]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195                         igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219                      pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224         .error_detected = igb_io_error_detected,
225         .slot_reset = igb_io_slot_reset,
226         .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232         .name     = igb_driver_name,
233         .id_table = igb_pci_tbl,
234         .probe    = igb_probe,
235         .remove   = igb_remove,
236 #ifdef CONFIG_PM
237         .driver.pm = &igb_pm_ops,
238 #endif
239         .shutdown = igb_shutdown,
240         .sriov_configure = igb_pci_sriov_configure,
241         .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255         u32 ofs;
256         char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261         /* General Registers */
262         {E1000_CTRL, "CTRL"},
263         {E1000_STATUS, "STATUS"},
264         {E1000_CTRL_EXT, "CTRL_EXT"},
265
266         /* Interrupt Registers */
267         {E1000_ICR, "ICR"},
268
269         /* RX Registers */
270         {E1000_RCTL, "RCTL"},
271         {E1000_RDLEN(0), "RDLEN"},
272         {E1000_RDH(0), "RDH"},
273         {E1000_RDT(0), "RDT"},
274         {E1000_RXDCTL(0), "RXDCTL"},
275         {E1000_RDBAL(0), "RDBAL"},
276         {E1000_RDBAH(0), "RDBAH"},
277
278         /* TX Registers */
279         {E1000_TCTL, "TCTL"},
280         {E1000_TDBAL(0), "TDBAL"},
281         {E1000_TDBAH(0), "TDBAH"},
282         {E1000_TDLEN(0), "TDLEN"},
283         {E1000_TDH(0), "TDH"},
284         {E1000_TDT(0), "TDT"},
285         {E1000_TXDCTL(0), "TXDCTL"},
286         {E1000_TDFH, "TDFH"},
287         {E1000_TDFT, "TDFT"},
288         {E1000_TDFHS, "TDFHS"},
289         {E1000_TDFPC, "TDFPC"},
290
291         /* List Terminator */
292         {}
293 };
294
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298         int n = 0;
299         char rname[16];
300         u32 regs[8];
301
302         switch (reginfo->ofs) {
303         case E1000_RDLEN(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDLEN(n));
306                 break;
307         case E1000_RDH(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDH(n));
310                 break;
311         case E1000_RDT(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDT(n));
314                 break;
315         case E1000_RXDCTL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RXDCTL(n));
318                 break;
319         case E1000_RDBAL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAL(n));
322                 break;
323         case E1000_RDBAH(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAH(n));
326                 break;
327         case E1000_TDBAL(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAL(n));
330                 break;
331         case E1000_TDBAH(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDBAH(n));
334                 break;
335         case E1000_TDLEN(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDLEN(n));
338                 break;
339         case E1000_TDH(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDH(n));
342                 break;
343         case E1000_TDT(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDT(n));
346                 break;
347         case E1000_TXDCTL(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TXDCTL(n));
350                 break;
351         default:
352                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353                 return;
354         }
355
356         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358                 regs[2], regs[3]);
359 }
360
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364         struct net_device *netdev = adapter->netdev;
365         struct e1000_hw *hw = &adapter->hw;
366         struct igb_reg_info *reginfo;
367         struct igb_ring *tx_ring;
368         union e1000_adv_tx_desc *tx_desc;
369         struct my_u0 { u64 a; u64 b; } *u0;
370         struct igb_ring *rx_ring;
371         union e1000_adv_rx_desc *rx_desc;
372         u32 staterr;
373         u16 i, n;
374
375         if (!netif_msg_hw(adapter))
376                 return;
377
378         /* Print netdevice Info */
379         if (netdev) {
380                 dev_info(&adapter->pdev->dev, "Net device Info\n");
381                 pr_info("Device Name     state            trans_start      last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435
436                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437                         const char *next_desc;
438                         struct igb_tx_buffer *buffer_info;
439                         tx_desc = IGB_TX_DESC(tx_ring, i);
440                         buffer_info = &tx_ring->tx_buffer_info[i];
441                         u0 = (struct my_u0 *)tx_desc;
442                         if (i == tx_ring->next_to_use &&
443                             i == tx_ring->next_to_clean)
444                                 next_desc = " NTC/U";
445                         else if (i == tx_ring->next_to_use)
446                                 next_desc = " NTU";
447                         else if (i == tx_ring->next_to_clean)
448                                 next_desc = " NTC";
449                         else
450                                 next_desc = "";
451
452                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453                                 i, le64_to_cpu(u0->a),
454                                 le64_to_cpu(u0->b),
455                                 (u64)dma_unmap_addr(buffer_info, dma),
456                                 dma_unmap_len(buffer_info, len),
457                                 buffer_info->next_to_watch,
458                                 (u64)buffer_info->time_stamp,
459                                 buffer_info->skb, next_desc);
460
461                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
462                                 print_hex_dump(KERN_INFO, "",
463                                         DUMP_PREFIX_ADDRESS,
464                                         16, 1, buffer_info->skb->data,
465                                         dma_unmap_len(buffer_info, len),
466                                         true);
467                 }
468         }
469
470         /* Print RX Rings Summary */
471 rx_ring_summary:
472         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473         pr_info("Queue [NTU] [NTC]\n");
474         for (n = 0; n < adapter->num_rx_queues; n++) {
475                 rx_ring = adapter->rx_ring[n];
476                 pr_info(" %5d %5X %5X\n",
477                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
478         }
479
480         /* Print RX Rings */
481         if (!netif_msg_rx_status(adapter))
482                 goto exit;
483
484         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486         /* Advanced Receive Descriptor (Read) Format
487          *    63                                           1        0
488          *    +-----------------------------------------------------+
489          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490          *    +----------------------------------------------+------+
491          *  8 |       Header Buffer Address [63:1]           |  DD  |
492          *    +-----------------------------------------------------+
493          *
494          *
495          * Advanced Receive Descriptor (Write-Back) Format
496          *
497          *   63       48 47    32 31  30      21 20 17 16   4 3     0
498          *   +------------------------------------------------------+
499          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500          *   | Checksum   Ident  |   |           |    | Type | Type |
501          *   +------------------------------------------------------+
502          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503          *   +------------------------------------------------------+
504          *   63       48 47    32 31            20 19               0
505          */
506
507         for (n = 0; n < adapter->num_rx_queues; n++) {
508                 rx_ring = adapter->rx_ring[n];
509                 pr_info("------------------------------------\n");
510                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511                 pr_info("------------------------------------\n");
512                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515                 for (i = 0; i < rx_ring->count; i++) {
516                         const char *next_desc;
517                         struct igb_rx_buffer *buffer_info;
518                         buffer_info = &rx_ring->rx_buffer_info[i];
519                         rx_desc = IGB_RX_DESC(rx_ring, i);
520                         u0 = (struct my_u0 *)rx_desc;
521                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523                         if (i == rx_ring->next_to_use)
524                                 next_desc = " NTU";
525                         else if (i == rx_ring->next_to_clean)
526                                 next_desc = " NTC";
527                         else
528                                 next_desc = "";
529
530                         if (staterr & E1000_RXD_STAT_DD) {
531                                 /* Descriptor Done */
532                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533                                         "RWB", i,
534                                         le64_to_cpu(u0->a),
535                                         le64_to_cpu(u0->b),
536                                         next_desc);
537                         } else {
538                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539                                         "R  ", i,
540                                         le64_to_cpu(u0->a),
541                                         le64_to_cpu(u0->b),
542                                         (u64)buffer_info->dma,
543                                         next_desc);
544
545                                 if (netif_msg_pktdata(adapter) &&
546                                     buffer_info->dma && buffer_info->page) {
547                                         print_hex_dump(KERN_INFO, "",
548                                           DUMP_PREFIX_ADDRESS,
549                                           16, 1,
550                                           page_address(buffer_info->page) +
551                                                       buffer_info->page_offset,
552                                           IGB_RX_BUFSZ, true);
553                                 }
554                         }
555                 }
556         }
557
558 exit:
559         return;
560 }
561
562 /**
563  *  igb_get_i2c_data - Reads the I2C SDA data bit
564  *  @hw: pointer to hardware structure
565  *  @i2cctl: Current value of I2CCTL register
566  *
567  *  Returns the I2C data bit value
568  **/
569 static int igb_get_i2c_data(void *data)
570 {
571         struct igb_adapter *adapter = (struct igb_adapter *)data;
572         struct e1000_hw *hw = &adapter->hw;
573         s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575         return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577
578 /**
579  *  igb_set_i2c_data - Sets the I2C data bit
580  *  @data: pointer to hardware structure
581  *  @state: I2C data value (0 or 1) to set
582  *
583  *  Sets the I2C data bit
584  **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587         struct igb_adapter *adapter = (struct igb_adapter *)data;
588         struct e1000_hw *hw = &adapter->hw;
589         s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591         if (state)
592                 i2cctl |= E1000_I2C_DATA_OUT;
593         else
594                 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596         i2cctl &= ~E1000_I2C_DATA_OE_N;
597         i2cctl |= E1000_I2C_CLK_OE_N;
598         wr32(E1000_I2CPARAMS, i2cctl);
599         wrfl();
600
601 }
602
603 /**
604  *  igb_set_i2c_clk - Sets the I2C SCL clock
605  *  @data: pointer to hardware structure
606  *  @state: state to set clock
607  *
608  *  Sets the I2C clock line to state
609  **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612         struct igb_adapter *adapter = (struct igb_adapter *)data;
613         struct e1000_hw *hw = &adapter->hw;
614         s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616         if (state) {
617                 i2cctl |= E1000_I2C_CLK_OUT;
618                 i2cctl &= ~E1000_I2C_CLK_OE_N;
619         } else {
620                 i2cctl &= ~E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         }
623         wr32(E1000_I2CPARAMS, i2cctl);
624         wrfl();
625 }
626
627 /**
628  *  igb_get_i2c_clk - Gets the I2C SCL clock state
629  *  @data: pointer to hardware structure
630  *
631  *  Gets the I2C clock state
632  **/
633 static int igb_get_i2c_clk(void *data)
634 {
635         struct igb_adapter *adapter = (struct igb_adapter *)data;
636         struct e1000_hw *hw = &adapter->hw;
637         s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639         return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643         .setsda         = igb_set_i2c_data,
644         .setscl         = igb_set_i2c_clk,
645         .getsda         = igb_get_i2c_data,
646         .getscl         = igb_get_i2c_clk,
647         .udelay         = 5,
648         .timeout        = 20,
649 };
650
651 /**
652  *  igb_get_hw_dev - return device
653  *  @hw: pointer to hardware structure
654  *
655  *  used by hardware layer to print debugging information
656  **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659         struct igb_adapter *adapter = hw->back;
660         return adapter->netdev;
661 }
662
663 /**
664  *  igb_init_module - Driver Registration Routine
665  *
666  *  igb_init_module is the first routine called when the driver is
667  *  loaded. All it does is register with the PCI subsystem.
668  **/
669 static int __init igb_init_module(void)
670 {
671         int ret;
672
673         pr_info("%s - version %s\n",
674                igb_driver_string, igb_driver_version);
675         pr_info("%s\n", igb_copyright);
676
677 #ifdef CONFIG_IGB_DCA
678         dca_register_notify(&dca_notifier);
679 #endif
680         ret = pci_register_driver(&igb_driver);
681         return ret;
682 }
683
684 module_init(igb_init_module);
685
686 /**
687  *  igb_exit_module - Driver Exit Cleanup Routine
688  *
689  *  igb_exit_module is called just before the driver is removed
690  *  from memory.
691  **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695         dca_unregister_notify(&dca_notifier);
696 #endif
697         pci_unregister_driver(&igb_driver);
698 }
699
700 module_exit(igb_exit_module);
701
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704  *  igb_cache_ring_register - Descriptor ring to register mapping
705  *  @adapter: board private structure to initialize
706  *
707  *  Once we know the feature-set enabled for the device, we'll cache
708  *  the register offset the descriptor ring is assigned to.
709  **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712         int i = 0, j = 0;
713         u32 rbase_offset = adapter->vfs_allocated_count;
714
715         switch (adapter->hw.mac.type) {
716         case e1000_82576:
717                 /* The queues are allocated for virtualization such that VF 0
718                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719                  * In order to avoid collision we start at the first free queue
720                  * and continue consuming queues in the same sequence
721                  */
722                 if (adapter->vfs_allocated_count) {
723                         for (; i < adapter->rss_queues; i++)
724                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
725                                                                Q_IDX_82576(i);
726                 }
727                 /* Fall through */
728         case e1000_82575:
729         case e1000_82580:
730         case e1000_i350:
731         case e1000_i354:
732         case e1000_i210:
733         case e1000_i211:
734                 /* Fall through */
735         default:
736                 for (; i < adapter->num_rx_queues; i++)
737                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738                 for (; j < adapter->num_tx_queues; j++)
739                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740                 break;
741         }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748         u32 value = 0;
749
750         if (E1000_REMOVED(hw_addr))
751                 return ~value;
752
753         value = readl(&hw_addr[reg]);
754
755         /* reads should not return all F's */
756         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757                 struct net_device *netdev = igb->netdev;
758                 hw->hw_addr = NULL;
759                 netif_device_detach(netdev);
760                 netdev_err(netdev, "PCIe link lost, device now detached\n");
761         }
762
763         return value;
764 }
765
766 /**
767  *  igb_write_ivar - configure ivar for given MSI-X vector
768  *  @hw: pointer to the HW structure
769  *  @msix_vector: vector number we are allocating to a given ring
770  *  @index: row index of IVAR register to write within IVAR table
771  *  @offset: column offset of in IVAR, should be multiple of 8
772  *
773  *  This function is intended to handle the writing of the IVAR register
774  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775  *  each containing an cause allocation for an Rx and Tx ring, and a
776  *  variable number of rows depending on the number of queues supported.
777  **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779                            int index, int offset)
780 {
781         u32 ivar = array_rd32(E1000_IVAR0, index);
782
783         /* clear any bits that are currently set */
784         ivar &= ~((u32)0xFF << offset);
785
786         /* write vector and valid bit */
787         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789         array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795         struct igb_adapter *adapter = q_vector->adapter;
796         struct e1000_hw *hw = &adapter->hw;
797         int rx_queue = IGB_N0_QUEUE;
798         int tx_queue = IGB_N0_QUEUE;
799         u32 msixbm = 0;
800
801         if (q_vector->rx.ring)
802                 rx_queue = q_vector->rx.ring->reg_idx;
803         if (q_vector->tx.ring)
804                 tx_queue = q_vector->tx.ring->reg_idx;
805
806         switch (hw->mac.type) {
807         case e1000_82575:
808                 /* The 82575 assigns vectors using a bitmask, which matches the
809                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810                  * or more queues to a vector, we write the appropriate bits
811                  * into the MSIXBM register for that vector.
812                  */
813                 if (rx_queue > IGB_N0_QUEUE)
814                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815                 if (tx_queue > IGB_N0_QUEUE)
816                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818                         msixbm |= E1000_EIMS_OTHER;
819                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820                 q_vector->eims_value = msixbm;
821                 break;
822         case e1000_82576:
823                 /* 82576 uses a table that essentially consists of 2 columns
824                  * with 8 rows.  The ordering is column-major so we use the
825                  * lower 3 bits as the row index, and the 4th bit as the
826                  * column offset.
827                  */
828                 if (rx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        rx_queue & 0x7,
831                                        (rx_queue & 0x8) << 1);
832                 if (tx_queue > IGB_N0_QUEUE)
833                         igb_write_ivar(hw, msix_vector,
834                                        tx_queue & 0x7,
835                                        ((tx_queue & 0x8) << 1) + 8);
836                 q_vector->eims_value = 1 << msix_vector;
837                 break;
838         case e1000_82580:
839         case e1000_i350:
840         case e1000_i354:
841         case e1000_i210:
842         case e1000_i211:
843                 /* On 82580 and newer adapters the scheme is similar to 82576
844                  * however instead of ordering column-major we have things
845                  * ordered row-major.  So we traverse the table by using
846                  * bit 0 as the column offset, and the remaining bits as the
847                  * row index.
848                  */
849                 if (rx_queue > IGB_N0_QUEUE)
850                         igb_write_ivar(hw, msix_vector,
851                                        rx_queue >> 1,
852                                        (rx_queue & 0x1) << 4);
853                 if (tx_queue > IGB_N0_QUEUE)
854                         igb_write_ivar(hw, msix_vector,
855                                        tx_queue >> 1,
856                                        ((tx_queue & 0x1) << 4) + 8);
857                 q_vector->eims_value = 1 << msix_vector;
858                 break;
859         default:
860                 BUG();
861                 break;
862         }
863
864         /* add q_vector eims value to global eims_enable_mask */
865         adapter->eims_enable_mask |= q_vector->eims_value;
866
867         /* configure q_vector to set itr on first interrupt */
868         q_vector->set_itr = 1;
869 }
870
871 /**
872  *  igb_configure_msix - Configure MSI-X hardware
873  *  @adapter: board private structure to initialize
874  *
875  *  igb_configure_msix sets up the hardware to properly
876  *  generate MSI-X interrupts.
877  **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880         u32 tmp;
881         int i, vector = 0;
882         struct e1000_hw *hw = &adapter->hw;
883
884         adapter->eims_enable_mask = 0;
885
886         /* set vector for other causes, i.e. link changes */
887         switch (hw->mac.type) {
888         case e1000_82575:
889                 tmp = rd32(E1000_CTRL_EXT);
890                 /* enable MSI-X PBA support*/
891                 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893                 /* Auto-Mask interrupts upon ICR read. */
894                 tmp |= E1000_CTRL_EXT_EIAME;
895                 tmp |= E1000_CTRL_EXT_IRCA;
896
897                 wr32(E1000_CTRL_EXT, tmp);
898
899                 /* enable msix_other interrupt */
900                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901                 adapter->eims_other = E1000_EIMS_OTHER;
902
903                 break;
904
905         case e1000_82576:
906         case e1000_82580:
907         case e1000_i350:
908         case e1000_i354:
909         case e1000_i210:
910         case e1000_i211:
911                 /* Turn on MSI-X capability first, or our settings
912                  * won't stick.  And it will take days to debug.
913                  */
914                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
916                      E1000_GPIE_NSICR);
917
918                 /* enable msix_other interrupt */
919                 adapter->eims_other = 1 << vector;
920                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922                 wr32(E1000_IVAR_MISC, tmp);
923                 break;
924         default:
925                 /* do nothing, since nothing else supports MSI-X */
926                 break;
927         } /* switch (hw->mac.type) */
928
929         adapter->eims_enable_mask |= adapter->eims_other;
930
931         for (i = 0; i < adapter->num_q_vectors; i++)
932                 igb_assign_vector(adapter->q_vector[i], vector++);
933
934         wrfl();
935 }
936
937 /**
938  *  igb_request_msix - Initialize MSI-X interrupts
939  *  @adapter: board private structure to initialize
940  *
941  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942  *  kernel.
943  **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946         struct net_device *netdev = adapter->netdev;
947         struct e1000_hw *hw = &adapter->hw;
948         int i, err = 0, vector = 0, free_vector = 0;
949
950         err = request_irq(adapter->msix_entries[vector].vector,
951                           igb_msix_other, 0, netdev->name, adapter);
952         if (err)
953                 goto err_out;
954
955         for (i = 0; i < adapter->num_q_vectors; i++) {
956                 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958                 vector++;
959
960                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962                 if (q_vector->rx.ring && q_vector->tx.ring)
963                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else if (q_vector->tx.ring)
966                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967                                 q_vector->tx.ring->queue_index);
968                 else if (q_vector->rx.ring)
969                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970                                 q_vector->rx.ring->queue_index);
971                 else
972                         sprintf(q_vector->name, "%s-unused", netdev->name);
973
974                 err = request_irq(adapter->msix_entries[vector].vector,
975                                   igb_msix_ring, 0, q_vector->name,
976                                   q_vector);
977                 if (err)
978                         goto err_free;
979         }
980
981         igb_configure_msix(adapter);
982         return 0;
983
984 err_free:
985         /* free already assigned IRQs */
986         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988         vector--;
989         for (i = 0; i < vector; i++) {
990                 free_irq(adapter->msix_entries[free_vector++].vector,
991                          adapter->q_vector[i]);
992         }
993 err_out:
994         return err;
995 }
996
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008         adapter->q_vector[v_idx] = NULL;
1009
1010         /* igb_get_stats64() might access the rings on this vector,
1011          * we must wait a grace period before freeing it.
1012          */
1013         if (q_vector)
1014                 kfree_rcu(q_vector, rcu);
1015 }
1016
1017 /**
1018  *  igb_reset_q_vector - Reset config for interrupt vector
1019  *  @adapter: board private structure to initialize
1020  *  @v_idx: Index of vector to be reset
1021  *
1022  *  If NAPI is enabled it will delete any references to the
1023  *  NAPI struct. This is preparation for igb_free_q_vector.
1024  **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030          * allocated. So, q_vector is NULL so we should stop here.
1031          */
1032         if (!q_vector)
1033                 return;
1034
1035         if (q_vector->tx.ring)
1036                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038         if (q_vector->rx.ring)
1039                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041         netif_napi_del(&q_vector->napi);
1042
1043 }
1044
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047         int v_idx = adapter->num_q_vectors;
1048
1049         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050                 pci_disable_msix(adapter->pdev);
1051         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052                 pci_disable_msi(adapter->pdev);
1053
1054         while (v_idx--)
1055                 igb_reset_q_vector(adapter, v_idx);
1056 }
1057
1058 /**
1059  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060  *  @adapter: board private structure to initialize
1061  *
1062  *  This function frees the memory allocated to the q_vectors.  In addition if
1063  *  NAPI is enabled it will delete any references to the NAPI struct prior
1064  *  to freeing the q_vector.
1065  **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068         int v_idx = adapter->num_q_vectors;
1069
1070         adapter->num_tx_queues = 0;
1071         adapter->num_rx_queues = 0;
1072         adapter->num_q_vectors = 0;
1073
1074         while (v_idx--) {
1075                 igb_reset_q_vector(adapter, v_idx);
1076                 igb_free_q_vector(adapter, v_idx);
1077         }
1078 }
1079
1080 /**
1081  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082  *  @adapter: board private structure to initialize
1083  *
1084  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085  *  MSI-X interrupts allocated.
1086  */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089         igb_free_q_vectors(adapter);
1090         igb_reset_interrupt_capability(adapter);
1091 }
1092
1093 /**
1094  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095  *  @adapter: board private structure to initialize
1096  *  @msix: boolean value of MSIX capability
1097  *
1098  *  Attempt to configure interrupts using the best available
1099  *  capabilities of the hardware and kernel.
1100  **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103         int err;
1104         int numvecs, i;
1105
1106         if (!msix)
1107                 goto msi_only;
1108         adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110         /* Number of supported queues. */
1111         adapter->num_rx_queues = adapter->rss_queues;
1112         if (adapter->vfs_allocated_count)
1113                 adapter->num_tx_queues = 1;
1114         else
1115                 adapter->num_tx_queues = adapter->rss_queues;
1116
1117         /* start with one vector for every Rx queue */
1118         numvecs = adapter->num_rx_queues;
1119
1120         /* if Tx handler is separate add 1 for every Tx queue */
1121         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122                 numvecs += adapter->num_tx_queues;
1123
1124         /* store the number of vectors reserved for queues */
1125         adapter->num_q_vectors = numvecs;
1126
1127         /* add 1 vector for link status interrupts */
1128         numvecs++;
1129         for (i = 0; i < numvecs; i++)
1130                 adapter->msix_entries[i].entry = i;
1131
1132         err = pci_enable_msix_range(adapter->pdev,
1133                                     adapter->msix_entries,
1134                                     numvecs,
1135                                     numvecs);
1136         if (err > 0)
1137                 return;
1138
1139         igb_reset_interrupt_capability(adapter);
1140
1141         /* If we can't do MSI-X, try MSI */
1142 msi_only:
1143         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145         /* disable SR-IOV for non MSI-X configurations */
1146         if (adapter->vf_data) {
1147                 struct e1000_hw *hw = &adapter->hw;
1148                 /* disable iov and allow time for transactions to clear */
1149                 pci_disable_sriov(adapter->pdev);
1150                 msleep(500);
1151
1152                 kfree(adapter->vf_data);
1153                 adapter->vf_data = NULL;
1154                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155                 wrfl();
1156                 msleep(100);
1157                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158         }
1159 #endif
1160         adapter->vfs_allocated_count = 0;
1161         adapter->rss_queues = 1;
1162         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163         adapter->num_rx_queues = 1;
1164         adapter->num_tx_queues = 1;
1165         adapter->num_q_vectors = 1;
1166         if (!pci_enable_msi(adapter->pdev))
1167                 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169
1170 static void igb_add_ring(struct igb_ring *ring,
1171                          struct igb_ring_container *head)
1172 {
1173         head->ring = ring;
1174         head->count++;
1175 }
1176
1177 /**
1178  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179  *  @adapter: board private structure to initialize
1180  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181  *  @v_idx: index of vector in adapter struct
1182  *  @txr_count: total number of Tx rings to allocate
1183  *  @txr_idx: index of first Tx ring to allocate
1184  *  @rxr_count: total number of Rx rings to allocate
1185  *  @rxr_idx: index of first Rx ring to allocate
1186  *
1187  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188  **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190                               int v_count, int v_idx,
1191                               int txr_count, int txr_idx,
1192                               int rxr_count, int rxr_idx)
1193 {
1194         struct igb_q_vector *q_vector;
1195         struct igb_ring *ring;
1196         int ring_count, size;
1197
1198         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199         if (txr_count > 1 || rxr_count > 1)
1200                 return -ENOMEM;
1201
1202         ring_count = txr_count + rxr_count;
1203         size = sizeof(struct igb_q_vector) +
1204                (sizeof(struct igb_ring) * ring_count);
1205
1206         /* allocate q_vector and rings */
1207         q_vector = adapter->q_vector[v_idx];
1208         if (!q_vector)
1209                 q_vector = kzalloc(size, GFP_KERNEL);
1210         else
1211                 memset(q_vector, 0, size);
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi,
1217                        igb_poll, 64);
1218
1219         /* tie q_vector and adapter together */
1220         adapter->q_vector[v_idx] = q_vector;
1221         q_vector->adapter = adapter;
1222
1223         /* initialize work limits */
1224         q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226         /* initialize ITR configuration */
1227         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228         q_vector->itr_val = IGB_START_ITR;
1229
1230         /* initialize pointer to rings */
1231         ring = q_vector->ring;
1232
1233         /* intialize ITR */
1234         if (rxr_count) {
1235                 /* rx or rx/tx vector */
1236                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                         q_vector->itr_val = adapter->rx_itr_setting;
1238         } else {
1239                 /* tx only vector */
1240                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->tx_itr_setting;
1242         }
1243
1244         if (txr_count) {
1245                 /* assign generic ring traits */
1246                 ring->dev = &adapter->pdev->dev;
1247                 ring->netdev = adapter->netdev;
1248
1249                 /* configure backlink on ring */
1250                 ring->q_vector = q_vector;
1251
1252                 /* update q_vector Tx values */
1253                 igb_add_ring(ring, &q_vector->tx);
1254
1255                 /* For 82575, context index must be unique per ring. */
1256                 if (adapter->hw.mac.type == e1000_82575)
1257                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                 /* apply Tx specific ring traits */
1260                 ring->count = adapter->tx_ring_count;
1261                 ring->queue_index = txr_idx;
1262
1263                 u64_stats_init(&ring->tx_syncp);
1264                 u64_stats_init(&ring->tx_syncp2);
1265
1266                 /* assign ring to adapter */
1267                 adapter->tx_ring[txr_idx] = ring;
1268
1269                 /* push pointer to next ring */
1270                 ring++;
1271         }
1272
1273         if (rxr_count) {
1274                 /* assign generic ring traits */
1275                 ring->dev = &adapter->pdev->dev;
1276                 ring->netdev = adapter->netdev;
1277
1278                 /* configure backlink on ring */
1279                 ring->q_vector = q_vector;
1280
1281                 /* update q_vector Rx values */
1282                 igb_add_ring(ring, &q_vector->rx);
1283
1284                 /* set flag indicating ring supports SCTP checksum offload */
1285                 if (adapter->hw.mac.type >= e1000_82576)
1286                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288                 /* On i350, i354, i210, and i211, loopback VLAN packets
1289                  * have the tag byte-swapped.
1290                  */
1291                 if (adapter->hw.mac.type >= e1000_i350)
1292                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293
1294                 /* apply Rx specific ring traits */
1295                 ring->count = adapter->rx_ring_count;
1296                 ring->queue_index = rxr_idx;
1297
1298                 u64_stats_init(&ring->rx_syncp);
1299
1300                 /* assign ring to adapter */
1301                 adapter->rx_ring[rxr_idx] = ring;
1302         }
1303
1304         return 0;
1305 }
1306
1307
1308 /**
1309  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310  *  @adapter: board private structure to initialize
1311  *
1312  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1313  *  return -ENOMEM.
1314  **/
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316 {
1317         int q_vectors = adapter->num_q_vectors;
1318         int rxr_remaining = adapter->num_rx_queues;
1319         int txr_remaining = adapter->num_tx_queues;
1320         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321         int err;
1322
1323         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324                 for (; rxr_remaining; v_idx++) {
1325                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326                                                  0, 0, 1, rxr_idx);
1327
1328                         if (err)
1329                                 goto err_out;
1330
1331                         /* update counts and index */
1332                         rxr_remaining--;
1333                         rxr_idx++;
1334                 }
1335         }
1336
1337         for (; v_idx < q_vectors; v_idx++) {
1338                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340
1341                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342                                          tqpv, txr_idx, rqpv, rxr_idx);
1343
1344                 if (err)
1345                         goto err_out;
1346
1347                 /* update counts and index */
1348                 rxr_remaining -= rqpv;
1349                 txr_remaining -= tqpv;
1350                 rxr_idx++;
1351                 txr_idx++;
1352         }
1353
1354         return 0;
1355
1356 err_out:
1357         adapter->num_tx_queues = 0;
1358         adapter->num_rx_queues = 0;
1359         adapter->num_q_vectors = 0;
1360
1361         while (v_idx--)
1362                 igb_free_q_vector(adapter, v_idx);
1363
1364         return -ENOMEM;
1365 }
1366
1367 /**
1368  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369  *  @adapter: board private structure to initialize
1370  *  @msix: boolean value of MSIX capability
1371  *
1372  *  This function initializes the interrupts and allocates all of the queues.
1373  **/
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375 {
1376         struct pci_dev *pdev = adapter->pdev;
1377         int err;
1378
1379         igb_set_interrupt_capability(adapter, msix);
1380
1381         err = igb_alloc_q_vectors(adapter);
1382         if (err) {
1383                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384                 goto err_alloc_q_vectors;
1385         }
1386
1387         igb_cache_ring_register(adapter);
1388
1389         return 0;
1390
1391 err_alloc_q_vectors:
1392         igb_reset_interrupt_capability(adapter);
1393         return err;
1394 }
1395
1396 /**
1397  *  igb_request_irq - initialize interrupts
1398  *  @adapter: board private structure to initialize
1399  *
1400  *  Attempts to configure interrupts using the best available
1401  *  capabilities of the hardware and kernel.
1402  **/
1403 static int igb_request_irq(struct igb_adapter *adapter)
1404 {
1405         struct net_device *netdev = adapter->netdev;
1406         struct pci_dev *pdev = adapter->pdev;
1407         int err = 0;
1408
1409         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410                 err = igb_request_msix(adapter);
1411                 if (!err)
1412                         goto request_done;
1413                 /* fall back to MSI */
1414                 igb_free_all_tx_resources(adapter);
1415                 igb_free_all_rx_resources(adapter);
1416
1417                 igb_clear_interrupt_scheme(adapter);
1418                 err = igb_init_interrupt_scheme(adapter, false);
1419                 if (err)
1420                         goto request_done;
1421
1422                 igb_setup_all_tx_resources(adapter);
1423                 igb_setup_all_rx_resources(adapter);
1424                 igb_configure(adapter);
1425         }
1426
1427         igb_assign_vector(adapter->q_vector[0], 0);
1428
1429         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431                                   netdev->name, adapter);
1432                 if (!err)
1433                         goto request_done;
1434
1435                 /* fall back to legacy interrupts */
1436                 igb_reset_interrupt_capability(adapter);
1437                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438         }
1439
1440         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441                           netdev->name, adapter);
1442
1443         if (err)
1444                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445                         err);
1446
1447 request_done:
1448         return err;
1449 }
1450
1451 static void igb_free_irq(struct igb_adapter *adapter)
1452 {
1453         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454                 int vector = 0, i;
1455
1456                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458                 for (i = 0; i < adapter->num_q_vectors; i++)
1459                         free_irq(adapter->msix_entries[vector++].vector,
1460                                  adapter->q_vector[i]);
1461         } else {
1462                 free_irq(adapter->pdev->irq, adapter);
1463         }
1464 }
1465
1466 /**
1467  *  igb_irq_disable - Mask off interrupt generation on the NIC
1468  *  @adapter: board private structure
1469  **/
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1471 {
1472         struct e1000_hw *hw = &adapter->hw;
1473
1474         /* we need to be careful when disabling interrupts.  The VFs are also
1475          * mapped into these registers and so clearing the bits can cause
1476          * issues on the VF drivers so we only need to clear what we set
1477          */
1478         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479                 u32 regval = rd32(E1000_EIAM);
1480
1481                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483                 regval = rd32(E1000_EIAC);
1484                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485         }
1486
1487         wr32(E1000_IAM, 0);
1488         wr32(E1000_IMC, ~0);
1489         wrfl();
1490         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491                 int i;
1492
1493                 for (i = 0; i < adapter->num_q_vectors; i++)
1494                         synchronize_irq(adapter->msix_entries[i].vector);
1495         } else {
1496                 synchronize_irq(adapter->pdev->irq);
1497         }
1498 }
1499
1500 /**
1501  *  igb_irq_enable - Enable default interrupt generation settings
1502  *  @adapter: board private structure
1503  **/
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1505 {
1506         struct e1000_hw *hw = &adapter->hw;
1507
1508         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510                 u32 regval = rd32(E1000_EIAC);
1511
1512                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513                 regval = rd32(E1000_EIAM);
1514                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516                 if (adapter->vfs_allocated_count) {
1517                         wr32(E1000_MBVFIMR, 0xFF);
1518                         ims |= E1000_IMS_VMMB;
1519                 }
1520                 wr32(E1000_IMS, ims);
1521         } else {
1522                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525                                 E1000_IMS_DRSTA);
1526         }
1527 }
1528
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530 {
1531         struct e1000_hw *hw = &adapter->hw;
1532         u16 vid = adapter->hw.mng_cookie.vlan_id;
1533         u16 old_vid = adapter->mng_vlan_id;
1534
1535         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                 /* add VID to filter table */
1537                 igb_vfta_set(hw, vid, true);
1538                 adapter->mng_vlan_id = vid;
1539         } else {
1540                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541         }
1542
1543         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544             (vid != old_vid) &&
1545             !test_bit(old_vid, adapter->active_vlans)) {
1546                 /* remove VID from filter table */
1547                 igb_vfta_set(hw, old_vid, false);
1548         }
1549 }
1550
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 ctrl_ext;
1563
1564         /* Let firmware take over control of h/w */
1565         ctrl_ext = rd32(E1000_CTRL_EXT);
1566         wr32(E1000_CTRL_EXT,
1567                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 ctrl_ext;
1582
1583         /* Let firmware know the driver has taken over */
1584         ctrl_ext = rd32(E1000_CTRL_EXT);
1585         wr32(E1000_CTRL_EXT,
1586                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 /**
1590  *  igb_configure - configure the hardware for RX and TX
1591  *  @adapter: private board structure
1592  **/
1593 static void igb_configure(struct igb_adapter *adapter)
1594 {
1595         struct net_device *netdev = adapter->netdev;
1596         int i;
1597
1598         igb_get_hw_control(adapter);
1599         igb_set_rx_mode(netdev);
1600
1601         igb_restore_vlan(adapter);
1602
1603         igb_setup_tctl(adapter);
1604         igb_setup_mrqc(adapter);
1605         igb_setup_rctl(adapter);
1606
1607         igb_configure_tx(adapter);
1608         igb_configure_rx(adapter);
1609
1610         igb_rx_fifo_flush_82575(&adapter->hw);
1611
1612         /* call igb_desc_unused which always leaves
1613          * at least 1 descriptor unused to make sure
1614          * next_to_use != next_to_clean
1615          */
1616         for (i = 0; i < adapter->num_rx_queues; i++) {
1617                 struct igb_ring *ring = adapter->rx_ring[i];
1618                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619         }
1620 }
1621
1622 /**
1623  *  igb_power_up_link - Power up the phy/serdes link
1624  *  @adapter: address of board private structure
1625  **/
1626 void igb_power_up_link(struct igb_adapter *adapter)
1627 {
1628         igb_reset_phy(&adapter->hw);
1629
1630         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631                 igb_power_up_phy_copper(&adapter->hw);
1632         else
1633                 igb_power_up_serdes_link_82575(&adapter->hw);
1634
1635         igb_setup_link(&adapter->hw);
1636 }
1637
1638 /**
1639  *  igb_power_down_link - Power down the phy/serdes link
1640  *  @adapter: address of board private structure
1641  */
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1643 {
1644         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645                 igb_power_down_phy_copper_82575(&adapter->hw);
1646         else
1647                 igb_shutdown_serdes_link_82575(&adapter->hw);
1648 }
1649
1650 /**
1651  * Detect and switch function for Media Auto Sense
1652  * @adapter: address of the board private structure
1653  **/
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1655 {
1656         struct e1000_hw *hw = &adapter->hw;
1657         u32 ctrl_ext, connsw;
1658         bool swap_now = false;
1659
1660         ctrl_ext = rd32(E1000_CTRL_EXT);
1661         connsw = rd32(E1000_CONNSW);
1662
1663         /* need to live swap if current media is copper and we have fiber/serdes
1664          * to go to.
1665          */
1666
1667         if ((hw->phy.media_type == e1000_media_type_copper) &&
1668             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669                 swap_now = true;
1670         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671                 /* copper signal takes time to appear */
1672                 if (adapter->copper_tries < 4) {
1673                         adapter->copper_tries++;
1674                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675                         wr32(E1000_CONNSW, connsw);
1676                         return;
1677                 } else {
1678                         adapter->copper_tries = 0;
1679                         if ((connsw & E1000_CONNSW_PHYSD) &&
1680                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681                                 swap_now = true;
1682                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683                                 wr32(E1000_CONNSW, connsw);
1684                         }
1685                 }
1686         }
1687
1688         if (!swap_now)
1689                 return;
1690
1691         switch (hw->phy.media_type) {
1692         case e1000_media_type_copper:
1693                 netdev_info(adapter->netdev,
1694                         "MAS: changing media to fiber/serdes\n");
1695                 ctrl_ext |=
1696                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698                 adapter->copper_tries = 0;
1699                 break;
1700         case e1000_media_type_internal_serdes:
1701         case e1000_media_type_fiber:
1702                 netdev_info(adapter->netdev,
1703                         "MAS: changing media to copper\n");
1704                 ctrl_ext &=
1705                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707                 break;
1708         default:
1709                 /* shouldn't get here during regular operation */
1710                 netdev_err(adapter->netdev,
1711                         "AMS: Invalid media type found, returning\n");
1712                 break;
1713         }
1714         wr32(E1000_CTRL_EXT, ctrl_ext);
1715 }
1716
1717 /**
1718  *  igb_up - Open the interface and prepare it to handle traffic
1719  *  @adapter: board private structure
1720  **/
1721 int igb_up(struct igb_adapter *adapter)
1722 {
1723         struct e1000_hw *hw = &adapter->hw;
1724         int i;
1725
1726         /* hardware has been reset, we need to reload some things */
1727         igb_configure(adapter);
1728
1729         clear_bit(__IGB_DOWN, &adapter->state);
1730
1731         for (i = 0; i < adapter->num_q_vectors; i++)
1732                 napi_enable(&(adapter->q_vector[i]->napi));
1733
1734         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735                 igb_configure_msix(adapter);
1736         else
1737                 igb_assign_vector(adapter->q_vector[0], 0);
1738
1739         /* Clear any pending interrupts. */
1740         rd32(E1000_ICR);
1741         igb_irq_enable(adapter);
1742
1743         /* notify VFs that reset has been completed */
1744         if (adapter->vfs_allocated_count) {
1745                 u32 reg_data = rd32(E1000_CTRL_EXT);
1746
1747                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748                 wr32(E1000_CTRL_EXT, reg_data);
1749         }
1750
1751         netif_tx_start_all_queues(adapter->netdev);
1752
1753         /* start the watchdog. */
1754         hw->mac.get_link_status = 1;
1755         schedule_work(&adapter->watchdog_task);
1756
1757         if ((adapter->flags & IGB_FLAG_EEE) &&
1758             (!hw->dev_spec._82575.eee_disable))
1759                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
1761         return 0;
1762 }
1763
1764 void igb_down(struct igb_adapter *adapter)
1765 {
1766         struct net_device *netdev = adapter->netdev;
1767         struct e1000_hw *hw = &adapter->hw;
1768         u32 tctl, rctl;
1769         int i;
1770
1771         /* signal that we're down so the interrupt handler does not
1772          * reschedule our watchdog timer
1773          */
1774         set_bit(__IGB_DOWN, &adapter->state);
1775
1776         /* disable receives in the hardware */
1777         rctl = rd32(E1000_RCTL);
1778         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779         /* flush and sleep below */
1780
1781         netif_carrier_off(netdev);
1782         netif_tx_stop_all_queues(netdev);
1783
1784         /* disable transmits in the hardware */
1785         tctl = rd32(E1000_TCTL);
1786         tctl &= ~E1000_TCTL_EN;
1787         wr32(E1000_TCTL, tctl);
1788         /* flush both disables and wait for them to finish */
1789         wrfl();
1790         usleep_range(10000, 11000);
1791
1792         igb_irq_disable(adapter);
1793
1794         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796         for (i = 0; i < adapter->num_q_vectors; i++) {
1797                 if (adapter->q_vector[i]) {
1798                         napi_synchronize(&adapter->q_vector[i]->napi);
1799                         napi_disable(&adapter->q_vector[i]->napi);
1800                 }
1801         }
1802
1803         del_timer_sync(&adapter->watchdog_timer);
1804         del_timer_sync(&adapter->phy_info_timer);
1805
1806         /* record the stats before reset*/
1807         spin_lock(&adapter->stats64_lock);
1808         igb_update_stats(adapter, &adapter->stats64);
1809         spin_unlock(&adapter->stats64_lock);
1810
1811         adapter->link_speed = 0;
1812         adapter->link_duplex = 0;
1813
1814         if (!pci_channel_offline(adapter->pdev))
1815                 igb_reset(adapter);
1816         igb_clean_all_tx_rings(adapter);
1817         igb_clean_all_rx_rings(adapter);
1818 #ifdef CONFIG_IGB_DCA
1819
1820         /* since we reset the hardware DCA settings were cleared */
1821         igb_setup_dca(adapter);
1822 #endif
1823 }
1824
1825 void igb_reinit_locked(struct igb_adapter *adapter)
1826 {
1827         WARN_ON(in_interrupt());
1828         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1829                 usleep_range(1000, 2000);
1830         igb_down(adapter);
1831         igb_up(adapter);
1832         clear_bit(__IGB_RESETTING, &adapter->state);
1833 }
1834
1835 /** igb_enable_mas - Media Autosense re-enable after swap
1836  *
1837  * @adapter: adapter struct
1838  **/
1839 static void igb_enable_mas(struct igb_adapter *adapter)
1840 {
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 connsw = rd32(E1000_CONNSW);
1843
1844         /* configure for SerDes media detect */
1845         if ((hw->phy.media_type == e1000_media_type_copper) &&
1846             (!(connsw & E1000_CONNSW_SERDESD))) {
1847                 connsw |= E1000_CONNSW_ENRGSRC;
1848                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1849                 wr32(E1000_CONNSW, connsw);
1850                 wrfl();
1851         }
1852 }
1853
1854 void igb_reset(struct igb_adapter *adapter)
1855 {
1856         struct pci_dev *pdev = adapter->pdev;
1857         struct e1000_hw *hw = &adapter->hw;
1858         struct e1000_mac_info *mac = &hw->mac;
1859         struct e1000_fc_info *fc = &hw->fc;
1860         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1861
1862         /* Repartition Pba for greater than 9k mtu
1863          * To take effect CTRL.RST is required.
1864          */
1865         switch (mac->type) {
1866         case e1000_i350:
1867         case e1000_i354:
1868         case e1000_82580:
1869                 pba = rd32(E1000_RXPBS);
1870                 pba = igb_rxpbs_adjust_82580(pba);
1871                 break;
1872         case e1000_82576:
1873                 pba = rd32(E1000_RXPBS);
1874                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1875                 break;
1876         case e1000_82575:
1877         case e1000_i210:
1878         case e1000_i211:
1879         default:
1880                 pba = E1000_PBA_34K;
1881                 break;
1882         }
1883
1884         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1885             (mac->type < e1000_82576)) {
1886                 /* adjust PBA for jumbo frames */
1887                 wr32(E1000_PBA, pba);
1888
1889                 /* To maintain wire speed transmits, the Tx FIFO should be
1890                  * large enough to accommodate two full transmit packets,
1891                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1892                  * the Rx FIFO should be large enough to accommodate at least
1893                  * one full receive packet and is similarly rounded up and
1894                  * expressed in KB.
1895                  */
1896                 pba = rd32(E1000_PBA);
1897                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1898                 tx_space = pba >> 16;
1899                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1900                 pba &= 0xffff;
1901                 /* the Tx fifo also stores 16 bytes of information about the Tx
1902                  * but don't include ethernet FCS because hardware appends it
1903                  */
1904                 min_tx_space = (adapter->max_frame_size +
1905                                 sizeof(union e1000_adv_tx_desc) -
1906                                 ETH_FCS_LEN) * 2;
1907                 min_tx_space = ALIGN(min_tx_space, 1024);
1908                 min_tx_space >>= 10;
1909                 /* software strips receive CRC, so leave room for it */
1910                 min_rx_space = adapter->max_frame_size;
1911                 min_rx_space = ALIGN(min_rx_space, 1024);
1912                 min_rx_space >>= 10;
1913
1914                 /* If current Tx allocation is less than the min Tx FIFO size,
1915                  * and the min Tx FIFO size is less than the current Rx FIFO
1916                  * allocation, take space away from current Rx allocation
1917                  */
1918                 if (tx_space < min_tx_space &&
1919                     ((min_tx_space - tx_space) < pba)) {
1920                         pba = pba - (min_tx_space - tx_space);
1921
1922                         /* if short on Rx space, Rx wins and must trump Tx
1923                          * adjustment
1924                          */
1925                         if (pba < min_rx_space)
1926                                 pba = min_rx_space;
1927                 }
1928                 wr32(E1000_PBA, pba);
1929         }
1930
1931         /* flow control settings */
1932         /* The high water mark must be low enough to fit one full frame
1933          * (or the size used for early receive) above it in the Rx FIFO.
1934          * Set it to the lower of:
1935          * - 90% of the Rx FIFO size, or
1936          * - the full Rx FIFO size minus one full frame
1937          */
1938         hwm = min(((pba << 10) * 9 / 10),
1939                         ((pba << 10) - 2 * adapter->max_frame_size));
1940
1941         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1942         fc->low_water = fc->high_water - 16;
1943         fc->pause_time = 0xFFFF;
1944         fc->send_xon = 1;
1945         fc->current_mode = fc->requested_mode;
1946
1947         /* disable receive for all VFs and wait one second */
1948         if (adapter->vfs_allocated_count) {
1949                 int i;
1950
1951                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1952                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1953
1954                 /* ping all the active vfs to let them know we are going down */
1955                 igb_ping_all_vfs(adapter);
1956
1957                 /* disable transmits and receives */
1958                 wr32(E1000_VFRE, 0);
1959                 wr32(E1000_VFTE, 0);
1960         }
1961
1962         /* Allow time for pending master requests to run */
1963         hw->mac.ops.reset_hw(hw);
1964         wr32(E1000_WUC, 0);
1965
1966         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1967                 /* need to resetup here after media swap */
1968                 adapter->ei.get_invariants(hw);
1969                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1970         }
1971         if ((mac->type == e1000_82575) &&
1972             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1973                 igb_enable_mas(adapter);
1974         }
1975         if (hw->mac.ops.init_hw(hw))
1976                 dev_err(&pdev->dev, "Hardware Error\n");
1977
1978         /* Flow control settings reset on hardware reset, so guarantee flow
1979          * control is off when forcing speed.
1980          */
1981         if (!hw->mac.autoneg)
1982                 igb_force_mac_fc(hw);
1983
1984         igb_init_dmac(adapter, pba);
1985 #ifdef CONFIG_IGB_HWMON
1986         /* Re-initialize the thermal sensor on i350 devices. */
1987         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1988                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1989                         /* If present, re-initialize the external thermal sensor
1990                          * interface.
1991                          */
1992                         if (adapter->ets)
1993                                 mac->ops.init_thermal_sensor_thresh(hw);
1994                 }
1995         }
1996 #endif
1997         /* Re-establish EEE setting */
1998         if (hw->phy.media_type == e1000_media_type_copper) {
1999                 switch (mac->type) {
2000                 case e1000_i350:
2001                 case e1000_i210:
2002                 case e1000_i211:
2003                         igb_set_eee_i350(hw, true, true);
2004                         break;
2005                 case e1000_i354:
2006                         igb_set_eee_i354(hw, true, true);
2007                         break;
2008                 default:
2009                         break;
2010                 }
2011         }
2012         if (!netif_running(adapter->netdev))
2013                 igb_power_down_link(adapter);
2014
2015         igb_update_mng_vlan(adapter);
2016
2017         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2018         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2019
2020         /* Re-enable PTP, where applicable. */
2021         igb_ptp_reset(adapter);
2022
2023         igb_get_phy_info(hw);
2024 }
2025
2026 static netdev_features_t igb_fix_features(struct net_device *netdev,
2027         netdev_features_t features)
2028 {
2029         /* Since there is no support for separate Rx/Tx vlan accel
2030          * enable/disable make sure Tx flag is always in same state as Rx.
2031          */
2032         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2033                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2034         else
2035                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2036
2037         return features;
2038 }
2039
2040 static int igb_set_features(struct net_device *netdev,
2041         netdev_features_t features)
2042 {
2043         netdev_features_t changed = netdev->features ^ features;
2044         struct igb_adapter *adapter = netdev_priv(netdev);
2045
2046         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2047                 igb_vlan_mode(netdev, features);
2048
2049         if (!(changed & NETIF_F_RXALL))
2050                 return 0;
2051
2052         netdev->features = features;
2053
2054         if (netif_running(netdev))
2055                 igb_reinit_locked(adapter);
2056         else
2057                 igb_reset(adapter);
2058
2059         return 0;
2060 }
2061
2062 static const struct net_device_ops igb_netdev_ops = {
2063         .ndo_open               = igb_open,
2064         .ndo_stop               = igb_close,
2065         .ndo_start_xmit         = igb_xmit_frame,
2066         .ndo_get_stats64        = igb_get_stats64,
2067         .ndo_set_rx_mode        = igb_set_rx_mode,
2068         .ndo_set_mac_address    = igb_set_mac,
2069         .ndo_change_mtu         = igb_change_mtu,
2070         .ndo_do_ioctl           = igb_ioctl,
2071         .ndo_tx_timeout         = igb_tx_timeout,
2072         .ndo_validate_addr      = eth_validate_addr,
2073         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2074         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2075         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2076         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2077         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2078         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2079         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2080 #ifdef CONFIG_NET_POLL_CONTROLLER
2081         .ndo_poll_controller    = igb_netpoll,
2082 #endif
2083         .ndo_fix_features       = igb_fix_features,
2084         .ndo_set_features       = igb_set_features,
2085         .ndo_features_check     = passthru_features_check,
2086 };
2087
2088 /**
2089  * igb_set_fw_version - Configure version string for ethtool
2090  * @adapter: adapter struct
2091  **/
2092 void igb_set_fw_version(struct igb_adapter *adapter)
2093 {
2094         struct e1000_hw *hw = &adapter->hw;
2095         struct e1000_fw_version fw;
2096
2097         igb_get_fw_version(hw, &fw);
2098
2099         switch (hw->mac.type) {
2100         case e1000_i210:
2101         case e1000_i211:
2102                 if (!(igb_get_flash_presence_i210(hw))) {
2103                         snprintf(adapter->fw_version,
2104                                  sizeof(adapter->fw_version),
2105                                  "%2d.%2d-%d",
2106                                  fw.invm_major, fw.invm_minor,
2107                                  fw.invm_img_type);
2108                         break;
2109                 }
2110                 /* fall through */
2111         default:
2112                 /* if option is rom valid, display its version too */
2113                 if (fw.or_valid) {
2114                         snprintf(adapter->fw_version,
2115                                  sizeof(adapter->fw_version),
2116                                  "%d.%d, 0x%08x, %d.%d.%d",
2117                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2118                                  fw.or_major, fw.or_build, fw.or_patch);
2119                 /* no option rom */
2120                 } else if (fw.etrack_id != 0X0000) {
2121                         snprintf(adapter->fw_version,
2122                             sizeof(adapter->fw_version),
2123                             "%d.%d, 0x%08x",
2124                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2125                 } else {
2126                 snprintf(adapter->fw_version,
2127                     sizeof(adapter->fw_version),
2128                     "%d.%d.%d",
2129                     fw.eep_major, fw.eep_minor, fw.eep_build);
2130                 }
2131                 break;
2132         }
2133 }
2134
2135 /**
2136  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2137  *
2138  * @adapter: adapter struct
2139  **/
2140 static void igb_init_mas(struct igb_adapter *adapter)
2141 {
2142         struct e1000_hw *hw = &adapter->hw;
2143         u16 eeprom_data;
2144
2145         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2146         switch (hw->bus.func) {
2147         case E1000_FUNC_0:
2148                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2149                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2150                         netdev_info(adapter->netdev,
2151                                 "MAS: Enabling Media Autosense for port %d\n",
2152                                 hw->bus.func);
2153                 }
2154                 break;
2155         case E1000_FUNC_1:
2156                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2157                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158                         netdev_info(adapter->netdev,
2159                                 "MAS: Enabling Media Autosense for port %d\n",
2160                                 hw->bus.func);
2161                 }
2162                 break;
2163         case E1000_FUNC_2:
2164                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2165                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2166                         netdev_info(adapter->netdev,
2167                                 "MAS: Enabling Media Autosense for port %d\n",
2168                                 hw->bus.func);
2169                 }
2170                 break;
2171         case E1000_FUNC_3:
2172                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2173                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2174                         netdev_info(adapter->netdev,
2175                                 "MAS: Enabling Media Autosense for port %d\n",
2176                                 hw->bus.func);
2177                 }
2178                 break;
2179         default:
2180                 /* Shouldn't get here */
2181                 netdev_err(adapter->netdev,
2182                         "MAS: Invalid port configuration, returning\n");
2183                 break;
2184         }
2185 }
2186
2187 /**
2188  *  igb_init_i2c - Init I2C interface
2189  *  @adapter: pointer to adapter structure
2190  **/
2191 static s32 igb_init_i2c(struct igb_adapter *adapter)
2192 {
2193         s32 status = 0;
2194
2195         /* I2C interface supported on i350 devices */
2196         if (adapter->hw.mac.type != e1000_i350)
2197                 return 0;
2198
2199         /* Initialize the i2c bus which is controlled by the registers.
2200          * This bus will use the i2c_algo_bit structue that implements
2201          * the protocol through toggling of the 4 bits in the register.
2202          */
2203         adapter->i2c_adap.owner = THIS_MODULE;
2204         adapter->i2c_algo = igb_i2c_algo;
2205         adapter->i2c_algo.data = adapter;
2206         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2207         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2208         strlcpy(adapter->i2c_adap.name, "igb BB",
2209                 sizeof(adapter->i2c_adap.name));
2210         status = i2c_bit_add_bus(&adapter->i2c_adap);
2211         return status;
2212 }
2213
2214 /**
2215  *  igb_probe - Device Initialization Routine
2216  *  @pdev: PCI device information struct
2217  *  @ent: entry in igb_pci_tbl
2218  *
2219  *  Returns 0 on success, negative on failure
2220  *
2221  *  igb_probe initializes an adapter identified by a pci_dev structure.
2222  *  The OS initialization, configuring of the adapter private structure,
2223  *  and a hardware reset occur.
2224  **/
2225 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2226 {
2227         struct net_device *netdev;
2228         struct igb_adapter *adapter;
2229         struct e1000_hw *hw;
2230         u16 eeprom_data = 0;
2231         s32 ret_val;
2232         static int global_quad_port_a; /* global quad port a indication */
2233         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2234         int err, pci_using_dac;
2235         u8 part_str[E1000_PBANUM_LENGTH];
2236
2237         /* Catch broken hardware that put the wrong VF device ID in
2238          * the PCIe SR-IOV capability.
2239          */
2240         if (pdev->is_virtfn) {
2241                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2242                         pci_name(pdev), pdev->vendor, pdev->device);
2243                 return -EINVAL;
2244         }
2245
2246         err = pci_enable_device_mem(pdev);
2247         if (err)
2248                 return err;
2249
2250         pci_using_dac = 0;
2251         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2252         if (!err) {
2253                 pci_using_dac = 1;
2254         } else {
2255                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2256                 if (err) {
2257                         dev_err(&pdev->dev,
2258                                 "No usable DMA configuration, aborting\n");
2259                         goto err_dma;
2260                 }
2261         }
2262
2263         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2264                                            IORESOURCE_MEM),
2265                                            igb_driver_name);
2266         if (err)
2267                 goto err_pci_reg;
2268
2269         pci_enable_pcie_error_reporting(pdev);
2270
2271         pci_set_master(pdev);
2272         pci_save_state(pdev);
2273
2274         err = -ENOMEM;
2275         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2276                                    IGB_MAX_TX_QUEUES);
2277         if (!netdev)
2278                 goto err_alloc_etherdev;
2279
2280         SET_NETDEV_DEV(netdev, &pdev->dev);
2281
2282         pci_set_drvdata(pdev, netdev);
2283         adapter = netdev_priv(netdev);
2284         adapter->netdev = netdev;
2285         adapter->pdev = pdev;
2286         hw = &adapter->hw;
2287         hw->back = adapter;
2288         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2289
2290         err = -EIO;
2291         hw->hw_addr = pci_iomap(pdev, 0, 0);
2292         if (!hw->hw_addr)
2293                 goto err_ioremap;
2294
2295         netdev->netdev_ops = &igb_netdev_ops;
2296         igb_set_ethtool_ops(netdev);
2297         netdev->watchdog_timeo = 5 * HZ;
2298
2299         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2300
2301         netdev->mem_start = pci_resource_start(pdev, 0);
2302         netdev->mem_end = pci_resource_end(pdev, 0);
2303
2304         /* PCI config space info */
2305         hw->vendor_id = pdev->vendor;
2306         hw->device_id = pdev->device;
2307         hw->revision_id = pdev->revision;
2308         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2309         hw->subsystem_device_id = pdev->subsystem_device;
2310
2311         /* Copy the default MAC, PHY and NVM function pointers */
2312         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2313         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2314         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2315         /* Initialize skew-specific constants */
2316         err = ei->get_invariants(hw);
2317         if (err)
2318                 goto err_sw_init;
2319
2320         /* setup the private structure */
2321         err = igb_sw_init(adapter);
2322         if (err)
2323                 goto err_sw_init;
2324
2325         igb_get_bus_info_pcie(hw);
2326
2327         hw->phy.autoneg_wait_to_complete = false;
2328
2329         /* Copper options */
2330         if (hw->phy.media_type == e1000_media_type_copper) {
2331                 hw->phy.mdix = AUTO_ALL_MODES;
2332                 hw->phy.disable_polarity_correction = false;
2333                 hw->phy.ms_type = e1000_ms_hw_default;
2334         }
2335
2336         if (igb_check_reset_block(hw))
2337                 dev_info(&pdev->dev,
2338                         "PHY reset is blocked due to SOL/IDER session.\n");
2339
2340         /* features is initialized to 0 in allocation, it might have bits
2341          * set by igb_sw_init so we should use an or instead of an
2342          * assignment.
2343          */
2344         netdev->features |= NETIF_F_SG |
2345                             NETIF_F_IP_CSUM |
2346                             NETIF_F_IPV6_CSUM |
2347                             NETIF_F_TSO |
2348                             NETIF_F_TSO6 |
2349                             NETIF_F_RXHASH |
2350                             NETIF_F_RXCSUM |
2351                             NETIF_F_HW_VLAN_CTAG_RX |
2352                             NETIF_F_HW_VLAN_CTAG_TX;
2353
2354         /* copy netdev features into list of user selectable features */
2355         netdev->hw_features |= netdev->features;
2356         netdev->hw_features |= NETIF_F_RXALL;
2357
2358         /* set this bit last since it cannot be part of hw_features */
2359         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2360
2361         netdev->vlan_features |= NETIF_F_TSO |
2362                                  NETIF_F_TSO6 |
2363                                  NETIF_F_IP_CSUM |
2364                                  NETIF_F_IPV6_CSUM |
2365                                  NETIF_F_SG;
2366
2367         netdev->priv_flags |= IFF_SUPP_NOFCS;
2368
2369         if (pci_using_dac) {
2370                 netdev->features |= NETIF_F_HIGHDMA;
2371                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2372         }
2373
2374         if (hw->mac.type >= e1000_82576) {
2375                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2376                 netdev->features |= NETIF_F_SCTP_CSUM;
2377         }
2378
2379         netdev->priv_flags |= IFF_UNICAST_FLT;
2380
2381         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2382
2383         /* before reading the NVM, reset the controller to put the device in a
2384          * known good starting state
2385          */
2386         hw->mac.ops.reset_hw(hw);
2387
2388         /* make sure the NVM is good , i211/i210 parts can have special NVM
2389          * that doesn't contain a checksum
2390          */
2391         switch (hw->mac.type) {
2392         case e1000_i210:
2393         case e1000_i211:
2394                 if (igb_get_flash_presence_i210(hw)) {
2395                         if (hw->nvm.ops.validate(hw) < 0) {
2396                                 dev_err(&pdev->dev,
2397                                         "The NVM Checksum Is Not Valid\n");
2398                                 err = -EIO;
2399                                 goto err_eeprom;
2400                         }
2401                 }
2402                 break;
2403         default:
2404                 if (hw->nvm.ops.validate(hw) < 0) {
2405                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2406                         err = -EIO;
2407                         goto err_eeprom;
2408                 }
2409                 break;
2410         }
2411
2412         /* copy the MAC address out of the NVM */
2413         if (hw->mac.ops.read_mac_addr(hw))
2414                 dev_err(&pdev->dev, "NVM Read Error\n");
2415
2416         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2417
2418         if (!is_valid_ether_addr(netdev->dev_addr)) {
2419                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2420                 err = -EIO;
2421                 goto err_eeprom;
2422         }
2423
2424         /* get firmware version for ethtool -i */
2425         igb_set_fw_version(adapter);
2426
2427         /* configure RXPBSIZE and TXPBSIZE */
2428         if (hw->mac.type == e1000_i210) {
2429                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2430                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2431         }
2432
2433         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2434                     (unsigned long) adapter);
2435         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2436                     (unsigned long) adapter);
2437
2438         INIT_WORK(&adapter->reset_task, igb_reset_task);
2439         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2440
2441         /* Initialize link properties that are user-changeable */
2442         adapter->fc_autoneg = true;
2443         hw->mac.autoneg = true;
2444         hw->phy.autoneg_advertised = 0x2f;
2445
2446         hw->fc.requested_mode = e1000_fc_default;
2447         hw->fc.current_mode = e1000_fc_default;
2448
2449         igb_validate_mdi_setting(hw);
2450
2451         /* By default, support wake on port A */
2452         if (hw->bus.func == 0)
2453                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2454
2455         /* Check the NVM for wake support on non-port A ports */
2456         if (hw->mac.type >= e1000_82580)
2457                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2458                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2459                                  &eeprom_data);
2460         else if (hw->bus.func == 1)
2461                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2462
2463         if (eeprom_data & IGB_EEPROM_APME)
2464                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466         /* now that we have the eeprom settings, apply the special cases where
2467          * the eeprom may be wrong or the board simply won't support wake on
2468          * lan on a particular port
2469          */
2470         switch (pdev->device) {
2471         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2472                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2473                 break;
2474         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2475         case E1000_DEV_ID_82576_FIBER:
2476         case E1000_DEV_ID_82576_SERDES:
2477                 /* Wake events only supported on port A for dual fiber
2478                  * regardless of eeprom setting
2479                  */
2480                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2481                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482                 break;
2483         case E1000_DEV_ID_82576_QUAD_COPPER:
2484         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2485                 /* if quad port adapter, disable WoL on all but port A */
2486                 if (global_quad_port_a != 0)
2487                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488                 else
2489                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2490                 /* Reset for multiple quad port adapters */
2491                 if (++global_quad_port_a == 4)
2492                         global_quad_port_a = 0;
2493                 break;
2494         default:
2495                 /* If the device can't wake, don't set software support */
2496                 if (!device_can_wakeup(&adapter->pdev->dev))
2497                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2498         }
2499
2500         /* initialize the wol settings based on the eeprom settings */
2501         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2502                 adapter->wol |= E1000_WUFC_MAG;
2503
2504         /* Some vendors want WoL disabled by default, but still supported */
2505         if ((hw->mac.type == e1000_i350) &&
2506             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2507                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2508                 adapter->wol = 0;
2509         }
2510
2511         device_set_wakeup_enable(&adapter->pdev->dev,
2512                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2513
2514         /* reset the hardware with the new settings */
2515         igb_reset(adapter);
2516
2517         /* Init the I2C interface */
2518         err = igb_init_i2c(adapter);
2519         if (err) {
2520                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2521                 goto err_eeprom;
2522         }
2523
2524         /* let the f/w know that the h/w is now under the control of the
2525          * driver.
2526          */
2527         igb_get_hw_control(adapter);
2528
2529         strcpy(netdev->name, "eth%d");
2530         err = register_netdev(netdev);
2531         if (err)
2532                 goto err_register;
2533
2534         /* carrier off reporting is important to ethtool even BEFORE open */
2535         netif_carrier_off(netdev);
2536
2537 #ifdef CONFIG_IGB_DCA
2538         if (dca_add_requester(&pdev->dev) == 0) {
2539                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2540                 dev_info(&pdev->dev, "DCA enabled\n");
2541                 igb_setup_dca(adapter);
2542         }
2543
2544 #endif
2545 #ifdef CONFIG_IGB_HWMON
2546         /* Initialize the thermal sensor on i350 devices. */
2547         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2548                 u16 ets_word;
2549
2550                 /* Read the NVM to determine if this i350 device supports an
2551                  * external thermal sensor.
2552                  */
2553                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2554                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2555                         adapter->ets = true;
2556                 else
2557                         adapter->ets = false;
2558                 if (igb_sysfs_init(adapter))
2559                         dev_err(&pdev->dev,
2560                                 "failed to allocate sysfs resources\n");
2561         } else {
2562                 adapter->ets = false;
2563         }
2564 #endif
2565         /* Check if Media Autosense is enabled */
2566         adapter->ei = *ei;
2567         if (hw->dev_spec._82575.mas_capable)
2568                 igb_init_mas(adapter);
2569
2570         /* do hw tstamp init after resetting */
2571         igb_ptp_init(adapter);
2572
2573         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2574         /* print bus type/speed/width info, not applicable to i354 */
2575         if (hw->mac.type != e1000_i354) {
2576                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2577                          netdev->name,
2578                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2579                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2580                            "unknown"),
2581                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2582                           "Width x4" :
2583                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2584                           "Width x2" :
2585                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2586                           "Width x1" : "unknown"), netdev->dev_addr);
2587         }
2588
2589         if ((hw->mac.type >= e1000_i210 ||
2590              igb_get_flash_presence_i210(hw))) {
2591                 ret_val = igb_read_part_string(hw, part_str,
2592                                                E1000_PBANUM_LENGTH);
2593         } else {
2594                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2595         }
2596
2597         if (ret_val)
2598                 strcpy(part_str, "Unknown");
2599         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2600         dev_info(&pdev->dev,
2601                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2602                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2603                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2604                 adapter->num_rx_queues, adapter->num_tx_queues);
2605         if (hw->phy.media_type == e1000_media_type_copper) {
2606                 switch (hw->mac.type) {
2607                 case e1000_i350:
2608                 case e1000_i210:
2609                 case e1000_i211:
2610                         /* Enable EEE for internal copper PHY devices */
2611                         err = igb_set_eee_i350(hw, true, true);
2612                         if ((!err) &&
2613                             (!hw->dev_spec._82575.eee_disable)) {
2614                                 adapter->eee_advert =
2615                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2616                                 adapter->flags |= IGB_FLAG_EEE;
2617                         }
2618                         break;
2619                 case e1000_i354:
2620                         if ((rd32(E1000_CTRL_EXT) &
2621                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2622                                 err = igb_set_eee_i354(hw, true, true);
2623                                 if ((!err) &&
2624                                         (!hw->dev_spec._82575.eee_disable)) {
2625                                         adapter->eee_advert =
2626                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2627                                         adapter->flags |= IGB_FLAG_EEE;
2628                                 }
2629                         }
2630                         break;
2631                 default:
2632                         break;
2633                 }
2634         }
2635         pm_runtime_put_noidle(&pdev->dev);
2636         return 0;
2637
2638 err_register:
2639         igb_release_hw_control(adapter);
2640         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2641 err_eeprom:
2642         if (!igb_check_reset_block(hw))
2643                 igb_reset_phy(hw);
2644
2645         if (hw->flash_address)
2646                 iounmap(hw->flash_address);
2647 err_sw_init:
2648         igb_clear_interrupt_scheme(adapter);
2649         pci_iounmap(pdev, hw->hw_addr);
2650 err_ioremap:
2651         free_netdev(netdev);
2652 err_alloc_etherdev:
2653         pci_release_selected_regions(pdev,
2654                                      pci_select_bars(pdev, IORESOURCE_MEM));
2655 err_pci_reg:
2656 err_dma:
2657         pci_disable_device(pdev);
2658         return err;
2659 }
2660
2661 #ifdef CONFIG_PCI_IOV
2662 static int igb_disable_sriov(struct pci_dev *pdev)
2663 {
2664         struct net_device *netdev = pci_get_drvdata(pdev);
2665         struct igb_adapter *adapter = netdev_priv(netdev);
2666         struct e1000_hw *hw = &adapter->hw;
2667
2668         /* reclaim resources allocated to VFs */
2669         if (adapter->vf_data) {
2670                 /* disable iov and allow time for transactions to clear */
2671                 if (pci_vfs_assigned(pdev)) {
2672                         dev_warn(&pdev->dev,
2673                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2674                         return -EPERM;
2675                 } else {
2676                         pci_disable_sriov(pdev);
2677                         msleep(500);
2678                 }
2679
2680                 kfree(adapter->vf_data);
2681                 adapter->vf_data = NULL;
2682                 adapter->vfs_allocated_count = 0;
2683                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2684                 wrfl();
2685                 msleep(100);
2686                 dev_info(&pdev->dev, "IOV Disabled\n");
2687
2688                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2689                 adapter->flags |= IGB_FLAG_DMAC;
2690         }
2691
2692         return 0;
2693 }
2694
2695 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2696 {
2697         struct net_device *netdev = pci_get_drvdata(pdev);
2698         struct igb_adapter *adapter = netdev_priv(netdev);
2699         int old_vfs = pci_num_vf(pdev);
2700         int err = 0;
2701         int i;
2702
2703         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2704                 err = -EPERM;
2705                 goto out;
2706         }
2707         if (!num_vfs)
2708                 goto out;
2709
2710         if (old_vfs) {
2711                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2712                          old_vfs, max_vfs);
2713                 adapter->vfs_allocated_count = old_vfs;
2714         } else
2715                 adapter->vfs_allocated_count = num_vfs;
2716
2717         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2718                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2719
2720         /* if allocation failed then we do not support SR-IOV */
2721         if (!adapter->vf_data) {
2722                 adapter->vfs_allocated_count = 0;
2723                 dev_err(&pdev->dev,
2724                         "Unable to allocate memory for VF Data Storage\n");
2725                 err = -ENOMEM;
2726                 goto out;
2727         }
2728
2729         /* only call pci_enable_sriov() if no VFs are allocated already */
2730         if (!old_vfs) {
2731                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2732                 if (err)
2733                         goto err_out;
2734         }
2735         dev_info(&pdev->dev, "%d VFs allocated\n",
2736                  adapter->vfs_allocated_count);
2737         for (i = 0; i < adapter->vfs_allocated_count; i++)
2738                 igb_vf_configure(adapter, i);
2739
2740         /* DMA Coalescing is not supported in IOV mode. */
2741         adapter->flags &= ~IGB_FLAG_DMAC;
2742         goto out;
2743
2744 err_out:
2745         kfree(adapter->vf_data);
2746         adapter->vf_data = NULL;
2747         adapter->vfs_allocated_count = 0;
2748 out:
2749         return err;
2750 }
2751
2752 #endif
2753 /**
2754  *  igb_remove_i2c - Cleanup  I2C interface
2755  *  @adapter: pointer to adapter structure
2756  **/
2757 static void igb_remove_i2c(struct igb_adapter *adapter)
2758 {
2759         /* free the adapter bus structure */
2760         i2c_del_adapter(&adapter->i2c_adap);
2761 }
2762
2763 /**
2764  *  igb_remove - Device Removal Routine
2765  *  @pdev: PCI device information struct
2766  *
2767  *  igb_remove is called by the PCI subsystem to alert the driver
2768  *  that it should release a PCI device.  The could be caused by a
2769  *  Hot-Plug event, or because the driver is going to be removed from
2770  *  memory.
2771  **/
2772 static void igb_remove(struct pci_dev *pdev)
2773 {
2774         struct net_device *netdev = pci_get_drvdata(pdev);
2775         struct igb_adapter *adapter = netdev_priv(netdev);
2776         struct e1000_hw *hw = &adapter->hw;
2777
2778         pm_runtime_get_noresume(&pdev->dev);
2779 #ifdef CONFIG_IGB_HWMON
2780         igb_sysfs_exit(adapter);
2781 #endif
2782         igb_remove_i2c(adapter);
2783         igb_ptp_stop(adapter);
2784         /* The watchdog timer may be rescheduled, so explicitly
2785          * disable watchdog from being rescheduled.
2786          */
2787         set_bit(__IGB_DOWN, &adapter->state);
2788         del_timer_sync(&adapter->watchdog_timer);
2789         del_timer_sync(&adapter->phy_info_timer);
2790
2791         cancel_work_sync(&adapter->reset_task);
2792         cancel_work_sync(&adapter->watchdog_task);
2793
2794 #ifdef CONFIG_IGB_DCA
2795         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2796                 dev_info(&pdev->dev, "DCA disabled\n");
2797                 dca_remove_requester(&pdev->dev);
2798                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2799                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2800         }
2801 #endif
2802
2803         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2804          * would have already happened in close and is redundant.
2805          */
2806         igb_release_hw_control(adapter);
2807
2808         unregister_netdev(netdev);
2809
2810         igb_clear_interrupt_scheme(adapter);
2811
2812 #ifdef CONFIG_PCI_IOV
2813         igb_disable_sriov(pdev);
2814 #endif
2815
2816         pci_iounmap(pdev, hw->hw_addr);
2817         if (hw->flash_address)
2818                 iounmap(hw->flash_address);
2819         pci_release_selected_regions(pdev,
2820                                      pci_select_bars(pdev, IORESOURCE_MEM));
2821
2822         kfree(adapter->shadow_vfta);
2823         free_netdev(netdev);
2824
2825         pci_disable_pcie_error_reporting(pdev);
2826
2827         pci_disable_device(pdev);
2828 }
2829
2830 /**
2831  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2832  *  @adapter: board private structure to initialize
2833  *
2834  *  This function initializes the vf specific data storage and then attempts to
2835  *  allocate the VFs.  The reason for ordering it this way is because it is much
2836  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2837  *  the memory for the VFs.
2838  **/
2839 static void igb_probe_vfs(struct igb_adapter *adapter)
2840 {
2841 #ifdef CONFIG_PCI_IOV
2842         struct pci_dev *pdev = adapter->pdev;
2843         struct e1000_hw *hw = &adapter->hw;
2844
2845         /* Virtualization features not supported on i210 family. */
2846         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2847                 return;
2848
2849         pci_sriov_set_totalvfs(pdev, 7);
2850         igb_pci_enable_sriov(pdev, max_vfs);
2851
2852 #endif /* CONFIG_PCI_IOV */
2853 }
2854
2855 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2856 {
2857         struct e1000_hw *hw = &adapter->hw;
2858         u32 max_rss_queues;
2859
2860         /* Determine the maximum number of RSS queues supported. */
2861         switch (hw->mac.type) {
2862         case e1000_i211:
2863                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2864                 break;
2865         case e1000_82575:
2866         case e1000_i210:
2867                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2868                 break;
2869         case e1000_i350:
2870                 /* I350 cannot do RSS and SR-IOV at the same time */
2871                 if (!!adapter->vfs_allocated_count) {
2872                         max_rss_queues = 1;
2873                         break;
2874                 }
2875                 /* fall through */
2876         case e1000_82576:
2877                 if (!!adapter->vfs_allocated_count) {
2878                         max_rss_queues = 2;
2879                         break;
2880                 }
2881                 /* fall through */
2882         case e1000_82580:
2883         case e1000_i354:
2884         default:
2885                 max_rss_queues = IGB_MAX_RX_QUEUES;
2886                 break;
2887         }
2888
2889         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2890
2891         /* Determine if we need to pair queues. */
2892         switch (hw->mac.type) {
2893         case e1000_82575:
2894         case e1000_i211:
2895                 /* Device supports enough interrupts without queue pairing. */
2896                 break;
2897         case e1000_82576:
2898                 /* If VFs are going to be allocated with RSS queues then we
2899                  * should pair the queues in order to conserve interrupts due
2900                  * to limited supply.
2901                  */
2902                 if ((adapter->rss_queues > 1) &&
2903                     (adapter->vfs_allocated_count > 6))
2904                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2905                 /* fall through */
2906         case e1000_82580:
2907         case e1000_i350:
2908         case e1000_i354:
2909         case e1000_i210:
2910         default:
2911                 /* If rss_queues > half of max_rss_queues, pair the queues in
2912                  * order to conserve interrupts due to limited supply.
2913                  */
2914                 if (adapter->rss_queues > (max_rss_queues / 2))
2915                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2916                 break;
2917         }
2918 }
2919
2920 /**
2921  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2922  *  @adapter: board private structure to initialize
2923  *
2924  *  igb_sw_init initializes the Adapter private data structure.
2925  *  Fields are initialized based on PCI device information and
2926  *  OS network device settings (MTU size).
2927  **/
2928 static int igb_sw_init(struct igb_adapter *adapter)
2929 {
2930         struct e1000_hw *hw = &adapter->hw;
2931         struct net_device *netdev = adapter->netdev;
2932         struct pci_dev *pdev = adapter->pdev;
2933
2934         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2935
2936         /* set default ring sizes */
2937         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2938         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2939
2940         /* set default ITR values */
2941         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2942         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2943
2944         /* set default work limits */
2945         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2946
2947         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2948                                   VLAN_HLEN;
2949         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2950
2951         spin_lock_init(&adapter->stats64_lock);
2952 #ifdef CONFIG_PCI_IOV
2953         switch (hw->mac.type) {
2954         case e1000_82576:
2955         case e1000_i350:
2956                 if (max_vfs > 7) {
2957                         dev_warn(&pdev->dev,
2958                                  "Maximum of 7 VFs per PF, using max\n");
2959                         max_vfs = adapter->vfs_allocated_count = 7;
2960                 } else
2961                         adapter->vfs_allocated_count = max_vfs;
2962                 if (adapter->vfs_allocated_count)
2963                         dev_warn(&pdev->dev,
2964                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2965                 break;
2966         default:
2967                 break;
2968         }
2969 #endif /* CONFIG_PCI_IOV */
2970
2971         igb_init_queue_configuration(adapter);
2972
2973         /* Setup and initialize a copy of the hw vlan table array */
2974         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2975                                        GFP_ATOMIC);
2976
2977         /* This call may decrease the number of queues */
2978         if (igb_init_interrupt_scheme(adapter, true)) {
2979                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2980                 return -ENOMEM;
2981         }
2982
2983         igb_probe_vfs(adapter);
2984
2985         /* Explicitly disable IRQ since the NIC can be in any state. */
2986         igb_irq_disable(adapter);
2987
2988         if (hw->mac.type >= e1000_i350)
2989                 adapter->flags &= ~IGB_FLAG_DMAC;
2990
2991         set_bit(__IGB_DOWN, &adapter->state);
2992         return 0;
2993 }
2994
2995 /**
2996  *  igb_open - Called when a network interface is made active
2997  *  @netdev: network interface device structure
2998  *
2999  *  Returns 0 on success, negative value on failure
3000  *
3001  *  The open entry point is called when a network interface is made
3002  *  active by the system (IFF_UP).  At this point all resources needed
3003  *  for transmit and receive operations are allocated, the interrupt
3004  *  handler is registered with the OS, the watchdog timer is started,
3005  *  and the stack is notified that the interface is ready.
3006  **/
3007 static int __igb_open(struct net_device *netdev, bool resuming)
3008 {
3009         struct igb_adapter *adapter = netdev_priv(netdev);
3010         struct e1000_hw *hw = &adapter->hw;
3011         struct pci_dev *pdev = adapter->pdev;
3012         int err;
3013         int i;
3014
3015         /* disallow open during test */
3016         if (test_bit(__IGB_TESTING, &adapter->state)) {
3017                 WARN_ON(resuming);
3018                 return -EBUSY;
3019         }
3020
3021         if (!resuming)
3022                 pm_runtime_get_sync(&pdev->dev);
3023
3024         netif_carrier_off(netdev);
3025
3026         /* allocate transmit descriptors */
3027         err = igb_setup_all_tx_resources(adapter);
3028         if (err)
3029                 goto err_setup_tx;
3030
3031         /* allocate receive descriptors */
3032         err = igb_setup_all_rx_resources(adapter);
3033         if (err)
3034                 goto err_setup_rx;
3035
3036         igb_power_up_link(adapter);
3037
3038         /* before we allocate an interrupt, we must be ready to handle it.
3039          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3040          * as soon as we call pci_request_irq, so we have to setup our
3041          * clean_rx handler before we do so.
3042          */
3043         igb_configure(adapter);
3044
3045         err = igb_request_irq(adapter);
3046         if (err)
3047                 goto err_req_irq;
3048
3049         /* Notify the stack of the actual queue counts. */
3050         err = netif_set_real_num_tx_queues(adapter->netdev,
3051                                            adapter->num_tx_queues);
3052         if (err)
3053                 goto err_set_queues;
3054
3055         err = netif_set_real_num_rx_queues(adapter->netdev,
3056                                            adapter->num_rx_queues);
3057         if (err)
3058                 goto err_set_queues;
3059
3060         /* From here on the code is the same as igb_up() */
3061         clear_bit(__IGB_DOWN, &adapter->state);
3062
3063         for (i = 0; i < adapter->num_q_vectors; i++)
3064                 napi_enable(&(adapter->q_vector[i]->napi));
3065
3066         /* Clear any pending interrupts. */
3067         rd32(E1000_ICR);
3068
3069         igb_irq_enable(adapter);
3070
3071         /* notify VFs that reset has been completed */
3072         if (adapter->vfs_allocated_count) {
3073                 u32 reg_data = rd32(E1000_CTRL_EXT);
3074
3075                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3076                 wr32(E1000_CTRL_EXT, reg_data);
3077         }
3078
3079         netif_tx_start_all_queues(netdev);
3080
3081         if (!resuming)
3082                 pm_runtime_put(&pdev->dev);
3083
3084         /* start the watchdog. */
3085         hw->mac.get_link_status = 1;
3086         schedule_work(&adapter->watchdog_task);
3087
3088         return 0;
3089
3090 err_set_queues:
3091         igb_free_irq(adapter);
3092 err_req_irq:
3093         igb_release_hw_control(adapter);
3094         igb_power_down_link(adapter);
3095         igb_free_all_rx_resources(adapter);
3096 err_setup_rx:
3097         igb_free_all_tx_resources(adapter);
3098 err_setup_tx:
3099         igb_reset(adapter);
3100         if (!resuming)
3101                 pm_runtime_put(&pdev->dev);
3102
3103         return err;
3104 }
3105
3106 static int igb_open(struct net_device *netdev)
3107 {
3108         return __igb_open(netdev, false);
3109 }
3110
3111 /**
3112  *  igb_close - Disables a network interface
3113  *  @netdev: network interface device structure
3114  *
3115  *  Returns 0, this is not allowed to fail
3116  *
3117  *  The close entry point is called when an interface is de-activated
3118  *  by the OS.  The hardware is still under the driver's control, but
3119  *  needs to be disabled.  A global MAC reset is issued to stop the
3120  *  hardware, and all transmit and receive resources are freed.
3121  **/
3122 static int __igb_close(struct net_device *netdev, bool suspending)
3123 {
3124         struct igb_adapter *adapter = netdev_priv(netdev);
3125         struct pci_dev *pdev = adapter->pdev;
3126
3127         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3128
3129         if (!suspending)
3130                 pm_runtime_get_sync(&pdev->dev);
3131
3132         igb_down(adapter);
3133         igb_free_irq(adapter);
3134
3135         igb_free_all_tx_resources(adapter);
3136         igb_free_all_rx_resources(adapter);
3137
3138         if (!suspending)
3139                 pm_runtime_put_sync(&pdev->dev);
3140         return 0;
3141 }
3142
3143 static int igb_close(struct net_device *netdev)
3144 {
3145         return __igb_close(netdev, false);
3146 }
3147
3148 /**
3149  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3150  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3151  *
3152  *  Return 0 on success, negative on failure
3153  **/
3154 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3155 {
3156         struct device *dev = tx_ring->dev;
3157         int size;
3158
3159         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3160
3161         tx_ring->tx_buffer_info = vzalloc(size);
3162         if (!tx_ring->tx_buffer_info)
3163                 goto err;
3164
3165         /* round up to nearest 4K */
3166         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3167         tx_ring->size = ALIGN(tx_ring->size, 4096);
3168
3169         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3170                                            &tx_ring->dma, GFP_KERNEL);
3171         if (!tx_ring->desc)
3172                 goto err;
3173
3174         tx_ring->next_to_use = 0;
3175         tx_ring->next_to_clean = 0;
3176
3177         return 0;
3178
3179 err:
3180         vfree(tx_ring->tx_buffer_info);
3181         tx_ring->tx_buffer_info = NULL;
3182         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3183         return -ENOMEM;
3184 }
3185
3186 /**
3187  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3188  *                               (Descriptors) for all queues
3189  *  @adapter: board private structure
3190  *
3191  *  Return 0 on success, negative on failure
3192  **/
3193 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3194 {
3195         struct pci_dev *pdev = adapter->pdev;
3196         int i, err = 0;
3197
3198         for (i = 0; i < adapter->num_tx_queues; i++) {
3199                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3200                 if (err) {
3201                         dev_err(&pdev->dev,
3202                                 "Allocation for Tx Queue %u failed\n", i);
3203                         for (i--; i >= 0; i--)
3204                                 igb_free_tx_resources(adapter->tx_ring[i]);
3205                         break;
3206                 }
3207         }
3208
3209         return err;
3210 }
3211
3212 /**
3213  *  igb_setup_tctl - configure the transmit control registers
3214  *  @adapter: Board private structure
3215  **/
3216 void igb_setup_tctl(struct igb_adapter *adapter)
3217 {
3218         struct e1000_hw *hw = &adapter->hw;
3219         u32 tctl;
3220
3221         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3222         wr32(E1000_TXDCTL(0), 0);
3223
3224         /* Program the Transmit Control Register */
3225         tctl = rd32(E1000_TCTL);
3226         tctl &= ~E1000_TCTL_CT;
3227         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3228                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3229
3230         igb_config_collision_dist(hw);
3231
3232         /* Enable transmits */
3233         tctl |= E1000_TCTL_EN;
3234
3235         wr32(E1000_TCTL, tctl);
3236 }
3237
3238 /**
3239  *  igb_configure_tx_ring - Configure transmit ring after Reset
3240  *  @adapter: board private structure
3241  *  @ring: tx ring to configure
3242  *
3243  *  Configure a transmit ring after a reset.
3244  **/
3245 void igb_configure_tx_ring(struct igb_adapter *adapter,
3246                            struct igb_ring *ring)
3247 {
3248         struct e1000_hw *hw = &adapter->hw;
3249         u32 txdctl = 0;
3250         u64 tdba = ring->dma;
3251         int reg_idx = ring->reg_idx;
3252
3253         /* disable the queue */
3254         wr32(E1000_TXDCTL(reg_idx), 0);
3255         wrfl();
3256         mdelay(10);
3257
3258         wr32(E1000_TDLEN(reg_idx),
3259              ring->count * sizeof(union e1000_adv_tx_desc));
3260         wr32(E1000_TDBAL(reg_idx),
3261              tdba & 0x00000000ffffffffULL);
3262         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3263
3264         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3265         wr32(E1000_TDH(reg_idx), 0);
3266         writel(0, ring->tail);
3267
3268         txdctl |= IGB_TX_PTHRESH;
3269         txdctl |= IGB_TX_HTHRESH << 8;
3270         txdctl |= IGB_TX_WTHRESH << 16;
3271
3272         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3273         wr32(E1000_TXDCTL(reg_idx), txdctl);
3274 }
3275
3276 /**
3277  *  igb_configure_tx - Configure transmit Unit after Reset
3278  *  @adapter: board private structure
3279  *
3280  *  Configure the Tx unit of the MAC after a reset.
3281  **/
3282 static void igb_configure_tx(struct igb_adapter *adapter)
3283 {
3284         int i;
3285
3286         for (i = 0; i < adapter->num_tx_queues; i++)
3287                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3288 }
3289
3290 /**
3291  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3292  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3293  *
3294  *  Returns 0 on success, negative on failure
3295  **/
3296 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3297 {
3298         struct device *dev = rx_ring->dev;
3299         int size;
3300
3301         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3302
3303         rx_ring->rx_buffer_info = vzalloc(size);
3304         if (!rx_ring->rx_buffer_info)
3305                 goto err;
3306
3307         /* Round up to nearest 4K */
3308         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3309         rx_ring->size = ALIGN(rx_ring->size, 4096);
3310
3311         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3312                                            &rx_ring->dma, GFP_KERNEL);
3313         if (!rx_ring->desc)
3314                 goto err;
3315
3316         rx_ring->next_to_alloc = 0;
3317         rx_ring->next_to_clean = 0;
3318         rx_ring->next_to_use = 0;
3319
3320         return 0;
3321
3322 err:
3323         vfree(rx_ring->rx_buffer_info);
3324         rx_ring->rx_buffer_info = NULL;
3325         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3326         return -ENOMEM;
3327 }
3328
3329 /**
3330  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3331  *                               (Descriptors) for all queues
3332  *  @adapter: board private structure
3333  *
3334  *  Return 0 on success, negative on failure
3335  **/
3336 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3337 {
3338         struct pci_dev *pdev = adapter->pdev;
3339         int i, err = 0;
3340
3341         for (i = 0; i < adapter->num_rx_queues; i++) {
3342                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3343                 if (err) {
3344                         dev_err(&pdev->dev,
3345                                 "Allocation for Rx Queue %u failed\n", i);
3346                         for (i--; i >= 0; i--)
3347                                 igb_free_rx_resources(adapter->rx_ring[i]);
3348                         break;
3349                 }
3350         }
3351
3352         return err;
3353 }
3354
3355 /**
3356  *  igb_setup_mrqc - configure the multiple receive queue control registers
3357  *  @adapter: Board private structure
3358  **/
3359 static void igb_setup_mrqc(struct igb_adapter *adapter)
3360 {
3361         struct e1000_hw *hw = &adapter->hw;
3362         u32 mrqc, rxcsum;
3363         u32 j, num_rx_queues;
3364         u32 rss_key[10];
3365
3366         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3367         for (j = 0; j < 10; j++)
3368                 wr32(E1000_RSSRK(j), rss_key[j]);
3369
3370         num_rx_queues = adapter->rss_queues;
3371
3372         switch (hw->mac.type) {
3373         case e1000_82576:
3374                 /* 82576 supports 2 RSS queues for SR-IOV */
3375                 if (adapter->vfs_allocated_count)
3376                         num_rx_queues = 2;
3377                 break;
3378         default:
3379                 break;
3380         }
3381
3382         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3383                 for (j = 0; j < IGB_RETA_SIZE; j++)
3384                         adapter->rss_indir_tbl[j] =
3385                         (j * num_rx_queues) / IGB_RETA_SIZE;
3386                 adapter->rss_indir_tbl_init = num_rx_queues;
3387         }
3388         igb_write_rss_indir_tbl(adapter);
3389
3390         /* Disable raw packet checksumming so that RSS hash is placed in
3391          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3392          * offloads as they are enabled by default
3393          */
3394         rxcsum = rd32(E1000_RXCSUM);
3395         rxcsum |= E1000_RXCSUM_PCSD;
3396
3397         if (adapter->hw.mac.type >= e1000_82576)
3398                 /* Enable Receive Checksum Offload for SCTP */
3399                 rxcsum |= E1000_RXCSUM_CRCOFL;
3400
3401         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3402         wr32(E1000_RXCSUM, rxcsum);
3403
3404         /* Generate RSS hash based on packet types, TCP/UDP
3405          * port numbers and/or IPv4/v6 src and dst addresses
3406          */
3407         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3408                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3409                E1000_MRQC_RSS_FIELD_IPV6 |
3410                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3411                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3412
3413         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3414                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3415         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3416                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3417
3418         /* If VMDq is enabled then we set the appropriate mode for that, else
3419          * we default to RSS so that an RSS hash is calculated per packet even
3420          * if we are only using one queue
3421          */
3422         if (adapter->vfs_allocated_count) {
3423                 if (hw->mac.type > e1000_82575) {
3424                         /* Set the default pool for the PF's first queue */
3425                         u32 vtctl = rd32(E1000_VT_CTL);
3426
3427                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3428                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3429                         vtctl |= adapter->vfs_allocated_count <<
3430                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3431                         wr32(E1000_VT_CTL, vtctl);
3432                 }
3433                 if (adapter->rss_queues > 1)
3434                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3435                 else
3436                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3437         } else {
3438                 if (hw->mac.type != e1000_i211)
3439                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3440         }
3441         igb_vmm_control(adapter);
3442
3443         wr32(E1000_MRQC, mrqc);
3444 }
3445
3446 /**
3447  *  igb_setup_rctl - configure the receive control registers
3448  *  @adapter: Board private structure
3449  **/
3450 void igb_setup_rctl(struct igb_adapter *adapter)
3451 {
3452         struct e1000_hw *hw = &adapter->hw;
3453         u32 rctl;
3454
3455         rctl = rd32(E1000_RCTL);
3456
3457         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3458         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3459
3460         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3461                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3462
3463         /* enable stripping of CRC. It's unlikely this will break BMC
3464          * redirection as it did with e1000. Newer features require
3465          * that the HW strips the CRC.
3466          */
3467         rctl |= E1000_RCTL_SECRC;
3468
3469         /* disable store bad packets and clear size bits. */
3470         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3471
3472         /* enable LPE to prevent packets larger than max_frame_size */
3473         rctl |= E1000_RCTL_LPE;
3474
3475         /* disable queue 0 to prevent tail write w/o re-config */
3476         wr32(E1000_RXDCTL(0), 0);
3477
3478         /* Attention!!!  For SR-IOV PF driver operations you must enable
3479          * queue drop for all VF and PF queues to prevent head of line blocking
3480          * if an un-trusted VF does not provide descriptors to hardware.
3481          */
3482         if (adapter->vfs_allocated_count) {
3483                 /* set all queue drop enable bits */
3484                 wr32(E1000_QDE, ALL_QUEUES);
3485         }
3486
3487         /* This is useful for sniffing bad packets. */
3488         if (adapter->netdev->features & NETIF_F_RXALL) {
3489                 /* UPE and MPE will be handled by normal PROMISC logic
3490                  * in e1000e_set_rx_mode
3491                  */
3492                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3493                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3494                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3495
3496                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3497                           E1000_RCTL_DPF | /* Allow filtered pause */
3498                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3499                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3500                  * and that breaks VLANs.
3501                  */
3502         }
3503
3504         wr32(E1000_RCTL, rctl);
3505 }
3506
3507 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3508                                    int vfn)
3509 {
3510         struct e1000_hw *hw = &adapter->hw;
3511         u32 vmolr;
3512
3513         /* if it isn't the PF check to see if VFs are enabled and
3514          * increase the size to support vlan tags
3515          */
3516         if (vfn < adapter->vfs_allocated_count &&
3517             adapter->vf_data[vfn].vlans_enabled)
3518                 size += VLAN_TAG_SIZE;
3519
3520         vmolr = rd32(E1000_VMOLR(vfn));
3521         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3522         vmolr |= size | E1000_VMOLR_LPE;
3523         wr32(E1000_VMOLR(vfn), vmolr);
3524
3525         return 0;
3526 }
3527
3528 /**
3529  *  igb_rlpml_set - set maximum receive packet size
3530  *  @adapter: board private structure
3531  *
3532  *  Configure maximum receivable packet size.
3533  **/
3534 static void igb_rlpml_set(struct igb_adapter *adapter)
3535 {
3536         u32 max_frame_size = adapter->max_frame_size;
3537         struct e1000_hw *hw = &adapter->hw;
3538         u16 pf_id = adapter->vfs_allocated_count;
3539
3540         if (pf_id) {
3541                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3542                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3543                  * to our max jumbo frame size, in case we need to enable
3544                  * jumbo frames on one of the rings later.
3545                  * This will not pass over-length frames into the default
3546                  * queue because it's gated by the VMOLR.RLPML.
3547                  */
3548                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3549         }
3550
3551         wr32(E1000_RLPML, max_frame_size);
3552 }
3553
3554 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3555                                  int vfn, bool aupe)
3556 {
3557         struct e1000_hw *hw = &adapter->hw;
3558         u32 vmolr;
3559
3560         /* This register exists only on 82576 and newer so if we are older then
3561          * we should exit and do nothing
3562          */
3563         if (hw->mac.type < e1000_82576)
3564                 return;
3565
3566         vmolr = rd32(E1000_VMOLR(vfn));
3567         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3568         if (hw->mac.type == e1000_i350) {
3569                 u32 dvmolr;
3570
3571                 dvmolr = rd32(E1000_DVMOLR(vfn));
3572                 dvmolr |= E1000_DVMOLR_STRVLAN;
3573                 wr32(E1000_DVMOLR(vfn), dvmolr);
3574         }
3575         if (aupe)
3576                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3577         else
3578                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3579
3580         /* clear all bits that might not be set */
3581         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3582
3583         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3584                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3585         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3586          * multicast packets
3587          */
3588         if (vfn <= adapter->vfs_allocated_count)
3589                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3590
3591         wr32(E1000_VMOLR(vfn), vmolr);
3592 }
3593
3594 /**
3595  *  igb_configure_rx_ring - Configure a receive ring after Reset
3596  *  @adapter: board private structure
3597  *  @ring: receive ring to be configured
3598  *
3599  *  Configure the Rx unit of the MAC after a reset.
3600  **/
3601 void igb_configure_rx_ring(struct igb_adapter *adapter,
3602                            struct igb_ring *ring)
3603 {
3604         struct e1000_hw *hw = &adapter->hw;
3605         u64 rdba = ring->dma;
3606         int reg_idx = ring->reg_idx;
3607         u32 srrctl = 0, rxdctl = 0;
3608
3609         /* disable the queue */
3610         wr32(E1000_RXDCTL(reg_idx), 0);
3611
3612         /* Set DMA base address registers */
3613         wr32(E1000_RDBAL(reg_idx),
3614              rdba & 0x00000000ffffffffULL);
3615         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3616         wr32(E1000_RDLEN(reg_idx),
3617              ring->count * sizeof(union e1000_adv_rx_desc));
3618
3619         /* initialize head and tail */
3620         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3621         wr32(E1000_RDH(reg_idx), 0);
3622         writel(0, ring->tail);
3623
3624         /* set descriptor configuration */
3625         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3626         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3627         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3628         if (hw->mac.type >= e1000_82580)
3629                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3630         /* Only set Drop Enable if we are supporting multiple queues */
3631         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3632                 srrctl |= E1000_SRRCTL_DROP_EN;
3633
3634         wr32(E1000_SRRCTL(reg_idx), srrctl);
3635
3636         /* set filtering for VMDQ pools */
3637         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3638
3639         rxdctl |= IGB_RX_PTHRESH;
3640         rxdctl |= IGB_RX_HTHRESH << 8;
3641         rxdctl |= IGB_RX_WTHRESH << 16;
3642
3643         /* enable receive descriptor fetching */
3644         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3645         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3646 }
3647
3648 /**
3649  *  igb_configure_rx - Configure receive Unit after Reset
3650  *  @adapter: board private structure
3651  *
3652  *  Configure the Rx unit of the MAC after a reset.
3653  **/
3654 static void igb_configure_rx(struct igb_adapter *adapter)
3655 {
3656         int i;
3657
3658         /* set UTA to appropriate mode */
3659         igb_set_uta(adapter);
3660
3661         /* set the correct pool for the PF default MAC address in entry 0 */
3662         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3663                          adapter->vfs_allocated_count);
3664
3665         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3666          * the Base and Length of the Rx Descriptor Ring
3667          */
3668         for (i = 0; i < adapter->num_rx_queues; i++)
3669                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3670 }
3671
3672 /**
3673  *  igb_free_tx_resources - Free Tx Resources per Queue
3674  *  @tx_ring: Tx descriptor ring for a specific queue
3675  *
3676  *  Free all transmit software resources
3677  **/
3678 void igb_free_tx_resources(struct igb_ring *tx_ring)
3679 {
3680         igb_clean_tx_ring(tx_ring);
3681
3682         vfree(tx_ring->tx_buffer_info);
3683         tx_ring->tx_buffer_info = NULL;
3684
3685         /* if not set, then don't free */
3686         if (!tx_ring->desc)
3687                 return;
3688
3689         dma_free_coherent(tx_ring->dev, tx_ring->size,
3690                           tx_ring->desc, tx_ring->dma);
3691
3692         tx_ring->desc = NULL;
3693 }
3694
3695 /**
3696  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3697  *  @adapter: board private structure
3698  *
3699  *  Free all transmit software resources
3700  **/
3701 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3702 {
3703         int i;
3704
3705         for (i = 0; i < adapter->num_tx_queues; i++)
3706                 if (adapter->tx_ring[i])
3707                         igb_free_tx_resources(adapter->tx_ring[i]);
3708 }
3709
3710 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3711                                     struct igb_tx_buffer *tx_buffer)
3712 {
3713         if (tx_buffer->skb) {
3714                 dev_kfree_skb_any(tx_buffer->skb);
3715                 if (dma_unmap_len(tx_buffer, len))
3716                         dma_unmap_single(ring->dev,
3717                                          dma_unmap_addr(tx_buffer, dma),
3718                                          dma_unmap_len(tx_buffer, len),
3719                                          DMA_TO_DEVICE);
3720         } else if (dma_unmap_len(tx_buffer, len)) {
3721                 dma_unmap_page(ring->dev,
3722                                dma_unmap_addr(tx_buffer, dma),
3723                                dma_unmap_len(tx_buffer, len),
3724                                DMA_TO_DEVICE);
3725         }
3726         tx_buffer->next_to_watch = NULL;
3727         tx_buffer->skb = NULL;
3728         dma_unmap_len_set(tx_buffer, len, 0);
3729         /* buffer_info must be completely set up in the transmit path */
3730 }
3731
3732 /**
3733  *  igb_clean_tx_ring - Free Tx Buffers
3734  *  @tx_ring: ring to be cleaned
3735  **/
3736 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3737 {
3738         struct igb_tx_buffer *buffer_info;
3739         unsigned long size;
3740         u16 i;
3741
3742         if (!tx_ring->tx_buffer_info)
3743                 return;
3744         /* Free all the Tx ring sk_buffs */
3745
3746         for (i = 0; i < tx_ring->count; i++) {
3747                 buffer_info = &tx_ring->tx_buffer_info[i];
3748                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3749         }
3750
3751         netdev_tx_reset_queue(txring_txq(tx_ring));
3752
3753         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3754         memset(tx_ring->tx_buffer_info, 0, size);
3755
3756         /* Zero out the descriptor ring */
3757         memset(tx_ring->desc, 0, tx_ring->size);
3758
3759         tx_ring->next_to_use = 0;
3760         tx_ring->next_to_clean = 0;
3761 }
3762
3763 /**
3764  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3765  *  @adapter: board private structure
3766  **/
3767 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3768 {
3769         int i;
3770
3771         for (i = 0; i < adapter->num_tx_queues; i++)
3772                 if (adapter->tx_ring[i])
3773                         igb_clean_tx_ring(adapter->tx_ring[i]);
3774 }
3775
3776 /**
3777  *  igb_free_rx_resources - Free Rx Resources
3778  *  @rx_ring: ring to clean the resources from
3779  *
3780  *  Free all receive software resources
3781  **/
3782 void igb_free_rx_resources(struct igb_ring *rx_ring)
3783 {
3784         igb_clean_rx_ring(rx_ring);
3785
3786         vfree(rx_ring->rx_buffer_info);
3787         rx_ring->rx_buffer_info = NULL;
3788
3789         /* if not set, then don't free */
3790         if (!rx_ring->desc)
3791                 return;
3792
3793         dma_free_coherent(rx_ring->dev, rx_ring->size,
3794                           rx_ring->desc, rx_ring->dma);
3795
3796         rx_ring->desc = NULL;
3797 }
3798
3799 /**
3800  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3801  *  @adapter: board private structure
3802  *
3803  *  Free all receive software resources
3804  **/
3805 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3806 {
3807         int i;
3808
3809         for (i = 0; i < adapter->num_rx_queues; i++)
3810                 if (adapter->rx_ring[i])
3811                         igb_free_rx_resources(adapter->rx_ring[i]);
3812 }
3813
3814 /**
3815  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3816  *  @rx_ring: ring to free buffers from
3817  **/
3818 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3819 {
3820         unsigned long size;
3821         u16 i;
3822
3823         if (rx_ring->skb)
3824                 dev_kfree_skb(rx_ring->skb);
3825         rx_ring->skb = NULL;
3826
3827         if (!rx_ring->rx_buffer_info)
3828                 return;
3829
3830         /* Free all the Rx ring sk_buffs */
3831         for (i = 0; i < rx_ring->count; i++) {
3832                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3833
3834                 if (!buffer_info->page)
3835                         continue;
3836
3837                 dma_unmap_page(rx_ring->dev,
3838                                buffer_info->dma,
3839                                PAGE_SIZE,
3840                                DMA_FROM_DEVICE);
3841                 __free_page(buffer_info->page);
3842
3843                 buffer_info->page = NULL;
3844         }
3845
3846         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3847         memset(rx_ring->rx_buffer_info, 0, size);
3848
3849         /* Zero out the descriptor ring */
3850         memset(rx_ring->desc, 0, rx_ring->size);
3851
3852         rx_ring->next_to_alloc = 0;
3853         rx_ring->next_to_clean = 0;
3854         rx_ring->next_to_use = 0;
3855 }
3856
3857 /**
3858  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3859  *  @adapter: board private structure
3860  **/
3861 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3862 {
3863         int i;
3864
3865         for (i = 0; i < adapter->num_rx_queues; i++)
3866                 if (adapter->rx_ring[i])
3867                         igb_clean_rx_ring(adapter->rx_ring[i]);
3868 }
3869
3870 /**
3871  *  igb_set_mac - Change the Ethernet Address of the NIC
3872  *  @netdev: network interface device structure
3873  *  @p: pointer to an address structure
3874  *
3875  *  Returns 0 on success, negative on failure
3876  **/
3877 static int igb_set_mac(struct net_device *netdev, void *p)
3878 {
3879         struct igb_adapter *adapter = netdev_priv(netdev);
3880         struct e1000_hw *hw = &adapter->hw;
3881         struct sockaddr *addr = p;
3882
3883         if (!is_valid_ether_addr(addr->sa_data))
3884                 return -EADDRNOTAVAIL;
3885
3886         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3887         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3888
3889         /* set the correct pool for the new PF MAC address in entry 0 */
3890         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3891                          adapter->vfs_allocated_count);
3892
3893         return 0;
3894 }
3895
3896 /**
3897  *  igb_write_mc_addr_list - write multicast addresses to MTA
3898  *  @netdev: network interface device structure
3899  *
3900  *  Writes multicast address list to the MTA hash table.
3901  *  Returns: -ENOMEM on failure
3902  *           0 on no addresses written
3903  *           X on writing X addresses to MTA
3904  **/
3905 static int igb_write_mc_addr_list(struct net_device *netdev)
3906 {
3907         struct igb_adapter *adapter = netdev_priv(netdev);
3908         struct e1000_hw *hw = &adapter->hw;
3909         struct netdev_hw_addr *ha;
3910         u8  *mta_list;
3911         int i;
3912
3913         if (netdev_mc_empty(netdev)) {
3914                 /* nothing to program, so clear mc list */
3915                 igb_update_mc_addr_list(hw, NULL, 0);
3916                 igb_restore_vf_multicasts(adapter);
3917                 return 0;
3918         }
3919
3920         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3921         if (!mta_list)
3922                 return -ENOMEM;
3923
3924         /* The shared function expects a packed array of only addresses. */
3925         i = 0;
3926         netdev_for_each_mc_addr(ha, netdev)
3927                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3928
3929         igb_update_mc_addr_list(hw, mta_list, i);
3930         kfree(mta_list);
3931
3932         return netdev_mc_count(netdev);
3933 }
3934
3935 /**
3936  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3937  *  @netdev: network interface device structure
3938  *
3939  *  Writes unicast address list to the RAR table.
3940  *  Returns: -ENOMEM on failure/insufficient address space
3941  *           0 on no addresses written
3942  *           X on writing X addresses to the RAR table
3943  **/
3944 static int igb_write_uc_addr_list(struct net_device *netdev)
3945 {
3946         struct igb_adapter *adapter = netdev_priv(netdev);
3947         struct e1000_hw *hw = &adapter->hw;
3948         unsigned int vfn = adapter->vfs_allocated_count;
3949         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3950         int count = 0;
3951
3952         /* return ENOMEM indicating insufficient memory for addresses */
3953         if (netdev_uc_count(netdev) > rar_entries)
3954                 return -ENOMEM;
3955
3956         if (!netdev_uc_empty(netdev) && rar_entries) {
3957                 struct netdev_hw_addr *ha;
3958
3959                 netdev_for_each_uc_addr(ha, netdev) {
3960                         if (!rar_entries)
3961                                 break;
3962                         igb_rar_set_qsel(adapter, ha->addr,
3963                                          rar_entries--,
3964                                          vfn);
3965                         count++;
3966                 }
3967         }
3968         /* write the addresses in reverse order to avoid write combining */
3969         for (; rar_entries > 0 ; rar_entries--) {
3970                 wr32(E1000_RAH(rar_entries), 0);
3971                 wr32(E1000_RAL(rar_entries), 0);
3972         }
3973         wrfl();
3974
3975         return count;
3976 }
3977
3978 /**
3979  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3980  *  @netdev: network interface device structure
3981  *
3982  *  The set_rx_mode entry point is called whenever the unicast or multicast
3983  *  address lists or the network interface flags are updated.  This routine is
3984  *  responsible for configuring the hardware for proper unicast, multicast,
3985  *  promiscuous mode, and all-multi behavior.
3986  **/
3987 static void igb_set_rx_mode(struct net_device *netdev)
3988 {
3989         struct igb_adapter *adapter = netdev_priv(netdev);
3990         struct e1000_hw *hw = &adapter->hw;
3991         unsigned int vfn = adapter->vfs_allocated_count;
3992         u32 rctl, vmolr = 0;
3993         int count;
3994
3995         /* Check for Promiscuous and All Multicast modes */
3996         rctl = rd32(E1000_RCTL);
3997
3998         /* clear the effected bits */
3999         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4000
4001         if (netdev->flags & IFF_PROMISC) {
4002                 /* retain VLAN HW filtering if in VT mode */
4003                 if (adapter->vfs_allocated_count)
4004                         rctl |= E1000_RCTL_VFE;
4005                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4006                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4007         } else {
4008                 if (netdev->flags & IFF_ALLMULTI) {
4009                         rctl |= E1000_RCTL_MPE;
4010                         vmolr |= E1000_VMOLR_MPME;
4011                 } else {
4012                         /* Write addresses to the MTA, if the attempt fails
4013                          * then we should just turn on promiscuous mode so
4014                          * that we can at least receive multicast traffic
4015                          */
4016                         count = igb_write_mc_addr_list(netdev);
4017                         if (count < 0) {
4018                                 rctl |= E1000_RCTL_MPE;
4019                                 vmolr |= E1000_VMOLR_MPME;
4020                         } else if (count) {
4021                                 vmolr |= E1000_VMOLR_ROMPE;
4022                         }
4023                 }
4024                 /* Write addresses to available RAR registers, if there is not
4025                  * sufficient space to store all the addresses then enable
4026                  * unicast promiscuous mode
4027                  */
4028                 count = igb_write_uc_addr_list(netdev);
4029                 if (count < 0) {
4030                         rctl |= E1000_RCTL_UPE;
4031                         vmolr |= E1000_VMOLR_ROPE;
4032                 }
4033                 rctl |= E1000_RCTL_VFE;
4034         }
4035         wr32(E1000_RCTL, rctl);
4036
4037         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4038          * the VMOLR to enable the appropriate modes.  Without this workaround
4039          * we will have issues with VLAN tag stripping not being done for frames
4040          * that are only arriving because we are the default pool
4041          */
4042         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4043                 return;
4044
4045         vmolr |= rd32(E1000_VMOLR(vfn)) &
4046                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4047         wr32(E1000_VMOLR(vfn), vmolr);
4048         igb_restore_vf_multicasts(adapter);
4049 }
4050
4051 static void igb_check_wvbr(struct igb_adapter *adapter)
4052 {
4053         struct e1000_hw *hw = &adapter->hw;
4054         u32 wvbr = 0;
4055
4056         switch (hw->mac.type) {
4057         case e1000_82576:
4058         case e1000_i350:
4059                 wvbr = rd32(E1000_WVBR);
4060                 if (!wvbr)
4061                         return;
4062                 break;
4063         default:
4064                 break;
4065         }
4066
4067         adapter->wvbr |= wvbr;
4068 }
4069
4070 #define IGB_STAGGERED_QUEUE_OFFSET 8
4071
4072 static void igb_spoof_check(struct igb_adapter *adapter)
4073 {
4074         int j;
4075
4076         if (!adapter->wvbr)
4077                 return;
4078
4079         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4080                 if (adapter->wvbr & (1 << j) ||
4081                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4082                         dev_warn(&adapter->pdev->dev,
4083                                 "Spoof event(s) detected on VF %d\n", j);
4084                         adapter->wvbr &=
4085                                 ~((1 << j) |
4086                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4087                 }
4088         }
4089 }
4090
4091 /* Need to wait a few seconds after link up to get diagnostic information from
4092  * the phy
4093  */
4094 static void igb_update_phy_info(unsigned long data)
4095 {
4096         struct igb_adapter *adapter = (struct igb_adapter *) data;
4097         igb_get_phy_info(&adapter->hw);
4098 }
4099
4100 /**
4101  *  igb_has_link - check shared code for link and determine up/down
4102  *  @adapter: pointer to driver private info
4103  **/
4104 bool igb_has_link(struct igb_adapter *adapter)
4105 {
4106         struct e1000_hw *hw = &adapter->hw;
4107         bool link_active = false;
4108
4109         /* get_link_status is set on LSC (link status) interrupt or
4110          * rx sequence error interrupt.  get_link_status will stay
4111          * false until the e1000_check_for_link establishes link
4112          * for copper adapters ONLY
4113          */
4114         switch (hw->phy.media_type) {
4115         case e1000_media_type_copper:
4116                 if (!hw->mac.get_link_status)
4117                         return true;
4118         case e1000_media_type_internal_serdes:
4119                 hw->mac.ops.check_for_link(hw);
4120                 link_active = !hw->mac.get_link_status;
4121                 break;
4122         default:
4123         case e1000_media_type_unknown:
4124                 break;
4125         }
4126
4127         if (((hw->mac.type == e1000_i210) ||
4128              (hw->mac.type == e1000_i211)) &&
4129              (hw->phy.id == I210_I_PHY_ID)) {
4130                 if (!netif_carrier_ok(adapter->netdev)) {
4131                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4132                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4133                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4134                         adapter->link_check_timeout = jiffies;
4135                 }
4136         }
4137
4138         return link_active;
4139 }
4140
4141 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4142 {
4143         bool ret = false;
4144         u32 ctrl_ext, thstat;
4145
4146         /* check for thermal sensor event on i350 copper only */
4147         if (hw->mac.type == e1000_i350) {
4148                 thstat = rd32(E1000_THSTAT);
4149                 ctrl_ext = rd32(E1000_CTRL_EXT);
4150
4151                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4152                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4153                         ret = !!(thstat & event);
4154         }
4155
4156         return ret;
4157 }
4158
4159 /**
4160  *  igb_check_lvmmc - check for malformed packets received
4161  *  and indicated in LVMMC register
4162  *  @adapter: pointer to adapter
4163  **/
4164 static void igb_check_lvmmc(struct igb_adapter *adapter)
4165 {
4166         struct e1000_hw *hw = &adapter->hw;
4167         u32 lvmmc;
4168
4169         lvmmc = rd32(E1000_LVMMC);
4170         if (lvmmc) {
4171                 if (unlikely(net_ratelimit())) {
4172                         netdev_warn(adapter->netdev,
4173                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4174                                     lvmmc);
4175                 }
4176         }
4177 }
4178
4179 /**
4180  *  igb_watchdog - Timer Call-back
4181  *  @data: pointer to adapter cast into an unsigned long
4182  **/
4183 static void igb_watchdog(unsigned long data)
4184 {
4185         struct igb_adapter *adapter = (struct igb_adapter *)data;
4186         /* Do the rest outside of interrupt context */
4187         schedule_work(&adapter->watchdog_task);
4188 }
4189
4190 static void igb_watchdog_task(struct work_struct *work)
4191 {
4192         struct igb_adapter *adapter = container_of(work,
4193                                                    struct igb_adapter,
4194                                                    watchdog_task);
4195         struct e1000_hw *hw = &adapter->hw;
4196         struct e1000_phy_info *phy = &hw->phy;
4197         struct net_device *netdev = adapter->netdev;
4198         u32 link;
4199         int i;
4200         u32 connsw;
4201
4202         link = igb_has_link(adapter);
4203
4204         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4205                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4206                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4207                 else
4208                         link = false;
4209         }
4210
4211         /* Force link down if we have fiber to swap to */
4212         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4213                 if (hw->phy.media_type == e1000_media_type_copper) {
4214                         connsw = rd32(E1000_CONNSW);
4215                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4216                                 link = 0;
4217                 }
4218         }
4219         if (link) {
4220                 /* Perform a reset if the media type changed. */
4221                 if (hw->dev_spec._82575.media_changed) {
4222                         hw->dev_spec._82575.media_changed = false;
4223                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4224                         igb_reset(adapter);
4225                 }
4226                 /* Cancel scheduled suspend requests. */
4227                 pm_runtime_resume(netdev->dev.parent);
4228
4229                 if (!netif_carrier_ok(netdev)) {
4230                         u32 ctrl;
4231
4232                         hw->mac.ops.get_speed_and_duplex(hw,
4233                                                          &adapter->link_speed,
4234                                                          &adapter->link_duplex);
4235
4236                         ctrl = rd32(E1000_CTRL);
4237                         /* Links status message must follow this format */
4238                         netdev_info(netdev,
4239                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4240                                netdev->name,
4241                                adapter->link_speed,
4242                                adapter->link_duplex == FULL_DUPLEX ?
4243                                "Full" : "Half",
4244                                (ctrl & E1000_CTRL_TFCE) &&
4245                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4246                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4247                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4248
4249                         /* disable EEE if enabled */
4250                         if ((adapter->flags & IGB_FLAG_EEE) &&
4251                                 (adapter->link_duplex == HALF_DUPLEX)) {
4252                                 dev_info(&adapter->pdev->dev,
4253                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4254                                 adapter->hw.dev_spec._82575.eee_disable = true;
4255                                 adapter->flags &= ~IGB_FLAG_EEE;
4256                         }
4257
4258                         /* check if SmartSpeed worked */
4259                         igb_check_downshift(hw);
4260                         if (phy->speed_downgraded)
4261                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4262
4263                         /* check for thermal sensor event */
4264                         if (igb_thermal_sensor_event(hw,
4265                             E1000_THSTAT_LINK_THROTTLE))
4266                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4267
4268                         /* adjust timeout factor according to speed/duplex */
4269                         adapter->tx_timeout_factor = 1;
4270                         switch (adapter->link_speed) {
4271                         case SPEED_10:
4272                                 adapter->tx_timeout_factor = 14;
4273                                 break;
4274                         case SPEED_100:
4275                                 /* maybe add some timeout factor ? */
4276                                 break;
4277                         }
4278
4279                         netif_carrier_on(netdev);
4280
4281                         igb_ping_all_vfs(adapter);
4282                         igb_check_vf_rate_limit(adapter);
4283
4284                         /* link state has changed, schedule phy info update */
4285                         if (!test_bit(__IGB_DOWN, &adapter->state))
4286                                 mod_timer(&adapter->phy_info_timer,
4287                                           round_jiffies(jiffies + 2 * HZ));
4288                 }
4289         } else {
4290                 if (netif_carrier_ok(netdev)) {
4291                         adapter->link_speed = 0;
4292                         adapter->link_duplex = 0;
4293
4294                         /* check for thermal sensor event */
4295                         if (igb_thermal_sensor_event(hw,
4296                             E1000_THSTAT_PWR_DOWN)) {
4297                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4298                         }
4299
4300                         /* Links status message must follow this format */
4301                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4302                                netdev->name);
4303                         netif_carrier_off(netdev);
4304
4305                         igb_ping_all_vfs(adapter);
4306
4307                         /* link state has changed, schedule phy info update */
4308                         if (!test_bit(__IGB_DOWN, &adapter->state))
4309                                 mod_timer(&adapter->phy_info_timer,
4310                                           round_jiffies(jiffies + 2 * HZ));
4311
4312                         /* link is down, time to check for alternate media */
4313                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4314                                 igb_check_swap_media(adapter);
4315                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4316                                         schedule_work(&adapter->reset_task);
4317                                         /* return immediately */
4318                                         return;
4319                                 }
4320                         }
4321                         pm_schedule_suspend(netdev->dev.parent,
4322                                             MSEC_PER_SEC * 5);
4323
4324                 /* also check for alternate media here */
4325                 } else if (!netif_carrier_ok(netdev) &&
4326                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4327                         igb_check_swap_media(adapter);
4328                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4329                                 schedule_work(&adapter->reset_task);
4330                                 /* return immediately */
4331                                 return;
4332                         }
4333                 }
4334         }
4335
4336         spin_lock(&adapter->stats64_lock);
4337         igb_update_stats(adapter, &adapter->stats64);
4338         spin_unlock(&adapter->stats64_lock);
4339
4340         for (i = 0; i < adapter->num_tx_queues; i++) {
4341                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4342                 if (!netif_carrier_ok(netdev)) {
4343                         /* We've lost link, so the controller stops DMA,
4344                          * but we've got queued Tx work that's never going
4345                          * to get done, so reset controller to flush Tx.
4346                          * (Do the reset outside of interrupt context).
4347                          */
4348                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4349                                 adapter->tx_timeout_count++;
4350                                 schedule_work(&adapter->reset_task);
4351                                 /* return immediately since reset is imminent */
4352                                 return;
4353                         }
4354                 }
4355
4356                 /* Force detection of hung controller every watchdog period */
4357                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4358         }
4359
4360         /* Cause software interrupt to ensure Rx ring is cleaned */
4361         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4362                 u32 eics = 0;
4363
4364                 for (i = 0; i < adapter->num_q_vectors; i++)
4365                         eics |= adapter->q_vector[i]->eims_value;
4366                 wr32(E1000_EICS, eics);
4367         } else {
4368                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4369         }
4370
4371         igb_spoof_check(adapter);
4372         igb_ptp_rx_hang(adapter);
4373
4374         /* Check LVMMC register on i350/i354 only */
4375         if ((adapter->hw.mac.type == e1000_i350) ||
4376             (adapter->hw.mac.type == e1000_i354))
4377                 igb_check_lvmmc(adapter);
4378
4379         /* Reset the timer */
4380         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4381                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4382                         mod_timer(&adapter->watchdog_timer,
4383                                   round_jiffies(jiffies +  HZ));
4384                 else
4385                         mod_timer(&adapter->watchdog_timer,
4386                                   round_jiffies(jiffies + 2 * HZ));
4387         }
4388 }
4389
4390 enum latency_range {
4391         lowest_latency = 0,
4392         low_latency = 1,
4393         bulk_latency = 2,
4394         latency_invalid = 255
4395 };
4396
4397 /**
4398  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4399  *  @q_vector: pointer to q_vector
4400  *
4401  *  Stores a new ITR value based on strictly on packet size.  This
4402  *  algorithm is less sophisticated than that used in igb_update_itr,
4403  *  due to the difficulty of synchronizing statistics across multiple
4404  *  receive rings.  The divisors and thresholds used by this function
4405  *  were determined based on theoretical maximum wire speed and testing
4406  *  data, in order to minimize response time while increasing bulk
4407  *  throughput.
4408  *  This functionality is controlled by ethtool's coalescing settings.
4409  *  NOTE:  This function is called only when operating in a multiqueue
4410  *         receive environment.
4411  **/
4412 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4413 {
4414         int new_val = q_vector->itr_val;
4415         int avg_wire_size = 0;
4416         struct igb_adapter *adapter = q_vector->adapter;
4417         unsigned int packets;
4418
4419         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4420          * ints/sec - ITR timer value of 120 ticks.
4421          */
4422         if (adapter->link_speed != SPEED_1000) {
4423                 new_val = IGB_4K_ITR;
4424                 goto set_itr_val;
4425         }
4426
4427         packets = q_vector->rx.total_packets;
4428         if (packets)
4429                 avg_wire_size = q_vector->rx.total_bytes / packets;
4430
4431         packets = q_vector->tx.total_packets;
4432         if (packets)
4433                 avg_wire_size = max_t(u32, avg_wire_size,
4434                                       q_vector->tx.total_bytes / packets);
4435
4436         /* if avg_wire_size isn't set no work was done */
4437         if (!avg_wire_size)
4438                 goto clear_counts;
4439
4440         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4441         avg_wire_size += 24;
4442
4443         /* Don't starve jumbo frames */
4444         avg_wire_size = min(avg_wire_size, 3000);
4445
4446         /* Give a little boost to mid-size frames */
4447         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4448                 new_val = avg_wire_size / 3;
4449         else
4450                 new_val = avg_wire_size / 2;
4451
4452         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4453         if (new_val < IGB_20K_ITR &&
4454             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4455              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4456                 new_val = IGB_20K_ITR;
4457
4458 set_itr_val:
4459         if (new_val != q_vector->itr_val) {
4460                 q_vector->itr_val = new_val;
4461                 q_vector->set_itr = 1;
4462         }
4463 clear_counts:
4464         q_vector->rx.total_bytes = 0;
4465         q_vector->rx.total_packets = 0;
4466         q_vector->tx.total_bytes = 0;
4467         q_vector->tx.total_packets = 0;
4468 }
4469
4470 /**
4471  *  igb_update_itr - update the dynamic ITR value based on statistics
4472  *  @q_vector: pointer to q_vector
4473  *  @ring_container: ring info to update the itr for
4474  *
4475  *  Stores a new ITR value based on packets and byte
4476  *  counts during the last interrupt.  The advantage of per interrupt
4477  *  computation is faster updates and more accurate ITR for the current
4478  *  traffic pattern.  Constants in this function were computed
4479  *  based on theoretical maximum wire speed and thresholds were set based
4480  *  on testing data as well as attempting to minimize response time
4481  *  while increasing bulk throughput.
4482  *  This functionality is controlled by ethtool's coalescing settings.
4483  *  NOTE:  These calculations are only valid when operating in a single-
4484  *         queue environment.
4485  **/
4486 static void igb_update_itr(struct igb_q_vector *q_vector,
4487                            struct igb_ring_container *ring_container)
4488 {
4489         unsigned int packets = ring_container->total_packets;
4490         unsigned int bytes = ring_container->total_bytes;
4491         u8 itrval = ring_container->itr;
4492
4493         /* no packets, exit with status unchanged */
4494         if (packets == 0)
4495                 return;
4496
4497         switch (itrval) {
4498         case lowest_latency:
4499                 /* handle TSO and jumbo frames */
4500                 if (bytes/packets > 8000)
4501                         itrval = bulk_latency;
4502                 else if ((packets < 5) && (bytes > 512))
4503                         itrval = low_latency;
4504                 break;
4505         case low_latency:  /* 50 usec aka 20000 ints/s */
4506                 if (bytes > 10000) {
4507                         /* this if handles the TSO accounting */
4508                         if (bytes/packets > 8000)
4509                                 itrval = bulk_latency;
4510                         else if ((packets < 10) || ((bytes/packets) > 1200))
4511                                 itrval = bulk_latency;
4512                         else if ((packets > 35))
4513                                 itrval = lowest_latency;
4514                 } else if (bytes/packets > 2000) {
4515                         itrval = bulk_latency;
4516                 } else if (packets <= 2 && bytes < 512) {
4517                         itrval = lowest_latency;
4518                 }
4519                 break;
4520         case bulk_latency: /* 250 usec aka 4000 ints/s */
4521                 if (bytes > 25000) {
4522                         if (packets > 35)
4523                                 itrval = low_latency;
4524                 } else if (bytes < 1500) {
4525                         itrval = low_latency;
4526                 }
4527                 break;
4528         }
4529
4530         /* clear work counters since we have the values we need */
4531         ring_container->total_bytes = 0;
4532         ring_container->total_packets = 0;
4533
4534         /* write updated itr to ring container */
4535         ring_container->itr = itrval;
4536 }
4537
4538 static void igb_set_itr(struct igb_q_vector *q_vector)
4539 {
4540         struct igb_adapter *adapter = q_vector->adapter;
4541         u32 new_itr = q_vector->itr_val;
4542         u8 current_itr = 0;
4543
4544         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4545         if (adapter->link_speed != SPEED_1000) {
4546                 current_itr = 0;
4547                 new_itr = IGB_4K_ITR;
4548                 goto set_itr_now;
4549         }
4550
4551         igb_update_itr(q_vector, &q_vector->tx);
4552         igb_update_itr(q_vector, &q_vector->rx);
4553
4554         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4555
4556         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4557         if (current_itr == lowest_latency &&
4558             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4559              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4560                 current_itr = low_latency;
4561
4562         switch (current_itr) {
4563         /* counts and packets in update_itr are dependent on these numbers */
4564         case lowest_latency:
4565                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4566                 break;
4567         case low_latency:
4568                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4569                 break;
4570         case bulk_latency:
4571                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4572                 break;
4573         default:
4574                 break;
4575         }
4576
4577 set_itr_now:
4578         if (new_itr != q_vector->itr_val) {
4579                 /* this attempts to bias the interrupt rate towards Bulk
4580                  * by adding intermediate steps when interrupt rate is
4581                  * increasing
4582                  */
4583                 new_itr = new_itr > q_vector->itr_val ?
4584                           max((new_itr * q_vector->itr_val) /
4585                           (new_itr + (q_vector->itr_val >> 2)),
4586                           new_itr) : new_itr;
4587                 /* Don't write the value here; it resets the adapter's
4588                  * internal timer, and causes us to delay far longer than
4589                  * we should between interrupts.  Instead, we write the ITR
4590                  * value at the beginning of the next interrupt so the timing
4591                  * ends up being correct.
4592                  */
4593                 q_vector->itr_val = new_itr;
4594                 q_vector->set_itr = 1;
4595         }
4596 }
4597
4598 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4599                             u32 type_tucmd, u32 mss_l4len_idx)
4600 {
4601         struct e1000_adv_tx_context_desc *context_desc;
4602         u16 i = tx_ring->next_to_use;
4603
4604         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4605
4606         i++;
4607         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4608
4609         /* set bits to identify this as an advanced context descriptor */
4610         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4611
4612         /* For 82575, context index must be unique per ring. */
4613         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4614                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4615
4616         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4617         context_desc->seqnum_seed       = 0;
4618         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4619         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4620 }
4621
4622 static int igb_tso(struct igb_ring *tx_ring,
4623                    struct igb_tx_buffer *first,
4624                    u8 *hdr_len)
4625 {
4626         struct sk_buff *skb = first->skb;
4627         u32 vlan_macip_lens, type_tucmd;
4628         u32 mss_l4len_idx, l4len;
4629         int err;
4630
4631         if (skb->ip_summed != CHECKSUM_PARTIAL)
4632                 return 0;
4633
4634         if (!skb_is_gso(skb))
4635                 return 0;
4636
4637         err = skb_cow_head(skb, 0);
4638         if (err < 0)
4639                 return err;
4640
4641         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4642         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4643
4644         if (first->protocol == htons(ETH_P_IP)) {
4645                 struct iphdr *iph = ip_hdr(skb);
4646                 iph->tot_len = 0;
4647                 iph->check = 0;
4648                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4649                                                          iph->daddr, 0,
4650                                                          IPPROTO_TCP,
4651                                                          0);
4652                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4653                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4654                                    IGB_TX_FLAGS_CSUM |
4655                                    IGB_TX_FLAGS_IPV4;
4656         } else if (skb_is_gso_v6(skb)) {
4657                 ipv6_hdr(skb)->payload_len = 0;
4658                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659                                                        &ipv6_hdr(skb)->daddr,
4660                                                        0, IPPROTO_TCP, 0);
4661                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4662                                    IGB_TX_FLAGS_CSUM;
4663         }
4664
4665         /* compute header lengths */
4666         l4len = tcp_hdrlen(skb);
4667         *hdr_len = skb_transport_offset(skb) + l4len;
4668
4669         /* update gso size and bytecount with header size */
4670         first->gso_segs = skb_shinfo(skb)->gso_segs;
4671         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4672
4673         /* MSS L4LEN IDX */
4674         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4675         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4676
4677         /* VLAN MACLEN IPLEN */
4678         vlan_macip_lens = skb_network_header_len(skb);
4679         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4680         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4681
4682         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4683
4684         return 1;
4685 }
4686
4687 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4688 {
4689         struct sk_buff *skb = first->skb;
4690         u32 vlan_macip_lens = 0;
4691         u32 mss_l4len_idx = 0;
4692         u32 type_tucmd = 0;
4693
4694         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4695                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4696                         return;
4697         } else {
4698                 u8 l4_hdr = 0;
4699
4700                 switch (first->protocol) {
4701                 case htons(ETH_P_IP):
4702                         vlan_macip_lens |= skb_network_header_len(skb);
4703                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4704                         l4_hdr = ip_hdr(skb)->protocol;
4705                         break;
4706                 case htons(ETH_P_IPV6):
4707                         vlan_macip_lens |= skb_network_header_len(skb);
4708                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4709                         break;
4710                 default:
4711                         if (unlikely(net_ratelimit())) {
4712                                 dev_warn(tx_ring->dev,
4713                                          "partial checksum but proto=%x!\n",
4714                                          first->protocol);
4715                         }
4716                         break;
4717                 }
4718
4719                 switch (l4_hdr) {
4720                 case IPPROTO_TCP:
4721                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4722                         mss_l4len_idx = tcp_hdrlen(skb) <<
4723                                         E1000_ADVTXD_L4LEN_SHIFT;
4724                         break;
4725                 case IPPROTO_SCTP:
4726                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4727                         mss_l4len_idx = sizeof(struct sctphdr) <<
4728                                         E1000_ADVTXD_L4LEN_SHIFT;
4729                         break;
4730                 case IPPROTO_UDP:
4731                         mss_l4len_idx = sizeof(struct udphdr) <<
4732                                         E1000_ADVTXD_L4LEN_SHIFT;
4733                         break;
4734                 default:
4735                         if (unlikely(net_ratelimit())) {
4736                                 dev_warn(tx_ring->dev,
4737                                          "partial checksum but l4 proto=%x!\n",
4738                                          l4_hdr);
4739                         }
4740                         break;
4741                 }
4742
4743                 /* update TX checksum flag */
4744                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4745         }
4746
4747         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4748         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4749
4750         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4751 }
4752
4753 #define IGB_SET_FLAG(_input, _flag, _result) \
4754         ((_flag <= _result) ? \
4755          ((u32)(_input & _flag) * (_result / _flag)) : \
4756          ((u32)(_input & _flag) / (_flag / _result)))
4757
4758 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4759 {
4760         /* set type for advanced descriptor with frame checksum insertion */
4761         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4762                        E1000_ADVTXD_DCMD_DEXT |
4763                        E1000_ADVTXD_DCMD_IFCS;
4764
4765         /* set HW vlan bit if vlan is present */
4766         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4767                                  (E1000_ADVTXD_DCMD_VLE));
4768
4769         /* set segmentation bits for TSO */
4770         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4771                                  (E1000_ADVTXD_DCMD_TSE));
4772
4773         /* set timestamp bit if present */
4774         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4775                                  (E1000_ADVTXD_MAC_TSTAMP));
4776
4777         /* insert frame checksum */
4778         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4779
4780         return cmd_type;
4781 }
4782
4783 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4784                                  union e1000_adv_tx_desc *tx_desc,
4785                                  u32 tx_flags, unsigned int paylen)
4786 {
4787         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4788
4789         /* 82575 requires a unique index per ring */
4790         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4791                 olinfo_status |= tx_ring->reg_idx << 4;
4792
4793         /* insert L4 checksum */
4794         olinfo_status |= IGB_SET_FLAG(tx_flags,
4795                                       IGB_TX_FLAGS_CSUM,
4796                                       (E1000_TXD_POPTS_TXSM << 8));
4797
4798         /* insert IPv4 checksum */
4799         olinfo_status |= IGB_SET_FLAG(tx_flags,
4800                                       IGB_TX_FLAGS_IPV4,
4801                                       (E1000_TXD_POPTS_IXSM << 8));
4802
4803         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4804 }
4805
4806 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4807 {
4808         struct net_device *netdev = tx_ring->netdev;
4809
4810         netif_stop_subqueue(netdev, tx_ring->queue_index);
4811
4812         /* Herbert's original patch had:
4813          *  smp_mb__after_netif_stop_queue();
4814          * but since that doesn't exist yet, just open code it.
4815          */
4816         smp_mb();
4817
4818         /* We need to check again in a case another CPU has just
4819          * made room available.
4820          */
4821         if (igb_desc_unused(tx_ring) < size)
4822                 return -EBUSY;
4823
4824         /* A reprieve! */
4825         netif_wake_subqueue(netdev, tx_ring->queue_index);
4826
4827         u64_stats_update_begin(&tx_ring->tx_syncp2);
4828         tx_ring->tx_stats.restart_queue2++;
4829         u64_stats_update_end(&tx_ring->tx_syncp2);
4830
4831         return 0;
4832 }
4833
4834 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4835 {
4836         if (igb_desc_unused(tx_ring) >= size)
4837                 return 0;
4838         return __igb_maybe_stop_tx(tx_ring, size);
4839 }
4840
4841 static void igb_tx_map(struct igb_ring *tx_ring,
4842                        struct igb_tx_buffer *first,
4843                        const u8 hdr_len)
4844 {
4845         struct sk_buff *skb = first->skb;
4846         struct igb_tx_buffer *tx_buffer;
4847         union e1000_adv_tx_desc *tx_desc;
4848         struct skb_frag_struct *frag;
4849         dma_addr_t dma;
4850         unsigned int data_len, size;
4851         u32 tx_flags = first->tx_flags;
4852         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4853         u16 i = tx_ring->next_to_use;
4854
4855         tx_desc = IGB_TX_DESC(tx_ring, i);
4856
4857         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4858
4859         size = skb_headlen(skb);
4860         data_len = skb->data_len;
4861
4862         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4863
4864         tx_buffer = first;
4865
4866         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4867                 if (dma_mapping_error(tx_ring->dev, dma))
4868                         goto dma_error;
4869
4870                 /* record length, and DMA address */
4871                 dma_unmap_len_set(tx_buffer, len, size);
4872                 dma_unmap_addr_set(tx_buffer, dma, dma);
4873
4874                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4875
4876                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4877                         tx_desc->read.cmd_type_len =
4878                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4879
4880                         i++;
4881                         tx_desc++;
4882                         if (i == tx_ring->count) {
4883                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4884                                 i = 0;
4885                         }
4886                         tx_desc->read.olinfo_status = 0;
4887
4888                         dma += IGB_MAX_DATA_PER_TXD;
4889                         size -= IGB_MAX_DATA_PER_TXD;
4890
4891                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4892                 }
4893
4894                 if (likely(!data_len))
4895                         break;
4896
4897                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4898
4899                 i++;
4900                 tx_desc++;
4901                 if (i == tx_ring->count) {
4902                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4903                         i = 0;
4904                 }
4905                 tx_desc->read.olinfo_status = 0;
4906
4907                 size = skb_frag_size(frag);
4908                 data_len -= size;
4909
4910                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4911                                        size, DMA_TO_DEVICE);
4912
4913                 tx_buffer = &tx_ring->tx_buffer_info[i];
4914         }
4915
4916         /* write last descriptor with RS and EOP bits */
4917         cmd_type |= size | IGB_TXD_DCMD;
4918         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4919
4920         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4921
4922         /* set the timestamp */
4923         first->time_stamp = jiffies;
4924
4925         /* Force memory writes to complete before letting h/w know there
4926          * are new descriptors to fetch.  (Only applicable for weak-ordered
4927          * memory model archs, such as IA-64).
4928          *
4929          * We also need this memory barrier to make certain all of the
4930          * status bits have been updated before next_to_watch is written.
4931          */
4932         wmb();
4933
4934         /* set next_to_watch value indicating a packet is present */
4935         first->next_to_watch = tx_desc;
4936
4937         i++;
4938         if (i == tx_ring->count)
4939                 i = 0;
4940
4941         tx_ring->next_to_use = i;
4942
4943         /* Make sure there is space in the ring for the next send. */
4944         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4945
4946         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4947                 writel(i, tx_ring->tail);
4948
4949                 /* we need this if more than one processor can write to our tail
4950                  * at a time, it synchronizes IO on IA64/Altix systems
4951                  */
4952                 mmiowb();
4953         }
4954         return;
4955
4956 dma_error:
4957         dev_err(tx_ring->dev, "TX DMA map failed\n");
4958
4959         /* clear dma mappings for failed tx_buffer_info map */
4960         for (;;) {
4961                 tx_buffer = &tx_ring->tx_buffer_info[i];
4962                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4963                 if (tx_buffer == first)
4964                         break;
4965                 if (i == 0)
4966                         i = tx_ring->count;
4967                 i--;
4968         }
4969
4970         tx_ring->next_to_use = i;
4971 }
4972
4973 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4974                                 struct igb_ring *tx_ring)
4975 {
4976         struct igb_tx_buffer *first;
4977         int tso;
4978         u32 tx_flags = 0;
4979         unsigned short f;
4980         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4981         __be16 protocol = vlan_get_protocol(skb);
4982         u8 hdr_len = 0;
4983
4984         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4985          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4986          *       + 2 desc gap to keep tail from touching head,
4987          *       + 1 desc for context descriptor,
4988          * otherwise try next time
4989          */
4990         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4991                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4992
4993         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4994                 /* this is a hard error */
4995                 return NETDEV_TX_BUSY;
4996         }
4997
4998         /* record the location of the first descriptor for this packet */
4999         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5000         first->skb = skb;
5001         first->bytecount = skb->len;
5002         first->gso_segs = 1;
5003
5004         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5005                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5006
5007                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5008                                            &adapter->state)) {
5009                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5010                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5011
5012                         adapter->ptp_tx_skb = skb_get(skb);
5013                         adapter->ptp_tx_start = jiffies;
5014                         if (adapter->hw.mac.type == e1000_82576)
5015                                 schedule_work(&adapter->ptp_tx_work);
5016                 }
5017         }
5018
5019         skb_tx_timestamp(skb);
5020
5021         if (skb_vlan_tag_present(skb)) {
5022                 tx_flags |= IGB_TX_FLAGS_VLAN;
5023                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5024         }
5025
5026         /* record initial flags and protocol */
5027         first->tx_flags = tx_flags;
5028         first->protocol = protocol;
5029
5030         tso = igb_tso(tx_ring, first, &hdr_len);
5031         if (tso < 0)
5032                 goto out_drop;
5033         else if (!tso)
5034                 igb_tx_csum(tx_ring, first);
5035
5036         igb_tx_map(tx_ring, first, hdr_len);
5037
5038         return NETDEV_TX_OK;
5039
5040 out_drop:
5041         igb_unmap_and_free_tx_resource(tx_ring, first);
5042
5043         return NETDEV_TX_OK;
5044 }
5045
5046 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5047                                                     struct sk_buff *skb)
5048 {
5049         unsigned int r_idx = skb->queue_mapping;
5050
5051         if (r_idx >= adapter->num_tx_queues)
5052                 r_idx = r_idx % adapter->num_tx_queues;
5053
5054         return adapter->tx_ring[r_idx];
5055 }
5056
5057 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5058                                   struct net_device *netdev)
5059 {
5060         struct igb_adapter *adapter = netdev_priv(netdev);
5061
5062         if (test_bit(__IGB_DOWN, &adapter->state)) {
5063                 dev_kfree_skb_any(skb);
5064                 return NETDEV_TX_OK;
5065         }
5066
5067         if (skb->len <= 0) {
5068                 dev_kfree_skb_any(skb);
5069                 return NETDEV_TX_OK;
5070         }
5071
5072         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5073          * in order to meet this minimum size requirement.
5074          */
5075         if (skb_put_padto(skb, 17))
5076                 return NETDEV_TX_OK;
5077
5078         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5079 }
5080
5081 /**
5082  *  igb_tx_timeout - Respond to a Tx Hang
5083  *  @netdev: network interface device structure
5084  **/
5085 static void igb_tx_timeout(struct net_device *netdev)
5086 {
5087         struct igb_adapter *adapter = netdev_priv(netdev);
5088         struct e1000_hw *hw = &adapter->hw;
5089
5090         /* Do the reset outside of interrupt context */
5091         adapter->tx_timeout_count++;
5092
5093         if (hw->mac.type >= e1000_82580)
5094                 hw->dev_spec._82575.global_device_reset = true;
5095
5096         schedule_work(&adapter->reset_task);
5097         wr32(E1000_EICS,
5098              (adapter->eims_enable_mask & ~adapter->eims_other));
5099 }
5100
5101 static void igb_reset_task(struct work_struct *work)
5102 {
5103         struct igb_adapter *adapter;
5104         adapter = container_of(work, struct igb_adapter, reset_task);
5105
5106         igb_dump(adapter);
5107         netdev_err(adapter->netdev, "Reset adapter\n");
5108         igb_reinit_locked(adapter);
5109 }
5110
5111 /**
5112  *  igb_get_stats64 - Get System Network Statistics
5113  *  @netdev: network interface device structure
5114  *  @stats: rtnl_link_stats64 pointer
5115  **/
5116 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5117                                                 struct rtnl_link_stats64 *stats)
5118 {
5119         struct igb_adapter *adapter = netdev_priv(netdev);
5120
5121         spin_lock(&adapter->stats64_lock);
5122         igb_update_stats(adapter, &adapter->stats64);
5123         memcpy(stats, &adapter->stats64, sizeof(*stats));
5124         spin_unlock(&adapter->stats64_lock);
5125
5126         return stats;
5127 }
5128
5129 /**
5130  *  igb_change_mtu - Change the Maximum Transfer Unit
5131  *  @netdev: network interface device structure
5132  *  @new_mtu: new value for maximum frame size
5133  *
5134  *  Returns 0 on success, negative on failure
5135  **/
5136 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5137 {
5138         struct igb_adapter *adapter = netdev_priv(netdev);
5139         struct pci_dev *pdev = adapter->pdev;
5140         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5141
5142         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5143                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5144                 return -EINVAL;
5145         }
5146
5147 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5148         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5149                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5150                 return -EINVAL;
5151         }
5152
5153         /* adjust max frame to be at least the size of a standard frame */
5154         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5155                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5156
5157         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5158                 usleep_range(1000, 2000);
5159
5160         /* igb_down has a dependency on max_frame_size */
5161         adapter->max_frame_size = max_frame;
5162
5163         if (netif_running(netdev))
5164                 igb_down(adapter);
5165
5166         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5167                  netdev->mtu, new_mtu);
5168         netdev->mtu = new_mtu;
5169
5170         if (netif_running(netdev))
5171                 igb_up(adapter);
5172         else
5173                 igb_reset(adapter);
5174
5175         clear_bit(__IGB_RESETTING, &adapter->state);
5176
5177         return 0;
5178 }
5179
5180 /**
5181  *  igb_update_stats - Update the board statistics counters
5182  *  @adapter: board private structure
5183  **/
5184 void igb_update_stats(struct igb_adapter *adapter,
5185                       struct rtnl_link_stats64 *net_stats)
5186 {
5187         struct e1000_hw *hw = &adapter->hw;
5188         struct pci_dev *pdev = adapter->pdev;
5189         u32 reg, mpc;
5190         int i;
5191         u64 bytes, packets;
5192         unsigned int start;
5193         u64 _bytes, _packets;
5194
5195         /* Prevent stats update while adapter is being reset, or if the pci
5196          * connection is down.
5197          */
5198         if (adapter->link_speed == 0)
5199                 return;
5200         if (pci_channel_offline(pdev))
5201                 return;
5202
5203         bytes = 0;
5204         packets = 0;
5205
5206         rcu_read_lock();
5207         for (i = 0; i < adapter->num_rx_queues; i++) {
5208                 struct igb_ring *ring = adapter->rx_ring[i];
5209                 u32 rqdpc = rd32(E1000_RQDPC(i));
5210                 if (hw->mac.type >= e1000_i210)
5211                         wr32(E1000_RQDPC(i), 0);
5212
5213                 if (rqdpc) {
5214                         ring->rx_stats.drops += rqdpc;
5215                         net_stats->rx_fifo_errors += rqdpc;
5216                 }
5217
5218                 do {
5219                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5220                         _bytes = ring->rx_stats.bytes;
5221                         _packets = ring->rx_stats.packets;
5222                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5223                 bytes += _bytes;
5224                 packets += _packets;
5225         }
5226
5227         net_stats->rx_bytes = bytes;
5228         net_stats->rx_packets = packets;
5229
5230         bytes = 0;
5231         packets = 0;
5232         for (i = 0; i < adapter->num_tx_queues; i++) {
5233                 struct igb_ring *ring = adapter->tx_ring[i];
5234                 do {
5235                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5236                         _bytes = ring->tx_stats.bytes;
5237                         _packets = ring->tx_stats.packets;
5238                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5239                 bytes += _bytes;
5240                 packets += _packets;
5241         }
5242         net_stats->tx_bytes = bytes;
5243         net_stats->tx_packets = packets;
5244         rcu_read_unlock();
5245
5246         /* read stats registers */
5247         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5248         adapter->stats.gprc += rd32(E1000_GPRC);
5249         adapter->stats.gorc += rd32(E1000_GORCL);
5250         rd32(E1000_GORCH); /* clear GORCL */
5251         adapter->stats.bprc += rd32(E1000_BPRC);
5252         adapter->stats.mprc += rd32(E1000_MPRC);
5253         adapter->stats.roc += rd32(E1000_ROC);
5254
5255         adapter->stats.prc64 += rd32(E1000_PRC64);
5256         adapter->stats.prc127 += rd32(E1000_PRC127);
5257         adapter->stats.prc255 += rd32(E1000_PRC255);
5258         adapter->stats.prc511 += rd32(E1000_PRC511);
5259         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5260         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5261         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5262         adapter->stats.sec += rd32(E1000_SEC);
5263
5264         mpc = rd32(E1000_MPC);
5265         adapter->stats.mpc += mpc;
5266         net_stats->rx_fifo_errors += mpc;
5267         adapter->stats.scc += rd32(E1000_SCC);
5268         adapter->stats.ecol += rd32(E1000_ECOL);
5269         adapter->stats.mcc += rd32(E1000_MCC);
5270         adapter->stats.latecol += rd32(E1000_LATECOL);
5271         adapter->stats.dc += rd32(E1000_DC);
5272         adapter->stats.rlec += rd32(E1000_RLEC);
5273         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5274         adapter->stats.xontxc += rd32(E1000_XONTXC);
5275         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5276         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5277         adapter->stats.fcruc += rd32(E1000_FCRUC);
5278         adapter->stats.gptc += rd32(E1000_GPTC);
5279         adapter->stats.gotc += rd32(E1000_GOTCL);
5280         rd32(E1000_GOTCH); /* clear GOTCL */
5281         adapter->stats.rnbc += rd32(E1000_RNBC);
5282         adapter->stats.ruc += rd32(E1000_RUC);
5283         adapter->stats.rfc += rd32(E1000_RFC);
5284         adapter->stats.rjc += rd32(E1000_RJC);
5285         adapter->stats.tor += rd32(E1000_TORH);
5286         adapter->stats.tot += rd32(E1000_TOTH);
5287         adapter->stats.tpr += rd32(E1000_TPR);
5288
5289         adapter->stats.ptc64 += rd32(E1000_PTC64);
5290         adapter->stats.ptc127 += rd32(E1000_PTC127);
5291         adapter->stats.ptc255 += rd32(E1000_PTC255);
5292         adapter->stats.ptc511 += rd32(E1000_PTC511);
5293         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5294         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5295
5296         adapter->stats.mptc += rd32(E1000_MPTC);
5297         adapter->stats.bptc += rd32(E1000_BPTC);
5298
5299         adapter->stats.tpt += rd32(E1000_TPT);
5300         adapter->stats.colc += rd32(E1000_COLC);
5301
5302         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5303         /* read internal phy specific stats */
5304         reg = rd32(E1000_CTRL_EXT);
5305         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5306                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5307
5308                 /* this stat has invalid values on i210/i211 */
5309                 if ((hw->mac.type != e1000_i210) &&
5310                     (hw->mac.type != e1000_i211))
5311                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5312         }
5313
5314         adapter->stats.tsctc += rd32(E1000_TSCTC);
5315         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5316
5317         adapter->stats.iac += rd32(E1000_IAC);
5318         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5319         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5320         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5321         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5322         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5323         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5324         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5325         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5326
5327         /* Fill out the OS statistics structure */
5328         net_stats->multicast = adapter->stats.mprc;
5329         net_stats->collisions = adapter->stats.colc;
5330
5331         /* Rx Errors */
5332
5333         /* RLEC on some newer hardware can be incorrect so build
5334          * our own version based on RUC and ROC
5335          */
5336         net_stats->rx_errors = adapter->stats.rxerrc +
5337                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5338                 adapter->stats.ruc + adapter->stats.roc +
5339                 adapter->stats.cexterr;
5340         net_stats->rx_length_errors = adapter->stats.ruc +
5341                                       adapter->stats.roc;
5342         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5343         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5344         net_stats->rx_missed_errors = adapter->stats.mpc;
5345
5346         /* Tx Errors */
5347         net_stats->tx_errors = adapter->stats.ecol +
5348                                adapter->stats.latecol;
5349         net_stats->tx_aborted_errors = adapter->stats.ecol;
5350         net_stats->tx_window_errors = adapter->stats.latecol;
5351         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5352
5353         /* Tx Dropped needs to be maintained elsewhere */
5354
5355         /* Management Stats */
5356         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5357         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5358         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5359
5360         /* OS2BMC Stats */
5361         reg = rd32(E1000_MANC);
5362         if (reg & E1000_MANC_EN_BMC2OS) {
5363                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5364                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5365                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5366                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5367         }
5368 }
5369
5370 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5371 {
5372         struct e1000_hw *hw = &adapter->hw;
5373         struct ptp_clock_event event;
5374         struct timespec ts;
5375         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5376
5377         if (tsicr & TSINTR_SYS_WRAP) {
5378                 event.type = PTP_CLOCK_PPS;
5379                 if (adapter->ptp_caps.pps)
5380                         ptp_clock_event(adapter->ptp_clock, &event);
5381                 else
5382                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5383                 ack |= TSINTR_SYS_WRAP;
5384         }
5385
5386         if (tsicr & E1000_TSICR_TXTS) {
5387                 /* retrieve hardware timestamp */
5388                 schedule_work(&adapter->ptp_tx_work);
5389                 ack |= E1000_TSICR_TXTS;
5390         }
5391
5392         if (tsicr & TSINTR_TT0) {
5393                 spin_lock(&adapter->tmreg_lock);
5394                 ts = timespec_add(adapter->perout[0].start,
5395                                   adapter->perout[0].period);
5396                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5397                 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5398                 tsauxc = rd32(E1000_TSAUXC);
5399                 tsauxc |= TSAUXC_EN_TT0;
5400                 wr32(E1000_TSAUXC, tsauxc);
5401                 adapter->perout[0].start = ts;
5402                 spin_unlock(&adapter->tmreg_lock);
5403                 ack |= TSINTR_TT0;
5404         }
5405
5406         if (tsicr & TSINTR_TT1) {
5407                 spin_lock(&adapter->tmreg_lock);
5408                 ts = timespec_add(adapter->perout[1].start,
5409                                   adapter->perout[1].period);
5410                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5411                 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5412                 tsauxc = rd32(E1000_TSAUXC);
5413                 tsauxc |= TSAUXC_EN_TT1;
5414                 wr32(E1000_TSAUXC, tsauxc);
5415                 adapter->perout[1].start = ts;
5416                 spin_unlock(&adapter->tmreg_lock);
5417                 ack |= TSINTR_TT1;
5418         }
5419
5420         if (tsicr & TSINTR_AUTT0) {
5421                 nsec = rd32(E1000_AUXSTMPL0);
5422                 sec  = rd32(E1000_AUXSTMPH0);
5423                 event.type = PTP_CLOCK_EXTTS;
5424                 event.index = 0;
5425                 event.timestamp = sec * 1000000000ULL + nsec;
5426                 ptp_clock_event(adapter->ptp_clock, &event);
5427                 ack |= TSINTR_AUTT0;
5428         }
5429
5430         if (tsicr & TSINTR_AUTT1) {
5431                 nsec = rd32(E1000_AUXSTMPL1);
5432                 sec  = rd32(E1000_AUXSTMPH1);
5433                 event.type = PTP_CLOCK_EXTTS;
5434                 event.index = 1;
5435                 event.timestamp = sec * 1000000000ULL + nsec;
5436                 ptp_clock_event(adapter->ptp_clock, &event);
5437                 ack |= TSINTR_AUTT1;
5438         }
5439
5440         /* acknowledge the interrupts */
5441         wr32(E1000_TSICR, ack);
5442 }
5443
5444 static irqreturn_t igb_msix_other(int irq, void *data)
5445 {
5446         struct igb_adapter *adapter = data;
5447         struct e1000_hw *hw = &adapter->hw;
5448         u32 icr = rd32(E1000_ICR);
5449         /* reading ICR causes bit 31 of EICR to be cleared */
5450
5451         if (icr & E1000_ICR_DRSTA)
5452                 schedule_work(&adapter->reset_task);
5453
5454         if (icr & E1000_ICR_DOUTSYNC) {
5455                 /* HW is reporting DMA is out of sync */
5456                 adapter->stats.doosync++;
5457                 /* The DMA Out of Sync is also indication of a spoof event
5458                  * in IOV mode. Check the Wrong VM Behavior register to
5459                  * see if it is really a spoof event.
5460                  */
5461                 igb_check_wvbr(adapter);
5462         }
5463
5464         /* Check for a mailbox event */
5465         if (icr & E1000_ICR_VMMB)
5466                 igb_msg_task(adapter);
5467
5468         if (icr & E1000_ICR_LSC) {
5469                 hw->mac.get_link_status = 1;
5470                 /* guard against interrupt when we're going down */
5471                 if (!test_bit(__IGB_DOWN, &adapter->state))
5472                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5473         }
5474
5475         if (icr & E1000_ICR_TS)
5476                 igb_tsync_interrupt(adapter);
5477
5478         wr32(E1000_EIMS, adapter->eims_other);
5479
5480         return IRQ_HANDLED;
5481 }
5482
5483 static void igb_write_itr(struct igb_q_vector *q_vector)
5484 {
5485         struct igb_adapter *adapter = q_vector->adapter;
5486         u32 itr_val = q_vector->itr_val & 0x7FFC;
5487
5488         if (!q_vector->set_itr)
5489                 return;
5490
5491         if (!itr_val)
5492                 itr_val = 0x4;
5493
5494         if (adapter->hw.mac.type == e1000_82575)
5495                 itr_val |= itr_val << 16;
5496         else
5497                 itr_val |= E1000_EITR_CNT_IGNR;
5498
5499         writel(itr_val, q_vector->itr_register);
5500         q_vector->set_itr = 0;
5501 }
5502
5503 static irqreturn_t igb_msix_ring(int irq, void *data)
5504 {
5505         struct igb_q_vector *q_vector = data;
5506
5507         /* Write the ITR value calculated from the previous interrupt. */
5508         igb_write_itr(q_vector);
5509
5510         napi_schedule(&q_vector->napi);
5511
5512         return IRQ_HANDLED;
5513 }
5514
5515 #ifdef CONFIG_IGB_DCA
5516 static void igb_update_tx_dca(struct igb_adapter *adapter,
5517                               struct igb_ring *tx_ring,
5518                               int cpu)
5519 {
5520         struct e1000_hw *hw = &adapter->hw;
5521         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5522
5523         if (hw->mac.type != e1000_82575)
5524                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5525
5526         /* We can enable relaxed ordering for reads, but not writes when
5527          * DCA is enabled.  This is due to a known issue in some chipsets
5528          * which will cause the DCA tag to be cleared.
5529          */
5530         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5531                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5532                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5533
5534         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5535 }
5536
5537 static void igb_update_rx_dca(struct igb_adapter *adapter,
5538                               struct igb_ring *rx_ring,
5539                               int cpu)
5540 {
5541         struct e1000_hw *hw = &adapter->hw;
5542         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5543
5544         if (hw->mac.type != e1000_82575)
5545                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5546
5547         /* We can enable relaxed ordering for reads, but not writes when
5548          * DCA is enabled.  This is due to a known issue in some chipsets
5549          * which will cause the DCA tag to be cleared.
5550          */
5551         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5552                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5553
5554         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5555 }
5556
5557 static void igb_update_dca(struct igb_q_vector *q_vector)
5558 {
5559         struct igb_adapter *adapter = q_vector->adapter;
5560         int cpu = get_cpu();
5561
5562         if (q_vector->cpu == cpu)
5563                 goto out_no_update;
5564
5565         if (q_vector->tx.ring)
5566                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5567
5568         if (q_vector->rx.ring)
5569                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5570
5571         q_vector->cpu = cpu;
5572 out_no_update:
5573         put_cpu();
5574 }
5575
5576 static void igb_setup_dca(struct igb_adapter *adapter)
5577 {
5578         struct e1000_hw *hw = &adapter->hw;
5579         int i;
5580
5581         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5582                 return;
5583
5584         /* Always use CB2 mode, difference is masked in the CB driver. */
5585         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5586
5587         for (i = 0; i < adapter->num_q_vectors; i++) {
5588                 adapter->q_vector[i]->cpu = -1;
5589                 igb_update_dca(adapter->q_vector[i]);
5590         }
5591 }
5592
5593 static int __igb_notify_dca(struct device *dev, void *data)
5594 {
5595         struct net_device *netdev = dev_get_drvdata(dev);
5596         struct igb_adapter *adapter = netdev_priv(netdev);
5597         struct pci_dev *pdev = adapter->pdev;
5598         struct e1000_hw *hw = &adapter->hw;
5599         unsigned long event = *(unsigned long *)data;
5600
5601         switch (event) {
5602         case DCA_PROVIDER_ADD:
5603                 /* if already enabled, don't do it again */
5604                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5605                         break;
5606                 if (dca_add_requester(dev) == 0) {
5607                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5608                         dev_info(&pdev->dev, "DCA enabled\n");
5609                         igb_setup_dca(adapter);
5610                         break;
5611                 }
5612                 /* Fall Through since DCA is disabled. */
5613         case DCA_PROVIDER_REMOVE:
5614                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5615                         /* without this a class_device is left
5616                          * hanging around in the sysfs model
5617                          */
5618                         dca_remove_requester(dev);
5619                         dev_info(&pdev->dev, "DCA disabled\n");
5620                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5621                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5622                 }
5623                 break;
5624         }
5625
5626         return 0;
5627 }
5628
5629 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5630                           void *p)
5631 {
5632         int ret_val;
5633
5634         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5635                                          __igb_notify_dca);
5636
5637         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5638 }
5639 #endif /* CONFIG_IGB_DCA */
5640
5641 #ifdef CONFIG_PCI_IOV
5642 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5643 {
5644         unsigned char mac_addr[ETH_ALEN];
5645
5646         eth_zero_addr(mac_addr);
5647         igb_set_vf_mac(adapter, vf, mac_addr);
5648
5649         /* By default spoof check is enabled for all VFs */
5650         adapter->vf_data[vf].spoofchk_enabled = true;
5651
5652         return 0;
5653 }
5654
5655 #endif
5656 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5657 {
5658         struct e1000_hw *hw = &adapter->hw;
5659         u32 ping;
5660         int i;
5661
5662         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5663                 ping = E1000_PF_CONTROL_MSG;
5664                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5665                         ping |= E1000_VT_MSGTYPE_CTS;
5666                 igb_write_mbx(hw, &ping, 1, i);
5667         }
5668 }
5669
5670 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5671 {
5672         struct e1000_hw *hw = &adapter->hw;
5673         u32 vmolr = rd32(E1000_VMOLR(vf));
5674         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675
5676         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5677                             IGB_VF_FLAG_MULTI_PROMISC);
5678         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5679
5680         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5681                 vmolr |= E1000_VMOLR_MPME;
5682                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5683                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5684         } else {
5685                 /* if we have hashes and we are clearing a multicast promisc
5686                  * flag we need to write the hashes to the MTA as this step
5687                  * was previously skipped
5688                  */
5689                 if (vf_data->num_vf_mc_hashes > 30) {
5690                         vmolr |= E1000_VMOLR_MPME;
5691                 } else if (vf_data->num_vf_mc_hashes) {
5692                         int j;
5693
5694                         vmolr |= E1000_VMOLR_ROMPE;
5695                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5696                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5697                 }
5698         }
5699
5700         wr32(E1000_VMOLR(vf), vmolr);
5701
5702         /* there are flags left unprocessed, likely not supported */
5703         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5704                 return -EINVAL;
5705
5706         return 0;
5707 }
5708
5709 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5710                                   u32 *msgbuf, u32 vf)
5711 {
5712         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5713         u16 *hash_list = (u16 *)&msgbuf[1];
5714         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5715         int i;
5716
5717         /* salt away the number of multicast addresses assigned
5718          * to this VF for later use to restore when the PF multi cast
5719          * list changes
5720          */
5721         vf_data->num_vf_mc_hashes = n;
5722
5723         /* only up to 30 hash values supported */
5724         if (n > 30)
5725                 n = 30;
5726
5727         /* store the hashes for later use */
5728         for (i = 0; i < n; i++)
5729                 vf_data->vf_mc_hashes[i] = hash_list[i];
5730
5731         /* Flush and reset the mta with the new values */
5732         igb_set_rx_mode(adapter->netdev);
5733
5734         return 0;
5735 }
5736
5737 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5738 {
5739         struct e1000_hw *hw = &adapter->hw;
5740         struct vf_data_storage *vf_data;
5741         int i, j;
5742
5743         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5744                 u32 vmolr = rd32(E1000_VMOLR(i));
5745
5746                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5747
5748                 vf_data = &adapter->vf_data[i];
5749
5750                 if ((vf_data->num_vf_mc_hashes > 30) ||
5751                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5752                         vmolr |= E1000_VMOLR_MPME;
5753                 } else if (vf_data->num_vf_mc_hashes) {
5754                         vmolr |= E1000_VMOLR_ROMPE;
5755                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5756                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5757                 }
5758                 wr32(E1000_VMOLR(i), vmolr);
5759         }
5760 }
5761
5762 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5763 {
5764         struct e1000_hw *hw = &adapter->hw;
5765         u32 pool_mask, reg, vid;
5766         int i;
5767
5768         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5769
5770         /* Find the vlan filter for this id */
5771         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5772                 reg = rd32(E1000_VLVF(i));
5773
5774                 /* remove the vf from the pool */
5775                 reg &= ~pool_mask;
5776
5777                 /* if pool is empty then remove entry from vfta */
5778                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5779                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5780                         reg = 0;
5781                         vid = reg & E1000_VLVF_VLANID_MASK;
5782                         igb_vfta_set(hw, vid, false);
5783                 }
5784
5785                 wr32(E1000_VLVF(i), reg);
5786         }
5787
5788         adapter->vf_data[vf].vlans_enabled = 0;
5789 }
5790
5791 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5792 {
5793         struct e1000_hw *hw = &adapter->hw;
5794         u32 reg, i;
5795
5796         /* The vlvf table only exists on 82576 hardware and newer */
5797         if (hw->mac.type < e1000_82576)
5798                 return -1;
5799
5800         /* we only need to do this if VMDq is enabled */
5801         if (!adapter->vfs_allocated_count)
5802                 return -1;
5803
5804         /* Find the vlan filter for this id */
5805         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5806                 reg = rd32(E1000_VLVF(i));
5807                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5808                     vid == (reg & E1000_VLVF_VLANID_MASK))
5809                         break;
5810         }
5811
5812         if (add) {
5813                 if (i == E1000_VLVF_ARRAY_SIZE) {
5814                         /* Did not find a matching VLAN ID entry that was
5815                          * enabled.  Search for a free filter entry, i.e.
5816                          * one without the enable bit set
5817                          */
5818                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5819                                 reg = rd32(E1000_VLVF(i));
5820                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5821                                         break;
5822                         }
5823                 }
5824                 if (i < E1000_VLVF_ARRAY_SIZE) {
5825                         /* Found an enabled/available entry */
5826                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5827
5828                         /* if !enabled we need to set this up in vfta */
5829                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5830                                 /* add VID to filter table */
5831                                 igb_vfta_set(hw, vid, true);
5832                                 reg |= E1000_VLVF_VLANID_ENABLE;
5833                         }
5834                         reg &= ~E1000_VLVF_VLANID_MASK;
5835                         reg |= vid;
5836                         wr32(E1000_VLVF(i), reg);
5837
5838                         /* do not modify RLPML for PF devices */
5839                         if (vf >= adapter->vfs_allocated_count)
5840                                 return 0;
5841
5842                         if (!adapter->vf_data[vf].vlans_enabled) {
5843                                 u32 size;
5844
5845                                 reg = rd32(E1000_VMOLR(vf));
5846                                 size = reg & E1000_VMOLR_RLPML_MASK;
5847                                 size += 4;
5848                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5849                                 reg |= size;
5850                                 wr32(E1000_VMOLR(vf), reg);
5851                         }
5852
5853                         adapter->vf_data[vf].vlans_enabled++;
5854                 }
5855         } else {
5856                 if (i < E1000_VLVF_ARRAY_SIZE) {
5857                         /* remove vf from the pool */
5858                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5859                         /* if pool is empty then remove entry from vfta */
5860                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5861                                 reg = 0;
5862                                 igb_vfta_set(hw, vid, false);
5863                         }
5864                         wr32(E1000_VLVF(i), reg);
5865
5866                         /* do not modify RLPML for PF devices */
5867                         if (vf >= adapter->vfs_allocated_count)
5868                                 return 0;
5869
5870                         adapter->vf_data[vf].vlans_enabled--;
5871                         if (!adapter->vf_data[vf].vlans_enabled) {
5872                                 u32 size;
5873
5874                                 reg = rd32(E1000_VMOLR(vf));
5875                                 size = reg & E1000_VMOLR_RLPML_MASK;
5876                                 size -= 4;
5877                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5878                                 reg |= size;
5879                                 wr32(E1000_VMOLR(vf), reg);
5880                         }
5881                 }
5882         }
5883         return 0;
5884 }
5885
5886 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5887 {
5888         struct e1000_hw *hw = &adapter->hw;
5889
5890         if (vid)
5891                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5892         else
5893                 wr32(E1000_VMVIR(vf), 0);
5894 }
5895
5896 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5897                                int vf, u16 vlan, u8 qos)
5898 {
5899         int err = 0;
5900         struct igb_adapter *adapter = netdev_priv(netdev);
5901
5902         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5903                 return -EINVAL;
5904         if (vlan || qos) {
5905                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5906                 if (err)
5907                         goto out;
5908                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5909                 igb_set_vmolr(adapter, vf, !vlan);
5910                 adapter->vf_data[vf].pf_vlan = vlan;
5911                 adapter->vf_data[vf].pf_qos = qos;
5912                 dev_info(&adapter->pdev->dev,
5913                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5914                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5915                         dev_warn(&adapter->pdev->dev,
5916                                  "The VF VLAN has been set, but the PF device is not up.\n");
5917                         dev_warn(&adapter->pdev->dev,
5918                                  "Bring the PF device up before attempting to use the VF device.\n");
5919                 }
5920         } else {
5921                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5922                              false, vf);
5923                 igb_set_vmvir(adapter, vlan, vf);
5924                 igb_set_vmolr(adapter, vf, true);
5925                 adapter->vf_data[vf].pf_vlan = 0;
5926                 adapter->vf_data[vf].pf_qos = 0;
5927         }
5928 out:
5929         return err;
5930 }
5931
5932 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5933 {
5934         struct e1000_hw *hw = &adapter->hw;
5935         int i;
5936         u32 reg;
5937
5938         /* Find the vlan filter for this id */
5939         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5940                 reg = rd32(E1000_VLVF(i));
5941                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5942                     vid == (reg & E1000_VLVF_VLANID_MASK))
5943                         break;
5944         }
5945
5946         if (i >= E1000_VLVF_ARRAY_SIZE)
5947                 i = -1;
5948
5949         return i;
5950 }
5951
5952 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5953 {
5954         struct e1000_hw *hw = &adapter->hw;
5955         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5956         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5957         int err = 0;
5958
5959         /* If in promiscuous mode we need to make sure the PF also has
5960          * the VLAN filter set.
5961          */
5962         if (add && (adapter->netdev->flags & IFF_PROMISC))
5963                 err = igb_vlvf_set(adapter, vid, add,
5964                                    adapter->vfs_allocated_count);
5965         if (err)
5966                 goto out;
5967
5968         err = igb_vlvf_set(adapter, vid, add, vf);
5969
5970         if (err)
5971                 goto out;
5972
5973         /* Go through all the checks to see if the VLAN filter should
5974          * be wiped completely.
5975          */
5976         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5977                 u32 vlvf, bits;
5978                 int regndx = igb_find_vlvf_entry(adapter, vid);
5979
5980                 if (regndx < 0)
5981                         goto out;
5982                 /* See if any other pools are set for this VLAN filter
5983                  * entry other than the PF.
5984                  */
5985                 vlvf = bits = rd32(E1000_VLVF(regndx));
5986                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5987                               adapter->vfs_allocated_count);
5988                 /* If the filter was removed then ensure PF pool bit
5989                  * is cleared if the PF only added itself to the pool
5990                  * because the PF is in promiscuous mode.
5991                  */
5992                 if ((vlvf & VLAN_VID_MASK) == vid &&
5993                     !test_bit(vid, adapter->active_vlans) &&
5994                     !bits)
5995                         igb_vlvf_set(adapter, vid, add,
5996                                      adapter->vfs_allocated_count);
5997         }
5998
5999 out:
6000         return err;
6001 }
6002
6003 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6004 {
6005         /* clear flags - except flag that indicates PF has set the MAC */
6006         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6007         adapter->vf_data[vf].last_nack = jiffies;
6008
6009         /* reset offloads to defaults */
6010         igb_set_vmolr(adapter, vf, true);
6011
6012         /* reset vlans for device */
6013         igb_clear_vf_vfta(adapter, vf);
6014         if (adapter->vf_data[vf].pf_vlan)
6015                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6016                                     adapter->vf_data[vf].pf_vlan,
6017                                     adapter->vf_data[vf].pf_qos);
6018         else
6019                 igb_clear_vf_vfta(adapter, vf);
6020
6021         /* reset multicast table array for vf */
6022         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6023
6024         /* Flush and reset the mta with the new values */
6025         igb_set_rx_mode(adapter->netdev);
6026 }
6027
6028 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6029 {
6030         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6031
6032         /* clear mac address as we were hotplug removed/added */
6033         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6034                 eth_zero_addr(vf_mac);
6035
6036         /* process remaining reset events */
6037         igb_vf_reset(adapter, vf);
6038 }
6039
6040 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6041 {
6042         struct e1000_hw *hw = &adapter->hw;
6043         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6044         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6045         u32 reg, msgbuf[3];
6046         u8 *addr = (u8 *)(&msgbuf[1]);
6047
6048         /* process all the same items cleared in a function level reset */
6049         igb_vf_reset(adapter, vf);
6050
6051         /* set vf mac address */
6052         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6053
6054         /* enable transmit and receive for vf */
6055         reg = rd32(E1000_VFTE);
6056         wr32(E1000_VFTE, reg | (1 << vf));
6057         reg = rd32(E1000_VFRE);
6058         wr32(E1000_VFRE, reg | (1 << vf));
6059
6060         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6061
6062         /* reply to reset with ack and vf mac address */
6063         if (!is_zero_ether_addr(vf_mac)) {
6064                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6065                 memcpy(addr, vf_mac, ETH_ALEN);
6066         } else {
6067                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6068         }
6069         igb_write_mbx(hw, msgbuf, 3, vf);
6070 }
6071
6072 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6073 {
6074         /* The VF MAC Address is stored in a packed array of bytes
6075          * starting at the second 32 bit word of the msg array
6076          */
6077         unsigned char *addr = (char *)&msg[1];
6078         int err = -1;
6079
6080         if (is_valid_ether_addr(addr))
6081                 err = igb_set_vf_mac(adapter, vf, addr);
6082
6083         return err;
6084 }
6085
6086 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6087 {
6088         struct e1000_hw *hw = &adapter->hw;
6089         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6090         u32 msg = E1000_VT_MSGTYPE_NACK;
6091
6092         /* if device isn't clear to send it shouldn't be reading either */
6093         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6094             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6095                 igb_write_mbx(hw, &msg, 1, vf);
6096                 vf_data->last_nack = jiffies;
6097         }
6098 }
6099
6100 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6101 {
6102         struct pci_dev *pdev = adapter->pdev;
6103         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6104         struct e1000_hw *hw = &adapter->hw;
6105         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6106         s32 retval;
6107
6108         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6109
6110         if (retval) {
6111                 /* if receive failed revoke VF CTS stats and restart init */
6112                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6113                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6114                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6115                         return;
6116                 goto out;
6117         }
6118
6119         /* this is a message we already processed, do nothing */
6120         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6121                 return;
6122
6123         /* until the vf completes a reset it should not be
6124          * allowed to start any configuration.
6125          */
6126         if (msgbuf[0] == E1000_VF_RESET) {
6127                 igb_vf_reset_msg(adapter, vf);
6128                 return;
6129         }
6130
6131         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6132                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6133                         return;
6134                 retval = -1;
6135                 goto out;
6136         }
6137
6138         switch ((msgbuf[0] & 0xFFFF)) {
6139         case E1000_VF_SET_MAC_ADDR:
6140                 retval = -EINVAL;
6141                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6142                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6143                 else
6144                         dev_warn(&pdev->dev,
6145                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6146                                  vf);
6147                 break;
6148         case E1000_VF_SET_PROMISC:
6149                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6150                 break;
6151         case E1000_VF_SET_MULTICAST:
6152                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6153                 break;
6154         case E1000_VF_SET_LPE:
6155                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6156                 break;
6157         case E1000_VF_SET_VLAN:
6158                 retval = -1;
6159                 if (vf_data->pf_vlan)
6160                         dev_warn(&pdev->dev,
6161                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6162                                  vf);
6163                 else
6164                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6165                 break;
6166         default:
6167                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6168                 retval = -1;
6169                 break;
6170         }
6171
6172         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6173 out:
6174         /* notify the VF of the results of what it sent us */
6175         if (retval)
6176                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6177         else
6178                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6179
6180         igb_write_mbx(hw, msgbuf, 1, vf);
6181 }
6182
6183 static void igb_msg_task(struct igb_adapter *adapter)
6184 {
6185         struct e1000_hw *hw = &adapter->hw;
6186         u32 vf;
6187
6188         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6189                 /* process any reset requests */
6190                 if (!igb_check_for_rst(hw, vf))
6191                         igb_vf_reset_event(adapter, vf);
6192
6193                 /* process any messages pending */
6194                 if (!igb_check_for_msg(hw, vf))
6195                         igb_rcv_msg_from_vf(adapter, vf);
6196
6197                 /* process any acks */
6198                 if (!igb_check_for_ack(hw, vf))
6199                         igb_rcv_ack_from_vf(adapter, vf);
6200         }
6201 }
6202
6203 /**
6204  *  igb_set_uta - Set unicast filter table address
6205  *  @adapter: board private structure
6206  *
6207  *  The unicast table address is a register array of 32-bit registers.
6208  *  The table is meant to be used in a way similar to how the MTA is used
6209  *  however due to certain limitations in the hardware it is necessary to
6210  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6211  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6212  **/
6213 static void igb_set_uta(struct igb_adapter *adapter)
6214 {
6215         struct e1000_hw *hw = &adapter->hw;
6216         int i;
6217
6218         /* The UTA table only exists on 82576 hardware and newer */
6219         if (hw->mac.type < e1000_82576)
6220                 return;
6221
6222         /* we only need to do this if VMDq is enabled */
6223         if (!adapter->vfs_allocated_count)
6224                 return;
6225
6226         for (i = 0; i < hw->mac.uta_reg_count; i++)
6227                 array_wr32(E1000_UTA, i, ~0);
6228 }
6229
6230 /**
6231  *  igb_intr_msi - Interrupt Handler
6232  *  @irq: interrupt number
6233  *  @data: pointer to a network interface device structure
6234  **/
6235 static irqreturn_t igb_intr_msi(int irq, void *data)
6236 {
6237         struct igb_adapter *adapter = data;
6238         struct igb_q_vector *q_vector = adapter->q_vector[0];
6239         struct e1000_hw *hw = &adapter->hw;
6240         /* read ICR disables interrupts using IAM */
6241         u32 icr = rd32(E1000_ICR);
6242
6243         igb_write_itr(q_vector);
6244
6245         if (icr & E1000_ICR_DRSTA)
6246                 schedule_work(&adapter->reset_task);
6247
6248         if (icr & E1000_ICR_DOUTSYNC) {
6249                 /* HW is reporting DMA is out of sync */
6250                 adapter->stats.doosync++;
6251         }
6252
6253         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6254                 hw->mac.get_link_status = 1;
6255                 if (!test_bit(__IGB_DOWN, &adapter->state))
6256                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6257         }
6258
6259         if (icr & E1000_ICR_TS)
6260                 igb_tsync_interrupt(adapter);
6261
6262         napi_schedule(&q_vector->napi);
6263
6264         return IRQ_HANDLED;
6265 }
6266
6267 /**
6268  *  igb_intr - Legacy Interrupt Handler
6269  *  @irq: interrupt number
6270  *  @data: pointer to a network interface device structure
6271  **/
6272 static irqreturn_t igb_intr(int irq, void *data)
6273 {
6274         struct igb_adapter *adapter = data;
6275         struct igb_q_vector *q_vector = adapter->q_vector[0];
6276         struct e1000_hw *hw = &adapter->hw;
6277         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6278          * need for the IMC write
6279          */
6280         u32 icr = rd32(E1000_ICR);
6281
6282         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6283          * not set, then the adapter didn't send an interrupt
6284          */
6285         if (!(icr & E1000_ICR_INT_ASSERTED))
6286                 return IRQ_NONE;
6287
6288         igb_write_itr(q_vector);
6289
6290         if (icr & E1000_ICR_DRSTA)
6291                 schedule_work(&adapter->reset_task);
6292
6293         if (icr & E1000_ICR_DOUTSYNC) {
6294                 /* HW is reporting DMA is out of sync */
6295                 adapter->stats.doosync++;
6296         }
6297
6298         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6299                 hw->mac.get_link_status = 1;
6300                 /* guard against interrupt when we're going down */
6301                 if (!test_bit(__IGB_DOWN, &adapter->state))
6302                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6303         }
6304
6305         if (icr & E1000_ICR_TS)
6306                 igb_tsync_interrupt(adapter);
6307
6308         napi_schedule(&q_vector->napi);
6309
6310         return IRQ_HANDLED;
6311 }
6312
6313 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6314 {
6315         struct igb_adapter *adapter = q_vector->adapter;
6316         struct e1000_hw *hw = &adapter->hw;
6317
6318         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6319             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6320                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6321                         igb_set_itr(q_vector);
6322                 else
6323                         igb_update_ring_itr(q_vector);
6324         }
6325
6326         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6327                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6328                         wr32(E1000_EIMS, q_vector->eims_value);
6329                 else
6330                         igb_irq_enable(adapter);
6331         }
6332 }
6333
6334 /**
6335  *  igb_poll - NAPI Rx polling callback
6336  *  @napi: napi polling structure
6337  *  @budget: count of how many packets we should handle
6338  **/
6339 static int igb_poll(struct napi_struct *napi, int budget)
6340 {
6341         struct igb_q_vector *q_vector = container_of(napi,
6342                                                      struct igb_q_vector,
6343                                                      napi);
6344         bool clean_complete = true;
6345
6346 #ifdef CONFIG_IGB_DCA
6347         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6348                 igb_update_dca(q_vector);
6349 #endif
6350         if (q_vector->tx.ring)
6351                 clean_complete = igb_clean_tx_irq(q_vector);
6352
6353         if (q_vector->rx.ring)
6354                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6355
6356         /* If all work not completed, return budget and keep polling */
6357         if (!clean_complete)
6358                 return budget;
6359
6360         /* If not enough Rx work done, exit the polling mode */
6361         napi_complete(napi);
6362         igb_ring_irq_enable(q_vector);
6363
6364         return 0;
6365 }
6366
6367 /**
6368  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6369  *  @q_vector: pointer to q_vector containing needed info
6370  *
6371  *  returns true if ring is completely cleaned
6372  **/
6373 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6374 {
6375         struct igb_adapter *adapter = q_vector->adapter;
6376         struct igb_ring *tx_ring = q_vector->tx.ring;
6377         struct igb_tx_buffer *tx_buffer;
6378         union e1000_adv_tx_desc *tx_desc;
6379         unsigned int total_bytes = 0, total_packets = 0;
6380         unsigned int budget = q_vector->tx.work_limit;
6381         unsigned int i = tx_ring->next_to_clean;
6382
6383         if (test_bit(__IGB_DOWN, &adapter->state))
6384                 return true;
6385
6386         tx_buffer = &tx_ring->tx_buffer_info[i];
6387         tx_desc = IGB_TX_DESC(tx_ring, i);
6388         i -= tx_ring->count;
6389
6390         do {
6391                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6392
6393                 /* if next_to_watch is not set then there is no work pending */
6394                 if (!eop_desc)
6395                         break;
6396
6397                 /* prevent any other reads prior to eop_desc */
6398                 read_barrier_depends();
6399
6400                 /* if DD is not set pending work has not been completed */
6401                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6402                         break;
6403
6404                 /* clear next_to_watch to prevent false hangs */
6405                 tx_buffer->next_to_watch = NULL;
6406
6407                 /* update the statistics for this packet */
6408                 total_bytes += tx_buffer->bytecount;
6409                 total_packets += tx_buffer->gso_segs;
6410
6411                 /* free the skb */
6412                 dev_consume_skb_any(tx_buffer->skb);
6413
6414                 /* unmap skb header data */
6415                 dma_unmap_single(tx_ring->dev,
6416                                  dma_unmap_addr(tx_buffer, dma),
6417                                  dma_unmap_len(tx_buffer, len),
6418                                  DMA_TO_DEVICE);
6419
6420                 /* clear tx_buffer data */
6421                 tx_buffer->skb = NULL;
6422                 dma_unmap_len_set(tx_buffer, len, 0);
6423
6424                 /* clear last DMA location and unmap remaining buffers */
6425                 while (tx_desc != eop_desc) {
6426                         tx_buffer++;
6427                         tx_desc++;
6428                         i++;
6429                         if (unlikely(!i)) {
6430                                 i -= tx_ring->count;
6431                                 tx_buffer = tx_ring->tx_buffer_info;
6432                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6433                         }
6434
6435                         /* unmap any remaining paged data */
6436                         if (dma_unmap_len(tx_buffer, len)) {
6437                                 dma_unmap_page(tx_ring->dev,
6438                                                dma_unmap_addr(tx_buffer, dma),
6439                                                dma_unmap_len(tx_buffer, len),
6440                                                DMA_TO_DEVICE);
6441                                 dma_unmap_len_set(tx_buffer, len, 0);
6442                         }
6443                 }
6444
6445                 /* move us one more past the eop_desc for start of next pkt */
6446                 tx_buffer++;
6447                 tx_desc++;
6448                 i++;
6449                 if (unlikely(!i)) {
6450                         i -= tx_ring->count;
6451                         tx_buffer = tx_ring->tx_buffer_info;
6452                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6453                 }
6454
6455                 /* issue prefetch for next Tx descriptor */
6456                 prefetch(tx_desc);
6457
6458                 /* update budget accounting */
6459                 budget--;
6460         } while (likely(budget));
6461
6462         netdev_tx_completed_queue(txring_txq(tx_ring),
6463                                   total_packets, total_bytes);
6464         i += tx_ring->count;
6465         tx_ring->next_to_clean = i;
6466         u64_stats_update_begin(&tx_ring->tx_syncp);
6467         tx_ring->tx_stats.bytes += total_bytes;
6468         tx_ring->tx_stats.packets += total_packets;
6469         u64_stats_update_end(&tx_ring->tx_syncp);
6470         q_vector->tx.total_bytes += total_bytes;
6471         q_vector->tx.total_packets += total_packets;
6472
6473         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6474                 struct e1000_hw *hw = &adapter->hw;
6475
6476                 /* Detect a transmit hang in hardware, this serializes the
6477                  * check with the clearing of time_stamp and movement of i
6478                  */
6479                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6480                 if (tx_buffer->next_to_watch &&
6481                     time_after(jiffies, tx_buffer->time_stamp +
6482                                (adapter->tx_timeout_factor * HZ)) &&
6483                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6484
6485                         /* detected Tx unit hang */
6486                         dev_err(tx_ring->dev,
6487                                 "Detected Tx Unit Hang\n"
6488                                 "  Tx Queue             <%d>\n"
6489                                 "  TDH                  <%x>\n"
6490                                 "  TDT                  <%x>\n"
6491                                 "  next_to_use          <%x>\n"
6492                                 "  next_to_clean        <%x>\n"
6493                                 "buffer_info[next_to_clean]\n"
6494                                 "  time_stamp           <%lx>\n"
6495                                 "  next_to_watch        <%p>\n"
6496                                 "  jiffies              <%lx>\n"
6497                                 "  desc.status          <%x>\n",
6498                                 tx_ring->queue_index,
6499                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6500                                 readl(tx_ring->tail),
6501                                 tx_ring->next_to_use,
6502                                 tx_ring->next_to_clean,
6503                                 tx_buffer->time_stamp,
6504                                 tx_buffer->next_to_watch,
6505                                 jiffies,
6506                                 tx_buffer->next_to_watch->wb.status);
6507                         netif_stop_subqueue(tx_ring->netdev,
6508                                             tx_ring->queue_index);
6509
6510                         /* we are about to reset, no point in enabling stuff */
6511                         return true;
6512                 }
6513         }
6514
6515 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6516         if (unlikely(total_packets &&
6517             netif_carrier_ok(tx_ring->netdev) &&
6518             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6519                 /* Make sure that anybody stopping the queue after this
6520                  * sees the new next_to_clean.
6521                  */
6522                 smp_mb();
6523                 if (__netif_subqueue_stopped(tx_ring->netdev,
6524                                              tx_ring->queue_index) &&
6525                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6526                         netif_wake_subqueue(tx_ring->netdev,
6527                                             tx_ring->queue_index);
6528
6529                         u64_stats_update_begin(&tx_ring->tx_syncp);
6530                         tx_ring->tx_stats.restart_queue++;
6531                         u64_stats_update_end(&tx_ring->tx_syncp);
6532                 }
6533         }
6534
6535         return !!budget;
6536 }
6537
6538 /**
6539  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6540  *  @rx_ring: rx descriptor ring to store buffers on
6541  *  @old_buff: donor buffer to have page reused
6542  *
6543  *  Synchronizes page for reuse by the adapter
6544  **/
6545 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6546                               struct igb_rx_buffer *old_buff)
6547 {
6548         struct igb_rx_buffer *new_buff;
6549         u16 nta = rx_ring->next_to_alloc;
6550
6551         new_buff = &rx_ring->rx_buffer_info[nta];
6552
6553         /* update, and store next to alloc */
6554         nta++;
6555         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6556
6557         /* transfer page from old buffer to new buffer */
6558         *new_buff = *old_buff;
6559
6560         /* sync the buffer for use by the device */
6561         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6562                                          old_buff->page_offset,
6563                                          IGB_RX_BUFSZ,
6564                                          DMA_FROM_DEVICE);
6565 }
6566
6567 static inline bool igb_page_is_reserved(struct page *page)
6568 {
6569         return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6570 }
6571
6572 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6573                                   struct page *page,
6574                                   unsigned int truesize)
6575 {
6576         /* avoid re-using remote pages */
6577         if (unlikely(igb_page_is_reserved(page)))
6578                 return false;
6579
6580 #if (PAGE_SIZE < 8192)
6581         /* if we are only owner of page we can reuse it */
6582         if (unlikely(page_count(page) != 1))
6583                 return false;
6584
6585         /* flip page offset to other buffer */
6586         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6587 #else
6588         /* move offset up to the next cache line */
6589         rx_buffer->page_offset += truesize;
6590
6591         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6592                 return false;
6593 #endif
6594
6595         /* Even if we own the page, we are not allowed to use atomic_set()
6596          * This would break get_page_unless_zero() users.
6597          */
6598         atomic_inc(&page->_count);
6599
6600         return true;
6601 }
6602
6603 /**
6604  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6605  *  @rx_ring: rx descriptor ring to transact packets on
6606  *  @rx_buffer: buffer containing page to add
6607  *  @rx_desc: descriptor containing length of buffer written by hardware
6608  *  @skb: sk_buff to place the data into
6609  *
6610  *  This function will add the data contained in rx_buffer->page to the skb.
6611  *  This is done either through a direct copy if the data in the buffer is
6612  *  less than the skb header size, otherwise it will just attach the page as
6613  *  a frag to the skb.
6614  *
6615  *  The function will then update the page offset if necessary and return
6616  *  true if the buffer can be reused by the adapter.
6617  **/
6618 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6619                             struct igb_rx_buffer *rx_buffer,
6620                             union e1000_adv_rx_desc *rx_desc,
6621                             struct sk_buff *skb)
6622 {
6623         struct page *page = rx_buffer->page;
6624         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6625 #if (PAGE_SIZE < 8192)
6626         unsigned int truesize = IGB_RX_BUFSZ;
6627 #else
6628         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6629 #endif
6630
6631         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6632                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6633
6634                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6635                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6636                         va += IGB_TS_HDR_LEN;
6637                         size -= IGB_TS_HDR_LEN;
6638                 }
6639
6640                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6641
6642                 /* page is not reserved, we can reuse buffer as-is */
6643                 if (likely(!igb_page_is_reserved(page)))
6644                         return true;
6645
6646                 /* this page cannot be reused so discard it */
6647                 __free_page(page);
6648                 return false;
6649         }
6650
6651         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6652                         rx_buffer->page_offset, size, truesize);
6653
6654         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6655 }
6656
6657 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6658                                            union e1000_adv_rx_desc *rx_desc,
6659                                            struct sk_buff *skb)
6660 {
6661         struct igb_rx_buffer *rx_buffer;
6662         struct page *page;
6663
6664         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6665         page = rx_buffer->page;
6666         prefetchw(page);
6667
6668         if (likely(!skb)) {
6669                 void *page_addr = page_address(page) +
6670                                   rx_buffer->page_offset;
6671
6672                 /* prefetch first cache line of first page */
6673                 prefetch(page_addr);
6674 #if L1_CACHE_BYTES < 128
6675                 prefetch(page_addr + L1_CACHE_BYTES);
6676 #endif
6677
6678                 /* allocate a skb to store the frags */
6679                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6680                 if (unlikely(!skb)) {
6681                         rx_ring->rx_stats.alloc_failed++;
6682                         return NULL;
6683                 }
6684
6685                 /* we will be copying header into skb->data in
6686                  * pskb_may_pull so it is in our interest to prefetch
6687                  * it now to avoid a possible cache miss
6688                  */
6689                 prefetchw(skb->data);
6690         }
6691
6692         /* we are reusing so sync this buffer for CPU use */
6693         dma_sync_single_range_for_cpu(rx_ring->dev,
6694                                       rx_buffer->dma,
6695                                       rx_buffer->page_offset,
6696                                       IGB_RX_BUFSZ,
6697                                       DMA_FROM_DEVICE);
6698
6699         /* pull page into skb */
6700         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6701                 /* hand second half of page back to the ring */
6702                 igb_reuse_rx_page(rx_ring, rx_buffer);
6703         } else {
6704                 /* we are not reusing the buffer so unmap it */
6705                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6706                                PAGE_SIZE, DMA_FROM_DEVICE);
6707         }
6708
6709         /* clear contents of rx_buffer */
6710         rx_buffer->page = NULL;
6711
6712         return skb;
6713 }
6714
6715 static inline void igb_rx_checksum(struct igb_ring *ring,
6716                                    union e1000_adv_rx_desc *rx_desc,
6717                                    struct sk_buff *skb)
6718 {
6719         skb_checksum_none_assert(skb);
6720
6721         /* Ignore Checksum bit is set */
6722         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6723                 return;
6724
6725         /* Rx checksum disabled via ethtool */
6726         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6727                 return;
6728
6729         /* TCP/UDP checksum error bit is set */
6730         if (igb_test_staterr(rx_desc,
6731                              E1000_RXDEXT_STATERR_TCPE |
6732                              E1000_RXDEXT_STATERR_IPE)) {
6733                 /* work around errata with sctp packets where the TCPE aka
6734                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6735                  * packets, (aka let the stack check the crc32c)
6736                  */
6737                 if (!((skb->len == 60) &&
6738                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6739                         u64_stats_update_begin(&ring->rx_syncp);
6740                         ring->rx_stats.csum_err++;
6741                         u64_stats_update_end(&ring->rx_syncp);
6742                 }
6743                 /* let the stack verify checksum errors */
6744                 return;
6745         }
6746         /* It must be a TCP or UDP packet with a valid checksum */
6747         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6748                                       E1000_RXD_STAT_UDPCS))
6749                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6750
6751         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6752                 le32_to_cpu(rx_desc->wb.upper.status_error));
6753 }
6754
6755 static inline void igb_rx_hash(struct igb_ring *ring,
6756                                union e1000_adv_rx_desc *rx_desc,
6757                                struct sk_buff *skb)
6758 {
6759         if (ring->netdev->features & NETIF_F_RXHASH)
6760                 skb_set_hash(skb,
6761                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6762                              PKT_HASH_TYPE_L3);
6763 }
6764
6765 /**
6766  *  igb_is_non_eop - process handling of non-EOP buffers
6767  *  @rx_ring: Rx ring being processed
6768  *  @rx_desc: Rx descriptor for current buffer
6769  *  @skb: current socket buffer containing buffer in progress
6770  *
6771  *  This function updates next to clean.  If the buffer is an EOP buffer
6772  *  this function exits returning false, otherwise it will place the
6773  *  sk_buff in the next buffer to be chained and return true indicating
6774  *  that this is in fact a non-EOP buffer.
6775  **/
6776 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6777                            union e1000_adv_rx_desc *rx_desc)
6778 {
6779         u32 ntc = rx_ring->next_to_clean + 1;
6780
6781         /* fetch, update, and store next to clean */
6782         ntc = (ntc < rx_ring->count) ? ntc : 0;
6783         rx_ring->next_to_clean = ntc;
6784
6785         prefetch(IGB_RX_DESC(rx_ring, ntc));
6786
6787         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6788                 return false;
6789
6790         return true;
6791 }
6792
6793 /**
6794  *  igb_pull_tail - igb specific version of skb_pull_tail
6795  *  @rx_ring: rx descriptor ring packet is being transacted on
6796  *  @rx_desc: pointer to the EOP Rx descriptor
6797  *  @skb: pointer to current skb being adjusted
6798  *
6799  *  This function is an igb specific version of __pskb_pull_tail.  The
6800  *  main difference between this version and the original function is that
6801  *  this function can make several assumptions about the state of things
6802  *  that allow for significant optimizations versus the standard function.
6803  *  As a result we can do things like drop a frag and maintain an accurate
6804  *  truesize for the skb.
6805  */
6806 static void igb_pull_tail(struct igb_ring *rx_ring,
6807                           union e1000_adv_rx_desc *rx_desc,
6808                           struct sk_buff *skb)
6809 {
6810         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6811         unsigned char *va;
6812         unsigned int pull_len;
6813
6814         /* it is valid to use page_address instead of kmap since we are
6815          * working with pages allocated out of the lomem pool per
6816          * alloc_page(GFP_ATOMIC)
6817          */
6818         va = skb_frag_address(frag);
6819
6820         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6821                 /* retrieve timestamp from buffer */
6822                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6823
6824                 /* update pointers to remove timestamp header */
6825                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6826                 frag->page_offset += IGB_TS_HDR_LEN;
6827                 skb->data_len -= IGB_TS_HDR_LEN;
6828                 skb->len -= IGB_TS_HDR_LEN;
6829
6830                 /* move va to start of packet data */
6831                 va += IGB_TS_HDR_LEN;
6832         }
6833
6834         /* we need the header to contain the greater of either ETH_HLEN or
6835          * 60 bytes if the skb->len is less than 60 for skb_pad.
6836          */
6837         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6838
6839         /* align pull length to size of long to optimize memcpy performance */
6840         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6841
6842         /* update all of the pointers */
6843         skb_frag_size_sub(frag, pull_len);
6844         frag->page_offset += pull_len;
6845         skb->data_len -= pull_len;
6846         skb->tail += pull_len;
6847 }
6848
6849 /**
6850  *  igb_cleanup_headers - Correct corrupted or empty headers
6851  *  @rx_ring: rx descriptor ring packet is being transacted on
6852  *  @rx_desc: pointer to the EOP Rx descriptor
6853  *  @skb: pointer to current skb being fixed
6854  *
6855  *  Address the case where we are pulling data in on pages only
6856  *  and as such no data is present in the skb header.
6857  *
6858  *  In addition if skb is not at least 60 bytes we need to pad it so that
6859  *  it is large enough to qualify as a valid Ethernet frame.
6860  *
6861  *  Returns true if an error was encountered and skb was freed.
6862  **/
6863 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6864                                 union e1000_adv_rx_desc *rx_desc,
6865                                 struct sk_buff *skb)
6866 {
6867         if (unlikely((igb_test_staterr(rx_desc,
6868                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6869                 struct net_device *netdev = rx_ring->netdev;
6870                 if (!(netdev->features & NETIF_F_RXALL)) {
6871                         dev_kfree_skb_any(skb);
6872                         return true;
6873                 }
6874         }
6875
6876         /* place header in linear portion of buffer */
6877         if (skb_is_nonlinear(skb))
6878                 igb_pull_tail(rx_ring, rx_desc, skb);
6879
6880         /* if eth_skb_pad returns an error the skb was freed */
6881         if (eth_skb_pad(skb))
6882                 return true;
6883
6884         return false;
6885 }
6886
6887 /**
6888  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6889  *  @rx_ring: rx descriptor ring packet is being transacted on
6890  *  @rx_desc: pointer to the EOP Rx descriptor
6891  *  @skb: pointer to current skb being populated
6892  *
6893  *  This function checks the ring, descriptor, and packet information in
6894  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6895  *  other fields within the skb.
6896  **/
6897 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6898                                    union e1000_adv_rx_desc *rx_desc,
6899                                    struct sk_buff *skb)
6900 {
6901         struct net_device *dev = rx_ring->netdev;
6902
6903         igb_rx_hash(rx_ring, rx_desc, skb);
6904
6905         igb_rx_checksum(rx_ring, rx_desc, skb);
6906
6907         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6908             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6909                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6910
6911         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6912             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6913                 u16 vid;
6914
6915                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6916                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6917                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6918                 else
6919                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6920
6921                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6922         }
6923
6924         skb_record_rx_queue(skb, rx_ring->queue_index);
6925
6926         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6927 }
6928
6929 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6930 {
6931         struct igb_ring *rx_ring = q_vector->rx.ring;
6932         struct sk_buff *skb = rx_ring->skb;
6933         unsigned int total_bytes = 0, total_packets = 0;
6934         u16 cleaned_count = igb_desc_unused(rx_ring);
6935
6936         while (likely(total_packets < budget)) {
6937                 union e1000_adv_rx_desc *rx_desc;
6938
6939                 /* return some buffers to hardware, one at a time is too slow */
6940                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6941                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6942                         cleaned_count = 0;
6943                 }
6944
6945                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6946
6947                 if (!rx_desc->wb.upper.status_error)
6948                         break;
6949
6950                 /* This memory barrier is needed to keep us from reading
6951                  * any other fields out of the rx_desc until we know the
6952                  * descriptor has been written back
6953                  */
6954                 dma_rmb();
6955
6956                 /* retrieve a buffer from the ring */
6957                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6958
6959                 /* exit if we failed to retrieve a buffer */
6960                 if (!skb)
6961                         break;
6962
6963                 cleaned_count++;
6964
6965                 /* fetch next buffer in frame if non-eop */
6966                 if (igb_is_non_eop(rx_ring, rx_desc))
6967                         continue;
6968
6969                 /* verify the packet layout is correct */
6970                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6971                         skb = NULL;
6972                         continue;
6973                 }
6974
6975                 /* probably a little skewed due to removing CRC */
6976                 total_bytes += skb->len;
6977
6978                 /* populate checksum, timestamp, VLAN, and protocol */
6979                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6980
6981                 napi_gro_receive(&q_vector->napi, skb);
6982
6983                 /* reset skb pointer */
6984                 skb = NULL;
6985
6986                 /* update budget accounting */
6987                 total_packets++;
6988         }
6989
6990         /* place incomplete frames back on ring for completion */
6991         rx_ring->skb = skb;
6992
6993         u64_stats_update_begin(&rx_ring->rx_syncp);
6994         rx_ring->rx_stats.packets += total_packets;
6995         rx_ring->rx_stats.bytes += total_bytes;
6996         u64_stats_update_end(&rx_ring->rx_syncp);
6997         q_vector->rx.total_packets += total_packets;
6998         q_vector->rx.total_bytes += total_bytes;
6999
7000         if (cleaned_count)
7001                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7002
7003         return total_packets < budget;
7004 }
7005
7006 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7007                                   struct igb_rx_buffer *bi)
7008 {
7009         struct page *page = bi->page;
7010         dma_addr_t dma;
7011
7012         /* since we are recycling buffers we should seldom need to alloc */
7013         if (likely(page))
7014                 return true;
7015
7016         /* alloc new page for storage */
7017         page = dev_alloc_page();
7018         if (unlikely(!page)) {
7019                 rx_ring->rx_stats.alloc_failed++;
7020                 return false;
7021         }
7022
7023         /* map page for use */
7024         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7025
7026         /* if mapping failed free memory back to system since
7027          * there isn't much point in holding memory we can't use
7028          */
7029         if (dma_mapping_error(rx_ring->dev, dma)) {
7030                 __free_page(page);
7031
7032                 rx_ring->rx_stats.alloc_failed++;
7033                 return false;
7034         }
7035
7036         bi->dma = dma;
7037         bi->page = page;
7038         bi->page_offset = 0;
7039
7040         return true;
7041 }
7042
7043 /**
7044  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7045  *  @adapter: address of board private structure
7046  **/
7047 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7048 {
7049         union e1000_adv_rx_desc *rx_desc;
7050         struct igb_rx_buffer *bi;
7051         u16 i = rx_ring->next_to_use;
7052
7053         /* nothing to do */
7054         if (!cleaned_count)
7055                 return;
7056
7057         rx_desc = IGB_RX_DESC(rx_ring, i);
7058         bi = &rx_ring->rx_buffer_info[i];
7059         i -= rx_ring->count;
7060
7061         do {
7062                 if (!igb_alloc_mapped_page(rx_ring, bi))
7063                         break;
7064
7065                 /* Refresh the desc even if buffer_addrs didn't change
7066                  * because each write-back erases this info.
7067                  */
7068                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7069
7070                 rx_desc++;
7071                 bi++;
7072                 i++;
7073                 if (unlikely(!i)) {
7074                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7075                         bi = rx_ring->rx_buffer_info;
7076                         i -= rx_ring->count;
7077                 }
7078
7079                 /* clear the status bits for the next_to_use descriptor */
7080                 rx_desc->wb.upper.status_error = 0;
7081
7082                 cleaned_count--;
7083         } while (cleaned_count);
7084
7085         i += rx_ring->count;
7086
7087         if (rx_ring->next_to_use != i) {
7088                 /* record the next descriptor to use */
7089                 rx_ring->next_to_use = i;
7090
7091                 /* update next to alloc since we have filled the ring */
7092                 rx_ring->next_to_alloc = i;
7093
7094                 /* Force memory writes to complete before letting h/w
7095                  * know there are new descriptors to fetch.  (Only
7096                  * applicable for weak-ordered memory model archs,
7097                  * such as IA-64).
7098                  */
7099                 wmb();
7100                 writel(i, rx_ring->tail);
7101         }
7102 }
7103
7104 /**
7105  * igb_mii_ioctl -
7106  * @netdev:
7107  * @ifreq:
7108  * @cmd:
7109  **/
7110 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7111 {
7112         struct igb_adapter *adapter = netdev_priv(netdev);
7113         struct mii_ioctl_data *data = if_mii(ifr);
7114
7115         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7116                 return -EOPNOTSUPP;
7117
7118         switch (cmd) {
7119         case SIOCGMIIPHY:
7120                 data->phy_id = adapter->hw.phy.addr;
7121                 break;
7122         case SIOCGMIIREG:
7123                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7124                                      &data->val_out))
7125                         return -EIO;
7126                 break;
7127         case SIOCSMIIREG:
7128         default:
7129                 return -EOPNOTSUPP;
7130         }
7131         return 0;
7132 }
7133
7134 /**
7135  * igb_ioctl -
7136  * @netdev:
7137  * @ifreq:
7138  * @cmd:
7139  **/
7140 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7141 {
7142         switch (cmd) {
7143         case SIOCGMIIPHY:
7144         case SIOCGMIIREG:
7145         case SIOCSMIIREG:
7146                 return igb_mii_ioctl(netdev, ifr, cmd);
7147         case SIOCGHWTSTAMP:
7148                 return igb_ptp_get_ts_config(netdev, ifr);
7149         case SIOCSHWTSTAMP:
7150                 return igb_ptp_set_ts_config(netdev, ifr);
7151         default:
7152                 return -EOPNOTSUPP;
7153         }
7154 }
7155
7156 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7157 {
7158         struct igb_adapter *adapter = hw->back;
7159
7160         pci_read_config_word(adapter->pdev, reg, value);
7161 }
7162
7163 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7164 {
7165         struct igb_adapter *adapter = hw->back;
7166
7167         pci_write_config_word(adapter->pdev, reg, *value);
7168 }
7169
7170 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7171 {
7172         struct igb_adapter *adapter = hw->back;
7173
7174         if (pcie_capability_read_word(adapter->pdev, reg, value))
7175                 return -E1000_ERR_CONFIG;
7176
7177         return 0;
7178 }
7179
7180 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7181 {
7182         struct igb_adapter *adapter = hw->back;
7183
7184         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7185                 return -E1000_ERR_CONFIG;
7186
7187         return 0;
7188 }
7189
7190 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7191 {
7192         struct igb_adapter *adapter = netdev_priv(netdev);
7193         struct e1000_hw *hw = &adapter->hw;
7194         u32 ctrl, rctl;
7195         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7196
7197         if (enable) {
7198                 /* enable VLAN tag insert/strip */
7199                 ctrl = rd32(E1000_CTRL);
7200                 ctrl |= E1000_CTRL_VME;
7201                 wr32(E1000_CTRL, ctrl);
7202
7203                 /* Disable CFI check */
7204                 rctl = rd32(E1000_RCTL);
7205                 rctl &= ~E1000_RCTL_CFIEN;
7206                 wr32(E1000_RCTL, rctl);
7207         } else {
7208                 /* disable VLAN tag insert/strip */
7209                 ctrl = rd32(E1000_CTRL);
7210                 ctrl &= ~E1000_CTRL_VME;
7211                 wr32(E1000_CTRL, ctrl);
7212         }
7213
7214         igb_rlpml_set(adapter);
7215 }
7216
7217 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7218                                __be16 proto, u16 vid)
7219 {
7220         struct igb_adapter *adapter = netdev_priv(netdev);
7221         struct e1000_hw *hw = &adapter->hw;
7222         int pf_id = adapter->vfs_allocated_count;
7223
7224         /* attempt to add filter to vlvf array */
7225         igb_vlvf_set(adapter, vid, true, pf_id);
7226
7227         /* add the filter since PF can receive vlans w/o entry in vlvf */
7228         igb_vfta_set(hw, vid, true);
7229
7230         set_bit(vid, adapter->active_vlans);
7231
7232         return 0;
7233 }
7234
7235 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7236                                 __be16 proto, u16 vid)
7237 {
7238         struct igb_adapter *adapter = netdev_priv(netdev);
7239         struct e1000_hw *hw = &adapter->hw;
7240         int pf_id = adapter->vfs_allocated_count;
7241         s32 err;
7242
7243         /* remove vlan from VLVF table array */
7244         err = igb_vlvf_set(adapter, vid, false, pf_id);
7245
7246         /* if vid was not present in VLVF just remove it from table */
7247         if (err)
7248                 igb_vfta_set(hw, vid, false);
7249
7250         clear_bit(vid, adapter->active_vlans);
7251
7252         return 0;
7253 }
7254
7255 static void igb_restore_vlan(struct igb_adapter *adapter)
7256 {
7257         u16 vid;
7258
7259         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7260
7261         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7262                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7263 }
7264
7265 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7266 {
7267         struct pci_dev *pdev = adapter->pdev;
7268         struct e1000_mac_info *mac = &adapter->hw.mac;
7269
7270         mac->autoneg = 0;
7271
7272         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7273          * for the switch() below to work
7274          */
7275         if ((spd & 1) || (dplx & ~1))
7276                 goto err_inval;
7277
7278         /* Fiber NIC's only allow 1000 gbps Full duplex
7279          * and 100Mbps Full duplex for 100baseFx sfp
7280          */
7281         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7282                 switch (spd + dplx) {
7283                 case SPEED_10 + DUPLEX_HALF:
7284                 case SPEED_10 + DUPLEX_FULL:
7285                 case SPEED_100 + DUPLEX_HALF:
7286                         goto err_inval;
7287                 default:
7288                         break;
7289                 }
7290         }
7291
7292         switch (spd + dplx) {
7293         case SPEED_10 + DUPLEX_HALF:
7294                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7295                 break;
7296         case SPEED_10 + DUPLEX_FULL:
7297                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7298                 break;
7299         case SPEED_100 + DUPLEX_HALF:
7300                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7301                 break;
7302         case SPEED_100 + DUPLEX_FULL:
7303                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7304                 break;
7305         case SPEED_1000 + DUPLEX_FULL:
7306                 mac->autoneg = 1;
7307                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7308                 break;
7309         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7310         default:
7311                 goto err_inval;
7312         }
7313
7314         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7315         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7316
7317         return 0;
7318
7319 err_inval:
7320         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7321         return -EINVAL;
7322 }
7323
7324 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7325                           bool runtime)
7326 {
7327         struct net_device *netdev = pci_get_drvdata(pdev);
7328         struct igb_adapter *adapter = netdev_priv(netdev);
7329         struct e1000_hw *hw = &adapter->hw;
7330         u32 ctrl, rctl, status;
7331         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7332 #ifdef CONFIG_PM
7333         int retval = 0;
7334 #endif
7335
7336         netif_device_detach(netdev);
7337
7338         if (netif_running(netdev))
7339                 __igb_close(netdev, true);
7340
7341         igb_clear_interrupt_scheme(adapter);
7342
7343 #ifdef CONFIG_PM
7344         retval = pci_save_state(pdev);
7345         if (retval)
7346                 return retval;
7347 #endif
7348
7349         status = rd32(E1000_STATUS);
7350         if (status & E1000_STATUS_LU)
7351                 wufc &= ~E1000_WUFC_LNKC;
7352
7353         if (wufc) {
7354                 igb_setup_rctl(adapter);
7355                 igb_set_rx_mode(netdev);
7356
7357                 /* turn on all-multi mode if wake on multicast is enabled */
7358                 if (wufc & E1000_WUFC_MC) {
7359                         rctl = rd32(E1000_RCTL);
7360                         rctl |= E1000_RCTL_MPE;
7361                         wr32(E1000_RCTL, rctl);
7362                 }
7363
7364                 ctrl = rd32(E1000_CTRL);
7365                 /* advertise wake from D3Cold */
7366                 #define E1000_CTRL_ADVD3WUC 0x00100000
7367                 /* phy power management enable */
7368                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7369                 ctrl |= E1000_CTRL_ADVD3WUC;
7370                 wr32(E1000_CTRL, ctrl);
7371
7372                 /* Allow time for pending master requests to run */
7373                 igb_disable_pcie_master(hw);
7374
7375                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7376                 wr32(E1000_WUFC, wufc);
7377         } else {
7378                 wr32(E1000_WUC, 0);
7379                 wr32(E1000_WUFC, 0);
7380         }
7381
7382         *enable_wake = wufc || adapter->en_mng_pt;
7383         if (!*enable_wake)
7384                 igb_power_down_link(adapter);
7385         else
7386                 igb_power_up_link(adapter);
7387
7388         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7389          * would have already happened in close and is redundant.
7390          */
7391         igb_release_hw_control(adapter);
7392
7393         pci_disable_device(pdev);
7394
7395         return 0;
7396 }
7397
7398 #ifdef CONFIG_PM
7399 #ifdef CONFIG_PM_SLEEP
7400 static int igb_suspend(struct device *dev)
7401 {
7402         int retval;
7403         bool wake;
7404         struct pci_dev *pdev = to_pci_dev(dev);
7405
7406         retval = __igb_shutdown(pdev, &wake, 0);
7407         if (retval)
7408                 return retval;
7409
7410         if (wake) {
7411                 pci_prepare_to_sleep(pdev);
7412         } else {
7413                 pci_wake_from_d3(pdev, false);
7414                 pci_set_power_state(pdev, PCI_D3hot);
7415         }
7416
7417         return 0;
7418 }
7419 #endif /* CONFIG_PM_SLEEP */
7420
7421 static int igb_resume(struct device *dev)
7422 {
7423         struct pci_dev *pdev = to_pci_dev(dev);
7424         struct net_device *netdev = pci_get_drvdata(pdev);
7425         struct igb_adapter *adapter = netdev_priv(netdev);
7426         struct e1000_hw *hw = &adapter->hw;
7427         u32 err;
7428
7429         pci_set_power_state(pdev, PCI_D0);
7430         pci_restore_state(pdev);
7431         pci_save_state(pdev);
7432
7433         if (!pci_device_is_present(pdev))
7434                 return -ENODEV;
7435         err = pci_enable_device_mem(pdev);
7436         if (err) {
7437                 dev_err(&pdev->dev,
7438                         "igb: Cannot enable PCI device from suspend\n");
7439                 return err;
7440         }
7441         pci_set_master(pdev);
7442
7443         pci_enable_wake(pdev, PCI_D3hot, 0);
7444         pci_enable_wake(pdev, PCI_D3cold, 0);
7445
7446         if (igb_init_interrupt_scheme(adapter, true)) {
7447                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7448                 return -ENOMEM;
7449         }
7450
7451         igb_reset(adapter);
7452
7453         /* let the f/w know that the h/w is now under the control of the
7454          * driver.
7455          */
7456         igb_get_hw_control(adapter);
7457
7458         wr32(E1000_WUS, ~0);
7459
7460         if (netdev->flags & IFF_UP) {
7461                 rtnl_lock();
7462                 err = __igb_open(netdev, true);
7463                 rtnl_unlock();
7464                 if (err)
7465                         return err;
7466         }
7467
7468         netif_device_attach(netdev);
7469         return 0;
7470 }
7471
7472 static int igb_runtime_idle(struct device *dev)
7473 {
7474         struct pci_dev *pdev = to_pci_dev(dev);
7475         struct net_device *netdev = pci_get_drvdata(pdev);
7476         struct igb_adapter *adapter = netdev_priv(netdev);
7477
7478         if (!igb_has_link(adapter))
7479                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7480
7481         return -EBUSY;
7482 }
7483
7484 static int igb_runtime_suspend(struct device *dev)
7485 {
7486         struct pci_dev *pdev = to_pci_dev(dev);
7487         int retval;
7488         bool wake;
7489
7490         retval = __igb_shutdown(pdev, &wake, 1);
7491         if (retval)
7492                 return retval;
7493
7494         if (wake) {
7495                 pci_prepare_to_sleep(pdev);
7496         } else {
7497                 pci_wake_from_d3(pdev, false);
7498                 pci_set_power_state(pdev, PCI_D3hot);
7499         }
7500
7501         return 0;
7502 }
7503
7504 static int igb_runtime_resume(struct device *dev)
7505 {
7506         return igb_resume(dev);
7507 }
7508 #endif /* CONFIG_PM */
7509
7510 static void igb_shutdown(struct pci_dev *pdev)
7511 {
7512         bool wake;
7513
7514         __igb_shutdown(pdev, &wake, 0);
7515
7516         if (system_state == SYSTEM_POWER_OFF) {
7517                 pci_wake_from_d3(pdev, wake);
7518                 pci_set_power_state(pdev, PCI_D3hot);
7519         }
7520 }
7521
7522 #ifdef CONFIG_PCI_IOV
7523 static int igb_sriov_reinit(struct pci_dev *dev)
7524 {
7525         struct net_device *netdev = pci_get_drvdata(dev);
7526         struct igb_adapter *adapter = netdev_priv(netdev);
7527         struct pci_dev *pdev = adapter->pdev;
7528
7529         rtnl_lock();
7530
7531         if (netif_running(netdev))
7532                 igb_close(netdev);
7533         else
7534                 igb_reset(adapter);
7535
7536         igb_clear_interrupt_scheme(adapter);
7537
7538         igb_init_queue_configuration(adapter);
7539
7540         if (igb_init_interrupt_scheme(adapter, true)) {
7541                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7542                 return -ENOMEM;
7543         }
7544
7545         if (netif_running(netdev))
7546                 igb_open(netdev);
7547
7548         rtnl_unlock();
7549
7550         return 0;
7551 }
7552
7553 static int igb_pci_disable_sriov(struct pci_dev *dev)
7554 {
7555         int err = igb_disable_sriov(dev);
7556
7557         if (!err)
7558                 err = igb_sriov_reinit(dev);
7559
7560         return err;
7561 }
7562
7563 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7564 {
7565         int err = igb_enable_sriov(dev, num_vfs);
7566
7567         if (err)
7568                 goto out;
7569
7570         err = igb_sriov_reinit(dev);
7571         if (!err)
7572                 return num_vfs;
7573
7574 out:
7575         return err;
7576 }
7577
7578 #endif
7579 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7580 {
7581 #ifdef CONFIG_PCI_IOV
7582         if (num_vfs == 0)
7583                 return igb_pci_disable_sriov(dev);
7584         else
7585                 return igb_pci_enable_sriov(dev, num_vfs);
7586 #endif
7587         return 0;
7588 }
7589
7590 #ifdef CONFIG_NET_POLL_CONTROLLER
7591 /* Polling 'interrupt' - used by things like netconsole to send skbs
7592  * without having to re-enable interrupts. It's not called while
7593  * the interrupt routine is executing.
7594  */
7595 static void igb_netpoll(struct net_device *netdev)
7596 {
7597         struct igb_adapter *adapter = netdev_priv(netdev);
7598         struct e1000_hw *hw = &adapter->hw;
7599         struct igb_q_vector *q_vector;
7600         int i;
7601
7602         for (i = 0; i < adapter->num_q_vectors; i++) {
7603                 q_vector = adapter->q_vector[i];
7604                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7605                         wr32(E1000_EIMC, q_vector->eims_value);
7606                 else
7607                         igb_irq_disable(adapter);
7608                 napi_schedule(&q_vector->napi);
7609         }
7610 }
7611 #endif /* CONFIG_NET_POLL_CONTROLLER */
7612
7613 /**
7614  *  igb_io_error_detected - called when PCI error is detected
7615  *  @pdev: Pointer to PCI device
7616  *  @state: The current pci connection state
7617  *
7618  *  This function is called after a PCI bus error affecting
7619  *  this device has been detected.
7620  **/
7621 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7622                                               pci_channel_state_t state)
7623 {
7624         struct net_device *netdev = pci_get_drvdata(pdev);
7625         struct igb_adapter *adapter = netdev_priv(netdev);
7626
7627         netif_device_detach(netdev);
7628
7629         if (state == pci_channel_io_perm_failure)
7630                 return PCI_ERS_RESULT_DISCONNECT;
7631
7632         if (netif_running(netdev))
7633                 igb_down(adapter);
7634         pci_disable_device(pdev);
7635
7636         /* Request a slot slot reset. */
7637         return PCI_ERS_RESULT_NEED_RESET;
7638 }
7639
7640 /**
7641  *  igb_io_slot_reset - called after the pci bus has been reset.
7642  *  @pdev: Pointer to PCI device
7643  *
7644  *  Restart the card from scratch, as if from a cold-boot. Implementation
7645  *  resembles the first-half of the igb_resume routine.
7646  **/
7647 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7648 {
7649         struct net_device *netdev = pci_get_drvdata(pdev);
7650         struct igb_adapter *adapter = netdev_priv(netdev);
7651         struct e1000_hw *hw = &adapter->hw;
7652         pci_ers_result_t result;
7653         int err;
7654
7655         if (pci_enable_device_mem(pdev)) {
7656                 dev_err(&pdev->dev,
7657                         "Cannot re-enable PCI device after reset.\n");
7658                 result = PCI_ERS_RESULT_DISCONNECT;
7659         } else {
7660                 pci_set_master(pdev);
7661                 pci_restore_state(pdev);
7662                 pci_save_state(pdev);
7663
7664                 pci_enable_wake(pdev, PCI_D3hot, 0);
7665                 pci_enable_wake(pdev, PCI_D3cold, 0);
7666
7667                 igb_reset(adapter);
7668                 wr32(E1000_WUS, ~0);
7669                 result = PCI_ERS_RESULT_RECOVERED;
7670         }
7671
7672         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7673         if (err) {
7674                 dev_err(&pdev->dev,
7675                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7676                         err);
7677                 /* non-fatal, continue */
7678         }
7679
7680         return result;
7681 }
7682
7683 /**
7684  *  igb_io_resume - called when traffic can start flowing again.
7685  *  @pdev: Pointer to PCI device
7686  *
7687  *  This callback is called when the error recovery driver tells us that
7688  *  its OK to resume normal operation. Implementation resembles the
7689  *  second-half of the igb_resume routine.
7690  */
7691 static void igb_io_resume(struct pci_dev *pdev)
7692 {
7693         struct net_device *netdev = pci_get_drvdata(pdev);
7694         struct igb_adapter *adapter = netdev_priv(netdev);
7695
7696         if (netif_running(netdev)) {
7697                 if (igb_up(adapter)) {
7698                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7699                         return;
7700                 }
7701         }
7702
7703         netif_device_attach(netdev);
7704
7705         /* let the f/w know that the h/w is now under the control of the
7706          * driver.
7707          */
7708         igb_get_hw_control(adapter);
7709 }
7710
7711 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7712                              u8 qsel)
7713 {
7714         u32 rar_low, rar_high;
7715         struct e1000_hw *hw = &adapter->hw;
7716
7717         /* HW expects these in little endian so we reverse the byte order
7718          * from network order (big endian) to little endian
7719          */
7720         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7721                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7722         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7723
7724         /* Indicate to hardware the Address is Valid. */
7725         rar_high |= E1000_RAH_AV;
7726
7727         if (hw->mac.type == e1000_82575)
7728                 rar_high |= E1000_RAH_POOL_1 * qsel;
7729         else
7730                 rar_high |= E1000_RAH_POOL_1 << qsel;
7731
7732         wr32(E1000_RAL(index), rar_low);
7733         wrfl();
7734         wr32(E1000_RAH(index), rar_high);
7735         wrfl();
7736 }
7737
7738 static int igb_set_vf_mac(struct igb_adapter *adapter,
7739                           int vf, unsigned char *mac_addr)
7740 {
7741         struct e1000_hw *hw = &adapter->hw;
7742         /* VF MAC addresses start at end of receive addresses and moves
7743          * towards the first, as a result a collision should not be possible
7744          */
7745         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7746
7747         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7748
7749         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7750
7751         return 0;
7752 }
7753
7754 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7755 {
7756         struct igb_adapter *adapter = netdev_priv(netdev);
7757         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7758                 return -EINVAL;
7759         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7760         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7761         dev_info(&adapter->pdev->dev,
7762                  "Reload the VF driver to make this change effective.");
7763         if (test_bit(__IGB_DOWN, &adapter->state)) {
7764                 dev_warn(&adapter->pdev->dev,
7765                          "The VF MAC address has been set, but the PF device is not up.\n");
7766                 dev_warn(&adapter->pdev->dev,
7767                          "Bring the PF device up before attempting to use the VF device.\n");
7768         }
7769         return igb_set_vf_mac(adapter, vf, mac);
7770 }
7771
7772 static int igb_link_mbps(int internal_link_speed)
7773 {
7774         switch (internal_link_speed) {
7775         case SPEED_100:
7776                 return 100;
7777         case SPEED_1000:
7778                 return 1000;
7779         default:
7780                 return 0;
7781         }
7782 }
7783
7784 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7785                                   int link_speed)
7786 {
7787         int rf_dec, rf_int;
7788         u32 bcnrc_val;
7789
7790         if (tx_rate != 0) {
7791                 /* Calculate the rate factor values to set */
7792                 rf_int = link_speed / tx_rate;
7793                 rf_dec = (link_speed - (rf_int * tx_rate));
7794                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7795                          tx_rate;
7796
7797                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7798                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7799                               E1000_RTTBCNRC_RF_INT_MASK);
7800                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7801         } else {
7802                 bcnrc_val = 0;
7803         }
7804
7805         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7806         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7807          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7808          */
7809         wr32(E1000_RTTBCNRM, 0x14);
7810         wr32(E1000_RTTBCNRC, bcnrc_val);
7811 }
7812
7813 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7814 {
7815         int actual_link_speed, i;
7816         bool reset_rate = false;
7817
7818         /* VF TX rate limit was not set or not supported */
7819         if ((adapter->vf_rate_link_speed == 0) ||
7820             (adapter->hw.mac.type != e1000_82576))
7821                 return;
7822
7823         actual_link_speed = igb_link_mbps(adapter->link_speed);
7824         if (actual_link_speed != adapter->vf_rate_link_speed) {
7825                 reset_rate = true;
7826                 adapter->vf_rate_link_speed = 0;
7827                 dev_info(&adapter->pdev->dev,
7828                          "Link speed has been changed. VF Transmit rate is disabled\n");
7829         }
7830
7831         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7832                 if (reset_rate)
7833                         adapter->vf_data[i].tx_rate = 0;
7834
7835                 igb_set_vf_rate_limit(&adapter->hw, i,
7836                                       adapter->vf_data[i].tx_rate,
7837                                       actual_link_speed);
7838         }
7839 }
7840
7841 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7842                              int min_tx_rate, int max_tx_rate)
7843 {
7844         struct igb_adapter *adapter = netdev_priv(netdev);
7845         struct e1000_hw *hw = &adapter->hw;
7846         int actual_link_speed;
7847
7848         if (hw->mac.type != e1000_82576)
7849                 return -EOPNOTSUPP;
7850
7851         if (min_tx_rate)
7852                 return -EINVAL;
7853
7854         actual_link_speed = igb_link_mbps(adapter->link_speed);
7855         if ((vf >= adapter->vfs_allocated_count) ||
7856             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7857             (max_tx_rate < 0) ||
7858             (max_tx_rate > actual_link_speed))
7859                 return -EINVAL;
7860
7861         adapter->vf_rate_link_speed = actual_link_speed;
7862         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7863         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7864
7865         return 0;
7866 }
7867
7868 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7869                                    bool setting)
7870 {
7871         struct igb_adapter *adapter = netdev_priv(netdev);
7872         struct e1000_hw *hw = &adapter->hw;
7873         u32 reg_val, reg_offset;
7874
7875         if (!adapter->vfs_allocated_count)
7876                 return -EOPNOTSUPP;
7877
7878         if (vf >= adapter->vfs_allocated_count)
7879                 return -EINVAL;
7880
7881         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7882         reg_val = rd32(reg_offset);
7883         if (setting)
7884                 reg_val |= ((1 << vf) |
7885                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7886         else
7887                 reg_val &= ~((1 << vf) |
7888                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7889         wr32(reg_offset, reg_val);
7890
7891         adapter->vf_data[vf].spoofchk_enabled = setting;
7892         return 0;
7893 }
7894
7895 static int igb_ndo_get_vf_config(struct net_device *netdev,
7896                                  int vf, struct ifla_vf_info *ivi)
7897 {
7898         struct igb_adapter *adapter = netdev_priv(netdev);
7899         if (vf >= adapter->vfs_allocated_count)
7900                 return -EINVAL;
7901         ivi->vf = vf;
7902         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7903         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7904         ivi->min_tx_rate = 0;
7905         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7906         ivi->qos = adapter->vf_data[vf].pf_qos;
7907         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7908         return 0;
7909 }
7910
7911 static void igb_vmm_control(struct igb_adapter *adapter)
7912 {
7913         struct e1000_hw *hw = &adapter->hw;
7914         u32 reg;
7915
7916         switch (hw->mac.type) {
7917         case e1000_82575:
7918         case e1000_i210:
7919         case e1000_i211:
7920         case e1000_i354:
7921         default:
7922                 /* replication is not supported for 82575 */
7923                 return;
7924         case e1000_82576:
7925                 /* notify HW that the MAC is adding vlan tags */
7926                 reg = rd32(E1000_DTXCTL);
7927                 reg |= E1000_DTXCTL_VLAN_ADDED;
7928                 wr32(E1000_DTXCTL, reg);
7929                 /* Fall through */
7930         case e1000_82580:
7931                 /* enable replication vlan tag stripping */
7932                 reg = rd32(E1000_RPLOLR);
7933                 reg |= E1000_RPLOLR_STRVLAN;
7934                 wr32(E1000_RPLOLR, reg);
7935                 /* Fall through */
7936         case e1000_i350:
7937                 /* none of the above registers are supported by i350 */
7938                 break;
7939         }
7940
7941         if (adapter->vfs_allocated_count) {
7942                 igb_vmdq_set_loopback_pf(hw, true);
7943                 igb_vmdq_set_replication_pf(hw, true);
7944                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7945                                               adapter->vfs_allocated_count);
7946         } else {
7947                 igb_vmdq_set_loopback_pf(hw, false);
7948                 igb_vmdq_set_replication_pf(hw, false);
7949         }
7950 }
7951
7952 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7953 {
7954         struct e1000_hw *hw = &adapter->hw;
7955         u32 dmac_thr;
7956         u16 hwm;
7957
7958         if (hw->mac.type > e1000_82580) {
7959                 if (adapter->flags & IGB_FLAG_DMAC) {
7960                         u32 reg;
7961
7962                         /* force threshold to 0. */
7963                         wr32(E1000_DMCTXTH, 0);
7964
7965                         /* DMA Coalescing high water mark needs to be greater
7966                          * than the Rx threshold. Set hwm to PBA - max frame
7967                          * size in 16B units, capping it at PBA - 6KB.
7968                          */
7969                         hwm = 64 * pba - adapter->max_frame_size / 16;
7970                         if (hwm < 64 * (pba - 6))
7971                                 hwm = 64 * (pba - 6);
7972                         reg = rd32(E1000_FCRTC);
7973                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7974                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7975                                 & E1000_FCRTC_RTH_COAL_MASK);
7976                         wr32(E1000_FCRTC, reg);
7977
7978                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7979                          * frame size, capping it at PBA - 10KB.
7980                          */
7981                         dmac_thr = pba - adapter->max_frame_size / 512;
7982                         if (dmac_thr < pba - 10)
7983                                 dmac_thr = pba - 10;
7984                         reg = rd32(E1000_DMACR);
7985                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7986                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7987                                 & E1000_DMACR_DMACTHR_MASK);
7988
7989                         /* transition to L0x or L1 if available..*/
7990                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7991
7992                         /* watchdog timer= +-1000 usec in 32usec intervals */
7993                         reg |= (1000 >> 5);
7994
7995                         /* Disable BMC-to-OS Watchdog Enable */
7996                         if (hw->mac.type != e1000_i354)
7997                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7998
7999                         wr32(E1000_DMACR, reg);
8000
8001                         /* no lower threshold to disable
8002                          * coalescing(smart fifb)-UTRESH=0
8003                          */
8004                         wr32(E1000_DMCRTRH, 0);
8005
8006                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8007
8008                         wr32(E1000_DMCTLX, reg);
8009
8010                         /* free space in tx packet buffer to wake from
8011                          * DMA coal
8012                          */
8013                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8014                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8015
8016                         /* make low power state decision controlled
8017                          * by DMA coal
8018                          */
8019                         reg = rd32(E1000_PCIEMISC);
8020                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8021                         wr32(E1000_PCIEMISC, reg);
8022                 } /* endif adapter->dmac is not disabled */
8023         } else if (hw->mac.type == e1000_82580) {
8024                 u32 reg = rd32(E1000_PCIEMISC);
8025
8026                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8027                 wr32(E1000_DMACR, 0);
8028         }
8029 }
8030
8031 /**
8032  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8033  *  @hw: pointer to hardware structure
8034  *  @byte_offset: byte offset to read
8035  *  @dev_addr: device address
8036  *  @data: value read
8037  *
8038  *  Performs byte read operation over I2C interface at
8039  *  a specified device address.
8040  **/
8041 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8042                       u8 dev_addr, u8 *data)
8043 {
8044         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8045         struct i2c_client *this_client = adapter->i2c_client;
8046         s32 status;
8047         u16 swfw_mask = 0;
8048
8049         if (!this_client)
8050                 return E1000_ERR_I2C;
8051
8052         swfw_mask = E1000_SWFW_PHY0_SM;
8053
8054         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8055                 return E1000_ERR_SWFW_SYNC;
8056
8057         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8058         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8059
8060         if (status < 0)
8061                 return E1000_ERR_I2C;
8062         else {
8063                 *data = status;
8064                 return 0;
8065         }
8066 }
8067
8068 /**
8069  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8070  *  @hw: pointer to hardware structure
8071  *  @byte_offset: byte offset to write
8072  *  @dev_addr: device address
8073  *  @data: value to write
8074  *
8075  *  Performs byte write operation over I2C interface at
8076  *  a specified device address.
8077  **/
8078 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8079                        u8 dev_addr, u8 data)
8080 {
8081         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8082         struct i2c_client *this_client = adapter->i2c_client;
8083         s32 status;
8084         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8085
8086         if (!this_client)
8087                 return E1000_ERR_I2C;
8088
8089         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8090                 return E1000_ERR_SWFW_SYNC;
8091         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8092         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8093
8094         if (status)
8095                 return E1000_ERR_I2C;
8096         else
8097                 return 0;
8098
8099 }
8100
8101 int igb_reinit_queues(struct igb_adapter *adapter)
8102 {
8103         struct net_device *netdev = adapter->netdev;
8104         struct pci_dev *pdev = adapter->pdev;
8105         int err = 0;
8106
8107         if (netif_running(netdev))
8108                 igb_close(netdev);
8109
8110         igb_reset_interrupt_capability(adapter);
8111
8112         if (igb_init_interrupt_scheme(adapter, true)) {
8113                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8114                 return -ENOMEM;
8115         }
8116
8117         if (netif_running(netdev))
8118                 err = igb_open(netdev);
8119
8120         return err;
8121 }
8122 /* igb_main.c */