]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
35da2d74e73ecc74f567a528cb2ebffd9a25edcd
[karo-tx-linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52
53 #include "ixgbevf.h"
54
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62         "Copyright (c) 2009 - 2012 Intel Corporation.";
63
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65         [board_82599_vf] = &ixgbevf_82599_vf_info,
66         [board_X540_vf]  = &ixgbevf_X540_vf_info,
67         [board_X550_vf]  = &ixgbevf_X550_vf_info,
68         [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
80         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
83         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
84         /* required last entry */
85         {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
100 {
101         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
102             !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
103             !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
104                 schedule_work(&adapter->service_task);
105 }
106
107 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
108 {
109         BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
110
111         /* flush memory to make sure state is correct before next watchdog */
112         smp_mb__before_atomic();
113         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
114 }
115
116 /* forward decls */
117 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
119 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
120
121 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
122 {
123         struct ixgbevf_adapter *adapter = hw->back;
124
125         if (!hw->hw_addr)
126                 return;
127         hw->hw_addr = NULL;
128         dev_err(&adapter->pdev->dev, "Adapter removed\n");
129         if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
130                 ixgbevf_service_event_schedule(adapter);
131 }
132
133 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
134 {
135         u32 value;
136
137         /* The following check not only optimizes a bit by not
138          * performing a read on the status register when the
139          * register just read was a status register read that
140          * returned IXGBE_FAILED_READ_REG. It also blocks any
141          * potential recursion.
142          */
143         if (reg == IXGBE_VFSTATUS) {
144                 ixgbevf_remove_adapter(hw);
145                 return;
146         }
147         value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
148         if (value == IXGBE_FAILED_READ_REG)
149                 ixgbevf_remove_adapter(hw);
150 }
151
152 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
153 {
154         u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
155         u32 value;
156
157         if (IXGBE_REMOVED(reg_addr))
158                 return IXGBE_FAILED_READ_REG;
159         value = readl(reg_addr + reg);
160         if (unlikely(value == IXGBE_FAILED_READ_REG))
161                 ixgbevf_check_remove(hw, reg);
162         return value;
163 }
164
165 /**
166  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
167  * @adapter: pointer to adapter struct
168  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
169  * @queue: queue to map the corresponding interrupt to
170  * @msix_vector: the vector to map to the corresponding queue
171  **/
172 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
173                              u8 queue, u8 msix_vector)
174 {
175         u32 ivar, index;
176         struct ixgbe_hw *hw = &adapter->hw;
177
178         if (direction == -1) {
179                 /* other causes */
180                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
181                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
182                 ivar &= ~0xFF;
183                 ivar |= msix_vector;
184                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
185         } else {
186                 /* Tx or Rx causes */
187                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
188                 index = ((16 * (queue & 1)) + (8 * direction));
189                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
190                 ivar &= ~(0xFF << index);
191                 ivar |= (msix_vector << index);
192                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
193         }
194 }
195
196 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
197                                         struct ixgbevf_tx_buffer *tx_buffer)
198 {
199         if (tx_buffer->skb) {
200                 dev_kfree_skb_any(tx_buffer->skb);
201                 if (dma_unmap_len(tx_buffer, len))
202                         dma_unmap_single(tx_ring->dev,
203                                          dma_unmap_addr(tx_buffer, dma),
204                                          dma_unmap_len(tx_buffer, len),
205                                          DMA_TO_DEVICE);
206         } else if (dma_unmap_len(tx_buffer, len)) {
207                 dma_unmap_page(tx_ring->dev,
208                                dma_unmap_addr(tx_buffer, dma),
209                                dma_unmap_len(tx_buffer, len),
210                                DMA_TO_DEVICE);
211         }
212         tx_buffer->next_to_watch = NULL;
213         tx_buffer->skb = NULL;
214         dma_unmap_len_set(tx_buffer, len, 0);
215         /* tx_buffer must be completely set up in the transmit path */
216 }
217
218 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
219 {
220         return ring->stats.packets;
221 }
222
223 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
224 {
225         struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
226         struct ixgbe_hw *hw = &adapter->hw;
227
228         u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
229         u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
230
231         if (head != tail)
232                 return (head < tail) ?
233                         tail - head : (tail + ring->count - head);
234
235         return 0;
236 }
237
238 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
239 {
240         u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
241         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
242         u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
243
244         clear_check_for_tx_hang(tx_ring);
245
246         /* Check for a hung queue, but be thorough. This verifies
247          * that a transmit has been completed since the previous
248          * check AND there is at least one packet pending. The
249          * ARMED bit is set to indicate a potential hang.
250          */
251         if ((tx_done_old == tx_done) && tx_pending) {
252                 /* make sure it is true for two checks in a row */
253                 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
254                                         &tx_ring->state);
255         }
256         /* reset the countdown */
257         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
258
259         /* update completed stats and continue */
260         tx_ring->tx_stats.tx_done_old = tx_done;
261
262         return false;
263 }
264
265 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
266 {
267         /* Do the reset outside of interrupt context */
268         if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
269                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
270                 ixgbevf_service_event_schedule(adapter);
271         }
272 }
273
274 /**
275  * ixgbevf_tx_timeout - Respond to a Tx Hang
276  * @netdev: network interface device structure
277  **/
278 static void ixgbevf_tx_timeout(struct net_device *netdev)
279 {
280         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
281
282         ixgbevf_tx_timeout_reset(adapter);
283 }
284
285 /**
286  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
287  * @q_vector: board private structure
288  * @tx_ring: tx ring to clean
289  **/
290 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
291                                  struct ixgbevf_ring *tx_ring)
292 {
293         struct ixgbevf_adapter *adapter = q_vector->adapter;
294         struct ixgbevf_tx_buffer *tx_buffer;
295         union ixgbe_adv_tx_desc *tx_desc;
296         unsigned int total_bytes = 0, total_packets = 0;
297         unsigned int budget = tx_ring->count / 2;
298         unsigned int i = tx_ring->next_to_clean;
299
300         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
301                 return true;
302
303         tx_buffer = &tx_ring->tx_buffer_info[i];
304         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
305         i -= tx_ring->count;
306
307         do {
308                 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
309
310                 /* if next_to_watch is not set then there is no work pending */
311                 if (!eop_desc)
312                         break;
313
314                 /* prevent any other reads prior to eop_desc */
315                 read_barrier_depends();
316
317                 /* if DD is not set pending work has not been completed */
318                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
319                         break;
320
321                 /* clear next_to_watch to prevent false hangs */
322                 tx_buffer->next_to_watch = NULL;
323
324                 /* update the statistics for this packet */
325                 total_bytes += tx_buffer->bytecount;
326                 total_packets += tx_buffer->gso_segs;
327
328                 /* free the skb */
329                 dev_kfree_skb_any(tx_buffer->skb);
330
331                 /* unmap skb header data */
332                 dma_unmap_single(tx_ring->dev,
333                                  dma_unmap_addr(tx_buffer, dma),
334                                  dma_unmap_len(tx_buffer, len),
335                                  DMA_TO_DEVICE);
336
337                 /* clear tx_buffer data */
338                 tx_buffer->skb = NULL;
339                 dma_unmap_len_set(tx_buffer, len, 0);
340
341                 /* unmap remaining buffers */
342                 while (tx_desc != eop_desc) {
343                         tx_buffer++;
344                         tx_desc++;
345                         i++;
346                         if (unlikely(!i)) {
347                                 i -= tx_ring->count;
348                                 tx_buffer = tx_ring->tx_buffer_info;
349                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350                         }
351
352                         /* unmap any remaining paged data */
353                         if (dma_unmap_len(tx_buffer, len)) {
354                                 dma_unmap_page(tx_ring->dev,
355                                                dma_unmap_addr(tx_buffer, dma),
356                                                dma_unmap_len(tx_buffer, len),
357                                                DMA_TO_DEVICE);
358                                 dma_unmap_len_set(tx_buffer, len, 0);
359                         }
360                 }
361
362                 /* move us one more past the eop_desc for start of next pkt */
363                 tx_buffer++;
364                 tx_desc++;
365                 i++;
366                 if (unlikely(!i)) {
367                         i -= tx_ring->count;
368                         tx_buffer = tx_ring->tx_buffer_info;
369                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
370                 }
371
372                 /* issue prefetch for next Tx descriptor */
373                 prefetch(tx_desc);
374
375                 /* update budget accounting */
376                 budget--;
377         } while (likely(budget));
378
379         i += tx_ring->count;
380         tx_ring->next_to_clean = i;
381         u64_stats_update_begin(&tx_ring->syncp);
382         tx_ring->stats.bytes += total_bytes;
383         tx_ring->stats.packets += total_packets;
384         u64_stats_update_end(&tx_ring->syncp);
385         q_vector->tx.total_bytes += total_bytes;
386         q_vector->tx.total_packets += total_packets;
387
388         if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
389                 struct ixgbe_hw *hw = &adapter->hw;
390                 union ixgbe_adv_tx_desc *eop_desc;
391
392                 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
393
394                 pr_err("Detected Tx Unit Hang\n"
395                        "  Tx Queue             <%d>\n"
396                        "  TDH, TDT             <%x>, <%x>\n"
397                        "  next_to_use          <%x>\n"
398                        "  next_to_clean        <%x>\n"
399                        "tx_buffer_info[next_to_clean]\n"
400                        "  next_to_watch        <%p>\n"
401                        "  eop_desc->wb.status  <%x>\n"
402                        "  time_stamp           <%lx>\n"
403                        "  jiffies              <%lx>\n",
404                        tx_ring->queue_index,
405                        IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
406                        IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
407                        tx_ring->next_to_use, i,
408                        eop_desc, (eop_desc ? eop_desc->wb.status : 0),
409                        tx_ring->tx_buffer_info[i].time_stamp, jiffies);
410
411                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
412
413                 /* schedule immediate reset if we believe we hung */
414                 ixgbevf_tx_timeout_reset(adapter);
415
416                 return true;
417         }
418
419 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
420         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
421                      (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
422                 /* Make sure that anybody stopping the queue after this
423                  * sees the new next_to_clean.
424                  */
425                 smp_mb();
426
427                 if (__netif_subqueue_stopped(tx_ring->netdev,
428                                              tx_ring->queue_index) &&
429                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
430                         netif_wake_subqueue(tx_ring->netdev,
431                                             tx_ring->queue_index);
432                         ++tx_ring->tx_stats.restart_queue;
433                 }
434         }
435
436         return !!budget;
437 }
438
439 /**
440  * ixgbevf_rx_skb - Helper function to determine proper Rx method
441  * @q_vector: structure containing interrupt and ring information
442  * @skb: packet to send up
443  **/
444 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
445                            struct sk_buff *skb)
446 {
447 #ifdef CONFIG_NET_RX_BUSY_POLL
448         skb_mark_napi_id(skb, &q_vector->napi);
449
450         if (ixgbevf_qv_busy_polling(q_vector)) {
451                 netif_receive_skb(skb);
452                 /* exit early if we busy polled */
453                 return;
454         }
455 #endif /* CONFIG_NET_RX_BUSY_POLL */
456
457         napi_gro_receive(&q_vector->napi, skb);
458 }
459
460 #define IXGBE_RSS_L4_TYPES_MASK \
461         ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
462          (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
463          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
464          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
465
466 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
467                                    union ixgbe_adv_rx_desc *rx_desc,
468                                    struct sk_buff *skb)
469 {
470         u16 rss_type;
471
472         if (!(ring->netdev->features & NETIF_F_RXHASH))
473                 return;
474
475         rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
476                    IXGBE_RXDADV_RSSTYPE_MASK;
477
478         if (!rss_type)
479                 return;
480
481         skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
482                      (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
483                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
484 }
485
486 /**
487  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
488  * @ring: structure containig ring specific data
489  * @rx_desc: current Rx descriptor being processed
490  * @skb: skb currently being received and modified
491  **/
492 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
493                                        union ixgbe_adv_rx_desc *rx_desc,
494                                        struct sk_buff *skb)
495 {
496         skb_checksum_none_assert(skb);
497
498         /* Rx csum disabled */
499         if (!(ring->netdev->features & NETIF_F_RXCSUM))
500                 return;
501
502         /* if IP and error */
503         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
504             ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
505                 ring->rx_stats.csum_err++;
506                 return;
507         }
508
509         if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
510                 return;
511
512         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
513                 ring->rx_stats.csum_err++;
514                 return;
515         }
516
517         /* It must be a TCP or UDP packet with a valid checksum */
518         skb->ip_summed = CHECKSUM_UNNECESSARY;
519 }
520
521 /**
522  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
523  * @rx_ring: rx descriptor ring packet is being transacted on
524  * @rx_desc: pointer to the EOP Rx descriptor
525  * @skb: pointer to current skb being populated
526  *
527  * This function checks the ring, descriptor, and packet information in
528  * order to populate the checksum, VLAN, protocol, and other fields within
529  * the skb.
530  **/
531 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
532                                        union ixgbe_adv_rx_desc *rx_desc,
533                                        struct sk_buff *skb)
534 {
535         ixgbevf_rx_hash(rx_ring, rx_desc, skb);
536         ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
537
538         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
539                 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
540                 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
541
542                 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
543                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
544         }
545
546         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
547 }
548
549 /**
550  * ixgbevf_is_non_eop - process handling of non-EOP buffers
551  * @rx_ring: Rx ring being processed
552  * @rx_desc: Rx descriptor for current buffer
553  * @skb: current socket buffer containing buffer in progress
554  *
555  * This function updates next to clean.  If the buffer is an EOP buffer
556  * this function exits returning false, otherwise it will place the
557  * sk_buff in the next buffer to be chained and return true indicating
558  * that this is in fact a non-EOP buffer.
559  **/
560 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
561                                union ixgbe_adv_rx_desc *rx_desc)
562 {
563         u32 ntc = rx_ring->next_to_clean + 1;
564
565         /* fetch, update, and store next to clean */
566         ntc = (ntc < rx_ring->count) ? ntc : 0;
567         rx_ring->next_to_clean = ntc;
568
569         prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
570
571         if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
572                 return false;
573
574         return true;
575 }
576
577 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
578                                       struct ixgbevf_rx_buffer *bi)
579 {
580         struct page *page = bi->page;
581         dma_addr_t dma = bi->dma;
582
583         /* since we are recycling buffers we should seldom need to alloc */
584         if (likely(page))
585                 return true;
586
587         /* alloc new page for storage */
588         page = dev_alloc_page();
589         if (unlikely(!page)) {
590                 rx_ring->rx_stats.alloc_rx_page_failed++;
591                 return false;
592         }
593
594         /* map page for use */
595         dma = dma_map_page(rx_ring->dev, page, 0,
596                            PAGE_SIZE, DMA_FROM_DEVICE);
597
598         /* if mapping failed free memory back to system since
599          * there isn't much point in holding memory we can't use
600          */
601         if (dma_mapping_error(rx_ring->dev, dma)) {
602                 __free_page(page);
603
604                 rx_ring->rx_stats.alloc_rx_buff_failed++;
605                 return false;
606         }
607
608         bi->dma = dma;
609         bi->page = page;
610         bi->page_offset = 0;
611
612         return true;
613 }
614
615 /**
616  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
617  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
618  * @cleaned_count: number of buffers to replace
619  **/
620 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
621                                      u16 cleaned_count)
622 {
623         union ixgbe_adv_rx_desc *rx_desc;
624         struct ixgbevf_rx_buffer *bi;
625         unsigned int i = rx_ring->next_to_use;
626
627         /* nothing to do or no valid netdev defined */
628         if (!cleaned_count || !rx_ring->netdev)
629                 return;
630
631         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
632         bi = &rx_ring->rx_buffer_info[i];
633         i -= rx_ring->count;
634
635         do {
636                 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
637                         break;
638
639                 /* Refresh the desc even if pkt_addr didn't change
640                  * because each write-back erases this info.
641                  */
642                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
643
644                 rx_desc++;
645                 bi++;
646                 i++;
647                 if (unlikely(!i)) {
648                         rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
649                         bi = rx_ring->rx_buffer_info;
650                         i -= rx_ring->count;
651                 }
652
653                 /* clear the hdr_addr for the next_to_use descriptor */
654                 rx_desc->read.hdr_addr = 0;
655
656                 cleaned_count--;
657         } while (cleaned_count);
658
659         i += rx_ring->count;
660
661         if (rx_ring->next_to_use != i) {
662                 /* record the next descriptor to use */
663                 rx_ring->next_to_use = i;
664
665                 /* update next to alloc since we have filled the ring */
666                 rx_ring->next_to_alloc = i;
667
668                 /* Force memory writes to complete before letting h/w
669                  * know there are new descriptors to fetch.  (Only
670                  * applicable for weak-ordered memory model archs,
671                  * such as IA-64).
672                  */
673                 wmb();
674                 ixgbevf_write_tail(rx_ring, i);
675         }
676 }
677
678 /**
679  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
680  * @rx_ring: rx descriptor ring packet is being transacted on
681  * @rx_desc: pointer to the EOP Rx descriptor
682  * @skb: pointer to current skb being fixed
683  *
684  * Check for corrupted packet headers caused by senders on the local L2
685  * embedded NIC switch not setting up their Tx Descriptors right.  These
686  * should be very rare.
687  *
688  * Also address the case where we are pulling data in on pages only
689  * and as such no data is present in the skb header.
690  *
691  * In addition if skb is not at least 60 bytes we need to pad it so that
692  * it is large enough to qualify as a valid Ethernet frame.
693  *
694  * Returns true if an error was encountered and skb was freed.
695  **/
696 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
697                                     union ixgbe_adv_rx_desc *rx_desc,
698                                     struct sk_buff *skb)
699 {
700         /* verify that the packet does not have any known errors */
701         if (unlikely(ixgbevf_test_staterr(rx_desc,
702                                           IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
703                 struct net_device *netdev = rx_ring->netdev;
704
705                 if (!(netdev->features & NETIF_F_RXALL)) {
706                         dev_kfree_skb_any(skb);
707                         return true;
708                 }
709         }
710
711         /* if eth_skb_pad returns an error the skb was freed */
712         if (eth_skb_pad(skb))
713                 return true;
714
715         return false;
716 }
717
718 /**
719  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
720  * @rx_ring: rx descriptor ring to store buffers on
721  * @old_buff: donor buffer to have page reused
722  *
723  * Synchronizes page for reuse by the adapter
724  **/
725 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
726                                   struct ixgbevf_rx_buffer *old_buff)
727 {
728         struct ixgbevf_rx_buffer *new_buff;
729         u16 nta = rx_ring->next_to_alloc;
730
731         new_buff = &rx_ring->rx_buffer_info[nta];
732
733         /* update, and store next to alloc */
734         nta++;
735         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
736
737         /* transfer page from old buffer to new buffer */
738         new_buff->page = old_buff->page;
739         new_buff->dma = old_buff->dma;
740         new_buff->page_offset = old_buff->page_offset;
741
742         /* sync the buffer for use by the device */
743         dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
744                                          new_buff->page_offset,
745                                          IXGBEVF_RX_BUFSZ,
746                                          DMA_FROM_DEVICE);
747 }
748
749 static inline bool ixgbevf_page_is_reserved(struct page *page)
750 {
751         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
752 }
753
754 /**
755  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
756  * @rx_ring: rx descriptor ring to transact packets on
757  * @rx_buffer: buffer containing page to add
758  * @rx_desc: descriptor containing length of buffer written by hardware
759  * @skb: sk_buff to place the data into
760  *
761  * This function will add the data contained in rx_buffer->page to the skb.
762  * This is done either through a direct copy if the data in the buffer is
763  * less than the skb header size, otherwise it will just attach the page as
764  * a frag to the skb.
765  *
766  * The function will then update the page offset if necessary and return
767  * true if the buffer can be reused by the adapter.
768  **/
769 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
770                                 struct ixgbevf_rx_buffer *rx_buffer,
771                                 union ixgbe_adv_rx_desc *rx_desc,
772                                 struct sk_buff *skb)
773 {
774         struct page *page = rx_buffer->page;
775         unsigned char *va = page_address(page) + rx_buffer->page_offset;
776         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
777 #if (PAGE_SIZE < 8192)
778         unsigned int truesize = IXGBEVF_RX_BUFSZ;
779 #else
780         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
781 #endif
782         unsigned int pull_len;
783
784         if (unlikely(skb_is_nonlinear(skb)))
785                 goto add_tail_frag;
786
787         if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
788                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
789
790                 /* page is not reserved, we can reuse buffer as is */
791                 if (likely(!ixgbevf_page_is_reserved(page)))
792                         return true;
793
794                 /* this page cannot be reused so discard it */
795                 put_page(page);
796                 return false;
797         }
798
799         /* we need the header to contain the greater of either ETH_HLEN or
800          * 60 bytes if the skb->len is less than 60 for skb_pad.
801          */
802         pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
803
804         /* align pull length to size of long to optimize memcpy performance */
805         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
806
807         /* update all of the pointers */
808         va += pull_len;
809         size -= pull_len;
810
811 add_tail_frag:
812         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
813                         (unsigned long)va & ~PAGE_MASK, size, truesize);
814
815         /* avoid re-using remote pages */
816         if (unlikely(ixgbevf_page_is_reserved(page)))
817                 return false;
818
819 #if (PAGE_SIZE < 8192)
820         /* if we are only owner of page we can reuse it */
821         if (unlikely(page_count(page) != 1))
822                 return false;
823
824         /* flip page offset to other buffer */
825         rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
826
827 #else
828         /* move offset up to the next cache line */
829         rx_buffer->page_offset += truesize;
830
831         if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
832                 return false;
833
834 #endif
835         /* Even if we own the page, we are not allowed to use atomic_set()
836          * This would break get_page_unless_zero() users.
837          */
838         atomic_inc(&page->_count);
839
840         return true;
841 }
842
843 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
844                                                union ixgbe_adv_rx_desc *rx_desc,
845                                                struct sk_buff *skb)
846 {
847         struct ixgbevf_rx_buffer *rx_buffer;
848         struct page *page;
849
850         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
851         page = rx_buffer->page;
852         prefetchw(page);
853
854         if (likely(!skb)) {
855                 void *page_addr = page_address(page) +
856                                   rx_buffer->page_offset;
857
858                 /* prefetch first cache line of first page */
859                 prefetch(page_addr);
860 #if L1_CACHE_BYTES < 128
861                 prefetch(page_addr + L1_CACHE_BYTES);
862 #endif
863
864                 /* allocate a skb to store the frags */
865                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
866                                                 IXGBEVF_RX_HDR_SIZE);
867                 if (unlikely(!skb)) {
868                         rx_ring->rx_stats.alloc_rx_buff_failed++;
869                         return NULL;
870                 }
871
872                 /* we will be copying header into skb->data in
873                  * pskb_may_pull so it is in our interest to prefetch
874                  * it now to avoid a possible cache miss
875                  */
876                 prefetchw(skb->data);
877         }
878
879         /* we are reusing so sync this buffer for CPU use */
880         dma_sync_single_range_for_cpu(rx_ring->dev,
881                                       rx_buffer->dma,
882                                       rx_buffer->page_offset,
883                                       IXGBEVF_RX_BUFSZ,
884                                       DMA_FROM_DEVICE);
885
886         /* pull page into skb */
887         if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
888                 /* hand second half of page back to the ring */
889                 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
890         } else {
891                 /* we are not reusing the buffer so unmap it */
892                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
893                                PAGE_SIZE, DMA_FROM_DEVICE);
894         }
895
896         /* clear contents of buffer_info */
897         rx_buffer->dma = 0;
898         rx_buffer->page = NULL;
899
900         return skb;
901 }
902
903 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
904                                              u32 qmask)
905 {
906         struct ixgbe_hw *hw = &adapter->hw;
907
908         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
909 }
910
911 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
912                                 struct ixgbevf_ring *rx_ring,
913                                 int budget)
914 {
915         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
916         u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
917         struct sk_buff *skb = rx_ring->skb;
918
919         while (likely(total_rx_packets < budget)) {
920                 union ixgbe_adv_rx_desc *rx_desc;
921
922                 /* return some buffers to hardware, one at a time is too slow */
923                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
924                         ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
925                         cleaned_count = 0;
926                 }
927
928                 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
929
930                 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
931                         break;
932
933                 /* This memory barrier is needed to keep us from reading
934                  * any other fields out of the rx_desc until we know the
935                  * RXD_STAT_DD bit is set
936                  */
937                 rmb();
938
939                 /* retrieve a buffer from the ring */
940                 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
941
942                 /* exit if we failed to retrieve a buffer */
943                 if (!skb)
944                         break;
945
946                 cleaned_count++;
947
948                 /* fetch next buffer in frame if non-eop */
949                 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
950                         continue;
951
952                 /* verify the packet layout is correct */
953                 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
954                         skb = NULL;
955                         continue;
956                 }
957
958                 /* probably a little skewed due to removing CRC */
959                 total_rx_bytes += skb->len;
960
961                 /* Workaround hardware that can't do proper VEPA multicast
962                  * source pruning.
963                  */
964                 if ((skb->pkt_type == PACKET_BROADCAST ||
965                      skb->pkt_type == PACKET_MULTICAST) &&
966                     ether_addr_equal(rx_ring->netdev->dev_addr,
967                                      eth_hdr(skb)->h_source)) {
968                         dev_kfree_skb_irq(skb);
969                         continue;
970                 }
971
972                 /* populate checksum, VLAN, and protocol */
973                 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
974
975                 ixgbevf_rx_skb(q_vector, skb);
976
977                 /* reset skb pointer */
978                 skb = NULL;
979
980                 /* update budget accounting */
981                 total_rx_packets++;
982         }
983
984         /* place incomplete frames back on ring for completion */
985         rx_ring->skb = skb;
986
987         u64_stats_update_begin(&rx_ring->syncp);
988         rx_ring->stats.packets += total_rx_packets;
989         rx_ring->stats.bytes += total_rx_bytes;
990         u64_stats_update_end(&rx_ring->syncp);
991         q_vector->rx.total_packets += total_rx_packets;
992         q_vector->rx.total_bytes += total_rx_bytes;
993
994         return total_rx_packets;
995 }
996
997 /**
998  * ixgbevf_poll - NAPI polling calback
999  * @napi: napi struct with our devices info in it
1000  * @budget: amount of work driver is allowed to do this pass, in packets
1001  *
1002  * This function will clean more than one or more rings associated with a
1003  * q_vector.
1004  **/
1005 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1006 {
1007         struct ixgbevf_q_vector *q_vector =
1008                 container_of(napi, struct ixgbevf_q_vector, napi);
1009         struct ixgbevf_adapter *adapter = q_vector->adapter;
1010         struct ixgbevf_ring *ring;
1011         int per_ring_budget;
1012         bool clean_complete = true;
1013
1014         ixgbevf_for_each_ring(ring, q_vector->tx)
1015                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1016
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018         if (!ixgbevf_qv_lock_napi(q_vector))
1019                 return budget;
1020 #endif
1021
1022         /* attempt to distribute budget to each queue fairly, but don't allow
1023          * the budget to go below 1 because we'll exit polling
1024          */
1025         if (q_vector->rx.count > 1)
1026                 per_ring_budget = max(budget/q_vector->rx.count, 1);
1027         else
1028                 per_ring_budget = budget;
1029
1030         ixgbevf_for_each_ring(ring, q_vector->rx)
1031                 clean_complete &= (ixgbevf_clean_rx_irq(q_vector, ring,
1032                                                         per_ring_budget)
1033                                    < per_ring_budget);
1034
1035 #ifdef CONFIG_NET_RX_BUSY_POLL
1036         ixgbevf_qv_unlock_napi(q_vector);
1037 #endif
1038
1039         /* If all work not completed, return budget and keep polling */
1040         if (!clean_complete)
1041                 return budget;
1042         /* all work done, exit the polling mode */
1043         napi_complete(napi);
1044         if (adapter->rx_itr_setting & 1)
1045                 ixgbevf_set_itr(q_vector);
1046         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1047             !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1048                 ixgbevf_irq_enable_queues(adapter,
1049                                           1 << q_vector->v_idx);
1050
1051         return 0;
1052 }
1053
1054 /**
1055  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1056  * @q_vector: structure containing interrupt and ring information
1057  **/
1058 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1059 {
1060         struct ixgbevf_adapter *adapter = q_vector->adapter;
1061         struct ixgbe_hw *hw = &adapter->hw;
1062         int v_idx = q_vector->v_idx;
1063         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1064
1065         /* set the WDIS bit to not clear the timer bits and cause an
1066          * immediate assertion of the interrupt
1067          */
1068         itr_reg |= IXGBE_EITR_CNT_WDIS;
1069
1070         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1071 }
1072
1073 #ifdef CONFIG_NET_RX_BUSY_POLL
1074 /* must be called with local_bh_disable()d */
1075 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1076 {
1077         struct ixgbevf_q_vector *q_vector =
1078                         container_of(napi, struct ixgbevf_q_vector, napi);
1079         struct ixgbevf_adapter *adapter = q_vector->adapter;
1080         struct ixgbevf_ring  *ring;
1081         int found = 0;
1082
1083         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1084                 return LL_FLUSH_FAILED;
1085
1086         if (!ixgbevf_qv_lock_poll(q_vector))
1087                 return LL_FLUSH_BUSY;
1088
1089         ixgbevf_for_each_ring(ring, q_vector->rx) {
1090                 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1091 #ifdef BP_EXTENDED_STATS
1092                 if (found)
1093                         ring->stats.cleaned += found;
1094                 else
1095                         ring->stats.misses++;
1096 #endif
1097                 if (found)
1098                         break;
1099         }
1100
1101         ixgbevf_qv_unlock_poll(q_vector);
1102
1103         return found;
1104 }
1105 #endif /* CONFIG_NET_RX_BUSY_POLL */
1106
1107 /**
1108  * ixgbevf_configure_msix - Configure MSI-X hardware
1109  * @adapter: board private structure
1110  *
1111  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1112  * interrupts.
1113  **/
1114 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1115 {
1116         struct ixgbevf_q_vector *q_vector;
1117         int q_vectors, v_idx;
1118
1119         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1120         adapter->eims_enable_mask = 0;
1121
1122         /* Populate the IVAR table and set the ITR values to the
1123          * corresponding register.
1124          */
1125         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1126                 struct ixgbevf_ring *ring;
1127
1128                 q_vector = adapter->q_vector[v_idx];
1129
1130                 ixgbevf_for_each_ring(ring, q_vector->rx)
1131                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1132
1133                 ixgbevf_for_each_ring(ring, q_vector->tx)
1134                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1135
1136                 if (q_vector->tx.ring && !q_vector->rx.ring) {
1137                         /* Tx only vector */
1138                         if (adapter->tx_itr_setting == 1)
1139                                 q_vector->itr = IXGBE_10K_ITR;
1140                         else
1141                                 q_vector->itr = adapter->tx_itr_setting;
1142                 } else {
1143                         /* Rx or Rx/Tx vector */
1144                         if (adapter->rx_itr_setting == 1)
1145                                 q_vector->itr = IXGBE_20K_ITR;
1146                         else
1147                                 q_vector->itr = adapter->rx_itr_setting;
1148                 }
1149
1150                 /* add q_vector eims value to global eims_enable_mask */
1151                 adapter->eims_enable_mask |= 1 << v_idx;
1152
1153                 ixgbevf_write_eitr(q_vector);
1154         }
1155
1156         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1157         /* setup eims_other and add value to global eims_enable_mask */
1158         adapter->eims_other = 1 << v_idx;
1159         adapter->eims_enable_mask |= adapter->eims_other;
1160 }
1161
1162 enum latency_range {
1163         lowest_latency = 0,
1164         low_latency = 1,
1165         bulk_latency = 2,
1166         latency_invalid = 255
1167 };
1168
1169 /**
1170  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1171  * @q_vector: structure containing interrupt and ring information
1172  * @ring_container: structure containing ring performance data
1173  *
1174  * Stores a new ITR value based on packets and byte
1175  * counts during the last interrupt.  The advantage of per interrupt
1176  * computation is faster updates and more accurate ITR for the current
1177  * traffic pattern.  Constants in this function were computed
1178  * based on theoretical maximum wire speed and thresholds were set based
1179  * on testing data as well as attempting to minimize response time
1180  * while increasing bulk throughput.
1181  **/
1182 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1183                                struct ixgbevf_ring_container *ring_container)
1184 {
1185         int bytes = ring_container->total_bytes;
1186         int packets = ring_container->total_packets;
1187         u32 timepassed_us;
1188         u64 bytes_perint;
1189         u8 itr_setting = ring_container->itr;
1190
1191         if (packets == 0)
1192                 return;
1193
1194         /* simple throttle rate management
1195          *    0-20MB/s lowest (100000 ints/s)
1196          *   20-100MB/s low   (20000 ints/s)
1197          *  100-1249MB/s bulk (8000 ints/s)
1198          */
1199         /* what was last interrupt timeslice? */
1200         timepassed_us = q_vector->itr >> 2;
1201         bytes_perint = bytes / timepassed_us; /* bytes/usec */
1202
1203         switch (itr_setting) {
1204         case lowest_latency:
1205                 if (bytes_perint > 10)
1206                         itr_setting = low_latency;
1207                 break;
1208         case low_latency:
1209                 if (bytes_perint > 20)
1210                         itr_setting = bulk_latency;
1211                 else if (bytes_perint <= 10)
1212                         itr_setting = lowest_latency;
1213                 break;
1214         case bulk_latency:
1215                 if (bytes_perint <= 20)
1216                         itr_setting = low_latency;
1217                 break;
1218         }
1219
1220         /* clear work counters since we have the values we need */
1221         ring_container->total_bytes = 0;
1222         ring_container->total_packets = 0;
1223
1224         /* write updated itr to ring container */
1225         ring_container->itr = itr_setting;
1226 }
1227
1228 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1229 {
1230         u32 new_itr = q_vector->itr;
1231         u8 current_itr;
1232
1233         ixgbevf_update_itr(q_vector, &q_vector->tx);
1234         ixgbevf_update_itr(q_vector, &q_vector->rx);
1235
1236         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1237
1238         switch (current_itr) {
1239         /* counts and packets in update_itr are dependent on these numbers */
1240         case lowest_latency:
1241                 new_itr = IXGBE_100K_ITR;
1242                 break;
1243         case low_latency:
1244                 new_itr = IXGBE_20K_ITR;
1245                 break;
1246         case bulk_latency:
1247         default:
1248                 new_itr = IXGBE_8K_ITR;
1249                 break;
1250         }
1251
1252         if (new_itr != q_vector->itr) {
1253                 /* do an exponential smoothing */
1254                 new_itr = (10 * new_itr * q_vector->itr) /
1255                           ((9 * new_itr) + q_vector->itr);
1256
1257                 /* save the algorithm value here */
1258                 q_vector->itr = new_itr;
1259
1260                 ixgbevf_write_eitr(q_vector);
1261         }
1262 }
1263
1264 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1265 {
1266         struct ixgbevf_adapter *adapter = data;
1267         struct ixgbe_hw *hw = &adapter->hw;
1268
1269         hw->mac.get_link_status = 1;
1270
1271         ixgbevf_service_event_schedule(adapter);
1272
1273         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1274
1275         return IRQ_HANDLED;
1276 }
1277
1278 /**
1279  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1280  * @irq: unused
1281  * @data: pointer to our q_vector struct for this interrupt vector
1282  **/
1283 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1284 {
1285         struct ixgbevf_q_vector *q_vector = data;
1286
1287         /* EIAM disabled interrupts (on this vector) for us */
1288         if (q_vector->rx.ring || q_vector->tx.ring)
1289                 napi_schedule(&q_vector->napi);
1290
1291         return IRQ_HANDLED;
1292 }
1293
1294 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1295                                      int r_idx)
1296 {
1297         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1298
1299         a->rx_ring[r_idx]->next = q_vector->rx.ring;
1300         q_vector->rx.ring = a->rx_ring[r_idx];
1301         q_vector->rx.count++;
1302 }
1303
1304 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1305                                      int t_idx)
1306 {
1307         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1308
1309         a->tx_ring[t_idx]->next = q_vector->tx.ring;
1310         q_vector->tx.ring = a->tx_ring[t_idx];
1311         q_vector->tx.count++;
1312 }
1313
1314 /**
1315  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1316  * @adapter: board private structure to initialize
1317  *
1318  * This function maps descriptor rings to the queue-specific vectors
1319  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1320  * one vector per ring/queue, but on a constrained vector budget, we
1321  * group the rings as "efficiently" as possible.  You would add new
1322  * mapping configurations in here.
1323  **/
1324 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1325 {
1326         int q_vectors;
1327         int v_start = 0;
1328         int rxr_idx = 0, txr_idx = 0;
1329         int rxr_remaining = adapter->num_rx_queues;
1330         int txr_remaining = adapter->num_tx_queues;
1331         int i, j;
1332         int rqpv, tqpv;
1333         int err = 0;
1334
1335         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1336
1337         /* The ideal configuration...
1338          * We have enough vectors to map one per queue.
1339          */
1340         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1341                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1342                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1343
1344                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1345                         map_vector_to_txq(adapter, v_start, txr_idx);
1346                 goto out;
1347         }
1348
1349         /* If we don't have enough vectors for a 1-to-1
1350          * mapping, we'll have to group them so there are
1351          * multiple queues per vector.
1352          */
1353         /* Re-adjusting *qpv takes care of the remainder. */
1354         for (i = v_start; i < q_vectors; i++) {
1355                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1356                 for (j = 0; j < rqpv; j++) {
1357                         map_vector_to_rxq(adapter, i, rxr_idx);
1358                         rxr_idx++;
1359                         rxr_remaining--;
1360                 }
1361         }
1362         for (i = v_start; i < q_vectors; i++) {
1363                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1364                 for (j = 0; j < tqpv; j++) {
1365                         map_vector_to_txq(adapter, i, txr_idx);
1366                         txr_idx++;
1367                         txr_remaining--;
1368                 }
1369         }
1370
1371 out:
1372         return err;
1373 }
1374
1375 /**
1376  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1377  * @adapter: board private structure
1378  *
1379  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1380  * interrupts from the kernel.
1381  **/
1382 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1383 {
1384         struct net_device *netdev = adapter->netdev;
1385         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1386         int vector, err;
1387         int ri = 0, ti = 0;
1388
1389         for (vector = 0; vector < q_vectors; vector++) {
1390                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1391                 struct msix_entry *entry = &adapter->msix_entries[vector];
1392
1393                 if (q_vector->tx.ring && q_vector->rx.ring) {
1394                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1395                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
1396                         ti++;
1397                 } else if (q_vector->rx.ring) {
1398                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1399                                  "%s-%s-%d", netdev->name, "rx", ri++);
1400                 } else if (q_vector->tx.ring) {
1401                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1402                                  "%s-%s-%d", netdev->name, "tx", ti++);
1403                 } else {
1404                         /* skip this unused q_vector */
1405                         continue;
1406                 }
1407                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1408                                   q_vector->name, q_vector);
1409                 if (err) {
1410                         hw_dbg(&adapter->hw,
1411                                "request_irq failed for MSIX interrupt Error: %d\n",
1412                                err);
1413                         goto free_queue_irqs;
1414                 }
1415         }
1416
1417         err = request_irq(adapter->msix_entries[vector].vector,
1418                           &ixgbevf_msix_other, 0, netdev->name, adapter);
1419         if (err) {
1420                 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1421                        err);
1422                 goto free_queue_irqs;
1423         }
1424
1425         return 0;
1426
1427 free_queue_irqs:
1428         while (vector) {
1429                 vector--;
1430                 free_irq(adapter->msix_entries[vector].vector,
1431                          adapter->q_vector[vector]);
1432         }
1433         /* This failure is non-recoverable - it indicates the system is
1434          * out of MSIX vector resources and the VF driver cannot run
1435          * without them.  Set the number of msix vectors to zero
1436          * indicating that not enough can be allocated.  The error
1437          * will be returned to the user indicating device open failed.
1438          * Any further attempts to force the driver to open will also
1439          * fail.  The only way to recover is to unload the driver and
1440          * reload it again.  If the system has recovered some MSIX
1441          * vectors then it may succeed.
1442          */
1443         adapter->num_msix_vectors = 0;
1444         return err;
1445 }
1446
1447 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1448 {
1449         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1450
1451         for (i = 0; i < q_vectors; i++) {
1452                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1453
1454                 q_vector->rx.ring = NULL;
1455                 q_vector->tx.ring = NULL;
1456                 q_vector->rx.count = 0;
1457                 q_vector->tx.count = 0;
1458         }
1459 }
1460
1461 /**
1462  * ixgbevf_request_irq - initialize interrupts
1463  * @adapter: board private structure
1464  *
1465  * Attempts to configure interrupts using the best available
1466  * capabilities of the hardware and kernel.
1467  **/
1468 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1469 {
1470         int err = 0;
1471
1472         err = ixgbevf_request_msix_irqs(adapter);
1473
1474         if (err)
1475                 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1476
1477         return err;
1478 }
1479
1480 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1481 {
1482         int i, q_vectors;
1483
1484         q_vectors = adapter->num_msix_vectors;
1485         i = q_vectors - 1;
1486
1487         free_irq(adapter->msix_entries[i].vector, adapter);
1488         i--;
1489
1490         for (; i >= 0; i--) {
1491                 /* free only the irqs that were actually requested */
1492                 if (!adapter->q_vector[i]->rx.ring &&
1493                     !adapter->q_vector[i]->tx.ring)
1494                         continue;
1495
1496                 free_irq(adapter->msix_entries[i].vector,
1497                          adapter->q_vector[i]);
1498         }
1499
1500         ixgbevf_reset_q_vectors(adapter);
1501 }
1502
1503 /**
1504  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1505  * @adapter: board private structure
1506  **/
1507 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1508 {
1509         struct ixgbe_hw *hw = &adapter->hw;
1510         int i;
1511
1512         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1513         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1514         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1515
1516         IXGBE_WRITE_FLUSH(hw);
1517
1518         for (i = 0; i < adapter->num_msix_vectors; i++)
1519                 synchronize_irq(adapter->msix_entries[i].vector);
1520 }
1521
1522 /**
1523  * ixgbevf_irq_enable - Enable default interrupt generation settings
1524  * @adapter: board private structure
1525  **/
1526 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1527 {
1528         struct ixgbe_hw *hw = &adapter->hw;
1529
1530         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1531         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1532         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1533 }
1534
1535 /**
1536  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1537  * @adapter: board private structure
1538  * @ring: structure containing ring specific data
1539  *
1540  * Configure the Tx descriptor ring after a reset.
1541  **/
1542 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1543                                       struct ixgbevf_ring *ring)
1544 {
1545         struct ixgbe_hw *hw = &adapter->hw;
1546         u64 tdba = ring->dma;
1547         int wait_loop = 10;
1548         u32 txdctl = IXGBE_TXDCTL_ENABLE;
1549         u8 reg_idx = ring->reg_idx;
1550
1551         /* disable queue to avoid issues while updating state */
1552         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1553         IXGBE_WRITE_FLUSH(hw);
1554
1555         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1556         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1557         IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1558                         ring->count * sizeof(union ixgbe_adv_tx_desc));
1559
1560         /* disable head writeback */
1561         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1562         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1563
1564         /* enable relaxed ordering */
1565         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1566                         (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1567                          IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1568
1569         /* reset head and tail pointers */
1570         IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1571         IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1572         ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1573
1574         /* reset ntu and ntc to place SW in sync with hardwdare */
1575         ring->next_to_clean = 0;
1576         ring->next_to_use = 0;
1577
1578         /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1579          * to or less than the number of on chip descriptors, which is
1580          * currently 40.
1581          */
1582         txdctl |= (8 << 16);    /* WTHRESH = 8 */
1583
1584         /* Setting PTHRESH to 32 both improves performance */
1585         txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1586                   32;          /* PTHRESH = 32 */
1587
1588         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1589
1590         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1591
1592         /* poll to verify queue is enabled */
1593         do {
1594                 usleep_range(1000, 2000);
1595                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1596         }  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1597         if (!wait_loop)
1598                 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1599 }
1600
1601 /**
1602  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1603  * @adapter: board private structure
1604  *
1605  * Configure the Tx unit of the MAC after a reset.
1606  **/
1607 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1608 {
1609         u32 i;
1610
1611         /* Setup the HW Tx Head and Tail descriptor pointers */
1612         for (i = 0; i < adapter->num_tx_queues; i++)
1613                 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1614 }
1615
1616 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1617
1618 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1619 {
1620         struct ixgbe_hw *hw = &adapter->hw;
1621         u32 srrctl;
1622
1623         srrctl = IXGBE_SRRCTL_DROP_EN;
1624
1625         srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1626         srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1627         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1628
1629         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1630 }
1631
1632 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1633 {
1634         struct ixgbe_hw *hw = &adapter->hw;
1635
1636         /* PSRTYPE must be initialized in 82599 */
1637         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1638                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1639                       IXGBE_PSRTYPE_L2HDR;
1640
1641         if (adapter->num_rx_queues > 1)
1642                 psrtype |= 1 << 29;
1643
1644         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1645 }
1646
1647 #define IXGBEVF_MAX_RX_DESC_POLL 10
1648 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1649                                      struct ixgbevf_ring *ring)
1650 {
1651         struct ixgbe_hw *hw = &adapter->hw;
1652         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1653         u32 rxdctl;
1654         u8 reg_idx = ring->reg_idx;
1655
1656         if (IXGBE_REMOVED(hw->hw_addr))
1657                 return;
1658         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1659         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1660
1661         /* write value back with RXDCTL.ENABLE bit cleared */
1662         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1663
1664         /* the hardware may take up to 100us to really disable the Rx queue */
1665         do {
1666                 udelay(10);
1667                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1668         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1669
1670         if (!wait_loop)
1671                 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1672                        reg_idx);
1673 }
1674
1675 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1676                                          struct ixgbevf_ring *ring)
1677 {
1678         struct ixgbe_hw *hw = &adapter->hw;
1679         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1680         u32 rxdctl;
1681         u8 reg_idx = ring->reg_idx;
1682
1683         if (IXGBE_REMOVED(hw->hw_addr))
1684                 return;
1685         do {
1686                 usleep_range(1000, 2000);
1687                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1688         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1689
1690         if (!wait_loop)
1691                 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1692                        reg_idx);
1693 }
1694
1695 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1696 {
1697         struct ixgbe_hw *hw = &adapter->hw;
1698         u32 vfmrqc = 0, vfreta = 0;
1699         u16 rss_i = adapter->num_rx_queues;
1700         u8 i, j;
1701
1702         /* Fill out hash function seeds */
1703         netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1704         for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1705                 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1706
1707         for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1708                 if (j == rss_i)
1709                         j = 0;
1710
1711                 adapter->rss_indir_tbl[i] = j;
1712
1713                 vfreta |= j << (i & 0x3) * 8;
1714                 if ((i & 3) == 3) {
1715                         IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1716                         vfreta = 0;
1717                 }
1718         }
1719
1720         /* Perform hash on these packet types */
1721         vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1722                 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1723                 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1724                 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1725
1726         vfmrqc |= IXGBE_VFMRQC_RSSEN;
1727
1728         IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1729 }
1730
1731 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1732                                       struct ixgbevf_ring *ring)
1733 {
1734         struct ixgbe_hw *hw = &adapter->hw;
1735         u64 rdba = ring->dma;
1736         u32 rxdctl;
1737         u8 reg_idx = ring->reg_idx;
1738
1739         /* disable queue to avoid issues while updating state */
1740         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1741         ixgbevf_disable_rx_queue(adapter, ring);
1742
1743         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1744         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1745         IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1746                         ring->count * sizeof(union ixgbe_adv_rx_desc));
1747
1748         /* enable relaxed ordering */
1749         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1750                         IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1751
1752         /* reset head and tail pointers */
1753         IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1754         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1755         ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1756
1757         /* reset ntu and ntc to place SW in sync with hardwdare */
1758         ring->next_to_clean = 0;
1759         ring->next_to_use = 0;
1760         ring->next_to_alloc = 0;
1761
1762         ixgbevf_configure_srrctl(adapter, reg_idx);
1763
1764         /* allow any size packet since we can handle overflow */
1765         rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1766
1767         rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1768         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1769
1770         ixgbevf_rx_desc_queue_enable(adapter, ring);
1771         ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1772 }
1773
1774 /**
1775  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1776  * @adapter: board private structure
1777  *
1778  * Configure the Rx unit of the MAC after a reset.
1779  **/
1780 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1781 {
1782         int i;
1783         struct ixgbe_hw *hw = &adapter->hw;
1784         struct net_device *netdev = adapter->netdev;
1785
1786         ixgbevf_setup_psrtype(adapter);
1787         if (hw->mac.type >= ixgbe_mac_X550_vf)
1788                 ixgbevf_setup_vfmrqc(adapter);
1789
1790         /* notify the PF of our intent to use this size of frame */
1791         ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1792
1793         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1794          * the Base and Length of the Rx Descriptor Ring
1795          */
1796         for (i = 0; i < adapter->num_rx_queues; i++)
1797                 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1798 }
1799
1800 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1801                                    __be16 proto, u16 vid)
1802 {
1803         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1804         struct ixgbe_hw *hw = &adapter->hw;
1805         int err;
1806
1807         spin_lock_bh(&adapter->mbx_lock);
1808
1809         /* add VID to filter table */
1810         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1811
1812         spin_unlock_bh(&adapter->mbx_lock);
1813
1814         /* translate error return types so error makes sense */
1815         if (err == IXGBE_ERR_MBX)
1816                 return -EIO;
1817
1818         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1819                 return -EACCES;
1820
1821         set_bit(vid, adapter->active_vlans);
1822
1823         return err;
1824 }
1825
1826 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1827                                     __be16 proto, u16 vid)
1828 {
1829         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1830         struct ixgbe_hw *hw = &adapter->hw;
1831         int err = -EOPNOTSUPP;
1832
1833         spin_lock_bh(&adapter->mbx_lock);
1834
1835         /* remove VID from filter table */
1836         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1837
1838         spin_unlock_bh(&adapter->mbx_lock);
1839
1840         clear_bit(vid, adapter->active_vlans);
1841
1842         return err;
1843 }
1844
1845 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1846 {
1847         u16 vid;
1848
1849         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1850                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1851                                         htons(ETH_P_8021Q), vid);
1852 }
1853
1854 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1855 {
1856         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1857         struct ixgbe_hw *hw = &adapter->hw;
1858         int count = 0;
1859
1860         if ((netdev_uc_count(netdev)) > 10) {
1861                 pr_err("Too many unicast filters - No Space\n");
1862                 return -ENOSPC;
1863         }
1864
1865         if (!netdev_uc_empty(netdev)) {
1866                 struct netdev_hw_addr *ha;
1867
1868                 netdev_for_each_uc_addr(ha, netdev) {
1869                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1870                         udelay(200);
1871                 }
1872         } else {
1873                 /* If the list is empty then send message to PF driver to
1874                  * clear all MAC VLANs on this VF.
1875                  */
1876                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1877         }
1878
1879         return count;
1880 }
1881
1882 /**
1883  * ixgbevf_set_rx_mode - Multicast and unicast set
1884  * @netdev: network interface device structure
1885  *
1886  * The set_rx_method entry point is called whenever the multicast address
1887  * list, unicast address list or the network interface flags are updated.
1888  * This routine is responsible for configuring the hardware for proper
1889  * multicast mode and configuring requested unicast filters.
1890  **/
1891 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1892 {
1893         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1894         struct ixgbe_hw *hw = &adapter->hw;
1895
1896         spin_lock_bh(&adapter->mbx_lock);
1897
1898         /* reprogram multicast list */
1899         hw->mac.ops.update_mc_addr_list(hw, netdev);
1900
1901         ixgbevf_write_uc_addr_list(netdev);
1902
1903         spin_unlock_bh(&adapter->mbx_lock);
1904 }
1905
1906 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1907 {
1908         int q_idx;
1909         struct ixgbevf_q_vector *q_vector;
1910         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1911
1912         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1913                 q_vector = adapter->q_vector[q_idx];
1914 #ifdef CONFIG_NET_RX_BUSY_POLL
1915                 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1916 #endif
1917                 napi_enable(&q_vector->napi);
1918         }
1919 }
1920
1921 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1922 {
1923         int q_idx;
1924         struct ixgbevf_q_vector *q_vector;
1925         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1926
1927         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1928                 q_vector = adapter->q_vector[q_idx];
1929                 napi_disable(&q_vector->napi);
1930 #ifdef CONFIG_NET_RX_BUSY_POLL
1931                 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1932                         pr_info("QV %d locked\n", q_idx);
1933                         usleep_range(1000, 20000);
1934                 }
1935 #endif /* CONFIG_NET_RX_BUSY_POLL */
1936         }
1937 }
1938
1939 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1940 {
1941         struct ixgbe_hw *hw = &adapter->hw;
1942         unsigned int def_q = 0;
1943         unsigned int num_tcs = 0;
1944         unsigned int num_rx_queues = adapter->num_rx_queues;
1945         unsigned int num_tx_queues = adapter->num_tx_queues;
1946         int err;
1947
1948         spin_lock_bh(&adapter->mbx_lock);
1949
1950         /* fetch queue configuration from the PF */
1951         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1952
1953         spin_unlock_bh(&adapter->mbx_lock);
1954
1955         if (err)
1956                 return err;
1957
1958         if (num_tcs > 1) {
1959                 /* we need only one Tx queue */
1960                 num_tx_queues = 1;
1961
1962                 /* update default Tx ring register index */
1963                 adapter->tx_ring[0]->reg_idx = def_q;
1964
1965                 /* we need as many queues as traffic classes */
1966                 num_rx_queues = num_tcs;
1967         }
1968
1969         /* if we have a bad config abort request queue reset */
1970         if ((adapter->num_rx_queues != num_rx_queues) ||
1971             (adapter->num_tx_queues != num_tx_queues)) {
1972                 /* force mailbox timeout to prevent further messages */
1973                 hw->mbx.timeout = 0;
1974
1975                 /* wait for watchdog to come around and bail us out */
1976                 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1983 {
1984         ixgbevf_configure_dcb(adapter);
1985
1986         ixgbevf_set_rx_mode(adapter->netdev);
1987
1988         ixgbevf_restore_vlan(adapter);
1989
1990         ixgbevf_configure_tx(adapter);
1991         ixgbevf_configure_rx(adapter);
1992 }
1993
1994 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1995 {
1996         /* Only save pre-reset stats if there are some */
1997         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1998                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1999                         adapter->stats.base_vfgprc;
2000                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2001                         adapter->stats.base_vfgptc;
2002                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2003                         adapter->stats.base_vfgorc;
2004                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2005                         adapter->stats.base_vfgotc;
2006                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2007                         adapter->stats.base_vfmprc;
2008         }
2009 }
2010
2011 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2012 {
2013         struct ixgbe_hw *hw = &adapter->hw;
2014
2015         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2016         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2017         adapter->stats.last_vfgorc |=
2018                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2019         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2020         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2021         adapter->stats.last_vfgotc |=
2022                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2023         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2024
2025         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2026         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2027         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2028         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2029         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2030 }
2031
2032 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2033 {
2034         struct ixgbe_hw *hw = &adapter->hw;
2035         int api[] = { ixgbe_mbox_api_12,
2036                       ixgbe_mbox_api_11,
2037                       ixgbe_mbox_api_10,
2038                       ixgbe_mbox_api_unknown };
2039         int err = 0, idx = 0;
2040
2041         spin_lock_bh(&adapter->mbx_lock);
2042
2043         while (api[idx] != ixgbe_mbox_api_unknown) {
2044                 err = ixgbevf_negotiate_api_version(hw, api[idx]);
2045                 if (!err)
2046                         break;
2047                 idx++;
2048         }
2049
2050         spin_unlock_bh(&adapter->mbx_lock);
2051 }
2052
2053 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2054 {
2055         struct net_device *netdev = adapter->netdev;
2056         struct ixgbe_hw *hw = &adapter->hw;
2057
2058         ixgbevf_configure_msix(adapter);
2059
2060         spin_lock_bh(&adapter->mbx_lock);
2061
2062         if (is_valid_ether_addr(hw->mac.addr))
2063                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2064         else
2065                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2066
2067         spin_unlock_bh(&adapter->mbx_lock);
2068
2069         smp_mb__before_atomic();
2070         clear_bit(__IXGBEVF_DOWN, &adapter->state);
2071         ixgbevf_napi_enable_all(adapter);
2072
2073         /* clear any pending interrupts, may auto mask */
2074         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2075         ixgbevf_irq_enable(adapter);
2076
2077         /* enable transmits */
2078         netif_tx_start_all_queues(netdev);
2079
2080         ixgbevf_save_reset_stats(adapter);
2081         ixgbevf_init_last_counter_stats(adapter);
2082
2083         hw->mac.get_link_status = 1;
2084         mod_timer(&adapter->service_timer, jiffies);
2085 }
2086
2087 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2088 {
2089         ixgbevf_configure(adapter);
2090
2091         ixgbevf_up_complete(adapter);
2092 }
2093
2094 /**
2095  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2096  * @rx_ring: ring to free buffers from
2097  **/
2098 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2099 {
2100         struct device *dev = rx_ring->dev;
2101         unsigned long size;
2102         unsigned int i;
2103
2104         /* Free Rx ring sk_buff */
2105         if (rx_ring->skb) {
2106                 dev_kfree_skb(rx_ring->skb);
2107                 rx_ring->skb = NULL;
2108         }
2109
2110         /* ring already cleared, nothing to do */
2111         if (!rx_ring->rx_buffer_info)
2112                 return;
2113
2114         /* Free all the Rx ring pages */
2115         for (i = 0; i < rx_ring->count; i++) {
2116                 struct ixgbevf_rx_buffer *rx_buffer;
2117
2118                 rx_buffer = &rx_ring->rx_buffer_info[i];
2119                 if (rx_buffer->dma)
2120                         dma_unmap_page(dev, rx_buffer->dma,
2121                                        PAGE_SIZE, DMA_FROM_DEVICE);
2122                 rx_buffer->dma = 0;
2123                 if (rx_buffer->page)
2124                         __free_page(rx_buffer->page);
2125                 rx_buffer->page = NULL;
2126         }
2127
2128         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2129         memset(rx_ring->rx_buffer_info, 0, size);
2130
2131         /* Zero out the descriptor ring */
2132         memset(rx_ring->desc, 0, rx_ring->size);
2133 }
2134
2135 /**
2136  * ixgbevf_clean_tx_ring - Free Tx Buffers
2137  * @tx_ring: ring to be cleaned
2138  **/
2139 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2140 {
2141         struct ixgbevf_tx_buffer *tx_buffer_info;
2142         unsigned long size;
2143         unsigned int i;
2144
2145         if (!tx_ring->tx_buffer_info)
2146                 return;
2147
2148         /* Free all the Tx ring sk_buffs */
2149         for (i = 0; i < tx_ring->count; i++) {
2150                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2151                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2152         }
2153
2154         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2155         memset(tx_ring->tx_buffer_info, 0, size);
2156
2157         memset(tx_ring->desc, 0, tx_ring->size);
2158 }
2159
2160 /**
2161  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2162  * @adapter: board private structure
2163  **/
2164 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2165 {
2166         int i;
2167
2168         for (i = 0; i < adapter->num_rx_queues; i++)
2169                 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2170 }
2171
2172 /**
2173  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2174  * @adapter: board private structure
2175  **/
2176 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2177 {
2178         int i;
2179
2180         for (i = 0; i < adapter->num_tx_queues; i++)
2181                 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2182 }
2183
2184 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2185 {
2186         struct net_device *netdev = adapter->netdev;
2187         struct ixgbe_hw *hw = &adapter->hw;
2188         int i;
2189
2190         /* signal that we are down to the interrupt handler */
2191         if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2192                 return; /* do nothing if already down */
2193
2194         /* disable all enabled Rx queues */
2195         for (i = 0; i < adapter->num_rx_queues; i++)
2196                 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2197
2198         usleep_range(10000, 20000);
2199
2200         netif_tx_stop_all_queues(netdev);
2201
2202         /* call carrier off first to avoid false dev_watchdog timeouts */
2203         netif_carrier_off(netdev);
2204         netif_tx_disable(netdev);
2205
2206         ixgbevf_irq_disable(adapter);
2207
2208         ixgbevf_napi_disable_all(adapter);
2209
2210         del_timer_sync(&adapter->service_timer);
2211
2212         /* disable transmits in the hardware now that interrupts are off */
2213         for (i = 0; i < adapter->num_tx_queues; i++) {
2214                 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2215
2216                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2217                                 IXGBE_TXDCTL_SWFLSH);
2218         }
2219
2220         if (!pci_channel_offline(adapter->pdev))
2221                 ixgbevf_reset(adapter);
2222
2223         ixgbevf_clean_all_tx_rings(adapter);
2224         ixgbevf_clean_all_rx_rings(adapter);
2225 }
2226
2227 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2228 {
2229         WARN_ON(in_interrupt());
2230
2231         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2232                 msleep(1);
2233
2234         ixgbevf_down(adapter);
2235         ixgbevf_up(adapter);
2236
2237         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2238 }
2239
2240 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2241 {
2242         struct ixgbe_hw *hw = &adapter->hw;
2243         struct net_device *netdev = adapter->netdev;
2244
2245         if (hw->mac.ops.reset_hw(hw)) {
2246                 hw_dbg(hw, "PF still resetting\n");
2247         } else {
2248                 hw->mac.ops.init_hw(hw);
2249                 ixgbevf_negotiate_api(adapter);
2250         }
2251
2252         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2253                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2254                        netdev->addr_len);
2255                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2256                        netdev->addr_len);
2257         }
2258
2259         adapter->last_reset = jiffies;
2260 }
2261
2262 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2263                                         int vectors)
2264 {
2265         int vector_threshold;
2266
2267         /* We'll want at least 2 (vector_threshold):
2268          * 1) TxQ[0] + RxQ[0] handler
2269          * 2) Other (Link Status Change, etc.)
2270          */
2271         vector_threshold = MIN_MSIX_COUNT;
2272
2273         /* The more we get, the more we will assign to Tx/Rx Cleanup
2274          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2275          * Right now, we simply care about how many we'll get; we'll
2276          * set them up later while requesting irq's.
2277          */
2278         vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2279                                         vector_threshold, vectors);
2280
2281         if (vectors < 0) {
2282                 dev_err(&adapter->pdev->dev,
2283                         "Unable to allocate MSI-X interrupts\n");
2284                 kfree(adapter->msix_entries);
2285                 adapter->msix_entries = NULL;
2286                 return vectors;
2287         }
2288
2289         /* Adjust for only the vectors we'll use, which is minimum
2290          * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2291          * vectors we were allocated.
2292          */
2293         adapter->num_msix_vectors = vectors;
2294
2295         return 0;
2296 }
2297
2298 /**
2299  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2300  * @adapter: board private structure to initialize
2301  *
2302  * This is the top level queue allocation routine.  The order here is very
2303  * important, starting with the "most" number of features turned on at once,
2304  * and ending with the smallest set of features.  This way large combinations
2305  * can be allocated if they're turned on, and smaller combinations are the
2306  * fallthrough conditions.
2307  *
2308  **/
2309 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2310 {
2311         struct ixgbe_hw *hw = &adapter->hw;
2312         unsigned int def_q = 0;
2313         unsigned int num_tcs = 0;
2314         int err;
2315
2316         /* Start with base case */
2317         adapter->num_rx_queues = 1;
2318         adapter->num_tx_queues = 1;
2319
2320         spin_lock_bh(&adapter->mbx_lock);
2321
2322         /* fetch queue configuration from the PF */
2323         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2324
2325         spin_unlock_bh(&adapter->mbx_lock);
2326
2327         if (err)
2328                 return;
2329
2330         /* we need as many queues as traffic classes */
2331         if (num_tcs > 1) {
2332                 adapter->num_rx_queues = num_tcs;
2333         } else {
2334                 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2335
2336                 switch (hw->api_version) {
2337                 case ixgbe_mbox_api_11:
2338                 case ixgbe_mbox_api_12:
2339                         adapter->num_rx_queues = rss;
2340                         adapter->num_tx_queues = rss;
2341                 default:
2342                         break;
2343                 }
2344         }
2345 }
2346
2347 /**
2348  * ixgbevf_alloc_queues - Allocate memory for all rings
2349  * @adapter: board private structure to initialize
2350  *
2351  * We allocate one ring per queue at run-time since we don't know the
2352  * number of queues at compile-time.  The polling_netdev array is
2353  * intended for Multiqueue, but should work fine with a single queue.
2354  **/
2355 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2356 {
2357         struct ixgbevf_ring *ring;
2358         int rx = 0, tx = 0;
2359
2360         for (; tx < adapter->num_tx_queues; tx++) {
2361                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2362                 if (!ring)
2363                         goto err_allocation;
2364
2365                 ring->dev = &adapter->pdev->dev;
2366                 ring->netdev = adapter->netdev;
2367                 ring->count = adapter->tx_ring_count;
2368                 ring->queue_index = tx;
2369                 ring->reg_idx = tx;
2370
2371                 adapter->tx_ring[tx] = ring;
2372         }
2373
2374         for (; rx < adapter->num_rx_queues; rx++) {
2375                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2376                 if (!ring)
2377                         goto err_allocation;
2378
2379                 ring->dev = &adapter->pdev->dev;
2380                 ring->netdev = adapter->netdev;
2381
2382                 ring->count = adapter->rx_ring_count;
2383                 ring->queue_index = rx;
2384                 ring->reg_idx = rx;
2385
2386                 adapter->rx_ring[rx] = ring;
2387         }
2388
2389         return 0;
2390
2391 err_allocation:
2392         while (tx) {
2393                 kfree(adapter->tx_ring[--tx]);
2394                 adapter->tx_ring[tx] = NULL;
2395         }
2396
2397         while (rx) {
2398                 kfree(adapter->rx_ring[--rx]);
2399                 adapter->rx_ring[rx] = NULL;
2400         }
2401         return -ENOMEM;
2402 }
2403
2404 /**
2405  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2406  * @adapter: board private structure to initialize
2407  *
2408  * Attempt to configure the interrupts using the best available
2409  * capabilities of the hardware and the kernel.
2410  **/
2411 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2412 {
2413         struct net_device *netdev = adapter->netdev;
2414         int err = 0;
2415         int vector, v_budget;
2416
2417         /* It's easy to be greedy for MSI-X vectors, but it really
2418          * doesn't do us much good if we have a lot more vectors
2419          * than CPU's.  So let's be conservative and only ask for
2420          * (roughly) the same number of vectors as there are CPU's.
2421          * The default is to use pairs of vectors.
2422          */
2423         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2424         v_budget = min_t(int, v_budget, num_online_cpus());
2425         v_budget += NON_Q_VECTORS;
2426
2427         /* A failure in MSI-X entry allocation isn't fatal, but it does
2428          * mean we disable MSI-X capabilities of the adapter.
2429          */
2430         adapter->msix_entries = kcalloc(v_budget,
2431                                         sizeof(struct msix_entry), GFP_KERNEL);
2432         if (!adapter->msix_entries) {
2433                 err = -ENOMEM;
2434                 goto out;
2435         }
2436
2437         for (vector = 0; vector < v_budget; vector++)
2438                 adapter->msix_entries[vector].entry = vector;
2439
2440         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2441         if (err)
2442                 goto out;
2443
2444         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2445         if (err)
2446                 goto out;
2447
2448         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2449
2450 out:
2451         return err;
2452 }
2453
2454 /**
2455  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2456  * @adapter: board private structure to initialize
2457  *
2458  * We allocate one q_vector per queue interrupt.  If allocation fails we
2459  * return -ENOMEM.
2460  **/
2461 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2462 {
2463         int q_idx, num_q_vectors;
2464         struct ixgbevf_q_vector *q_vector;
2465
2466         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2467
2468         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2469                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2470                 if (!q_vector)
2471                         goto err_out;
2472                 q_vector->adapter = adapter;
2473                 q_vector->v_idx = q_idx;
2474                 netif_napi_add(adapter->netdev, &q_vector->napi,
2475                                ixgbevf_poll, 64);
2476 #ifdef CONFIG_NET_RX_BUSY_POLL
2477                 napi_hash_add(&q_vector->napi);
2478 #endif
2479                 adapter->q_vector[q_idx] = q_vector;
2480         }
2481
2482         return 0;
2483
2484 err_out:
2485         while (q_idx) {
2486                 q_idx--;
2487                 q_vector = adapter->q_vector[q_idx];
2488 #ifdef CONFIG_NET_RX_BUSY_POLL
2489                 napi_hash_del(&q_vector->napi);
2490 #endif
2491                 netif_napi_del(&q_vector->napi);
2492                 kfree(q_vector);
2493                 adapter->q_vector[q_idx] = NULL;
2494         }
2495         return -ENOMEM;
2496 }
2497
2498 /**
2499  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2500  * @adapter: board private structure to initialize
2501  *
2502  * This function frees the memory allocated to the q_vectors.  In addition if
2503  * NAPI is enabled it will delete any references to the NAPI struct prior
2504  * to freeing the q_vector.
2505  **/
2506 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2507 {
2508         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2509
2510         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2511                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2512
2513                 adapter->q_vector[q_idx] = NULL;
2514 #ifdef CONFIG_NET_RX_BUSY_POLL
2515                 napi_hash_del(&q_vector->napi);
2516 #endif
2517                 netif_napi_del(&q_vector->napi);
2518                 kfree(q_vector);
2519         }
2520 }
2521
2522 /**
2523  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2524  * @adapter: board private structure
2525  *
2526  **/
2527 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2528 {
2529         pci_disable_msix(adapter->pdev);
2530         kfree(adapter->msix_entries);
2531         adapter->msix_entries = NULL;
2532 }
2533
2534 /**
2535  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2536  * @adapter: board private structure to initialize
2537  *
2538  **/
2539 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2540 {
2541         int err;
2542
2543         /* Number of supported queues */
2544         ixgbevf_set_num_queues(adapter);
2545
2546         err = ixgbevf_set_interrupt_capability(adapter);
2547         if (err) {
2548                 hw_dbg(&adapter->hw,
2549                        "Unable to setup interrupt capabilities\n");
2550                 goto err_set_interrupt;
2551         }
2552
2553         err = ixgbevf_alloc_q_vectors(adapter);
2554         if (err) {
2555                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2556                 goto err_alloc_q_vectors;
2557         }
2558
2559         err = ixgbevf_alloc_queues(adapter);
2560         if (err) {
2561                 pr_err("Unable to allocate memory for queues\n");
2562                 goto err_alloc_queues;
2563         }
2564
2565         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2566                (adapter->num_rx_queues > 1) ? "Enabled" :
2567                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2568
2569         set_bit(__IXGBEVF_DOWN, &adapter->state);
2570
2571         return 0;
2572 err_alloc_queues:
2573         ixgbevf_free_q_vectors(adapter);
2574 err_alloc_q_vectors:
2575         ixgbevf_reset_interrupt_capability(adapter);
2576 err_set_interrupt:
2577         return err;
2578 }
2579
2580 /**
2581  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2582  * @adapter: board private structure to clear interrupt scheme on
2583  *
2584  * We go through and clear interrupt specific resources and reset the structure
2585  * to pre-load conditions
2586  **/
2587 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2588 {
2589         int i;
2590
2591         for (i = 0; i < adapter->num_tx_queues; i++) {
2592                 kfree(adapter->tx_ring[i]);
2593                 adapter->tx_ring[i] = NULL;
2594         }
2595         for (i = 0; i < adapter->num_rx_queues; i++) {
2596                 kfree(adapter->rx_ring[i]);
2597                 adapter->rx_ring[i] = NULL;
2598         }
2599
2600         adapter->num_tx_queues = 0;
2601         adapter->num_rx_queues = 0;
2602
2603         ixgbevf_free_q_vectors(adapter);
2604         ixgbevf_reset_interrupt_capability(adapter);
2605 }
2606
2607 /**
2608  * ixgbevf_sw_init - Initialize general software structures
2609  * @adapter: board private structure to initialize
2610  *
2611  * ixgbevf_sw_init initializes the Adapter private data structure.
2612  * Fields are initialized based on PCI device information and
2613  * OS network device settings (MTU size).
2614  **/
2615 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2616 {
2617         struct ixgbe_hw *hw = &adapter->hw;
2618         struct pci_dev *pdev = adapter->pdev;
2619         struct net_device *netdev = adapter->netdev;
2620         int err;
2621
2622         /* PCI config space info */
2623         hw->vendor_id = pdev->vendor;
2624         hw->device_id = pdev->device;
2625         hw->revision_id = pdev->revision;
2626         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2627         hw->subsystem_device_id = pdev->subsystem_device;
2628
2629         hw->mbx.ops.init_params(hw);
2630
2631         /* assume legacy case in which PF would only give VF 2 queues */
2632         hw->mac.max_tx_queues = 2;
2633         hw->mac.max_rx_queues = 2;
2634
2635         /* lock to protect mailbox accesses */
2636         spin_lock_init(&adapter->mbx_lock);
2637
2638         err = hw->mac.ops.reset_hw(hw);
2639         if (err) {
2640                 dev_info(&pdev->dev,
2641                          "PF still in reset state.  Is the PF interface up?\n");
2642         } else {
2643                 err = hw->mac.ops.init_hw(hw);
2644                 if (err) {
2645                         pr_err("init_shared_code failed: %d\n", err);
2646                         goto out;
2647                 }
2648                 ixgbevf_negotiate_api(adapter);
2649                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2650                 if (err)
2651                         dev_info(&pdev->dev, "Error reading MAC address\n");
2652                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2653                         dev_info(&pdev->dev,
2654                                  "MAC address not assigned by administrator.\n");
2655                 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2656         }
2657
2658         if (!is_valid_ether_addr(netdev->dev_addr)) {
2659                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2660                 eth_hw_addr_random(netdev);
2661                 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2662         }
2663
2664         /* Enable dynamic interrupt throttling rates */
2665         adapter->rx_itr_setting = 1;
2666         adapter->tx_itr_setting = 1;
2667
2668         /* set default ring sizes */
2669         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2670         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2671
2672         set_bit(__IXGBEVF_DOWN, &adapter->state);
2673         return 0;
2674
2675 out:
2676         return err;
2677 }
2678
2679 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2680         {                                                       \
2681                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2682                 if (current_counter < last_counter)             \
2683                         counter += 0x100000000LL;               \
2684                 last_counter = current_counter;                 \
2685                 counter &= 0xFFFFFFFF00000000LL;                \
2686                 counter |= current_counter;                     \
2687         }
2688
2689 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2690         {                                                                \
2691                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2692                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2693                 u64 current_counter = (current_counter_msb << 32) |      \
2694                         current_counter_lsb;                             \
2695                 if (current_counter < last_counter)                      \
2696                         counter += 0x1000000000LL;                       \
2697                 last_counter = current_counter;                          \
2698                 counter &= 0xFFFFFFF000000000LL;                         \
2699                 counter |= current_counter;                              \
2700         }
2701 /**
2702  * ixgbevf_update_stats - Update the board statistics counters.
2703  * @adapter: board private structure
2704  **/
2705 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2706 {
2707         struct ixgbe_hw *hw = &adapter->hw;
2708         int i;
2709
2710         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2711             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2712                 return;
2713
2714         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2715                                 adapter->stats.vfgprc);
2716         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2717                                 adapter->stats.vfgptc);
2718         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2719                                 adapter->stats.last_vfgorc,
2720                                 adapter->stats.vfgorc);
2721         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2722                                 adapter->stats.last_vfgotc,
2723                                 adapter->stats.vfgotc);
2724         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2725                                 adapter->stats.vfmprc);
2726
2727         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2728                 adapter->hw_csum_rx_error +=
2729                         adapter->rx_ring[i]->hw_csum_rx_error;
2730                 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2731         }
2732 }
2733
2734 /**
2735  * ixgbevf_service_timer - Timer Call-back
2736  * @data: pointer to adapter cast into an unsigned long
2737  **/
2738 static void ixgbevf_service_timer(unsigned long data)
2739 {
2740         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2741
2742         /* Reset the timer */
2743         mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2744
2745         ixgbevf_service_event_schedule(adapter);
2746 }
2747
2748 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2749 {
2750         if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2751                 return;
2752
2753         adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2754
2755         /* If we're already down or resetting, just bail */
2756         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2757             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2758                 return;
2759
2760         adapter->tx_timeout_count++;
2761
2762         ixgbevf_reinit_locked(adapter);
2763 }
2764
2765 /**
2766  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2767  * @adapter: pointer to the device adapter structure
2768  *
2769  * This function serves two purposes.  First it strobes the interrupt lines
2770  * in order to make certain interrupts are occurring.  Secondly it sets the
2771  * bits needed to check for TX hangs.  As a result we should immediately
2772  * determine if a hang has occurred.
2773  **/
2774 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2775 {
2776         struct ixgbe_hw *hw = &adapter->hw;
2777         u32 eics = 0;
2778         int i;
2779
2780         /* If we're down or resetting, just bail */
2781         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2782             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2783                 return;
2784
2785         /* Force detection of hung controller */
2786         if (netif_carrier_ok(adapter->netdev)) {
2787                 for (i = 0; i < adapter->num_tx_queues; i++)
2788                         set_check_for_tx_hang(adapter->tx_ring[i]);
2789         }
2790
2791         /* get one bit for every active Tx/Rx interrupt vector */
2792         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2793                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2794
2795                 if (qv->rx.ring || qv->tx.ring)
2796                         eics |= 1 << i;
2797         }
2798
2799         /* Cause software interrupt to ensure rings are cleaned */
2800         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2801 }
2802
2803 /**
2804  * ixgbevf_watchdog_update_link - update the link status
2805  * @adapter: pointer to the device adapter structure
2806  **/
2807 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2808 {
2809         struct ixgbe_hw *hw = &adapter->hw;
2810         u32 link_speed = adapter->link_speed;
2811         bool link_up = adapter->link_up;
2812         s32 err;
2813
2814         spin_lock_bh(&adapter->mbx_lock);
2815
2816         err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2817
2818         spin_unlock_bh(&adapter->mbx_lock);
2819
2820         /* if check for link returns error we will need to reset */
2821         if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2822                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2823                 link_up = false;
2824         }
2825
2826         adapter->link_up = link_up;
2827         adapter->link_speed = link_speed;
2828 }
2829
2830 /**
2831  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2832  *                               print link up message
2833  * @adapter: pointer to the device adapter structure
2834  **/
2835 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2836 {
2837         struct net_device *netdev = adapter->netdev;
2838
2839         /* only continue if link was previously down */
2840         if (netif_carrier_ok(netdev))
2841                 return;
2842
2843         dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2844                  (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2845                  "10 Gbps" :
2846                  (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2847                  "1 Gbps" :
2848                  (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2849                  "100 Mbps" :
2850                  "unknown speed");
2851
2852         netif_carrier_on(netdev);
2853 }
2854
2855 /**
2856  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2857  *                                 print link down message
2858  * @adapter: pointer to the adapter structure
2859  **/
2860 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2861 {
2862         struct net_device *netdev = adapter->netdev;
2863
2864         adapter->link_speed = 0;
2865
2866         /* only continue if link was up previously */
2867         if (!netif_carrier_ok(netdev))
2868                 return;
2869
2870         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2871
2872         netif_carrier_off(netdev);
2873 }
2874
2875 /**
2876  * ixgbevf_watchdog_subtask - worker thread to bring link up
2877  * @work: pointer to work_struct containing our data
2878  **/
2879 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2880 {
2881         /* if interface is down do nothing */
2882         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2883             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2884                 return;
2885
2886         ixgbevf_watchdog_update_link(adapter);
2887
2888         if (adapter->link_up)
2889                 ixgbevf_watchdog_link_is_up(adapter);
2890         else
2891                 ixgbevf_watchdog_link_is_down(adapter);
2892
2893         ixgbevf_update_stats(adapter);
2894 }
2895
2896 /**
2897  * ixgbevf_service_task - manages and runs subtasks
2898  * @work: pointer to work_struct containing our data
2899  **/
2900 static void ixgbevf_service_task(struct work_struct *work)
2901 {
2902         struct ixgbevf_adapter *adapter = container_of(work,
2903                                                        struct ixgbevf_adapter,
2904                                                        service_task);
2905         struct ixgbe_hw *hw = &adapter->hw;
2906
2907         if (IXGBE_REMOVED(hw->hw_addr)) {
2908                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2909                         rtnl_lock();
2910                         ixgbevf_down(adapter);
2911                         rtnl_unlock();
2912                 }
2913                 return;
2914         }
2915
2916         ixgbevf_queue_reset_subtask(adapter);
2917         ixgbevf_reset_subtask(adapter);
2918         ixgbevf_watchdog_subtask(adapter);
2919         ixgbevf_check_hang_subtask(adapter);
2920
2921         ixgbevf_service_event_complete(adapter);
2922 }
2923
2924 /**
2925  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2926  * @tx_ring: Tx descriptor ring for a specific queue
2927  *
2928  * Free all transmit software resources
2929  **/
2930 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2931 {
2932         ixgbevf_clean_tx_ring(tx_ring);
2933
2934         vfree(tx_ring->tx_buffer_info);
2935         tx_ring->tx_buffer_info = NULL;
2936
2937         /* if not set, then don't free */
2938         if (!tx_ring->desc)
2939                 return;
2940
2941         dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2942                           tx_ring->dma);
2943
2944         tx_ring->desc = NULL;
2945 }
2946
2947 /**
2948  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2949  * @adapter: board private structure
2950  *
2951  * Free all transmit software resources
2952  **/
2953 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2954 {
2955         int i;
2956
2957         for (i = 0; i < adapter->num_tx_queues; i++)
2958                 if (adapter->tx_ring[i]->desc)
2959                         ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2960 }
2961
2962 /**
2963  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2964  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2965  *
2966  * Return 0 on success, negative on failure
2967  **/
2968 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2969 {
2970         int size;
2971
2972         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2973         tx_ring->tx_buffer_info = vzalloc(size);
2974         if (!tx_ring->tx_buffer_info)
2975                 goto err;
2976
2977         /* round up to nearest 4K */
2978         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2979         tx_ring->size = ALIGN(tx_ring->size, 4096);
2980
2981         tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2982                                            &tx_ring->dma, GFP_KERNEL);
2983         if (!tx_ring->desc)
2984                 goto err;
2985
2986         return 0;
2987
2988 err:
2989         vfree(tx_ring->tx_buffer_info);
2990         tx_ring->tx_buffer_info = NULL;
2991         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
2992         return -ENOMEM;
2993 }
2994
2995 /**
2996  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2997  * @adapter: board private structure
2998  *
2999  * If this function returns with an error, then it's possible one or
3000  * more of the rings is populated (while the rest are not).  It is the
3001  * callers duty to clean those orphaned rings.
3002  *
3003  * Return 0 on success, negative on failure
3004  **/
3005 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3006 {
3007         int i, err = 0;
3008
3009         for (i = 0; i < adapter->num_tx_queues; i++) {
3010                 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3011                 if (!err)
3012                         continue;
3013                 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3014                 break;
3015         }
3016
3017         return err;
3018 }
3019
3020 /**
3021  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3022  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3023  *
3024  * Returns 0 on success, negative on failure
3025  **/
3026 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3027 {
3028         int size;
3029
3030         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3031         rx_ring->rx_buffer_info = vzalloc(size);
3032         if (!rx_ring->rx_buffer_info)
3033                 goto err;
3034
3035         /* Round up to nearest 4K */
3036         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3037         rx_ring->size = ALIGN(rx_ring->size, 4096);
3038
3039         rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3040                                            &rx_ring->dma, GFP_KERNEL);
3041
3042         if (!rx_ring->desc)
3043                 goto err;
3044
3045         return 0;
3046 err:
3047         vfree(rx_ring->rx_buffer_info);
3048         rx_ring->rx_buffer_info = NULL;
3049         dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3050         return -ENOMEM;
3051 }
3052
3053 /**
3054  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3055  * @adapter: board private structure
3056  *
3057  * If this function returns with an error, then it's possible one or
3058  * more of the rings is populated (while the rest are not).  It is the
3059  * callers duty to clean those orphaned rings.
3060  *
3061  * Return 0 on success, negative on failure
3062  **/
3063 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3064 {
3065         int i, err = 0;
3066
3067         for (i = 0; i < adapter->num_rx_queues; i++) {
3068                 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3069                 if (!err)
3070                         continue;
3071                 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3072                 break;
3073         }
3074         return err;
3075 }
3076
3077 /**
3078  * ixgbevf_free_rx_resources - Free Rx Resources
3079  * @rx_ring: ring to clean the resources from
3080  *
3081  * Free all receive software resources
3082  **/
3083 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3084 {
3085         ixgbevf_clean_rx_ring(rx_ring);
3086
3087         vfree(rx_ring->rx_buffer_info);
3088         rx_ring->rx_buffer_info = NULL;
3089
3090         dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3091                           rx_ring->dma);
3092
3093         rx_ring->desc = NULL;
3094 }
3095
3096 /**
3097  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3098  * @adapter: board private structure
3099  *
3100  * Free all receive software resources
3101  **/
3102 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3103 {
3104         int i;
3105
3106         for (i = 0; i < adapter->num_rx_queues; i++)
3107                 if (adapter->rx_ring[i]->desc)
3108                         ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3109 }
3110
3111 /**
3112  * ixgbevf_open - Called when a network interface is made active
3113  * @netdev: network interface device structure
3114  *
3115  * Returns 0 on success, negative value on failure
3116  *
3117  * The open entry point is called when a network interface is made
3118  * active by the system (IFF_UP).  At this point all resources needed
3119  * for transmit and receive operations are allocated, the interrupt
3120  * handler is registered with the OS, the watchdog timer is started,
3121  * and the stack is notified that the interface is ready.
3122  **/
3123 static int ixgbevf_open(struct net_device *netdev)
3124 {
3125         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3126         struct ixgbe_hw *hw = &adapter->hw;
3127         int err;
3128
3129         /* A previous failure to open the device because of a lack of
3130          * available MSIX vector resources may have reset the number
3131          * of msix vectors variable to zero.  The only way to recover
3132          * is to unload/reload the driver and hope that the system has
3133          * been able to recover some MSIX vector resources.
3134          */
3135         if (!adapter->num_msix_vectors)
3136                 return -ENOMEM;
3137
3138         if (hw->adapter_stopped) {
3139                 ixgbevf_reset(adapter);
3140                 /* if adapter is still stopped then PF isn't up and
3141                  * the VF can't start.
3142                  */
3143                 if (hw->adapter_stopped) {
3144                         err = IXGBE_ERR_MBX;
3145                         pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3146                         goto err_setup_reset;
3147                 }
3148         }
3149
3150         /* disallow open during test */
3151         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3152                 return -EBUSY;
3153
3154         netif_carrier_off(netdev);
3155
3156         /* allocate transmit descriptors */
3157         err = ixgbevf_setup_all_tx_resources(adapter);
3158         if (err)
3159                 goto err_setup_tx;
3160
3161         /* allocate receive descriptors */
3162         err = ixgbevf_setup_all_rx_resources(adapter);
3163         if (err)
3164                 goto err_setup_rx;
3165
3166         ixgbevf_configure(adapter);
3167
3168         /* Map the Tx/Rx rings to the vectors we were allotted.
3169          * if request_irq will be called in this function map_rings
3170          * must be called *before* up_complete
3171          */
3172         ixgbevf_map_rings_to_vectors(adapter);
3173
3174         err = ixgbevf_request_irq(adapter);
3175         if (err)
3176                 goto err_req_irq;
3177
3178         ixgbevf_up_complete(adapter);
3179
3180         return 0;
3181
3182 err_req_irq:
3183         ixgbevf_down(adapter);
3184 err_setup_rx:
3185         ixgbevf_free_all_rx_resources(adapter);
3186 err_setup_tx:
3187         ixgbevf_free_all_tx_resources(adapter);
3188         ixgbevf_reset(adapter);
3189
3190 err_setup_reset:
3191
3192         return err;
3193 }
3194
3195 /**
3196  * ixgbevf_close - Disables a network interface
3197  * @netdev: network interface device structure
3198  *
3199  * Returns 0, this is not allowed to fail
3200  *
3201  * The close entry point is called when an interface is de-activated
3202  * by the OS.  The hardware is still under the drivers control, but
3203  * needs to be disabled.  A global MAC reset is issued to stop the
3204  * hardware, and all transmit and receive resources are freed.
3205  **/
3206 static int ixgbevf_close(struct net_device *netdev)
3207 {
3208         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3209
3210         ixgbevf_down(adapter);
3211         ixgbevf_free_irq(adapter);
3212
3213         ixgbevf_free_all_tx_resources(adapter);
3214         ixgbevf_free_all_rx_resources(adapter);
3215
3216         return 0;
3217 }
3218
3219 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3220 {
3221         struct net_device *dev = adapter->netdev;
3222
3223         if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3224                 return;
3225
3226         adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3227
3228         /* if interface is down do nothing */
3229         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3230             test_bit(__IXGBEVF_RESETTING, &adapter->state))
3231                 return;
3232
3233         /* Hardware has to reinitialize queues and interrupts to
3234          * match packet buffer alignment. Unfortunately, the
3235          * hardware is not flexible enough to do this dynamically.
3236          */
3237         if (netif_running(dev))
3238                 ixgbevf_close(dev);
3239
3240         ixgbevf_clear_interrupt_scheme(adapter);
3241         ixgbevf_init_interrupt_scheme(adapter);
3242
3243         if (netif_running(dev))
3244                 ixgbevf_open(dev);
3245 }
3246
3247 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3248                                 u32 vlan_macip_lens, u32 type_tucmd,
3249                                 u32 mss_l4len_idx)
3250 {
3251         struct ixgbe_adv_tx_context_desc *context_desc;
3252         u16 i = tx_ring->next_to_use;
3253
3254         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3255
3256         i++;
3257         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3258
3259         /* set bits to identify this as an advanced context descriptor */
3260         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3261
3262         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3263         context_desc->seqnum_seed       = 0;
3264         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3265         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3266 }
3267
3268 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3269                        struct ixgbevf_tx_buffer *first,
3270                        u8 *hdr_len)
3271 {
3272         struct sk_buff *skb = first->skb;
3273         u32 vlan_macip_lens, type_tucmd;
3274         u32 mss_l4len_idx, l4len;
3275         int err;
3276
3277         if (skb->ip_summed != CHECKSUM_PARTIAL)
3278                 return 0;
3279
3280         if (!skb_is_gso(skb))
3281                 return 0;
3282
3283         err = skb_cow_head(skb, 0);
3284         if (err < 0)
3285                 return err;
3286
3287         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3288         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3289
3290         if (first->protocol == htons(ETH_P_IP)) {
3291                 struct iphdr *iph = ip_hdr(skb);
3292
3293                 iph->tot_len = 0;
3294                 iph->check = 0;
3295                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3296                                                          iph->daddr, 0,
3297                                                          IPPROTO_TCP,
3298                                                          0);
3299                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3300                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3301                                    IXGBE_TX_FLAGS_CSUM |
3302                                    IXGBE_TX_FLAGS_IPV4;
3303         } else if (skb_is_gso_v6(skb)) {
3304                 ipv6_hdr(skb)->payload_len = 0;
3305                 tcp_hdr(skb)->check =
3306                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3307                                      &ipv6_hdr(skb)->daddr,
3308                                      0, IPPROTO_TCP, 0);
3309                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3310                                    IXGBE_TX_FLAGS_CSUM;
3311         }
3312
3313         /* compute header lengths */
3314         l4len = tcp_hdrlen(skb);
3315         *hdr_len += l4len;
3316         *hdr_len = skb_transport_offset(skb) + l4len;
3317
3318         /* update GSO size and bytecount with header size */
3319         first->gso_segs = skb_shinfo(skb)->gso_segs;
3320         first->bytecount += (first->gso_segs - 1) * *hdr_len;
3321
3322         /* mss_l4len_id: use 1 as index for TSO */
3323         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3324         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3325         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3326
3327         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3328         vlan_macip_lens = skb_network_header_len(skb);
3329         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3330         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3331
3332         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3333                             type_tucmd, mss_l4len_idx);
3334
3335         return 1;
3336 }
3337
3338 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3339                             struct ixgbevf_tx_buffer *first)
3340 {
3341         struct sk_buff *skb = first->skb;
3342         u32 vlan_macip_lens = 0;
3343         u32 mss_l4len_idx = 0;
3344         u32 type_tucmd = 0;
3345
3346         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3347                 u8 l4_hdr = 0;
3348
3349                 switch (first->protocol) {
3350                 case htons(ETH_P_IP):
3351                         vlan_macip_lens |= skb_network_header_len(skb);
3352                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3353                         l4_hdr = ip_hdr(skb)->protocol;
3354                         break;
3355                 case htons(ETH_P_IPV6):
3356                         vlan_macip_lens |= skb_network_header_len(skb);
3357                         l4_hdr = ipv6_hdr(skb)->nexthdr;
3358                         break;
3359                 default:
3360                         if (unlikely(net_ratelimit())) {
3361                                 dev_warn(tx_ring->dev,
3362                                          "partial checksum but proto=%x!\n",
3363                                          first->protocol);
3364                         }
3365                         break;
3366                 }
3367
3368                 switch (l4_hdr) {
3369                 case IPPROTO_TCP:
3370                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3371                         mss_l4len_idx = tcp_hdrlen(skb) <<
3372                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3373                         break;
3374                 case IPPROTO_SCTP:
3375                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3376                         mss_l4len_idx = sizeof(struct sctphdr) <<
3377                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3378                         break;
3379                 case IPPROTO_UDP:
3380                         mss_l4len_idx = sizeof(struct udphdr) <<
3381                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3382                         break;
3383                 default:
3384                         if (unlikely(net_ratelimit())) {
3385                                 dev_warn(tx_ring->dev,
3386                                          "partial checksum but l4 proto=%x!\n",
3387                                          l4_hdr);
3388                         }
3389                         break;
3390                 }
3391
3392                 /* update TX checksum flag */
3393                 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3394         }
3395
3396         /* vlan_macip_lens: MACLEN, VLAN tag */
3397         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3398         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3399
3400         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3401                             type_tucmd, mss_l4len_idx);
3402 }
3403
3404 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3405 {
3406         /* set type for advanced descriptor with frame checksum insertion */
3407         __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3408                                       IXGBE_ADVTXD_DCMD_IFCS |
3409                                       IXGBE_ADVTXD_DCMD_DEXT);
3410
3411         /* set HW VLAN bit if VLAN is present */
3412         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3413                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3414
3415         /* set segmentation enable bits for TSO/FSO */
3416         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3417                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3418
3419         return cmd_type;
3420 }
3421
3422 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3423                                      u32 tx_flags, unsigned int paylen)
3424 {
3425         __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3426
3427         /* enable L4 checksum for TSO and TX checksum offload */
3428         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3429                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3430
3431         /* enble IPv4 checksum for TSO */
3432         if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3433                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3434
3435         /* use index 1 context for TSO/FSO/FCOE */
3436         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3437                 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3438
3439         /* Check Context must be set if Tx switch is enabled, which it
3440          * always is for case where virtual functions are running
3441          */
3442         olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3443
3444         tx_desc->read.olinfo_status = olinfo_status;
3445 }
3446
3447 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3448                            struct ixgbevf_tx_buffer *first,
3449                            const u8 hdr_len)
3450 {
3451         dma_addr_t dma;
3452         struct sk_buff *skb = first->skb;
3453         struct ixgbevf_tx_buffer *tx_buffer;
3454         union ixgbe_adv_tx_desc *tx_desc;
3455         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3456         unsigned int data_len = skb->data_len;
3457         unsigned int size = skb_headlen(skb);
3458         unsigned int paylen = skb->len - hdr_len;
3459         u32 tx_flags = first->tx_flags;
3460         __le32 cmd_type;
3461         u16 i = tx_ring->next_to_use;
3462
3463         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3464
3465         ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3466         cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3467
3468         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3469         if (dma_mapping_error(tx_ring->dev, dma))
3470                 goto dma_error;
3471
3472         /* record length, and DMA address */
3473         dma_unmap_len_set(first, len, size);
3474         dma_unmap_addr_set(first, dma, dma);
3475
3476         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3477
3478         for (;;) {
3479                 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3480                         tx_desc->read.cmd_type_len =
3481                                 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3482
3483                         i++;
3484                         tx_desc++;
3485                         if (i == tx_ring->count) {
3486                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3487                                 i = 0;
3488                         }
3489
3490                         dma += IXGBE_MAX_DATA_PER_TXD;
3491                         size -= IXGBE_MAX_DATA_PER_TXD;
3492
3493                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3494                         tx_desc->read.olinfo_status = 0;
3495                 }
3496
3497                 if (likely(!data_len))
3498                         break;
3499
3500                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3501
3502                 i++;
3503                 tx_desc++;
3504                 if (i == tx_ring->count) {
3505                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3506                         i = 0;
3507                 }
3508
3509                 size = skb_frag_size(frag);
3510                 data_len -= size;
3511
3512                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3513                                        DMA_TO_DEVICE);
3514                 if (dma_mapping_error(tx_ring->dev, dma))
3515                         goto dma_error;
3516
3517                 tx_buffer = &tx_ring->tx_buffer_info[i];
3518                 dma_unmap_len_set(tx_buffer, len, size);
3519                 dma_unmap_addr_set(tx_buffer, dma, dma);
3520
3521                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3522                 tx_desc->read.olinfo_status = 0;
3523
3524                 frag++;
3525         }
3526
3527         /* write last descriptor with RS and EOP bits */
3528         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3529         tx_desc->read.cmd_type_len = cmd_type;
3530
3531         /* set the timestamp */
3532         first->time_stamp = jiffies;
3533
3534         /* Force memory writes to complete before letting h/w know there
3535          * are new descriptors to fetch.  (Only applicable for weak-ordered
3536          * memory model archs, such as IA-64).
3537          *
3538          * We also need this memory barrier (wmb) to make certain all of the
3539          * status bits have been updated before next_to_watch is written.
3540          */
3541         wmb();
3542
3543         /* set next_to_watch value indicating a packet is present */
3544         first->next_to_watch = tx_desc;
3545
3546         i++;
3547         if (i == tx_ring->count)
3548                 i = 0;
3549
3550         tx_ring->next_to_use = i;
3551
3552         /* notify HW of packet */
3553         ixgbevf_write_tail(tx_ring, i);
3554
3555         return;
3556 dma_error:
3557         dev_err(tx_ring->dev, "TX DMA map failed\n");
3558
3559         /* clear dma mappings for failed tx_buffer_info map */
3560         for (;;) {
3561                 tx_buffer = &tx_ring->tx_buffer_info[i];
3562                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3563                 if (tx_buffer == first)
3564                         break;
3565                 if (i == 0)
3566                         i = tx_ring->count;
3567                 i--;
3568         }
3569
3570         tx_ring->next_to_use = i;
3571 }
3572
3573 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3574 {
3575         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3576         /* Herbert's original patch had:
3577          *  smp_mb__after_netif_stop_queue();
3578          * but since that doesn't exist yet, just open code it.
3579          */
3580         smp_mb();
3581
3582         /* We need to check again in a case another CPU has just
3583          * made room available.
3584          */
3585         if (likely(ixgbevf_desc_unused(tx_ring) < size))
3586                 return -EBUSY;
3587
3588         /* A reprieve! - use start_queue because it doesn't call schedule */
3589         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3590         ++tx_ring->tx_stats.restart_queue;
3591
3592         return 0;
3593 }
3594
3595 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3596 {
3597         if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3598                 return 0;
3599         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3600 }
3601
3602 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3603 {
3604         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3605         struct ixgbevf_tx_buffer *first;
3606         struct ixgbevf_ring *tx_ring;
3607         int tso;
3608         u32 tx_flags = 0;
3609         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3610 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3611         unsigned short f;
3612 #endif
3613         u8 hdr_len = 0;
3614         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3615
3616         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3617                 dev_kfree_skb_any(skb);
3618                 return NETDEV_TX_OK;
3619         }
3620
3621         tx_ring = adapter->tx_ring[skb->queue_mapping];
3622
3623         /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3624          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3625          *       + 2 desc gap to keep tail from touching head,
3626          *       + 1 desc for context descriptor,
3627          * otherwise try next time
3628          */
3629 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3630         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3631                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3632 #else
3633         count += skb_shinfo(skb)->nr_frags;
3634 #endif
3635         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3636                 tx_ring->tx_stats.tx_busy++;
3637                 return NETDEV_TX_BUSY;
3638         }
3639
3640         /* record the location of the first descriptor for this packet */
3641         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3642         first->skb = skb;
3643         first->bytecount = skb->len;
3644         first->gso_segs = 1;
3645
3646         if (skb_vlan_tag_present(skb)) {
3647                 tx_flags |= skb_vlan_tag_get(skb);
3648                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3649                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3650         }
3651
3652         /* record initial flags and protocol */
3653         first->tx_flags = tx_flags;
3654         first->protocol = vlan_get_protocol(skb);
3655
3656         tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3657         if (tso < 0)
3658                 goto out_drop;
3659         else if (!tso)
3660                 ixgbevf_tx_csum(tx_ring, first);
3661
3662         ixgbevf_tx_map(tx_ring, first, hdr_len);
3663
3664         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3665
3666         return NETDEV_TX_OK;
3667
3668 out_drop:
3669         dev_kfree_skb_any(first->skb);
3670         first->skb = NULL;
3671
3672         return NETDEV_TX_OK;
3673 }
3674
3675 /**
3676  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3677  * @netdev: network interface device structure
3678  * @p: pointer to an address structure
3679  *
3680  * Returns 0 on success, negative on failure
3681  **/
3682 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3683 {
3684         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3685         struct ixgbe_hw *hw = &adapter->hw;
3686         struct sockaddr *addr = p;
3687
3688         if (!is_valid_ether_addr(addr->sa_data))
3689                 return -EADDRNOTAVAIL;
3690
3691         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3692         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3693
3694         spin_lock_bh(&adapter->mbx_lock);
3695
3696         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3697
3698         spin_unlock_bh(&adapter->mbx_lock);
3699
3700         return 0;
3701 }
3702
3703 /**
3704  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3705  * @netdev: network interface device structure
3706  * @new_mtu: new value for maximum frame size
3707  *
3708  * Returns 0 on success, negative on failure
3709  **/
3710 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3711 {
3712         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3713         struct ixgbe_hw *hw = &adapter->hw;
3714         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3715         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3716
3717         switch (adapter->hw.api_version) {
3718         case ixgbe_mbox_api_11:
3719         case ixgbe_mbox_api_12:
3720                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3721                 break;
3722         default:
3723                 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3724                         max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3725                 break;
3726         }
3727
3728         /* MTU < 68 is an error and causes problems on some kernels */
3729         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3730                 return -EINVAL;
3731
3732         hw_dbg(hw, "changing MTU from %d to %d\n",
3733                netdev->mtu, new_mtu);
3734         /* must set new MTU before calling down or up */
3735         netdev->mtu = new_mtu;
3736
3737         /* notify the PF of our intent to use this size of frame */
3738         ixgbevf_rlpml_set_vf(hw, max_frame);
3739
3740         return 0;
3741 }
3742
3743 #ifdef CONFIG_NET_POLL_CONTROLLER
3744 /* Polling 'interrupt' - used by things like netconsole to send skbs
3745  * without having to re-enable interrupts. It's not called while
3746  * the interrupt routine is executing.
3747  */
3748 static void ixgbevf_netpoll(struct net_device *netdev)
3749 {
3750         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3751         int i;
3752
3753         /* if interface is down do nothing */
3754         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3755                 return;
3756         for (i = 0; i < adapter->num_rx_queues; i++)
3757                 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3758 }
3759 #endif /* CONFIG_NET_POLL_CONTROLLER */
3760
3761 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3762 {
3763         struct net_device *netdev = pci_get_drvdata(pdev);
3764         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3765 #ifdef CONFIG_PM
3766         int retval = 0;
3767 #endif
3768
3769         netif_device_detach(netdev);
3770
3771         if (netif_running(netdev)) {
3772                 rtnl_lock();
3773                 ixgbevf_down(adapter);
3774                 ixgbevf_free_irq(adapter);
3775                 ixgbevf_free_all_tx_resources(adapter);
3776                 ixgbevf_free_all_rx_resources(adapter);
3777                 rtnl_unlock();
3778         }
3779
3780         ixgbevf_clear_interrupt_scheme(adapter);
3781
3782 #ifdef CONFIG_PM
3783         retval = pci_save_state(pdev);
3784         if (retval)
3785                 return retval;
3786
3787 #endif
3788         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3789                 pci_disable_device(pdev);
3790
3791         return 0;
3792 }
3793
3794 #ifdef CONFIG_PM
3795 static int ixgbevf_resume(struct pci_dev *pdev)
3796 {
3797         struct net_device *netdev = pci_get_drvdata(pdev);
3798         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3799         u32 err;
3800
3801         pci_restore_state(pdev);
3802         /* pci_restore_state clears dev->state_saved so call
3803          * pci_save_state to restore it.
3804          */
3805         pci_save_state(pdev);
3806
3807         err = pci_enable_device_mem(pdev);
3808         if (err) {
3809                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3810                 return err;
3811         }
3812         smp_mb__before_atomic();
3813         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3814         pci_set_master(pdev);
3815
3816         ixgbevf_reset(adapter);
3817
3818         rtnl_lock();
3819         err = ixgbevf_init_interrupt_scheme(adapter);
3820         rtnl_unlock();
3821         if (err) {
3822                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3823                 return err;
3824         }
3825
3826         if (netif_running(netdev)) {
3827                 err = ixgbevf_open(netdev);
3828                 if (err)
3829                         return err;
3830         }
3831
3832         netif_device_attach(netdev);
3833
3834         return err;
3835 }
3836
3837 #endif /* CONFIG_PM */
3838 static void ixgbevf_shutdown(struct pci_dev *pdev)
3839 {
3840         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3841 }
3842
3843 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3844                                                 struct rtnl_link_stats64 *stats)
3845 {
3846         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3847         unsigned int start;
3848         u64 bytes, packets;
3849         const struct ixgbevf_ring *ring;
3850         int i;
3851
3852         ixgbevf_update_stats(adapter);
3853
3854         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3855
3856         for (i = 0; i < adapter->num_rx_queues; i++) {
3857                 ring = adapter->rx_ring[i];
3858                 do {
3859                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3860                         bytes = ring->stats.bytes;
3861                         packets = ring->stats.packets;
3862                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3863                 stats->rx_bytes += bytes;
3864                 stats->rx_packets += packets;
3865         }
3866
3867         for (i = 0; i < adapter->num_tx_queues; i++) {
3868                 ring = adapter->tx_ring[i];
3869                 do {
3870                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3871                         bytes = ring->stats.bytes;
3872                         packets = ring->stats.packets;
3873                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3874                 stats->tx_bytes += bytes;
3875                 stats->tx_packets += packets;
3876         }
3877
3878         return stats;
3879 }
3880
3881 static const struct net_device_ops ixgbevf_netdev_ops = {
3882         .ndo_open               = ixgbevf_open,
3883         .ndo_stop               = ixgbevf_close,
3884         .ndo_start_xmit         = ixgbevf_xmit_frame,
3885         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3886         .ndo_get_stats64        = ixgbevf_get_stats,
3887         .ndo_validate_addr      = eth_validate_addr,
3888         .ndo_set_mac_address    = ixgbevf_set_mac,
3889         .ndo_change_mtu         = ixgbevf_change_mtu,
3890         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3891         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3892         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3893 #ifdef CONFIG_NET_RX_BUSY_POLL
3894         .ndo_busy_poll          = ixgbevf_busy_poll_recv,
3895 #endif
3896 #ifdef CONFIG_NET_POLL_CONTROLLER
3897         .ndo_poll_controller    = ixgbevf_netpoll,
3898 #endif
3899         .ndo_features_check     = passthru_features_check,
3900 };
3901
3902 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3903 {
3904         dev->netdev_ops = &ixgbevf_netdev_ops;
3905         ixgbevf_set_ethtool_ops(dev);
3906         dev->watchdog_timeo = 5 * HZ;
3907 }
3908
3909 /**
3910  * ixgbevf_probe - Device Initialization Routine
3911  * @pdev: PCI device information struct
3912  * @ent: entry in ixgbevf_pci_tbl
3913  *
3914  * Returns 0 on success, negative on failure
3915  *
3916  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3917  * The OS initialization, configuring of the adapter private structure,
3918  * and a hardware reset occur.
3919  **/
3920 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3921 {
3922         struct net_device *netdev;
3923         struct ixgbevf_adapter *adapter = NULL;
3924         struct ixgbe_hw *hw = NULL;
3925         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3926         int err, pci_using_dac;
3927         bool disable_dev = false;
3928
3929         err = pci_enable_device(pdev);
3930         if (err)
3931                 return err;
3932
3933         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3934                 pci_using_dac = 1;
3935         } else {
3936                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3937                 if (err) {
3938                         dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3939                         goto err_dma;
3940                 }
3941                 pci_using_dac = 0;
3942         }
3943
3944         err = pci_request_regions(pdev, ixgbevf_driver_name);
3945         if (err) {
3946                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3947                 goto err_pci_reg;
3948         }
3949
3950         pci_set_master(pdev);
3951
3952         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3953                                    MAX_TX_QUEUES);
3954         if (!netdev) {
3955                 err = -ENOMEM;
3956                 goto err_alloc_etherdev;
3957         }
3958
3959         SET_NETDEV_DEV(netdev, &pdev->dev);
3960
3961         adapter = netdev_priv(netdev);
3962
3963         adapter->netdev = netdev;
3964         adapter->pdev = pdev;
3965         hw = &adapter->hw;
3966         hw->back = adapter;
3967         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3968
3969         /* call save state here in standalone driver because it relies on
3970          * adapter struct to exist, and needs to call netdev_priv
3971          */
3972         pci_save_state(pdev);
3973
3974         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3975                               pci_resource_len(pdev, 0));
3976         adapter->io_addr = hw->hw_addr;
3977         if (!hw->hw_addr) {
3978                 err = -EIO;
3979                 goto err_ioremap;
3980         }
3981
3982         ixgbevf_assign_netdev_ops(netdev);
3983
3984         /* Setup HW API */
3985         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3986         hw->mac.type  = ii->mac;
3987
3988         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3989                sizeof(struct ixgbe_mbx_operations));
3990
3991         /* setup the private structure */
3992         err = ixgbevf_sw_init(adapter);
3993         if (err)
3994                 goto err_sw_init;
3995
3996         /* The HW MAC address was set and/or determined in sw_init */
3997         if (!is_valid_ether_addr(netdev->dev_addr)) {
3998                 pr_err("invalid MAC address\n");
3999                 err = -EIO;
4000                 goto err_sw_init;
4001         }
4002
4003         netdev->hw_features = NETIF_F_SG |
4004                               NETIF_F_IP_CSUM |
4005                               NETIF_F_IPV6_CSUM |
4006                               NETIF_F_TSO |
4007                               NETIF_F_TSO6 |
4008                               NETIF_F_RXCSUM;
4009
4010         netdev->features = netdev->hw_features |
4011                            NETIF_F_HW_VLAN_CTAG_TX |
4012                            NETIF_F_HW_VLAN_CTAG_RX |
4013                            NETIF_F_HW_VLAN_CTAG_FILTER;
4014
4015         netdev->vlan_features |= NETIF_F_TSO |
4016                                  NETIF_F_TSO6 |
4017                                  NETIF_F_IP_CSUM |
4018                                  NETIF_F_IPV6_CSUM |
4019                                  NETIF_F_SG;
4020
4021         if (pci_using_dac)
4022                 netdev->features |= NETIF_F_HIGHDMA;
4023
4024         netdev->priv_flags |= IFF_UNICAST_FLT;
4025
4026         if (IXGBE_REMOVED(hw->hw_addr)) {
4027                 err = -EIO;
4028                 goto err_sw_init;
4029         }
4030
4031         setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4032                     (unsigned long)adapter);
4033
4034         INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4035         set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4036         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4037
4038         err = ixgbevf_init_interrupt_scheme(adapter);
4039         if (err)
4040                 goto err_sw_init;
4041
4042         strcpy(netdev->name, "eth%d");
4043
4044         err = register_netdev(netdev);
4045         if (err)
4046                 goto err_register;
4047
4048         pci_set_drvdata(pdev, netdev);
4049         netif_carrier_off(netdev);
4050
4051         ixgbevf_init_last_counter_stats(adapter);
4052
4053         /* print the VF info */
4054         dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4055         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4056
4057         switch (hw->mac.type) {
4058         case ixgbe_mac_X550_vf:
4059                 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4060                 break;
4061         case ixgbe_mac_X540_vf:
4062                 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4063                 break;
4064         case ixgbe_mac_82599_vf:
4065         default:
4066                 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4067                 break;
4068         }
4069
4070         return 0;
4071
4072 err_register:
4073         ixgbevf_clear_interrupt_scheme(adapter);
4074 err_sw_init:
4075         ixgbevf_reset_interrupt_capability(adapter);
4076         iounmap(adapter->io_addr);
4077 err_ioremap:
4078         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4079         free_netdev(netdev);
4080 err_alloc_etherdev:
4081         pci_release_regions(pdev);
4082 err_pci_reg:
4083 err_dma:
4084         if (!adapter || disable_dev)
4085                 pci_disable_device(pdev);
4086         return err;
4087 }
4088
4089 /**
4090  * ixgbevf_remove - Device Removal Routine
4091  * @pdev: PCI device information struct
4092  *
4093  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4094  * that it should release a PCI device.  The could be caused by a
4095  * Hot-Plug event, or because the driver is going to be removed from
4096  * memory.
4097  **/
4098 static void ixgbevf_remove(struct pci_dev *pdev)
4099 {
4100         struct net_device *netdev = pci_get_drvdata(pdev);
4101         struct ixgbevf_adapter *adapter;
4102         bool disable_dev;
4103
4104         if (!netdev)
4105                 return;
4106
4107         adapter = netdev_priv(netdev);
4108
4109         set_bit(__IXGBEVF_REMOVING, &adapter->state);
4110         cancel_work_sync(&adapter->service_task);
4111
4112         if (netdev->reg_state == NETREG_REGISTERED)
4113                 unregister_netdev(netdev);
4114
4115         ixgbevf_clear_interrupt_scheme(adapter);
4116         ixgbevf_reset_interrupt_capability(adapter);
4117
4118         iounmap(adapter->io_addr);
4119         pci_release_regions(pdev);
4120
4121         hw_dbg(&adapter->hw, "Remove complete\n");
4122
4123         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4124         free_netdev(netdev);
4125
4126         if (disable_dev)
4127                 pci_disable_device(pdev);
4128 }
4129
4130 /**
4131  * ixgbevf_io_error_detected - called when PCI error is detected
4132  * @pdev: Pointer to PCI device
4133  * @state: The current pci connection state
4134  *
4135  * This function is called after a PCI bus error affecting
4136  * this device has been detected.
4137  **/
4138 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4139                                                   pci_channel_state_t state)
4140 {
4141         struct net_device *netdev = pci_get_drvdata(pdev);
4142         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4143
4144         if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4145                 return PCI_ERS_RESULT_DISCONNECT;
4146
4147         rtnl_lock();
4148         netif_device_detach(netdev);
4149
4150         if (state == pci_channel_io_perm_failure) {
4151                 rtnl_unlock();
4152                 return PCI_ERS_RESULT_DISCONNECT;
4153         }
4154
4155         if (netif_running(netdev))
4156                 ixgbevf_down(adapter);
4157
4158         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4159                 pci_disable_device(pdev);
4160         rtnl_unlock();
4161
4162         /* Request a slot slot reset. */
4163         return PCI_ERS_RESULT_NEED_RESET;
4164 }
4165
4166 /**
4167  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4168  * @pdev: Pointer to PCI device
4169  *
4170  * Restart the card from scratch, as if from a cold-boot. Implementation
4171  * resembles the first-half of the ixgbevf_resume routine.
4172  **/
4173 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4174 {
4175         struct net_device *netdev = pci_get_drvdata(pdev);
4176         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4177
4178         if (pci_enable_device_mem(pdev)) {
4179                 dev_err(&pdev->dev,
4180                         "Cannot re-enable PCI device after reset.\n");
4181                 return PCI_ERS_RESULT_DISCONNECT;
4182         }
4183
4184         smp_mb__before_atomic();
4185         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4186         pci_set_master(pdev);
4187
4188         ixgbevf_reset(adapter);
4189
4190         return PCI_ERS_RESULT_RECOVERED;
4191 }
4192
4193 /**
4194  * ixgbevf_io_resume - called when traffic can start flowing again.
4195  * @pdev: Pointer to PCI device
4196  *
4197  * This callback is called when the error recovery driver tells us that
4198  * its OK to resume normal operation. Implementation resembles the
4199  * second-half of the ixgbevf_resume routine.
4200  **/
4201 static void ixgbevf_io_resume(struct pci_dev *pdev)
4202 {
4203         struct net_device *netdev = pci_get_drvdata(pdev);
4204         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4205
4206         if (netif_running(netdev))
4207                 ixgbevf_up(adapter);
4208
4209         netif_device_attach(netdev);
4210 }
4211
4212 /* PCI Error Recovery (ERS) */
4213 static const struct pci_error_handlers ixgbevf_err_handler = {
4214         .error_detected = ixgbevf_io_error_detected,
4215         .slot_reset = ixgbevf_io_slot_reset,
4216         .resume = ixgbevf_io_resume,
4217 };
4218
4219 static struct pci_driver ixgbevf_driver = {
4220         .name           = ixgbevf_driver_name,
4221         .id_table       = ixgbevf_pci_tbl,
4222         .probe          = ixgbevf_probe,
4223         .remove         = ixgbevf_remove,
4224 #ifdef CONFIG_PM
4225         /* Power Management Hooks */
4226         .suspend        = ixgbevf_suspend,
4227         .resume         = ixgbevf_resume,
4228 #endif
4229         .shutdown       = ixgbevf_shutdown,
4230         .err_handler    = &ixgbevf_err_handler
4231 };
4232
4233 /**
4234  * ixgbevf_init_module - Driver Registration Routine
4235  *
4236  * ixgbevf_init_module is the first routine called when the driver is
4237  * loaded. All it does is register with the PCI subsystem.
4238  **/
4239 static int __init ixgbevf_init_module(void)
4240 {
4241         int ret;
4242
4243         pr_info("%s - version %s\n", ixgbevf_driver_string,
4244                 ixgbevf_driver_version);
4245
4246         pr_info("%s\n", ixgbevf_copyright);
4247
4248         ret = pci_register_driver(&ixgbevf_driver);
4249         return ret;
4250 }
4251
4252 module_init(ixgbevf_init_module);
4253
4254 /**
4255  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4256  *
4257  * ixgbevf_exit_module is called just before the driver is removed
4258  * from memory.
4259  **/
4260 static void __exit ixgbevf_exit_module(void)
4261 {
4262         pci_unregister_driver(&ixgbevf_driver);
4263 }
4264
4265 #ifdef DEBUG
4266 /**
4267  * ixgbevf_get_hw_dev_name - return device name string
4268  * used by hardware layer to print debugging information
4269  **/
4270 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4271 {
4272         struct ixgbevf_adapter *adapter = hw->back;
4273
4274         return adapter->netdev->name;
4275 }
4276
4277 #endif
4278 module_exit(ixgbevf_exit_module);
4279
4280 /* ixgbevf_main.c */