]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197                         igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205         .notifier_call  = igb_notify_dca,
206         .next           = NULL,
207         .priority       = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221                      pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226         .error_detected = igb_io_error_detected,
227         .slot_reset = igb_io_slot_reset,
228         .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234         .name     = igb_driver_name,
235         .id_table = igb_pci_tbl,
236         .probe    = igb_probe,
237         .remove   = igb_remove,
238 #ifdef CONFIG_PM
239         .driver.pm = &igb_pm_ops,
240 #endif
241         .shutdown = igb_shutdown,
242         .sriov_configure = igb_pci_sriov_configure,
243         .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257         u32 ofs;
258         char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263         /* General Registers */
264         {E1000_CTRL, "CTRL"},
265         {E1000_STATUS, "STATUS"},
266         {E1000_CTRL_EXT, "CTRL_EXT"},
267
268         /* Interrupt Registers */
269         {E1000_ICR, "ICR"},
270
271         /* RX Registers */
272         {E1000_RCTL, "RCTL"},
273         {E1000_RDLEN(0), "RDLEN"},
274         {E1000_RDH(0), "RDH"},
275         {E1000_RDT(0), "RDT"},
276         {E1000_RXDCTL(0), "RXDCTL"},
277         {E1000_RDBAL(0), "RDBAL"},
278         {E1000_RDBAH(0), "RDBAH"},
279
280         /* TX Registers */
281         {E1000_TCTL, "TCTL"},
282         {E1000_TDBAL(0), "TDBAL"},
283         {E1000_TDBAH(0), "TDBAH"},
284         {E1000_TDLEN(0), "TDLEN"},
285         {E1000_TDH(0), "TDH"},
286         {E1000_TDT(0), "TDT"},
287         {E1000_TXDCTL(0), "TXDCTL"},
288         {E1000_TDFH, "TDFH"},
289         {E1000_TDFT, "TDFT"},
290         {E1000_TDFHS, "TDFHS"},
291         {E1000_TDFPC, "TDFPC"},
292
293         /* List Terminator */
294         {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300         int n = 0;
301         char rname[16];
302         u32 regs[8];
303
304         switch (reginfo->ofs) {
305         case E1000_RDLEN(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RDLEN(n));
308                 break;
309         case E1000_RDH(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDH(n));
312                 break;
313         case E1000_RDT(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDT(n));
316                 break;
317         case E1000_RXDCTL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RXDCTL(n));
320                 break;
321         case E1000_RDBAL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDBAL(n));
324                 break;
325         case E1000_RDBAH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAH(n));
328                 break;
329         case E1000_TDBAL(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAL(n));
332                 break;
333         case E1000_TDBAH(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDBAH(n));
336                 break;
337         case E1000_TDLEN(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDLEN(n));
340                 break;
341         case E1000_TDH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDH(n));
344                 break;
345         case E1000_TDT(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDT(n));
348                 break;
349         case E1000_TXDCTL(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TXDCTL(n));
352                 break;
353         default:
354                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355                 return;
356         }
357
358         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360                 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         struct e1000_hw *hw = &adapter->hw;
368         struct igb_reg_info *reginfo;
369         struct igb_ring *tx_ring;
370         union e1000_adv_tx_desc *tx_desc;
371         struct my_u0 { u64 a; u64 b; } *u0;
372         struct igb_ring *rx_ring;
373         union e1000_adv_rx_desc *rx_desc;
374         u32 staterr;
375         u16 i, n;
376
377         if (!netif_msg_hw(adapter))
378                 return;
379
380         /* Print netdevice Info */
381         if (netdev) {
382                 dev_info(&adapter->pdev->dev, "Net device Info\n");
383                 pr_info("Device Name     state            trans_start      last_rx\n");
384                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385                         netdev->state, netdev->trans_start, netdev->last_rx);
386         }
387
388         /* Print Registers */
389         dev_info(&adapter->pdev->dev, "Register Dump\n");
390         pr_info(" Register Name   Value\n");
391         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392              reginfo->name; reginfo++) {
393                 igb_regdump(hw, reginfo);
394         }
395
396         /* Print TX Ring Summary */
397         if (!netdev || !netif_running(netdev))
398                 goto exit;
399
400         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402         for (n = 0; n < adapter->num_tx_queues; n++) {
403                 struct igb_tx_buffer *buffer_info;
404                 tx_ring = adapter->tx_ring[n];
405                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
408                         (u64)dma_unmap_addr(buffer_info, dma),
409                         dma_unmap_len(buffer_info, len),
410                         buffer_info->next_to_watch,
411                         (u64)buffer_info->time_stamp);
412         }
413
414         /* Print TX Rings */
415         if (!netif_msg_tx_done(adapter))
416                 goto rx_ring_summary;
417
418         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420         /* Transmit Descriptor Formats
421          *
422          * Advanced Transmit Descriptor
423          *   +--------------------------------------------------------------+
424          * 0 |         Buffer Address [63:0]                                |
425          *   +--------------------------------------------------------------+
426          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427          *   +--------------------------------------------------------------+
428          *   63      46 45    40 39 38 36 35 32 31   24             15       0
429          */
430
431         for (n = 0; n < adapter->num_tx_queues; n++) {
432                 tx_ring = adapter->tx_ring[n];
433                 pr_info("------------------------------------\n");
434                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435                 pr_info("------------------------------------\n");
436                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455                                 i, le64_to_cpu(u0->a),
456                                 le64_to_cpu(u0->b),
457                                 (u64)dma_unmap_addr(buffer_info, dma),
458                                 dma_unmap_len(buffer_info, len),
459                                 buffer_info->next_to_watch,
460                                 (u64)buffer_info->time_stamp,
461                                 buffer_info->skb, next_desc);
462
463                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
464                                 print_hex_dump(KERN_INFO, "",
465                                         DUMP_PREFIX_ADDRESS,
466                                         16, 1, buffer_info->skb->data,
467                                         dma_unmap_len(buffer_info, len),
468                                         true);
469                 }
470         }
471
472         /* Print RX Rings Summary */
473 rx_ring_summary:
474         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475         pr_info("Queue [NTU] [NTC]\n");
476         for (n = 0; n < adapter->num_rx_queues; n++) {
477                 rx_ring = adapter->rx_ring[n];
478                 pr_info(" %5d %5X %5X\n",
479                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
480         }
481
482         /* Print RX Rings */
483         if (!netif_msg_rx_status(adapter))
484                 goto exit;
485
486         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488         /* Advanced Receive Descriptor (Read) Format
489          *    63                                           1        0
490          *    +-----------------------------------------------------+
491          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492          *    +----------------------------------------------+------+
493          *  8 |       Header Buffer Address [63:1]           |  DD  |
494          *    +-----------------------------------------------------+
495          *
496          *
497          * Advanced Receive Descriptor (Write-Back) Format
498          *
499          *   63       48 47    32 31  30      21 20 17 16   4 3     0
500          *   +------------------------------------------------------+
501          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502          *   | Checksum   Ident  |   |           |    | Type | Type |
503          *   +------------------------------------------------------+
504          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505          *   +------------------------------------------------------+
506          *   63       48 47    32 31            20 19               0
507          */
508
509         for (n = 0; n < adapter->num_rx_queues; n++) {
510                 rx_ring = adapter->rx_ring[n];
511                 pr_info("------------------------------------\n");
512                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513                 pr_info("------------------------------------\n");
514                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517                 for (i = 0; i < rx_ring->count; i++) {
518                         const char *next_desc;
519                         struct igb_rx_buffer *buffer_info;
520                         buffer_info = &rx_ring->rx_buffer_info[i];
521                         rx_desc = IGB_RX_DESC(rx_ring, i);
522                         u0 = (struct my_u0 *)rx_desc;
523                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525                         if (i == rx_ring->next_to_use)
526                                 next_desc = " NTU";
527                         else if (i == rx_ring->next_to_clean)
528                                 next_desc = " NTC";
529                         else
530                                 next_desc = "";
531
532                         if (staterr & E1000_RXD_STAT_DD) {
533                                 /* Descriptor Done */
534                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535                                         "RWB", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         next_desc);
539                         } else {
540                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541                                         "R  ", i,
542                                         le64_to_cpu(u0->a),
543                                         le64_to_cpu(u0->b),
544                                         (u64)buffer_info->dma,
545                                         next_desc);
546
547                                 if (netif_msg_pktdata(adapter) &&
548                                     buffer_info->dma && buffer_info->page) {
549                                         print_hex_dump(KERN_INFO, "",
550                                           DUMP_PREFIX_ADDRESS,
551                                           16, 1,
552                                           page_address(buffer_info->page) +
553                                                       buffer_info->page_offset,
554                                           IGB_RX_BUFSZ, true);
555                                 }
556                         }
557                 }
558         }
559
560 exit:
561         return;
562 }
563
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573         struct igb_adapter *adapter = (struct igb_adapter *)data;
574         struct e1000_hw *hw = &adapter->hw;
575         s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577         return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589         struct igb_adapter *adapter = (struct igb_adapter *)data;
590         struct e1000_hw *hw = &adapter->hw;
591         s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593         if (state)
594                 i2cctl |= E1000_I2C_DATA_OUT;
595         else
596                 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598         i2cctl &= ~E1000_I2C_DATA_OE_N;
599         i2cctl |= E1000_I2C_CLK_OE_N;
600         wr32(E1000_I2CPARAMS, i2cctl);
601         wrfl();
602
603 }
604
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614         struct igb_adapter *adapter = (struct igb_adapter *)data;
615         struct e1000_hw *hw = &adapter->hw;
616         s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618         if (state) {
619                 i2cctl |= E1000_I2C_CLK_OUT;
620                 i2cctl &= ~E1000_I2C_CLK_OE_N;
621         } else {
622                 i2cctl &= ~E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         }
625         wr32(E1000_I2CPARAMS, i2cctl);
626         wrfl();
627 }
628
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637         struct igb_adapter *adapter = (struct igb_adapter *)data;
638         struct e1000_hw *hw = &adapter->hw;
639         s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641         return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645         .setsda         = igb_set_i2c_data,
646         .setscl         = igb_set_i2c_clk,
647         .getsda         = igb_get_i2c_data,
648         .getscl         = igb_get_i2c_clk,
649         .udelay         = 5,
650         .timeout        = 20,
651 };
652
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661         struct igb_adapter *adapter = hw->back;
662         return adapter->netdev;
663 }
664
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673         int ret;
674
675         pr_info("%s - version %s\n",
676                igb_driver_string, igb_driver_version);
677         pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680         dca_register_notify(&dca_notifier);
681 #endif
682         ret = pci_register_driver(&igb_driver);
683         return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697         dca_unregister_notify(&dca_notifier);
698 #endif
699         pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714         int i = 0, j = 0;
715         u32 rbase_offset = adapter->vfs_allocated_count;
716
717         switch (adapter->hw.mac.type) {
718         case e1000_82576:
719                 /* The queues are allocated for virtualization such that VF 0
720                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721                  * In order to avoid collision we start at the first free queue
722                  * and continue consuming queues in the same sequence
723                  */
724                 if (adapter->vfs_allocated_count) {
725                         for (; i < adapter->rss_queues; i++)
726                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
727                                                                Q_IDX_82576(i);
728                 }
729                 /* Fall through */
730         case e1000_82575:
731         case e1000_82580:
732         case e1000_i350:
733         case e1000_i354:
734         case e1000_i210:
735         case e1000_i211:
736                 /* Fall through */
737         default:
738                 for (; i < adapter->num_rx_queues; i++)
739                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740                 for (; j < adapter->num_tx_queues; j++)
741                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742                 break;
743         }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750         u32 value = 0;
751
752         if (E1000_REMOVED(hw_addr))
753                 return ~value;
754
755         value = readl(&hw_addr[reg]);
756
757         /* reads should not return all F's */
758         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759                 struct net_device *netdev = igb->netdev;
760                 hw->hw_addr = NULL;
761                 netif_device_detach(netdev);
762                 netdev_err(netdev, "PCIe link lost, device now detached\n");
763         }
764
765         return value;
766 }
767
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781                            int index, int offset)
782 {
783         u32 ivar = array_rd32(E1000_IVAR0, index);
784
785         /* clear any bits that are currently set */
786         ivar &= ~((u32)0xFF << offset);
787
788         /* write vector and valid bit */
789         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791         array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797         struct igb_adapter *adapter = q_vector->adapter;
798         struct e1000_hw *hw = &adapter->hw;
799         int rx_queue = IGB_N0_QUEUE;
800         int tx_queue = IGB_N0_QUEUE;
801         u32 msixbm = 0;
802
803         if (q_vector->rx.ring)
804                 rx_queue = q_vector->rx.ring->reg_idx;
805         if (q_vector->tx.ring)
806                 tx_queue = q_vector->tx.ring->reg_idx;
807
808         switch (hw->mac.type) {
809         case e1000_82575:
810                 /* The 82575 assigns vectors using a bitmask, which matches the
811                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812                  * or more queues to a vector, we write the appropriate bits
813                  * into the MSIXBM register for that vector.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817                 if (tx_queue > IGB_N0_QUEUE)
818                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820                         msixbm |= E1000_EIMS_OTHER;
821                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822                 q_vector->eims_value = msixbm;
823                 break;
824         case e1000_82576:
825                 /* 82576 uses a table that essentially consists of 2 columns
826                  * with 8 rows.  The ordering is column-major so we use the
827                  * lower 3 bits as the row index, and the 4th bit as the
828                  * column offset.
829                  */
830                 if (rx_queue > IGB_N0_QUEUE)
831                         igb_write_ivar(hw, msix_vector,
832                                        rx_queue & 0x7,
833                                        (rx_queue & 0x8) << 1);
834                 if (tx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        tx_queue & 0x7,
837                                        ((tx_queue & 0x8) << 1) + 8);
838                 q_vector->eims_value = 1 << msix_vector;
839                 break;
840         case e1000_82580:
841         case e1000_i350:
842         case e1000_i354:
843         case e1000_i210:
844         case e1000_i211:
845                 /* On 82580 and newer adapters the scheme is similar to 82576
846                  * however instead of ordering column-major we have things
847                  * ordered row-major.  So we traverse the table by using
848                  * bit 0 as the column offset, and the remaining bits as the
849                  * row index.
850                  */
851                 if (rx_queue > IGB_N0_QUEUE)
852                         igb_write_ivar(hw, msix_vector,
853                                        rx_queue >> 1,
854                                        (rx_queue & 0x1) << 4);
855                 if (tx_queue > IGB_N0_QUEUE)
856                         igb_write_ivar(hw, msix_vector,
857                                        tx_queue >> 1,
858                                        ((tx_queue & 0x1) << 4) + 8);
859                 q_vector->eims_value = 1 << msix_vector;
860                 break;
861         default:
862                 BUG();
863                 break;
864         }
865
866         /* add q_vector eims value to global eims_enable_mask */
867         adapter->eims_enable_mask |= q_vector->eims_value;
868
869         /* configure q_vector to set itr on first interrupt */
870         q_vector->set_itr = 1;
871 }
872
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882         u32 tmp;
883         int i, vector = 0;
884         struct e1000_hw *hw = &adapter->hw;
885
886         adapter->eims_enable_mask = 0;
887
888         /* set vector for other causes, i.e. link changes */
889         switch (hw->mac.type) {
890         case e1000_82575:
891                 tmp = rd32(E1000_CTRL_EXT);
892                 /* enable MSI-X PBA support*/
893                 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895                 /* Auto-Mask interrupts upon ICR read. */
896                 tmp |= E1000_CTRL_EXT_EIAME;
897                 tmp |= E1000_CTRL_EXT_IRCA;
898
899                 wr32(E1000_CTRL_EXT, tmp);
900
901                 /* enable msix_other interrupt */
902                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903                 adapter->eims_other = E1000_EIMS_OTHER;
904
905                 break;
906
907         case e1000_82576:
908         case e1000_82580:
909         case e1000_i350:
910         case e1000_i354:
911         case e1000_i210:
912         case e1000_i211:
913                 /* Turn on MSI-X capability first, or our settings
914                  * won't stick.  And it will take days to debug.
915                  */
916                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
918                      E1000_GPIE_NSICR);
919
920                 /* enable msix_other interrupt */
921                 adapter->eims_other = 1 << vector;
922                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924                 wr32(E1000_IVAR_MISC, tmp);
925                 break;
926         default:
927                 /* do nothing, since nothing else supports MSI-X */
928                 break;
929         } /* switch (hw->mac.type) */
930
931         adapter->eims_enable_mask |= adapter->eims_other;
932
933         for (i = 0; i < adapter->num_q_vectors; i++)
934                 igb_assign_vector(adapter->q_vector[i], vector++);
935
936         wrfl();
937 }
938
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948         struct net_device *netdev = adapter->netdev;
949         struct e1000_hw *hw = &adapter->hw;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector) {
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         } else if (size > ksize(q_vector)) {
1213                 kfree_rcu(q_vector, rcu);
1214                 q_vector = kzalloc(size, GFP_KERNEL);
1215         } else {
1216                 memset(q_vector, 0, size);
1217         }
1218         if (!q_vector)
1219                 return -ENOMEM;
1220
1221         /* initialize NAPI */
1222         netif_napi_add(adapter->netdev, &q_vector->napi,
1223                        igb_poll, 64);
1224
1225         /* tie q_vector and adapter together */
1226         adapter->q_vector[v_idx] = q_vector;
1227         q_vector->adapter = adapter;
1228
1229         /* initialize work limits */
1230         q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232         /* initialize ITR configuration */
1233         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1234         q_vector->itr_val = IGB_START_ITR;
1235
1236         /* initialize pointer to rings */
1237         ring = q_vector->ring;
1238
1239         /* intialize ITR */
1240         if (rxr_count) {
1241                 /* rx or rx/tx vector */
1242                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->rx_itr_setting;
1244         } else {
1245                 /* tx only vector */
1246                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                         q_vector->itr_val = adapter->tx_itr_setting;
1248         }
1249
1250         if (txr_count) {
1251                 /* assign generic ring traits */
1252                 ring->dev = &adapter->pdev->dev;
1253                 ring->netdev = adapter->netdev;
1254
1255                 /* configure backlink on ring */
1256                 ring->q_vector = q_vector;
1257
1258                 /* update q_vector Tx values */
1259                 igb_add_ring(ring, &q_vector->tx);
1260
1261                 /* For 82575, context index must be unique per ring. */
1262                 if (adapter->hw.mac.type == e1000_82575)
1263                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                 /* apply Tx specific ring traits */
1266                 ring->count = adapter->tx_ring_count;
1267                 ring->queue_index = txr_idx;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 vid = adapter->hw.mng_cookie.vlan_id;
1539         u16 old_vid = adapter->mng_vlan_id;
1540
1541         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542                 /* add VID to filter table */
1543                 igb_vfta_set(hw, vid, true);
1544                 adapter->mng_vlan_id = vid;
1545         } else {
1546                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547         }
1548
1549         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550             (vid != old_vid) &&
1551             !test_bit(old_vid, adapter->active_vlans)) {
1552                 /* remove VID from filter table */
1553                 igb_vfta_set(hw, old_vid, false);
1554         }
1555 }
1556
1557 /**
1558  *  igb_release_hw_control - release control of the h/w to f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that the
1563  *  driver is no longer loaded.
1564  **/
1565 static void igb_release_hw_control(struct igb_adapter *adapter)
1566 {
1567         struct e1000_hw *hw = &adapter->hw;
1568         u32 ctrl_ext;
1569
1570         /* Let firmware take over control of h/w */
1571         ctrl_ext = rd32(E1000_CTRL_EXT);
1572         wr32(E1000_CTRL_EXT,
1573                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575
1576 /**
1577  *  igb_get_hw_control - get control of the h/w from f/w
1578  *  @adapter: address of board private structure
1579  *
1580  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581  *  For ASF and Pass Through versions of f/w this means that
1582  *  the driver is loaded.
1583  **/
1584 static void igb_get_hw_control(struct igb_adapter *adapter)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587         u32 ctrl_ext;
1588
1589         /* Let firmware know the driver has taken over */
1590         ctrl_ext = rd32(E1000_CTRL_EXT);
1591         wr32(E1000_CTRL_EXT,
1592                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593 }
1594
1595 /**
1596  *  igb_configure - configure the hardware for RX and TX
1597  *  @adapter: private board structure
1598  **/
1599 static void igb_configure(struct igb_adapter *adapter)
1600 {
1601         struct net_device *netdev = adapter->netdev;
1602         int i;
1603
1604         igb_get_hw_control(adapter);
1605         igb_set_rx_mode(netdev);
1606
1607         igb_restore_vlan(adapter);
1608
1609         igb_setup_tctl(adapter);
1610         igb_setup_mrqc(adapter);
1611         igb_setup_rctl(adapter);
1612
1613         igb_configure_tx(adapter);
1614         igb_configure_rx(adapter);
1615
1616         igb_rx_fifo_flush_82575(&adapter->hw);
1617
1618         /* call igb_desc_unused which always leaves
1619          * at least 1 descriptor unused to make sure
1620          * next_to_use != next_to_clean
1621          */
1622         for (i = 0; i < adapter->num_rx_queues; i++) {
1623                 struct igb_ring *ring = adapter->rx_ring[i];
1624                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625         }
1626 }
1627
1628 /**
1629  *  igb_power_up_link - Power up the phy/serdes link
1630  *  @adapter: address of board private structure
1631  **/
1632 void igb_power_up_link(struct igb_adapter *adapter)
1633 {
1634         igb_reset_phy(&adapter->hw);
1635
1636         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637                 igb_power_up_phy_copper(&adapter->hw);
1638         else
1639                 igb_power_up_serdes_link_82575(&adapter->hw);
1640
1641         igb_setup_link(&adapter->hw);
1642 }
1643
1644 /**
1645  *  igb_power_down_link - Power down the phy/serdes link
1646  *  @adapter: address of board private structure
1647  */
1648 static void igb_power_down_link(struct igb_adapter *adapter)
1649 {
1650         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651                 igb_power_down_phy_copper_82575(&adapter->hw);
1652         else
1653                 igb_shutdown_serdes_link_82575(&adapter->hw);
1654 }
1655
1656 /**
1657  * Detect and switch function for Media Auto Sense
1658  * @adapter: address of the board private structure
1659  **/
1660 static void igb_check_swap_media(struct igb_adapter *adapter)
1661 {
1662         struct e1000_hw *hw = &adapter->hw;
1663         u32 ctrl_ext, connsw;
1664         bool swap_now = false;
1665
1666         ctrl_ext = rd32(E1000_CTRL_EXT);
1667         connsw = rd32(E1000_CONNSW);
1668
1669         /* need to live swap if current media is copper and we have fiber/serdes
1670          * to go to.
1671          */
1672
1673         if ((hw->phy.media_type == e1000_media_type_copper) &&
1674             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675                 swap_now = true;
1676         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677                 /* copper signal takes time to appear */
1678                 if (adapter->copper_tries < 4) {
1679                         adapter->copper_tries++;
1680                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681                         wr32(E1000_CONNSW, connsw);
1682                         return;
1683                 } else {
1684                         adapter->copper_tries = 0;
1685                         if ((connsw & E1000_CONNSW_PHYSD) &&
1686                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687                                 swap_now = true;
1688                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689                                 wr32(E1000_CONNSW, connsw);
1690                         }
1691                 }
1692         }
1693
1694         if (!swap_now)
1695                 return;
1696
1697         switch (hw->phy.media_type) {
1698         case e1000_media_type_copper:
1699                 netdev_info(adapter->netdev,
1700                         "MAS: changing media to fiber/serdes\n");
1701                 ctrl_ext |=
1702                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704                 adapter->copper_tries = 0;
1705                 break;
1706         case e1000_media_type_internal_serdes:
1707         case e1000_media_type_fiber:
1708                 netdev_info(adapter->netdev,
1709                         "MAS: changing media to copper\n");
1710                 ctrl_ext &=
1711                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713                 break;
1714         default:
1715                 /* shouldn't get here during regular operation */
1716                 netdev_err(adapter->netdev,
1717                         "AMS: Invalid media type found, returning\n");
1718                 break;
1719         }
1720         wr32(E1000_CTRL_EXT, ctrl_ext);
1721 }
1722
1723 /**
1724  *  igb_up - Open the interface and prepare it to handle traffic
1725  *  @adapter: board private structure
1726  **/
1727 int igb_up(struct igb_adapter *adapter)
1728 {
1729         struct e1000_hw *hw = &adapter->hw;
1730         int i;
1731
1732         /* hardware has been reset, we need to reload some things */
1733         igb_configure(adapter);
1734
1735         clear_bit(__IGB_DOWN, &adapter->state);
1736
1737         for (i = 0; i < adapter->num_q_vectors; i++)
1738                 napi_enable(&(adapter->q_vector[i]->napi));
1739
1740         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741                 igb_configure_msix(adapter);
1742         else
1743                 igb_assign_vector(adapter->q_vector[0], 0);
1744
1745         /* Clear any pending interrupts. */
1746         rd32(E1000_ICR);
1747         igb_irq_enable(adapter);
1748
1749         /* notify VFs that reset has been completed */
1750         if (adapter->vfs_allocated_count) {
1751                 u32 reg_data = rd32(E1000_CTRL_EXT);
1752
1753                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1754                 wr32(E1000_CTRL_EXT, reg_data);
1755         }
1756
1757         netif_tx_start_all_queues(adapter->netdev);
1758
1759         /* start the watchdog. */
1760         hw->mac.get_link_status = 1;
1761         schedule_work(&adapter->watchdog_task);
1762
1763         if ((adapter->flags & IGB_FLAG_EEE) &&
1764             (!hw->dev_spec._82575.eee_disable))
1765                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
1767         return 0;
1768 }
1769
1770 void igb_down(struct igb_adapter *adapter)
1771 {
1772         struct net_device *netdev = adapter->netdev;
1773         struct e1000_hw *hw = &adapter->hw;
1774         u32 tctl, rctl;
1775         int i;
1776
1777         /* signal that we're down so the interrupt handler does not
1778          * reschedule our watchdog timer
1779          */
1780         set_bit(__IGB_DOWN, &adapter->state);
1781
1782         /* disable receives in the hardware */
1783         rctl = rd32(E1000_RCTL);
1784         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785         /* flush and sleep below */
1786
1787         netif_carrier_off(netdev);
1788         netif_tx_stop_all_queues(netdev);
1789
1790         /* disable transmits in the hardware */
1791         tctl = rd32(E1000_TCTL);
1792         tctl &= ~E1000_TCTL_EN;
1793         wr32(E1000_TCTL, tctl);
1794         /* flush both disables and wait for them to finish */
1795         wrfl();
1796         usleep_range(10000, 11000);
1797
1798         igb_irq_disable(adapter);
1799
1800         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
1802         for (i = 0; i < adapter->num_q_vectors; i++) {
1803                 if (adapter->q_vector[i]) {
1804                         napi_synchronize(&adapter->q_vector[i]->napi);
1805                         napi_disable(&adapter->q_vector[i]->napi);
1806                 }
1807         }
1808
1809         del_timer_sync(&adapter->watchdog_timer);
1810         del_timer_sync(&adapter->phy_info_timer);
1811
1812         /* record the stats before reset*/
1813         spin_lock(&adapter->stats64_lock);
1814         igb_update_stats(adapter, &adapter->stats64);
1815         spin_unlock(&adapter->stats64_lock);
1816
1817         adapter->link_speed = 0;
1818         adapter->link_duplex = 0;
1819
1820         if (!pci_channel_offline(adapter->pdev))
1821                 igb_reset(adapter);
1822         igb_clean_all_tx_rings(adapter);
1823         igb_clean_all_rx_rings(adapter);
1824 #ifdef CONFIG_IGB_DCA
1825
1826         /* since we reset the hardware DCA settings were cleared */
1827         igb_setup_dca(adapter);
1828 #endif
1829 }
1830
1831 void igb_reinit_locked(struct igb_adapter *adapter)
1832 {
1833         WARN_ON(in_interrupt());
1834         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1835                 usleep_range(1000, 2000);
1836         igb_down(adapter);
1837         igb_up(adapter);
1838         clear_bit(__IGB_RESETTING, &adapter->state);
1839 }
1840
1841 /** igb_enable_mas - Media Autosense re-enable after swap
1842  *
1843  * @adapter: adapter struct
1844  **/
1845 static void igb_enable_mas(struct igb_adapter *adapter)
1846 {
1847         struct e1000_hw *hw = &adapter->hw;
1848         u32 connsw = rd32(E1000_CONNSW);
1849
1850         /* configure for SerDes media detect */
1851         if ((hw->phy.media_type == e1000_media_type_copper) &&
1852             (!(connsw & E1000_CONNSW_SERDESD))) {
1853                 connsw |= E1000_CONNSW_ENRGSRC;
1854                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855                 wr32(E1000_CONNSW, connsw);
1856                 wrfl();
1857         }
1858 }
1859
1860 void igb_reset(struct igb_adapter *adapter)
1861 {
1862         struct pci_dev *pdev = adapter->pdev;
1863         struct e1000_hw *hw = &adapter->hw;
1864         struct e1000_mac_info *mac = &hw->mac;
1865         struct e1000_fc_info *fc = &hw->fc;
1866         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1867
1868         /* Repartition Pba for greater than 9k mtu
1869          * To take effect CTRL.RST is required.
1870          */
1871         switch (mac->type) {
1872         case e1000_i350:
1873         case e1000_i354:
1874         case e1000_82580:
1875                 pba = rd32(E1000_RXPBS);
1876                 pba = igb_rxpbs_adjust_82580(pba);
1877                 break;
1878         case e1000_82576:
1879                 pba = rd32(E1000_RXPBS);
1880                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1881                 break;
1882         case e1000_82575:
1883         case e1000_i210:
1884         case e1000_i211:
1885         default:
1886                 pba = E1000_PBA_34K;
1887                 break;
1888         }
1889
1890         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1891             (mac->type < e1000_82576)) {
1892                 /* adjust PBA for jumbo frames */
1893                 wr32(E1000_PBA, pba);
1894
1895                 /* To maintain wire speed transmits, the Tx FIFO should be
1896                  * large enough to accommodate two full transmit packets,
1897                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1898                  * the Rx FIFO should be large enough to accommodate at least
1899                  * one full receive packet and is similarly rounded up and
1900                  * expressed in KB.
1901                  */
1902                 pba = rd32(E1000_PBA);
1903                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1904                 tx_space = pba >> 16;
1905                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1906                 pba &= 0xffff;
1907                 /* the Tx fifo also stores 16 bytes of information about the Tx
1908                  * but don't include ethernet FCS because hardware appends it
1909                  */
1910                 min_tx_space = (adapter->max_frame_size +
1911                                 sizeof(union e1000_adv_tx_desc) -
1912                                 ETH_FCS_LEN) * 2;
1913                 min_tx_space = ALIGN(min_tx_space, 1024);
1914                 min_tx_space >>= 10;
1915                 /* software strips receive CRC, so leave room for it */
1916                 min_rx_space = adapter->max_frame_size;
1917                 min_rx_space = ALIGN(min_rx_space, 1024);
1918                 min_rx_space >>= 10;
1919
1920                 /* If current Tx allocation is less than the min Tx FIFO size,
1921                  * and the min Tx FIFO size is less than the current Rx FIFO
1922                  * allocation, take space away from current Rx allocation
1923                  */
1924                 if (tx_space < min_tx_space &&
1925                     ((min_tx_space - tx_space) < pba)) {
1926                         pba = pba - (min_tx_space - tx_space);
1927
1928                         /* if short on Rx space, Rx wins and must trump Tx
1929                          * adjustment
1930                          */
1931                         if (pba < min_rx_space)
1932                                 pba = min_rx_space;
1933                 }
1934                 wr32(E1000_PBA, pba);
1935         }
1936
1937         /* flow control settings */
1938         /* The high water mark must be low enough to fit one full frame
1939          * (or the size used for early receive) above it in the Rx FIFO.
1940          * Set it to the lower of:
1941          * - 90% of the Rx FIFO size, or
1942          * - the full Rx FIFO size minus one full frame
1943          */
1944         hwm = min(((pba << 10) * 9 / 10),
1945                         ((pba << 10) - 2 * adapter->max_frame_size));
1946
1947         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1948         fc->low_water = fc->high_water - 16;
1949         fc->pause_time = 0xFFFF;
1950         fc->send_xon = 1;
1951         fc->current_mode = fc->requested_mode;
1952
1953         /* disable receive for all VFs and wait one second */
1954         if (adapter->vfs_allocated_count) {
1955                 int i;
1956
1957                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1958                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1959
1960                 /* ping all the active vfs to let them know we are going down */
1961                 igb_ping_all_vfs(adapter);
1962
1963                 /* disable transmits and receives */
1964                 wr32(E1000_VFRE, 0);
1965                 wr32(E1000_VFTE, 0);
1966         }
1967
1968         /* Allow time for pending master requests to run */
1969         hw->mac.ops.reset_hw(hw);
1970         wr32(E1000_WUC, 0);
1971
1972         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1973                 /* need to resetup here after media swap */
1974                 adapter->ei.get_invariants(hw);
1975                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1976         }
1977         if ((mac->type == e1000_82575) &&
1978             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1979                 igb_enable_mas(adapter);
1980         }
1981         if (hw->mac.ops.init_hw(hw))
1982                 dev_err(&pdev->dev, "Hardware Error\n");
1983
1984         /* Flow control settings reset on hardware reset, so guarantee flow
1985          * control is off when forcing speed.
1986          */
1987         if (!hw->mac.autoneg)
1988                 igb_force_mac_fc(hw);
1989
1990         igb_init_dmac(adapter, pba);
1991 #ifdef CONFIG_IGB_HWMON
1992         /* Re-initialize the thermal sensor on i350 devices. */
1993         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1994                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1995                         /* If present, re-initialize the external thermal sensor
1996                          * interface.
1997                          */
1998                         if (adapter->ets)
1999                                 mac->ops.init_thermal_sensor_thresh(hw);
2000                 }
2001         }
2002 #endif
2003         /* Re-establish EEE setting */
2004         if (hw->phy.media_type == e1000_media_type_copper) {
2005                 switch (mac->type) {
2006                 case e1000_i350:
2007                 case e1000_i210:
2008                 case e1000_i211:
2009                         igb_set_eee_i350(hw, true, true);
2010                         break;
2011                 case e1000_i354:
2012                         igb_set_eee_i354(hw, true, true);
2013                         break;
2014                 default:
2015                         break;
2016                 }
2017         }
2018         if (!netif_running(adapter->netdev))
2019                 igb_power_down_link(adapter);
2020
2021         igb_update_mng_vlan(adapter);
2022
2023         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2024         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2025
2026         /* Re-enable PTP, where applicable. */
2027         igb_ptp_reset(adapter);
2028
2029         igb_get_phy_info(hw);
2030 }
2031
2032 static netdev_features_t igb_fix_features(struct net_device *netdev,
2033         netdev_features_t features)
2034 {
2035         /* Since there is no support for separate Rx/Tx vlan accel
2036          * enable/disable make sure Tx flag is always in same state as Rx.
2037          */
2038         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2039                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2040         else
2041                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2042
2043         return features;
2044 }
2045
2046 static int igb_set_features(struct net_device *netdev,
2047         netdev_features_t features)
2048 {
2049         netdev_features_t changed = netdev->features ^ features;
2050         struct igb_adapter *adapter = netdev_priv(netdev);
2051
2052         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2053                 igb_vlan_mode(netdev, features);
2054
2055         if (!(changed & NETIF_F_RXALL))
2056                 return 0;
2057
2058         netdev->features = features;
2059
2060         if (netif_running(netdev))
2061                 igb_reinit_locked(adapter);
2062         else
2063                 igb_reset(adapter);
2064
2065         return 0;
2066 }
2067
2068 static const struct net_device_ops igb_netdev_ops = {
2069         .ndo_open               = igb_open,
2070         .ndo_stop               = igb_close,
2071         .ndo_start_xmit         = igb_xmit_frame,
2072         .ndo_get_stats64        = igb_get_stats64,
2073         .ndo_set_rx_mode        = igb_set_rx_mode,
2074         .ndo_set_mac_address    = igb_set_mac,
2075         .ndo_change_mtu         = igb_change_mtu,
2076         .ndo_do_ioctl           = igb_ioctl,
2077         .ndo_tx_timeout         = igb_tx_timeout,
2078         .ndo_validate_addr      = eth_validate_addr,
2079         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2080         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2081         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2082         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2083         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2084         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2085         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2086 #ifdef CONFIG_NET_POLL_CONTROLLER
2087         .ndo_poll_controller    = igb_netpoll,
2088 #endif
2089         .ndo_fix_features       = igb_fix_features,
2090         .ndo_set_features       = igb_set_features,
2091         .ndo_features_check     = passthru_features_check,
2092 };
2093
2094 /**
2095  * igb_set_fw_version - Configure version string for ethtool
2096  * @adapter: adapter struct
2097  **/
2098 void igb_set_fw_version(struct igb_adapter *adapter)
2099 {
2100         struct e1000_hw *hw = &adapter->hw;
2101         struct e1000_fw_version fw;
2102
2103         igb_get_fw_version(hw, &fw);
2104
2105         switch (hw->mac.type) {
2106         case e1000_i210:
2107         case e1000_i211:
2108                 if (!(igb_get_flash_presence_i210(hw))) {
2109                         snprintf(adapter->fw_version,
2110                                  sizeof(adapter->fw_version),
2111                                  "%2d.%2d-%d",
2112                                  fw.invm_major, fw.invm_minor,
2113                                  fw.invm_img_type);
2114                         break;
2115                 }
2116                 /* fall through */
2117         default:
2118                 /* if option is rom valid, display its version too */
2119                 if (fw.or_valid) {
2120                         snprintf(adapter->fw_version,
2121                                  sizeof(adapter->fw_version),
2122                                  "%d.%d, 0x%08x, %d.%d.%d",
2123                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2124                                  fw.or_major, fw.or_build, fw.or_patch);
2125                 /* no option rom */
2126                 } else if (fw.etrack_id != 0X0000) {
2127                         snprintf(adapter->fw_version,
2128                             sizeof(adapter->fw_version),
2129                             "%d.%d, 0x%08x",
2130                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2131                 } else {
2132                 snprintf(adapter->fw_version,
2133                     sizeof(adapter->fw_version),
2134                     "%d.%d.%d",
2135                     fw.eep_major, fw.eep_minor, fw.eep_build);
2136                 }
2137                 break;
2138         }
2139 }
2140
2141 /**
2142  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2143  *
2144  * @adapter: adapter struct
2145  **/
2146 static void igb_init_mas(struct igb_adapter *adapter)
2147 {
2148         struct e1000_hw *hw = &adapter->hw;
2149         u16 eeprom_data;
2150
2151         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2152         switch (hw->bus.func) {
2153         case E1000_FUNC_0:
2154                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2155                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2156                         netdev_info(adapter->netdev,
2157                                 "MAS: Enabling Media Autosense for port %d\n",
2158                                 hw->bus.func);
2159                 }
2160                 break;
2161         case E1000_FUNC_1:
2162                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2163                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164                         netdev_info(adapter->netdev,
2165                                 "MAS: Enabling Media Autosense for port %d\n",
2166                                 hw->bus.func);
2167                 }
2168                 break;
2169         case E1000_FUNC_2:
2170                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2171                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172                         netdev_info(adapter->netdev,
2173                                 "MAS: Enabling Media Autosense for port %d\n",
2174                                 hw->bus.func);
2175                 }
2176                 break;
2177         case E1000_FUNC_3:
2178                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2179                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180                         netdev_info(adapter->netdev,
2181                                 "MAS: Enabling Media Autosense for port %d\n",
2182                                 hw->bus.func);
2183                 }
2184                 break;
2185         default:
2186                 /* Shouldn't get here */
2187                 netdev_err(adapter->netdev,
2188                         "MAS: Invalid port configuration, returning\n");
2189                 break;
2190         }
2191 }
2192
2193 /**
2194  *  igb_init_i2c - Init I2C interface
2195  *  @adapter: pointer to adapter structure
2196  **/
2197 static s32 igb_init_i2c(struct igb_adapter *adapter)
2198 {
2199         s32 status = 0;
2200
2201         /* I2C interface supported on i350 devices */
2202         if (adapter->hw.mac.type != e1000_i350)
2203                 return 0;
2204
2205         /* Initialize the i2c bus which is controlled by the registers.
2206          * This bus will use the i2c_algo_bit structue that implements
2207          * the protocol through toggling of the 4 bits in the register.
2208          */
2209         adapter->i2c_adap.owner = THIS_MODULE;
2210         adapter->i2c_algo = igb_i2c_algo;
2211         adapter->i2c_algo.data = adapter;
2212         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2213         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2214         strlcpy(adapter->i2c_adap.name, "igb BB",
2215                 sizeof(adapter->i2c_adap.name));
2216         status = i2c_bit_add_bus(&adapter->i2c_adap);
2217         return status;
2218 }
2219
2220 /**
2221  *  igb_probe - Device Initialization Routine
2222  *  @pdev: PCI device information struct
2223  *  @ent: entry in igb_pci_tbl
2224  *
2225  *  Returns 0 on success, negative on failure
2226  *
2227  *  igb_probe initializes an adapter identified by a pci_dev structure.
2228  *  The OS initialization, configuring of the adapter private structure,
2229  *  and a hardware reset occur.
2230  **/
2231 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2232 {
2233         struct net_device *netdev;
2234         struct igb_adapter *adapter;
2235         struct e1000_hw *hw;
2236         u16 eeprom_data = 0;
2237         s32 ret_val;
2238         static int global_quad_port_a; /* global quad port a indication */
2239         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2240         int err, pci_using_dac;
2241         u8 part_str[E1000_PBANUM_LENGTH];
2242
2243         /* Catch broken hardware that put the wrong VF device ID in
2244          * the PCIe SR-IOV capability.
2245          */
2246         if (pdev->is_virtfn) {
2247                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2248                         pci_name(pdev), pdev->vendor, pdev->device);
2249                 return -EINVAL;
2250         }
2251
2252         err = pci_enable_device_mem(pdev);
2253         if (err)
2254                 return err;
2255
2256         pci_using_dac = 0;
2257         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2258         if (!err) {
2259                 pci_using_dac = 1;
2260         } else {
2261                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2262                 if (err) {
2263                         dev_err(&pdev->dev,
2264                                 "No usable DMA configuration, aborting\n");
2265                         goto err_dma;
2266                 }
2267         }
2268
2269         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2270                                            IORESOURCE_MEM),
2271                                            igb_driver_name);
2272         if (err)
2273                 goto err_pci_reg;
2274
2275         pci_enable_pcie_error_reporting(pdev);
2276
2277         pci_set_master(pdev);
2278         pci_save_state(pdev);
2279
2280         err = -ENOMEM;
2281         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2282                                    IGB_MAX_TX_QUEUES);
2283         if (!netdev)
2284                 goto err_alloc_etherdev;
2285
2286         SET_NETDEV_DEV(netdev, &pdev->dev);
2287
2288         pci_set_drvdata(pdev, netdev);
2289         adapter = netdev_priv(netdev);
2290         adapter->netdev = netdev;
2291         adapter->pdev = pdev;
2292         hw = &adapter->hw;
2293         hw->back = adapter;
2294         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2295
2296         err = -EIO;
2297         hw->hw_addr = pci_iomap(pdev, 0, 0);
2298         if (!hw->hw_addr)
2299                 goto err_ioremap;
2300
2301         netdev->netdev_ops = &igb_netdev_ops;
2302         igb_set_ethtool_ops(netdev);
2303         netdev->watchdog_timeo = 5 * HZ;
2304
2305         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2306
2307         netdev->mem_start = pci_resource_start(pdev, 0);
2308         netdev->mem_end = pci_resource_end(pdev, 0);
2309
2310         /* PCI config space info */
2311         hw->vendor_id = pdev->vendor;
2312         hw->device_id = pdev->device;
2313         hw->revision_id = pdev->revision;
2314         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2315         hw->subsystem_device_id = pdev->subsystem_device;
2316
2317         /* Copy the default MAC, PHY and NVM function pointers */
2318         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2319         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2320         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2321         /* Initialize skew-specific constants */
2322         err = ei->get_invariants(hw);
2323         if (err)
2324                 goto err_sw_init;
2325
2326         /* setup the private structure */
2327         err = igb_sw_init(adapter);
2328         if (err)
2329                 goto err_sw_init;
2330
2331         igb_get_bus_info_pcie(hw);
2332
2333         hw->phy.autoneg_wait_to_complete = false;
2334
2335         /* Copper options */
2336         if (hw->phy.media_type == e1000_media_type_copper) {
2337                 hw->phy.mdix = AUTO_ALL_MODES;
2338                 hw->phy.disable_polarity_correction = false;
2339                 hw->phy.ms_type = e1000_ms_hw_default;
2340         }
2341
2342         if (igb_check_reset_block(hw))
2343                 dev_info(&pdev->dev,
2344                         "PHY reset is blocked due to SOL/IDER session.\n");
2345
2346         /* features is initialized to 0 in allocation, it might have bits
2347          * set by igb_sw_init so we should use an or instead of an
2348          * assignment.
2349          */
2350         netdev->features |= NETIF_F_SG |
2351                             NETIF_F_IP_CSUM |
2352                             NETIF_F_IPV6_CSUM |
2353                             NETIF_F_TSO |
2354                             NETIF_F_TSO6 |
2355                             NETIF_F_RXHASH |
2356                             NETIF_F_RXCSUM |
2357                             NETIF_F_HW_VLAN_CTAG_RX |
2358                             NETIF_F_HW_VLAN_CTAG_TX;
2359
2360         /* copy netdev features into list of user selectable features */
2361         netdev->hw_features |= netdev->features;
2362         netdev->hw_features |= NETIF_F_RXALL;
2363
2364         /* set this bit last since it cannot be part of hw_features */
2365         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2366
2367         netdev->vlan_features |= NETIF_F_TSO |
2368                                  NETIF_F_TSO6 |
2369                                  NETIF_F_IP_CSUM |
2370                                  NETIF_F_IPV6_CSUM |
2371                                  NETIF_F_SG;
2372
2373         netdev->priv_flags |= IFF_SUPP_NOFCS;
2374
2375         if (pci_using_dac) {
2376                 netdev->features |= NETIF_F_HIGHDMA;
2377                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2378         }
2379
2380         if (hw->mac.type >= e1000_82576) {
2381                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2382                 netdev->features |= NETIF_F_SCTP_CSUM;
2383         }
2384
2385         netdev->priv_flags |= IFF_UNICAST_FLT;
2386
2387         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2388
2389         /* before reading the NVM, reset the controller to put the device in a
2390          * known good starting state
2391          */
2392         hw->mac.ops.reset_hw(hw);
2393
2394         /* make sure the NVM is good , i211/i210 parts can have special NVM
2395          * that doesn't contain a checksum
2396          */
2397         switch (hw->mac.type) {
2398         case e1000_i210:
2399         case e1000_i211:
2400                 if (igb_get_flash_presence_i210(hw)) {
2401                         if (hw->nvm.ops.validate(hw) < 0) {
2402                                 dev_err(&pdev->dev,
2403                                         "The NVM Checksum Is Not Valid\n");
2404                                 err = -EIO;
2405                                 goto err_eeprom;
2406                         }
2407                 }
2408                 break;
2409         default:
2410                 if (hw->nvm.ops.validate(hw) < 0) {
2411                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2412                         err = -EIO;
2413                         goto err_eeprom;
2414                 }
2415                 break;
2416         }
2417
2418         /* copy the MAC address out of the NVM */
2419         if (hw->mac.ops.read_mac_addr(hw))
2420                 dev_err(&pdev->dev, "NVM Read Error\n");
2421
2422         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2423
2424         if (!is_valid_ether_addr(netdev->dev_addr)) {
2425                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2426                 err = -EIO;
2427                 goto err_eeprom;
2428         }
2429
2430         /* get firmware version for ethtool -i */
2431         igb_set_fw_version(adapter);
2432
2433         /* configure RXPBSIZE and TXPBSIZE */
2434         if (hw->mac.type == e1000_i210) {
2435                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2436                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2437         }
2438
2439         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2440                     (unsigned long) adapter);
2441         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2442                     (unsigned long) adapter);
2443
2444         INIT_WORK(&adapter->reset_task, igb_reset_task);
2445         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2446
2447         /* Initialize link properties that are user-changeable */
2448         adapter->fc_autoneg = true;
2449         hw->mac.autoneg = true;
2450         hw->phy.autoneg_advertised = 0x2f;
2451
2452         hw->fc.requested_mode = e1000_fc_default;
2453         hw->fc.current_mode = e1000_fc_default;
2454
2455         igb_validate_mdi_setting(hw);
2456
2457         /* By default, support wake on port A */
2458         if (hw->bus.func == 0)
2459                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2460
2461         /* Check the NVM for wake support on non-port A ports */
2462         if (hw->mac.type >= e1000_82580)
2463                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2464                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2465                                  &eeprom_data);
2466         else if (hw->bus.func == 1)
2467                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2468
2469         if (eeprom_data & IGB_EEPROM_APME)
2470                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472         /* now that we have the eeprom settings, apply the special cases where
2473          * the eeprom may be wrong or the board simply won't support wake on
2474          * lan on a particular port
2475          */
2476         switch (pdev->device) {
2477         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2478                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2479                 break;
2480         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2481         case E1000_DEV_ID_82576_FIBER:
2482         case E1000_DEV_ID_82576_SERDES:
2483                 /* Wake events only supported on port A for dual fiber
2484                  * regardless of eeprom setting
2485                  */
2486                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2487                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488                 break;
2489         case E1000_DEV_ID_82576_QUAD_COPPER:
2490         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2491                 /* if quad port adapter, disable WoL on all but port A */
2492                 if (global_quad_port_a != 0)
2493                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494                 else
2495                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2496                 /* Reset for multiple quad port adapters */
2497                 if (++global_quad_port_a == 4)
2498                         global_quad_port_a = 0;
2499                 break;
2500         default:
2501                 /* If the device can't wake, don't set software support */
2502                 if (!device_can_wakeup(&adapter->pdev->dev))
2503                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2504         }
2505
2506         /* initialize the wol settings based on the eeprom settings */
2507         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2508                 adapter->wol |= E1000_WUFC_MAG;
2509
2510         /* Some vendors want WoL disabled by default, but still supported */
2511         if ((hw->mac.type == e1000_i350) &&
2512             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2513                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2514                 adapter->wol = 0;
2515         }
2516
2517         device_set_wakeup_enable(&adapter->pdev->dev,
2518                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2519
2520         /* reset the hardware with the new settings */
2521         igb_reset(adapter);
2522
2523         /* Init the I2C interface */
2524         err = igb_init_i2c(adapter);
2525         if (err) {
2526                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2527                 goto err_eeprom;
2528         }
2529
2530         /* let the f/w know that the h/w is now under the control of the
2531          * driver.
2532          */
2533         igb_get_hw_control(adapter);
2534
2535         strcpy(netdev->name, "eth%d");
2536         err = register_netdev(netdev);
2537         if (err)
2538                 goto err_register;
2539
2540         /* carrier off reporting is important to ethtool even BEFORE open */
2541         netif_carrier_off(netdev);
2542
2543 #ifdef CONFIG_IGB_DCA
2544         if (dca_add_requester(&pdev->dev) == 0) {
2545                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546                 dev_info(&pdev->dev, "DCA enabled\n");
2547                 igb_setup_dca(adapter);
2548         }
2549
2550 #endif
2551 #ifdef CONFIG_IGB_HWMON
2552         /* Initialize the thermal sensor on i350 devices. */
2553         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554                 u16 ets_word;
2555
2556                 /* Read the NVM to determine if this i350 device supports an
2557                  * external thermal sensor.
2558                  */
2559                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561                         adapter->ets = true;
2562                 else
2563                         adapter->ets = false;
2564                 if (igb_sysfs_init(adapter))
2565                         dev_err(&pdev->dev,
2566                                 "failed to allocate sysfs resources\n");
2567         } else {
2568                 adapter->ets = false;
2569         }
2570 #endif
2571         /* Check if Media Autosense is enabled */
2572         adapter->ei = *ei;
2573         if (hw->dev_spec._82575.mas_capable)
2574                 igb_init_mas(adapter);
2575
2576         /* do hw tstamp init after resetting */
2577         igb_ptp_init(adapter);
2578
2579         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580         /* print bus type/speed/width info, not applicable to i354 */
2581         if (hw->mac.type != e1000_i354) {
2582                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583                          netdev->name,
2584                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586                            "unknown"),
2587                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588                           "Width x4" :
2589                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590                           "Width x2" :
2591                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592                           "Width x1" : "unknown"), netdev->dev_addr);
2593         }
2594
2595         if ((hw->mac.type >= e1000_i210 ||
2596              igb_get_flash_presence_i210(hw))) {
2597                 ret_val = igb_read_part_string(hw, part_str,
2598                                                E1000_PBANUM_LENGTH);
2599         } else {
2600                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601         }
2602
2603         if (ret_val)
2604                 strcpy(part_str, "Unknown");
2605         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606         dev_info(&pdev->dev,
2607                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610                 adapter->num_rx_queues, adapter->num_tx_queues);
2611         if (hw->phy.media_type == e1000_media_type_copper) {
2612                 switch (hw->mac.type) {
2613                 case e1000_i350:
2614                 case e1000_i210:
2615                 case e1000_i211:
2616                         /* Enable EEE for internal copper PHY devices */
2617                         err = igb_set_eee_i350(hw, true, true);
2618                         if ((!err) &&
2619                             (!hw->dev_spec._82575.eee_disable)) {
2620                                 adapter->eee_advert =
2621                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2622                                 adapter->flags |= IGB_FLAG_EEE;
2623                         }
2624                         break;
2625                 case e1000_i354:
2626                         if ((rd32(E1000_CTRL_EXT) &
2627                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628                                 err = igb_set_eee_i354(hw, true, true);
2629                                 if ((!err) &&
2630                                         (!hw->dev_spec._82575.eee_disable)) {
2631                                         adapter->eee_advert =
2632                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2633                                         adapter->flags |= IGB_FLAG_EEE;
2634                                 }
2635                         }
2636                         break;
2637                 default:
2638                         break;
2639                 }
2640         }
2641         pm_runtime_put_noidle(&pdev->dev);
2642         return 0;
2643
2644 err_register:
2645         igb_release_hw_control(adapter);
2646         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647 err_eeprom:
2648         if (!igb_check_reset_block(hw))
2649                 igb_reset_phy(hw);
2650
2651         if (hw->flash_address)
2652                 iounmap(hw->flash_address);
2653 err_sw_init:
2654         kfree(adapter->shadow_vfta);
2655         igb_clear_interrupt_scheme(adapter);
2656 #ifdef CONFIG_PCI_IOV
2657         igb_disable_sriov(pdev);
2658 #endif
2659         pci_iounmap(pdev, hw->hw_addr);
2660 err_ioremap:
2661         free_netdev(netdev);
2662 err_alloc_etherdev:
2663         pci_release_selected_regions(pdev,
2664                                      pci_select_bars(pdev, IORESOURCE_MEM));
2665 err_pci_reg:
2666 err_dma:
2667         pci_disable_device(pdev);
2668         return err;
2669 }
2670
2671 #ifdef CONFIG_PCI_IOV
2672 static int igb_disable_sriov(struct pci_dev *pdev)
2673 {
2674         struct net_device *netdev = pci_get_drvdata(pdev);
2675         struct igb_adapter *adapter = netdev_priv(netdev);
2676         struct e1000_hw *hw = &adapter->hw;
2677
2678         /* reclaim resources allocated to VFs */
2679         if (adapter->vf_data) {
2680                 /* disable iov and allow time for transactions to clear */
2681                 if (pci_vfs_assigned(pdev)) {
2682                         dev_warn(&pdev->dev,
2683                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2684                         return -EPERM;
2685                 } else {
2686                         pci_disable_sriov(pdev);
2687                         msleep(500);
2688                 }
2689
2690                 kfree(adapter->vf_data);
2691                 adapter->vf_data = NULL;
2692                 adapter->vfs_allocated_count = 0;
2693                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2694                 wrfl();
2695                 msleep(100);
2696                 dev_info(&pdev->dev, "IOV Disabled\n");
2697
2698                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2699                 adapter->flags |= IGB_FLAG_DMAC;
2700         }
2701
2702         return 0;
2703 }
2704
2705 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2706 {
2707         struct net_device *netdev = pci_get_drvdata(pdev);
2708         struct igb_adapter *adapter = netdev_priv(netdev);
2709         int old_vfs = pci_num_vf(pdev);
2710         int err = 0;
2711         int i;
2712
2713         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2714                 err = -EPERM;
2715                 goto out;
2716         }
2717         if (!num_vfs)
2718                 goto out;
2719
2720         if (old_vfs) {
2721                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2722                          old_vfs, max_vfs);
2723                 adapter->vfs_allocated_count = old_vfs;
2724         } else
2725                 adapter->vfs_allocated_count = num_vfs;
2726
2727         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2728                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2729
2730         /* if allocation failed then we do not support SR-IOV */
2731         if (!adapter->vf_data) {
2732                 adapter->vfs_allocated_count = 0;
2733                 dev_err(&pdev->dev,
2734                         "Unable to allocate memory for VF Data Storage\n");
2735                 err = -ENOMEM;
2736                 goto out;
2737         }
2738
2739         /* only call pci_enable_sriov() if no VFs are allocated already */
2740         if (!old_vfs) {
2741                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2742                 if (err)
2743                         goto err_out;
2744         }
2745         dev_info(&pdev->dev, "%d VFs allocated\n",
2746                  adapter->vfs_allocated_count);
2747         for (i = 0; i < adapter->vfs_allocated_count; i++)
2748                 igb_vf_configure(adapter, i);
2749
2750         /* DMA Coalescing is not supported in IOV mode. */
2751         adapter->flags &= ~IGB_FLAG_DMAC;
2752         goto out;
2753
2754 err_out:
2755         kfree(adapter->vf_data);
2756         adapter->vf_data = NULL;
2757         adapter->vfs_allocated_count = 0;
2758 out:
2759         return err;
2760 }
2761
2762 #endif
2763 /**
2764  *  igb_remove_i2c - Cleanup  I2C interface
2765  *  @adapter: pointer to adapter structure
2766  **/
2767 static void igb_remove_i2c(struct igb_adapter *adapter)
2768 {
2769         /* free the adapter bus structure */
2770         i2c_del_adapter(&adapter->i2c_adap);
2771 }
2772
2773 /**
2774  *  igb_remove - Device Removal Routine
2775  *  @pdev: PCI device information struct
2776  *
2777  *  igb_remove is called by the PCI subsystem to alert the driver
2778  *  that it should release a PCI device.  The could be caused by a
2779  *  Hot-Plug event, or because the driver is going to be removed from
2780  *  memory.
2781  **/
2782 static void igb_remove(struct pci_dev *pdev)
2783 {
2784         struct net_device *netdev = pci_get_drvdata(pdev);
2785         struct igb_adapter *adapter = netdev_priv(netdev);
2786         struct e1000_hw *hw = &adapter->hw;
2787
2788         pm_runtime_get_noresume(&pdev->dev);
2789 #ifdef CONFIG_IGB_HWMON
2790         igb_sysfs_exit(adapter);
2791 #endif
2792         igb_remove_i2c(adapter);
2793         igb_ptp_stop(adapter);
2794         /* The watchdog timer may be rescheduled, so explicitly
2795          * disable watchdog from being rescheduled.
2796          */
2797         set_bit(__IGB_DOWN, &adapter->state);
2798         del_timer_sync(&adapter->watchdog_timer);
2799         del_timer_sync(&adapter->phy_info_timer);
2800
2801         cancel_work_sync(&adapter->reset_task);
2802         cancel_work_sync(&adapter->watchdog_task);
2803
2804 #ifdef CONFIG_IGB_DCA
2805         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2806                 dev_info(&pdev->dev, "DCA disabled\n");
2807                 dca_remove_requester(&pdev->dev);
2808                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2809                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2810         }
2811 #endif
2812
2813         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2814          * would have already happened in close and is redundant.
2815          */
2816         igb_release_hw_control(adapter);
2817
2818 #ifdef CONFIG_PCI_IOV
2819         igb_disable_sriov(pdev);
2820 #endif
2821
2822         unregister_netdev(netdev);
2823
2824         igb_clear_interrupt_scheme(adapter);
2825
2826         pci_iounmap(pdev, hw->hw_addr);
2827         if (hw->flash_address)
2828                 iounmap(hw->flash_address);
2829         pci_release_selected_regions(pdev,
2830                                      pci_select_bars(pdev, IORESOURCE_MEM));
2831
2832         kfree(adapter->shadow_vfta);
2833         free_netdev(netdev);
2834
2835         pci_disable_pcie_error_reporting(pdev);
2836
2837         pci_disable_device(pdev);
2838 }
2839
2840 /**
2841  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2842  *  @adapter: board private structure to initialize
2843  *
2844  *  This function initializes the vf specific data storage and then attempts to
2845  *  allocate the VFs.  The reason for ordering it this way is because it is much
2846  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2847  *  the memory for the VFs.
2848  **/
2849 static void igb_probe_vfs(struct igb_adapter *adapter)
2850 {
2851 #ifdef CONFIG_PCI_IOV
2852         struct pci_dev *pdev = adapter->pdev;
2853         struct e1000_hw *hw = &adapter->hw;
2854
2855         /* Virtualization features not supported on i210 family. */
2856         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2857                 return;
2858
2859         pci_sriov_set_totalvfs(pdev, 7);
2860         igb_enable_sriov(pdev, max_vfs);
2861
2862 #endif /* CONFIG_PCI_IOV */
2863 }
2864
2865 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2866 {
2867         struct e1000_hw *hw = &adapter->hw;
2868         u32 max_rss_queues;
2869
2870         /* Determine the maximum number of RSS queues supported. */
2871         switch (hw->mac.type) {
2872         case e1000_i211:
2873                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2874                 break;
2875         case e1000_82575:
2876         case e1000_i210:
2877                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2878                 break;
2879         case e1000_i350:
2880                 /* I350 cannot do RSS and SR-IOV at the same time */
2881                 if (!!adapter->vfs_allocated_count) {
2882                         max_rss_queues = 1;
2883                         break;
2884                 }
2885                 /* fall through */
2886         case e1000_82576:
2887                 if (!!adapter->vfs_allocated_count) {
2888                         max_rss_queues = 2;
2889                         break;
2890                 }
2891                 /* fall through */
2892         case e1000_82580:
2893         case e1000_i354:
2894         default:
2895                 max_rss_queues = IGB_MAX_RX_QUEUES;
2896                 break;
2897         }
2898
2899         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2900
2901         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2902 }
2903
2904 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2905                               const u32 max_rss_queues)
2906 {
2907         struct e1000_hw *hw = &adapter->hw;
2908
2909         /* Determine if we need to pair queues. */
2910         switch (hw->mac.type) {
2911         case e1000_82575:
2912         case e1000_i211:
2913                 /* Device supports enough interrupts without queue pairing. */
2914                 break;
2915         case e1000_82576:
2916                 /* If VFs are going to be allocated with RSS queues then we
2917                  * should pair the queues in order to conserve interrupts due
2918                  * to limited supply.
2919                  */
2920                 if ((adapter->rss_queues > 1) &&
2921                     (adapter->vfs_allocated_count > 6))
2922                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2923                 /* fall through */
2924         case e1000_82580:
2925         case e1000_i350:
2926         case e1000_i354:
2927         case e1000_i210:
2928         default:
2929                 /* If rss_queues > half of max_rss_queues, pair the queues in
2930                  * order to conserve interrupts due to limited supply.
2931                  */
2932                 if (adapter->rss_queues > (max_rss_queues / 2))
2933                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2934                 break;
2935         }
2936 }
2937
2938 /**
2939  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2940  *  @adapter: board private structure to initialize
2941  *
2942  *  igb_sw_init initializes the Adapter private data structure.
2943  *  Fields are initialized based on PCI device information and
2944  *  OS network device settings (MTU size).
2945  **/
2946 static int igb_sw_init(struct igb_adapter *adapter)
2947 {
2948         struct e1000_hw *hw = &adapter->hw;
2949         struct net_device *netdev = adapter->netdev;
2950         struct pci_dev *pdev = adapter->pdev;
2951
2952         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2953
2954         /* set default ring sizes */
2955         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2956         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2957
2958         /* set default ITR values */
2959         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2960         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2961
2962         /* set default work limits */
2963         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2964
2965         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2966                                   VLAN_HLEN;
2967         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2968
2969         spin_lock_init(&adapter->stats64_lock);
2970 #ifdef CONFIG_PCI_IOV
2971         switch (hw->mac.type) {
2972         case e1000_82576:
2973         case e1000_i350:
2974                 if (max_vfs > 7) {
2975                         dev_warn(&pdev->dev,
2976                                  "Maximum of 7 VFs per PF, using max\n");
2977                         max_vfs = adapter->vfs_allocated_count = 7;
2978                 } else
2979                         adapter->vfs_allocated_count = max_vfs;
2980                 if (adapter->vfs_allocated_count)
2981                         dev_warn(&pdev->dev,
2982                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2983                 break;
2984         default:
2985                 break;
2986         }
2987 #endif /* CONFIG_PCI_IOV */
2988
2989         igb_probe_vfs(adapter);
2990
2991         igb_init_queue_configuration(adapter);
2992
2993         /* Setup and initialize a copy of the hw vlan table array */
2994         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2995                                        GFP_ATOMIC);
2996
2997         /* This call may decrease the number of queues */
2998         if (igb_init_interrupt_scheme(adapter, true)) {
2999                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3000                 return -ENOMEM;
3001         }
3002
3003         /* Explicitly disable IRQ since the NIC can be in any state. */
3004         igb_irq_disable(adapter);
3005
3006         if (hw->mac.type >= e1000_i350)
3007                 adapter->flags &= ~IGB_FLAG_DMAC;
3008
3009         set_bit(__IGB_DOWN, &adapter->state);
3010         return 0;
3011 }
3012
3013 /**
3014  *  igb_open - Called when a network interface is made active
3015  *  @netdev: network interface device structure
3016  *
3017  *  Returns 0 on success, negative value on failure
3018  *
3019  *  The open entry point is called when a network interface is made
3020  *  active by the system (IFF_UP).  At this point all resources needed
3021  *  for transmit and receive operations are allocated, the interrupt
3022  *  handler is registered with the OS, the watchdog timer is started,
3023  *  and the stack is notified that the interface is ready.
3024  **/
3025 static int __igb_open(struct net_device *netdev, bool resuming)
3026 {
3027         struct igb_adapter *adapter = netdev_priv(netdev);
3028         struct e1000_hw *hw = &adapter->hw;
3029         struct pci_dev *pdev = adapter->pdev;
3030         int err;
3031         int i;
3032
3033         /* disallow open during test */
3034         if (test_bit(__IGB_TESTING, &adapter->state)) {
3035                 WARN_ON(resuming);
3036                 return -EBUSY;
3037         }
3038
3039         if (!resuming)
3040                 pm_runtime_get_sync(&pdev->dev);
3041
3042         netif_carrier_off(netdev);
3043
3044         /* allocate transmit descriptors */
3045         err = igb_setup_all_tx_resources(adapter);
3046         if (err)
3047                 goto err_setup_tx;
3048
3049         /* allocate receive descriptors */
3050         err = igb_setup_all_rx_resources(adapter);
3051         if (err)
3052                 goto err_setup_rx;
3053
3054         igb_power_up_link(adapter);
3055
3056         /* before we allocate an interrupt, we must be ready to handle it.
3057          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3058          * as soon as we call pci_request_irq, so we have to setup our
3059          * clean_rx handler before we do so.
3060          */
3061         igb_configure(adapter);
3062
3063         err = igb_request_irq(adapter);
3064         if (err)
3065                 goto err_req_irq;
3066
3067         /* Notify the stack of the actual queue counts. */
3068         err = netif_set_real_num_tx_queues(adapter->netdev,
3069                                            adapter->num_tx_queues);
3070         if (err)
3071                 goto err_set_queues;
3072
3073         err = netif_set_real_num_rx_queues(adapter->netdev,
3074                                            adapter->num_rx_queues);
3075         if (err)
3076                 goto err_set_queues;
3077
3078         /* From here on the code is the same as igb_up() */
3079         clear_bit(__IGB_DOWN, &adapter->state);
3080
3081         for (i = 0; i < adapter->num_q_vectors; i++)
3082                 napi_enable(&(adapter->q_vector[i]->napi));
3083
3084         /* Clear any pending interrupts. */
3085         rd32(E1000_ICR);
3086
3087         igb_irq_enable(adapter);
3088
3089         /* notify VFs that reset has been completed */
3090         if (adapter->vfs_allocated_count) {
3091                 u32 reg_data = rd32(E1000_CTRL_EXT);
3092
3093                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3094                 wr32(E1000_CTRL_EXT, reg_data);
3095         }
3096
3097         netif_tx_start_all_queues(netdev);
3098
3099         if (!resuming)
3100                 pm_runtime_put(&pdev->dev);
3101
3102         /* start the watchdog. */
3103         hw->mac.get_link_status = 1;
3104         schedule_work(&adapter->watchdog_task);
3105
3106         return 0;
3107
3108 err_set_queues:
3109         igb_free_irq(adapter);
3110 err_req_irq:
3111         igb_release_hw_control(adapter);
3112         igb_power_down_link(adapter);
3113         igb_free_all_rx_resources(adapter);
3114 err_setup_rx:
3115         igb_free_all_tx_resources(adapter);
3116 err_setup_tx:
3117         igb_reset(adapter);
3118         if (!resuming)
3119                 pm_runtime_put(&pdev->dev);
3120
3121         return err;
3122 }
3123
3124 static int igb_open(struct net_device *netdev)
3125 {
3126         return __igb_open(netdev, false);
3127 }
3128
3129 /**
3130  *  igb_close - Disables a network interface
3131  *  @netdev: network interface device structure
3132  *
3133  *  Returns 0, this is not allowed to fail
3134  *
3135  *  The close entry point is called when an interface is de-activated
3136  *  by the OS.  The hardware is still under the driver's control, but
3137  *  needs to be disabled.  A global MAC reset is issued to stop the
3138  *  hardware, and all transmit and receive resources are freed.
3139  **/
3140 static int __igb_close(struct net_device *netdev, bool suspending)
3141 {
3142         struct igb_adapter *adapter = netdev_priv(netdev);
3143         struct pci_dev *pdev = adapter->pdev;
3144
3145         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3146
3147         if (!suspending)
3148                 pm_runtime_get_sync(&pdev->dev);
3149
3150         igb_down(adapter);
3151         igb_free_irq(adapter);
3152
3153         igb_free_all_tx_resources(adapter);
3154         igb_free_all_rx_resources(adapter);
3155
3156         if (!suspending)
3157                 pm_runtime_put_sync(&pdev->dev);
3158         return 0;
3159 }
3160
3161 static int igb_close(struct net_device *netdev)
3162 {
3163         return __igb_close(netdev, false);
3164 }
3165
3166 /**
3167  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3168  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3169  *
3170  *  Return 0 on success, negative on failure
3171  **/
3172 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3173 {
3174         struct device *dev = tx_ring->dev;
3175         int size;
3176
3177         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3178
3179         tx_ring->tx_buffer_info = vzalloc(size);
3180         if (!tx_ring->tx_buffer_info)
3181                 goto err;
3182
3183         /* round up to nearest 4K */
3184         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3185         tx_ring->size = ALIGN(tx_ring->size, 4096);
3186
3187         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3188                                            &tx_ring->dma, GFP_KERNEL);
3189         if (!tx_ring->desc)
3190                 goto err;
3191
3192         tx_ring->next_to_use = 0;
3193         tx_ring->next_to_clean = 0;
3194
3195         return 0;
3196
3197 err:
3198         vfree(tx_ring->tx_buffer_info);
3199         tx_ring->tx_buffer_info = NULL;
3200         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3201         return -ENOMEM;
3202 }
3203
3204 /**
3205  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3206  *                               (Descriptors) for all queues
3207  *  @adapter: board private structure
3208  *
3209  *  Return 0 on success, negative on failure
3210  **/
3211 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3212 {
3213         struct pci_dev *pdev = adapter->pdev;
3214         int i, err = 0;
3215
3216         for (i = 0; i < adapter->num_tx_queues; i++) {
3217                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3218                 if (err) {
3219                         dev_err(&pdev->dev,
3220                                 "Allocation for Tx Queue %u failed\n", i);
3221                         for (i--; i >= 0; i--)
3222                                 igb_free_tx_resources(adapter->tx_ring[i]);
3223                         break;
3224                 }
3225         }
3226
3227         return err;
3228 }
3229
3230 /**
3231  *  igb_setup_tctl - configure the transmit control registers
3232  *  @adapter: Board private structure
3233  **/
3234 void igb_setup_tctl(struct igb_adapter *adapter)
3235 {
3236         struct e1000_hw *hw = &adapter->hw;
3237         u32 tctl;
3238
3239         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3240         wr32(E1000_TXDCTL(0), 0);
3241
3242         /* Program the Transmit Control Register */
3243         tctl = rd32(E1000_TCTL);
3244         tctl &= ~E1000_TCTL_CT;
3245         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3246                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3247
3248         igb_config_collision_dist(hw);
3249
3250         /* Enable transmits */
3251         tctl |= E1000_TCTL_EN;
3252
3253         wr32(E1000_TCTL, tctl);
3254 }
3255
3256 /**
3257  *  igb_configure_tx_ring - Configure transmit ring after Reset
3258  *  @adapter: board private structure
3259  *  @ring: tx ring to configure
3260  *
3261  *  Configure a transmit ring after a reset.
3262  **/
3263 void igb_configure_tx_ring(struct igb_adapter *adapter,
3264                            struct igb_ring *ring)
3265 {
3266         struct e1000_hw *hw = &adapter->hw;
3267         u32 txdctl = 0;
3268         u64 tdba = ring->dma;
3269         int reg_idx = ring->reg_idx;
3270
3271         /* disable the queue */
3272         wr32(E1000_TXDCTL(reg_idx), 0);
3273         wrfl();
3274         mdelay(10);
3275
3276         wr32(E1000_TDLEN(reg_idx),
3277              ring->count * sizeof(union e1000_adv_tx_desc));
3278         wr32(E1000_TDBAL(reg_idx),
3279              tdba & 0x00000000ffffffffULL);
3280         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3281
3282         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3283         wr32(E1000_TDH(reg_idx), 0);
3284         writel(0, ring->tail);
3285
3286         txdctl |= IGB_TX_PTHRESH;
3287         txdctl |= IGB_TX_HTHRESH << 8;
3288         txdctl |= IGB_TX_WTHRESH << 16;
3289
3290         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3291         wr32(E1000_TXDCTL(reg_idx), txdctl);
3292 }
3293
3294 /**
3295  *  igb_configure_tx - Configure transmit Unit after Reset
3296  *  @adapter: board private structure
3297  *
3298  *  Configure the Tx unit of the MAC after a reset.
3299  **/
3300 static void igb_configure_tx(struct igb_adapter *adapter)
3301 {
3302         int i;
3303
3304         for (i = 0; i < adapter->num_tx_queues; i++)
3305                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3306 }
3307
3308 /**
3309  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3310  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3311  *
3312  *  Returns 0 on success, negative on failure
3313  **/
3314 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3315 {
3316         struct device *dev = rx_ring->dev;
3317         int size;
3318
3319         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3320
3321         rx_ring->rx_buffer_info = vzalloc(size);
3322         if (!rx_ring->rx_buffer_info)
3323                 goto err;
3324
3325         /* Round up to nearest 4K */
3326         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3327         rx_ring->size = ALIGN(rx_ring->size, 4096);
3328
3329         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3330                                            &rx_ring->dma, GFP_KERNEL);
3331         if (!rx_ring->desc)
3332                 goto err;
3333
3334         rx_ring->next_to_alloc = 0;
3335         rx_ring->next_to_clean = 0;
3336         rx_ring->next_to_use = 0;
3337
3338         return 0;
3339
3340 err:
3341         vfree(rx_ring->rx_buffer_info);
3342         rx_ring->rx_buffer_info = NULL;
3343         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3344         return -ENOMEM;
3345 }
3346
3347 /**
3348  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3349  *                               (Descriptors) for all queues
3350  *  @adapter: board private structure
3351  *
3352  *  Return 0 on success, negative on failure
3353  **/
3354 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3355 {
3356         struct pci_dev *pdev = adapter->pdev;
3357         int i, err = 0;
3358
3359         for (i = 0; i < adapter->num_rx_queues; i++) {
3360                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3361                 if (err) {
3362                         dev_err(&pdev->dev,
3363                                 "Allocation for Rx Queue %u failed\n", i);
3364                         for (i--; i >= 0; i--)
3365                                 igb_free_rx_resources(adapter->rx_ring[i]);
3366                         break;
3367                 }
3368         }
3369
3370         return err;
3371 }
3372
3373 /**
3374  *  igb_setup_mrqc - configure the multiple receive queue control registers
3375  *  @adapter: Board private structure
3376  **/
3377 static void igb_setup_mrqc(struct igb_adapter *adapter)
3378 {
3379         struct e1000_hw *hw = &adapter->hw;
3380         u32 mrqc, rxcsum;
3381         u32 j, num_rx_queues;
3382         u32 rss_key[10];
3383
3384         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3385         for (j = 0; j < 10; j++)
3386                 wr32(E1000_RSSRK(j), rss_key[j]);
3387
3388         num_rx_queues = adapter->rss_queues;
3389
3390         switch (hw->mac.type) {
3391         case e1000_82576:
3392                 /* 82576 supports 2 RSS queues for SR-IOV */
3393                 if (adapter->vfs_allocated_count)
3394                         num_rx_queues = 2;
3395                 break;
3396         default:
3397                 break;
3398         }
3399
3400         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3401                 for (j = 0; j < IGB_RETA_SIZE; j++)
3402                         adapter->rss_indir_tbl[j] =
3403                         (j * num_rx_queues) / IGB_RETA_SIZE;
3404                 adapter->rss_indir_tbl_init = num_rx_queues;
3405         }
3406         igb_write_rss_indir_tbl(adapter);
3407
3408         /* Disable raw packet checksumming so that RSS hash is placed in
3409          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3410          * offloads as they are enabled by default
3411          */
3412         rxcsum = rd32(E1000_RXCSUM);
3413         rxcsum |= E1000_RXCSUM_PCSD;
3414
3415         if (adapter->hw.mac.type >= e1000_82576)
3416                 /* Enable Receive Checksum Offload for SCTP */
3417                 rxcsum |= E1000_RXCSUM_CRCOFL;
3418
3419         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3420         wr32(E1000_RXCSUM, rxcsum);
3421
3422         /* Generate RSS hash based on packet types, TCP/UDP
3423          * port numbers and/or IPv4/v6 src and dst addresses
3424          */
3425         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3426                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3427                E1000_MRQC_RSS_FIELD_IPV6 |
3428                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3429                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3430
3431         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3432                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3433         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3434                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3435
3436         /* If VMDq is enabled then we set the appropriate mode for that, else
3437          * we default to RSS so that an RSS hash is calculated per packet even
3438          * if we are only using one queue
3439          */
3440         if (adapter->vfs_allocated_count) {
3441                 if (hw->mac.type > e1000_82575) {
3442                         /* Set the default pool for the PF's first queue */
3443                         u32 vtctl = rd32(E1000_VT_CTL);
3444
3445                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3446                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3447                         vtctl |= adapter->vfs_allocated_count <<
3448                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3449                         wr32(E1000_VT_CTL, vtctl);
3450                 }
3451                 if (adapter->rss_queues > 1)
3452                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3453                 else
3454                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3455         } else {
3456                 if (hw->mac.type != e1000_i211)
3457                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3458         }
3459         igb_vmm_control(adapter);
3460
3461         wr32(E1000_MRQC, mrqc);
3462 }
3463
3464 /**
3465  *  igb_setup_rctl - configure the receive control registers
3466  *  @adapter: Board private structure
3467  **/
3468 void igb_setup_rctl(struct igb_adapter *adapter)
3469 {
3470         struct e1000_hw *hw = &adapter->hw;
3471         u32 rctl;
3472
3473         rctl = rd32(E1000_RCTL);
3474
3475         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3476         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3477
3478         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3479                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3480
3481         /* enable stripping of CRC. It's unlikely this will break BMC
3482          * redirection as it did with e1000. Newer features require
3483          * that the HW strips the CRC.
3484          */
3485         rctl |= E1000_RCTL_SECRC;
3486
3487         /* disable store bad packets and clear size bits. */
3488         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3489
3490         /* enable LPE to prevent packets larger than max_frame_size */
3491         rctl |= E1000_RCTL_LPE;
3492
3493         /* disable queue 0 to prevent tail write w/o re-config */
3494         wr32(E1000_RXDCTL(0), 0);
3495
3496         /* Attention!!!  For SR-IOV PF driver operations you must enable
3497          * queue drop for all VF and PF queues to prevent head of line blocking
3498          * if an un-trusted VF does not provide descriptors to hardware.
3499          */
3500         if (adapter->vfs_allocated_count) {
3501                 /* set all queue drop enable bits */
3502                 wr32(E1000_QDE, ALL_QUEUES);
3503         }
3504
3505         /* This is useful for sniffing bad packets. */
3506         if (adapter->netdev->features & NETIF_F_RXALL) {
3507                 /* UPE and MPE will be handled by normal PROMISC logic
3508                  * in e1000e_set_rx_mode
3509                  */
3510                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3511                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3512                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3513
3514                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3515                           E1000_RCTL_DPF | /* Allow filtered pause */
3516                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3517                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3518                  * and that breaks VLANs.
3519                  */
3520         }
3521
3522         wr32(E1000_RCTL, rctl);
3523 }
3524
3525 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3526                                    int vfn)
3527 {
3528         struct e1000_hw *hw = &adapter->hw;
3529         u32 vmolr;
3530
3531         /* if it isn't the PF check to see if VFs are enabled and
3532          * increase the size to support vlan tags
3533          */
3534         if (vfn < adapter->vfs_allocated_count &&
3535             adapter->vf_data[vfn].vlans_enabled)
3536                 size += VLAN_TAG_SIZE;
3537
3538         vmolr = rd32(E1000_VMOLR(vfn));
3539         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3540         vmolr |= size | E1000_VMOLR_LPE;
3541         wr32(E1000_VMOLR(vfn), vmolr);
3542
3543         return 0;
3544 }
3545
3546 /**
3547  *  igb_rlpml_set - set maximum receive packet size
3548  *  @adapter: board private structure
3549  *
3550  *  Configure maximum receivable packet size.
3551  **/
3552 static void igb_rlpml_set(struct igb_adapter *adapter)
3553 {
3554         u32 max_frame_size = adapter->max_frame_size;
3555         struct e1000_hw *hw = &adapter->hw;
3556         u16 pf_id = adapter->vfs_allocated_count;
3557
3558         if (pf_id) {
3559                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3560                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3561                  * to our max jumbo frame size, in case we need to enable
3562                  * jumbo frames on one of the rings later.
3563                  * This will not pass over-length frames into the default
3564                  * queue because it's gated by the VMOLR.RLPML.
3565                  */
3566                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3567         }
3568
3569         wr32(E1000_RLPML, max_frame_size);
3570 }
3571
3572 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3573                                  int vfn, bool aupe)
3574 {
3575         struct e1000_hw *hw = &adapter->hw;
3576         u32 vmolr;
3577
3578         /* This register exists only on 82576 and newer so if we are older then
3579          * we should exit and do nothing
3580          */
3581         if (hw->mac.type < e1000_82576)
3582                 return;
3583
3584         vmolr = rd32(E1000_VMOLR(vfn));
3585         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3586         if (hw->mac.type == e1000_i350) {
3587                 u32 dvmolr;
3588
3589                 dvmolr = rd32(E1000_DVMOLR(vfn));
3590                 dvmolr |= E1000_DVMOLR_STRVLAN;
3591                 wr32(E1000_DVMOLR(vfn), dvmolr);
3592         }
3593         if (aupe)
3594                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3595         else
3596                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3597
3598         /* clear all bits that might not be set */
3599         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3600
3601         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3602                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3603         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3604          * multicast packets
3605          */
3606         if (vfn <= adapter->vfs_allocated_count)
3607                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3608
3609         wr32(E1000_VMOLR(vfn), vmolr);
3610 }
3611
3612 /**
3613  *  igb_configure_rx_ring - Configure a receive ring after Reset
3614  *  @adapter: board private structure
3615  *  @ring: receive ring to be configured
3616  *
3617  *  Configure the Rx unit of the MAC after a reset.
3618  **/
3619 void igb_configure_rx_ring(struct igb_adapter *adapter,
3620                            struct igb_ring *ring)
3621 {
3622         struct e1000_hw *hw = &adapter->hw;
3623         u64 rdba = ring->dma;
3624         int reg_idx = ring->reg_idx;
3625         u32 srrctl = 0, rxdctl = 0;
3626
3627         /* disable the queue */
3628         wr32(E1000_RXDCTL(reg_idx), 0);
3629
3630         /* Set DMA base address registers */
3631         wr32(E1000_RDBAL(reg_idx),
3632              rdba & 0x00000000ffffffffULL);
3633         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3634         wr32(E1000_RDLEN(reg_idx),
3635              ring->count * sizeof(union e1000_adv_rx_desc));
3636
3637         /* initialize head and tail */
3638         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3639         wr32(E1000_RDH(reg_idx), 0);
3640         writel(0, ring->tail);
3641
3642         /* set descriptor configuration */
3643         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3644         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3645         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3646         if (hw->mac.type >= e1000_82580)
3647                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3648         /* Only set Drop Enable if we are supporting multiple queues */
3649         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3650                 srrctl |= E1000_SRRCTL_DROP_EN;
3651
3652         wr32(E1000_SRRCTL(reg_idx), srrctl);
3653
3654         /* set filtering for VMDQ pools */
3655         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3656
3657         rxdctl |= IGB_RX_PTHRESH;
3658         rxdctl |= IGB_RX_HTHRESH << 8;
3659         rxdctl |= IGB_RX_WTHRESH << 16;
3660
3661         /* enable receive descriptor fetching */
3662         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3663         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3664 }
3665
3666 /**
3667  *  igb_configure_rx - Configure receive Unit after Reset
3668  *  @adapter: board private structure
3669  *
3670  *  Configure the Rx unit of the MAC after a reset.
3671  **/
3672 static void igb_configure_rx(struct igb_adapter *adapter)
3673 {
3674         int i;
3675
3676         /* set UTA to appropriate mode */
3677         igb_set_uta(adapter);
3678
3679         /* set the correct pool for the PF default MAC address in entry 0 */
3680         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3681                          adapter->vfs_allocated_count);
3682
3683         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3684          * the Base and Length of the Rx Descriptor Ring
3685          */
3686         for (i = 0; i < adapter->num_rx_queues; i++)
3687                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3688 }
3689
3690 /**
3691  *  igb_free_tx_resources - Free Tx Resources per Queue
3692  *  @tx_ring: Tx descriptor ring for a specific queue
3693  *
3694  *  Free all transmit software resources
3695  **/
3696 void igb_free_tx_resources(struct igb_ring *tx_ring)
3697 {
3698         igb_clean_tx_ring(tx_ring);
3699
3700         vfree(tx_ring->tx_buffer_info);
3701         tx_ring->tx_buffer_info = NULL;
3702
3703         /* if not set, then don't free */
3704         if (!tx_ring->desc)
3705                 return;
3706
3707         dma_free_coherent(tx_ring->dev, tx_ring->size,
3708                           tx_ring->desc, tx_ring->dma);
3709
3710         tx_ring->desc = NULL;
3711 }
3712
3713 /**
3714  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3715  *  @adapter: board private structure
3716  *
3717  *  Free all transmit software resources
3718  **/
3719 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3720 {
3721         int i;
3722
3723         for (i = 0; i < adapter->num_tx_queues; i++)
3724                 if (adapter->tx_ring[i])
3725                         igb_free_tx_resources(adapter->tx_ring[i]);
3726 }
3727
3728 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3729                                     struct igb_tx_buffer *tx_buffer)
3730 {
3731         if (tx_buffer->skb) {
3732                 dev_kfree_skb_any(tx_buffer->skb);
3733                 if (dma_unmap_len(tx_buffer, len))
3734                         dma_unmap_single(ring->dev,
3735                                          dma_unmap_addr(tx_buffer, dma),
3736                                          dma_unmap_len(tx_buffer, len),
3737                                          DMA_TO_DEVICE);
3738         } else if (dma_unmap_len(tx_buffer, len)) {
3739                 dma_unmap_page(ring->dev,
3740                                dma_unmap_addr(tx_buffer, dma),
3741                                dma_unmap_len(tx_buffer, len),
3742                                DMA_TO_DEVICE);
3743         }
3744         tx_buffer->next_to_watch = NULL;
3745         tx_buffer->skb = NULL;
3746         dma_unmap_len_set(tx_buffer, len, 0);
3747         /* buffer_info must be completely set up in the transmit path */
3748 }
3749
3750 /**
3751  *  igb_clean_tx_ring - Free Tx Buffers
3752  *  @tx_ring: ring to be cleaned
3753  **/
3754 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3755 {
3756         struct igb_tx_buffer *buffer_info;
3757         unsigned long size;
3758         u16 i;
3759
3760         if (!tx_ring->tx_buffer_info)
3761                 return;
3762         /* Free all the Tx ring sk_buffs */
3763
3764         for (i = 0; i < tx_ring->count; i++) {
3765                 buffer_info = &tx_ring->tx_buffer_info[i];
3766                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3767         }
3768
3769         netdev_tx_reset_queue(txring_txq(tx_ring));
3770
3771         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3772         memset(tx_ring->tx_buffer_info, 0, size);
3773
3774         /* Zero out the descriptor ring */
3775         memset(tx_ring->desc, 0, tx_ring->size);
3776
3777         tx_ring->next_to_use = 0;
3778         tx_ring->next_to_clean = 0;
3779 }
3780
3781 /**
3782  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3783  *  @adapter: board private structure
3784  **/
3785 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3786 {
3787         int i;
3788
3789         for (i = 0; i < adapter->num_tx_queues; i++)
3790                 if (adapter->tx_ring[i])
3791                         igb_clean_tx_ring(adapter->tx_ring[i]);
3792 }
3793
3794 /**
3795  *  igb_free_rx_resources - Free Rx Resources
3796  *  @rx_ring: ring to clean the resources from
3797  *
3798  *  Free all receive software resources
3799  **/
3800 void igb_free_rx_resources(struct igb_ring *rx_ring)
3801 {
3802         igb_clean_rx_ring(rx_ring);
3803
3804         vfree(rx_ring->rx_buffer_info);
3805         rx_ring->rx_buffer_info = NULL;
3806
3807         /* if not set, then don't free */
3808         if (!rx_ring->desc)
3809                 return;
3810
3811         dma_free_coherent(rx_ring->dev, rx_ring->size,
3812                           rx_ring->desc, rx_ring->dma);
3813
3814         rx_ring->desc = NULL;
3815 }
3816
3817 /**
3818  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3819  *  @adapter: board private structure
3820  *
3821  *  Free all receive software resources
3822  **/
3823 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3824 {
3825         int i;
3826
3827         for (i = 0; i < adapter->num_rx_queues; i++)
3828                 if (adapter->rx_ring[i])
3829                         igb_free_rx_resources(adapter->rx_ring[i]);
3830 }
3831
3832 /**
3833  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3834  *  @rx_ring: ring to free buffers from
3835  **/
3836 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3837 {
3838         unsigned long size;
3839         u16 i;
3840
3841         if (rx_ring->skb)
3842                 dev_kfree_skb(rx_ring->skb);
3843         rx_ring->skb = NULL;
3844
3845         if (!rx_ring->rx_buffer_info)
3846                 return;
3847
3848         /* Free all the Rx ring sk_buffs */
3849         for (i = 0; i < rx_ring->count; i++) {
3850                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3851
3852                 if (!buffer_info->page)
3853                         continue;
3854
3855                 dma_unmap_page(rx_ring->dev,
3856                                buffer_info->dma,
3857                                PAGE_SIZE,
3858                                DMA_FROM_DEVICE);
3859                 __free_page(buffer_info->page);
3860
3861                 buffer_info->page = NULL;
3862         }
3863
3864         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3865         memset(rx_ring->rx_buffer_info, 0, size);
3866
3867         /* Zero out the descriptor ring */
3868         memset(rx_ring->desc, 0, rx_ring->size);
3869
3870         rx_ring->next_to_alloc = 0;
3871         rx_ring->next_to_clean = 0;
3872         rx_ring->next_to_use = 0;
3873 }
3874
3875 /**
3876  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3877  *  @adapter: board private structure
3878  **/
3879 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3880 {
3881         int i;
3882
3883         for (i = 0; i < adapter->num_rx_queues; i++)
3884                 if (adapter->rx_ring[i])
3885                         igb_clean_rx_ring(adapter->rx_ring[i]);
3886 }
3887
3888 /**
3889  *  igb_set_mac - Change the Ethernet Address of the NIC
3890  *  @netdev: network interface device structure
3891  *  @p: pointer to an address structure
3892  *
3893  *  Returns 0 on success, negative on failure
3894  **/
3895 static int igb_set_mac(struct net_device *netdev, void *p)
3896 {
3897         struct igb_adapter *adapter = netdev_priv(netdev);
3898         struct e1000_hw *hw = &adapter->hw;
3899         struct sockaddr *addr = p;
3900
3901         if (!is_valid_ether_addr(addr->sa_data))
3902                 return -EADDRNOTAVAIL;
3903
3904         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3905         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3906
3907         /* set the correct pool for the new PF MAC address in entry 0 */
3908         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3909                          adapter->vfs_allocated_count);
3910
3911         return 0;
3912 }
3913
3914 /**
3915  *  igb_write_mc_addr_list - write multicast addresses to MTA
3916  *  @netdev: network interface device structure
3917  *
3918  *  Writes multicast address list to the MTA hash table.
3919  *  Returns: -ENOMEM on failure
3920  *           0 on no addresses written
3921  *           X on writing X addresses to MTA
3922  **/
3923 static int igb_write_mc_addr_list(struct net_device *netdev)
3924 {
3925         struct igb_adapter *adapter = netdev_priv(netdev);
3926         struct e1000_hw *hw = &adapter->hw;
3927         struct netdev_hw_addr *ha;
3928         u8  *mta_list;
3929         int i;
3930
3931         if (netdev_mc_empty(netdev)) {
3932                 /* nothing to program, so clear mc list */
3933                 igb_update_mc_addr_list(hw, NULL, 0);
3934                 igb_restore_vf_multicasts(adapter);
3935                 return 0;
3936         }
3937
3938         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3939         if (!mta_list)
3940                 return -ENOMEM;
3941
3942         /* The shared function expects a packed array of only addresses. */
3943         i = 0;
3944         netdev_for_each_mc_addr(ha, netdev)
3945                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3946
3947         igb_update_mc_addr_list(hw, mta_list, i);
3948         kfree(mta_list);
3949
3950         return netdev_mc_count(netdev);
3951 }
3952
3953 /**
3954  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3955  *  @netdev: network interface device structure
3956  *
3957  *  Writes unicast address list to the RAR table.
3958  *  Returns: -ENOMEM on failure/insufficient address space
3959  *           0 on no addresses written
3960  *           X on writing X addresses to the RAR table
3961  **/
3962 static int igb_write_uc_addr_list(struct net_device *netdev)
3963 {
3964         struct igb_adapter *adapter = netdev_priv(netdev);
3965         struct e1000_hw *hw = &adapter->hw;
3966         unsigned int vfn = adapter->vfs_allocated_count;
3967         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3968         int count = 0;
3969
3970         /* return ENOMEM indicating insufficient memory for addresses */
3971         if (netdev_uc_count(netdev) > rar_entries)
3972                 return -ENOMEM;
3973
3974         if (!netdev_uc_empty(netdev) && rar_entries) {
3975                 struct netdev_hw_addr *ha;
3976
3977                 netdev_for_each_uc_addr(ha, netdev) {
3978                         if (!rar_entries)
3979                                 break;
3980                         igb_rar_set_qsel(adapter, ha->addr,
3981                                          rar_entries--,
3982                                          vfn);
3983                         count++;
3984                 }
3985         }
3986         /* write the addresses in reverse order to avoid write combining */
3987         for (; rar_entries > 0 ; rar_entries--) {
3988                 wr32(E1000_RAH(rar_entries), 0);
3989                 wr32(E1000_RAL(rar_entries), 0);
3990         }
3991         wrfl();
3992
3993         return count;
3994 }
3995
3996 /**
3997  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3998  *  @netdev: network interface device structure
3999  *
4000  *  The set_rx_mode entry point is called whenever the unicast or multicast
4001  *  address lists or the network interface flags are updated.  This routine is
4002  *  responsible for configuring the hardware for proper unicast, multicast,
4003  *  promiscuous mode, and all-multi behavior.
4004  **/
4005 static void igb_set_rx_mode(struct net_device *netdev)
4006 {
4007         struct igb_adapter *adapter = netdev_priv(netdev);
4008         struct e1000_hw *hw = &adapter->hw;
4009         unsigned int vfn = adapter->vfs_allocated_count;
4010         u32 rctl, vmolr = 0;
4011         int count;
4012
4013         /* Check for Promiscuous and All Multicast modes */
4014         rctl = rd32(E1000_RCTL);
4015
4016         /* clear the effected bits */
4017         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4018
4019         if (netdev->flags & IFF_PROMISC) {
4020                 /* retain VLAN HW filtering if in VT mode */
4021                 if (adapter->vfs_allocated_count)
4022                         rctl |= E1000_RCTL_VFE;
4023                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4024                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4025         } else {
4026                 if (netdev->flags & IFF_ALLMULTI) {
4027                         rctl |= E1000_RCTL_MPE;
4028                         vmolr |= E1000_VMOLR_MPME;
4029                 } else {
4030                         /* Write addresses to the MTA, if the attempt fails
4031                          * then we should just turn on promiscuous mode so
4032                          * that we can at least receive multicast traffic
4033                          */
4034                         count = igb_write_mc_addr_list(netdev);
4035                         if (count < 0) {
4036                                 rctl |= E1000_RCTL_MPE;
4037                                 vmolr |= E1000_VMOLR_MPME;
4038                         } else if (count) {
4039                                 vmolr |= E1000_VMOLR_ROMPE;
4040                         }
4041                 }
4042                 /* Write addresses to available RAR registers, if there is not
4043                  * sufficient space to store all the addresses then enable
4044                  * unicast promiscuous mode
4045                  */
4046                 count = igb_write_uc_addr_list(netdev);
4047                 if (count < 0) {
4048                         rctl |= E1000_RCTL_UPE;
4049                         vmolr |= E1000_VMOLR_ROPE;
4050                 }
4051                 rctl |= E1000_RCTL_VFE;
4052         }
4053         wr32(E1000_RCTL, rctl);
4054
4055         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4056          * the VMOLR to enable the appropriate modes.  Without this workaround
4057          * we will have issues with VLAN tag stripping not being done for frames
4058          * that are only arriving because we are the default pool
4059          */
4060         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4061                 return;
4062
4063         vmolr |= rd32(E1000_VMOLR(vfn)) &
4064                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4065         wr32(E1000_VMOLR(vfn), vmolr);
4066         igb_restore_vf_multicasts(adapter);
4067 }
4068
4069 static void igb_check_wvbr(struct igb_adapter *adapter)
4070 {
4071         struct e1000_hw *hw = &adapter->hw;
4072         u32 wvbr = 0;
4073
4074         switch (hw->mac.type) {
4075         case e1000_82576:
4076         case e1000_i350:
4077                 wvbr = rd32(E1000_WVBR);
4078                 if (!wvbr)
4079                         return;
4080                 break;
4081         default:
4082                 break;
4083         }
4084
4085         adapter->wvbr |= wvbr;
4086 }
4087
4088 #define IGB_STAGGERED_QUEUE_OFFSET 8
4089
4090 static void igb_spoof_check(struct igb_adapter *adapter)
4091 {
4092         int j;
4093
4094         if (!adapter->wvbr)
4095                 return;
4096
4097         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4098                 if (adapter->wvbr & (1 << j) ||
4099                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4100                         dev_warn(&adapter->pdev->dev,
4101                                 "Spoof event(s) detected on VF %d\n", j);
4102                         adapter->wvbr &=
4103                                 ~((1 << j) |
4104                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4105                 }
4106         }
4107 }
4108
4109 /* Need to wait a few seconds after link up to get diagnostic information from
4110  * the phy
4111  */
4112 static void igb_update_phy_info(unsigned long data)
4113 {
4114         struct igb_adapter *adapter = (struct igb_adapter *) data;
4115         igb_get_phy_info(&adapter->hw);
4116 }
4117
4118 /**
4119  *  igb_has_link - check shared code for link and determine up/down
4120  *  @adapter: pointer to driver private info
4121  **/
4122 bool igb_has_link(struct igb_adapter *adapter)
4123 {
4124         struct e1000_hw *hw = &adapter->hw;
4125         bool link_active = false;
4126
4127         /* get_link_status is set on LSC (link status) interrupt or
4128          * rx sequence error interrupt.  get_link_status will stay
4129          * false until the e1000_check_for_link establishes link
4130          * for copper adapters ONLY
4131          */
4132         switch (hw->phy.media_type) {
4133         case e1000_media_type_copper:
4134                 if (!hw->mac.get_link_status)
4135                         return true;
4136         case e1000_media_type_internal_serdes:
4137                 hw->mac.ops.check_for_link(hw);
4138                 link_active = !hw->mac.get_link_status;
4139                 break;
4140         default:
4141         case e1000_media_type_unknown:
4142                 break;
4143         }
4144
4145         if (((hw->mac.type == e1000_i210) ||
4146              (hw->mac.type == e1000_i211)) &&
4147              (hw->phy.id == I210_I_PHY_ID)) {
4148                 if (!netif_carrier_ok(adapter->netdev)) {
4149                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4150                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4151                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4152                         adapter->link_check_timeout = jiffies;
4153                 }
4154         }
4155
4156         return link_active;
4157 }
4158
4159 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4160 {
4161         bool ret = false;
4162         u32 ctrl_ext, thstat;
4163
4164         /* check for thermal sensor event on i350 copper only */
4165         if (hw->mac.type == e1000_i350) {
4166                 thstat = rd32(E1000_THSTAT);
4167                 ctrl_ext = rd32(E1000_CTRL_EXT);
4168
4169                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4170                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4171                         ret = !!(thstat & event);
4172         }
4173
4174         return ret;
4175 }
4176
4177 /**
4178  *  igb_check_lvmmc - check for malformed packets received
4179  *  and indicated in LVMMC register
4180  *  @adapter: pointer to adapter
4181  **/
4182 static void igb_check_lvmmc(struct igb_adapter *adapter)
4183 {
4184         struct e1000_hw *hw = &adapter->hw;
4185         u32 lvmmc;
4186
4187         lvmmc = rd32(E1000_LVMMC);
4188         if (lvmmc) {
4189                 if (unlikely(net_ratelimit())) {
4190                         netdev_warn(adapter->netdev,
4191                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4192                                     lvmmc);
4193                 }
4194         }
4195 }
4196
4197 /**
4198  *  igb_watchdog - Timer Call-back
4199  *  @data: pointer to adapter cast into an unsigned long
4200  **/
4201 static void igb_watchdog(unsigned long data)
4202 {
4203         struct igb_adapter *adapter = (struct igb_adapter *)data;
4204         /* Do the rest outside of interrupt context */
4205         schedule_work(&adapter->watchdog_task);
4206 }
4207
4208 static void igb_watchdog_task(struct work_struct *work)
4209 {
4210         struct igb_adapter *adapter = container_of(work,
4211                                                    struct igb_adapter,
4212                                                    watchdog_task);
4213         struct e1000_hw *hw = &adapter->hw;
4214         struct e1000_phy_info *phy = &hw->phy;
4215         struct net_device *netdev = adapter->netdev;
4216         u32 link;
4217         int i;
4218         u32 connsw;
4219
4220         link = igb_has_link(adapter);
4221
4222         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4223                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4224                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4225                 else
4226                         link = false;
4227         }
4228
4229         /* Force link down if we have fiber to swap to */
4230         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4231                 if (hw->phy.media_type == e1000_media_type_copper) {
4232                         connsw = rd32(E1000_CONNSW);
4233                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4234                                 link = 0;
4235                 }
4236         }
4237         if (link) {
4238                 /* Perform a reset if the media type changed. */
4239                 if (hw->dev_spec._82575.media_changed) {
4240                         hw->dev_spec._82575.media_changed = false;
4241                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4242                         igb_reset(adapter);
4243                 }
4244                 /* Cancel scheduled suspend requests. */
4245                 pm_runtime_resume(netdev->dev.parent);
4246
4247                 if (!netif_carrier_ok(netdev)) {
4248                         u32 ctrl;
4249
4250                         hw->mac.ops.get_speed_and_duplex(hw,
4251                                                          &adapter->link_speed,
4252                                                          &adapter->link_duplex);
4253
4254                         ctrl = rd32(E1000_CTRL);
4255                         /* Links status message must follow this format */
4256                         netdev_info(netdev,
4257                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4258                                netdev->name,
4259                                adapter->link_speed,
4260                                adapter->link_duplex == FULL_DUPLEX ?
4261                                "Full" : "Half",
4262                                (ctrl & E1000_CTRL_TFCE) &&
4263                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4264                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4265                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4266
4267                         /* disable EEE if enabled */
4268                         if ((adapter->flags & IGB_FLAG_EEE) &&
4269                                 (adapter->link_duplex == HALF_DUPLEX)) {
4270                                 dev_info(&adapter->pdev->dev,
4271                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4272                                 adapter->hw.dev_spec._82575.eee_disable = true;
4273                                 adapter->flags &= ~IGB_FLAG_EEE;
4274                         }
4275
4276                         /* check if SmartSpeed worked */
4277                         igb_check_downshift(hw);
4278                         if (phy->speed_downgraded)
4279                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4280
4281                         /* check for thermal sensor event */
4282                         if (igb_thermal_sensor_event(hw,
4283                             E1000_THSTAT_LINK_THROTTLE))
4284                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4285
4286                         /* adjust timeout factor according to speed/duplex */
4287                         adapter->tx_timeout_factor = 1;
4288                         switch (adapter->link_speed) {
4289                         case SPEED_10:
4290                                 adapter->tx_timeout_factor = 14;
4291                                 break;
4292                         case SPEED_100:
4293                                 /* maybe add some timeout factor ? */
4294                                 break;
4295                         }
4296
4297                         netif_carrier_on(netdev);
4298
4299                         igb_ping_all_vfs(adapter);
4300                         igb_check_vf_rate_limit(adapter);
4301
4302                         /* link state has changed, schedule phy info update */
4303                         if (!test_bit(__IGB_DOWN, &adapter->state))
4304                                 mod_timer(&adapter->phy_info_timer,
4305                                           round_jiffies(jiffies + 2 * HZ));
4306                 }
4307         } else {
4308                 if (netif_carrier_ok(netdev)) {
4309                         adapter->link_speed = 0;
4310                         adapter->link_duplex = 0;
4311
4312                         /* check for thermal sensor event */
4313                         if (igb_thermal_sensor_event(hw,
4314                             E1000_THSTAT_PWR_DOWN)) {
4315                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4316                         }
4317
4318                         /* Links status message must follow this format */
4319                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4320                                netdev->name);
4321                         netif_carrier_off(netdev);
4322
4323                         igb_ping_all_vfs(adapter);
4324
4325                         /* link state has changed, schedule phy info update */
4326                         if (!test_bit(__IGB_DOWN, &adapter->state))
4327                                 mod_timer(&adapter->phy_info_timer,
4328                                           round_jiffies(jiffies + 2 * HZ));
4329
4330                         /* link is down, time to check for alternate media */
4331                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4332                                 igb_check_swap_media(adapter);
4333                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4334                                         schedule_work(&adapter->reset_task);
4335                                         /* return immediately */
4336                                         return;
4337                                 }
4338                         }
4339                         pm_schedule_suspend(netdev->dev.parent,
4340                                             MSEC_PER_SEC * 5);
4341
4342                 /* also check for alternate media here */
4343                 } else if (!netif_carrier_ok(netdev) &&
4344                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4345                         igb_check_swap_media(adapter);
4346                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4347                                 schedule_work(&adapter->reset_task);
4348                                 /* return immediately */
4349                                 return;
4350                         }
4351                 }
4352         }
4353
4354         spin_lock(&adapter->stats64_lock);
4355         igb_update_stats(adapter, &adapter->stats64);
4356         spin_unlock(&adapter->stats64_lock);
4357
4358         for (i = 0; i < adapter->num_tx_queues; i++) {
4359                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4360                 if (!netif_carrier_ok(netdev)) {
4361                         /* We've lost link, so the controller stops DMA,
4362                          * but we've got queued Tx work that's never going
4363                          * to get done, so reset controller to flush Tx.
4364                          * (Do the reset outside of interrupt context).
4365                          */
4366                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4367                                 adapter->tx_timeout_count++;
4368                                 schedule_work(&adapter->reset_task);
4369                                 /* return immediately since reset is imminent */
4370                                 return;
4371                         }
4372                 }
4373
4374                 /* Force detection of hung controller every watchdog period */
4375                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4376         }
4377
4378         /* Cause software interrupt to ensure Rx ring is cleaned */
4379         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4380                 u32 eics = 0;
4381
4382                 for (i = 0; i < adapter->num_q_vectors; i++)
4383                         eics |= adapter->q_vector[i]->eims_value;
4384                 wr32(E1000_EICS, eics);
4385         } else {
4386                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4387         }
4388
4389         igb_spoof_check(adapter);
4390         igb_ptp_rx_hang(adapter);
4391
4392         /* Check LVMMC register on i350/i354 only */
4393         if ((adapter->hw.mac.type == e1000_i350) ||
4394             (adapter->hw.mac.type == e1000_i354))
4395                 igb_check_lvmmc(adapter);
4396
4397         /* Reset the timer */
4398         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4399                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4400                         mod_timer(&adapter->watchdog_timer,
4401                                   round_jiffies(jiffies +  HZ));
4402                 else
4403                         mod_timer(&adapter->watchdog_timer,
4404                                   round_jiffies(jiffies + 2 * HZ));
4405         }
4406 }
4407
4408 enum latency_range {
4409         lowest_latency = 0,
4410         low_latency = 1,
4411         bulk_latency = 2,
4412         latency_invalid = 255
4413 };
4414
4415 /**
4416  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4417  *  @q_vector: pointer to q_vector
4418  *
4419  *  Stores a new ITR value based on strictly on packet size.  This
4420  *  algorithm is less sophisticated than that used in igb_update_itr,
4421  *  due to the difficulty of synchronizing statistics across multiple
4422  *  receive rings.  The divisors and thresholds used by this function
4423  *  were determined based on theoretical maximum wire speed and testing
4424  *  data, in order to minimize response time while increasing bulk
4425  *  throughput.
4426  *  This functionality is controlled by ethtool's coalescing settings.
4427  *  NOTE:  This function is called only when operating in a multiqueue
4428  *         receive environment.
4429  **/
4430 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4431 {
4432         int new_val = q_vector->itr_val;
4433         int avg_wire_size = 0;
4434         struct igb_adapter *adapter = q_vector->adapter;
4435         unsigned int packets;
4436
4437         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4438          * ints/sec - ITR timer value of 120 ticks.
4439          */
4440         if (adapter->link_speed != SPEED_1000) {
4441                 new_val = IGB_4K_ITR;
4442                 goto set_itr_val;
4443         }
4444
4445         packets = q_vector->rx.total_packets;
4446         if (packets)
4447                 avg_wire_size = q_vector->rx.total_bytes / packets;
4448
4449         packets = q_vector->tx.total_packets;
4450         if (packets)
4451                 avg_wire_size = max_t(u32, avg_wire_size,
4452                                       q_vector->tx.total_bytes / packets);
4453
4454         /* if avg_wire_size isn't set no work was done */
4455         if (!avg_wire_size)
4456                 goto clear_counts;
4457
4458         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4459         avg_wire_size += 24;
4460
4461         /* Don't starve jumbo frames */
4462         avg_wire_size = min(avg_wire_size, 3000);
4463
4464         /* Give a little boost to mid-size frames */
4465         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4466                 new_val = avg_wire_size / 3;
4467         else
4468                 new_val = avg_wire_size / 2;
4469
4470         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4471         if (new_val < IGB_20K_ITR &&
4472             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4473              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4474                 new_val = IGB_20K_ITR;
4475
4476 set_itr_val:
4477         if (new_val != q_vector->itr_val) {
4478                 q_vector->itr_val = new_val;
4479                 q_vector->set_itr = 1;
4480         }
4481 clear_counts:
4482         q_vector->rx.total_bytes = 0;
4483         q_vector->rx.total_packets = 0;
4484         q_vector->tx.total_bytes = 0;
4485         q_vector->tx.total_packets = 0;
4486 }
4487
4488 /**
4489  *  igb_update_itr - update the dynamic ITR value based on statistics
4490  *  @q_vector: pointer to q_vector
4491  *  @ring_container: ring info to update the itr for
4492  *
4493  *  Stores a new ITR value based on packets and byte
4494  *  counts during the last interrupt.  The advantage of per interrupt
4495  *  computation is faster updates and more accurate ITR for the current
4496  *  traffic pattern.  Constants in this function were computed
4497  *  based on theoretical maximum wire speed and thresholds were set based
4498  *  on testing data as well as attempting to minimize response time
4499  *  while increasing bulk throughput.
4500  *  This functionality is controlled by ethtool's coalescing settings.
4501  *  NOTE:  These calculations are only valid when operating in a single-
4502  *         queue environment.
4503  **/
4504 static void igb_update_itr(struct igb_q_vector *q_vector,
4505                            struct igb_ring_container *ring_container)
4506 {
4507         unsigned int packets = ring_container->total_packets;
4508         unsigned int bytes = ring_container->total_bytes;
4509         u8 itrval = ring_container->itr;
4510
4511         /* no packets, exit with status unchanged */
4512         if (packets == 0)
4513                 return;
4514
4515         switch (itrval) {
4516         case lowest_latency:
4517                 /* handle TSO and jumbo frames */
4518                 if (bytes/packets > 8000)
4519                         itrval = bulk_latency;
4520                 else if ((packets < 5) && (bytes > 512))
4521                         itrval = low_latency;
4522                 break;
4523         case low_latency:  /* 50 usec aka 20000 ints/s */
4524                 if (bytes > 10000) {
4525                         /* this if handles the TSO accounting */
4526                         if (bytes/packets > 8000)
4527                                 itrval = bulk_latency;
4528                         else if ((packets < 10) || ((bytes/packets) > 1200))
4529                                 itrval = bulk_latency;
4530                         else if ((packets > 35))
4531                                 itrval = lowest_latency;
4532                 } else if (bytes/packets > 2000) {
4533                         itrval = bulk_latency;
4534                 } else if (packets <= 2 && bytes < 512) {
4535                         itrval = lowest_latency;
4536                 }
4537                 break;
4538         case bulk_latency: /* 250 usec aka 4000 ints/s */
4539                 if (bytes > 25000) {
4540                         if (packets > 35)
4541                                 itrval = low_latency;
4542                 } else if (bytes < 1500) {
4543                         itrval = low_latency;
4544                 }
4545                 break;
4546         }
4547
4548         /* clear work counters since we have the values we need */
4549         ring_container->total_bytes = 0;
4550         ring_container->total_packets = 0;
4551
4552         /* write updated itr to ring container */
4553         ring_container->itr = itrval;
4554 }
4555
4556 static void igb_set_itr(struct igb_q_vector *q_vector)
4557 {
4558         struct igb_adapter *adapter = q_vector->adapter;
4559         u32 new_itr = q_vector->itr_val;
4560         u8 current_itr = 0;
4561
4562         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4563         if (adapter->link_speed != SPEED_1000) {
4564                 current_itr = 0;
4565                 new_itr = IGB_4K_ITR;
4566                 goto set_itr_now;
4567         }
4568
4569         igb_update_itr(q_vector, &q_vector->tx);
4570         igb_update_itr(q_vector, &q_vector->rx);
4571
4572         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4573
4574         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4575         if (current_itr == lowest_latency &&
4576             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4577              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4578                 current_itr = low_latency;
4579
4580         switch (current_itr) {
4581         /* counts and packets in update_itr are dependent on these numbers */
4582         case lowest_latency:
4583                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4584                 break;
4585         case low_latency:
4586                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4587                 break;
4588         case bulk_latency:
4589                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4590                 break;
4591         default:
4592                 break;
4593         }
4594
4595 set_itr_now:
4596         if (new_itr != q_vector->itr_val) {
4597                 /* this attempts to bias the interrupt rate towards Bulk
4598                  * by adding intermediate steps when interrupt rate is
4599                  * increasing
4600                  */
4601                 new_itr = new_itr > q_vector->itr_val ?
4602                           max((new_itr * q_vector->itr_val) /
4603                           (new_itr + (q_vector->itr_val >> 2)),
4604                           new_itr) : new_itr;
4605                 /* Don't write the value here; it resets the adapter's
4606                  * internal timer, and causes us to delay far longer than
4607                  * we should between interrupts.  Instead, we write the ITR
4608                  * value at the beginning of the next interrupt so the timing
4609                  * ends up being correct.
4610                  */
4611                 q_vector->itr_val = new_itr;
4612                 q_vector->set_itr = 1;
4613         }
4614 }
4615
4616 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4617                             u32 type_tucmd, u32 mss_l4len_idx)
4618 {
4619         struct e1000_adv_tx_context_desc *context_desc;
4620         u16 i = tx_ring->next_to_use;
4621
4622         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4623
4624         i++;
4625         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4626
4627         /* set bits to identify this as an advanced context descriptor */
4628         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4629
4630         /* For 82575, context index must be unique per ring. */
4631         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4632                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4633
4634         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4635         context_desc->seqnum_seed       = 0;
4636         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4637         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4638 }
4639
4640 static int igb_tso(struct igb_ring *tx_ring,
4641                    struct igb_tx_buffer *first,
4642                    u8 *hdr_len)
4643 {
4644         struct sk_buff *skb = first->skb;
4645         u32 vlan_macip_lens, type_tucmd;
4646         u32 mss_l4len_idx, l4len;
4647         int err;
4648
4649         if (skb->ip_summed != CHECKSUM_PARTIAL)
4650                 return 0;
4651
4652         if (!skb_is_gso(skb))
4653                 return 0;
4654
4655         err = skb_cow_head(skb, 0);
4656         if (err < 0)
4657                 return err;
4658
4659         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4660         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4661
4662         if (first->protocol == htons(ETH_P_IP)) {
4663                 struct iphdr *iph = ip_hdr(skb);
4664                 iph->tot_len = 0;
4665                 iph->check = 0;
4666                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4667                                                          iph->daddr, 0,
4668                                                          IPPROTO_TCP,
4669                                                          0);
4670                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4671                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4672                                    IGB_TX_FLAGS_CSUM |
4673                                    IGB_TX_FLAGS_IPV4;
4674         } else if (skb_is_gso_v6(skb)) {
4675                 ipv6_hdr(skb)->payload_len = 0;
4676                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4677                                                        &ipv6_hdr(skb)->daddr,
4678                                                        0, IPPROTO_TCP, 0);
4679                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4680                                    IGB_TX_FLAGS_CSUM;
4681         }
4682
4683         /* compute header lengths */
4684         l4len = tcp_hdrlen(skb);
4685         *hdr_len = skb_transport_offset(skb) + l4len;
4686
4687         /* update gso size and bytecount with header size */
4688         first->gso_segs = skb_shinfo(skb)->gso_segs;
4689         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4690
4691         /* MSS L4LEN IDX */
4692         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4693         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4694
4695         /* VLAN MACLEN IPLEN */
4696         vlan_macip_lens = skb_network_header_len(skb);
4697         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4698         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4699
4700         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4701
4702         return 1;
4703 }
4704
4705 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4706 {
4707         struct sk_buff *skb = first->skb;
4708         u32 vlan_macip_lens = 0;
4709         u32 mss_l4len_idx = 0;
4710         u32 type_tucmd = 0;
4711
4712         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4713                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4714                         return;
4715         } else {
4716                 u8 l4_hdr = 0;
4717
4718                 switch (first->protocol) {
4719                 case htons(ETH_P_IP):
4720                         vlan_macip_lens |= skb_network_header_len(skb);
4721                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4722                         l4_hdr = ip_hdr(skb)->protocol;
4723                         break;
4724                 case htons(ETH_P_IPV6):
4725                         vlan_macip_lens |= skb_network_header_len(skb);
4726                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4727                         break;
4728                 default:
4729                         if (unlikely(net_ratelimit())) {
4730                                 dev_warn(tx_ring->dev,
4731                                          "partial checksum but proto=%x!\n",
4732                                          first->protocol);
4733                         }
4734                         break;
4735                 }
4736
4737                 switch (l4_hdr) {
4738                 case IPPROTO_TCP:
4739                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4740                         mss_l4len_idx = tcp_hdrlen(skb) <<
4741                                         E1000_ADVTXD_L4LEN_SHIFT;
4742                         break;
4743                 case IPPROTO_SCTP:
4744                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4745                         mss_l4len_idx = sizeof(struct sctphdr) <<
4746                                         E1000_ADVTXD_L4LEN_SHIFT;
4747                         break;
4748                 case IPPROTO_UDP:
4749                         mss_l4len_idx = sizeof(struct udphdr) <<
4750                                         E1000_ADVTXD_L4LEN_SHIFT;
4751                         break;
4752                 default:
4753                         if (unlikely(net_ratelimit())) {
4754                                 dev_warn(tx_ring->dev,
4755                                          "partial checksum but l4 proto=%x!\n",
4756                                          l4_hdr);
4757                         }
4758                         break;
4759                 }
4760
4761                 /* update TX checksum flag */
4762                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4763         }
4764
4765         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4766         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4767
4768         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4769 }
4770
4771 #define IGB_SET_FLAG(_input, _flag, _result) \
4772         ((_flag <= _result) ? \
4773          ((u32)(_input & _flag) * (_result / _flag)) : \
4774          ((u32)(_input & _flag) / (_flag / _result)))
4775
4776 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4777 {
4778         /* set type for advanced descriptor with frame checksum insertion */
4779         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4780                        E1000_ADVTXD_DCMD_DEXT |
4781                        E1000_ADVTXD_DCMD_IFCS;
4782
4783         /* set HW vlan bit if vlan is present */
4784         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4785                                  (E1000_ADVTXD_DCMD_VLE));
4786
4787         /* set segmentation bits for TSO */
4788         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4789                                  (E1000_ADVTXD_DCMD_TSE));
4790
4791         /* set timestamp bit if present */
4792         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4793                                  (E1000_ADVTXD_MAC_TSTAMP));
4794
4795         /* insert frame checksum */
4796         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4797
4798         return cmd_type;
4799 }
4800
4801 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4802                                  union e1000_adv_tx_desc *tx_desc,
4803                                  u32 tx_flags, unsigned int paylen)
4804 {
4805         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4806
4807         /* 82575 requires a unique index per ring */
4808         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4809                 olinfo_status |= tx_ring->reg_idx << 4;
4810
4811         /* insert L4 checksum */
4812         olinfo_status |= IGB_SET_FLAG(tx_flags,
4813                                       IGB_TX_FLAGS_CSUM,
4814                                       (E1000_TXD_POPTS_TXSM << 8));
4815
4816         /* insert IPv4 checksum */
4817         olinfo_status |= IGB_SET_FLAG(tx_flags,
4818                                       IGB_TX_FLAGS_IPV4,
4819                                       (E1000_TXD_POPTS_IXSM << 8));
4820
4821         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4822 }
4823
4824 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4825 {
4826         struct net_device *netdev = tx_ring->netdev;
4827
4828         netif_stop_subqueue(netdev, tx_ring->queue_index);
4829
4830         /* Herbert's original patch had:
4831          *  smp_mb__after_netif_stop_queue();
4832          * but since that doesn't exist yet, just open code it.
4833          */
4834         smp_mb();
4835
4836         /* We need to check again in a case another CPU has just
4837          * made room available.
4838          */
4839         if (igb_desc_unused(tx_ring) < size)
4840                 return -EBUSY;
4841
4842         /* A reprieve! */
4843         netif_wake_subqueue(netdev, tx_ring->queue_index);
4844
4845         u64_stats_update_begin(&tx_ring->tx_syncp2);
4846         tx_ring->tx_stats.restart_queue2++;
4847         u64_stats_update_end(&tx_ring->tx_syncp2);
4848
4849         return 0;
4850 }
4851
4852 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4853 {
4854         if (igb_desc_unused(tx_ring) >= size)
4855                 return 0;
4856         return __igb_maybe_stop_tx(tx_ring, size);
4857 }
4858
4859 static void igb_tx_map(struct igb_ring *tx_ring,
4860                        struct igb_tx_buffer *first,
4861                        const u8 hdr_len)
4862 {
4863         struct sk_buff *skb = first->skb;
4864         struct igb_tx_buffer *tx_buffer;
4865         union e1000_adv_tx_desc *tx_desc;
4866         struct skb_frag_struct *frag;
4867         dma_addr_t dma;
4868         unsigned int data_len, size;
4869         u32 tx_flags = first->tx_flags;
4870         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4871         u16 i = tx_ring->next_to_use;
4872
4873         tx_desc = IGB_TX_DESC(tx_ring, i);
4874
4875         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4876
4877         size = skb_headlen(skb);
4878         data_len = skb->data_len;
4879
4880         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4881
4882         tx_buffer = first;
4883
4884         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4885                 if (dma_mapping_error(tx_ring->dev, dma))
4886                         goto dma_error;
4887
4888                 /* record length, and DMA address */
4889                 dma_unmap_len_set(tx_buffer, len, size);
4890                 dma_unmap_addr_set(tx_buffer, dma, dma);
4891
4892                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4893
4894                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4895                         tx_desc->read.cmd_type_len =
4896                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4897
4898                         i++;
4899                         tx_desc++;
4900                         if (i == tx_ring->count) {
4901                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4902                                 i = 0;
4903                         }
4904                         tx_desc->read.olinfo_status = 0;
4905
4906                         dma += IGB_MAX_DATA_PER_TXD;
4907                         size -= IGB_MAX_DATA_PER_TXD;
4908
4909                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4910                 }
4911
4912                 if (likely(!data_len))
4913                         break;
4914
4915                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4916
4917                 i++;
4918                 tx_desc++;
4919                 if (i == tx_ring->count) {
4920                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4921                         i = 0;
4922                 }
4923                 tx_desc->read.olinfo_status = 0;
4924
4925                 size = skb_frag_size(frag);
4926                 data_len -= size;
4927
4928                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4929                                        size, DMA_TO_DEVICE);
4930
4931                 tx_buffer = &tx_ring->tx_buffer_info[i];
4932         }
4933
4934         /* write last descriptor with RS and EOP bits */
4935         cmd_type |= size | IGB_TXD_DCMD;
4936         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4937
4938         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4939
4940         /* set the timestamp */
4941         first->time_stamp = jiffies;
4942
4943         /* Force memory writes to complete before letting h/w know there
4944          * are new descriptors to fetch.  (Only applicable for weak-ordered
4945          * memory model archs, such as IA-64).
4946          *
4947          * We also need this memory barrier to make certain all of the
4948          * status bits have been updated before next_to_watch is written.
4949          */
4950         wmb();
4951
4952         /* set next_to_watch value indicating a packet is present */
4953         first->next_to_watch = tx_desc;
4954
4955         i++;
4956         if (i == tx_ring->count)
4957                 i = 0;
4958
4959         tx_ring->next_to_use = i;
4960
4961         /* Make sure there is space in the ring for the next send. */
4962         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4963
4964         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4965                 writel(i, tx_ring->tail);
4966
4967                 /* we need this if more than one processor can write to our tail
4968                  * at a time, it synchronizes IO on IA64/Altix systems
4969                  */
4970                 mmiowb();
4971         }
4972         return;
4973
4974 dma_error:
4975         dev_err(tx_ring->dev, "TX DMA map failed\n");
4976
4977         /* clear dma mappings for failed tx_buffer_info map */
4978         for (;;) {
4979                 tx_buffer = &tx_ring->tx_buffer_info[i];
4980                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4981                 if (tx_buffer == first)
4982                         break;
4983                 if (i == 0)
4984                         i = tx_ring->count;
4985                 i--;
4986         }
4987
4988         tx_ring->next_to_use = i;
4989 }
4990
4991 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4992                                 struct igb_ring *tx_ring)
4993 {
4994         struct igb_tx_buffer *first;
4995         int tso;
4996         u32 tx_flags = 0;
4997         unsigned short f;
4998         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4999         __be16 protocol = vlan_get_protocol(skb);
5000         u8 hdr_len = 0;
5001
5002         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5003          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5004          *       + 2 desc gap to keep tail from touching head,
5005          *       + 1 desc for context descriptor,
5006          * otherwise try next time
5007          */
5008         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5009                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5010
5011         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5012                 /* this is a hard error */
5013                 return NETDEV_TX_BUSY;
5014         }
5015
5016         /* record the location of the first descriptor for this packet */
5017         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5018         first->skb = skb;
5019         first->bytecount = skb->len;
5020         first->gso_segs = 1;
5021
5022         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5023                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5024
5025                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5026                                            &adapter->state)) {
5027                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5028                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5029
5030                         adapter->ptp_tx_skb = skb_get(skb);
5031                         adapter->ptp_tx_start = jiffies;
5032                         if (adapter->hw.mac.type == e1000_82576)
5033                                 schedule_work(&adapter->ptp_tx_work);
5034                 }
5035         }
5036
5037         skb_tx_timestamp(skb);
5038
5039         if (skb_vlan_tag_present(skb)) {
5040                 tx_flags |= IGB_TX_FLAGS_VLAN;
5041                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5042         }
5043
5044         /* record initial flags and protocol */
5045         first->tx_flags = tx_flags;
5046         first->protocol = protocol;
5047
5048         tso = igb_tso(tx_ring, first, &hdr_len);
5049         if (tso < 0)
5050                 goto out_drop;
5051         else if (!tso)
5052                 igb_tx_csum(tx_ring, first);
5053
5054         igb_tx_map(tx_ring, first, hdr_len);
5055
5056         return NETDEV_TX_OK;
5057
5058 out_drop:
5059         igb_unmap_and_free_tx_resource(tx_ring, first);
5060
5061         return NETDEV_TX_OK;
5062 }
5063
5064 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5065                                                     struct sk_buff *skb)
5066 {
5067         unsigned int r_idx = skb->queue_mapping;
5068
5069         if (r_idx >= adapter->num_tx_queues)
5070                 r_idx = r_idx % adapter->num_tx_queues;
5071
5072         return adapter->tx_ring[r_idx];
5073 }
5074
5075 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5076                                   struct net_device *netdev)
5077 {
5078         struct igb_adapter *adapter = netdev_priv(netdev);
5079
5080         if (test_bit(__IGB_DOWN, &adapter->state)) {
5081                 dev_kfree_skb_any(skb);
5082                 return NETDEV_TX_OK;
5083         }
5084
5085         if (skb->len <= 0) {
5086                 dev_kfree_skb_any(skb);
5087                 return NETDEV_TX_OK;
5088         }
5089
5090         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5091          * in order to meet this minimum size requirement.
5092          */
5093         if (skb_put_padto(skb, 17))
5094                 return NETDEV_TX_OK;
5095
5096         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5097 }
5098
5099 /**
5100  *  igb_tx_timeout - Respond to a Tx Hang
5101  *  @netdev: network interface device structure
5102  **/
5103 static void igb_tx_timeout(struct net_device *netdev)
5104 {
5105         struct igb_adapter *adapter = netdev_priv(netdev);
5106         struct e1000_hw *hw = &adapter->hw;
5107
5108         /* Do the reset outside of interrupt context */
5109         adapter->tx_timeout_count++;
5110
5111         if (hw->mac.type >= e1000_82580)
5112                 hw->dev_spec._82575.global_device_reset = true;
5113
5114         schedule_work(&adapter->reset_task);
5115         wr32(E1000_EICS,
5116              (adapter->eims_enable_mask & ~adapter->eims_other));
5117 }
5118
5119 static void igb_reset_task(struct work_struct *work)
5120 {
5121         struct igb_adapter *adapter;
5122         adapter = container_of(work, struct igb_adapter, reset_task);
5123
5124         igb_dump(adapter);
5125         netdev_err(adapter->netdev, "Reset adapter\n");
5126         igb_reinit_locked(adapter);
5127 }
5128
5129 /**
5130  *  igb_get_stats64 - Get System Network Statistics
5131  *  @netdev: network interface device structure
5132  *  @stats: rtnl_link_stats64 pointer
5133  **/
5134 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5135                                                 struct rtnl_link_stats64 *stats)
5136 {
5137         struct igb_adapter *adapter = netdev_priv(netdev);
5138
5139         spin_lock(&adapter->stats64_lock);
5140         igb_update_stats(adapter, &adapter->stats64);
5141         memcpy(stats, &adapter->stats64, sizeof(*stats));
5142         spin_unlock(&adapter->stats64_lock);
5143
5144         return stats;
5145 }
5146
5147 /**
5148  *  igb_change_mtu - Change the Maximum Transfer Unit
5149  *  @netdev: network interface device structure
5150  *  @new_mtu: new value for maximum frame size
5151  *
5152  *  Returns 0 on success, negative on failure
5153  **/
5154 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5155 {
5156         struct igb_adapter *adapter = netdev_priv(netdev);
5157         struct pci_dev *pdev = adapter->pdev;
5158         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5159
5160         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5161                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5162                 return -EINVAL;
5163         }
5164
5165 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5166         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5167                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5168                 return -EINVAL;
5169         }
5170
5171         /* adjust max frame to be at least the size of a standard frame */
5172         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5173                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5174
5175         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5176                 usleep_range(1000, 2000);
5177
5178         /* igb_down has a dependency on max_frame_size */
5179         adapter->max_frame_size = max_frame;
5180
5181         if (netif_running(netdev))
5182                 igb_down(adapter);
5183
5184         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5185                  netdev->mtu, new_mtu);
5186         netdev->mtu = new_mtu;
5187
5188         if (netif_running(netdev))
5189                 igb_up(adapter);
5190         else
5191                 igb_reset(adapter);
5192
5193         clear_bit(__IGB_RESETTING, &adapter->state);
5194
5195         return 0;
5196 }
5197
5198 /**
5199  *  igb_update_stats - Update the board statistics counters
5200  *  @adapter: board private structure
5201  **/
5202 void igb_update_stats(struct igb_adapter *adapter,
5203                       struct rtnl_link_stats64 *net_stats)
5204 {
5205         struct e1000_hw *hw = &adapter->hw;
5206         struct pci_dev *pdev = adapter->pdev;
5207         u32 reg, mpc;
5208         int i;
5209         u64 bytes, packets;
5210         unsigned int start;
5211         u64 _bytes, _packets;
5212
5213         /* Prevent stats update while adapter is being reset, or if the pci
5214          * connection is down.
5215          */
5216         if (adapter->link_speed == 0)
5217                 return;
5218         if (pci_channel_offline(pdev))
5219                 return;
5220
5221         bytes = 0;
5222         packets = 0;
5223
5224         rcu_read_lock();
5225         for (i = 0; i < adapter->num_rx_queues; i++) {
5226                 struct igb_ring *ring = adapter->rx_ring[i];
5227                 u32 rqdpc = rd32(E1000_RQDPC(i));
5228                 if (hw->mac.type >= e1000_i210)
5229                         wr32(E1000_RQDPC(i), 0);
5230
5231                 if (rqdpc) {
5232                         ring->rx_stats.drops += rqdpc;
5233                         net_stats->rx_fifo_errors += rqdpc;
5234                 }
5235
5236                 do {
5237                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5238                         _bytes = ring->rx_stats.bytes;
5239                         _packets = ring->rx_stats.packets;
5240                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5241                 bytes += _bytes;
5242                 packets += _packets;
5243         }
5244
5245         net_stats->rx_bytes = bytes;
5246         net_stats->rx_packets = packets;
5247
5248         bytes = 0;
5249         packets = 0;
5250         for (i = 0; i < adapter->num_tx_queues; i++) {
5251                 struct igb_ring *ring = adapter->tx_ring[i];
5252                 do {
5253                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5254                         _bytes = ring->tx_stats.bytes;
5255                         _packets = ring->tx_stats.packets;
5256                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5257                 bytes += _bytes;
5258                 packets += _packets;
5259         }
5260         net_stats->tx_bytes = bytes;
5261         net_stats->tx_packets = packets;
5262         rcu_read_unlock();
5263
5264         /* read stats registers */
5265         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5266         adapter->stats.gprc += rd32(E1000_GPRC);
5267         adapter->stats.gorc += rd32(E1000_GORCL);
5268         rd32(E1000_GORCH); /* clear GORCL */
5269         adapter->stats.bprc += rd32(E1000_BPRC);
5270         adapter->stats.mprc += rd32(E1000_MPRC);
5271         adapter->stats.roc += rd32(E1000_ROC);
5272
5273         adapter->stats.prc64 += rd32(E1000_PRC64);
5274         adapter->stats.prc127 += rd32(E1000_PRC127);
5275         adapter->stats.prc255 += rd32(E1000_PRC255);
5276         adapter->stats.prc511 += rd32(E1000_PRC511);
5277         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5278         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5279         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5280         adapter->stats.sec += rd32(E1000_SEC);
5281
5282         mpc = rd32(E1000_MPC);
5283         adapter->stats.mpc += mpc;
5284         net_stats->rx_fifo_errors += mpc;
5285         adapter->stats.scc += rd32(E1000_SCC);
5286         adapter->stats.ecol += rd32(E1000_ECOL);
5287         adapter->stats.mcc += rd32(E1000_MCC);
5288         adapter->stats.latecol += rd32(E1000_LATECOL);
5289         adapter->stats.dc += rd32(E1000_DC);
5290         adapter->stats.rlec += rd32(E1000_RLEC);
5291         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5292         adapter->stats.xontxc += rd32(E1000_XONTXC);
5293         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5294         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5295         adapter->stats.fcruc += rd32(E1000_FCRUC);
5296         adapter->stats.gptc += rd32(E1000_GPTC);
5297         adapter->stats.gotc += rd32(E1000_GOTCL);
5298         rd32(E1000_GOTCH); /* clear GOTCL */
5299         adapter->stats.rnbc += rd32(E1000_RNBC);
5300         adapter->stats.ruc += rd32(E1000_RUC);
5301         adapter->stats.rfc += rd32(E1000_RFC);
5302         adapter->stats.rjc += rd32(E1000_RJC);
5303         adapter->stats.tor += rd32(E1000_TORH);
5304         adapter->stats.tot += rd32(E1000_TOTH);
5305         adapter->stats.tpr += rd32(E1000_TPR);
5306
5307         adapter->stats.ptc64 += rd32(E1000_PTC64);
5308         adapter->stats.ptc127 += rd32(E1000_PTC127);
5309         adapter->stats.ptc255 += rd32(E1000_PTC255);
5310         adapter->stats.ptc511 += rd32(E1000_PTC511);
5311         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5312         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5313
5314         adapter->stats.mptc += rd32(E1000_MPTC);
5315         adapter->stats.bptc += rd32(E1000_BPTC);
5316
5317         adapter->stats.tpt += rd32(E1000_TPT);
5318         adapter->stats.colc += rd32(E1000_COLC);
5319
5320         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5321         /* read internal phy specific stats */
5322         reg = rd32(E1000_CTRL_EXT);
5323         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5324                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5325
5326                 /* this stat has invalid values on i210/i211 */
5327                 if ((hw->mac.type != e1000_i210) &&
5328                     (hw->mac.type != e1000_i211))
5329                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5330         }
5331
5332         adapter->stats.tsctc += rd32(E1000_TSCTC);
5333         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5334
5335         adapter->stats.iac += rd32(E1000_IAC);
5336         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5337         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5338         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5339         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5340         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5341         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5342         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5343         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5344
5345         /* Fill out the OS statistics structure */
5346         net_stats->multicast = adapter->stats.mprc;
5347         net_stats->collisions = adapter->stats.colc;
5348
5349         /* Rx Errors */
5350
5351         /* RLEC on some newer hardware can be incorrect so build
5352          * our own version based on RUC and ROC
5353          */
5354         net_stats->rx_errors = adapter->stats.rxerrc +
5355                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5356                 adapter->stats.ruc + adapter->stats.roc +
5357                 adapter->stats.cexterr;
5358         net_stats->rx_length_errors = adapter->stats.ruc +
5359                                       adapter->stats.roc;
5360         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5361         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5362         net_stats->rx_missed_errors = adapter->stats.mpc;
5363
5364         /* Tx Errors */
5365         net_stats->tx_errors = adapter->stats.ecol +
5366                                adapter->stats.latecol;
5367         net_stats->tx_aborted_errors = adapter->stats.ecol;
5368         net_stats->tx_window_errors = adapter->stats.latecol;
5369         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5370
5371         /* Tx Dropped needs to be maintained elsewhere */
5372
5373         /* Management Stats */
5374         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5375         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5376         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5377
5378         /* OS2BMC Stats */
5379         reg = rd32(E1000_MANC);
5380         if (reg & E1000_MANC_EN_BMC2OS) {
5381                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5382                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5383                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5384                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5385         }
5386 }
5387
5388 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5389 {
5390         struct e1000_hw *hw = &adapter->hw;
5391         struct ptp_clock_event event;
5392         struct timespec ts;
5393         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5394
5395         if (tsicr & TSINTR_SYS_WRAP) {
5396                 event.type = PTP_CLOCK_PPS;
5397                 if (adapter->ptp_caps.pps)
5398                         ptp_clock_event(adapter->ptp_clock, &event);
5399                 else
5400                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5401                 ack |= TSINTR_SYS_WRAP;
5402         }
5403
5404         if (tsicr & E1000_TSICR_TXTS) {
5405                 /* retrieve hardware timestamp */
5406                 schedule_work(&adapter->ptp_tx_work);
5407                 ack |= E1000_TSICR_TXTS;
5408         }
5409
5410         if (tsicr & TSINTR_TT0) {
5411                 spin_lock(&adapter->tmreg_lock);
5412                 ts = timespec_add(adapter->perout[0].start,
5413                                   adapter->perout[0].period);
5414                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5415                 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5416                 tsauxc = rd32(E1000_TSAUXC);
5417                 tsauxc |= TSAUXC_EN_TT0;
5418                 wr32(E1000_TSAUXC, tsauxc);
5419                 adapter->perout[0].start = ts;
5420                 spin_unlock(&adapter->tmreg_lock);
5421                 ack |= TSINTR_TT0;
5422         }
5423
5424         if (tsicr & TSINTR_TT1) {
5425                 spin_lock(&adapter->tmreg_lock);
5426                 ts = timespec_add(adapter->perout[1].start,
5427                                   adapter->perout[1].period);
5428                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5429                 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5430                 tsauxc = rd32(E1000_TSAUXC);
5431                 tsauxc |= TSAUXC_EN_TT1;
5432                 wr32(E1000_TSAUXC, tsauxc);
5433                 adapter->perout[1].start = ts;
5434                 spin_unlock(&adapter->tmreg_lock);
5435                 ack |= TSINTR_TT1;
5436         }
5437
5438         if (tsicr & TSINTR_AUTT0) {
5439                 nsec = rd32(E1000_AUXSTMPL0);
5440                 sec  = rd32(E1000_AUXSTMPH0);
5441                 event.type = PTP_CLOCK_EXTTS;
5442                 event.index = 0;
5443                 event.timestamp = sec * 1000000000ULL + nsec;
5444                 ptp_clock_event(adapter->ptp_clock, &event);
5445                 ack |= TSINTR_AUTT0;
5446         }
5447
5448         if (tsicr & TSINTR_AUTT1) {
5449                 nsec = rd32(E1000_AUXSTMPL1);
5450                 sec  = rd32(E1000_AUXSTMPH1);
5451                 event.type = PTP_CLOCK_EXTTS;
5452                 event.index = 1;
5453                 event.timestamp = sec * 1000000000ULL + nsec;
5454                 ptp_clock_event(adapter->ptp_clock, &event);
5455                 ack |= TSINTR_AUTT1;
5456         }
5457
5458         /* acknowledge the interrupts */
5459         wr32(E1000_TSICR, ack);
5460 }
5461
5462 static irqreturn_t igb_msix_other(int irq, void *data)
5463 {
5464         struct igb_adapter *adapter = data;
5465         struct e1000_hw *hw = &adapter->hw;
5466         u32 icr = rd32(E1000_ICR);
5467         /* reading ICR causes bit 31 of EICR to be cleared */
5468
5469         if (icr & E1000_ICR_DRSTA)
5470                 schedule_work(&adapter->reset_task);
5471
5472         if (icr & E1000_ICR_DOUTSYNC) {
5473                 /* HW is reporting DMA is out of sync */
5474                 adapter->stats.doosync++;
5475                 /* The DMA Out of Sync is also indication of a spoof event
5476                  * in IOV mode. Check the Wrong VM Behavior register to
5477                  * see if it is really a spoof event.
5478                  */
5479                 igb_check_wvbr(adapter);
5480         }
5481
5482         /* Check for a mailbox event */
5483         if (icr & E1000_ICR_VMMB)
5484                 igb_msg_task(adapter);
5485
5486         if (icr & E1000_ICR_LSC) {
5487                 hw->mac.get_link_status = 1;
5488                 /* guard against interrupt when we're going down */
5489                 if (!test_bit(__IGB_DOWN, &adapter->state))
5490                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5491         }
5492
5493         if (icr & E1000_ICR_TS)
5494                 igb_tsync_interrupt(adapter);
5495
5496         wr32(E1000_EIMS, adapter->eims_other);
5497
5498         return IRQ_HANDLED;
5499 }
5500
5501 static void igb_write_itr(struct igb_q_vector *q_vector)
5502 {
5503         struct igb_adapter *adapter = q_vector->adapter;
5504         u32 itr_val = q_vector->itr_val & 0x7FFC;
5505
5506         if (!q_vector->set_itr)
5507                 return;
5508
5509         if (!itr_val)
5510                 itr_val = 0x4;
5511
5512         if (adapter->hw.mac.type == e1000_82575)
5513                 itr_val |= itr_val << 16;
5514         else
5515                 itr_val |= E1000_EITR_CNT_IGNR;
5516
5517         writel(itr_val, q_vector->itr_register);
5518         q_vector->set_itr = 0;
5519 }
5520
5521 static irqreturn_t igb_msix_ring(int irq, void *data)
5522 {
5523         struct igb_q_vector *q_vector = data;
5524
5525         /* Write the ITR value calculated from the previous interrupt. */
5526         igb_write_itr(q_vector);
5527
5528         napi_schedule(&q_vector->napi);
5529
5530         return IRQ_HANDLED;
5531 }
5532
5533 #ifdef CONFIG_IGB_DCA
5534 static void igb_update_tx_dca(struct igb_adapter *adapter,
5535                               struct igb_ring *tx_ring,
5536                               int cpu)
5537 {
5538         struct e1000_hw *hw = &adapter->hw;
5539         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5540
5541         if (hw->mac.type != e1000_82575)
5542                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5543
5544         /* We can enable relaxed ordering for reads, but not writes when
5545          * DCA is enabled.  This is due to a known issue in some chipsets
5546          * which will cause the DCA tag to be cleared.
5547          */
5548         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5549                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5550                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5551
5552         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5553 }
5554
5555 static void igb_update_rx_dca(struct igb_adapter *adapter,
5556                               struct igb_ring *rx_ring,
5557                               int cpu)
5558 {
5559         struct e1000_hw *hw = &adapter->hw;
5560         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5561
5562         if (hw->mac.type != e1000_82575)
5563                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5564
5565         /* We can enable relaxed ordering for reads, but not writes when
5566          * DCA is enabled.  This is due to a known issue in some chipsets
5567          * which will cause the DCA tag to be cleared.
5568          */
5569         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5570                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5571
5572         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5573 }
5574
5575 static void igb_update_dca(struct igb_q_vector *q_vector)
5576 {
5577         struct igb_adapter *adapter = q_vector->adapter;
5578         int cpu = get_cpu();
5579
5580         if (q_vector->cpu == cpu)
5581                 goto out_no_update;
5582
5583         if (q_vector->tx.ring)
5584                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5585
5586         if (q_vector->rx.ring)
5587                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5588
5589         q_vector->cpu = cpu;
5590 out_no_update:
5591         put_cpu();
5592 }
5593
5594 static void igb_setup_dca(struct igb_adapter *adapter)
5595 {
5596         struct e1000_hw *hw = &adapter->hw;
5597         int i;
5598
5599         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5600                 return;
5601
5602         /* Always use CB2 mode, difference is masked in the CB driver. */
5603         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5604
5605         for (i = 0; i < adapter->num_q_vectors; i++) {
5606                 adapter->q_vector[i]->cpu = -1;
5607                 igb_update_dca(adapter->q_vector[i]);
5608         }
5609 }
5610
5611 static int __igb_notify_dca(struct device *dev, void *data)
5612 {
5613         struct net_device *netdev = dev_get_drvdata(dev);
5614         struct igb_adapter *adapter = netdev_priv(netdev);
5615         struct pci_dev *pdev = adapter->pdev;
5616         struct e1000_hw *hw = &adapter->hw;
5617         unsigned long event = *(unsigned long *)data;
5618
5619         switch (event) {
5620         case DCA_PROVIDER_ADD:
5621                 /* if already enabled, don't do it again */
5622                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5623                         break;
5624                 if (dca_add_requester(dev) == 0) {
5625                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5626                         dev_info(&pdev->dev, "DCA enabled\n");
5627                         igb_setup_dca(adapter);
5628                         break;
5629                 }
5630                 /* Fall Through since DCA is disabled. */
5631         case DCA_PROVIDER_REMOVE:
5632                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5633                         /* without this a class_device is left
5634                          * hanging around in the sysfs model
5635                          */
5636                         dca_remove_requester(dev);
5637                         dev_info(&pdev->dev, "DCA disabled\n");
5638                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5639                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5640                 }
5641                 break;
5642         }
5643
5644         return 0;
5645 }
5646
5647 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5648                           void *p)
5649 {
5650         int ret_val;
5651
5652         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5653                                          __igb_notify_dca);
5654
5655         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5656 }
5657 #endif /* CONFIG_IGB_DCA */
5658
5659 #ifdef CONFIG_PCI_IOV
5660 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5661 {
5662         unsigned char mac_addr[ETH_ALEN];
5663
5664         eth_zero_addr(mac_addr);
5665         igb_set_vf_mac(adapter, vf, mac_addr);
5666
5667         /* By default spoof check is enabled for all VFs */
5668         adapter->vf_data[vf].spoofchk_enabled = true;
5669
5670         return 0;
5671 }
5672
5673 #endif
5674 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5675 {
5676         struct e1000_hw *hw = &adapter->hw;
5677         u32 ping;
5678         int i;
5679
5680         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5681                 ping = E1000_PF_CONTROL_MSG;
5682                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5683                         ping |= E1000_VT_MSGTYPE_CTS;
5684                 igb_write_mbx(hw, &ping, 1, i);
5685         }
5686 }
5687
5688 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5689 {
5690         struct e1000_hw *hw = &adapter->hw;
5691         u32 vmolr = rd32(E1000_VMOLR(vf));
5692         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5693
5694         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5695                             IGB_VF_FLAG_MULTI_PROMISC);
5696         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5697
5698         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5699                 vmolr |= E1000_VMOLR_MPME;
5700                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5701                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5702         } else {
5703                 /* if we have hashes and we are clearing a multicast promisc
5704                  * flag we need to write the hashes to the MTA as this step
5705                  * was previously skipped
5706                  */
5707                 if (vf_data->num_vf_mc_hashes > 30) {
5708                         vmolr |= E1000_VMOLR_MPME;
5709                 } else if (vf_data->num_vf_mc_hashes) {
5710                         int j;
5711
5712                         vmolr |= E1000_VMOLR_ROMPE;
5713                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5714                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5715                 }
5716         }
5717
5718         wr32(E1000_VMOLR(vf), vmolr);
5719
5720         /* there are flags left unprocessed, likely not supported */
5721         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5722                 return -EINVAL;
5723
5724         return 0;
5725 }
5726
5727 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5728                                   u32 *msgbuf, u32 vf)
5729 {
5730         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5731         u16 *hash_list = (u16 *)&msgbuf[1];
5732         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733         int i;
5734
5735         /* salt away the number of multicast addresses assigned
5736          * to this VF for later use to restore when the PF multi cast
5737          * list changes
5738          */
5739         vf_data->num_vf_mc_hashes = n;
5740
5741         /* only up to 30 hash values supported */
5742         if (n > 30)
5743                 n = 30;
5744
5745         /* store the hashes for later use */
5746         for (i = 0; i < n; i++)
5747                 vf_data->vf_mc_hashes[i] = hash_list[i];
5748
5749         /* Flush and reset the mta with the new values */
5750         igb_set_rx_mode(adapter->netdev);
5751
5752         return 0;
5753 }
5754
5755 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5756 {
5757         struct e1000_hw *hw = &adapter->hw;
5758         struct vf_data_storage *vf_data;
5759         int i, j;
5760
5761         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5762                 u32 vmolr = rd32(E1000_VMOLR(i));
5763
5764                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5765
5766                 vf_data = &adapter->vf_data[i];
5767
5768                 if ((vf_data->num_vf_mc_hashes > 30) ||
5769                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5770                         vmolr |= E1000_VMOLR_MPME;
5771                 } else if (vf_data->num_vf_mc_hashes) {
5772                         vmolr |= E1000_VMOLR_ROMPE;
5773                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5774                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5775                 }
5776                 wr32(E1000_VMOLR(i), vmolr);
5777         }
5778 }
5779
5780 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5781 {
5782         struct e1000_hw *hw = &adapter->hw;
5783         u32 pool_mask, reg, vid;
5784         int i;
5785
5786         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787
5788         /* Find the vlan filter for this id */
5789         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5790                 reg = rd32(E1000_VLVF(i));
5791
5792                 /* remove the vf from the pool */
5793                 reg &= ~pool_mask;
5794
5795                 /* if pool is empty then remove entry from vfta */
5796                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5797                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5798                         reg = 0;
5799                         vid = reg & E1000_VLVF_VLANID_MASK;
5800                         igb_vfta_set(hw, vid, false);
5801                 }
5802
5803                 wr32(E1000_VLVF(i), reg);
5804         }
5805
5806         adapter->vf_data[vf].vlans_enabled = 0;
5807 }
5808
5809 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5810 {
5811         struct e1000_hw *hw = &adapter->hw;
5812         u32 reg, i;
5813
5814         /* The vlvf table only exists on 82576 hardware and newer */
5815         if (hw->mac.type < e1000_82576)
5816                 return -1;
5817
5818         /* we only need to do this if VMDq is enabled */
5819         if (!adapter->vfs_allocated_count)
5820                 return -1;
5821
5822         /* Find the vlan filter for this id */
5823         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5824                 reg = rd32(E1000_VLVF(i));
5825                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5826                     vid == (reg & E1000_VLVF_VLANID_MASK))
5827                         break;
5828         }
5829
5830         if (add) {
5831                 if (i == E1000_VLVF_ARRAY_SIZE) {
5832                         /* Did not find a matching VLAN ID entry that was
5833                          * enabled.  Search for a free filter entry, i.e.
5834                          * one without the enable bit set
5835                          */
5836                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5837                                 reg = rd32(E1000_VLVF(i));
5838                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5839                                         break;
5840                         }
5841                 }
5842                 if (i < E1000_VLVF_ARRAY_SIZE) {
5843                         /* Found an enabled/available entry */
5844                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5845
5846                         /* if !enabled we need to set this up in vfta */
5847                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5848                                 /* add VID to filter table */
5849                                 igb_vfta_set(hw, vid, true);
5850                                 reg |= E1000_VLVF_VLANID_ENABLE;
5851                         }
5852                         reg &= ~E1000_VLVF_VLANID_MASK;
5853                         reg |= vid;
5854                         wr32(E1000_VLVF(i), reg);
5855
5856                         /* do not modify RLPML for PF devices */
5857                         if (vf >= adapter->vfs_allocated_count)
5858                                 return 0;
5859
5860                         if (!adapter->vf_data[vf].vlans_enabled) {
5861                                 u32 size;
5862
5863                                 reg = rd32(E1000_VMOLR(vf));
5864                                 size = reg & E1000_VMOLR_RLPML_MASK;
5865                                 size += 4;
5866                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5867                                 reg |= size;
5868                                 wr32(E1000_VMOLR(vf), reg);
5869                         }
5870
5871                         adapter->vf_data[vf].vlans_enabled++;
5872                 }
5873         } else {
5874                 if (i < E1000_VLVF_ARRAY_SIZE) {
5875                         /* remove vf from the pool */
5876                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5877                         /* if pool is empty then remove entry from vfta */
5878                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5879                                 reg = 0;
5880                                 igb_vfta_set(hw, vid, false);
5881                         }
5882                         wr32(E1000_VLVF(i), reg);
5883
5884                         /* do not modify RLPML for PF devices */
5885                         if (vf >= adapter->vfs_allocated_count)
5886                                 return 0;
5887
5888                         adapter->vf_data[vf].vlans_enabled--;
5889                         if (!adapter->vf_data[vf].vlans_enabled) {
5890                                 u32 size;
5891
5892                                 reg = rd32(E1000_VMOLR(vf));
5893                                 size = reg & E1000_VMOLR_RLPML_MASK;
5894                                 size -= 4;
5895                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5896                                 reg |= size;
5897                                 wr32(E1000_VMOLR(vf), reg);
5898                         }
5899                 }
5900         }
5901         return 0;
5902 }
5903
5904 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5905 {
5906         struct e1000_hw *hw = &adapter->hw;
5907
5908         if (vid)
5909                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5910         else
5911                 wr32(E1000_VMVIR(vf), 0);
5912 }
5913
5914 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5915                                int vf, u16 vlan, u8 qos)
5916 {
5917         int err = 0;
5918         struct igb_adapter *adapter = netdev_priv(netdev);
5919
5920         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5921                 return -EINVAL;
5922         if (vlan || qos) {
5923                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5924                 if (err)
5925                         goto out;
5926                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5927                 igb_set_vmolr(adapter, vf, !vlan);
5928                 adapter->vf_data[vf].pf_vlan = vlan;
5929                 adapter->vf_data[vf].pf_qos = qos;
5930                 dev_info(&adapter->pdev->dev,
5931                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5932                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5933                         dev_warn(&adapter->pdev->dev,
5934                                  "The VF VLAN has been set, but the PF device is not up.\n");
5935                         dev_warn(&adapter->pdev->dev,
5936                                  "Bring the PF device up before attempting to use the VF device.\n");
5937                 }
5938         } else {
5939                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5940                              false, vf);
5941                 igb_set_vmvir(adapter, vlan, vf);
5942                 igb_set_vmolr(adapter, vf, true);
5943                 adapter->vf_data[vf].pf_vlan = 0;
5944                 adapter->vf_data[vf].pf_qos = 0;
5945         }
5946 out:
5947         return err;
5948 }
5949
5950 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5951 {
5952         struct e1000_hw *hw = &adapter->hw;
5953         int i;
5954         u32 reg;
5955
5956         /* Find the vlan filter for this id */
5957         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5958                 reg = rd32(E1000_VLVF(i));
5959                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5960                     vid == (reg & E1000_VLVF_VLANID_MASK))
5961                         break;
5962         }
5963
5964         if (i >= E1000_VLVF_ARRAY_SIZE)
5965                 i = -1;
5966
5967         return i;
5968 }
5969
5970 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5971 {
5972         struct e1000_hw *hw = &adapter->hw;
5973         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5974         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5975         int err = 0;
5976
5977         /* If in promiscuous mode we need to make sure the PF also has
5978          * the VLAN filter set.
5979          */
5980         if (add && (adapter->netdev->flags & IFF_PROMISC))
5981                 err = igb_vlvf_set(adapter, vid, add,
5982                                    adapter->vfs_allocated_count);
5983         if (err)
5984                 goto out;
5985
5986         err = igb_vlvf_set(adapter, vid, add, vf);
5987
5988         if (err)
5989                 goto out;
5990
5991         /* Go through all the checks to see if the VLAN filter should
5992          * be wiped completely.
5993          */
5994         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5995                 u32 vlvf, bits;
5996                 int regndx = igb_find_vlvf_entry(adapter, vid);
5997
5998                 if (regndx < 0)
5999                         goto out;
6000                 /* See if any other pools are set for this VLAN filter
6001                  * entry other than the PF.
6002                  */
6003                 vlvf = bits = rd32(E1000_VLVF(regndx));
6004                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6005                               adapter->vfs_allocated_count);
6006                 /* If the filter was removed then ensure PF pool bit
6007                  * is cleared if the PF only added itself to the pool
6008                  * because the PF is in promiscuous mode.
6009                  */
6010                 if ((vlvf & VLAN_VID_MASK) == vid &&
6011                     !test_bit(vid, adapter->active_vlans) &&
6012                     !bits)
6013                         igb_vlvf_set(adapter, vid, add,
6014                                      adapter->vfs_allocated_count);
6015         }
6016
6017 out:
6018         return err;
6019 }
6020
6021 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6022 {
6023         /* clear flags - except flag that indicates PF has set the MAC */
6024         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6025         adapter->vf_data[vf].last_nack = jiffies;
6026
6027         /* reset offloads to defaults */
6028         igb_set_vmolr(adapter, vf, true);
6029
6030         /* reset vlans for device */
6031         igb_clear_vf_vfta(adapter, vf);
6032         if (adapter->vf_data[vf].pf_vlan)
6033                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6034                                     adapter->vf_data[vf].pf_vlan,
6035                                     adapter->vf_data[vf].pf_qos);
6036         else
6037                 igb_clear_vf_vfta(adapter, vf);
6038
6039         /* reset multicast table array for vf */
6040         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6041
6042         /* Flush and reset the mta with the new values */
6043         igb_set_rx_mode(adapter->netdev);
6044 }
6045
6046 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6047 {
6048         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6049
6050         /* clear mac address as we were hotplug removed/added */
6051         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6052                 eth_zero_addr(vf_mac);
6053
6054         /* process remaining reset events */
6055         igb_vf_reset(adapter, vf);
6056 }
6057
6058 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6059 {
6060         struct e1000_hw *hw = &adapter->hw;
6061         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6062         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6063         u32 reg, msgbuf[3];
6064         u8 *addr = (u8 *)(&msgbuf[1]);
6065
6066         /* process all the same items cleared in a function level reset */
6067         igb_vf_reset(adapter, vf);
6068
6069         /* set vf mac address */
6070         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6071
6072         /* enable transmit and receive for vf */
6073         reg = rd32(E1000_VFTE);
6074         wr32(E1000_VFTE, reg | (1 << vf));
6075         reg = rd32(E1000_VFRE);
6076         wr32(E1000_VFRE, reg | (1 << vf));
6077
6078         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6079
6080         /* reply to reset with ack and vf mac address */
6081         if (!is_zero_ether_addr(vf_mac)) {
6082                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6083                 memcpy(addr, vf_mac, ETH_ALEN);
6084         } else {
6085                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6086         }
6087         igb_write_mbx(hw, msgbuf, 3, vf);
6088 }
6089
6090 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6091 {
6092         /* The VF MAC Address is stored in a packed array of bytes
6093          * starting at the second 32 bit word of the msg array
6094          */
6095         unsigned char *addr = (char *)&msg[1];
6096         int err = -1;
6097
6098         if (is_valid_ether_addr(addr))
6099                 err = igb_set_vf_mac(adapter, vf, addr);
6100
6101         return err;
6102 }
6103
6104 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6105 {
6106         struct e1000_hw *hw = &adapter->hw;
6107         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6108         u32 msg = E1000_VT_MSGTYPE_NACK;
6109
6110         /* if device isn't clear to send it shouldn't be reading either */
6111         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6112             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6113                 igb_write_mbx(hw, &msg, 1, vf);
6114                 vf_data->last_nack = jiffies;
6115         }
6116 }
6117
6118 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6119 {
6120         struct pci_dev *pdev = adapter->pdev;
6121         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6122         struct e1000_hw *hw = &adapter->hw;
6123         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6124         s32 retval;
6125
6126         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6127
6128         if (retval) {
6129                 /* if receive failed revoke VF CTS stats and restart init */
6130                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6131                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6132                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6133                         return;
6134                 goto out;
6135         }
6136
6137         /* this is a message we already processed, do nothing */
6138         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6139                 return;
6140
6141         /* until the vf completes a reset it should not be
6142          * allowed to start any configuration.
6143          */
6144         if (msgbuf[0] == E1000_VF_RESET) {
6145                 igb_vf_reset_msg(adapter, vf);
6146                 return;
6147         }
6148
6149         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6150                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6151                         return;
6152                 retval = -1;
6153                 goto out;
6154         }
6155
6156         switch ((msgbuf[0] & 0xFFFF)) {
6157         case E1000_VF_SET_MAC_ADDR:
6158                 retval = -EINVAL;
6159                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6160                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6161                 else
6162                         dev_warn(&pdev->dev,
6163                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6164                                  vf);
6165                 break;
6166         case E1000_VF_SET_PROMISC:
6167                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6168                 break;
6169         case E1000_VF_SET_MULTICAST:
6170                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6171                 break;
6172         case E1000_VF_SET_LPE:
6173                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6174                 break;
6175         case E1000_VF_SET_VLAN:
6176                 retval = -1;
6177                 if (vf_data->pf_vlan)
6178                         dev_warn(&pdev->dev,
6179                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6180                                  vf);
6181                 else
6182                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6183                 break;
6184         default:
6185                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6186                 retval = -1;
6187                 break;
6188         }
6189
6190         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6191 out:
6192         /* notify the VF of the results of what it sent us */
6193         if (retval)
6194                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6195         else
6196                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6197
6198         igb_write_mbx(hw, msgbuf, 1, vf);
6199 }
6200
6201 static void igb_msg_task(struct igb_adapter *adapter)
6202 {
6203         struct e1000_hw *hw = &adapter->hw;
6204         u32 vf;
6205
6206         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6207                 /* process any reset requests */
6208                 if (!igb_check_for_rst(hw, vf))
6209                         igb_vf_reset_event(adapter, vf);
6210
6211                 /* process any messages pending */
6212                 if (!igb_check_for_msg(hw, vf))
6213                         igb_rcv_msg_from_vf(adapter, vf);
6214
6215                 /* process any acks */
6216                 if (!igb_check_for_ack(hw, vf))
6217                         igb_rcv_ack_from_vf(adapter, vf);
6218         }
6219 }
6220
6221 /**
6222  *  igb_set_uta - Set unicast filter table address
6223  *  @adapter: board private structure
6224  *
6225  *  The unicast table address is a register array of 32-bit registers.
6226  *  The table is meant to be used in a way similar to how the MTA is used
6227  *  however due to certain limitations in the hardware it is necessary to
6228  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6229  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6230  **/
6231 static void igb_set_uta(struct igb_adapter *adapter)
6232 {
6233         struct e1000_hw *hw = &adapter->hw;
6234         int i;
6235
6236         /* The UTA table only exists on 82576 hardware and newer */
6237         if (hw->mac.type < e1000_82576)
6238                 return;
6239
6240         /* we only need to do this if VMDq is enabled */
6241         if (!adapter->vfs_allocated_count)
6242                 return;
6243
6244         for (i = 0; i < hw->mac.uta_reg_count; i++)
6245                 array_wr32(E1000_UTA, i, ~0);
6246 }
6247
6248 /**
6249  *  igb_intr_msi - Interrupt Handler
6250  *  @irq: interrupt number
6251  *  @data: pointer to a network interface device structure
6252  **/
6253 static irqreturn_t igb_intr_msi(int irq, void *data)
6254 {
6255         struct igb_adapter *adapter = data;
6256         struct igb_q_vector *q_vector = adapter->q_vector[0];
6257         struct e1000_hw *hw = &adapter->hw;
6258         /* read ICR disables interrupts using IAM */
6259         u32 icr = rd32(E1000_ICR);
6260
6261         igb_write_itr(q_vector);
6262
6263         if (icr & E1000_ICR_DRSTA)
6264                 schedule_work(&adapter->reset_task);
6265
6266         if (icr & E1000_ICR_DOUTSYNC) {
6267                 /* HW is reporting DMA is out of sync */
6268                 adapter->stats.doosync++;
6269         }
6270
6271         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6272                 hw->mac.get_link_status = 1;
6273                 if (!test_bit(__IGB_DOWN, &adapter->state))
6274                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6275         }
6276
6277         if (icr & E1000_ICR_TS)
6278                 igb_tsync_interrupt(adapter);
6279
6280         napi_schedule(&q_vector->napi);
6281
6282         return IRQ_HANDLED;
6283 }
6284
6285 /**
6286  *  igb_intr - Legacy Interrupt Handler
6287  *  @irq: interrupt number
6288  *  @data: pointer to a network interface device structure
6289  **/
6290 static irqreturn_t igb_intr(int irq, void *data)
6291 {
6292         struct igb_adapter *adapter = data;
6293         struct igb_q_vector *q_vector = adapter->q_vector[0];
6294         struct e1000_hw *hw = &adapter->hw;
6295         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6296          * need for the IMC write
6297          */
6298         u32 icr = rd32(E1000_ICR);
6299
6300         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6301          * not set, then the adapter didn't send an interrupt
6302          */
6303         if (!(icr & E1000_ICR_INT_ASSERTED))
6304                 return IRQ_NONE;
6305
6306         igb_write_itr(q_vector);
6307
6308         if (icr & E1000_ICR_DRSTA)
6309                 schedule_work(&adapter->reset_task);
6310
6311         if (icr & E1000_ICR_DOUTSYNC) {
6312                 /* HW is reporting DMA is out of sync */
6313                 adapter->stats.doosync++;
6314         }
6315
6316         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6317                 hw->mac.get_link_status = 1;
6318                 /* guard against interrupt when we're going down */
6319                 if (!test_bit(__IGB_DOWN, &adapter->state))
6320                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6321         }
6322
6323         if (icr & E1000_ICR_TS)
6324                 igb_tsync_interrupt(adapter);
6325
6326         napi_schedule(&q_vector->napi);
6327
6328         return IRQ_HANDLED;
6329 }
6330
6331 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6332 {
6333         struct igb_adapter *adapter = q_vector->adapter;
6334         struct e1000_hw *hw = &adapter->hw;
6335
6336         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6337             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6338                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6339                         igb_set_itr(q_vector);
6340                 else
6341                         igb_update_ring_itr(q_vector);
6342         }
6343
6344         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6345                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6346                         wr32(E1000_EIMS, q_vector->eims_value);
6347                 else
6348                         igb_irq_enable(adapter);
6349         }
6350 }
6351
6352 /**
6353  *  igb_poll - NAPI Rx polling callback
6354  *  @napi: napi polling structure
6355  *  @budget: count of how many packets we should handle
6356  **/
6357 static int igb_poll(struct napi_struct *napi, int budget)
6358 {
6359         struct igb_q_vector *q_vector = container_of(napi,
6360                                                      struct igb_q_vector,
6361                                                      napi);
6362         bool clean_complete = true;
6363
6364 #ifdef CONFIG_IGB_DCA
6365         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6366                 igb_update_dca(q_vector);
6367 #endif
6368         if (q_vector->tx.ring)
6369                 clean_complete = igb_clean_tx_irq(q_vector);
6370
6371         if (q_vector->rx.ring)
6372                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6373
6374         /* If all work not completed, return budget and keep polling */
6375         if (!clean_complete)
6376                 return budget;
6377
6378         /* If not enough Rx work done, exit the polling mode */
6379         napi_complete(napi);
6380         igb_ring_irq_enable(q_vector);
6381
6382         return 0;
6383 }
6384
6385 /**
6386  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6387  *  @q_vector: pointer to q_vector containing needed info
6388  *
6389  *  returns true if ring is completely cleaned
6390  **/
6391 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6392 {
6393         struct igb_adapter *adapter = q_vector->adapter;
6394         struct igb_ring *tx_ring = q_vector->tx.ring;
6395         struct igb_tx_buffer *tx_buffer;
6396         union e1000_adv_tx_desc *tx_desc;
6397         unsigned int total_bytes = 0, total_packets = 0;
6398         unsigned int budget = q_vector->tx.work_limit;
6399         unsigned int i = tx_ring->next_to_clean;
6400
6401         if (test_bit(__IGB_DOWN, &adapter->state))
6402                 return true;
6403
6404         tx_buffer = &tx_ring->tx_buffer_info[i];
6405         tx_desc = IGB_TX_DESC(tx_ring, i);
6406         i -= tx_ring->count;
6407
6408         do {
6409                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6410
6411                 /* if next_to_watch is not set then there is no work pending */
6412                 if (!eop_desc)
6413                         break;
6414
6415                 /* prevent any other reads prior to eop_desc */
6416                 read_barrier_depends();
6417
6418                 /* if DD is not set pending work has not been completed */
6419                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6420                         break;
6421
6422                 /* clear next_to_watch to prevent false hangs */
6423                 tx_buffer->next_to_watch = NULL;
6424
6425                 /* update the statistics for this packet */
6426                 total_bytes += tx_buffer->bytecount;
6427                 total_packets += tx_buffer->gso_segs;
6428
6429                 /* free the skb */
6430                 dev_consume_skb_any(tx_buffer->skb);
6431
6432                 /* unmap skb header data */
6433                 dma_unmap_single(tx_ring->dev,
6434                                  dma_unmap_addr(tx_buffer, dma),
6435                                  dma_unmap_len(tx_buffer, len),
6436                                  DMA_TO_DEVICE);
6437
6438                 /* clear tx_buffer data */
6439                 tx_buffer->skb = NULL;
6440                 dma_unmap_len_set(tx_buffer, len, 0);
6441
6442                 /* clear last DMA location and unmap remaining buffers */
6443                 while (tx_desc != eop_desc) {
6444                         tx_buffer++;
6445                         tx_desc++;
6446                         i++;
6447                         if (unlikely(!i)) {
6448                                 i -= tx_ring->count;
6449                                 tx_buffer = tx_ring->tx_buffer_info;
6450                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6451                         }
6452
6453                         /* unmap any remaining paged data */
6454                         if (dma_unmap_len(tx_buffer, len)) {
6455                                 dma_unmap_page(tx_ring->dev,
6456                                                dma_unmap_addr(tx_buffer, dma),
6457                                                dma_unmap_len(tx_buffer, len),
6458                                                DMA_TO_DEVICE);
6459                                 dma_unmap_len_set(tx_buffer, len, 0);
6460                         }
6461                 }
6462
6463                 /* move us one more past the eop_desc for start of next pkt */
6464                 tx_buffer++;
6465                 tx_desc++;
6466                 i++;
6467                 if (unlikely(!i)) {
6468                         i -= tx_ring->count;
6469                         tx_buffer = tx_ring->tx_buffer_info;
6470                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6471                 }
6472
6473                 /* issue prefetch for next Tx descriptor */
6474                 prefetch(tx_desc);
6475
6476                 /* update budget accounting */
6477                 budget--;
6478         } while (likely(budget));
6479
6480         netdev_tx_completed_queue(txring_txq(tx_ring),
6481                                   total_packets, total_bytes);
6482         i += tx_ring->count;
6483         tx_ring->next_to_clean = i;
6484         u64_stats_update_begin(&tx_ring->tx_syncp);
6485         tx_ring->tx_stats.bytes += total_bytes;
6486         tx_ring->tx_stats.packets += total_packets;
6487         u64_stats_update_end(&tx_ring->tx_syncp);
6488         q_vector->tx.total_bytes += total_bytes;
6489         q_vector->tx.total_packets += total_packets;
6490
6491         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6492                 struct e1000_hw *hw = &adapter->hw;
6493
6494                 /* Detect a transmit hang in hardware, this serializes the
6495                  * check with the clearing of time_stamp and movement of i
6496                  */
6497                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6498                 if (tx_buffer->next_to_watch &&
6499                     time_after(jiffies, tx_buffer->time_stamp +
6500                                (adapter->tx_timeout_factor * HZ)) &&
6501                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6502
6503                         /* detected Tx unit hang */
6504                         dev_err(tx_ring->dev,
6505                                 "Detected Tx Unit Hang\n"
6506                                 "  Tx Queue             <%d>\n"
6507                                 "  TDH                  <%x>\n"
6508                                 "  TDT                  <%x>\n"
6509                                 "  next_to_use          <%x>\n"
6510                                 "  next_to_clean        <%x>\n"
6511                                 "buffer_info[next_to_clean]\n"
6512                                 "  time_stamp           <%lx>\n"
6513                                 "  next_to_watch        <%p>\n"
6514                                 "  jiffies              <%lx>\n"
6515                                 "  desc.status          <%x>\n",
6516                                 tx_ring->queue_index,
6517                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6518                                 readl(tx_ring->tail),
6519                                 tx_ring->next_to_use,
6520                                 tx_ring->next_to_clean,
6521                                 tx_buffer->time_stamp,
6522                                 tx_buffer->next_to_watch,
6523                                 jiffies,
6524                                 tx_buffer->next_to_watch->wb.status);
6525                         netif_stop_subqueue(tx_ring->netdev,
6526                                             tx_ring->queue_index);
6527
6528                         /* we are about to reset, no point in enabling stuff */
6529                         return true;
6530                 }
6531         }
6532
6533 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6534         if (unlikely(total_packets &&
6535             netif_carrier_ok(tx_ring->netdev) &&
6536             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6537                 /* Make sure that anybody stopping the queue after this
6538                  * sees the new next_to_clean.
6539                  */
6540                 smp_mb();
6541                 if (__netif_subqueue_stopped(tx_ring->netdev,
6542                                              tx_ring->queue_index) &&
6543                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6544                         netif_wake_subqueue(tx_ring->netdev,
6545                                             tx_ring->queue_index);
6546
6547                         u64_stats_update_begin(&tx_ring->tx_syncp);
6548                         tx_ring->tx_stats.restart_queue++;
6549                         u64_stats_update_end(&tx_ring->tx_syncp);
6550                 }
6551         }
6552
6553         return !!budget;
6554 }
6555
6556 /**
6557  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6558  *  @rx_ring: rx descriptor ring to store buffers on
6559  *  @old_buff: donor buffer to have page reused
6560  *
6561  *  Synchronizes page for reuse by the adapter
6562  **/
6563 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6564                               struct igb_rx_buffer *old_buff)
6565 {
6566         struct igb_rx_buffer *new_buff;
6567         u16 nta = rx_ring->next_to_alloc;
6568
6569         new_buff = &rx_ring->rx_buffer_info[nta];
6570
6571         /* update, and store next to alloc */
6572         nta++;
6573         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6574
6575         /* transfer page from old buffer to new buffer */
6576         *new_buff = *old_buff;
6577
6578         /* sync the buffer for use by the device */
6579         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6580                                          old_buff->page_offset,
6581                                          IGB_RX_BUFSZ,
6582                                          DMA_FROM_DEVICE);
6583 }
6584
6585 static inline bool igb_page_is_reserved(struct page *page)
6586 {
6587         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6588 }
6589
6590 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6591                                   struct page *page,
6592                                   unsigned int truesize)
6593 {
6594         /* avoid re-using remote pages */
6595         if (unlikely(igb_page_is_reserved(page)))
6596                 return false;
6597
6598 #if (PAGE_SIZE < 8192)
6599         /* if we are only owner of page we can reuse it */
6600         if (unlikely(page_count(page) != 1))
6601                 return false;
6602
6603         /* flip page offset to other buffer */
6604         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6605 #else
6606         /* move offset up to the next cache line */
6607         rx_buffer->page_offset += truesize;
6608
6609         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6610                 return false;
6611 #endif
6612
6613         /* Even if we own the page, we are not allowed to use atomic_set()
6614          * This would break get_page_unless_zero() users.
6615          */
6616         atomic_inc(&page->_count);
6617
6618         return true;
6619 }
6620
6621 /**
6622  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6623  *  @rx_ring: rx descriptor ring to transact packets on
6624  *  @rx_buffer: buffer containing page to add
6625  *  @rx_desc: descriptor containing length of buffer written by hardware
6626  *  @skb: sk_buff to place the data into
6627  *
6628  *  This function will add the data contained in rx_buffer->page to the skb.
6629  *  This is done either through a direct copy if the data in the buffer is
6630  *  less than the skb header size, otherwise it will just attach the page as
6631  *  a frag to the skb.
6632  *
6633  *  The function will then update the page offset if necessary and return
6634  *  true if the buffer can be reused by the adapter.
6635  **/
6636 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6637                             struct igb_rx_buffer *rx_buffer,
6638                             union e1000_adv_rx_desc *rx_desc,
6639                             struct sk_buff *skb)
6640 {
6641         struct page *page = rx_buffer->page;
6642         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6643         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6644 #if (PAGE_SIZE < 8192)
6645         unsigned int truesize = IGB_RX_BUFSZ;
6646 #else
6647         unsigned int truesize = SKB_DATA_ALIGN(size);
6648 #endif
6649         unsigned int pull_len;
6650
6651         if (unlikely(skb_is_nonlinear(skb)))
6652                 goto add_tail_frag;
6653
6654         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6655                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6656                 va += IGB_TS_HDR_LEN;
6657                 size -= IGB_TS_HDR_LEN;
6658         }
6659
6660         if (likely(size <= IGB_RX_HDR_LEN)) {
6661                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6662
6663                 /* page is not reserved, we can reuse buffer as-is */
6664                 if (likely(!igb_page_is_reserved(page)))
6665                         return true;
6666
6667                 /* this page cannot be reused so discard it */
6668                 __free_page(page);
6669                 return false;
6670         }
6671
6672         /* we need the header to contain the greater of either ETH_HLEN or
6673          * 60 bytes if the skb->len is less than 60 for skb_pad.
6674          */
6675         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6676
6677         /* align pull length to size of long to optimize memcpy performance */
6678         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6679
6680         /* update all of the pointers */
6681         va += pull_len;
6682         size -= pull_len;
6683
6684 add_tail_frag:
6685         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6686                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6687
6688         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6689 }
6690
6691 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6692                                            union e1000_adv_rx_desc *rx_desc,
6693                                            struct sk_buff *skb)
6694 {
6695         struct igb_rx_buffer *rx_buffer;
6696         struct page *page;
6697
6698         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6699         page = rx_buffer->page;
6700         prefetchw(page);
6701
6702         if (likely(!skb)) {
6703                 void *page_addr = page_address(page) +
6704                                   rx_buffer->page_offset;
6705
6706                 /* prefetch first cache line of first page */
6707                 prefetch(page_addr);
6708 #if L1_CACHE_BYTES < 128
6709                 prefetch(page_addr + L1_CACHE_BYTES);
6710 #endif
6711
6712                 /* allocate a skb to store the frags */
6713                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6714                 if (unlikely(!skb)) {
6715                         rx_ring->rx_stats.alloc_failed++;
6716                         return NULL;
6717                 }
6718
6719                 /* we will be copying header into skb->data in
6720                  * pskb_may_pull so it is in our interest to prefetch
6721                  * it now to avoid a possible cache miss
6722                  */
6723                 prefetchw(skb->data);
6724         }
6725
6726         /* we are reusing so sync this buffer for CPU use */
6727         dma_sync_single_range_for_cpu(rx_ring->dev,
6728                                       rx_buffer->dma,
6729                                       rx_buffer->page_offset,
6730                                       IGB_RX_BUFSZ,
6731                                       DMA_FROM_DEVICE);
6732
6733         /* pull page into skb */
6734         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6735                 /* hand second half of page back to the ring */
6736                 igb_reuse_rx_page(rx_ring, rx_buffer);
6737         } else {
6738                 /* we are not reusing the buffer so unmap it */
6739                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6740                                PAGE_SIZE, DMA_FROM_DEVICE);
6741         }
6742
6743         /* clear contents of rx_buffer */
6744         rx_buffer->page = NULL;
6745
6746         return skb;
6747 }
6748
6749 static inline void igb_rx_checksum(struct igb_ring *ring,
6750                                    union e1000_adv_rx_desc *rx_desc,
6751                                    struct sk_buff *skb)
6752 {
6753         skb_checksum_none_assert(skb);
6754
6755         /* Ignore Checksum bit is set */
6756         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6757                 return;
6758
6759         /* Rx checksum disabled via ethtool */
6760         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6761                 return;
6762
6763         /* TCP/UDP checksum error bit is set */
6764         if (igb_test_staterr(rx_desc,
6765                              E1000_RXDEXT_STATERR_TCPE |
6766                              E1000_RXDEXT_STATERR_IPE)) {
6767                 /* work around errata with sctp packets where the TCPE aka
6768                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6769                  * packets, (aka let the stack check the crc32c)
6770                  */
6771                 if (!((skb->len == 60) &&
6772                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6773                         u64_stats_update_begin(&ring->rx_syncp);
6774                         ring->rx_stats.csum_err++;
6775                         u64_stats_update_end(&ring->rx_syncp);
6776                 }
6777                 /* let the stack verify checksum errors */
6778                 return;
6779         }
6780         /* It must be a TCP or UDP packet with a valid checksum */
6781         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6782                                       E1000_RXD_STAT_UDPCS))
6783                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6784
6785         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6786                 le32_to_cpu(rx_desc->wb.upper.status_error));
6787 }
6788
6789 static inline void igb_rx_hash(struct igb_ring *ring,
6790                                union e1000_adv_rx_desc *rx_desc,
6791                                struct sk_buff *skb)
6792 {
6793         if (ring->netdev->features & NETIF_F_RXHASH)
6794                 skb_set_hash(skb,
6795                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6796                              PKT_HASH_TYPE_L3);
6797 }
6798
6799 /**
6800  *  igb_is_non_eop - process handling of non-EOP buffers
6801  *  @rx_ring: Rx ring being processed
6802  *  @rx_desc: Rx descriptor for current buffer
6803  *  @skb: current socket buffer containing buffer in progress
6804  *
6805  *  This function updates next to clean.  If the buffer is an EOP buffer
6806  *  this function exits returning false, otherwise it will place the
6807  *  sk_buff in the next buffer to be chained and return true indicating
6808  *  that this is in fact a non-EOP buffer.
6809  **/
6810 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6811                            union e1000_adv_rx_desc *rx_desc)
6812 {
6813         u32 ntc = rx_ring->next_to_clean + 1;
6814
6815         /* fetch, update, and store next to clean */
6816         ntc = (ntc < rx_ring->count) ? ntc : 0;
6817         rx_ring->next_to_clean = ntc;
6818
6819         prefetch(IGB_RX_DESC(rx_ring, ntc));
6820
6821         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6822                 return false;
6823
6824         return true;
6825 }
6826
6827 /**
6828  *  igb_cleanup_headers - Correct corrupted or empty headers
6829  *  @rx_ring: rx descriptor ring packet is being transacted on
6830  *  @rx_desc: pointer to the EOP Rx descriptor
6831  *  @skb: pointer to current skb being fixed
6832  *
6833  *  Address the case where we are pulling data in on pages only
6834  *  and as such no data is present in the skb header.
6835  *
6836  *  In addition if skb is not at least 60 bytes we need to pad it so that
6837  *  it is large enough to qualify as a valid Ethernet frame.
6838  *
6839  *  Returns true if an error was encountered and skb was freed.
6840  **/
6841 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6842                                 union e1000_adv_rx_desc *rx_desc,
6843                                 struct sk_buff *skb)
6844 {
6845         if (unlikely((igb_test_staterr(rx_desc,
6846                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6847                 struct net_device *netdev = rx_ring->netdev;
6848                 if (!(netdev->features & NETIF_F_RXALL)) {
6849                         dev_kfree_skb_any(skb);
6850                         return true;
6851                 }
6852         }
6853
6854         /* if eth_skb_pad returns an error the skb was freed */
6855         if (eth_skb_pad(skb))
6856                 return true;
6857
6858         return false;
6859 }
6860
6861 /**
6862  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6863  *  @rx_ring: rx descriptor ring packet is being transacted on
6864  *  @rx_desc: pointer to the EOP Rx descriptor
6865  *  @skb: pointer to current skb being populated
6866  *
6867  *  This function checks the ring, descriptor, and packet information in
6868  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6869  *  other fields within the skb.
6870  **/
6871 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6872                                    union e1000_adv_rx_desc *rx_desc,
6873                                    struct sk_buff *skb)
6874 {
6875         struct net_device *dev = rx_ring->netdev;
6876
6877         igb_rx_hash(rx_ring, rx_desc, skb);
6878
6879         igb_rx_checksum(rx_ring, rx_desc, skb);
6880
6881         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6882             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6883                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6884
6885         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6886             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6887                 u16 vid;
6888
6889                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6890                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6891                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6892                 else
6893                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6894
6895                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6896         }
6897
6898         skb_record_rx_queue(skb, rx_ring->queue_index);
6899
6900         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6901 }
6902
6903 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6904 {
6905         struct igb_ring *rx_ring = q_vector->rx.ring;
6906         struct sk_buff *skb = rx_ring->skb;
6907         unsigned int total_bytes = 0, total_packets = 0;
6908         u16 cleaned_count = igb_desc_unused(rx_ring);
6909
6910         while (likely(total_packets < budget)) {
6911                 union e1000_adv_rx_desc *rx_desc;
6912
6913                 /* return some buffers to hardware, one at a time is too slow */
6914                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6915                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6916                         cleaned_count = 0;
6917                 }
6918
6919                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6920
6921                 if (!rx_desc->wb.upper.status_error)
6922                         break;
6923
6924                 /* This memory barrier is needed to keep us from reading
6925                  * any other fields out of the rx_desc until we know the
6926                  * descriptor has been written back
6927                  */
6928                 dma_rmb();
6929
6930                 /* retrieve a buffer from the ring */
6931                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6932
6933                 /* exit if we failed to retrieve a buffer */
6934                 if (!skb)
6935                         break;
6936
6937                 cleaned_count++;
6938
6939                 /* fetch next buffer in frame if non-eop */
6940                 if (igb_is_non_eop(rx_ring, rx_desc))
6941                         continue;
6942
6943                 /* verify the packet layout is correct */
6944                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6945                         skb = NULL;
6946                         continue;
6947                 }
6948
6949                 /* probably a little skewed due to removing CRC */
6950                 total_bytes += skb->len;
6951
6952                 /* populate checksum, timestamp, VLAN, and protocol */
6953                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6954
6955                 napi_gro_receive(&q_vector->napi, skb);
6956
6957                 /* reset skb pointer */
6958                 skb = NULL;
6959
6960                 /* update budget accounting */
6961                 total_packets++;
6962         }
6963
6964         /* place incomplete frames back on ring for completion */
6965         rx_ring->skb = skb;
6966
6967         u64_stats_update_begin(&rx_ring->rx_syncp);
6968         rx_ring->rx_stats.packets += total_packets;
6969         rx_ring->rx_stats.bytes += total_bytes;
6970         u64_stats_update_end(&rx_ring->rx_syncp);
6971         q_vector->rx.total_packets += total_packets;
6972         q_vector->rx.total_bytes += total_bytes;
6973
6974         if (cleaned_count)
6975                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6976
6977         return total_packets < budget;
6978 }
6979
6980 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6981                                   struct igb_rx_buffer *bi)
6982 {
6983         struct page *page = bi->page;
6984         dma_addr_t dma;
6985
6986         /* since we are recycling buffers we should seldom need to alloc */
6987         if (likely(page))
6988                 return true;
6989
6990         /* alloc new page for storage */
6991         page = dev_alloc_page();
6992         if (unlikely(!page)) {
6993                 rx_ring->rx_stats.alloc_failed++;
6994                 return false;
6995         }
6996
6997         /* map page for use */
6998         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6999
7000         /* if mapping failed free memory back to system since
7001          * there isn't much point in holding memory we can't use
7002          */
7003         if (dma_mapping_error(rx_ring->dev, dma)) {
7004                 __free_page(page);
7005
7006                 rx_ring->rx_stats.alloc_failed++;
7007                 return false;
7008         }
7009
7010         bi->dma = dma;
7011         bi->page = page;
7012         bi->page_offset = 0;
7013
7014         return true;
7015 }
7016
7017 /**
7018  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7019  *  @adapter: address of board private structure
7020  **/
7021 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7022 {
7023         union e1000_adv_rx_desc *rx_desc;
7024         struct igb_rx_buffer *bi;
7025         u16 i = rx_ring->next_to_use;
7026
7027         /* nothing to do */
7028         if (!cleaned_count)
7029                 return;
7030
7031         rx_desc = IGB_RX_DESC(rx_ring, i);
7032         bi = &rx_ring->rx_buffer_info[i];
7033         i -= rx_ring->count;
7034
7035         do {
7036                 if (!igb_alloc_mapped_page(rx_ring, bi))
7037                         break;
7038
7039                 /* Refresh the desc even if buffer_addrs didn't change
7040                  * because each write-back erases this info.
7041                  */
7042                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7043
7044                 rx_desc++;
7045                 bi++;
7046                 i++;
7047                 if (unlikely(!i)) {
7048                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7049                         bi = rx_ring->rx_buffer_info;
7050                         i -= rx_ring->count;
7051                 }
7052
7053                 /* clear the status bits for the next_to_use descriptor */
7054                 rx_desc->wb.upper.status_error = 0;
7055
7056                 cleaned_count--;
7057         } while (cleaned_count);
7058
7059         i += rx_ring->count;
7060
7061         if (rx_ring->next_to_use != i) {
7062                 /* record the next descriptor to use */
7063                 rx_ring->next_to_use = i;
7064
7065                 /* update next to alloc since we have filled the ring */
7066                 rx_ring->next_to_alloc = i;
7067
7068                 /* Force memory writes to complete before letting h/w
7069                  * know there are new descriptors to fetch.  (Only
7070                  * applicable for weak-ordered memory model archs,
7071                  * such as IA-64).
7072                  */
7073                 wmb();
7074                 writel(i, rx_ring->tail);
7075         }
7076 }
7077
7078 /**
7079  * igb_mii_ioctl -
7080  * @netdev:
7081  * @ifreq:
7082  * @cmd:
7083  **/
7084 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7085 {
7086         struct igb_adapter *adapter = netdev_priv(netdev);
7087         struct mii_ioctl_data *data = if_mii(ifr);
7088
7089         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7090                 return -EOPNOTSUPP;
7091
7092         switch (cmd) {
7093         case SIOCGMIIPHY:
7094                 data->phy_id = adapter->hw.phy.addr;
7095                 break;
7096         case SIOCGMIIREG:
7097                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7098                                      &data->val_out))
7099                         return -EIO;
7100                 break;
7101         case SIOCSMIIREG:
7102         default:
7103                 return -EOPNOTSUPP;
7104         }
7105         return 0;
7106 }
7107
7108 /**
7109  * igb_ioctl -
7110  * @netdev:
7111  * @ifreq:
7112  * @cmd:
7113  **/
7114 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7115 {
7116         switch (cmd) {
7117         case SIOCGMIIPHY:
7118         case SIOCGMIIREG:
7119         case SIOCSMIIREG:
7120                 return igb_mii_ioctl(netdev, ifr, cmd);
7121         case SIOCGHWTSTAMP:
7122                 return igb_ptp_get_ts_config(netdev, ifr);
7123         case SIOCSHWTSTAMP:
7124                 return igb_ptp_set_ts_config(netdev, ifr);
7125         default:
7126                 return -EOPNOTSUPP;
7127         }
7128 }
7129
7130 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7131 {
7132         struct igb_adapter *adapter = hw->back;
7133
7134         pci_read_config_word(adapter->pdev, reg, value);
7135 }
7136
7137 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7138 {
7139         struct igb_adapter *adapter = hw->back;
7140
7141         pci_write_config_word(adapter->pdev, reg, *value);
7142 }
7143
7144 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7145 {
7146         struct igb_adapter *adapter = hw->back;
7147
7148         if (pcie_capability_read_word(adapter->pdev, reg, value))
7149                 return -E1000_ERR_CONFIG;
7150
7151         return 0;
7152 }
7153
7154 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7155 {
7156         struct igb_adapter *adapter = hw->back;
7157
7158         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7159                 return -E1000_ERR_CONFIG;
7160
7161         return 0;
7162 }
7163
7164 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7165 {
7166         struct igb_adapter *adapter = netdev_priv(netdev);
7167         struct e1000_hw *hw = &adapter->hw;
7168         u32 ctrl, rctl;
7169         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7170
7171         if (enable) {
7172                 /* enable VLAN tag insert/strip */
7173                 ctrl = rd32(E1000_CTRL);
7174                 ctrl |= E1000_CTRL_VME;
7175                 wr32(E1000_CTRL, ctrl);
7176
7177                 /* Disable CFI check */
7178                 rctl = rd32(E1000_RCTL);
7179                 rctl &= ~E1000_RCTL_CFIEN;
7180                 wr32(E1000_RCTL, rctl);
7181         } else {
7182                 /* disable VLAN tag insert/strip */
7183                 ctrl = rd32(E1000_CTRL);
7184                 ctrl &= ~E1000_CTRL_VME;
7185                 wr32(E1000_CTRL, ctrl);
7186         }
7187
7188         igb_rlpml_set(adapter);
7189 }
7190
7191 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7192                                __be16 proto, u16 vid)
7193 {
7194         struct igb_adapter *adapter = netdev_priv(netdev);
7195         struct e1000_hw *hw = &adapter->hw;
7196         int pf_id = adapter->vfs_allocated_count;
7197
7198         /* attempt to add filter to vlvf array */
7199         igb_vlvf_set(adapter, vid, true, pf_id);
7200
7201         /* add the filter since PF can receive vlans w/o entry in vlvf */
7202         igb_vfta_set(hw, vid, true);
7203
7204         set_bit(vid, adapter->active_vlans);
7205
7206         return 0;
7207 }
7208
7209 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7210                                 __be16 proto, u16 vid)
7211 {
7212         struct igb_adapter *adapter = netdev_priv(netdev);
7213         struct e1000_hw *hw = &adapter->hw;
7214         int pf_id = adapter->vfs_allocated_count;
7215         s32 err;
7216
7217         /* remove vlan from VLVF table array */
7218         err = igb_vlvf_set(adapter, vid, false, pf_id);
7219
7220         /* if vid was not present in VLVF just remove it from table */
7221         if (err)
7222                 igb_vfta_set(hw, vid, false);
7223
7224         clear_bit(vid, adapter->active_vlans);
7225
7226         return 0;
7227 }
7228
7229 static void igb_restore_vlan(struct igb_adapter *adapter)
7230 {
7231         u16 vid;
7232
7233         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7234
7235         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7236                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7237 }
7238
7239 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7240 {
7241         struct pci_dev *pdev = adapter->pdev;
7242         struct e1000_mac_info *mac = &adapter->hw.mac;
7243
7244         mac->autoneg = 0;
7245
7246         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7247          * for the switch() below to work
7248          */
7249         if ((spd & 1) || (dplx & ~1))
7250                 goto err_inval;
7251
7252         /* Fiber NIC's only allow 1000 gbps Full duplex
7253          * and 100Mbps Full duplex for 100baseFx sfp
7254          */
7255         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7256                 switch (spd + dplx) {
7257                 case SPEED_10 + DUPLEX_HALF:
7258                 case SPEED_10 + DUPLEX_FULL:
7259                 case SPEED_100 + DUPLEX_HALF:
7260                         goto err_inval;
7261                 default:
7262                         break;
7263                 }
7264         }
7265
7266         switch (spd + dplx) {
7267         case SPEED_10 + DUPLEX_HALF:
7268                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7269                 break;
7270         case SPEED_10 + DUPLEX_FULL:
7271                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7272                 break;
7273         case SPEED_100 + DUPLEX_HALF:
7274                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7275                 break;
7276         case SPEED_100 + DUPLEX_FULL:
7277                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7278                 break;
7279         case SPEED_1000 + DUPLEX_FULL:
7280                 mac->autoneg = 1;
7281                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7282                 break;
7283         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7284         default:
7285                 goto err_inval;
7286         }
7287
7288         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7289         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7290
7291         return 0;
7292
7293 err_inval:
7294         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7295         return -EINVAL;
7296 }
7297
7298 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7299                           bool runtime)
7300 {
7301         struct net_device *netdev = pci_get_drvdata(pdev);
7302         struct igb_adapter *adapter = netdev_priv(netdev);
7303         struct e1000_hw *hw = &adapter->hw;
7304         u32 ctrl, rctl, status;
7305         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7306 #ifdef CONFIG_PM
7307         int retval = 0;
7308 #endif
7309
7310         netif_device_detach(netdev);
7311
7312         if (netif_running(netdev))
7313                 __igb_close(netdev, true);
7314
7315         igb_clear_interrupt_scheme(adapter);
7316
7317 #ifdef CONFIG_PM
7318         retval = pci_save_state(pdev);
7319         if (retval)
7320                 return retval;
7321 #endif
7322
7323         status = rd32(E1000_STATUS);
7324         if (status & E1000_STATUS_LU)
7325                 wufc &= ~E1000_WUFC_LNKC;
7326
7327         if (wufc) {
7328                 igb_setup_rctl(adapter);
7329                 igb_set_rx_mode(netdev);
7330
7331                 /* turn on all-multi mode if wake on multicast is enabled */
7332                 if (wufc & E1000_WUFC_MC) {
7333                         rctl = rd32(E1000_RCTL);
7334                         rctl |= E1000_RCTL_MPE;
7335                         wr32(E1000_RCTL, rctl);
7336                 }
7337
7338                 ctrl = rd32(E1000_CTRL);
7339                 /* advertise wake from D3Cold */
7340                 #define E1000_CTRL_ADVD3WUC 0x00100000
7341                 /* phy power management enable */
7342                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7343                 ctrl |= E1000_CTRL_ADVD3WUC;
7344                 wr32(E1000_CTRL, ctrl);
7345
7346                 /* Allow time for pending master requests to run */
7347                 igb_disable_pcie_master(hw);
7348
7349                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7350                 wr32(E1000_WUFC, wufc);
7351         } else {
7352                 wr32(E1000_WUC, 0);
7353                 wr32(E1000_WUFC, 0);
7354         }
7355
7356         *enable_wake = wufc || adapter->en_mng_pt;
7357         if (!*enable_wake)
7358                 igb_power_down_link(adapter);
7359         else
7360                 igb_power_up_link(adapter);
7361
7362         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7363          * would have already happened in close and is redundant.
7364          */
7365         igb_release_hw_control(adapter);
7366
7367         pci_disable_device(pdev);
7368
7369         return 0;
7370 }
7371
7372 #ifdef CONFIG_PM
7373 #ifdef CONFIG_PM_SLEEP
7374 static int igb_suspend(struct device *dev)
7375 {
7376         int retval;
7377         bool wake;
7378         struct pci_dev *pdev = to_pci_dev(dev);
7379
7380         retval = __igb_shutdown(pdev, &wake, 0);
7381         if (retval)
7382                 return retval;
7383
7384         if (wake) {
7385                 pci_prepare_to_sleep(pdev);
7386         } else {
7387                 pci_wake_from_d3(pdev, false);
7388                 pci_set_power_state(pdev, PCI_D3hot);
7389         }
7390
7391         return 0;
7392 }
7393 #endif /* CONFIG_PM_SLEEP */
7394
7395 static int igb_resume(struct device *dev)
7396 {
7397         struct pci_dev *pdev = to_pci_dev(dev);
7398         struct net_device *netdev = pci_get_drvdata(pdev);
7399         struct igb_adapter *adapter = netdev_priv(netdev);
7400         struct e1000_hw *hw = &adapter->hw;
7401         u32 err;
7402
7403         pci_set_power_state(pdev, PCI_D0);
7404         pci_restore_state(pdev);
7405         pci_save_state(pdev);
7406
7407         if (!pci_device_is_present(pdev))
7408                 return -ENODEV;
7409         err = pci_enable_device_mem(pdev);
7410         if (err) {
7411                 dev_err(&pdev->dev,
7412                         "igb: Cannot enable PCI device from suspend\n");
7413                 return err;
7414         }
7415         pci_set_master(pdev);
7416
7417         pci_enable_wake(pdev, PCI_D3hot, 0);
7418         pci_enable_wake(pdev, PCI_D3cold, 0);
7419
7420         if (igb_init_interrupt_scheme(adapter, true)) {
7421                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7422                 rtnl_unlock();
7423                 return -ENOMEM;
7424         }
7425
7426         igb_reset(adapter);
7427
7428         /* let the f/w know that the h/w is now under the control of the
7429          * driver.
7430          */
7431         igb_get_hw_control(adapter);
7432
7433         wr32(E1000_WUS, ~0);
7434
7435         if (netdev->flags & IFF_UP) {
7436                 rtnl_lock();
7437                 err = __igb_open(netdev, true);
7438                 rtnl_unlock();
7439                 if (err)
7440                         return err;
7441         }
7442
7443         netif_device_attach(netdev);
7444         return 0;
7445 }
7446
7447 static int igb_runtime_idle(struct device *dev)
7448 {
7449         struct pci_dev *pdev = to_pci_dev(dev);
7450         struct net_device *netdev = pci_get_drvdata(pdev);
7451         struct igb_adapter *adapter = netdev_priv(netdev);
7452
7453         if (!igb_has_link(adapter))
7454                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7455
7456         return -EBUSY;
7457 }
7458
7459 static int igb_runtime_suspend(struct device *dev)
7460 {
7461         struct pci_dev *pdev = to_pci_dev(dev);
7462         int retval;
7463         bool wake;
7464
7465         retval = __igb_shutdown(pdev, &wake, 1);
7466         if (retval)
7467                 return retval;
7468
7469         if (wake) {
7470                 pci_prepare_to_sleep(pdev);
7471         } else {
7472                 pci_wake_from_d3(pdev, false);
7473                 pci_set_power_state(pdev, PCI_D3hot);
7474         }
7475
7476         return 0;
7477 }
7478
7479 static int igb_runtime_resume(struct device *dev)
7480 {
7481         return igb_resume(dev);
7482 }
7483 #endif /* CONFIG_PM */
7484
7485 static void igb_shutdown(struct pci_dev *pdev)
7486 {
7487         bool wake;
7488
7489         __igb_shutdown(pdev, &wake, 0);
7490
7491         if (system_state == SYSTEM_POWER_OFF) {
7492                 pci_wake_from_d3(pdev, wake);
7493                 pci_set_power_state(pdev, PCI_D3hot);
7494         }
7495 }
7496
7497 #ifdef CONFIG_PCI_IOV
7498 static int igb_sriov_reinit(struct pci_dev *dev)
7499 {
7500         struct net_device *netdev = pci_get_drvdata(dev);
7501         struct igb_adapter *adapter = netdev_priv(netdev);
7502         struct pci_dev *pdev = adapter->pdev;
7503
7504         rtnl_lock();
7505
7506         if (netif_running(netdev))
7507                 igb_close(netdev);
7508         else
7509                 igb_reset(adapter);
7510
7511         igb_clear_interrupt_scheme(adapter);
7512
7513         igb_init_queue_configuration(adapter);
7514
7515         if (igb_init_interrupt_scheme(adapter, true)) {
7516                 rtnl_unlock();
7517                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7518                 return -ENOMEM;
7519         }
7520
7521         if (netif_running(netdev))
7522                 igb_open(netdev);
7523
7524         rtnl_unlock();
7525
7526         return 0;
7527 }
7528
7529 static int igb_pci_disable_sriov(struct pci_dev *dev)
7530 {
7531         int err = igb_disable_sriov(dev);
7532
7533         if (!err)
7534                 err = igb_sriov_reinit(dev);
7535
7536         return err;
7537 }
7538
7539 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7540 {
7541         int err = igb_enable_sriov(dev, num_vfs);
7542
7543         if (err)
7544                 goto out;
7545
7546         err = igb_sriov_reinit(dev);
7547         if (!err)
7548                 return num_vfs;
7549
7550 out:
7551         return err;
7552 }
7553
7554 #endif
7555 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7556 {
7557 #ifdef CONFIG_PCI_IOV
7558         if (num_vfs == 0)
7559                 return igb_pci_disable_sriov(dev);
7560         else
7561                 return igb_pci_enable_sriov(dev, num_vfs);
7562 #endif
7563         return 0;
7564 }
7565
7566 #ifdef CONFIG_NET_POLL_CONTROLLER
7567 /* Polling 'interrupt' - used by things like netconsole to send skbs
7568  * without having to re-enable interrupts. It's not called while
7569  * the interrupt routine is executing.
7570  */
7571 static void igb_netpoll(struct net_device *netdev)
7572 {
7573         struct igb_adapter *adapter = netdev_priv(netdev);
7574         struct e1000_hw *hw = &adapter->hw;
7575         struct igb_q_vector *q_vector;
7576         int i;
7577
7578         for (i = 0; i < adapter->num_q_vectors; i++) {
7579                 q_vector = adapter->q_vector[i];
7580                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7581                         wr32(E1000_EIMC, q_vector->eims_value);
7582                 else
7583                         igb_irq_disable(adapter);
7584                 napi_schedule(&q_vector->napi);
7585         }
7586 }
7587 #endif /* CONFIG_NET_POLL_CONTROLLER */
7588
7589 /**
7590  *  igb_io_error_detected - called when PCI error is detected
7591  *  @pdev: Pointer to PCI device
7592  *  @state: The current pci connection state
7593  *
7594  *  This function is called after a PCI bus error affecting
7595  *  this device has been detected.
7596  **/
7597 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7598                                               pci_channel_state_t state)
7599 {
7600         struct net_device *netdev = pci_get_drvdata(pdev);
7601         struct igb_adapter *adapter = netdev_priv(netdev);
7602
7603         netif_device_detach(netdev);
7604
7605         if (state == pci_channel_io_perm_failure)
7606                 return PCI_ERS_RESULT_DISCONNECT;
7607
7608         if (netif_running(netdev))
7609                 igb_down(adapter);
7610         pci_disable_device(pdev);
7611
7612         /* Request a slot slot reset. */
7613         return PCI_ERS_RESULT_NEED_RESET;
7614 }
7615
7616 /**
7617  *  igb_io_slot_reset - called after the pci bus has been reset.
7618  *  @pdev: Pointer to PCI device
7619  *
7620  *  Restart the card from scratch, as if from a cold-boot. Implementation
7621  *  resembles the first-half of the igb_resume routine.
7622  **/
7623 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7624 {
7625         struct net_device *netdev = pci_get_drvdata(pdev);
7626         struct igb_adapter *adapter = netdev_priv(netdev);
7627         struct e1000_hw *hw = &adapter->hw;
7628         pci_ers_result_t result;
7629         int err;
7630
7631         if (pci_enable_device_mem(pdev)) {
7632                 dev_err(&pdev->dev,
7633                         "Cannot re-enable PCI device after reset.\n");
7634                 result = PCI_ERS_RESULT_DISCONNECT;
7635         } else {
7636                 pci_set_master(pdev);
7637                 pci_restore_state(pdev);
7638                 pci_save_state(pdev);
7639
7640                 pci_enable_wake(pdev, PCI_D3hot, 0);
7641                 pci_enable_wake(pdev, PCI_D3cold, 0);
7642
7643                 igb_reset(adapter);
7644                 wr32(E1000_WUS, ~0);
7645                 result = PCI_ERS_RESULT_RECOVERED;
7646         }
7647
7648         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7649         if (err) {
7650                 dev_err(&pdev->dev,
7651                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7652                         err);
7653                 /* non-fatal, continue */
7654         }
7655
7656         return result;
7657 }
7658
7659 /**
7660  *  igb_io_resume - called when traffic can start flowing again.
7661  *  @pdev: Pointer to PCI device
7662  *
7663  *  This callback is called when the error recovery driver tells us that
7664  *  its OK to resume normal operation. Implementation resembles the
7665  *  second-half of the igb_resume routine.
7666  */
7667 static void igb_io_resume(struct pci_dev *pdev)
7668 {
7669         struct net_device *netdev = pci_get_drvdata(pdev);
7670         struct igb_adapter *adapter = netdev_priv(netdev);
7671
7672         if (netif_running(netdev)) {
7673                 if (igb_up(adapter)) {
7674                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7675                         return;
7676                 }
7677         }
7678
7679         netif_device_attach(netdev);
7680
7681         /* let the f/w know that the h/w is now under the control of the
7682          * driver.
7683          */
7684         igb_get_hw_control(adapter);
7685 }
7686
7687 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7688                              u8 qsel)
7689 {
7690         u32 rar_low, rar_high;
7691         struct e1000_hw *hw = &adapter->hw;
7692
7693         /* HW expects these in little endian so we reverse the byte order
7694          * from network order (big endian) to little endian
7695          */
7696         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7697                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7698         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7699
7700         /* Indicate to hardware the Address is Valid. */
7701         rar_high |= E1000_RAH_AV;
7702
7703         if (hw->mac.type == e1000_82575)
7704                 rar_high |= E1000_RAH_POOL_1 * qsel;
7705         else
7706                 rar_high |= E1000_RAH_POOL_1 << qsel;
7707
7708         wr32(E1000_RAL(index), rar_low);
7709         wrfl();
7710         wr32(E1000_RAH(index), rar_high);
7711         wrfl();
7712 }
7713
7714 static int igb_set_vf_mac(struct igb_adapter *adapter,
7715                           int vf, unsigned char *mac_addr)
7716 {
7717         struct e1000_hw *hw = &adapter->hw;
7718         /* VF MAC addresses start at end of receive addresses and moves
7719          * towards the first, as a result a collision should not be possible
7720          */
7721         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7722
7723         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7724
7725         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7726
7727         return 0;
7728 }
7729
7730 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7731 {
7732         struct igb_adapter *adapter = netdev_priv(netdev);
7733         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7734                 return -EINVAL;
7735         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7736         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7737         dev_info(&adapter->pdev->dev,
7738                  "Reload the VF driver to make this change effective.");
7739         if (test_bit(__IGB_DOWN, &adapter->state)) {
7740                 dev_warn(&adapter->pdev->dev,
7741                          "The VF MAC address has been set, but the PF device is not up.\n");
7742                 dev_warn(&adapter->pdev->dev,
7743                          "Bring the PF device up before attempting to use the VF device.\n");
7744         }
7745         return igb_set_vf_mac(adapter, vf, mac);
7746 }
7747
7748 static int igb_link_mbps(int internal_link_speed)
7749 {
7750         switch (internal_link_speed) {
7751         case SPEED_100:
7752                 return 100;
7753         case SPEED_1000:
7754                 return 1000;
7755         default:
7756                 return 0;
7757         }
7758 }
7759
7760 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7761                                   int link_speed)
7762 {
7763         int rf_dec, rf_int;
7764         u32 bcnrc_val;
7765
7766         if (tx_rate != 0) {
7767                 /* Calculate the rate factor values to set */
7768                 rf_int = link_speed / tx_rate;
7769                 rf_dec = (link_speed - (rf_int * tx_rate));
7770                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7771                          tx_rate;
7772
7773                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7774                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7775                               E1000_RTTBCNRC_RF_INT_MASK);
7776                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7777         } else {
7778                 bcnrc_val = 0;
7779         }
7780
7781         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7782         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7783          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7784          */
7785         wr32(E1000_RTTBCNRM, 0x14);
7786         wr32(E1000_RTTBCNRC, bcnrc_val);
7787 }
7788
7789 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7790 {
7791         int actual_link_speed, i;
7792         bool reset_rate = false;
7793
7794         /* VF TX rate limit was not set or not supported */
7795         if ((adapter->vf_rate_link_speed == 0) ||
7796             (adapter->hw.mac.type != e1000_82576))
7797                 return;
7798
7799         actual_link_speed = igb_link_mbps(adapter->link_speed);
7800         if (actual_link_speed != adapter->vf_rate_link_speed) {
7801                 reset_rate = true;
7802                 adapter->vf_rate_link_speed = 0;
7803                 dev_info(&adapter->pdev->dev,
7804                          "Link speed has been changed. VF Transmit rate is disabled\n");
7805         }
7806
7807         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7808                 if (reset_rate)
7809                         adapter->vf_data[i].tx_rate = 0;
7810
7811                 igb_set_vf_rate_limit(&adapter->hw, i,
7812                                       adapter->vf_data[i].tx_rate,
7813                                       actual_link_speed);
7814         }
7815 }
7816
7817 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7818                              int min_tx_rate, int max_tx_rate)
7819 {
7820         struct igb_adapter *adapter = netdev_priv(netdev);
7821         struct e1000_hw *hw = &adapter->hw;
7822         int actual_link_speed;
7823
7824         if (hw->mac.type != e1000_82576)
7825                 return -EOPNOTSUPP;
7826
7827         if (min_tx_rate)
7828                 return -EINVAL;
7829
7830         actual_link_speed = igb_link_mbps(adapter->link_speed);
7831         if ((vf >= adapter->vfs_allocated_count) ||
7832             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7833             (max_tx_rate < 0) ||
7834             (max_tx_rate > actual_link_speed))
7835                 return -EINVAL;
7836
7837         adapter->vf_rate_link_speed = actual_link_speed;
7838         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7839         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7840
7841         return 0;
7842 }
7843
7844 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7845                                    bool setting)
7846 {
7847         struct igb_adapter *adapter = netdev_priv(netdev);
7848         struct e1000_hw *hw = &adapter->hw;
7849         u32 reg_val, reg_offset;
7850
7851         if (!adapter->vfs_allocated_count)
7852                 return -EOPNOTSUPP;
7853
7854         if (vf >= adapter->vfs_allocated_count)
7855                 return -EINVAL;
7856
7857         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7858         reg_val = rd32(reg_offset);
7859         if (setting)
7860                 reg_val |= ((1 << vf) |
7861                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7862         else
7863                 reg_val &= ~((1 << vf) |
7864                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7865         wr32(reg_offset, reg_val);
7866
7867         adapter->vf_data[vf].spoofchk_enabled = setting;
7868         return 0;
7869 }
7870
7871 static int igb_ndo_get_vf_config(struct net_device *netdev,
7872                                  int vf, struct ifla_vf_info *ivi)
7873 {
7874         struct igb_adapter *adapter = netdev_priv(netdev);
7875         if (vf >= adapter->vfs_allocated_count)
7876                 return -EINVAL;
7877         ivi->vf = vf;
7878         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7879         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7880         ivi->min_tx_rate = 0;
7881         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7882         ivi->qos = adapter->vf_data[vf].pf_qos;
7883         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7884         return 0;
7885 }
7886
7887 static void igb_vmm_control(struct igb_adapter *adapter)
7888 {
7889         struct e1000_hw *hw = &adapter->hw;
7890         u32 reg;
7891
7892         switch (hw->mac.type) {
7893         case e1000_82575:
7894         case e1000_i210:
7895         case e1000_i211:
7896         case e1000_i354:
7897         default:
7898                 /* replication is not supported for 82575 */
7899                 return;
7900         case e1000_82576:
7901                 /* notify HW that the MAC is adding vlan tags */
7902                 reg = rd32(E1000_DTXCTL);
7903                 reg |= E1000_DTXCTL_VLAN_ADDED;
7904                 wr32(E1000_DTXCTL, reg);
7905                 /* Fall through */
7906         case e1000_82580:
7907                 /* enable replication vlan tag stripping */
7908                 reg = rd32(E1000_RPLOLR);
7909                 reg |= E1000_RPLOLR_STRVLAN;
7910                 wr32(E1000_RPLOLR, reg);
7911                 /* Fall through */
7912         case e1000_i350:
7913                 /* none of the above registers are supported by i350 */
7914                 break;
7915         }
7916
7917         if (adapter->vfs_allocated_count) {
7918                 igb_vmdq_set_loopback_pf(hw, true);
7919                 igb_vmdq_set_replication_pf(hw, true);
7920                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7921                                               adapter->vfs_allocated_count);
7922         } else {
7923                 igb_vmdq_set_loopback_pf(hw, false);
7924                 igb_vmdq_set_replication_pf(hw, false);
7925         }
7926 }
7927
7928 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7929 {
7930         struct e1000_hw *hw = &adapter->hw;
7931         u32 dmac_thr;
7932         u16 hwm;
7933
7934         if (hw->mac.type > e1000_82580) {
7935                 if (adapter->flags & IGB_FLAG_DMAC) {
7936                         u32 reg;
7937
7938                         /* force threshold to 0. */
7939                         wr32(E1000_DMCTXTH, 0);
7940
7941                         /* DMA Coalescing high water mark needs to be greater
7942                          * than the Rx threshold. Set hwm to PBA - max frame
7943                          * size in 16B units, capping it at PBA - 6KB.
7944                          */
7945                         hwm = 64 * pba - adapter->max_frame_size / 16;
7946                         if (hwm < 64 * (pba - 6))
7947                                 hwm = 64 * (pba - 6);
7948                         reg = rd32(E1000_FCRTC);
7949                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7950                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7951                                 & E1000_FCRTC_RTH_COAL_MASK);
7952                         wr32(E1000_FCRTC, reg);
7953
7954                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7955                          * frame size, capping it at PBA - 10KB.
7956                          */
7957                         dmac_thr = pba - adapter->max_frame_size / 512;
7958                         if (dmac_thr < pba - 10)
7959                                 dmac_thr = pba - 10;
7960                         reg = rd32(E1000_DMACR);
7961                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7962                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7963                                 & E1000_DMACR_DMACTHR_MASK);
7964
7965                         /* transition to L0x or L1 if available..*/
7966                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7967
7968                         /* watchdog timer= +-1000 usec in 32usec intervals */
7969                         reg |= (1000 >> 5);
7970
7971                         /* Disable BMC-to-OS Watchdog Enable */
7972                         if (hw->mac.type != e1000_i354)
7973                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7974
7975                         wr32(E1000_DMACR, reg);
7976
7977                         /* no lower threshold to disable
7978                          * coalescing(smart fifb)-UTRESH=0
7979                          */
7980                         wr32(E1000_DMCRTRH, 0);
7981
7982                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7983
7984                         wr32(E1000_DMCTLX, reg);
7985
7986                         /* free space in tx packet buffer to wake from
7987                          * DMA coal
7988                          */
7989                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7990                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7991
7992                         /* make low power state decision controlled
7993                          * by DMA coal
7994                          */
7995                         reg = rd32(E1000_PCIEMISC);
7996                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7997                         wr32(E1000_PCIEMISC, reg);
7998                 } /* endif adapter->dmac is not disabled */
7999         } else if (hw->mac.type == e1000_82580) {
8000                 u32 reg = rd32(E1000_PCIEMISC);
8001
8002                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8003                 wr32(E1000_DMACR, 0);
8004         }
8005 }
8006
8007 /**
8008  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8009  *  @hw: pointer to hardware structure
8010  *  @byte_offset: byte offset to read
8011  *  @dev_addr: device address
8012  *  @data: value read
8013  *
8014  *  Performs byte read operation over I2C interface at
8015  *  a specified device address.
8016  **/
8017 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8018                       u8 dev_addr, u8 *data)
8019 {
8020         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8021         struct i2c_client *this_client = adapter->i2c_client;
8022         s32 status;
8023         u16 swfw_mask = 0;
8024
8025         if (!this_client)
8026                 return E1000_ERR_I2C;
8027
8028         swfw_mask = E1000_SWFW_PHY0_SM;
8029
8030         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8031                 return E1000_ERR_SWFW_SYNC;
8032
8033         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8034         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8035
8036         if (status < 0)
8037                 return E1000_ERR_I2C;
8038         else {
8039                 *data = status;
8040                 return 0;
8041         }
8042 }
8043
8044 /**
8045  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8046  *  @hw: pointer to hardware structure
8047  *  @byte_offset: byte offset to write
8048  *  @dev_addr: device address
8049  *  @data: value to write
8050  *
8051  *  Performs byte write operation over I2C interface at
8052  *  a specified device address.
8053  **/
8054 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8055                        u8 dev_addr, u8 data)
8056 {
8057         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8058         struct i2c_client *this_client = adapter->i2c_client;
8059         s32 status;
8060         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8061
8062         if (!this_client)
8063                 return E1000_ERR_I2C;
8064
8065         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8066                 return E1000_ERR_SWFW_SYNC;
8067         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8068         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8069
8070         if (status)
8071                 return E1000_ERR_I2C;
8072         else
8073                 return 0;
8074
8075 }
8076
8077 int igb_reinit_queues(struct igb_adapter *adapter)
8078 {
8079         struct net_device *netdev = adapter->netdev;
8080         struct pci_dev *pdev = adapter->pdev;
8081         int err = 0;
8082
8083         if (netif_running(netdev))
8084                 igb_close(netdev);
8085
8086         igb_reset_interrupt_capability(adapter);
8087
8088         if (igb_init_interrupt_scheme(adapter, true)) {
8089                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8090                 return -ENOMEM;
8091         }
8092
8093         if (netif_running(netdev))
8094                 err = igb_open(netdev);
8095
8096         return err;
8097 }
8098 /* igb_main.c */