
3328
3329                 dma_unmap_page(rx_ring->dev,
3330                                buffer_info->dma,
3331                                PAGE_SIZE,
3332                                DMA_FROM_DEVICE);
3333                 __free_page(buffer_info->page);
3334
3335                 buffer_info->page = NULL;
3336         }
3337
3338         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3339         memset(rx_ring->rx_buffer_info, 0, size);
3340
3341         /* Zero out the descriptor ring */
3342         memset(rx_ring->desc, 0, rx_ring->size);
3343
3344         rx_ring->next_to_alloc = 0;
3345         rx_ring->next_to_clean = 0;
3346         rx_ring->next_to_use = 0;
3347 }
3348
3349 /**
3350  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3351  * @adapter: board private structure
3352  **/
3353 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3354 {
3355         int i;
3356
3357         for (i = 0; i < adapter->num_rx_queues; i++)
3358                 igb_clean_rx_ring(adapter->rx_ring[i]);
3359 }
3360
3361 /**
3362  * igb_set_mac - Change the Ethernet Address of the NIC
3363  * @netdev: network interface device structure
3364  * @p: pointer to an address structure
3365  *
3366  * Returns 0 on success, negative on failure
3367  **/
3368 static int igb_set_mac(struct net_device *netdev, void *p)
3369 {
3370         struct igb_adapter *adapter = netdev_priv(netdev);
3371         struct e1000_hw *hw = &adapter->hw;
3372         struct sockaddr *addr = p;
3373
3374         if (!is_valid_ether_addr(addr->sa_data))
3375                 return -EADDRNOTAVAIL;
3376
3377         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3378         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3379
3380         /* set the correct pool for the new PF MAC address in entry 0 */
3381         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3382                          adapter->vfs_allocated_count);
3383
3384         return 0;
3385 }
3386
3387 /**
3388  * igb_write_mc_addr_list - write multicast addresses to MTA
3389  * @netdev: network interface device structure
3390  *
3391  * Writes multicast address list to the MTA hash table.
3392  * Returns: -ENOMEM on failure
3393  *                0 on no addresses written
3394  *                X on writing X addresses to MTA
3395  **/
3396 static int igb_write_mc_addr_list(struct net_device *netdev)
3397 {
3398         struct igb_adapter *adapter = netdev_priv(netdev);
3399         struct e1000_hw *hw = &adapter->hw;
3400         struct netdev_hw_addr *ha;
3401         u8  *mta_list;
3402         int i;
3403
3404         if (netdev_mc_empty(netdev)) {
3405                 /* nothing to program, so clear mc list */
3406                 igb_update_mc_addr_list(hw, NULL, 0);
3407                 igb_restore_vf_multicasts(adapter);
3408                 return 0;
3409         }
3410
3411         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3412         if (!mta_list)
3413                 return -ENOMEM;
3414
3415         /* The shared function expects a packed array of only addresses. */
3416         i = 0;
3417         netdev_for_each_mc_addr(ha, netdev)
3418                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3419
3420         igb_update_mc_addr_list(hw, mta_list, i);
3421         kfree(mta_list);
3422
3423         return netdev_mc_count(netdev);
3424 }
3425
3426 /**
3427  * igb_write_uc_addr_list - write unicast addresses to RAR table
3428  * @netdev: network interface device structure
3429  *
3430  * Writes unicast address list to the RAR table.
3431  * Returns: -ENOMEM on failure/insufficient address space
3432  *                0 on no addresses written
3433  *                X on writing X addresses to the RAR table
3434  **/
3435 static int igb_write_uc_addr_list(struct net_device *netdev)
3436 {
3437         struct igb_adapter *adapter = netdev_priv(netdev);
3438         struct e1000_hw *hw = &adapter->hw;
3439         unsigned int vfn = adapter->vfs_allocated_count;
3440         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3441         int count = 0;
3442
3443         /* return ENOMEM indicating insufficient memory for addresses */
3444         if (netdev_uc_count(netdev) > rar_entries)
3445                 return -ENOMEM;
3446
3447         if (!netdev_uc_empty(netdev) && rar_entries) {
3448                 struct netdev_hw_addr *ha;
3449
3450                 netdev_for_each_uc_addr(ha, netdev) {
3451                         if (!rar_entries)
3452                                 break;
3453                         igb_rar_set_qsel(adapter, ha->addr,
3454                                          rar_entries--,
3455                                          vfn);
3456                         count++;
3457                 }
3458         }
3459         /* write the addresses in reverse order to avoid write combining */
3460         for (; rar_entries > 0 ; rar_entries--) {
3461                 wr32(E1000_RAH(rar_entries), 0);
3462                 wr32(E1000_RAL(rar_entries), 0);
3463         }
3464         wrfl();
3465
3466         return count;
3467 }
3468
3469 /**
3470  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3471  * @netdev: network interface device structure
3472  *
3473  * The set_rx_mode entry point is called whenever the unicast or multicast
3474  * address lists or the network interface flags are updated.  This routine is
3475  * responsible for configuring the hardware for proper unicast, multicast,
3476  * promiscuous mode, and all-multi behavior.
3477  **/
3478 static void igb_set_rx_mode(struct net_device *netdev)
3479 {
3480         struct igb_adapter *adapter = netdev_priv(netdev);
3481         struct e1000_hw *hw = &adapter->hw;
3482         unsigned int vfn = adapter->vfs_allocated_count;
3483         u32 rctl, vmolr = 0;
3484         int count;
3485
3486         /* Check for Promiscuous and All Multicast modes */
3487         rctl = rd32(E1000_RCTL);
3488
3489         /* clear the effected bits */
3490         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3491
3492         if (netdev->flags & IFF_PROMISC) {
3493                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3494                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3495         } else {
3496                 if (netdev->flags & IFF_ALLMULTI) {
3497                         rctl |= E1000_RCTL_MPE;
3498                         vmolr |= E1000_VMOLR_MPME;
3499                 } else {
3500                         /*
3501                          * Write addresses to the MTA, if the attempt fails
3502                          * then we should just turn on promiscuous mode so
3503                          * that we can at least receive multicast traffic
3504                          */
3505                         count = igb_write_mc_addr_list(netdev);
3506                         if (count < 0) {
3507                                 rctl |= E1000_RCTL_MPE;
3508                                 vmolr |= E1000_VMOLR_MPME;
3509                         } else if (count) {
3510                                 vmolr |= E1000_VMOLR_ROMPE;
3511                         }
3512                 }
3513                 /*
3514                  * Write addresses to available RAR registers, if there is not
3515                  * sufficient space to store all the addresses then enable
3516                  * unicast promiscuous mode
3517                  */
3518                 count = igb_write_uc_addr_list(netdev);
3519                 if (count < 0) {
3520                         rctl |= E1000_RCTL_UPE;
3521                         vmolr |= E1000_VMOLR_ROPE;
3522                 }
3523                 rctl |= E1000_RCTL_VFE;
3524         }
3525         wr32(E1000_RCTL, rctl);
3526
3527         /*
3528          * In order to support SR-IOV and eventually VMDq it is necessary to set
3529          * the VMOLR to enable the appropriate modes.  Without this workaround
3530          * we will have issues with VLAN tag stripping not being done for frames
3531          * that are only arriving because we are the default pool
3532          */
3533         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3534                 return;
3535
3536         vmolr |= rd32(E1000_VMOLR(vfn)) &
3537                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3538         wr32(E1000_VMOLR(vfn), vmolr);
3539         igb_restore_vf_multicasts(adapter);
3540 }
3541
3542 static void igb_check_wvbr(struct igb_adapter *adapter)
3543 {
3544         struct e1000_hw *hw = &adapter->hw;
3545         u32 wvbr = 0;
3546
3547         switch (hw->mac.type) {
3548         case e1000_82576:
3549         case e1000_i350:
3550                 if (!(wvbr = rd32(E1000_WVBR)))
3551                         return;
3552                 break;
3553         default:
3554                 break;
3555         }
3556
3557         adapter->wvbr |= wvbr;
3558 }
3559
3560 #define IGB_STAGGERED_QUEUE_OFFSET 8
3561
3562 static void igb_spoof_check(struct igb_adapter *adapter)
3563 {
3564         int j;
3565
3566         if (!adapter->wvbr)
3567                 return;
3568
3569         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3570                 if (adapter->wvbr & (1 << j) ||
3571                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3572                         dev_warn(&adapter->pdev->dev,
3573                                 "Spoof event(s) detected on VF %d\n", j);
3574                         adapter->wvbr &=
3575                                 ~((1 << j) |
3576                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3577                 }
3578         }
3579 }
3580
3581 /* Need to wait a few seconds after link up to get diagnostic information from
3582  * the phy */
3583 static void igb_update_phy_info(unsigned long data)
3584 {
3585         struct igb_adapter *adapter = (struct igb_adapter *) data;
3586         igb_get_phy_info(&adapter->hw);
3587 }
3588
3589 /**
3590  * igb_has_link - check shared code for link and determine up/down
3591  * @adapter: pointer to driver private info
3592  **/
3593 bool igb_has_link(struct igb_adapter *adapter)
3594 {
3595         struct e1000_hw *hw = &adapter->hw;
3596         bool link_active = false;
3597         s32 ret_val = 0;
3598
3599         /* get_link_status is set on LSC (link status) interrupt or
3600          * rx sequence error interrupt.  get_link_status will stay
3601          * false until the e1000_check_for_link establishes link
3602          * for copper adapters ONLY
3603          */
3604         switch (hw->phy.media_type) {
3605         case e1000_media_type_copper:
3606                 if (hw->mac.get_link_status) {
3607                         ret_val = hw->mac.ops.check_for_link(hw);
3608                         link_active = !hw->mac.get_link_status;
3609                 } else {
3610                         link_active = true;
3611                 }
3612                 break;
3613         case e1000_media_type_internal_serdes:
3614                 ret_val = hw->mac.ops.check_for_link(hw);
3615                 link_active = hw->mac.serdes_has_link;
3616                 break;
3617         default:
3618         case e1000_media_type_unknown:
3619                 break;
3620         }
3621
3622         return link_active;
3623 }
3624
3625 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3626 {
3627         bool ret = false;
3628         u32 ctrl_ext, thstat;
3629
3630         /* check for thermal sensor event on i350 copper only */
3631         if (hw->mac.type == e1000_i350) {
3632                 thstat = rd32(E1000_THSTAT);
3633                 ctrl_ext = rd32(E1000_CTRL_EXT);
3634
3635                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3636                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3637                         ret = !!(thstat & event);
3638                 }
3639         }
3640
3641         return ret;
3642 }
3643
3644 /**
3645  * igb_watchdog - Timer Call-back
3646  * @data: pointer to adapter cast into an unsigned long
3647  **/
3648 static void igb_watchdog(unsigned long data)
3649 {
3650         struct igb_adapter *adapter = (struct igb_adapter *)data;
3651         /* Do the rest outside of interrupt context */
3652         schedule_work(&adapter->watchdog_task);
3653 }
3654
3655 static void igb_watchdog_task(struct work_struct *work)
3656 {
3657         struct igb_adapter *adapter = container_of(work,
3658                                                    struct igb_adapter,
3659                                                    watchdog_task);
3660         struct e1000_hw *hw = &adapter->hw;
3661         struct net_device *netdev = adapter->netdev;
3662         u32 link;
3663         int i;
3664
3665         link = igb_has_link(adapter);
3666         if (link) {
3667                 /* Cancel scheduled suspend requests. */
3668                 pm_runtime_resume(netdev->dev.parent);
3669
3670                 if (!netif_carrier_ok(netdev)) {
3671                         u32 ctrl;
3672                         hw->mac.ops.get_speed_and_duplex(hw,
3673                                                          &adapter->link_speed,
3674                                                          &adapter->link_duplex);
3675
3676                         ctrl = rd32(E1000_CTRL);
3677                         /* Links status message must follow this format */
3678                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3679                                "Duplex, Flow Control: %s\n",
3680                                netdev->name,
3681                                adapter->link_speed,
3682                                adapter->link_duplex == FULL_DUPLEX ?
3683                                "Full" : "Half",
3684                                (ctrl & E1000_CTRL_TFCE) &&
3685                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3686                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3687                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3688
3689                         /* check for thermal sensor event */
3690                         if (igb_thermal_sensor_event(hw,
3691                             E1000_THSTAT_LINK_THROTTLE)) {
3692                                 netdev_info(netdev, "The network adapter link "
3693                                             "speed was downshifted because it "
3694                                             "overheated\n");
3695                         }
3696
3697                         /* adjust timeout factor according to speed/duplex */
3698                         adapter->tx_timeout_factor = 1;
3699                         switch (adapter->link_speed) {
3700                         case SPEED_10:
3701                                 adapter->tx_timeout_factor = 14;
3702                                 break;
3703                         case SPEED_100:
3704                                 /* maybe add some timeout factor ? */
3705                                 break;
3706                         }
3707
3708                         netif_carrier_on(netdev);
3709
3710                         igb_ping_all_vfs(adapter);
3711                         igb_check_vf_rate_limit(adapter);
3712
3713                         /* link state has changed, schedule phy info update */
3714                         if (!test_bit(__IGB_DOWN, &adapter->state))
3715                                 mod_timer(&adapter->phy_info_timer,
3716                                           round_jiffies(jiffies + 2 * HZ));
3717                 }
3718         } else {
3719                 if (netif_carrier_ok(netdev)) {
3720                         adapter->link_speed = 0;
3721                         adapter->link_duplex = 0;
3722
3723                         /* check for thermal sensor event */
3724                         if (igb_thermal_sensor_event(hw,
3725                             E1000_THSTAT_PWR_DOWN)) {
3726                                 netdev_err(netdev, "The network adapter was "
3727                                            "stopped because it overheated\n");
3728                         }
3729
3730                         /* Links status message must follow this format */
3731                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3732                                netdev->name);
3733                         netif_carrier_off(netdev);
3734
3735                         igb_ping_all_vfs(adapter);
3736
3737                         /* link state has changed, schedule phy info update */
3738                         if (!test_bit(__IGB_DOWN, &adapter->state))
3739                                 mod_timer(&adapter->phy_info_timer,
3740                                           round_jiffies(jiffies + 2 * HZ));
3741
3742                         pm_schedule_suspend(netdev->dev.parent,
3743                                             MSEC_PER_SEC * 5);
3744                 }
3745         }
3746
3747         spin_lock(&adapter->stats64_lock);
3748         igb_update_stats(adapter, &adapter->stats64);
3749         spin_unlock(&adapter->stats64_lock);
3750
3751         for (i = 0; i < adapter->num_tx_queues; i++) {
3752                 struct igb_ring *tx_ring = adapter->tx_ring[i];
3753                 if (!netif_carrier_ok(netdev)) {
3754                         /* We've lost link, so the controller stops DMA,
3755                          * but we've got queued Tx work that's never going
3756                          * to get done, so reset controller to flush Tx.
3757                          * (Do the reset outside of interrupt context). */
3758                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3759                                 adapter->tx_timeout_count++;
3760                                 schedule_work(&adapter->reset_task);
3761                                 /* return immediately since reset is imminent */
3762                                 return;
3763                         }
3764                 }
3765
3766                 /* Force detection of hung controller every watchdog period */
3767                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3768         }
3769
3770         /* Cause software interrupt to ensure rx ring is cleaned */
3771         if (adapter->msix_entries) {
3772                 u32 eics = 0;
3773                 for (i = 0; i < adapter->num_q_vectors; i++)
3774                         eics |= adapter->q_vector[i]->eims_value;
3775                 wr32(E1000_EICS, eics);
3776         } else {
3777                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3778         }
3779
3780         igb_spoof_check(adapter);
3781
3782         /* Reset the timer */
3783         if (!test_bit(__IGB_DOWN, &adapter->state))
3784                 mod_timer(&adapter->watchdog_timer,
3785                           round_jiffies(jiffies + 2 * HZ));
3786 }
3787
3788 enum latency_range {
3789         lowest_latency = 0,
3790         low_latency = 1,
3791         bulk_latency = 2,
3792         latency_invalid = 255
3793 };
3794
3795 /**
3796  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3797  *
3798  *      Stores a new ITR value based on strictly on packet size.  This
3799  *      algorithm is less sophisticated than that used in igb_update_itr,
3800  *      due to the difficulty of synchronizing statistics across multiple
3801  *      receive rings.  The divisors and thresholds used by this function
3802  *      were determined based on theoretical maximum wire speed and testing
3803  *      data, in order to minimize response time while increasing bulk
3804  *      throughput.
3805  *      This functionality is controlled by the InterruptThrottleRate module
3806  *      parameter (see igb_param.c)
3807  *      NOTE:  This function is called only when operating in a multiqueue
3808  *             receive environment.
3809  * @q_vector: pointer to q_vector
3810  **/
3811 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3812 {
3813         int new_val = q_vector->itr_val;
3814         int avg_wire_size = 0;
3815         struct igb_adapter *adapter = q_vector->adapter;
3816         unsigned int packets;
3817
3818         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3819          * ints/sec - ITR timer value of 120 ticks.
3820          */
3821         if (adapter->link_speed != SPEED_1000) {
3822                 new_val = IGB_4K_ITR;
3823                 goto set_itr_val;
3824         }
3825
3826         packets = q_vector->rx.total_packets;
3827         if (packets)
3828                 avg_wire_size = q_vector->rx.total_bytes / packets;
3829
3830         packets = q_vector->tx.total_packets;
3831         if (packets)
3832                 avg_wire_size = max_t(u32, avg_wire_size,
3833                                       q_vector->tx.total_bytes / packets);
3834
3835         /* if avg_wire_size isn't set no work was done */
3836         if (!avg_wire_size)
3837                 goto clear_counts;
3838
3839         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3840         avg_wire_size += 24;
3841
3842         /* Don't starve jumbo frames */
3843         avg_wire_size = min(avg_wire_size, 3000);
3844
3845         /* Give a little boost to mid-size frames */
3846         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3847                 new_val = avg_wire_size / 3;
3848         else
3849                 new_val = avg_wire_size / 2;
3850
3851         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3852         if (new_val < IGB_20K_ITR &&
3853             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3854              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3855                 new_val = IGB_20K_ITR;
3856
3857 set_itr_val:
3858         if (new_val != q_vector->itr_val) {
3859                 q_vector->itr_val = new_val;
3860                 q_vector->set_itr = 1;
3861         }
3862 clear_counts:
3863         q_vector->rx.total_bytes = 0;
3864         q_vector->rx.total_packets = 0;
3865         q_vector->tx.total_bytes = 0;
3866         q_vector->tx.total_packets = 0;
3867 }
3868
3869 /**
3870  * igb_update_itr - update the dynamic ITR value based on statistics
3871  *      Stores a new ITR value based on packets and byte
3872  *      counts during the last interrupt.  The advantage of per interrupt
3873  *      computation is faster updates and more accurate ITR for the current
3874  *      traffic pattern.  Constants in this function were computed
3875  *      based on theoretical maximum wire speed and thresholds were set based
3876  *      on testing data as well as attempting to minimize response time
3877  *      while increasing bulk throughput.
3878  *      this functionality is controlled by the InterruptThrottleRate module
3879  *      parameter (see igb_param.c)
3880  *      NOTE:  These calculations are only valid when operating in a single-
3881  *             queue environment.
3882  * @q_vector: pointer to q_vector
3883  * @ring_container: ring info to update the itr for
3884  **/
3885 static void igb_update_itr(struct igb_q_vector *q_vector,
3886                            struct igb_ring_container *ring_container)
3887 {
3888         unsigned int packets = ring_container->total_packets;
3889         unsigned int bytes = ring_container->total_bytes;
3890         u8 itrval = ring_container->itr;
3891
3892         /* no packets, exit with status unchanged */
3893         if (packets == 0)
3894                 return;
3895
3896         switch (itrval) {
3897         case lowest_latency:
3898                 /* handle TSO and jumbo frames */
3899                 if (bytes/packets > 8000)
3900                         itrval = bulk_latency;
3901                 else if ((packets < 5) && (bytes > 512))
3902                         itrval = low_latency;
3903                 break;
3904         case low_latency:  /* 50 usec aka 20000 ints/s */
3905                 if (bytes > 10000) {
3906                         /* this if handles the TSO accounting */
3907                         if (bytes/packets > 8000) {
3908                                 itrval = bulk_latency;
3909                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3910                                 itrval = bulk_latency;
3911                         } else if ((packets > 35)) {
3912                                 itrval = lowest_latency;
3913                         }
3914                 } else if (bytes/packets > 2000) {
3915                         itrval = bulk_latency;
3916                 } else if (packets <= 2 && bytes < 512) {
3917                         itrval = lowest_latency;
3918                 }
3919                 break;
3920         case bulk_latency: /* 250 usec aka 4000 ints/s */
3921                 if (bytes > 25000) {
3922                         if (packets > 35)
3923                                 itrval = low_latency;
3924                 } else if (bytes < 1500) {
3925                         itrval = low_latency;
3926                 }
3927                 break;
3928         }
3929
3930         /* clear work counters since we have the values we need */
3931         ring_container->total_bytes = 0;
3932         ring_container->total_packets = 0;
3933
3934         /* write updated itr to ring container */
3935         ring_container->itr = itrval;
3936 }
3937
3938 static void igb_set_itr(struct igb_q_vector *q_vector)
3939 {
3940         struct igb_adapter *adapter = q_vector->adapter;
3941         u32 new_itr = q_vector->itr_val;
3942         u8 current_itr = 0;
3943
3944         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3945         if (adapter->link_speed != SPEED_1000) {
3946                 current_itr = 0;
3947                 new_itr = IGB_4K_ITR;
3948                 goto set_itr_now;
3949         }
3950
3951         igb_update_itr(q_vector, &q_vector->tx);
3952         igb_update_itr(q_vector, &q_vector->rx);
3953
3954         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3955
3956         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3957         if (current_itr == lowest_latency &&
3958             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3959              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3960                 current_itr = low_latency;
3961
3962         switch (current_itr) {
3963         /* counts and packets in update_itr are dependent on these numbers */
3964         case lowest_latency:
3965                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3966                 break;
3967         case low_latency:
3968                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3969                 break;
3970         case bulk_latency:
3971                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3972                 break;
3973         default:
3974                 break;
3975         }
3976
3977 set_itr_now:
3978         if (new_itr != q_vector->itr_val) {
3979                 /* this attempts to bias the interrupt rate towards Bulk
3980                  * by adding intermediate steps when interrupt rate is
3981                  * increasing */
3982                 new_itr = new_itr > q_vector->itr_val ?
3983                              max((new_itr * q_vector->itr_val) /
3984                                  (new_itr + (q_vector->itr_val >> 2)),
3985                                  new_itr) :
3986                              new_itr;
3987                 /* Don't write the value here; it resets the adapter's
3988                  * internal timer, and causes us to delay far longer than
3989                  * we should between interrupts.  Instead, we write the ITR
3990                  * value at the beginning of the next interrupt so the timing
3991                  * ends up being correct.
3992                  */
3993                 q_vector->itr_val = new_itr;
3994                 q_vector->set_itr = 1;
3995         }
3996 }
3997
3998 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3999                             u32 type_tucmd, u32 mss_l4len_idx)
4000 {
4001         struct e1000_adv_tx_context_desc *context_desc;
4002         u16 i = tx_ring->next_to_use;
4003
4004         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4005
4006         i++;
4007         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4008
4009         /* set bits to identify this as an advanced context descriptor */
4010         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4011
4012         /* For 82575, context index must be unique per ring. */
4013         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4014                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4015
4016         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4017         context_desc->seqnum_seed       = 0;
4018         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4019         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4020 }
4021
4022 static int igb_tso(struct igb_ring *tx_ring,
4023                    struct igb_tx_buffer *first,
4024                    u8 *hdr_len)
4025 {
4026         struct sk_buff *skb = first->skb;
4027         u32 vlan_macip_lens, type_tucmd;
4028         u32 mss_l4len_idx, l4len;
4029
4030         if (!skb_is_gso(skb))
4031                 return 0;
4032
4033         if (skb_header_cloned(skb)) {
4034                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4035                 if (err)
4036                         return err;
4037         }
4038
4039         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4040         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4041
4042         if (first->protocol == __constant_htons(ETH_P_IP)) {
4043                 struct iphdr *iph = ip_hdr(skb);
4044                 iph->tot_len = 0;
4045                 iph->check = 0;
4046                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4047                                                          iph->daddr, 0,
4048                                                          IPPROTO_TCP,
4049                                                          0);
4050                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4051                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4052                                    IGB_TX_FLAGS_CSUM |
4053                                    IGB_TX_FLAGS_IPV4;
4054         } else if (skb_is_gso_v6(skb)) {
4055                 ipv6_hdr(skb)->payload_len = 0;
4056                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4057                                                        &ipv6_hdr(skb)->daddr,
4058                                                        0, IPPROTO_TCP, 0);
4059                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4060                                    IGB_TX_FLAGS_CSUM;
4061         }
4062
4063         /* compute header lengths */
4064         l4len = tcp_hdrlen(skb);
4065         *hdr_len = skb_transport_offset(skb) + l4len;
4066
4067         /* update gso size and bytecount with header size */
4068         first->gso_segs = skb_shinfo(skb)->gso_segs;
4069         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4070
4071         /* MSS L4LEN IDX */
4072         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4073         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4074
4075         /* VLAN MACLEN IPLEN */
4076         vlan_macip_lens = skb_network_header_len(skb);
4077         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4078         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4079
4080         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4081
4082         return 1;
4083 }
4084
4085 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4086 {
4087         struct sk_buff *skb = first->skb;
4088         u32 vlan_macip_lens = 0;
4089         u32 mss_l4len_idx = 0;
4090         u32 type_tucmd = 0;
4091
4092         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4093                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4094                         return;
4095         } else {
4096                 u8 l4_hdr = 0;
4097                 switch (first->protocol) {
4098                 case __constant_htons(ETH_P_IP):
4099                         vlan_macip_lens |= skb_network_header_len(skb);
4100                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4101                         l4_hdr = ip_hdr(skb)->protocol;
4102                         break;
4103                 case __constant_htons(ETH_P_IPV6):
4104                         vlan_macip_lens |= skb_network_header_len(skb);
4105                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4106                         break;
4107                 default:
4108                         if (unlikely(net_ratelimit())) {
4109                                 dev_warn(tx_ring->dev,
4110                                  "partial checksum but proto=%x!\n",
4111                                  first->protocol);
4112                         }
4113                         break;
4114                 }
4115
4116                 switch (l4_hdr) {
4117                 case IPPROTO_TCP:
4118                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4119                         mss_l4len_idx = tcp_hdrlen(skb) <<
4120                                         E1000_ADVTXD_L4LEN_SHIFT;
4121                         break;
4122                 case IPPROTO_SCTP:
4123                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4124                         mss_l4len_idx = sizeof(struct sctphdr) <<
4125                                         E1000_ADVTXD_L4LEN_SHIFT;
4126                         break;
4127                 case IPPROTO_UDP:
4128                         mss_l4len_idx = sizeof(struct udphdr) <<
4129                                         E1000_ADVTXD_L4LEN_SHIFT;
4130                         break;
4131                 default:
4132                         if (unlikely(net_ratelimit())) {
4133                                 dev_warn(tx_ring->dev,
4134                                  "partial checksum but l4 proto=%x!\n",
4135                                  l4_hdr);
4136                         }
4137                         break;
4138                 }
4139
4140                 /* update TX checksum flag */
4141                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4142         }
4143
4144         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4145         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4146
4147         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4148 }
4149
4150 static __le32 igb_tx_cmd_type(u32 tx_flags)
4151 {
4152         /* set type for advanced descriptor with frame checksum insertion */
4153         __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4154                                       E1000_ADVTXD_DCMD_IFCS |
4155                                       E1000_ADVTXD_DCMD_DEXT);
4156
4157         /* set HW vlan bit if vlan is present */
4158         if (tx_flags & IGB_TX_FLAGS_VLAN)
4159                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4160
4161 #ifdef CONFIG_IGB_PTP
4162         /* set timestamp bit if present */
4163         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4164                 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4165 #endif /* CONFIG_IGB_PTP */
4166
4167         /* set segmentation bits for TSO */
4168         if (tx_flags & IGB_TX_FLAGS_TSO)
4169                 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4170
4171         return cmd_type;
4172 }
4173
4174 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4175                                  union e1000_adv_tx_desc *tx_desc,
4176                                  u32 tx_flags, unsigned int paylen)
4177 {
4178         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4179
4180         /* 82575 requires a unique index per ring if any offload is enabled */
4181         if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4182             test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4183                 olinfo_status |= tx_ring->reg_idx << 4;
4184
4185         /* insert L4 checksum */
4186         if (tx_flags & IGB_TX_FLAGS_CSUM) {
4187                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4188
4189                 /* insert IPv4 checksum */
4190                 if (tx_flags & IGB_TX_FLAGS_IPV4)
4191                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4192         }
4193
4194         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4195 }
4196
4197 /*
4198  * The largest size we can write to the descriptor is 65535.  In order to
4199  * maintain a power of two alignment we have to limit ourselves to 32K.
4200  */
4201 #define IGB_MAX_TXD_PWR 15
4202 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
4203
4204 static void igb_tx_map(struct igb_ring *tx_ring,
4205                        struct igb_tx_buffer *first,
4206                        const u8 hdr_len)
4207 {
4208         struct sk_buff *skb = first->skb;
4209         struct igb_tx_buffer *tx_buffer;
4210         union e1000_adv_tx_desc *tx_desc;
4211         dma_addr_t dma;
4212         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4213         unsigned int data_len = skb->data_len;
4214         unsigned int size = skb_headlen(skb);
4215         unsigned int paylen = skb->len - hdr_len;
4216         __le32 cmd_type;
4217         u32 tx_flags = first->tx_flags;
4218         u16 i = tx_ring->next_to_use;
4219
4220         tx_desc = IGB_TX_DESC(tx_ring, i);
4221
4222         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4223         cmd_type = igb_tx_cmd_type(tx_flags);
4224
4225         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4226         if (dma_mapping_error(tx_ring->dev, dma))
4227                 goto dma_error;
4228
4229         /* record length, and DMA address */
4230         dma_unmap_len_set(first, len, size);
4231         dma_unmap_addr_set(first, dma, dma);
4232         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4233
4234         for (;;) {
4235                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4236                         tx_desc->read.cmd_type_len =
4237                                 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4238
4239                         i++;
4240                         tx_desc++;
4241                         if (i == tx_ring->count) {
4242                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4243                                 i = 0;
4244                         }
4245
4246                         dma += IGB_MAX_DATA_PER_TXD;
4247                         size -= IGB_MAX_DATA_PER_TXD;
4248
4249                         tx_desc->read.olinfo_status = 0;
4250                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4251                 }
4252
4253                 if (likely(!data_len))
4254                         break;
4255
4256                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4257
4258                 i++;
4259                 tx_desc++;
4260                 if (i == tx_ring->count) {
4261                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4262                         i = 0;
4263                 }
4264
4265                 size = skb_frag_size(frag);
4266                 data_len -= size;
4267
4268                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4269                                    size, DMA_TO_DEVICE);
4270                 if (dma_mapping_error(tx_ring->dev, dma))
4271                         goto dma_error;
4272
4273                 tx_buffer = &tx_ring->tx_buffer_info[i];
4274                 dma_unmap_len_set(tx_buffer, len, size);
4275                 dma_unmap_addr_set(tx_buffer, dma, dma);
4276
4277                 tx_desc->read.olinfo_status = 0;
4278                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4279
4280                 frag++;
4281         }
4282
4283         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4284
4285         /* write last descriptor with RS and EOP bits */
4286         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4287         if (unlikely(skb->no_fcs))
4288                 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4289         tx_desc->read.cmd_type_len = cmd_type;
4290
4291         /* set the timestamp */
4292         first->time_stamp = jiffies;
4293
4294         /*
4295          * Force memory writes to complete before letting h/w know there
4296          * are new descriptors to fetch.  (Only applicable for weak-ordered
4297          * memory model archs, such as IA-64).
4298          *
4299          * We also need this memory barrier to make certain all of the
4300          * status bits have been updated before next_to_watch is written.
4301          */
4302         wmb();
4303
4304         /* set next_to_watch value indicating a packet is present */
4305         first->next_to_watch = tx_desc;
4306
4307         i++;
4308         if (i == tx_ring->count)
4309                 i = 0;
4310
4311         tx_ring->next_to_use = i;
4312
4313         writel(i, tx_ring->tail);
4314
4315         /* we need this if more than one processor can write to our tail
4316          * at a time, it syncronizes IO on IA64/Altix systems */
4317         mmiowb();
4318
4319         return;
4320
4321 dma_error:
4322         dev_err(tx_ring->dev, "TX DMA map failed\n");
4323
4324         /* clear dma mappings for failed tx_buffer_info map */
4325         for (;;) {
4326                 tx_buffer = &tx_ring->tx_buffer_info[i];
4327                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4328                 if (tx_buffer == first)
4329                         break;
4330                 if (i == 0)
4331                         i = tx_ring->count;
4332                 i--;
4333         }
4334
4335         tx_ring->next_to_use = i;
4336 }
4337
4338 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4339 {
4340         struct net_device *netdev = tx_ring->netdev;
4341
4342         netif_stop_subqueue(netdev, tx_ring->queue_index);
4343
4344         /* Herbert's original patch had:
4345          *  smp_mb__after_netif_stop_queue();
4346          * but since that doesn't exist yet, just open code it. */
4347         smp_mb();
4348
4349         /* We need to check again in a case another CPU has just
4350          * made room available. */
4351         if (igb_desc_unused(tx_ring) < size)
4352                 return -EBUSY;
4353
4354         /* A reprieve! */
4355         netif_wake_subqueue(netdev, tx_ring->queue_index);
4356
4357         u64_stats_update_begin(&tx_ring->tx_syncp2);
4358         tx_ring->tx_stats.restart_queue2++;
4359         u64_stats_update_end(&tx_ring->tx_syncp2);
4360
4361         return 0;
4362 }
4363
4364 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4365 {
4366         if (igb_desc_unused(tx_ring) >= size)
4367                 return 0;
4368         return __igb_maybe_stop_tx(tx_ring, size);
4369 }
4370
4371 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4372                                 struct igb_ring *tx_ring)
4373 {
4374 #ifdef CONFIG_IGB_PTP
4375         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4376 #endif /* CONFIG_IGB_PTP */
4377         struct igb_tx_buffer *first;
4378         int tso;
4379         u32 tx_flags = 0;
4380         __be16 protocol = vlan_get_protocol(skb);
4381         u8 hdr_len = 0;
4382
4383         /* need: 1 descriptor per page,
4384          *       + 2 desc gap to keep tail from touching head,
4385          *       + 1 desc for skb->data,
4386          *       + 1 desc for context descriptor,
4387          * otherwise try next time */
4388         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4389                 /* this is a hard error */
4390                 return NETDEV_TX_BUSY;
4391         }
4392
4393         /* record the location of the first descriptor for this packet */
4394         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4395         first->skb = skb;
4396         first->bytecount = skb->len;
4397         first->gso_segs = 1;
4398
4399 #ifdef CONFIG_IGB_PTP
4400         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4401                      !(adapter->ptp_tx_skb))) {
4402                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4403                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4404
4405                 adapter->ptp_tx_skb = skb_get(skb);
4406                 if (adapter->hw.mac.type == e1000_82576)
4407                         schedule_work(&adapter->ptp_tx_work);
4408         }
4409 #endif /* CONFIG_IGB_PTP */
4410
4411         if (vlan_tx_tag_present(skb)) {
4412                 tx_flags |= IGB_TX_FLAGS_VLAN;
4413                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4414         }
4415
4416         /* record initial flags and protocol */
4417         first->tx_flags = tx_flags;
4418         first->protocol = protocol;
4419
4420         tso = igb_tso(tx_ring, first, &hdr_len);
4421         if (tso < 0)
4422                 goto out_drop;
4423         else if (!tso)
4424                 igb_tx_csum(tx_ring, first);
4425
4426         igb_tx_map(tx_ring, first, hdr_len);
4427
4428         /* Make sure there is space in the ring for the next send. */
4429         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4430
4431         return NETDEV_TX_OK;
4432
4433 out_drop:
4434         igb_unmap_and_free_tx_resource(tx_ring, first);
4435
4436         return NETDEV_TX_OK;
4437 }
4438
4439 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4440                                                     struct sk_buff *skb)
4441 {
4442         unsigned int r_idx = skb->queue_mapping;
4443
4444         if (r_idx >= adapter->num_tx_queues)
4445                 r_idx = r_idx % adapter->num_tx_queues;
4446
4447         return adapter->tx_ring[r_idx];
4448 }
4449
4450 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4451                                   struct net_device *netdev)
4452 {
4453         struct igb_adapter *adapter = netdev_priv(netdev);
4454
4455         if (test_bit(__IGB_DOWN, &adapter->state)) {
4456                 dev_kfree_skb_any(skb);
4457                 return NETDEV_TX_OK;
4458         }
4459
4460         if (skb->len <= 0) {
4461                 dev_kfree_skb_any(skb);
4462                 return NETDEV_TX_OK;
4463         }
4464
4465         /*
4466          * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4467          * in order to meet this minimum size requirement.
4468          */
4469         if (unlikely(skb->len < 17)) {
4470                 if (skb_pad(skb, 17 - skb->len))
4471                         return NETDEV_TX_OK;
4472                 skb->len = 17;
4473                 skb_set_tail_pointer(skb, 17);
4474         }
4475
4476         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4477 }
4478
4479 /**
4480  * igb_tx_timeout - Respond to a Tx Hang
4481  * @netdev: network interface device structure
4482  **/
4483 static void igb_tx_timeout(struct net_device *netdev)
4484 {
4485         struct igb_adapter *adapter = netdev_priv(netdev);
4486         struct e1000_hw *hw = &adapter->hw;
4487
4488         /* Do the reset outside of interrupt context */
4489         adapter->tx_timeout_count++;
4490
4491         if (hw->mac.type >= e1000_82580)
4492                 hw->dev_spec._82575.global_device_reset = true;
4493
4494         schedule_work(&adapter->reset_task);
4495         wr32(E1000_EICS,
4496              (adapter->eims_enable_mask & ~adapter->eims_other));
4497 }
4498
4499 static void igb_reset_task(struct work_struct *work)
4500 {
4501         struct igb_adapter *adapter;
4502         adapter = container_of(work, struct igb_adapter, reset_task);
4503
4504         igb_dump(adapter);
4505         netdev_err(adapter->netdev, "Reset adapter\n");
4506         igb_reinit_locked(adapter);
4507 }
4508
4509 /**
4510  * igb_get_stats64 - Get System Network Statistics
4511  * @netdev: network interface device structure
4512  * @stats: rtnl_link_stats64 pointer
4513  *
4514  **/
4515 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4516                                                  struct rtnl_link_stats64 *stats)
4517 {
4518         struct igb_adapter *adapter = netdev_priv(netdev);
4519
4520         spin_lock(&adapter->stats64_lock);
4521         igb_update_stats(adapter, &adapter->stats64);
4522         memcpy(stats, &adapter->stats64, sizeof(*stats));
4523         spin_unlock(&adapter->stats64_lock);
4524
4525         return stats;
4526 }
4527
4528 /**
4529  * igb_change_mtu - Change the Maximum Transfer Unit
4530  * @netdev: network interface device structure
4531  * @new_mtu: new value for maximum frame size
4532  *
4533  * Returns 0 on success, negative on failure
4534  **/
4535 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4536 {
4537         struct igb_adapter *adapter = netdev_priv(netdev);
4538         struct pci_dev *pdev = adapter->pdev;
4539         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4540
4541         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4542                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4543                 return -EINVAL;
4544         }
4545
4546 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4547         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4548                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4549                 return -EINVAL;
4550         }
4551
4552         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4553                 msleep(1);
4554
4555         /* igb_down has a dependency on max_frame_size */
4556         adapter->max_frame_size = max_frame;
4557
4558         if (netif_running(netdev))
4559                 igb_down(adapter);
4560
4561         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4562                  netdev->mtu, new_mtu);
4563         netdev->mtu = new_mtu;
4564
4565         if (netif_running(netdev))
4566                 igb_up(adapter);
4567         else
4568                 igb_reset(adapter);
4569
4570         clear_bit(__IGB_RESETTING, &adapter->state);
4571
4572         return 0;
4573 }
4574
4575 /**
4576  * igb_update_stats - Update the board statistics counters
4577  * @adapter: board private structure
4578  **/
4579
4580 void igb_update_stats(struct igb_adapter *adapter,
4581                       struct rtnl_link_stats64 *net_stats)
4582 {
4583         struct e1000_hw *hw = &adapter->hw;
4584         struct pci_dev *pdev = adapter->pdev;
4585         u32 reg, mpc;
4586         u16 phy_tmp;
4587         int i;
4588         u64 bytes, packets;
4589         unsigned int start;
4590         u64 _bytes, _packets;
4591
4592 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4593
4594         /*
4595          * Prevent stats update while adapter is being reset, or if the pci
4596          * connection is down.
4597          */
4598         if (adapter->link_speed == 0)
4599                 return;
4600         if (pci_channel_offline(pdev))
4601                 return;
4602
4603         bytes = 0;
4604         packets = 0;
4605         for (i = 0; i < adapter->num_rx_queues; i++) {
4606                 u32 rqdpc = rd32(E1000_RQDPC(i));
4607                 struct igb_ring *ring = adapter->rx_ring[i];
4608
4609                 if (rqdpc) {
4610                         ring->rx_stats.drops += rqdpc;
4611                         net_stats->rx_fifo_errors += rqdpc;
4612                 }
4613
4614                 do {
4615                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4616                         _bytes = ring->rx_stats.bytes;
4617                         _packets = ring->rx_stats.packets;
4618                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4619                 bytes += _bytes;
4620                 packets += _packets;
4621         }
4622
4623         net_stats->rx_bytes = bytes;
4624         net_stats->rx_packets = packets;
4625
4626         bytes = 0;
4627         packets = 0;
4628         for (i = 0; i < adapter->num_tx_queues; i++) {
4629                 struct igb_ring *ring = adapter->tx_ring[i];
4630                 do {
4631                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4632                         _bytes = ring->tx_stats.bytes;
4633                         _packets = ring->tx_stats.packets;
4634                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4635                 bytes += _bytes;
4636                 packets += _packets;
4637         }
4638         net_stats->tx_bytes = bytes;
4639         net_stats->tx_packets = packets;
4640
4641         /* read stats registers */
4642         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4643         adapter->stats.gprc += rd32(E1000_GPRC);
4644         adapter->stats.gorc += rd32(E1000_GORCL);
4645         rd32(E1000_GORCH); /* clear GORCL */
4646         adapter->stats.bprc += rd32(E1000_BPRC);
4647         adapter->stats.mprc += rd32(E1000_MPRC);
4648         adapter->stats.roc += rd32(E1000_ROC);
4649
4650         adapter->stats.prc64 += rd32(E1000_PRC64);
4651         adapter->stats.prc127 += rd32(E1000_PRC127);
4652         adapter->stats.prc255 += rd32(E1000_PRC255);
4653         adapter->stats.prc511 += rd32(E1000_PRC511);
4654         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4655         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4656         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4657         adapter->stats.sec += rd32(E1000_SEC);
4658
4659         mpc = rd32(E1000_MPC);
4660         adapter->stats.mpc += mpc;
4661         net_stats->rx_fifo_errors += mpc;
4662         adapter->stats.scc += rd32(E1000_SCC);
4663         adapter->stats.ecol += rd32(E1000_ECOL);
4664         adapter->stats.mcc += rd32(E1000_MCC);
4665         adapter->stats.latecol += rd32(E1000_LATECOL);
4666         adapter->stats.dc += rd32(E1000_DC);
4667         adapter->stats.rlec += rd32(E1000_RLEC);
4668         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4669         adapter->stats.xontxc += rd32(E1000_XONTXC);
4670         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4671         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4672         adapter->stats.fcruc += rd32(E1000_FCRUC);
4673         adapter->stats.gptc += rd32(E1000_GPTC);
4674         adapter->stats.gotc += rd32(E1000_GOTCL);
4675         rd32(E1000_GOTCH); /* clear GOTCL */
4676         adapter->stats.rnbc += rd32(E1000_RNBC);
4677         adapter->stats.ruc += rd32(E1000_RUC);
4678         adapter->stats.rfc += rd32(E1000_RFC);
4679         adapter->stats.rjc += rd32(E1000_RJC);
4680         adapter->stats.tor += rd32(E1000_TORH);
4681         adapter->stats.tot += rd32(E1000_TOTH);
4682         adapter->stats.tpr += rd32(E1000_TPR);
4683
4684         adapter->stats.ptc64 += rd32(E1000_PTC64);
4685         adapter->stats.ptc127 += rd32(E1000_PTC127);
4686         adapter->stats.ptc255 += rd32(E1000_PTC255);
4687         adapter->stats.ptc511 += rd32(E1000_PTC511);
4688         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4689         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4690
4691         adapter->stats.mptc += rd32(E1000_MPTC);
4692         adapter->stats.bptc += rd32(E1000_BPTC);
4693
4694         adapter->stats.tpt += rd32(E1000_TPT);
4695         adapter->stats.colc += rd32(E1000_COLC);
4696
4697         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4698         /* read internal phy specific stats */
4699         reg = rd32(E1000_CTRL_EXT);
4700         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4701                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4702
4703                 /* this stat has invalid values on i210/i211 */
4704                 if ((hw->mac.type != e1000_i210) &&
4705                     (hw->mac.type != e1000_i211))
4706                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4707         }
4708
4709         adapter->stats.tsctc += rd32(E1000_TSCTC);
4710         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4711
4712         adapter->stats.iac += rd32(E1000_IAC);
4713         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4714         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4715         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4716         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4717         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4718         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4719         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4720         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4721
4722         /* Fill out the OS statistics structure */
4723         net_stats->multicast = adapter->stats.mprc;
4724         net_stats->collisions = adapter->stats.colc;
4725
4726         /* Rx Errors */
4727
4728         /* RLEC on some newer hardware can be incorrect so build
4729          * our own version based on RUC and ROC */
4730         net_stats->rx_errors = adapter->stats.rxerrc +
4731                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4732                 adapter->stats.ruc + adapter->stats.roc +
4733                 adapter->stats.cexterr;
4734         net_stats->rx_length_errors = adapter->stats.ruc +
4735                                       adapter->stats.roc;
4736         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4737         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4738         net_stats->rx_missed_errors = adapter->stats.mpc;
4739
4740         /* Tx Errors */
4741         net_stats->tx_errors = adapter->stats.ecol +
4742                                adapter->stats.latecol;
4743         net_stats->tx_aborted_errors = adapter->stats.ecol;
4744         net_stats->tx_window_errors = adapter->stats.latecol;
4745         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4746
4747         /* Tx Dropped needs to be maintained elsewhere */
4748
4749         /* Phy Stats */
4750         if (hw->phy.media_type == e1000_media_type_copper) {
4751                 if ((adapter->link_speed == SPEED_1000) &&
4752                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4753                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4754                         adapter->phy_stats.idle_errors += phy_tmp;
4755                 }
4756         }
4757
4758         /* Management Stats */
4759         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4760         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4761         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4762
4763         /* OS2BMC Stats */
4764         reg = rd32(E1000_MANC);
4765         if (reg & E1000_MANC_EN_BMC2OS) {
4766                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4767                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4768                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4769                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4770         }
4771 }
4772
4773 static irqreturn_t igb_msix_other(int irq, void *data)
4774 {
4775         struct igb_adapter *adapter = data;
4776         struct e1000_hw *hw = &adapter->hw;
4777         u32 icr = rd32(E1000_ICR);
4778         /* reading ICR causes bit 31 of EICR to be cleared */
4779
4780         if (icr & E1000_ICR_DRSTA)
4781                 schedule_work(&adapter->reset_task);
4782
4783         if (icr & E1000_ICR_DOUTSYNC) {
4784                 /* HW is reporting DMA is out of sync */
4785                 adapter->stats.doosync++;
4786                 /* The DMA Out of Sync is also indication of a spoof event
4787                  * in IOV mode. Check the Wrong VM Behavior register to
4788                  * see if it is really a spoof event. */
4789                 igb_check_wvbr(adapter);
4790         }
4791
4792         /* Check for a mailbox event */
4793         if (icr & E1000_ICR_VMMB)
4794                 igb_msg_task(adapter);
4795
4796         if (icr & E1000_ICR_LSC) {
4797                 hw->mac.get_link_status = 1;
4798                 /* guard against interrupt when we're going down */
4799                 if (!test_bit(__IGB_DOWN, &adapter->state))
4800                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4801         }
4802
4803 #ifdef CONFIG_IGB_PTP
4804         if (icr & E1000_ICR_TS) {
4805                 u32 tsicr = rd32(E1000_TSICR);
4806
4807                 if (tsicr & E1000_TSICR_TXTS) {
4808                         /* acknowledge the interrupt */
4809                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
4810                         /* retrieve hardware timestamp */
4811                         schedule_work(&adapter->ptp_tx_work);
4812                 }
4813         }
4814 #endif /* CONFIG_IGB_PTP */
4815
4816         wr32(E1000_EIMS, adapter->eims_other);
4817
4818         return IRQ_HANDLED;
4819 }
4820
4821 static void igb_write_itr(struct igb_q_vector *q_vector)
4822 {
4823         struct igb_adapter *adapter = q_vector->adapter;
4824         u32 itr_val = q_vector->itr_val & 0x7FFC;
4825
4826         if (!q_vector->set_itr)
4827                 return;
4828
4829         if (!itr_val)
4830                 itr_val = 0x4;
4831
4832         if (adapter->hw.mac.type == e1000_82575)
4833                 itr_val |= itr_val << 16;
4834         else
4835                 itr_val |= E1000_EITR_CNT_IGNR;
4836
4837         writel(itr_val, q_vector->itr_register);
4838         q_vector->set_itr = 0;
4839 }
4840
4841 static irqreturn_t igb_msix_ring(int irq, void *data)
4842 {
4843         struct igb_q_vector *q_vector = data;
4844
4845         /* Write the ITR value calculated from the previous interrupt. */
4846         igb_write_itr(q_vector);
4847
4848         napi_schedule(&q_vector->napi);
4849
4850         return IRQ_HANDLED;
4851 }
4852
4853 #ifdef CONFIG_IGB_DCA
4854 static void igb_update_tx_dca(struct igb_adapter *adapter,
4855                               struct igb_ring *tx_ring,
4856                               int cpu)
4857 {
4858         struct e1000_hw *hw = &adapter->hw;
4859         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4860
4861         if (hw->mac.type != e1000_82575)
4862                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4863
4864         /*
4865          * We can enable relaxed ordering for reads, but not writes when
4866          * DCA is enabled.  This is due to a known issue in some chipsets
4867          * which will cause the DCA tag to be cleared.
4868          */
4869         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4870                   E1000_DCA_TXCTRL_DATA_RRO_EN |
4871                   E1000_DCA_TXCTRL_DESC_DCA_EN;
4872
4873         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4874 }
4875
4876 static void igb_update_rx_dca(struct igb_adapter *adapter,
4877                               struct igb_ring *rx_ring,
4878                               int cpu)
4879 {
4880         struct e1000_hw *hw = &adapter->hw;
4881         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4882
4883         if (hw->mac.type != e1000_82575)
4884                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4885
4886         /*
4887          * We can enable relaxed ordering for reads, but not writes when
4888          * DCA is enabled.  This is due to a known issue in some chipsets
4889          * which will cause the DCA tag to be cleared.
4890          */
4891         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4892                   E1000_DCA_RXCTRL_DESC_DCA_EN;
4893
4894         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4895 }
4896
4897 static void igb_update_dca(struct igb_q_vector *q_vector)
4898 {
4899         struct igb_adapter *adapter = q_vector->adapter;
4900         int cpu = get_cpu();
4901
4902         if (q_vector->cpu == cpu)
4903                 goto out_no_update;
4904
4905         if (q_vector->tx.ring)
4906                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4907
4908         if (q_vector->rx.ring)
4909                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4910
4911         q_vector->cpu = cpu;
4912 out_no_update:
4913         put_cpu();
4914 }
4915
4916 static void igb_setup_dca(struct igb_adapter *adapter)
4917 {
4918         struct e1000_hw *hw = &adapter->hw;
4919         int i;
4920
4921         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4922                 return;
4923
4924         /* Always use CB2 mode, difference is masked in the CB driver. */
4925         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4926
4927         for (i = 0; i < adapter->num_q_vectors; i++) {
4928                 adapter->q_vector[i]->cpu = -1;
4929                 igb_update_dca(adapter->q_vector[i]);
4930         }
4931 }
4932
4933 static int __igb_notify_dca(struct device *dev, void *data)
4934 {
4935         struct net_device *netdev = dev_get_drvdata(dev);
4936         struct igb_adapter *adapter = netdev_priv(netdev);
4937         struct pci_dev *pdev = adapter->pdev;
4938         struct e1000_hw *hw = &adapter->hw;
4939         unsigned long event = *(unsigned long *)data;
4940
4941         switch (event) {
4942         case DCA_PROVIDER_ADD:
4943                 /* if already enabled, don't do it again */
4944                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4945                         break;
4946                 if (dca_add_requester(dev) == 0) {
4947                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4948                         dev_info(&pdev->dev, "DCA enabled\n");
4949                         igb_setup_dca(adapter);
4950                         break;
4951                 }
4952                 /* Fall Through since DCA is disabled. */
4953         case DCA_PROVIDER_REMOVE:
4954                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4955                         /* without this a class_device is left
4956                          * hanging around in the sysfs model */
4957                         dca_remove_requester(dev);
4958                         dev_info(&pdev->dev, "DCA disabled\n");
4959                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4960                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4961                 }
4962                 break;
4963         }
4964
4965         return 0;
4966 }
4967
4968 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4969                           void *p)
4970 {
4971         int ret_val;
4972
4973         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4974                                          __igb_notify_dca);
4975
4976         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4977 }
4978 #endif /* CONFIG_IGB_DCA */
4979
4980 #ifdef CONFIG_PCI_IOV
4981 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4982 {
4983         unsigned char mac_addr[ETH_ALEN];
4984
4985         eth_random_addr(mac_addr);
4986         igb_set_vf_mac(adapter, vf, mac_addr);
4987
4988         return 0;
4989 }
4990
4991 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4992 {
4993         struct pci_dev *pdev = adapter->pdev;
4994         struct pci_dev *vfdev;
4995         int dev_id;
4996
4997         switch (adapter->hw.mac.type) {
4998         case e1000_82576:
4999                 dev_id = IGB_82576_VF_DEV_ID;
5000                 break;
5001         case e1000_i350:
5002                 dev_id = IGB_I350_VF_DEV_ID;
5003                 break;
5004         default:
5005                 return false;
5006         }
5007
5008         /* loop through all the VFs to see if we own any that are assigned */
5009         vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5010         while (vfdev) {
5011                 /* if we don't own it we don't care */
5012                 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5013                         /* if it is assigned we cannot release it */
5014                         if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5015                                 return true;
5016                 }
5017
5018                 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5019         }
5020
5021         return false;
5022 }
5023
5024 #endif
5025 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5026 {
5027         struct e1000_hw *hw = &adapter->hw;
5028         u32 ping;
5029         int i;
5030
5031         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5032                 ping = E1000_PF_CONTROL_MSG;
5033                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5034                         ping |= E1000_VT_MSGTYPE_CTS;
5035                 igb_write_mbx(hw, &ping, 1, i);
5036         }
5037 }
5038
5039 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5040 {
5041         struct e1000_hw *hw = &adapter->hw;
5042         u32 vmolr = rd32(E1000_VMOLR(vf));
5043         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5044
5045         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5046                             IGB_VF_FLAG_MULTI_PROMISC);
5047         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5048
5049         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5050                 vmolr |= E1000_VMOLR_MPME;
5051                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5052                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5053         } else {
5054                 /*
5055                  * if we have hashes and we are clearing a multicast promisc
5056                  * flag we need to write the hashes to the MTA as this step
5057                  * was previously skipped
5058                  */
5059                 if (vf_data->num_vf_mc_hashes > 30) {
5060                         vmolr |= E1000_VMOLR_MPME;
5061                 } else if (vf_data->num_vf_mc_hashes) {
5062                         int j;
5063                         vmolr |= E1000_VMOLR_ROMPE;
5064                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5065                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5066                 }
5067         }
5068
5069         wr32(E1000_VMOLR(vf), vmolr);
5070
5071         /* there are flags left unprocessed, likely not supported */
5072         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5073                 return -EINVAL;
5074
5075         return 0;
5076
5077 }
5078
5079 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5080                                   u32 *msgbuf, u32 vf)
5081 {
5082         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5083         u16 *hash_list = (u16 *)&msgbuf[1];
5084         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5085         int i;
5086
5087         /* salt away the number of multicast addresses assigned
5088          * to this VF for later use to restore when the PF multi cast
5089          * list changes
5090          */
5091         vf_data->num_vf_mc_hashes = n;
5092
5093         /* only up to 30 hash values supported */
5094         if (n > 30)
5095                 n = 30;
5096
5097         /* store the hashes for later use */
5098         for (i = 0; i < n; i++)
5099                 vf_data->vf_mc_hashes[i] = hash_list[i];
5100
5101         /* Flush and reset the mta with the new values */
5102         igb_set_rx_mode(adapter->netdev);
5103
5104         return 0;
5105 }
5106
5107 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5108 {
5109         struct e1000_hw *hw = &adapter->hw;
5110         struct vf_data_storage *vf_data;
5111         int i, j;
5112
5113         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5114                 u32 vmolr = rd32(E1000_VMOLR(i));
5115                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5116
5117                 vf_data = &adapter->vf_data[i];
5118
5119                 if ((vf_data->num_vf_mc_hashes > 30) ||
5120                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5121                         vmolr |= E1000_VMOLR_MPME;
5122                 } else if (vf_data->num_vf_mc_hashes) {
5123                         vmolr |= E1000_VMOLR_ROMPE;
5124                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5125                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5126                 }
5127                 wr32(E1000_VMOLR(i), vmolr);
5128         }
5129 }
5130
5131 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5132 {
5133         struct e1000_hw *hw = &adapter->hw;
5134         u32 pool_mask, reg, vid;
5135         int i;
5136
5137         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5138
5139         /* Find the vlan filter for this id */
5140         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5141                 reg = rd32(E1000_VLVF(i));
5142
5143                 /* remove the vf from the pool */
5144                 reg &= ~pool_mask;
5145
5146                 /* if pool is empty then remove entry from vfta */
5147                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5148                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5149                         reg = 0;
5150                         vid = reg & E1000_VLVF_VLANID_MASK;
5151                         igb_vfta_set(hw, vid, false);
5152                 }
5153
5154                 wr32(E1000_VLVF(i), reg);
5155         }
5156
5157         adapter->vf_data[vf].vlans_enabled = 0;
5158 }
5159
5160 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5161 {
5162         struct e1000_hw *hw = &adapter->hw;
5163         u32 reg, i;
5164
5165         /* The vlvf table only exists on 82576 hardware and newer */
5166         if (hw->mac.type < e1000_82576)
5167                 return -1;
5168
5169         /* we only need to do this if VMDq is enabled */
5170         if (!adapter->vfs_allocated_count)
5171                 return -1;
5172
5173         /* Find the vlan filter for this id */
5174         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5175                 reg = rd32(E1000_VLVF(i));
5176                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5177                     vid == (reg & E1000_VLVF_VLANID_MASK))
5178                         break;
5179         }
5180
5181         if (add) {
5182                 if (i == E1000_VLVF_ARRAY_SIZE) {
5183                         /* Did not find a matching VLAN ID entry that was
5184                          * enabled.  Search for a free filter entry, i.e.
5185                          * one without the enable bit set
5186                          */
5187                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5188                                 reg = rd32(E1000_VLVF(i));
5189                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5190                                         break;
5191                         }
5192                 }
5193                 if (i < E1000_VLVF_ARRAY_SIZE) {
5194                         /* Found an enabled/available entry */
5195                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5196
5197                         /* if !enabled we need to set this up in vfta */
5198                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5199                                 /* add VID to filter table */
5200                                 igb_vfta_set(hw, vid, true);
5201                                 reg |= E1000_VLVF_VLANID_ENABLE;
5202                         }
5203                         reg &= ~E1000_VLVF_VLANID_MASK;
5204                         reg |= vid;
5205                         wr32(E1000_VLVF(i), reg);
5206
5207                         /* do not modify RLPML for PF devices */
5208                         if (vf >= adapter->vfs_allocated_count)
5209                                 return 0;
5210
5211                         if (!adapter->vf_data[vf].vlans_enabled) {
5212                                 u32 size;
5213                                 reg = rd32(E1000_VMOLR(vf));
5214                                 size = reg & E1000_VMOLR_RLPML_MASK;
5215                                 size += 4;
5216                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5217                                 reg |= size;
5218                                 wr32(E1000_VMOLR(vf), reg);
5219                         }
5220
5221                         adapter->vf_data[vf].vlans_enabled++;
5222                 }
5223         } else {
5224                 if (i < E1000_VLVF_ARRAY_SIZE) {
5225                         /* remove vf from the pool */
5226                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5227                         /* if pool is empty then remove entry from vfta */
5228                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5229                                 reg = 0;
5230                                 igb_vfta_set(hw, vid, false);
5231                         }
5232                         wr32(E1000_VLVF(i), reg);
5233
5234                         /* do not modify RLPML for PF devices */
5235                         if (vf >= adapter->vfs_allocated_count)
5236                                 return 0;
5237
5238                         adapter->vf_data[vf].vlans_enabled--;
5239                         if (!adapter->vf_data[vf].vlans_enabled) {
5240                                 u32 size;
5241                                 reg = rd32(E1000_VMOLR(vf));
5242                                 size = reg & E1000_VMOLR_RLPML_MASK;
5243                                 size -= 4;
5244                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5245                                 reg |= size;
5246                                 wr32(E1000_VMOLR(vf), reg);
5247                         }
5248                 }
5249         }
5250         return 0;
5251 }
5252
5253 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5254 {
5255         struct e1000_hw *hw = &adapter->hw;
5256
5257         if (vid)
5258                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5259         else
5260                 wr32(E1000_VMVIR(vf), 0);
5261 }
5262
5263 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5264                                int vf, u16 vlan, u8 qos)
5265 {
5266         int err = 0;
5267         struct igb_adapter *adapter = netdev_priv(netdev);
5268
5269         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5270                 return -EINVAL;
5271         if (vlan || qos) {
5272                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5273                 if (err)
5274                         goto out;
5275                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5276                 igb_set_vmolr(adapter, vf, !vlan);
5277                 adapter->vf_data[vf].pf_vlan = vlan;
5278                 adapter->vf_data[vf].pf_qos = qos;
5279                 dev_info(&adapter->pdev->dev,
5280                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5281                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5282                         dev_warn(&adapter->pdev->dev,
5283                                  "The VF VLAN has been set,"
5284                                  " but the PF device is not up.\n");
5285                         dev_warn(&adapter->pdev->dev,
5286                                  "Bring the PF device up before"
5287                                  " attempting to use the VF device.\n");
5288                 }
5289         } else {
5290                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5291                                    false, vf);
5292                 igb_set_vmvir(adapter, vlan, vf);
5293                 igb_set_vmolr(adapter, vf, true);
5294                 adapter->vf_data[vf].pf_vlan = 0;
5295                 adapter->vf_data[vf].pf_qos = 0;
5296        }
5297 out:
5298        return err;
5299 }
5300
5301 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5302 {
5303         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5304         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5305
5306         return igb_vlvf_set(adapter, vid, add, vf);
5307 }
5308
5309 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5310 {
5311         /* clear flags - except flag that indicates PF has set the MAC */
5312         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5313         adapter->vf_data[vf].last_nack = jiffies;
5314
5315         /* reset offloads to defaults */
5316         igb_set_vmolr(adapter, vf, true);
5317
5318         /* reset vlans for device */
5319         igb_clear_vf_vfta(adapter, vf);
5320         if (adapter->vf_data[vf].pf_vlan)
5321                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5322                                     adapter->vf_data[vf].pf_vlan,
5323                                     adapter->vf_data[vf].pf_qos);
5324         else
5325                 igb_clear_vf_vfta(adapter, vf);
5326
5327         /* reset multicast table array for vf */
5328         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5329
5330         /* Flush and reset the mta with the new values */
5331         igb_set_rx_mode(adapter->netdev);
5332 }
5333
5334 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5335 {
5336         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5337
5338         /* generate a new mac address as we were hotplug removed/added */
5339         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5340                 eth_random_addr(vf_mac);
5341
5342         /* process remaining reset events */
5343         igb_vf_reset(adapter, vf);
5344 }
5345
5346 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5347 {
5348         struct e1000_hw *hw = &adapter->hw;
5349         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5350         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5351         u32 reg, msgbuf[3];
5352         u8 *addr = (u8 *)(&msgbuf[1]);
5353
5354         /* process all the same items cleared in a function level reset */
5355         igb_vf_reset(adapter, vf);
5356
5357         /* set vf mac address */
5358         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5359
5360         /* enable transmit and receive for vf */
5361         reg = rd32(E1000_VFTE);
5362         wr32(E1000_VFTE, reg | (1 << vf));
5363         reg = rd32(E1000_VFRE);
5364         wr32(E1000_VFRE, reg | (1 << vf));
5365
5366         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5367
5368         /* reply to reset with ack and vf mac address */
5369         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5370         memcpy(addr, vf_mac, 6);
5371         igb_write_mbx(hw, msgbuf, 3, vf);
5372 }
5373
5374 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5375 {
5376         /*
5377          * The VF MAC Address is stored in a packed array of bytes
5378          * starting at the second 32 bit word of the msg array
5379          */
5380         unsigned char *addr = (char *)&msg[1];
5381         int err = -1;
5382
5383         if (is_valid_ether_addr(addr))
5384                 err = igb_set_vf_mac(adapter, vf, addr);
5385
5386         return err;
5387 }
5388
5389 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5390 {
5391         struct e1000_hw *hw = &adapter->hw;
5392         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5393         u32 msg = E1000_VT_MSGTYPE_NACK;
5394
5395         /* if device isn't clear to send it shouldn't be reading either */
5396         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5397             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5398                 igb_write_mbx(hw, &msg, 1, vf);
5399                 vf_data->last_nack = jiffies;
5400         }
5401 }
5402
5403 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5404 {
5405         struct pci_dev *pdev = adapter->pdev;
5406         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5407         struct e1000_hw *hw = &adapter->hw;
5408         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5409         s32 retval;
5410
5411         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5412
5413         if (retval) {
5414                 /* if receive failed revoke VF CTS stats and restart init */
5415                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5416                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5417                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5418                         return;
5419                 goto out;
5420         }
5421
5422         /* this is a message we already processed, do nothing */
5423         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5424                 return;
5425
5426         /*
5427          * until the vf completes a reset it should not be
5428          * allowed to start any configuration.
5429          */
5430
5431         if (msgbuf[0] == E1000_VF_RESET) {
5432                 igb_vf_reset_msg(adapter, vf);
5433                 return;
5434         }
5435
5436         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5437                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5438                         return;
5439                 retval = -1;
5440                 goto out;
5441         }
5442
5443         switch ((msgbuf[0] & 0xFFFF)) {
5444         case E1000_VF_SET_MAC_ADDR:
5445                 retval = -EINVAL;
5446                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5447                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5448                 else
5449                         dev_warn(&pdev->dev,
5450                                  "VF %d attempted to override administratively "
5451                                  "set MAC address\nReload the VF driver to "
5452                                  "resume operations\n", vf);
5453                 break;
5454         case E1000_VF_SET_PROMISC:
5455                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5456                 break;
5457         case E1000_VF_SET_MULTICAST:
5458                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5459                 break;
5460         case E1000_VF_SET_LPE:
5461                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5462                 break;
5463         case E1000_VF_SET_VLAN:
5464                 retval = -1;
5465                 if (vf_data->pf_vlan)
5466                         dev_warn(&pdev->dev,
5467                                  "VF %d attempted to override administratively "
5468                                  "set VLAN tag\nReload the VF driver to "
5469                                  "resume operations\n", vf);
5470                 else
5471                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5472                 break;
5473         default:
5474                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5475                 retval = -1;
5476                 break;
5477         }
5478
5479         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5480 out:
5481         /* notify the VF of the results of what it sent us */
5482         if (retval)
5483                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5484         else
5485                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5486
5487         igb_write_mbx(hw, msgbuf, 1, vf);
5488 }
5489
5490 static void igb_msg_task(struct igb_adapter *adapter)
5491 {
5492         struct e1000_hw *hw = &adapter->hw;
5493         u32 vf;
5494
5495         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5496                 /* process any reset requests */
5497                 if (!igb_check_for_rst(hw, vf))
5498                         igb_vf_reset_event(adapter, vf);
5499
5500                 /* process any messages pending */
5501                 if (!igb_check_for_msg(hw, vf))
5502                         igb_rcv_msg_from_vf(adapter, vf);
5503
5504                 /* process any acks */
5505                 if (!igb_check_for_ack(hw, vf))
5506                         igb_rcv_ack_from_vf(adapter, vf);
5507         }
5508 }
5509
5510 /**
5511  *  igb_set_uta - Set unicast filter table address
5512  *  @adapter: board private structure
5513  *
5514  *  The unicast table address is a register array of 32-bit registers.
5515  *  The table is meant to be used in a way similar to how the MTA is used
5516  *  however due to certain limitations in the hardware it is necessary to
5517  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5518  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5519  **/
5520 static void igb_set_uta(struct igb_adapter *adapter)
5521 {
5522         struct e1000_hw *hw = &adapter->hw;
5523         int i;
5524
5525         /* The UTA table only exists on 82576 hardware and newer */
5526         if (hw->mac.type < e1000_82576)
5527                 return;
5528
5529         /* we only need to do this if VMDq is enabled */
5530         if (!adapter->vfs_allocated_count)
5531                 return;
5532
5533         for (i = 0; i < hw->mac.uta_reg_count; i++)
5534                 array_wr32(E1000_UTA, i, ~0);
5535 }
5536
5537 /**
5538  * igb_intr_msi - Interrupt Handler
5539  * @irq: interrupt number
5540  * @data: pointer to a network interface device structure
5541  **/
5542 static irqreturn_t igb_intr_msi(int irq, void *data)
5543 {
5544         struct igb_adapter *adapter = data;
5545         struct igb_q_vector *q_vector = adapter->q_vector[0];
5546         struct e1000_hw *hw = &adapter->hw;
5547         /* read ICR disables interrupts using IAM */
5548         u32 icr = rd32(E1000_ICR);
5549
5550         igb_write_itr(q_vector);
5551
5552         if (icr & E1000_ICR_DRSTA)
5553                 schedule_work(&adapter->reset_task);
5554
5555         if (icr & E1000_ICR_DOUTSYNC) {
5556                 /* HW is reporting DMA is out of sync */
5557                 adapter->stats.doosync++;
5558         }
5559
5560         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5561                 hw->mac.get_link_status = 1;
5562                 if (!test_bit(__IGB_DOWN, &adapter->state))
5563                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5564         }
5565
5566 #ifdef CONFIG_IGB_PTP
5567         if (icr & E1000_ICR_TS) {
5568                 u32 tsicr = rd32(E1000_TSICR);
5569
5570                 if (tsicr & E1000_TSICR_TXTS) {
5571                         /* acknowledge the interrupt */
5572                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5573                         /* retrieve hardware timestamp */
5574                         schedule_work(&adapter->ptp_tx_work);
5575                 }
5576         }
5577 #endif /* CONFIG_IGB_PTP */
5578
5579         napi_schedule(&q_vector->napi);
5580
5581         return IRQ_HANDLED;
5582 }
5583
5584 /**
5585  * igb_intr - Legacy Interrupt Handler
5586  * @irq: interrupt number
5587  * @data: pointer to a network interface device structure
5588  **/
5589 static irqreturn_t igb_intr(int irq, void *data)
5590 {
5591         struct igb_adapter *adapter = data;
5592         struct igb_q_vector *q_vector = adapter->q_vector[0];
5593         struct e1000_hw *hw = &adapter->hw;
5594         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5595          * need for the IMC write */
5596         u32 icr = rd32(E1000_ICR);
5597
5598         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5599          * not set, then the adapter didn't send an interrupt */
5600         if (!(icr & E1000_ICR_INT_ASSERTED))
5601                 return IRQ_NONE;
5602
5603         igb_write_itr(q_vector);
5604
5605         if (icr & E1000_ICR_DRSTA)
5606                 schedule_work(&adapter->reset_task);
5607
5608         if (icr & E1000_ICR_DOUTSYNC) {
5609                 /* HW is reporting DMA is out of sync */
5610                 adapter->stats.doosync++;
5611         }
5612
5613         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5614                 hw->mac.get_link_status = 1;
5615                 /* guard against interrupt when we're going down */
5616                 if (!test_bit(__IGB_DOWN, &adapter->state))
5617                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5618         }
5619
5620 #ifdef CONFIG_IGB_PTP
5621         if (icr & E1000_ICR_TS) {
5622                 u32 tsicr = rd32(E1000_TSICR);
5623
5624                 if (tsicr & E1000_TSICR_TXTS) {
5625                         /* acknowledge the interrupt */
5626                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5627                         /* retrieve hardware timestamp */
5628                         schedule_work(&adapter->ptp_tx_work);
5629                 }
5630         }
5631 #endif /* CONFIG_IGB_PTP */
5632
5633         napi_schedule(&q_vector->napi);
5634
5635         return IRQ_HANDLED;
5636 }
5637
5638 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5639 {
5640         struct igb_adapter *adapter = q_vector->adapter;
5641         struct e1000_hw *hw = &adapter->hw;
5642
5643         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5644             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5645                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5646                         igb_set_itr(q_vector);
5647                 else
5648                         igb_update_ring_itr(q_vector);
5649         }
5650
5651         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5652                 if (adapter->msix_entries)
5653                         wr32(E1000_EIMS, q_vector->eims_value);
5654                 else
5655                         igb_irq_enable(adapter);
5656         }
5657 }
5658
5659 /**
5660  * igb_poll - NAPI Rx polling callback
5661  * @napi: napi polling structure
5662  * @budget: count of how many packets we should handle
5663  **/
5664 static int igb_poll(struct napi_struct *napi, int budget)
5665 {
5666         struct igb_q_vector *q_vector = container_of(napi,
5667                                                      struct igb_q_vector,
5668                                                      napi);
5669         bool clean_complete = true;
5670
5671 #ifdef CONFIG_IGB_DCA
5672         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5673                 igb_update_dca(q_vector);
5674 #endif
5675         if (q_vector->tx.ring)
5676                 clean_complete = igb_clean_tx_irq(q_vector);
5677
5678         if (q_vector->rx.ring)
5679                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5680
5681         /* If all work not completed, return budget and keep polling */
5682         if (!clean_complete)
5683                 return budget;
5684
5685         /* If not enough Rx work done, exit the polling mode */
5686         napi_complete(napi);
5687         igb_ring_irq_enable(q_vector);
5688
5689         return 0;
5690 }
5691
5692 /**
5693  * igb_clean_tx_irq - Reclaim resources after transmit completes
5694  * @q_vector: pointer to q_vector containing needed info
5695  *
5696  * returns true if ring is completely cleaned
5697  **/
5698 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5699 {
5700         struct igb_adapter *adapter = q_vector->adapter;
5701         struct igb_ring *tx_ring = q_vector->tx.ring;
5702         struct igb_tx_buffer *tx_buffer;
5703         union e1000_adv_tx_desc *tx_desc;
5704         unsigned int total_bytes = 0, total_packets = 0;
5705         unsigned int budget = q_vector->tx.work_limit;
5706         unsigned int i = tx_ring->next_to_clean;
5707
5708         if (test_bit(__IGB_DOWN, &adapter->state))
5709                 return true;
5710
5711         tx_buffer = &tx_ring->tx_buffer_info[i];
5712         tx_desc = IGB_TX_DESC(tx_ring, i);
5713         i -= tx_ring->count;
5714
5715         do {
5716                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5717
5718                 /* if next_to_watch is not set then there is no work pending */
5719                 if (!eop_desc)
5720                         break;
5721
5722                 /* prevent any other reads prior to eop_desc */
5723                 rmb();
5724
5725                 /* if DD is not set pending work has not been completed */
5726                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5727                         break;
5728
5729                 /* clear next_to_watch to prevent false hangs */
5730                 tx_buffer->next_to_watch = NULL;
5731
5732                 /* update the statistics for this packet */
5733                 total_bytes += tx_buffer->bytecount;
5734                 total_packets += tx_buffer->gso_segs;
5735
5736                 /* free the skb */
5737                 dev_kfree_skb_any(tx_buffer->skb);
5738
5739                 /* unmap skb header data */
5740                 dma_unmap_single(tx_ring->dev,
5741                                  dma_unmap_addr(tx_buffer, dma),
5742                                  dma_unmap_len(tx_buffer, len),
5743                                  DMA_TO_DEVICE);
5744
5745                 /* clear tx_buffer data */
5746                 tx_buffer->skb = NULL;
5747                 dma_unmap_len_set(tx_buffer, len, 0);
5748
5749                 /* clear last DMA location and unmap remaining buffers */
5750                 while (tx_desc != eop_desc) {
5751                         tx_buffer++;
5752                         tx_desc++;
5753                         i++;
5754                         if (unlikely(!i)) {
5755                                 i -= tx_ring->count;
5756                                 tx_buffer = tx_ring->tx_buffer_info;
5757                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5758                         }
5759
5760                         /* unmap any remaining paged data */
5761                         if (dma_unmap_len(tx_buffer, len)) {
5762                                 dma_unmap_page(tx_ring->dev,
5763                                                dma_unmap_addr(tx_buffer, dma),
5764                                                dma_unmap_len(tx_buffer, len),
5765                                                DMA_TO_DEVICE);
5766                                 dma_unmap_len_set(tx_buffer, len, 0);
5767                         }
5768                 }
5769
5770                 /* move us one more past the eop_desc for start of next pkt */
5771                 tx_buffer++;
5772                 tx_desc++;
5773                 i++;
5774                 if (unlikely(!i)) {
5775                         i -= tx_ring->count;
5776                         tx_buffer = tx_ring->tx_buffer_info;
5777                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5778                 }
5779
5780                 /* issue prefetch for next Tx descriptor */
5781                 prefetch(tx_desc);
5782
5783                 /* update budget accounting */
5784                 budget--;
5785         } while (likely(budget));
5786
5787         netdev_tx_completed_queue(txring_txq(tx_ring),
5788                                   total_packets, total_bytes);
5789         i += tx_ring->count;
5790         tx_ring->next_to_clean = i;
5791         u64_stats_update_begin(&tx_ring->tx_syncp);
5792         tx_ring->tx_stats.bytes += total_bytes;
5793         tx_ring->tx_stats.packets += total_packets;
5794         u64_stats_update_end(&tx_ring->tx_syncp);
5795         q_vector->tx.total_bytes += total_bytes;
5796         q_vector->tx.total_packets += total_packets;
5797
5798         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5799                 struct e1000_hw *hw = &adapter->hw;
5800
5801                 /* Detect a transmit hang in hardware, this serializes the
5802                  * check with the clearing of time_stamp and movement of i */
5803                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5804                 if (tx_buffer->next_to_watch &&
5805                     time_after(jiffies, tx_buffer->time_stamp +
5806                                (adapter->tx_timeout_factor * HZ)) &&
5807                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5808
5809                         /* detected Tx unit hang */
5810                         dev_err(tx_ring->dev,
5811                                 "Detected Tx Unit Hang\n"
5812                                 "  Tx Queue             <%d>\n"
5813                                 "  TDH                  <%x>\n"
5814                                 "  TDT                  <%x>\n"
5815                                 "  next_to_use          <%x>\n"
5816                                 "  next_to_clean        <%x>\n"
5817                                 "buffer_info[next_to_clean]\n"
5818                                 "  time_stamp           <%lx>\n"
5819                                 "  next_to_watch        <%p>\n"
5820                                 "  jiffies              <%lx>\n"
5821                                 "  desc.status          <%x>\n",
5822                                 tx_ring->queue_index,
5823                                 rd32(E1000_TDH(tx_ring->reg_idx)),
5824                                 readl(tx_ring->tail),
5825                                 tx_ring->next_to_use,
5826                                 tx_ring->next_to_clean,
5827                                 tx_buffer->time_stamp,
5828                                 tx_buffer->next_to_watch,
5829                                 jiffies,
5830                                 tx_buffer->next_to_watch->wb.status);
5831                         netif_stop_subqueue(tx_ring->netdev,
5832                                             tx_ring->queue_index);
5833
5834                         /* we are about to reset, no point in enabling stuff */
5835                         return true;
5836                 }
5837         }
5838
5839         if (unlikely(total_packets &&
5840                      netif_carrier_ok(tx_ring->netdev) &&
5841                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5842                 /* Make sure that anybody stopping the queue after this
5843                  * sees the new next_to_clean.
5844                  */
5845                 smp_mb();
5846                 if (__netif_subqueue_stopped(tx_ring->netdev,
5847                                              tx_ring->queue_index) &&
5848                     !(test_bit(__IGB_DOWN, &adapter->state))) {
5849                         netif_wake_subqueue(tx_ring->netdev,
5850                                             tx_ring->queue_index);
5851
5852                         u64_stats_update_begin(&tx_ring->tx_syncp);
5853                         tx_ring->tx_stats.restart_queue++;
5854                         u64_stats_update_end(&tx_ring->tx_syncp);
5855                 }
5856         }
5857
5858         return !!budget;
5859 }
5860
5861 /**
5862  * igb_reuse_rx_page - page flip buffer and store it back on the ring
5863  * @rx_ring: rx descriptor ring to store buffers on
5864  * @old_buff: donor buffer to have page reused
5865  *
5866  * Synchronizes page for reuse by the adapter
5867  **/
5868 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5869                               struct igb_rx_buffer *old_buff)
5870 {
5871         struct igb_rx_buffer *new_buff;
5872         u16 nta = rx_ring->next_to_alloc;
5873
5874         new_buff = &rx_ring->rx_buffer_info[nta];
5875
5876         /* update, and store next to alloc */
5877         nta++;
5878         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5879
5880         /* transfer page from old buffer to new buffer */
5881         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5882
5883         /* sync the buffer for use by the device */
5884         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5885                                          old_buff->page_offset,
5886                                          IGB_RX_BUFSZ,
5887                                          DMA_FROM_DEVICE);
5888 }
5889
5890 /**
5891  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5892  * @rx_ring: rx descriptor ring to transact packets on
5893  * @rx_buffer: buffer containing page to add
5894  * @rx_desc: descriptor containing length of buffer written by hardware
5895  * @skb: sk_buff to place the data into
5896  *
5897  * This function will add the data contained in rx_buffer->page to the skb.
5898  * This is done either through a direct copy if the data in the buffer is
5899  * less than the skb header size, otherwise it will just attach the page as
5900  * a frag to the skb.
5901  *
5902  * The function will then update the page offset if necessary and return
5903  * true if the buffer can be reused by the adapter.
5904  **/
5905 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5906                             struct igb_rx_buffer *rx_buffer,
5907                             union e1000_adv_rx_desc *rx_desc,
5908                             struct sk_buff *skb)
5909 {
5910         struct page *page = rx_buffer->page;
5911         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5912
5913         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5914                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
5915
5916 #ifdef CONFIG_IGB_PTP
5917                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5918                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5919                         va += IGB_TS_HDR_LEN;
5920                         size -= IGB_TS_HDR_LEN;
5921                 }
5922
5923 #endif
5924                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5925
5926                 /* we can reuse buffer as-is, just make sure it is local */
5927                 if (likely(page_to_nid(page) == numa_node_id()))
5928                         return true;
5929
5930                 /* this page cannot be reused so discard it */
5931                 put_page(page);
5932                 return false;
5933         }
5934
5935         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5936                         rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5937
5938         /* avoid re-using remote pages */
5939         if (unlikely(page_to_nid(page) != numa_node_id()))
5940                 return false;
5941
5942 #if (PAGE_SIZE < 8192)
5943         /* if we are only owner of page we can reuse it */
5944         if (unlikely(page_count(page) != 1))
5945                 return false;
5946
5947         /* flip page offset to other buffer */
5948         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5949
5950         /*
5951          * since we are the only owner of the page and we need to
5952          * increment it, just set the value to 2 in order to avoid
5953          * an unnecessary locked operation
5954          */
5955         atomic_set(&page->_count, 2);
5956 #else
5957         /* move offset up to the next cache line */
5958         rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5959
5960         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5961                 return false;
5962
5963         /* bump ref count on page before it is given to the stack */
5964         get_page(page);
5965 #endif
5966
5967         return true;
5968 }
5969
5970 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5971                                            union e1000_adv_rx_desc *rx_desc,
5972                                            struct sk_buff *skb)
5973 {
5974         struct igb_rx_buffer *rx_buffer;
5975         struct page *page;
5976
5977         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5978
5979         /*
5980          * This memory barrier is needed to keep us from reading
5981          * any other fields out of the rx_desc until we know the
5982          * RXD_STAT_DD bit is set
5983          */
5984         rmb();
5985
5986         page = rx_buffer->page;
5987         prefetchw(page);
5988
5989         if (likely(!skb)) {
5990                 void *page_addr = page_address(page) +
5991                                   rx_buffer->page_offset;
5992
5993                 /* prefetch first cache line of first page */
5994                 prefetch(page_addr);
5995 #if L1_CACHE_BYTES < 128
5996                 prefetch(page_addr + L1_CACHE_BYTES);
5997 #endif
5998
5999                 /* allocate a skb to store the frags */
6000                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6001                                                 IGB_RX_HDR_LEN);
6002                 if (unlikely(!skb)) {
6003                         rx_ring->rx_stats.alloc_failed++;
6004                         return NULL;
6005                 }
6006
6007                 /*
6008                  * we will be copying header into skb->data in
6009                  * pskb_may_pull so it is in our interest to prefetch
6010                  * it now to avoid a possible cache miss
6011                  */
6012                 prefetchw(skb->data);
6013         }
6014
6015         /* we are reusing so sync this buffer for CPU use */
6016         dma_sync_single_range_for_cpu(rx_ring->dev,
6017                                       rx_buffer->dma,
6018                                       rx_buffer->page_offset,
6019                                       IGB_RX_BUFSZ,
6020                                       DMA_FROM_DEVICE);
6021
6022         /* pull page into skb */
6023         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6024                 /* hand second half of page back to the ring */
6025                 igb_reuse_rx_page(rx_ring, rx_buffer);
6026         } else {
6027                 /* we are not reusing the buffer so unmap it */
6028                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6029                                PAGE_SIZE, DMA_FROM_DEVICE);
6030         }
6031
6032         /* clear contents of rx_buffer */
6033         rx_buffer->page = NULL;
6034
6035         return skb;
6036 }
6037
6038 static inline void igb_rx_checksum(struct igb_ring *ring,
6039                                    union e1000_adv_rx_desc *rx_desc,
6040                                    struct sk_buff *skb)
6041 {
6042         skb_checksum_none_assert(skb);
6043
6044         /* Ignore Checksum bit is set */
6045         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6046                 return;
6047
6048         /* Rx checksum disabled via ethtool */
6049         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6050                 return;
6051
6052         /* TCP/UDP checksum error bit is set */
6053         if (igb_test_staterr(rx_desc,
6054                              E1000_RXDEXT_STATERR_TCPE |
6055                              E1000_RXDEXT_STATERR_IPE)) {
6056                 /*
6057                  * work around errata with sctp packets where the TCPE aka
6058                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6059                  * packets, (aka let the stack check the crc32c)
6060                  */
6061                 if (!((skb->len == 60) &&
6062                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6063                         u64_stats_update_begin(&ring->rx_syncp);
6064                         ring->rx_stats.csum_err++;
6065                         u64_stats_update_end(&ring->rx_syncp);
6066                 }
6067                 /* let the stack verify checksum errors */
6068                 return;
6069         }
6070         /* It must be a TCP or UDP packet with a valid checksum */
6071         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6072                                       E1000_RXD_STAT_UDPCS))
6073                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6074
6075         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6076                 le32_to_cpu(rx_desc->wb.upper.status_error));
6077 }
6078
6079 static inline void igb_rx_hash(struct igb_ring *ring,
6080                                union e1000_adv_rx_desc *rx_desc,
6081                                struct sk_buff *skb)
6082 {
6083         if (ring->netdev->features & NETIF_F_RXHASH)
6084                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6085 }
6086
6087 /**
6088  * igb_is_non_eop - process handling of non-EOP buffers
6089  * @rx_ring: Rx ring being processed
6090  * @rx_desc: Rx descriptor for current buffer
6091  * @skb: current socket buffer containing buffer in progress
6092  *
6093  * This function updates next to clean.  If the buffer is an EOP buffer
6094  * this function exits returning false, otherwise it will place the
6095  * sk_buff in the next buffer to be chained and return true indicating
6096  * that this is in fact a non-EOP buffer.
6097  **/
6098 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6099                            union e1000_adv_rx_desc *rx_desc)
6100 {
6101         u32 ntc = rx_ring->next_to_clean + 1;
6102
6103         /* fetch, update, and store next to clean */
6104         ntc = (ntc < rx_ring->count) ? ntc : 0;
6105         rx_ring->next_to_clean = ntc;
6106
6107         prefetch(IGB_RX_DESC(rx_ring, ntc));
6108
6109         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6110                 return false;
6111
6112         return true;
6113 }
6114
6115 /**
6116  * igb_get_headlen - determine size of header for LRO/GRO
6117  * @data: pointer to the start of the headers
6118  * @max_len: total length of section to find headers in
6119  *
6120  * This function is meant to determine the length of headers that will
6121  * be recognized by hardware for LRO, and GRO offloads.  The main
6122  * motivation of doing this is to only perform one pull for IPv4 TCP
6123  * packets so that we can do basic things like calculating the gso_size
6124  * based on the average data per packet.
6125  **/
6126 static unsigned int igb_get_headlen(unsigned char *data,
6127                                     unsigned int max_len)
6128 {
6129         union {
6130                 unsigned char *network;
6131                 /* l2 headers */
6132                 struct ethhdr *eth;
6133                 struct vlan_hdr *vlan;
6134                 /* l3 headers */
6135                 struct iphdr *ipv4;
6136                 struct ipv6hdr *ipv6;
6137         } hdr;
6138         __be16 protocol;
6139         u8 nexthdr = 0; /* default to not TCP */
6140         u8 hlen;
6141
6142         /* this should never happen, but better safe than sorry */
6143         if (max_len < ETH_HLEN)
6144                 return max_len;
6145
6146         /* initialize network frame pointer */
6147         hdr.network = data;
6148
6149         /* set first protocol and move network header forward */
6150         protocol = hdr.eth->h_proto;
6151         hdr.network += ETH_HLEN;
6152
6153         /* handle any vlan tag if present */
6154         if (protocol == __constant_htons(ETH_P_8021Q)) {
6155                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6156                         return max_len;
6157
6158                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6159                 hdr.network += VLAN_HLEN;
6160         }
6161
6162         /* handle L3 protocols */
6163         if (protocol == __constant_htons(ETH_P_IP)) {
6164                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6165                         return max_len;
6166
6167                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6168                 hlen = (hdr.network[0] & 0x0F) << 2;
6169
6170                 /* verify hlen meets minimum size requirements */
6171                 if (hlen < sizeof(struct iphdr))
6172                         return hdr.network - data;
6173
6174                 /* record next protocol */
6175                 nexthdr = hdr.ipv4->protocol;
6176                 hdr.network += hlen;
6177         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6178                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6179                         return max_len;
6180
6181                 /* record next protocol */
6182                 nexthdr = hdr.ipv6->nexthdr;
6183                 hdr.network += sizeof(struct ipv6hdr);
6184         } else {
6185                 return hdr.network - data;
6186         }
6187
6188         /* finally sort out TCP */
6189         if (nexthdr == IPPROTO_TCP) {
6190                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6191                         return max_len;
6192
6193                 /* access doff as a u8 to avoid unaligned access on ia64 */
6194                 hlen = (hdr.network[12] & 0xF0) >> 2;
6195
6196                 /* verify hlen meets minimum size requirements */
6197                 if (hlen < sizeof(struct tcphdr))
6198                         return hdr.network - data;
6199
6200                 hdr.network += hlen;
6201         } else if (nexthdr == IPPROTO_UDP) {
6202                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6203                         return max_len;
6204
6205                 hdr.network += sizeof(struct udphdr);
6206         }
6207
6208         /*
6209          * If everything has gone correctly hdr.network should be the
6210          * data section of the packet and will be the end of the header.
6211          * If not then it probably represents the end of the last recognized
6212          * header.
6213          */
6214         if ((hdr.network - data) < max_len)
6215                 return hdr.network - data;
6216         else
6217                 return max_len;
6218 }
6219
6220 /**
6221  * igb_pull_tail - igb specific version of skb_pull_tail
6222  * @rx_ring: rx descriptor ring packet is being transacted on
6223  * @rx_desc: pointer to the EOP Rx descriptor
6224  * @skb: pointer to current skb being adjusted
6225  *
6226  * This function is an igb specific version of __pskb_pull_tail.  The
6227  * main difference between this version and the original function is that
6228  * this function can make several assumptions about the state of things
6229  * that allow for significant optimizations versus the standard function.
6230  * As a result we can do things like drop a frag and maintain an accurate
6231  * truesize for the skb.
6232  */
6233 static void igb_pull_tail(struct igb_ring *rx_ring,
6234                           union e1000_adv_rx_desc *rx_desc,
6235                           struct sk_buff *skb)
6236 {
6237         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6238         unsigned char *va;
6239         unsigned int pull_len;
6240
6241         /*
6242          * it is valid to use page_address instead of kmap since we are
6243          * working with pages allocated out of the lomem pool per
6244          * alloc_page(GFP_ATOMIC)
6245          */
6246         va = skb_frag_address(frag);
6247
6248 #ifdef CONFIG_IGB_PTP
6249         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6250                 /* retrieve timestamp from buffer */
6251                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6252
6253                 /* update pointers to remove timestamp header */
6254                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6255                 frag->page_offset += IGB_TS_HDR_LEN;
6256                 skb->data_len -= IGB_TS_HDR_LEN;
6257                 skb->len -= IGB_TS_HDR_LEN;
6258
6259                 /* move va to start of packet data */
6260                 va += IGB_TS_HDR_LEN;
6261         }
6262
6263 #endif
6264         /*
6265          * we need the header to contain the greater of either ETH_HLEN or
6266          * 60 bytes if the skb->len is less than 60 for skb_pad.
6267          */
6268         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6269
6270         /* align pull length to size of long to optimize memcpy performance */
6271         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6272
6273         /* update all of the pointers */
6274         skb_frag_size_sub(frag, pull_len);
6275         frag->page_offset += pull_len;
6276         skb->data_len -= pull_len;
6277         skb->tail += pull_len;
6278 }
6279
6280 /**
6281  * igb_cleanup_headers - Correct corrupted or empty headers
6282  * @rx_ring: rx descriptor ring packet is being transacted on
6283  * @rx_desc: pointer to the EOP Rx descriptor
6284  * @skb: pointer to current skb being fixed
6285  *
6286  * Address the case where we are pulling data in on pages only
6287  * and as such no data is present in the skb header.
6288  *
6289  * In addition if skb is not at least 60 bytes we need to pad it so that
6290  * it is large enough to qualify as a valid Ethernet frame.
6291  *
6292  * Returns true if an error was encountered and skb was freed.
6293  **/
6294 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6295                                 union e1000_adv_rx_desc *rx_desc,
6296                                 struct sk_buff *skb)
6297 {
6298
6299         if (unlikely((igb_test_staterr(rx_desc,
6300                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6301                 struct net_device *netdev = rx_ring->netdev;
6302                 if (!(netdev->features & NETIF_F_RXALL)) {
6303                         dev_kfree_skb_any(skb);
6304                         return true;
6305                 }
6306         }
6307
6308         /* place header in linear portion of buffer */
6309         if (skb_is_nonlinear(skb))
6310                 igb_pull_tail(rx_ring, rx_desc, skb);
6311
6312         /* if skb_pad returns an error the skb was freed */
6313         if (unlikely(skb->len < 60)) {
6314                 int pad_len = 60 - skb->len;
6315
6316                 if (skb_pad(skb, pad_len))
6317                         return true;
6318                 __skb_put(skb, pad_len);
6319         }
6320
6321         return false;
6322 }
6323
6324 /**
6325  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6326  * @rx_ring: rx descriptor ring packet is being transacted on
6327  * @rx_desc: pointer to the EOP Rx descriptor
6328  * @skb: pointer to current skb being populated
6329  *
6330  * This function checks the ring, descriptor, and packet information in
6331  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6332  * other fields within the skb.
6333  **/
6334 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6335                                    union e1000_adv_rx_desc *rx_desc,
6336                                    struct sk_buff *skb)
6337 {
6338         struct net_device *dev = rx_ring->netdev;
6339
6340         igb_rx_hash(rx_ring, rx_desc, skb);
6341
6342         igb_rx_checksum(rx_ring, rx_desc, skb);
6343
6344 #ifdef CONFIG_IGB_PTP
6345         igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6346 #endif /* CONFIG_IGB_PTP */
6347
6348         if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6349             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6350                 u16 vid;
6351                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6352                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6353                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6354                 else
6355                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6356
6357                 __vlan_hwaccel_put_tag(skb, vid);
6358         }
6359
6360         skb_record_rx_queue(skb, rx_ring->queue_index);
6361
6362         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6363 }
6364
6365 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6366 {
6367         struct igb_ring *rx_ring = q_vector->rx.ring;
6368         struct sk_buff *skb = rx_ring->skb;
6369         unsigned int total_bytes = 0, total_packets = 0;
6370         u16 cleaned_count = igb_desc_unused(rx_ring);
6371
6372         do {
6373                 union e1000_adv_rx_desc *rx_desc;
6374
6375                 /* return some buffers to hardware, one at a time is too slow */
6376                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6377                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6378                         cleaned_count = 0;
6379                 }
6380
6381                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6382
6383                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6384                         break;
6385
6386                 /* retrieve a buffer from the ring */
6387                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6388
6389                 /* exit if we failed to retrieve a buffer */
6390                 if (!skb)
6391                         break;
6392
6393                 cleaned_count++;
6394
6395                 /* fetch next buffer in frame if non-eop */
6396                 if (igb_is_non_eop(rx_ring, rx_desc))
6397                         continue;
6398
6399                 /* verify the packet layout is correct */
6400                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6401                         skb = NULL;
6402                         continue;
6403                 }
6404
6405                 /* probably a little skewed due to removing CRC */
6406                 total_bytes += skb->len;
6407
6408                 /* populate checksum, timestamp, VLAN, and protocol */
6409                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6410
6411                 napi_gro_receive(&q_vector->napi, skb);
6412
6413                 /* reset skb pointer */
6414                 skb = NULL;
6415
6416                 /* update budget accounting */
6417                 total_packets++;
6418         } while (likely(total_packets < budget));
6419
6420         /* place incomplete frames back on ring for completion */
6421         rx_ring->skb = skb;
6422
6423         u64_stats_update_begin(&rx_ring->rx_syncp);
6424         rx_ring->rx_stats.packets += total_packets;
6425         rx_ring->rx_stats.bytes += total_bytes;
6426         u64_stats_update_end(&rx_ring->rx_syncp);
6427         q_vector->rx.total_packets += total_packets;
6428         q_vector->rx.total_bytes += total_bytes;
6429
6430         if (cleaned_count)
6431                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6432
6433         return (total_packets < budget);
6434 }
6435
6436 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6437                                   struct igb_rx_buffer *bi)
6438 {
6439         struct page *page = bi->page;
6440         dma_addr_t dma;
6441
6442         /* since we are recycling buffers we should seldom need to alloc */
6443         if (likely(page))
6444                 return true;
6445
6446         /* alloc new page for storage */
6447         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6448         if (unlikely(!page)) {
6449                 rx_ring->rx_stats.alloc_failed++;
6450                 return false;
6451         }
6452
6453         /* map page for use */
6454         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6455
6456         /*
6457          * if mapping failed free memory back to system since
6458          * there isn't much point in holding memory we can't use
6459          */
6460         if (dma_mapping_error(rx_ring->dev, dma)) {
6461                 __free_page(page);
6462
6463                 rx_ring->rx_stats.alloc_failed++;
6464                 return false;
6465         }
6466
6467         bi->dma = dma;
6468         bi->page = page;
6469         bi->page_offset = 0;
6470
6471         return true;
6472 }
6473
6474 /**
6475  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6476  * @adapter: address of board private structure
6477  **/
6478 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6479 {
6480         union e1000_adv_rx_desc *rx_desc;
6481         struct igb_rx_buffer *bi;
6482         u16 i = rx_ring->next_to_use;
6483
6484         /* nothing to do */
6485         if (!cleaned_count)
6486                 return;
6487
6488         rx_desc = IGB_RX_DESC(rx_ring, i);
6489         bi = &rx_ring->rx_buffer_info[i];
6490         i -= rx_ring->count;
6491
6492         do {
6493                 if (!igb_alloc_mapped_page(rx_ring, bi))
6494                         break;
6495
6496                 /*
6497                  * Refresh the desc even if buffer_addrs didn't change
6498                  * because each write-back erases this info.
6499                  */
6500                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6501
6502                 rx_desc++;
6503                 bi++;
6504                 i++;
6505                 if (unlikely(!i)) {
6506                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6507                         bi = rx_ring->rx_buffer_info;
6508                         i -= rx_ring->count;
6509                 }
6510
6511                 /* clear the hdr_addr for the next_to_use descriptor */
6512                 rx_desc->read.hdr_addr = 0;
6513
6514                 cleaned_count--;
6515         } while (cleaned_count);
6516
6517         i += rx_ring->count;
6518
6519         if (rx_ring->next_to_use != i) {
6520                 /* record the next descriptor to use */
6521                 rx_ring->next_to_use = i;
6522
6523                 /* update next to alloc since we have filled the ring */
6524                 rx_ring->next_to_alloc = i;
6525
6526                 /*
6527                  * Force memory writes to complete before letting h/w
6528                  * know there are new descriptors to fetch.  (Only
6529                  * applicable for weak-ordered memory model archs,
6530                  * such as IA-64).
6531                  */
6532                 wmb();
6533                 writel(i, rx_ring->tail);
6534         }
6535 }
6536
6537 /**
6538  * igb_mii_ioctl -
6539  * @netdev:
6540  * @ifreq:
6541  * @cmd:
6542  **/
6543 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6544 {
6545         struct igb_adapter *adapter = netdev_priv(netdev);
6546         struct mii_ioctl_data *data = if_mii(ifr);
6547
6548         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6549                 return -EOPNOTSUPP;
6550
6551         switch (cmd) {
6552         case SIOCGMIIPHY:
6553                 data->phy_id = adapter->hw.phy.addr;
6554                 break;
6555         case SIOCGMIIREG:
6556                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6557                                      &data->val_out))
6558                         return -EIO;
6559                 break;
6560         case SIOCSMIIREG:
6561         default:
6562                 return -EOPNOTSUPP;
6563         }
6564         return 0;
6565 }
6566
6567 /**
6568  * igb_ioctl -
6569  * @netdev:
6570  * @ifreq:
6571  * @cmd:
6572  **/
6573 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6574 {
6575         switch (cmd) {
6576         case SIOCGMIIPHY:
6577         case SIOCGMIIREG:
6578         case SIOCSMIIREG:
6579                 return igb_mii_ioctl(netdev, ifr, cmd);
6580 #ifdef CONFIG_IGB_PTP
6581         case SIOCSHWTSTAMP:
6582                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6583 #endif /* CONFIG_IGB_PTP */
6584         default:
6585                 return -EOPNOTSUPP;
6586         }
6587 }
6588
6589 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6590 {
6591         struct igb_adapter *adapter = hw->back;
6592
6593         if (pcie_capability_read_word(adapter->pdev, reg, value))
6594                 return -E1000_ERR_CONFIG;
6595
6596         return 0;
6597 }
6598
6599 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6600 {
6601         struct igb_adapter *adapter = hw->back;
6602
6603         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6604                 return -E1000_ERR_CONFIG;
6605
6606         return 0;
6607 }
6608
6609 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6610 {
6611         struct igb_adapter *adapter = netdev_priv(netdev);
6612         struct e1000_hw *hw = &adapter->hw;
6613         u32 ctrl, rctl;
6614         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6615
6616         if (enable) {
6617                 /* enable VLAN tag insert/strip */
6618                 ctrl = rd32(E1000_CTRL);
6619                 ctrl |= E1000_CTRL_VME;
6620                 wr32(E1000_CTRL, ctrl);
6621
6622                 /* Disable CFI check */
6623                 rctl = rd32(E1000_RCTL);
6624                 rctl &= ~E1000_RCTL_CFIEN;
6625                 wr32(E1000_RCTL, rctl);
6626         } else {
6627                 /* disable VLAN tag insert/strip */
6628                 ctrl = rd32(E1000_CTRL);
6629                 ctrl &= ~E1000_CTRL_VME;
6630                 wr32(E1000_CTRL, ctrl);
6631         }
6632
6633         igb_rlpml_set(adapter);
6634 }
6635
6636 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6637 {
6638         struct igb_adapter *adapter = netdev_priv(netdev);
6639         struct e1000_hw *hw = &adapter->hw;
6640         int pf_id = adapter->vfs_allocated_count;
6641
6642         /* attempt to add filter to vlvf array */
6643         igb_vlvf_set(adapter, vid, true, pf_id);
6644
6645         /* add the filter since PF can receive vlans w/o entry in vlvf */
6646         igb_vfta_set(hw, vid, true);
6647
6648         set_bit(vid, adapter->active_vlans);
6649
6650         return 0;
6651 }
6652
6653 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6654 {
6655         struct igb_adapter *adapter = netdev_priv(netdev);
6656         struct e1000_hw *hw = &adapter->hw;
6657         int pf_id = adapter->vfs_allocated_count;
6658         s32 err;
6659
6660         /* remove vlan from VLVF table array */
6661         err = igb_vlvf_set(adapter, vid, false, pf_id);
6662
6663         /* if vid was not present in VLVF just remove it from table */
6664         if (err)
6665                 igb_vfta_set(hw, vid, false);
6666
6667         clear_bit(vid, adapter->active_vlans);
6668
6669         return 0;
6670 }
6671
6672 static void igb_restore_vlan(struct igb_adapter *adapter)
6673 {
6674         u16 vid;
6675
6676         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6677
6678         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6679                 igb_vlan_rx_add_vid(adapter->netdev, vid);
6680 }
6681
6682 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6683 {
6684         struct pci_dev *pdev = adapter->pdev;
6685         struct e1000_mac_info *mac = &adapter->hw.mac;
6686
6687         mac->autoneg = 0;
6688
6689         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6690          * for the switch() below to work */
6691         if ((spd & 1) || (dplx & ~1))
6692                 goto err_inval;
6693
6694         /* Fiber NIC's only allow 1000 Gbps Full duplex */
6695         if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6696             spd != SPEED_1000 &&
6697             dplx != DUPLEX_FULL)
6698                 goto err_inval;
6699
6700         switch (spd + dplx) {
6701         case SPEED_10 + DUPLEX_HALF:
6702                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6703                 break;
6704         case SPEED_10 + DUPLEX_FULL:
6705                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6706                 break;
6707         case SPEED_100 + DUPLEX_HALF:
6708                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6709                 break;
6710         case SPEED_100 + DUPLEX_FULL:
6711                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6712                 break;
6713         case SPEED_1000 + DUPLEX_FULL:
6714                 mac->autoneg = 1;
6715                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6716                 break;
6717         case SPEED_1000 + DUPLEX_HALF: /* not supported */
6718         default:
6719                 goto err_inval;
6720         }
6721
6722         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6723         adapter->hw.phy.mdix = AUTO_ALL_MODES;
6724
6725         return 0;
6726
6727 err_inval:
6728         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6729         return -EINVAL;
6730 }
6731
6732 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6733                           bool runtime)
6734 {
6735         struct net_device *netdev = pci_get_drvdata(pdev);
6736         struct igb_adapter *adapter = netdev_priv(netdev);
6737         struct e1000_hw *hw = &adapter->hw;
6738         u32 ctrl, rctl, status;
6739         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6740 #ifdef CONFIG_PM
6741         int retval = 0;
6742 #endif
6743
6744         netif_device_detach(netdev);
6745
6746         if (netif_running(netdev))
6747                 __igb_close(netdev, true);
6748
6749         igb_clear_interrupt_scheme(adapter);
6750
6751 #ifdef CONFIG_PM
6752         retval = pci_save_state(pdev);
6753         if (retval)
6754                 return retval;
6755 #endif
6756
6757         status = rd32(E1000_STATUS);
6758         if (status & E1000_STATUS_LU)
6759                 wufc &= ~E1000_WUFC_LNKC;
6760
6761         if (wufc) {
6762                 igb_setup_rctl(adapter);
6763                 igb_set_rx_mode(netdev);
6764
6765                 /* turn on all-multi mode if wake on multicast is enabled */
6766                 if (wufc & E1000_WUFC_MC) {
6767                         rctl = rd32(E1000_RCTL);
6768                         rctl |= E1000_RCTL_MPE;
6769                         wr32(E1000_RCTL, rctl);
6770                 }
6771
6772                 ctrl = rd32(E1000_CTRL);
6773                 /* advertise wake from D3Cold */
6774                 #define E1000_CTRL_ADVD3WUC 0x00100000
6775                 /* phy power management enable */
6776                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6777                 ctrl |= E1000_CTRL_ADVD3WUC;
6778                 wr32(E1000_CTRL, ctrl);
6779
6780                 /* Allow time for pending master requests to run */
6781                 igb_disable_pcie_master(hw);
6782
6783                 wr32(E1000_WUC, E1000_WUC_PME_EN);
6784                 wr32(E1000_WUFC, wufc);
6785         } else {
6786                 wr32(E1000_WUC, 0);
6787                 wr32(E1000_WUFC, 0);
6788         }
6789
6790         *enable_wake = wufc || adapter->en_mng_pt;
6791         if (!*enable_wake)
6792                 igb_power_down_link(adapter);
6793         else
6794                 igb_power_up_link(adapter);
6795
6796         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6797          * would have already happened in close and is redundant. */
6798         igb_release_hw_control(adapter);
6799
6800         pci_disable_device(pdev);
6801
6802         return 0;
6803 }
6804
6805 #ifdef CONFIG_PM
6806 #ifdef CONFIG_PM_SLEEP
6807 static int igb_suspend(struct device *dev)
6808 {
6809         int retval;
6810         bool wake;
6811         struct pci_dev *pdev = to_pci_dev(dev);
6812
6813         retval = __igb_shutdown(pdev, &wake, 0);
6814         if (retval)
6815                 return retval;
6816
6817         if (wake) {
6818                 pci_prepare_to_sleep(pdev);
6819         } else {
6820                 pci_wake_from_d3(pdev, false);
6821                 pci_set_power_state(pdev, PCI_D3hot);
6822         }
6823
6824         return 0;
6825 }
6826 #endif /* CONFIG_PM_SLEEP */
6827
6828 static int igb_resume(struct device *dev)
6829 {
6830         struct pci_dev *pdev = to_pci_dev(dev);
6831         struct net_device *netdev = pci_get_drvdata(pdev);
6832         struct igb_adapter *adapter = netdev_priv(netdev);
6833         struct e1000_hw *hw = &adapter->hw;
6834         u32 err;
6835
6836         pci_set_power_state(pdev, PCI_D0);
6837         pci_restore_state(pdev);
6838         pci_save_state(pdev);
6839
6840         err = pci_enable_device_mem(pdev);
6841         if (err) {
6842                 dev_err(&pdev->dev,
6843                         "igb: Cannot enable PCI device from suspend\n");
6844                 return err;
6845         }
6846         pci_set_master(pdev);
6847
6848         pci_enable_wake(pdev, PCI_D3hot, 0);
6849         pci_enable_wake(pdev, PCI_D3cold, 0);
6850
6851         if (igb_init_interrupt_scheme(adapter)) {
6852                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6853                 return -ENOMEM;
6854         }
6855
6856         igb_reset(adapter);
6857
6858         /* let the f/w know that the h/w is now under the control of the
6859          * driver. */
6860         igb_get_hw_control(adapter);
6861
6862         wr32(E1000_WUS, ~0);
6863
6864         if (netdev->flags & IFF_UP) {
6865                 rtnl_lock();
6866                 err = __igb_open(netdev, true);
6867                 rtnl_unlock();
6868                 if (err)
6869                         return err;
6870         }
6871
6872         netif_device_attach(netdev);
6873         return 0;
6874 }
6875
6876 #ifdef CONFIG_PM_RUNTIME
6877 static int igb_runtime_idle(struct device *dev)
6878 {
6879         struct pci_dev *pdev = to_pci_dev(dev);
6880         struct net_device *netdev = pci_get_drvdata(pdev);
6881         struct igb_adapter *adapter = netdev_priv(netdev);
6882
6883         if (!igb_has_link(adapter))
6884                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6885
6886         return -EBUSY;
6887 }
6888
6889 static int igb_runtime_suspend(struct device *dev)
6890 {
6891         struct pci_dev *pdev = to_pci_dev(dev);
6892         int retval;
6893         bool wake;
6894
6895         retval = __igb_shutdown(pdev, &wake, 1);
6896         if (retval)
6897                 return retval;
6898
6899         if (wake) {
6900                 pci_prepare_to_sleep(pdev);
6901         } else {
6902                 pci_wake_from_d3(pdev, false);
6903                 pci_set_power_state(pdev, PCI_D3hot);
6904         }
6905
6906         return 0;
6907 }
6908
6909 static int igb_runtime_resume(struct device *dev)
6910 {
6911         return igb_resume(dev);
6912 }
6913 #endif /* CONFIG_PM_RUNTIME */
6914 #endif
6915
6916 static void igb_shutdown(struct pci_dev *pdev)
6917 {
6918         bool wake;
6919
6920         __igb_shutdown(pdev, &wake, 0);
6921
6922         if (system_state == SYSTEM_POWER_OFF) {
6923                 pci_wake_from_d3(pdev, wake);
6924                 pci_set_power_state(pdev, PCI_D3hot);
6925         }
6926 }
6927
6928 #ifdef CONFIG_NET_POLL_CONTROLLER
6929 /*
6930  * Polling 'interrupt' - used by things like netconsole to send skbs
6931  * without having to re-enable interrupts. It's not called while
6932  * the interrupt routine is executing.
6933  */
6934 static void igb_netpoll(struct net_device *netdev)
6935 {
6936         struct igb_adapter *adapter = netdev_priv(netdev);
6937         struct e1000_hw *hw = &adapter->hw;
6938         struct igb_q_vector *q_vector;
6939         int i;
6940
6941         for (i = 0; i < adapter->num_q_vectors; i++) {
6942                 q_vector = adapter->q_vector[i];
6943                 if (adapter->msix_entries)
6944                         wr32(E1000_EIMC, q_vector->eims_value);
6945                 else
6946                         igb_irq_disable(adapter);
6947                 napi_schedule(&q_vector->napi);
6948         }
6949 }
6950 #endif /* CONFIG_NET_POLL_CONTROLLER */
6951
6952 /**
6953  * igb_io_error_detected - called when PCI error is detected
6954  * @pdev: Pointer to PCI device
6955  * @state: The current pci connection state
6956  *
6957  * This function is called after a PCI bus error affecting
6958  * this device has been detected.
6959  */
6960 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6961                                               pci_channel_state_t state)
6962 {
6963         struct net_device *netdev = pci_get_drvdata(pdev);
6964         struct igb_adapter *adapter = netdev_priv(netdev);
6965
6966         netif_device_detach(netdev);
6967
6968         if (state == pci_channel_io_perm_failure)
6969                 return PCI_ERS_RESULT_DISCONNECT;
6970
6971         if (netif_running(netdev))
6972                 igb_down(adapter);
6973         pci_disable_device(pdev);
6974
6975         /* Request a slot slot reset. */
6976         return PCI_ERS_RESULT_NEED_RESET;
6977 }
6978
6979 /**
6980  * igb_io_slot_reset - called after the pci bus has been reset.
6981  * @pdev: Pointer to PCI device
6982  *
6983  * Restart the card from scratch, as if from a cold-boot. Implementation
6984  * resembles the first-half of the igb_resume routine.
6985  */
6986 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6987 {
6988         struct net_device *netdev = pci_get_drvdata(pdev);
6989         struct igb_adapter *adapter = netdev_priv(netdev);
6990         struct e1000_hw *hw = &adapter->hw;
6991         pci_ers_result_t result;
6992         int err;
6993
6994         if (pci_enable_device_mem(pdev)) {
6995                 dev_err(&pdev->dev,
6996                         "Cannot re-enable PCI device after reset.\n");
6997                 result = PCI_ERS_RESULT_DISCONNECT;
6998         } else {
6999                 pci_set_master(pdev);
7000                 pci_restore_state(pdev);
7001                 pci_save_state(pdev);
7002
7003                 pci_enable_wake(pdev, PCI_D3hot, 0);
7004                 pci_enable_wake(pdev, PCI_D3cold, 0);
7005
7006                 igb_reset(adapter);
7007                 wr32(E1000_WUS, ~0);
7008                 result = PCI_ERS_RESULT_RECOVERED;
7009         }
7010
7011         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7012         if (err) {
7013                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7014                         "failed 0x%0x\n", err);
7015                 /* non-fatal, continue */
7016         }
7017
7018         return result;
7019 }
7020
7021 /**
7022  * igb_io_resume - called when traffic can start flowing again.
7023  * @pdev: Pointer to PCI device
7024  *
7025  * This callback is called when the error recovery driver tells us that
7026  * its OK to resume normal operation. Implementation resembles the
7027  * second-half of the igb_resume routine.
7028  */
7029 static void igb_io_resume(struct pci_dev *pdev)
7030 {
7031         struct net_device *netdev = pci_get_drvdata(pdev);
7032         struct igb_adapter *adapter = netdev_priv(netdev);
7033
7034         if (netif_running(netdev)) {
7035                 if (igb_up(adapter)) {
7036                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7037                         return;
7038                 }
7039         }
7040
7041         netif_device_attach(netdev);
7042
7043         /* let the f/w know that the h/w is now under the control of the
7044          * driver. */
7045         igb_get_hw_control(adapter);
7046 }
7047
7048 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7049                              u8 qsel)
7050 {
7051         u32 rar_low, rar_high;
7052         struct e1000_hw *hw = &adapter->hw;
7053
7054         /* HW expects these in little endian so we reverse the byte order
7055          * from network order (big endian) to little endian
7056          */
7057         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7058                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7059         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7060
7061         /* Indicate to hardware the Address is Valid. */
7062         rar_high |= E1000_RAH_AV;
7063
7064         if (hw->mac.type == e1000_82575)
7065                 rar_high |= E1000_RAH_POOL_1 * qsel;
7066         else
7067                 rar_high |= E1000_RAH_POOL_1 << qsel;
7068
7069         wr32(E1000_RAL(index), rar_low);
7070         wrfl();
7071         wr32(E1000_RAH(index), rar_high);
7072         wrfl();
7073 }
7074
7075 static int igb_set_vf_mac(struct igb_adapter *adapter,
7076                           int vf, unsigned char *mac_addr)
7077 {
7078         struct e1000_hw *hw = &adapter->hw;
7079         /* VF MAC addresses start at end of receive addresses and moves
7080          * torwards the first, as a result a collision should not be possible */
7081         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7082
7083         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7084
7085         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7086
7087         return 0;
7088 }
7089
7090 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7091 {
7092         struct igb_adapter *adapter = netdev_priv(netdev);
7093         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7094                 return -EINVAL;
7095         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7096         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7097         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7098                                       " change effective.");
7099         if (test_bit(__IGB_DOWN, &adapter->state)) {
7100                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7101                          " but the PF device is not up.\n");
7102                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7103                          " attempting to use the VF device.\n");
7104         }
7105         return igb_set_vf_mac(adapter, vf, mac);
7106 }
7107
7108 static int igb_link_mbps(int internal_link_speed)
7109 {
7110         switch (internal_link_speed) {
7111         case SPEED_100:
7112                 return 100;
7113         case SPEED_1000:
7114                 return 1000;
7115         default:
7116                 return 0;
7117         }
7118 }
7119
7120 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7121                                   int link_speed)
7122 {
7123         int rf_dec, rf_int;
7124         u32 bcnrc_val;
7125
7126         if (tx_rate != 0) {
7127                 /* Calculate the rate factor values to set */
7128                 rf_int = link_speed / tx_rate;
7129                 rf_dec = (link_speed - (rf_int * tx_rate));
7130                 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7131
7132                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7133                 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7134                                E1000_RTTBCNRC_RF_INT_MASK);
7135                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7136         } else {
7137                 bcnrc_val = 0;
7138         }
7139
7140         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7141         /*
7142          * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7143          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7144          */
7145         wr32(E1000_RTTBCNRM, 0x14);
7146         wr32(E1000_RTTBCNRC, bcnrc_val);
7147 }
7148
7149 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7150 {
7151         int actual_link_speed, i;
7152         bool reset_rate = false;
7153
7154         /* VF TX rate limit was not set or not supported */
7155         if ((adapter->vf_rate_link_speed == 0) ||
7156             (adapter->hw.mac.type != e1000_82576))
7157                 return;
7158
7159         actual_link_speed = igb_link_mbps(adapter->link_speed);
7160         if (actual_link_speed != adapter->vf_rate_link_speed) {
7161                 reset_rate = true;
7162                 adapter->vf_rate_link_speed = 0;
7163                 dev_info(&adapter->pdev->dev,
7164                          "Link speed has been changed. VF Transmit "
7165                          "rate is disabled\n");
7166         }
7167
7168         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7169                 if (reset_rate)
7170                         adapter->vf_data[i].tx_rate = 0;
7171
7172                 igb_set_vf_rate_limit(&adapter->hw, i,
7173                                       adapter->vf_data[i].tx_rate,
7174                                       actual_link_speed);
7175         }
7176 }
7177
7178 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7179 {
7180         struct igb_adapter *adapter = netdev_priv(netdev);
7181         struct e1000_hw *hw = &adapter->hw;
7182         int actual_link_speed;
7183
7184         if (hw->mac.type != e1000_82576)
7185                 return -EOPNOTSUPP;
7186
7187         actual_link_speed = igb_link_mbps(adapter->link_speed);
7188         if ((vf >= adapter->vfs_allocated_count) ||
7189             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7190             (tx_rate < 0) || (tx_rate > actual_link_speed))
7191                 return -EINVAL;
7192
7193         adapter->vf_rate_link_speed = actual_link_speed;
7194         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7195         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7196
7197         return 0;
7198 }
7199
7200 static int igb_ndo_get_vf_config(struct net_device *netdev,
7201                                  int vf, struct ifla_vf_info *ivi)
7202 {
7203         struct igb_adapter *adapter = netdev_priv(netdev);
7204         if (vf >= adapter->vfs_allocated_count)
7205                 return -EINVAL;
7206         ivi->vf = vf;
7207         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7208         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7209         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7210         ivi->qos = adapter->vf_data[vf].pf_qos;
7211         return 0;
7212 }
7213
7214 static void igb_vmm_control(struct igb_adapter *adapter)
7215 {
7216         struct e1000_hw *hw = &adapter->hw;
7217         u32 reg;
7218
7219         switch (hw->mac.type) {
7220         case e1000_82575:
7221         case e1000_i210:
7222         case e1000_i211:
7223         default:
7224                 /* replication is not supported for 82575 */
7225                 return;
7226         case e1000_82576:
7227                 /* notify HW that the MAC is adding vlan tags */
7228                 reg = rd32(E1000_DTXCTL);
7229                 reg |= E1000_DTXCTL_VLAN_ADDED;
7230                 wr32(E1000_DTXCTL, reg);
7231         case e1000_82580:
7232                 /* enable replication vlan tag stripping */
7233                 reg = rd32(E1000_RPLOLR);
7234                 reg |= E1000_RPLOLR_STRVLAN;
7235                 wr32(E1000_RPLOLR, reg);
7236         case e1000_i350:
7237                 /* none of the above registers are supported by i350 */
7238                 break;
7239         }
7240
7241         if (adapter->vfs_allocated_count) {
7242                 igb_vmdq_set_loopback_pf(hw, true);
7243                 igb_vmdq_set_replication_pf(hw, true);
7244                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7245                                                 adapter->vfs_allocated_count);
7246         } else {
7247                 igb_vmdq_set_loopback_pf(hw, false);
7248                 igb_vmdq_set_replication_pf(hw, false);
7249         }
7250 }
7251
7252 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7253 {
7254         struct e1000_hw *hw = &adapter->hw;
7255         u32 dmac_thr;
7256         u16 hwm;
7257
7258         if (hw->mac.type > e1000_82580) {
7259                 if (adapter->flags & IGB_FLAG_DMAC) {
7260                         u32 reg;
7261
7262                         /* force threshold to 0. */
7263                         wr32(E1000_DMCTXTH, 0);
7264
7265                         /*
7266                          * DMA Coalescing high water mark needs to be greater
7267                          * than the Rx threshold. Set hwm to PBA - max frame
7268                          * size in 16B units, capping it at PBA - 6KB.
7269                          */
7270                         hwm = 64 * pba - adapter->max_frame_size / 16;
7271                         if (hwm < 64 * (pba - 6))
7272                                 hwm = 64 * (pba - 6);
7273                         reg = rd32(E1000_FCRTC);
7274                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7275                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7276                                 & E1000_FCRTC_RTH_COAL_MASK);
7277                         wr32(E1000_FCRTC, reg);
7278
7279                         /*
7280                          * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7281                          * frame size, capping it at PBA - 10KB.
7282                          */
7283                         dmac_thr = pba - adapter->max_frame_size / 512;
7284                         if (dmac_thr < pba - 10)
7285                                 dmac_thr = pba - 10;
7286                         reg = rd32(E1000_DMACR);
7287                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7288                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7289                                 & E1000_DMACR_DMACTHR_MASK);
7290
7291                         /* transition to L0x or L1 if available..*/
7292                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7293
7294                         /* watchdog timer= +-1000 usec in 32usec intervals */
7295                         reg |= (1000 >> 5);
7296
7297                         /* Disable BMC-to-OS Watchdog Enable */
7298                         reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7299                         wr32(E1000_DMACR, reg);
7300
7301                         /*
7302                          * no lower threshold to disable
7303                          * coalescing(smart fifb)-UTRESH=0
7304                          */
7305                         wr32(E1000_DMCRTRH, 0);
7306
7307                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7308
7309                         wr32(E1000_DMCTLX, reg);
7310
7311                         /*
7312                          * free space in tx packet buffer to wake from
7313                          * DMA coal
7314                          */
7315                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7316                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7317
7318                         /*
7319                          * make low power state decision controlled
7320                          * by DMA coal
7321                          */
7322                         reg = rd32(E1000_PCIEMISC);
7323                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7324                         wr32(E1000_PCIEMISC, reg);
7325                 } /* endif adapter->dmac is not disabled */
7326         } else if (hw->mac.type == e1000_82580) {
7327                 u32 reg = rd32(E1000_PCIEMISC);
7328                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7329                 wr32(E1000_DMACR, 0);
7330         }
7331 }
7332
7333 /* igb_main.c */