]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/neterion/s2io.c
Merge remote-tracking branch 'net-next/master'
[karo-tx-linux.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.28"
93
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103         int ret;
104
105         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108         return ret;
109 }
110
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
117         (dev_type == XFRAME_I_DEVICE) ?                                 \
118         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
119           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131         "Register test\t(offline)",
132         "Eeprom test\t(offline)",
133         "Link test\t(online)",
134         "RLDRAM test\t(offline)",
135         "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139         {"tmac_frms"},
140         {"tmac_data_octets"},
141         {"tmac_drop_frms"},
142         {"tmac_mcst_frms"},
143         {"tmac_bcst_frms"},
144         {"tmac_pause_ctrl_frms"},
145         {"tmac_ttl_octets"},
146         {"tmac_ucst_frms"},
147         {"tmac_nucst_frms"},
148         {"tmac_any_err_frms"},
149         {"tmac_ttl_less_fb_octets"},
150         {"tmac_vld_ip_octets"},
151         {"tmac_vld_ip"},
152         {"tmac_drop_ip"},
153         {"tmac_icmp"},
154         {"tmac_rst_tcp"},
155         {"tmac_tcp"},
156         {"tmac_udp"},
157         {"rmac_vld_frms"},
158         {"rmac_data_octets"},
159         {"rmac_fcs_err_frms"},
160         {"rmac_drop_frms"},
161         {"rmac_vld_mcst_frms"},
162         {"rmac_vld_bcst_frms"},
163         {"rmac_in_rng_len_err_frms"},
164         {"rmac_out_rng_len_err_frms"},
165         {"rmac_long_frms"},
166         {"rmac_pause_ctrl_frms"},
167         {"rmac_unsup_ctrl_frms"},
168         {"rmac_ttl_octets"},
169         {"rmac_accepted_ucst_frms"},
170         {"rmac_accepted_nucst_frms"},
171         {"rmac_discarded_frms"},
172         {"rmac_drop_events"},
173         {"rmac_ttl_less_fb_octets"},
174         {"rmac_ttl_frms"},
175         {"rmac_usized_frms"},
176         {"rmac_osized_frms"},
177         {"rmac_frag_frms"},
178         {"rmac_jabber_frms"},
179         {"rmac_ttl_64_frms"},
180         {"rmac_ttl_65_127_frms"},
181         {"rmac_ttl_128_255_frms"},
182         {"rmac_ttl_256_511_frms"},
183         {"rmac_ttl_512_1023_frms"},
184         {"rmac_ttl_1024_1518_frms"},
185         {"rmac_ip"},
186         {"rmac_ip_octets"},
187         {"rmac_hdr_err_ip"},
188         {"rmac_drop_ip"},
189         {"rmac_icmp"},
190         {"rmac_tcp"},
191         {"rmac_udp"},
192         {"rmac_err_drp_udp"},
193         {"rmac_xgmii_err_sym"},
194         {"rmac_frms_q0"},
195         {"rmac_frms_q1"},
196         {"rmac_frms_q2"},
197         {"rmac_frms_q3"},
198         {"rmac_frms_q4"},
199         {"rmac_frms_q5"},
200         {"rmac_frms_q6"},
201         {"rmac_frms_q7"},
202         {"rmac_full_q0"},
203         {"rmac_full_q1"},
204         {"rmac_full_q2"},
205         {"rmac_full_q3"},
206         {"rmac_full_q4"},
207         {"rmac_full_q5"},
208         {"rmac_full_q6"},
209         {"rmac_full_q7"},
210         {"rmac_pause_cnt"},
211         {"rmac_xgmii_data_err_cnt"},
212         {"rmac_xgmii_ctrl_err_cnt"},
213         {"rmac_accepted_ip"},
214         {"rmac_err_tcp"},
215         {"rd_req_cnt"},
216         {"new_rd_req_cnt"},
217         {"new_rd_req_rtry_cnt"},
218         {"rd_rtry_cnt"},
219         {"wr_rtry_rd_ack_cnt"},
220         {"wr_req_cnt"},
221         {"new_wr_req_cnt"},
222         {"new_wr_req_rtry_cnt"},
223         {"wr_rtry_cnt"},
224         {"wr_disc_cnt"},
225         {"rd_rtry_wr_ack_cnt"},
226         {"txp_wr_cnt"},
227         {"txd_rd_cnt"},
228         {"txd_wr_cnt"},
229         {"rxd_rd_cnt"},
230         {"rxd_wr_cnt"},
231         {"txf_rd_cnt"},
232         {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236         {"rmac_ttl_1519_4095_frms"},
237         {"rmac_ttl_4096_8191_frms"},
238         {"rmac_ttl_8192_max_frms"},
239         {"rmac_ttl_gt_max_frms"},
240         {"rmac_osized_alt_frms"},
241         {"rmac_jabber_alt_frms"},
242         {"rmac_gt_max_alt_frms"},
243         {"rmac_vlan_frms"},
244         {"rmac_len_discard"},
245         {"rmac_fcs_discard"},
246         {"rmac_pf_discard"},
247         {"rmac_da_discard"},
248         {"rmac_red_discard"},
249         {"rmac_rts_discard"},
250         {"rmac_ingm_full_discard"},
251         {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255         {"\n DRIVER STATISTICS"},
256         {"single_bit_ecc_errs"},
257         {"double_bit_ecc_errs"},
258         {"parity_err_cnt"},
259         {"serious_err_cnt"},
260         {"soft_reset_cnt"},
261         {"fifo_full_cnt"},
262         {"ring_0_full_cnt"},
263         {"ring_1_full_cnt"},
264         {"ring_2_full_cnt"},
265         {"ring_3_full_cnt"},
266         {"ring_4_full_cnt"},
267         {"ring_5_full_cnt"},
268         {"ring_6_full_cnt"},
269         {"ring_7_full_cnt"},
270         {"alarm_transceiver_temp_high"},
271         {"alarm_transceiver_temp_low"},
272         {"alarm_laser_bias_current_high"},
273         {"alarm_laser_bias_current_low"},
274         {"alarm_laser_output_power_high"},
275         {"alarm_laser_output_power_low"},
276         {"warn_transceiver_temp_high"},
277         {"warn_transceiver_temp_low"},
278         {"warn_laser_bias_current_high"},
279         {"warn_laser_bias_current_low"},
280         {"warn_laser_output_power_high"},
281         {"warn_laser_output_power_low"},
282         {"lro_aggregated_pkts"},
283         {"lro_flush_both_count"},
284         {"lro_out_of_sequence_pkts"},
285         {"lro_flush_due_to_max_pkts"},
286         {"lro_avg_aggr_pkts"},
287         {"mem_alloc_fail_cnt"},
288         {"pci_map_fail_cnt"},
289         {"watchdog_timer_cnt"},
290         {"mem_allocated"},
291         {"mem_freed"},
292         {"link_up_cnt"},
293         {"link_down_cnt"},
294         {"link_up_time"},
295         {"link_down_time"},
296         {"tx_tcode_buf_abort_cnt"},
297         {"tx_tcode_desc_abort_cnt"},
298         {"tx_tcode_parity_err_cnt"},
299         {"tx_tcode_link_loss_cnt"},
300         {"tx_tcode_list_proc_err_cnt"},
301         {"rx_tcode_parity_err_cnt"},
302         {"rx_tcode_abort_cnt"},
303         {"rx_tcode_parity_abort_cnt"},
304         {"rx_tcode_rda_fail_cnt"},
305         {"rx_tcode_unkn_prot_cnt"},
306         {"rx_tcode_fcs_err_cnt"},
307         {"rx_tcode_buf_size_err_cnt"},
308         {"rx_tcode_rxd_corrupt_cnt"},
309         {"rx_tcode_unkn_err_cnt"},
310         {"tda_err_cnt"},
311         {"pfc_err_cnt"},
312         {"pcc_err_cnt"},
313         {"tti_err_cnt"},
314         {"tpa_err_cnt"},
315         {"sm_err_cnt"},
316         {"lso_err_cnt"},
317         {"mac_tmac_err_cnt"},
318         {"mac_rmac_err_cnt"},
319         {"xgxs_txgxs_err_cnt"},
320         {"xgxs_rxgxs_err_cnt"},
321         {"rc_err_cnt"},
322         {"prc_pcix_err_cnt"},
323         {"rpa_err_cnt"},
324         {"rda_err_cnt"},
325         {"rti_err_cnt"},
326         {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
343         init_timer(&timer);                             \
344         timer.function = handle;                        \
345         timer.data = (unsigned long)arg;                \
346         mod_timer(&timer, (jiffies + exp))              \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363
364 #define END_SIGN        0x0
365 static const u64 herc_act_dtx_cfg[] = {
366         /* Set address */
367         0x8000051536750000ULL, 0x80000515367500E0ULL,
368         /* Write data */
369         0x8000051536750004ULL, 0x80000515367500E4ULL,
370         /* Set address */
371         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372         /* Write data */
373         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374         /* Set address */
375         0x801205150D440000ULL, 0x801205150D4400E0ULL,
376         /* Write data */
377         0x801205150D440004ULL, 0x801205150D4400E4ULL,
378         /* Set address */
379         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380         /* Write data */
381         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382         /* Done */
383         END_SIGN
384 };
385
386 static const u64 xena_dtx_cfg[] = {
387         /* Set address */
388         0x8000051500000000ULL, 0x80000515000000E0ULL,
389         /* Write data */
390         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391         /* Set address */
392         0x8001051500000000ULL, 0x80010515000000E0ULL,
393         /* Write data */
394         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395         /* Set address */
396         0x8002051500000000ULL, 0x80020515000000E0ULL,
397         /* Write data */
398         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399         END_SIGN
400 };
401
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407         0x0060000000000000ULL, 0x0060600000000000ULL,
408         0x0040600000000000ULL, 0x0000600000000000ULL,
409         0x0020600000000000ULL, 0x0060600000000000ULL,
410         0x0020600000000000ULL, 0x0060600000000000ULL,
411         0x0020600000000000ULL, 0x0060600000000000ULL,
412         0x0020600000000000ULL, 0x0060600000000000ULL,
413         0x0020600000000000ULL, 0x0060600000000000ULL,
414         0x0020600000000000ULL, 0x0060600000000000ULL,
415         0x0020600000000000ULL, 0x0060600000000000ULL,
416         0x0020600000000000ULL, 0x0060600000000000ULL,
417         0x0020600000000000ULL, 0x0060600000000000ULL,
418         0x0020600000000000ULL, 0x0060600000000000ULL,
419         0x0020600000000000ULL, 0x0000600000000000ULL,
420         0x0040600000000000ULL, 0x0060600000000000ULL,
421         END_SIGN
422 };
423
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426
427
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
475         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476          PCI_ANY_ID, PCI_ANY_ID},
477         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478          PCI_ANY_ID, PCI_ANY_ID},
479         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480          PCI_ANY_ID, PCI_ANY_ID},
481         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482          PCI_ANY_ID, PCI_ANY_ID},
483         {0,}
484 };
485
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
488 static const struct pci_error_handlers s2io_err_handler = {
489         .error_detected = s2io_io_error_detected,
490         .slot_reset = s2io_io_slot_reset,
491         .resume = s2io_io_resume,
492 };
493
494 static struct pci_driver s2io_driver = {
495         .name = "S2IO",
496         .id_table = s2io_tbl,
497         .probe = s2io_init_nic,
498         .remove = s2io_rem_nic,
499         .err_handler = &s2io_err_handler,
500 };
501
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508         if (!sp->config.multiq) {
509                 int i;
510
511                 for (i = 0; i < sp->config.tx_fifo_num; i++)
512                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513         }
514         netif_tx_stop_all_queues(sp->dev);
515 }
516
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519         if (!sp->config.multiq)
520                 sp->mac_control.fifos[fifo_no].queue_state =
521                         FIFO_QUEUE_STOP;
522
523         netif_tx_stop_all_queues(sp->dev);
524 }
525
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528         if (!sp->config.multiq) {
529                 int i;
530
531                 for (i = 0; i < sp->config.tx_fifo_num; i++)
532                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533         }
534         netif_tx_start_all_queues(sp->dev);
535 }
536
537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538 {
539         if (!sp->config.multiq)
540                 sp->mac_control.fifos[fifo_no].queue_state =
541                         FIFO_QUEUE_START;
542
543         netif_tx_start_all_queues(sp->dev);
544 }
545
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547 {
548         if (!sp->config.multiq) {
549                 int i;
550
551                 for (i = 0; i < sp->config.tx_fifo_num; i++)
552                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
553         }
554         netif_tx_wake_all_queues(sp->dev);
555 }
556
557 static inline void s2io_wake_tx_queue(
558         struct fifo_info *fifo, int cnt, u8 multiq)
559 {
560
561         if (multiq) {
562                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
564         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
565                 if (netif_queue_stopped(fifo->dev)) {
566                         fifo->queue_state = FIFO_QUEUE_START;
567                         netif_wake_queue(fifo->dev);
568                 }
569         }
570 }
571
572 /**
573  * init_shared_mem - Allocation and Initialization of Memory
574  * @nic: Device private variable.
575  * Description: The function allocates all the memory areas shared
576  * between the NIC and the driver. This includes Tx descriptors,
577  * Rx descriptors and the statistics block.
578  */
579
580 static int init_shared_mem(struct s2io_nic *nic)
581 {
582         u32 size;
583         void *tmp_v_addr, *tmp_v_addr_next;
584         dma_addr_t tmp_p_addr, tmp_p_addr_next;
585         struct RxD_block *pre_rxd_blk = NULL;
586         int i, j, blk_cnt;
587         int lst_size, lst_per_page;
588         struct net_device *dev = nic->dev;
589         unsigned long tmp;
590         struct buffAdd *ba;
591         struct config_param *config = &nic->config;
592         struct mac_info *mac_control = &nic->mac_control;
593         unsigned long long mem_allocated = 0;
594
595         /* Allocation and initialization of TXDLs in FIFOs */
596         size = 0;
597         for (i = 0; i < config->tx_fifo_num; i++) {
598                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599
600                 size += tx_cfg->fifo_len;
601         }
602         if (size > MAX_AVAILABLE_TXDS) {
603                 DBG_PRINT(ERR_DBG,
604                           "Too many TxDs requested: %d, max supported: %d\n",
605                           size, MAX_AVAILABLE_TXDS);
606                 return -EINVAL;
607         }
608
609         size = 0;
610         for (i = 0; i < config->tx_fifo_num; i++) {
611                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612
613                 size = tx_cfg->fifo_len;
614                 /*
615                  * Legal values are from 2 to 8192
616                  */
617                 if (size < 2) {
618                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619                                   "Valid lengths are 2 through 8192\n",
620                                   i, size);
621                         return -EINVAL;
622                 }
623         }
624
625         lst_size = (sizeof(struct TxD) * config->max_txds);
626         lst_per_page = PAGE_SIZE / lst_size;
627
628         for (i = 0; i < config->tx_fifo_num; i++) {
629                 struct fifo_info *fifo = &mac_control->fifos[i];
630                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631                 int fifo_len = tx_cfg->fifo_len;
632                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
633
634                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635                 if (!fifo->list_info) {
636                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
637                         return -ENOMEM;
638                 }
639                 mem_allocated += list_holder_size;
640         }
641         for (i = 0; i < config->tx_fifo_num; i++) {
642                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643                                                 lst_per_page);
644                 struct fifo_info *fifo = &mac_control->fifos[i];
645                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646
647                 fifo->tx_curr_put_info.offset = 0;
648                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649                 fifo->tx_curr_get_info.offset = 0;
650                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651                 fifo->fifo_no = i;
652                 fifo->nic = nic;
653                 fifo->max_txds = MAX_SKB_FRAGS + 2;
654                 fifo->dev = dev;
655
656                 for (j = 0; j < page_num; j++) {
657                         int k = 0;
658                         dma_addr_t tmp_p;
659                         void *tmp_v;
660                         tmp_v = pci_alloc_consistent(nic->pdev,
661                                                      PAGE_SIZE, &tmp_p);
662                         if (!tmp_v) {
663                                 DBG_PRINT(INFO_DBG,
664                                           "pci_alloc_consistent failed for TxDL\n");
665                                 return -ENOMEM;
666                         }
667                         /* If we got a zero DMA address(can happen on
668                          * certain platforms like PPC), reallocate.
669                          * Store virtual address of page we don't want,
670                          * to be freed later.
671                          */
672                         if (!tmp_p) {
673                                 mac_control->zerodma_virt_addr = tmp_v;
674                                 DBG_PRINT(INIT_DBG,
675                                           "%s: Zero DMA address for TxDL. "
676                                           "Virtual address %p\n",
677                                           dev->name, tmp_v);
678                                 tmp_v = pci_alloc_consistent(nic->pdev,
679                                                              PAGE_SIZE, &tmp_p);
680                                 if (!tmp_v) {
681                                         DBG_PRINT(INFO_DBG,
682                                                   "pci_alloc_consistent failed for TxDL\n");
683                                         return -ENOMEM;
684                                 }
685                                 mem_allocated += PAGE_SIZE;
686                         }
687                         while (k < lst_per_page) {
688                                 int l = (j * lst_per_page) + k;
689                                 if (l == tx_cfg->fifo_len)
690                                         break;
691                                 fifo->list_info[l].list_virt_addr =
692                                         tmp_v + (k * lst_size);
693                                 fifo->list_info[l].list_phy_addr =
694                                         tmp_p + (k * lst_size);
695                                 k++;
696                         }
697                 }
698         }
699
700         for (i = 0; i < config->tx_fifo_num; i++) {
701                 struct fifo_info *fifo = &mac_control->fifos[i];
702                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703
704                 size = tx_cfg->fifo_len;
705                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706                 if (!fifo->ufo_in_band_v)
707                         return -ENOMEM;
708                 mem_allocated += (size * sizeof(u64));
709         }
710
711         /* Allocation and initialization of RXDs in Rings */
712         size = 0;
713         for (i = 0; i < config->rx_ring_num; i++) {
714                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715                 struct ring_info *ring = &mac_control->rings[i];
716
717                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
718                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719                                   "multiple of RxDs per Block\n",
720                                   dev->name, i);
721                         return FAILURE;
722                 }
723                 size += rx_cfg->num_rxd;
724                 ring->block_count = rx_cfg->num_rxd /
725                         (rxd_count[nic->rxd_mode] + 1);
726                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
727         }
728         if (nic->rxd_mode == RXD_MODE_1)
729                 size = (size * (sizeof(struct RxD1)));
730         else
731                 size = (size * (sizeof(struct RxD3)));
732
733         for (i = 0; i < config->rx_ring_num; i++) {
734                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735                 struct ring_info *ring = &mac_control->rings[i];
736
737                 ring->rx_curr_get_info.block_index = 0;
738                 ring->rx_curr_get_info.offset = 0;
739                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740                 ring->rx_curr_put_info.block_index = 0;
741                 ring->rx_curr_put_info.offset = 0;
742                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743                 ring->nic = nic;
744                 ring->ring_no = i;
745
746                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
747                 /*  Allocating all the Rx blocks */
748                 for (j = 0; j < blk_cnt; j++) {
749                         struct rx_block_info *rx_blocks;
750                         int l;
751
752                         rx_blocks = &ring->rx_blocks[j];
753                         size = SIZE_OF_BLOCK;   /* size is always page size */
754                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755                                                           &tmp_p_addr);
756                         if (tmp_v_addr == NULL) {
757                                 /*
758                                  * In case of failure, free_shared_mem()
759                                  * is called, which should free any
760                                  * memory that was alloced till the
761                                  * failure happened.
762                                  */
763                                 rx_blocks->block_virt_addr = tmp_v_addr;
764                                 return -ENOMEM;
765                         }
766                         mem_allocated += size;
767                         memset(tmp_v_addr, 0, size);
768
769                         size = sizeof(struct rxd_info) *
770                                 rxd_count[nic->rxd_mode];
771                         rx_blocks->block_virt_addr = tmp_v_addr;
772                         rx_blocks->block_dma_addr = tmp_p_addr;
773                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
774                         if (!rx_blocks->rxds)
775                                 return -ENOMEM;
776                         mem_allocated += size;
777                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
778                                 rx_blocks->rxds[l].virt_addr =
779                                         rx_blocks->block_virt_addr +
780                                         (rxd_size[nic->rxd_mode] * l);
781                                 rx_blocks->rxds[l].dma_addr =
782                                         rx_blocks->block_dma_addr +
783                                         (rxd_size[nic->rxd_mode] * l);
784                         }
785                 }
786                 /* Interlinking all Rx Blocks */
787                 for (j = 0; j < blk_cnt; j++) {
788                         int next = (j + 1) % blk_cnt;
789                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
793
794                         pre_rxd_blk = tmp_v_addr;
795                         pre_rxd_blk->reserved_2_pNext_RxD_block =
796                                 (unsigned long)tmp_v_addr_next;
797                         pre_rxd_blk->pNext_RxD_Blk_physical =
798                                 (u64)tmp_p_addr_next;
799                 }
800         }
801         if (nic->rxd_mode == RXD_MODE_3B) {
802                 /*
803                  * Allocation of Storages for buffer addresses in 2BUFF mode
804                  * and the buffers as well.
805                  */
806                 for (i = 0; i < config->rx_ring_num; i++) {
807                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808                         struct ring_info *ring = &mac_control->rings[i];
809
810                         blk_cnt = rx_cfg->num_rxd /
811                                 (rxd_count[nic->rxd_mode] + 1);
812                         size = sizeof(struct buffAdd *) * blk_cnt;
813                         ring->ba = kmalloc(size, GFP_KERNEL);
814                         if (!ring->ba)
815                                 return -ENOMEM;
816                         mem_allocated += size;
817                         for (j = 0; j < blk_cnt; j++) {
818                                 int k = 0;
819
820                                 size = sizeof(struct buffAdd) *
821                                         (rxd_count[nic->rxd_mode] + 1);
822                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
823                                 if (!ring->ba[j])
824                                         return -ENOMEM;
825                                 mem_allocated += size;
826                                 while (k != rxd_count[nic->rxd_mode]) {
827                                         ba = &ring->ba[j][k];
828                                         size = BUF0_LEN + ALIGN_SIZE;
829                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
830                                         if (!ba->ba_0_org)
831                                                 return -ENOMEM;
832                                         mem_allocated += size;
833                                         tmp = (unsigned long)ba->ba_0_org;
834                                         tmp += ALIGN_SIZE;
835                                         tmp &= ~((unsigned long)ALIGN_SIZE);
836                                         ba->ba_0 = (void *)tmp;
837
838                                         size = BUF1_LEN + ALIGN_SIZE;
839                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
840                                         if (!ba->ba_1_org)
841                                                 return -ENOMEM;
842                                         mem_allocated += size;
843                                         tmp = (unsigned long)ba->ba_1_org;
844                                         tmp += ALIGN_SIZE;
845                                         tmp &= ~((unsigned long)ALIGN_SIZE);
846                                         ba->ba_1 = (void *)tmp;
847                                         k++;
848                                 }
849                         }
850                 }
851         }
852
853         /* Allocation and initialization of Statistics block */
854         size = sizeof(struct stat_block);
855         mac_control->stats_mem =
856                 pci_alloc_consistent(nic->pdev, size,
857                                      &mac_control->stats_mem_phy);
858
859         if (!mac_control->stats_mem) {
860                 /*
861                  * In case of failure, free_shared_mem() is called, which
862                  * should free any memory that was alloced till the
863                  * failure happened.
864                  */
865                 return -ENOMEM;
866         }
867         mem_allocated += size;
868         mac_control->stats_mem_sz = size;
869
870         tmp_v_addr = mac_control->stats_mem;
871         mac_control->stats_info = tmp_v_addr;
872         memset(tmp_v_addr, 0, size);
873         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
875         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
876         return SUCCESS;
877 }
878
879 /**
880  * free_shared_mem - Free the allocated Memory
881  * @nic:  Device private variable.
882  * Description: This function is to free all memory locations allocated by
883  * the init_shared_mem() function and return it to the kernel.
884  */
885
886 static void free_shared_mem(struct s2io_nic *nic)
887 {
888         int i, j, blk_cnt, size;
889         void *tmp_v_addr;
890         dma_addr_t tmp_p_addr;
891         int lst_size, lst_per_page;
892         struct net_device *dev;
893         int page_num = 0;
894         struct config_param *config;
895         struct mac_info *mac_control;
896         struct stat_block *stats;
897         struct swStat *swstats;
898
899         if (!nic)
900                 return;
901
902         dev = nic->dev;
903
904         config = &nic->config;
905         mac_control = &nic->mac_control;
906         stats = mac_control->stats_info;
907         swstats = &stats->sw_stat;
908
909         lst_size = sizeof(struct TxD) * config->max_txds;
910         lst_per_page = PAGE_SIZE / lst_size;
911
912         for (i = 0; i < config->tx_fifo_num; i++) {
913                 struct fifo_info *fifo = &mac_control->fifos[i];
914                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915
916                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
917                 for (j = 0; j < page_num; j++) {
918                         int mem_blks = (j * lst_per_page);
919                         struct list_info_hold *fli;
920
921                         if (!fifo->list_info)
922                                 return;
923
924                         fli = &fifo->list_info[mem_blks];
925                         if (!fli->list_virt_addr)
926                                 break;
927                         pci_free_consistent(nic->pdev, PAGE_SIZE,
928                                             fli->list_virt_addr,
929                                             fli->list_phy_addr);
930                         swstats->mem_freed += PAGE_SIZE;
931                 }
932                 /* If we got a zero DMA address during allocation,
933                  * free the page now
934                  */
935                 if (mac_control->zerodma_virt_addr) {
936                         pci_free_consistent(nic->pdev, PAGE_SIZE,
937                                             mac_control->zerodma_virt_addr,
938                                             (dma_addr_t)0);
939                         DBG_PRINT(INIT_DBG,
940                                   "%s: Freeing TxDL with zero DMA address. "
941                                   "Virtual address %p\n",
942                                   dev->name, mac_control->zerodma_virt_addr);
943                         swstats->mem_freed += PAGE_SIZE;
944                 }
945                 kfree(fifo->list_info);
946                 swstats->mem_freed += tx_cfg->fifo_len *
947                         sizeof(struct list_info_hold);
948         }
949
950         size = SIZE_OF_BLOCK;
951         for (i = 0; i < config->rx_ring_num; i++) {
952                 struct ring_info *ring = &mac_control->rings[i];
953
954                 blk_cnt = ring->block_count;
955                 for (j = 0; j < blk_cnt; j++) {
956                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
958                         if (tmp_v_addr == NULL)
959                                 break;
960                         pci_free_consistent(nic->pdev, size,
961                                             tmp_v_addr, tmp_p_addr);
962                         swstats->mem_freed += size;
963                         kfree(ring->rx_blocks[j].rxds);
964                         swstats->mem_freed += sizeof(struct rxd_info) *
965                                 rxd_count[nic->rxd_mode];
966                 }
967         }
968
969         if (nic->rxd_mode == RXD_MODE_3B) {
970                 /* Freeing buffer storage addresses in 2BUFF mode. */
971                 for (i = 0; i < config->rx_ring_num; i++) {
972                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973                         struct ring_info *ring = &mac_control->rings[i];
974
975                         blk_cnt = rx_cfg->num_rxd /
976                                 (rxd_count[nic->rxd_mode] + 1);
977                         for (j = 0; j < blk_cnt; j++) {
978                                 int k = 0;
979                                 if (!ring->ba[j])
980                                         continue;
981                                 while (k != rxd_count[nic->rxd_mode]) {
982                                         struct buffAdd *ba = &ring->ba[j][k];
983                                         kfree(ba->ba_0_org);
984                                         swstats->mem_freed +=
985                                                 BUF0_LEN + ALIGN_SIZE;
986                                         kfree(ba->ba_1_org);
987                                         swstats->mem_freed +=
988                                                 BUF1_LEN + ALIGN_SIZE;
989                                         k++;
990                                 }
991                                 kfree(ring->ba[j]);
992                                 swstats->mem_freed += sizeof(struct buffAdd) *
993                                         (rxd_count[nic->rxd_mode] + 1);
994                         }
995                         kfree(ring->ba);
996                         swstats->mem_freed += sizeof(struct buffAdd *) *
997                                 blk_cnt;
998                 }
999         }
1000
1001         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002                 struct fifo_info *fifo = &mac_control->fifos[i];
1003                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004
1005                 if (fifo->ufo_in_band_v) {
1006                         swstats->mem_freed += tx_cfg->fifo_len *
1007                                 sizeof(u64);
1008                         kfree(fifo->ufo_in_band_v);
1009                 }
1010         }
1011
1012         if (mac_control->stats_mem) {
1013                 swstats->mem_freed += mac_control->stats_mem_sz;
1014                 pci_free_consistent(nic->pdev,
1015                                     mac_control->stats_mem_sz,
1016                                     mac_control->stats_mem,
1017                                     mac_control->stats_mem_phy);
1018         }
1019 }
1020
1021 /**
1022  * s2io_verify_pci_mode -
1023  */
1024
1025 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026 {
1027         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028         register u64 val64 = 0;
1029         int     mode;
1030
1031         val64 = readq(&bar0->pci_mode);
1032         mode = (u8)GET_PCI_MODE(val64);
1033
1034         if (val64 & PCI_MODE_UNKNOWN_MODE)
1035                 return -1;      /* Unknown PCI mode */
1036         return mode;
1037 }
1038
1039 #define NEC_VENID   0x1033
1040 #define NEC_DEVID   0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042 {
1043         struct pci_dev *tdev = NULL;
1044         for_each_pci_dev(tdev) {
1045                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046                         if (tdev->bus == s2io_pdev->bus->parent) {
1047                                 pci_dev_put(tdev);
1048                                 return 1;
1049                         }
1050                 }
1051         }
1052         return 0;
1053 }
1054
1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056 /**
1057  * s2io_print_pci_mode -
1058  */
1059 static int s2io_print_pci_mode(struct s2io_nic *nic)
1060 {
1061         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062         register u64 val64 = 0;
1063         int     mode;
1064         struct config_param *config = &nic->config;
1065         const char *pcimode;
1066
1067         val64 = readq(&bar0->pci_mode);
1068         mode = (u8)GET_PCI_MODE(val64);
1069
1070         if (val64 & PCI_MODE_UNKNOWN_MODE)
1071                 return -1;      /* Unknown PCI mode */
1072
1073         config->bus_speed = bus_speed[mode];
1074
1075         if (s2io_on_nec_bridge(nic->pdev)) {
1076                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077                           nic->dev->name);
1078                 return mode;
1079         }
1080
1081         switch (mode) {
1082         case PCI_MODE_PCI_33:
1083                 pcimode = "33MHz PCI bus";
1084                 break;
1085         case PCI_MODE_PCI_66:
1086                 pcimode = "66MHz PCI bus";
1087                 break;
1088         case PCI_MODE_PCIX_M1_66:
1089                 pcimode = "66MHz PCIX(M1) bus";
1090                 break;
1091         case PCI_MODE_PCIX_M1_100:
1092                 pcimode = "100MHz PCIX(M1) bus";
1093                 break;
1094         case PCI_MODE_PCIX_M1_133:
1095                 pcimode = "133MHz PCIX(M1) bus";
1096                 break;
1097         case PCI_MODE_PCIX_M2_66:
1098                 pcimode = "133MHz PCIX(M2) bus";
1099                 break;
1100         case PCI_MODE_PCIX_M2_100:
1101                 pcimode = "200MHz PCIX(M2) bus";
1102                 break;
1103         case PCI_MODE_PCIX_M2_133:
1104                 pcimode = "266MHz PCIX(M2) bus";
1105                 break;
1106         default:
1107                 pcimode = "unsupported bus!";
1108                 mode = -1;
1109         }
1110
1111         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113
1114         return mode;
1115 }
1116
1117 /**
1118  *  init_tti - Initialization transmit traffic interrupt scheme
1119  *  @nic: device private variable
1120  *  @link: link status (UP/DOWN) used to enable/disable continuous
1121  *  transmit interrupts
1122  *  Description: The function configures transmit traffic interrupts
1123  *  Return Value:  SUCCESS on success and
1124  *  '-1' on failure
1125  */
1126
1127 static int init_tti(struct s2io_nic *nic, int link)
1128 {
1129         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130         register u64 val64 = 0;
1131         int i;
1132         struct config_param *config = &nic->config;
1133
1134         for (i = 0; i < config->tx_fifo_num; i++) {
1135                 /*
1136                  * TTI Initialization. Default Tx timer gets us about
1137                  * 250 interrupts per sec. Continuous interrupts are enabled
1138                  * by default.
1139                  */
1140                 if (nic->device_type == XFRAME_II_DEVICE) {
1141                         int count = (nic->config.bus_speed * 125)/2;
1142                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143                 } else
1144                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145
1146                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150                 if (i == 0)
1151                         if (use_continuous_tx_intrs && (link == LINK_UP))
1152                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153                 writeq(val64, &bar0->tti_data1_mem);
1154
1155                 if (nic->config.intr_type == MSI_X) {
1156                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1160                 } else {
1161                         if ((nic->config.tx_steering_type ==
1162                              TX_DEFAULT_STEERING) &&
1163                             (config->tx_fifo_num > 1) &&
1164                             (i >= nic->udp_fifo_idx) &&
1165                             (i < (nic->udp_fifo_idx +
1166                                   nic->total_udp_fifos)))
1167                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1171                         else
1172                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1176                 }
1177
1178                 writeq(val64, &bar0->tti_data2_mem);
1179
1180                 val64 = TTI_CMD_MEM_WE |
1181                         TTI_CMD_MEM_STROBE_NEW_CMD |
1182                         TTI_CMD_MEM_OFFSET(i);
1183                 writeq(val64, &bar0->tti_command_mem);
1184
1185                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1187                                           S2IO_BIT_RESET) != SUCCESS)
1188                         return FAILURE;
1189         }
1190
1191         return SUCCESS;
1192 }
1193
1194 /**
1195  *  init_nic - Initialization of hardware
1196  *  @nic: device private variable
1197  *  Description: The function sequentially configures every block
1198  *  of the H/W from their reset values.
1199  *  Return Value:  SUCCESS on success and
1200  *  '-1' on failure (endian settings incorrect).
1201  */
1202
1203 static int init_nic(struct s2io_nic *nic)
1204 {
1205         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206         struct net_device *dev = nic->dev;
1207         register u64 val64 = 0;
1208         void __iomem *add;
1209         u32 time;
1210         int i, j;
1211         int dtx_cnt = 0;
1212         unsigned long long mem_share;
1213         int mem_size;
1214         struct config_param *config = &nic->config;
1215         struct mac_info *mac_control = &nic->mac_control;
1216
1217         /* to set the swapper controle on the card */
1218         if (s2io_set_swapper(nic)) {
1219                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220                 return -EIO;
1221         }
1222
1223         /*
1224          * Herc requires EOI to be removed from reset before XGXS, so..
1225          */
1226         if (nic->device_type & XFRAME_II_DEVICE) {
1227                 val64 = 0xA500000000ULL;
1228                 writeq(val64, &bar0->sw_reset);
1229                 msleep(500);
1230                 val64 = readq(&bar0->sw_reset);
1231         }
1232
1233         /* Remove XGXS from reset state */
1234         val64 = 0;
1235         writeq(val64, &bar0->sw_reset);
1236         msleep(500);
1237         val64 = readq(&bar0->sw_reset);
1238
1239         /* Ensure that it's safe to access registers by checking
1240          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241          */
1242         if (nic->device_type == XFRAME_II_DEVICE) {
1243                 for (i = 0; i < 50; i++) {
1244                         val64 = readq(&bar0->adapter_status);
1245                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246                                 break;
1247                         msleep(10);
1248                 }
1249                 if (i == 50)
1250                         return -ENODEV;
1251         }
1252
1253         /*  Enable Receiving broadcasts */
1254         add = &bar0->mac_cfg;
1255         val64 = readq(&bar0->mac_cfg);
1256         val64 |= MAC_RMAC_BCAST_ENABLE;
1257         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258         writel((u32)val64, add);
1259         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260         writel((u32) (val64 >> 32), (add + 4));
1261
1262         /* Read registers in all blocks */
1263         val64 = readq(&bar0->mac_int_mask);
1264         val64 = readq(&bar0->mc_int_mask);
1265         val64 = readq(&bar0->xgxs_int_mask);
1266
1267         /*  Set MTU */
1268         val64 = dev->mtu;
1269         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270
1271         if (nic->device_type & XFRAME_II_DEVICE) {
1272                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274                                           &bar0->dtx_control, UF);
1275                         if (dtx_cnt & 0x1)
1276                                 msleep(1); /* Necessary!! */
1277                         dtx_cnt++;
1278                 }
1279         } else {
1280                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282                                           &bar0->dtx_control, UF);
1283                         val64 = readq(&bar0->dtx_control);
1284                         dtx_cnt++;
1285                 }
1286         }
1287
1288         /*  Tx DMA Initialization */
1289         val64 = 0;
1290         writeq(val64, &bar0->tx_fifo_partition_0);
1291         writeq(val64, &bar0->tx_fifo_partition_1);
1292         writeq(val64, &bar0->tx_fifo_partition_2);
1293         writeq(val64, &bar0->tx_fifo_partition_3);
1294
1295         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297
1298                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300
1301                 if (i == (config->tx_fifo_num - 1)) {
1302                         if (i % 2 == 0)
1303                                 i++;
1304                 }
1305
1306                 switch (i) {
1307                 case 1:
1308                         writeq(val64, &bar0->tx_fifo_partition_0);
1309                         val64 = 0;
1310                         j = 0;
1311                         break;
1312                 case 3:
1313                         writeq(val64, &bar0->tx_fifo_partition_1);
1314                         val64 = 0;
1315                         j = 0;
1316                         break;
1317                 case 5:
1318                         writeq(val64, &bar0->tx_fifo_partition_2);
1319                         val64 = 0;
1320                         j = 0;
1321                         break;
1322                 case 7:
1323                         writeq(val64, &bar0->tx_fifo_partition_3);
1324                         val64 = 0;
1325                         j = 0;
1326                         break;
1327                 default:
1328                         j++;
1329                         break;
1330                 }
1331         }
1332
1333         /*
1334          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336          */
1337         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339
1340         val64 = readq(&bar0->tx_fifo_partition_0);
1341         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343
1344         /*
1345          * Initialization of Tx_PA_CONFIG register to ignore packet
1346          * integrity checking.
1347          */
1348         val64 = readq(&bar0->tx_pa_cfg);
1349         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350                 TX_PA_CFG_IGNORE_SNAP_OUI |
1351                 TX_PA_CFG_IGNORE_LLC_CTRL |
1352                 TX_PA_CFG_IGNORE_L2_ERR;
1353         writeq(val64, &bar0->tx_pa_cfg);
1354
1355         /* Rx DMA intialization. */
1356         val64 = 0;
1357         for (i = 0; i < config->rx_ring_num; i++) {
1358                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359
1360                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361         }
1362         writeq(val64, &bar0->rx_queue_priority);
1363
1364         /*
1365          * Allocating equal share of memory to all the
1366          * configured Rings.
1367          */
1368         val64 = 0;
1369         if (nic->device_type & XFRAME_II_DEVICE)
1370                 mem_size = 32;
1371         else
1372                 mem_size = 64;
1373
1374         for (i = 0; i < config->rx_ring_num; i++) {
1375                 switch (i) {
1376                 case 0:
1377                         mem_share = (mem_size / config->rx_ring_num +
1378                                      mem_size % config->rx_ring_num);
1379                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380                         continue;
1381                 case 1:
1382                         mem_share = (mem_size / config->rx_ring_num);
1383                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384                         continue;
1385                 case 2:
1386                         mem_share = (mem_size / config->rx_ring_num);
1387                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388                         continue;
1389                 case 3:
1390                         mem_share = (mem_size / config->rx_ring_num);
1391                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392                         continue;
1393                 case 4:
1394                         mem_share = (mem_size / config->rx_ring_num);
1395                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396                         continue;
1397                 case 5:
1398                         mem_share = (mem_size / config->rx_ring_num);
1399                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400                         continue;
1401                 case 6:
1402                         mem_share = (mem_size / config->rx_ring_num);
1403                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404                         continue;
1405                 case 7:
1406                         mem_share = (mem_size / config->rx_ring_num);
1407                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408                         continue;
1409                 }
1410         }
1411         writeq(val64, &bar0->rx_queue_cfg);
1412
1413         /*
1414          * Filling Tx round robin registers
1415          * as per the number of FIFOs for equal scheduling priority
1416          */
1417         switch (config->tx_fifo_num) {
1418         case 1:
1419                 val64 = 0x0;
1420                 writeq(val64, &bar0->tx_w_round_robin_0);
1421                 writeq(val64, &bar0->tx_w_round_robin_1);
1422                 writeq(val64, &bar0->tx_w_round_robin_2);
1423                 writeq(val64, &bar0->tx_w_round_robin_3);
1424                 writeq(val64, &bar0->tx_w_round_robin_4);
1425                 break;
1426         case 2:
1427                 val64 = 0x0001000100010001ULL;
1428                 writeq(val64, &bar0->tx_w_round_robin_0);
1429                 writeq(val64, &bar0->tx_w_round_robin_1);
1430                 writeq(val64, &bar0->tx_w_round_robin_2);
1431                 writeq(val64, &bar0->tx_w_round_robin_3);
1432                 val64 = 0x0001000100000000ULL;
1433                 writeq(val64, &bar0->tx_w_round_robin_4);
1434                 break;
1435         case 3:
1436                 val64 = 0x0001020001020001ULL;
1437                 writeq(val64, &bar0->tx_w_round_robin_0);
1438                 val64 = 0x0200010200010200ULL;
1439                 writeq(val64, &bar0->tx_w_round_robin_1);
1440                 val64 = 0x0102000102000102ULL;
1441                 writeq(val64, &bar0->tx_w_round_robin_2);
1442                 val64 = 0x0001020001020001ULL;
1443                 writeq(val64, &bar0->tx_w_round_robin_3);
1444                 val64 = 0x0200010200000000ULL;
1445                 writeq(val64, &bar0->tx_w_round_robin_4);
1446                 break;
1447         case 4:
1448                 val64 = 0x0001020300010203ULL;
1449                 writeq(val64, &bar0->tx_w_round_robin_0);
1450                 writeq(val64, &bar0->tx_w_round_robin_1);
1451                 writeq(val64, &bar0->tx_w_round_robin_2);
1452                 writeq(val64, &bar0->tx_w_round_robin_3);
1453                 val64 = 0x0001020300000000ULL;
1454                 writeq(val64, &bar0->tx_w_round_robin_4);
1455                 break;
1456         case 5:
1457                 val64 = 0x0001020304000102ULL;
1458                 writeq(val64, &bar0->tx_w_round_robin_0);
1459                 val64 = 0x0304000102030400ULL;
1460                 writeq(val64, &bar0->tx_w_round_robin_1);
1461                 val64 = 0x0102030400010203ULL;
1462                 writeq(val64, &bar0->tx_w_round_robin_2);
1463                 val64 = 0x0400010203040001ULL;
1464                 writeq(val64, &bar0->tx_w_round_robin_3);
1465                 val64 = 0x0203040000000000ULL;
1466                 writeq(val64, &bar0->tx_w_round_robin_4);
1467                 break;
1468         case 6:
1469                 val64 = 0x0001020304050001ULL;
1470                 writeq(val64, &bar0->tx_w_round_robin_0);
1471                 val64 = 0x0203040500010203ULL;
1472                 writeq(val64, &bar0->tx_w_round_robin_1);
1473                 val64 = 0x0405000102030405ULL;
1474                 writeq(val64, &bar0->tx_w_round_robin_2);
1475                 val64 = 0x0001020304050001ULL;
1476                 writeq(val64, &bar0->tx_w_round_robin_3);
1477                 val64 = 0x0203040500000000ULL;
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 7:
1481                 val64 = 0x0001020304050600ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 val64 = 0x0102030405060001ULL;
1484                 writeq(val64, &bar0->tx_w_round_robin_1);
1485                 val64 = 0x0203040506000102ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_2);
1487                 val64 = 0x0304050600010203ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_3);
1489                 val64 = 0x0405060000000000ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_4);
1491                 break;
1492         case 8:
1493                 val64 = 0x0001020304050607ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_0);
1495                 writeq(val64, &bar0->tx_w_round_robin_1);
1496                 writeq(val64, &bar0->tx_w_round_robin_2);
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0001020300000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         }
1502
1503         /* Enable all configured Tx FIFO partitions */
1504         val64 = readq(&bar0->tx_fifo_partition_0);
1505         val64 |= (TX_FIFO_PARTITION_EN);
1506         writeq(val64, &bar0->tx_fifo_partition_0);
1507
1508         /* Filling the Rx round robin registers as per the
1509          * number of Rings and steering based on QoS with
1510          * equal priority.
1511          */
1512         switch (config->rx_ring_num) {
1513         case 1:
1514                 val64 = 0x0;
1515                 writeq(val64, &bar0->rx_w_round_robin_0);
1516                 writeq(val64, &bar0->rx_w_round_robin_1);
1517                 writeq(val64, &bar0->rx_w_round_robin_2);
1518                 writeq(val64, &bar0->rx_w_round_robin_3);
1519                 writeq(val64, &bar0->rx_w_round_robin_4);
1520
1521                 val64 = 0x8080808080808080ULL;
1522                 writeq(val64, &bar0->rts_qos_steering);
1523                 break;
1524         case 2:
1525                 val64 = 0x0001000100010001ULL;
1526                 writeq(val64, &bar0->rx_w_round_robin_0);
1527                 writeq(val64, &bar0->rx_w_round_robin_1);
1528                 writeq(val64, &bar0->rx_w_round_robin_2);
1529                 writeq(val64, &bar0->rx_w_round_robin_3);
1530                 val64 = 0x0001000100000000ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533                 val64 = 0x8080808040404040ULL;
1534                 writeq(val64, &bar0->rts_qos_steering);
1535                 break;
1536         case 3:
1537                 val64 = 0x0001020001020001ULL;
1538                 writeq(val64, &bar0->rx_w_round_robin_0);
1539                 val64 = 0x0200010200010200ULL;
1540                 writeq(val64, &bar0->rx_w_round_robin_1);
1541                 val64 = 0x0102000102000102ULL;
1542                 writeq(val64, &bar0->rx_w_round_robin_2);
1543                 val64 = 0x0001020001020001ULL;
1544                 writeq(val64, &bar0->rx_w_round_robin_3);
1545                 val64 = 0x0200010200000000ULL;
1546                 writeq(val64, &bar0->rx_w_round_robin_4);
1547
1548                 val64 = 0x8080804040402020ULL;
1549                 writeq(val64, &bar0->rts_qos_steering);
1550                 break;
1551         case 4:
1552                 val64 = 0x0001020300010203ULL;
1553                 writeq(val64, &bar0->rx_w_round_robin_0);
1554                 writeq(val64, &bar0->rx_w_round_robin_1);
1555                 writeq(val64, &bar0->rx_w_round_robin_2);
1556                 writeq(val64, &bar0->rx_w_round_robin_3);
1557                 val64 = 0x0001020300000000ULL;
1558                 writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560                 val64 = 0x8080404020201010ULL;
1561                 writeq(val64, &bar0->rts_qos_steering);
1562                 break;
1563         case 5:
1564                 val64 = 0x0001020304000102ULL;
1565                 writeq(val64, &bar0->rx_w_round_robin_0);
1566                 val64 = 0x0304000102030400ULL;
1567                 writeq(val64, &bar0->rx_w_round_robin_1);
1568                 val64 = 0x0102030400010203ULL;
1569                 writeq(val64, &bar0->rx_w_round_robin_2);
1570                 val64 = 0x0400010203040001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_3);
1572                 val64 = 0x0203040000000000ULL;
1573                 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575                 val64 = 0x8080404020201008ULL;
1576                 writeq(val64, &bar0->rts_qos_steering);
1577                 break;
1578         case 6:
1579                 val64 = 0x0001020304050001ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_0);
1581                 val64 = 0x0203040500010203ULL;
1582                 writeq(val64, &bar0->rx_w_round_robin_1);
1583                 val64 = 0x0405000102030405ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_2);
1585                 val64 = 0x0001020304050001ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_3);
1587                 val64 = 0x0203040500000000ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590                 val64 = 0x8080404020100804ULL;
1591                 writeq(val64, &bar0->rts_qos_steering);
1592                 break;
1593         case 7:
1594                 val64 = 0x0001020304050600ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_0);
1596                 val64 = 0x0102030405060001ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_1);
1598                 val64 = 0x0203040506000102ULL;
1599                 writeq(val64, &bar0->rx_w_round_robin_2);
1600                 val64 = 0x0304050600010203ULL;
1601                 writeq(val64, &bar0->rx_w_round_robin_3);
1602                 val64 = 0x0405060000000000ULL;
1603                 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605                 val64 = 0x8080402010080402ULL;
1606                 writeq(val64, &bar0->rts_qos_steering);
1607                 break;
1608         case 8:
1609                 val64 = 0x0001020304050607ULL;
1610                 writeq(val64, &bar0->rx_w_round_robin_0);
1611                 writeq(val64, &bar0->rx_w_round_robin_1);
1612                 writeq(val64, &bar0->rx_w_round_robin_2);
1613                 writeq(val64, &bar0->rx_w_round_robin_3);
1614                 val64 = 0x0001020300000000ULL;
1615                 writeq(val64, &bar0->rx_w_round_robin_4);
1616
1617                 val64 = 0x8040201008040201ULL;
1618                 writeq(val64, &bar0->rts_qos_steering);
1619                 break;
1620         }
1621
1622         /* UDP Fix */
1623         val64 = 0;
1624         for (i = 0; i < 8; i++)
1625                 writeq(val64, &bar0->rts_frm_len_n[i]);
1626
1627         /* Set the default rts frame length for the rings configured */
1628         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629         for (i = 0 ; i < config->rx_ring_num ; i++)
1630                 writeq(val64, &bar0->rts_frm_len_n[i]);
1631
1632         /* Set the frame length for the configured rings
1633          * desired by the user
1634          */
1635         for (i = 0; i < config->rx_ring_num; i++) {
1636                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1637                  * specified frame length steering.
1638                  * If the user provides the frame length then program
1639                  * the rts_frm_len register for those values or else
1640                  * leave it as it is.
1641                  */
1642                 if (rts_frm_len[i] != 0) {
1643                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644                                &bar0->rts_frm_len_n[i]);
1645                 }
1646         }
1647
1648         /* Disable differentiated services steering logic */
1649         for (i = 0; i < 64; i++) {
1650                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651                         DBG_PRINT(ERR_DBG,
1652                                   "%s: rts_ds_steer failed on codepoint %d\n",
1653                                   dev->name, i);
1654                         return -ENODEV;
1655                 }
1656         }
1657
1658         /* Program statistics memory */
1659         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660
1661         if (nic->device_type == XFRAME_II_DEVICE) {
1662                 val64 = STAT_BC(0x320);
1663                 writeq(val64, &bar0->stat_byte_cnt);
1664         }
1665
1666         /*
1667          * Initializing the sampling rate for the device to calculate the
1668          * bandwidth utilization.
1669          */
1670         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672         writeq(val64, &bar0->mac_link_util);
1673
1674         /*
1675          * Initializing the Transmit and Receive Traffic Interrupt
1676          * Scheme.
1677          */
1678
1679         /* Initialize TTI */
1680         if (SUCCESS != init_tti(nic, nic->last_link_state))
1681                 return -ENODEV;
1682
1683         /* RTI Initialization */
1684         if (nic->device_type == XFRAME_II_DEVICE) {
1685                 /*
1686                  * Programmed to generate Apprx 500 Intrs per
1687                  * second
1688                  */
1689                 int count = (nic->config.bus_speed * 125)/4;
1690                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691         } else
1692                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697
1698         writeq(val64, &bar0->rti_data1_mem);
1699
1700         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702         if (nic->config.intr_type == MSI_X)
1703                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1705         else
1706                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1708         writeq(val64, &bar0->rti_data2_mem);
1709
1710         for (i = 0; i < config->rx_ring_num; i++) {
1711                 val64 = RTI_CMD_MEM_WE |
1712                         RTI_CMD_MEM_STROBE_NEW_CMD |
1713                         RTI_CMD_MEM_OFFSET(i);
1714                 writeq(val64, &bar0->rti_command_mem);
1715
1716                 /*
1717                  * Once the operation completes, the Strobe bit of the
1718                  * command register will be reset. We poll for this
1719                  * particular condition. We wait for a maximum of 500ms
1720                  * for the operation to complete, if it's not complete
1721                  * by then we return error.
1722                  */
1723                 time = 0;
1724                 while (true) {
1725                         val64 = readq(&bar0->rti_command_mem);
1726                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727                                 break;
1728
1729                         if (time > 10) {
1730                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731                                           dev->name);
1732                                 return -ENODEV;
1733                         }
1734                         time++;
1735                         msleep(50);
1736                 }
1737         }
1738
1739         /*
1740          * Initializing proper values as Pause threshold into all
1741          * the 8 Queues on Rx side.
1742          */
1743         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745
1746         /* Disable RMAC PAD STRIPPING */
1747         add = &bar0->mac_cfg;
1748         val64 = readq(&bar0->mac_cfg);
1749         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751         writel((u32) (val64), add);
1752         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753         writel((u32) (val64 >> 32), (add + 4));
1754         val64 = readq(&bar0->mac_cfg);
1755
1756         /* Enable FCS stripping by adapter */
1757         add = &bar0->mac_cfg;
1758         val64 = readq(&bar0->mac_cfg);
1759         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760         if (nic->device_type == XFRAME_II_DEVICE)
1761                 writeq(val64, &bar0->mac_cfg);
1762         else {
1763                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764                 writel((u32) (val64), add);
1765                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766                 writel((u32) (val64 >> 32), (add + 4));
1767         }
1768
1769         /*
1770          * Set the time value to be inserted in the pause frame
1771          * generated by xena.
1772          */
1773         val64 = readq(&bar0->rmac_pause_cfg);
1774         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776         writeq(val64, &bar0->rmac_pause_cfg);
1777
1778         /*
1779          * Set the Threshold Limit for Generating the pause frame
1780          * If the amount of data in any Queue exceeds ratio of
1781          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782          * pause frame is generated
1783          */
1784         val64 = 0;
1785         for (i = 0; i < 4; i++) {
1786                 val64 |= (((u64)0xFF00 |
1787                            nic->mac_control.mc_pause_threshold_q0q3)
1788                           << (i * 2 * 8));
1789         }
1790         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791
1792         val64 = 0;
1793         for (i = 0; i < 4; i++) {
1794                 val64 |= (((u64)0xFF00 |
1795                            nic->mac_control.mc_pause_threshold_q4q7)
1796                           << (i * 2 * 8));
1797         }
1798         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799
1800         /*
1801          * TxDMA will stop Read request if the number of read split has
1802          * exceeded the limit pointed by shared_splits
1803          */
1804         val64 = readq(&bar0->pic_control);
1805         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806         writeq(val64, &bar0->pic_control);
1807
1808         if (nic->config.bus_speed == 266) {
1809                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810                 writeq(0x0, &bar0->read_retry_delay);
1811                 writeq(0x0, &bar0->write_retry_delay);
1812         }
1813
1814         /*
1815          * Programming the Herc to split every write transaction
1816          * that does not start on an ADB to reduce disconnects.
1817          */
1818         if (nic->device_type == XFRAME_II_DEVICE) {
1819                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820                         MISC_LINK_STABILITY_PRD(3);
1821                 writeq(val64, &bar0->misc_control);
1822                 val64 = readq(&bar0->pic_control2);
1823                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824                 writeq(val64, &bar0->pic_control2);
1825         }
1826         if (strstr(nic->product_name, "CX4")) {
1827                 val64 = TMAC_AVG_IPG(0x17);
1828                 writeq(val64, &bar0->tmac_avg_ipg);
1829         }
1830
1831         return SUCCESS;
1832 }
1833 #define LINK_UP_DOWN_INTERRUPT          1
1834 #define MAC_RMAC_ERR_TIMER              2
1835
1836 static int s2io_link_fault_indication(struct s2io_nic *nic)
1837 {
1838         if (nic->device_type == XFRAME_II_DEVICE)
1839                 return LINK_UP_DOWN_INTERRUPT;
1840         else
1841                 return MAC_RMAC_ERR_TIMER;
1842 }
1843
1844 /**
1845  *  do_s2io_write_bits -  update alarm bits in alarm register
1846  *  @value: alarm bits
1847  *  @flag: interrupt status
1848  *  @addr: address value
1849  *  Description: update alarm bits in alarm register
1850  *  Return Value:
1851  *  NONE.
1852  */
1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854 {
1855         u64 temp64;
1856
1857         temp64 = readq(addr);
1858
1859         if (flag == ENABLE_INTRS)
1860                 temp64 &= ~((u64)value);
1861         else
1862                 temp64 |= ((u64)value);
1863         writeq(temp64, addr);
1864 }
1865
1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867 {
1868         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869         register u64 gen_int_mask = 0;
1870         u64 interruptible;
1871
1872         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873         if (mask & TX_DMA_INTR) {
1874                 gen_int_mask |= TXDMA_INT_M;
1875
1876                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1878                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1879                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880
1881                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884                                    &bar0->pfc_err_mask);
1885
1886                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889
1890                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1893                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895                                    PCC_TXB_ECC_SG_ERR,
1896                                    flag, &bar0->pcc_err_mask);
1897
1898                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900
1901                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904                                    flag, &bar0->lso_err_mask);
1905
1906                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907                                    flag, &bar0->tpa_err_mask);
1908
1909                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910         }
1911
1912         if (mask & TX_MAC_INTR) {
1913                 gen_int_mask |= TXMAC_INT_M;
1914                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915                                    &bar0->mac_int_mask);
1916                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919                                    flag, &bar0->mac_tmac_err_mask);
1920         }
1921
1922         if (mask & TX_XGXS_INTR) {
1923                 gen_int_mask |= TXXGXS_INT_M;
1924                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925                                    &bar0->xgxs_int_mask);
1926                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928                                    flag, &bar0->xgxs_txgxs_err_mask);
1929         }
1930
1931         if (mask & RX_DMA_INTR) {
1932                 gen_int_mask |= RXDMA_INT_M;
1933                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935                                    flag, &bar0->rxdma_int_mask);
1936                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943                                    &bar0->prc_pcix_err_mask);
1944                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946                                    &bar0->rpa_err_mask);
1947                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950                                    RDA_FRM_ECC_SG_ERR |
1951                                    RDA_MISC_ERR|RDA_PCIX_ERR,
1952                                    flag, &bar0->rda_err_mask);
1953                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955                                    flag, &bar0->rti_err_mask);
1956         }
1957
1958         if (mask & RX_MAC_INTR) {
1959                 gen_int_mask |= RXMAC_INT_M;
1960                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961                                    &bar0->mac_int_mask);
1962                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964                                  RMAC_DOUBLE_ECC_ERR);
1965                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967                 do_s2io_write_bits(interruptible,
1968                                    flag, &bar0->mac_rmac_err_mask);
1969         }
1970
1971         if (mask & RX_XGXS_INTR) {
1972                 gen_int_mask |= RXXGXS_INT_M;
1973                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974                                    &bar0->xgxs_int_mask);
1975                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976                                    &bar0->xgxs_rxgxs_err_mask);
1977         }
1978
1979         if (mask & MC_INTR) {
1980                 gen_int_mask |= MC_INT_M;
1981                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982                                    flag, &bar0->mc_int_mask);
1983                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985                                    &bar0->mc_err_mask);
1986         }
1987         nic->general_int_mask = gen_int_mask;
1988
1989         /* Remove this line when alarm interrupts are enabled */
1990         nic->general_int_mask = 0;
1991 }
1992
1993 /**
1994  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995  *  @nic: device private variable,
1996  *  @mask: A mask indicating which Intr block must be modified and,
1997  *  @flag: A flag indicating whether to enable or disable the Intrs.
1998  *  Description: This function will either disable or enable the interrupts
1999  *  depending on the flag argument. The mask argument can be used to
2000  *  enable/disable any Intr block.
2001  *  Return Value: NONE.
2002  */
2003
2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005 {
2006         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007         register u64 temp64 = 0, intr_mask = 0;
2008
2009         intr_mask = nic->general_int_mask;
2010
2011         /*  Top level interrupt classification */
2012         /*  PIC Interrupts */
2013         if (mask & TX_PIC_INTR) {
2014                 /*  Enable PIC Intrs in the general intr mask register */
2015                 intr_mask |= TXPIC_INT_M;
2016                 if (flag == ENABLE_INTRS) {
2017                         /*
2018                          * If Hercules adapter enable GPIO otherwise
2019                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2020                          * interrupts for now.
2021                          * TODO
2022                          */
2023                         if (s2io_link_fault_indication(nic) ==
2024                             LINK_UP_DOWN_INTERRUPT) {
2025                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2026                                                    &bar0->pic_int_mask);
2027                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028                                                    &bar0->gpio_int_mask);
2029                         } else
2030                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031                 } else if (flag == DISABLE_INTRS) {
2032                         /*
2033                          * Disable PIC Intrs in the general
2034                          * intr mask register
2035                          */
2036                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037                 }
2038         }
2039
2040         /*  Tx traffic interrupts */
2041         if (mask & TX_TRAFFIC_INTR) {
2042                 intr_mask |= TXTRAFFIC_INT_M;
2043                 if (flag == ENABLE_INTRS) {
2044                         /*
2045                          * Enable all the Tx side interrupts
2046                          * writing 0 Enables all 64 TX interrupt levels
2047                          */
2048                         writeq(0x0, &bar0->tx_traffic_mask);
2049                 } else if (flag == DISABLE_INTRS) {
2050                         /*
2051                          * Disable Tx Traffic Intrs in the general intr mask
2052                          * register.
2053                          */
2054                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055                 }
2056         }
2057
2058         /*  Rx traffic interrupts */
2059         if (mask & RX_TRAFFIC_INTR) {
2060                 intr_mask |= RXTRAFFIC_INT_M;
2061                 if (flag == ENABLE_INTRS) {
2062                         /* writing 0 Enables all 8 RX interrupt levels */
2063                         writeq(0x0, &bar0->rx_traffic_mask);
2064                 } else if (flag == DISABLE_INTRS) {
2065                         /*
2066                          * Disable Rx Traffic Intrs in the general intr mask
2067                          * register.
2068                          */
2069                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070                 }
2071         }
2072
2073         temp64 = readq(&bar0->general_int_mask);
2074         if (flag == ENABLE_INTRS)
2075                 temp64 &= ~((u64)intr_mask);
2076         else
2077                 temp64 = DISABLE_ALL_INTRS;
2078         writeq(temp64, &bar0->general_int_mask);
2079
2080         nic->general_int_mask = readq(&bar0->general_int_mask);
2081 }
2082
2083 /**
2084  *  verify_pcc_quiescent- Checks for PCC quiescent state
2085  *  Return: 1 If PCC is quiescence
2086  *          0 If PCC is not quiescence
2087  */
2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089 {
2090         int ret = 0, herc;
2091         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092         u64 val64 = readq(&bar0->adapter_status);
2093
2094         herc = (sp->device_type == XFRAME_II_DEVICE);
2095
2096         if (flag == false) {
2097                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099                                 ret = 1;
2100                 } else {
2101                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102                                 ret = 1;
2103                 }
2104         } else {
2105                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2108                                 ret = 1;
2109                 } else {
2110                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112                                 ret = 1;
2113                 }
2114         }
2115
2116         return ret;
2117 }
2118 /**
2119  *  verify_xena_quiescence - Checks whether the H/W is ready
2120  *  Description: Returns whether the H/W is ready to go or not. Depending
2121  *  on whether adapter enable bit was written or not the comparison
2122  *  differs and the calling function passes the input argument flag to
2123  *  indicate this.
2124  *  Return: 1 If xena is quiescence
2125  *          0 If Xena is not quiescence
2126  */
2127
2128 static int verify_xena_quiescence(struct s2io_nic *sp)
2129 {
2130         int  mode;
2131         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132         u64 val64 = readq(&bar0->adapter_status);
2133         mode = s2io_verify_pci_mode(sp);
2134
2135         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137                 return 0;
2138         }
2139         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141                 return 0;
2142         }
2143         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145                 return 0;
2146         }
2147         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149                 return 0;
2150         }
2151         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153                 return 0;
2154         }
2155         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157                 return 0;
2158         }
2159         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161                 return 0;
2162         }
2163         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165                 return 0;
2166         }
2167
2168         /*
2169          * In PCI 33 mode, the P_PLL is not used, and therefore,
2170          * the the P_PLL_LOCK bit in the adapter_status register will
2171          * not be asserted.
2172          */
2173         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174             sp->device_type == XFRAME_II_DEVICE &&
2175             mode != PCI_MODE_PCI_33) {
2176                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177                 return 0;
2178         }
2179         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182                 return 0;
2183         }
2184         return 1;
2185 }
2186
2187 /**
2188  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189  * @sp: Pointer to device specifc structure
2190  * Description :
2191  * New procedure to clear mac address reading  problems on Alpha platforms
2192  *
2193  */
2194
2195 static void fix_mac_address(struct s2io_nic *sp)
2196 {
2197         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198         int i = 0;
2199
2200         while (fix_mac[i] != END_SIGN) {
2201                 writeq(fix_mac[i++], &bar0->gpio_control);
2202                 udelay(10);
2203                 (void) readq(&bar0->gpio_control);
2204         }
2205 }
2206
2207 /**
2208  *  start_nic - Turns the device on
2209  *  @nic : device private variable.
2210  *  Description:
2211  *  This function actually turns the device on. Before this  function is
2212  *  called,all Registers are configured from their reset states
2213  *  and shared memory is allocated but the NIC is still quiescent. On
2214  *  calling this function, the device interrupts are cleared and the NIC is
2215  *  literally switched on by writing into the adapter control register.
2216  *  Return Value:
2217  *  SUCCESS on success and -1 on failure.
2218  */
2219
2220 static int start_nic(struct s2io_nic *nic)
2221 {
2222         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223         struct net_device *dev = nic->dev;
2224         register u64 val64 = 0;
2225         u16 subid, i;
2226         struct config_param *config = &nic->config;
2227         struct mac_info *mac_control = &nic->mac_control;
2228
2229         /*  PRC Initialization and configuration */
2230         for (i = 0; i < config->rx_ring_num; i++) {
2231                 struct ring_info *ring = &mac_control->rings[i];
2232
2233                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234                        &bar0->prc_rxd0_n[i]);
2235
2236                 val64 = readq(&bar0->prc_ctrl_n[i]);
2237                 if (nic->rxd_mode == RXD_MODE_1)
2238                         val64 |= PRC_CTRL_RC_ENABLED;
2239                 else
2240                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241                 if (nic->device_type == XFRAME_II_DEVICE)
2242                         val64 |= PRC_CTRL_GROUP_READS;
2243                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245                 writeq(val64, &bar0->prc_ctrl_n[i]);
2246         }
2247
2248         if (nic->rxd_mode == RXD_MODE_3B) {
2249                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250                 val64 = readq(&bar0->rx_pa_cfg);
2251                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252                 writeq(val64, &bar0->rx_pa_cfg);
2253         }
2254
2255         if (vlan_tag_strip == 0) {
2256                 val64 = readq(&bar0->rx_pa_cfg);
2257                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258                 writeq(val64, &bar0->rx_pa_cfg);
2259                 nic->vlan_strip_flag = 0;
2260         }
2261
2262         /*
2263          * Enabling MC-RLDRAM. After enabling the device, we timeout
2264          * for around 100ms, which is approximately the time required
2265          * for the device to be ready for operation.
2266          */
2267         val64 = readq(&bar0->mc_rldram_mrs);
2268         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270         val64 = readq(&bar0->mc_rldram_mrs);
2271
2272         msleep(100);    /* Delay by around 100 ms. */
2273
2274         /* Enabling ECC Protection. */
2275         val64 = readq(&bar0->adapter_control);
2276         val64 &= ~ADAPTER_ECC_EN;
2277         writeq(val64, &bar0->adapter_control);
2278
2279         /*
2280          * Verify if the device is ready to be enabled, if so enable
2281          * it.
2282          */
2283         val64 = readq(&bar0->adapter_status);
2284         if (!verify_xena_quiescence(nic)) {
2285                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286                           "Adapter status reads: 0x%llx\n",
2287                           dev->name, (unsigned long long)val64);
2288                 return FAILURE;
2289         }
2290
2291         /*
2292          * With some switches, link might be already up at this point.
2293          * Because of this weird behavior, when we enable laser,
2294          * we may not get link. We need to handle this. We cannot
2295          * figure out which switch is misbehaving. So we are forced to
2296          * make a global change.
2297          */
2298
2299         /* Enabling Laser. */
2300         val64 = readq(&bar0->adapter_control);
2301         val64 |= ADAPTER_EOI_TX_ON;
2302         writeq(val64, &bar0->adapter_control);
2303
2304         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305                 /*
2306                  * Dont see link state interrupts initially on some switches,
2307                  * so directly scheduling the link state task here.
2308                  */
2309                 schedule_work(&nic->set_link_task);
2310         }
2311         /* SXE-002: Initialize link and activity LED */
2312         subid = nic->pdev->subsystem_device;
2313         if (((subid & 0xFF) >= 0x07) &&
2314             (nic->device_type == XFRAME_I_DEVICE)) {
2315                 val64 = readq(&bar0->gpio_control);
2316                 val64 |= 0x0000800000000000ULL;
2317                 writeq(val64, &bar0->gpio_control);
2318                 val64 = 0x0411040400000000ULL;
2319                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2320         }
2321
2322         return SUCCESS;
2323 }
2324 /**
2325  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326  */
2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328                                         struct TxD *txdlp, int get_off)
2329 {
2330         struct s2io_nic *nic = fifo_data->nic;
2331         struct sk_buff *skb;
2332         struct TxD *txds;
2333         u16 j, frg_cnt;
2334
2335         txds = txdlp;
2336         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338                                  sizeof(u64), PCI_DMA_TODEVICE);
2339                 txds++;
2340         }
2341
2342         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343         if (!skb) {
2344                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345                 return NULL;
2346         }
2347         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348                          skb_headlen(skb), PCI_DMA_TODEVICE);
2349         frg_cnt = skb_shinfo(skb)->nr_frags;
2350         if (frg_cnt) {
2351                 txds++;
2352                 for (j = 0; j < frg_cnt; j++, txds++) {
2353                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354                         if (!txds->Buffer_Pointer)
2355                                 break;
2356                         pci_unmap_page(nic->pdev,
2357                                        (dma_addr_t)txds->Buffer_Pointer,
2358                                        skb_frag_size(frag), PCI_DMA_TODEVICE);
2359                 }
2360         }
2361         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362         return skb;
2363 }
2364
2365 /**
2366  *  free_tx_buffers - Free all queued Tx buffers
2367  *  @nic : device private variable.
2368  *  Description:
2369  *  Free all queued Tx buffers.
2370  *  Return Value: void
2371  */
2372
2373 static void free_tx_buffers(struct s2io_nic *nic)
2374 {
2375         struct net_device *dev = nic->dev;
2376         struct sk_buff *skb;
2377         struct TxD *txdp;
2378         int i, j;
2379         int cnt = 0;
2380         struct config_param *config = &nic->config;
2381         struct mac_info *mac_control = &nic->mac_control;
2382         struct stat_block *stats = mac_control->stats_info;
2383         struct swStat *swstats = &stats->sw_stat;
2384
2385         for (i = 0; i < config->tx_fifo_num; i++) {
2386                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387                 struct fifo_info *fifo = &mac_control->fifos[i];
2388                 unsigned long flags;
2389
2390                 spin_lock_irqsave(&fifo->tx_lock, flags);
2391                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2392                         txdp = fifo->list_info[j].list_virt_addr;
2393                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394                         if (skb) {
2395                                 swstats->mem_freed += skb->truesize;
2396                                 dev_kfree_skb(skb);
2397                                 cnt++;
2398                         }
2399                 }
2400                 DBG_PRINT(INTR_DBG,
2401                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2402                           dev->name, cnt, i);
2403                 fifo->tx_curr_get_info.offset = 0;
2404                 fifo->tx_curr_put_info.offset = 0;
2405                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406         }
2407 }
2408
2409 /**
2410  *   stop_nic -  To stop the nic
2411  *   @nic ; device private variable.
2412  *   Description:
2413  *   This function does exactly the opposite of what the start_nic()
2414  *   function does. This function is called to stop the device.
2415  *   Return Value:
2416  *   void.
2417  */
2418
2419 static void stop_nic(struct s2io_nic *nic)
2420 {
2421         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422         register u64 val64 = 0;
2423         u16 interruptible;
2424
2425         /*  Disable all interrupts */
2426         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428         interruptible |= TX_PIC_INTR;
2429         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430
2431         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432         val64 = readq(&bar0->adapter_control);
2433         val64 &= ~(ADAPTER_CNTL_EN);
2434         writeq(val64, &bar0->adapter_control);
2435 }
2436
2437 /**
2438  *  fill_rx_buffers - Allocates the Rx side skbs
2439  *  @ring_info: per ring structure
2440  *  @from_card_up: If this is true, we will map the buffer to get
2441  *     the dma address for buf0 and buf1 to give it to the card.
2442  *     Else we will sync the already mapped buffer to give it to the card.
2443  *  Description:
2444  *  The function allocates Rx side skbs and puts the physical
2445  *  address of these buffers into the RxD buffer pointers, so that the NIC
2446  *  can DMA the received frame into these locations.
2447  *  The NIC supports 3 receive modes, viz
2448  *  1. single buffer,
2449  *  2. three buffer and
2450  *  3. Five buffer modes.
2451  *  Each mode defines how many fragments the received frame will be split
2452  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454  *  is split into 3 fragments. As of now only single buffer mode is
2455  *  supported.
2456  *   Return Value:
2457  *  SUCCESS on success or an appropriate -ve value on failure.
2458  */
2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460                            int from_card_up)
2461 {
2462         struct sk_buff *skb;
2463         struct RxD_t *rxdp;
2464         int off, size, block_no, block_no1;
2465         u32 alloc_tab = 0;
2466         u32 alloc_cnt;
2467         u64 tmp;
2468         struct buffAdd *ba;
2469         struct RxD_t *first_rxdp = NULL;
2470         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471         int rxd_index = 0;
2472         struct RxD1 *rxdp1;
2473         struct RxD3 *rxdp3;
2474         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475
2476         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477
2478         block_no1 = ring->rx_curr_get_info.block_index;
2479         while (alloc_tab < alloc_cnt) {
2480                 block_no = ring->rx_curr_put_info.block_index;
2481
2482                 off = ring->rx_curr_put_info.offset;
2483
2484                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485
2486                 rxd_index = off + 1;
2487                 if (block_no)
2488                         rxd_index += (block_no * ring->rxd_count);
2489
2490                 if ((block_no == block_no1) &&
2491                     (off == ring->rx_curr_get_info.offset) &&
2492                     (rxdp->Host_Control)) {
2493                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494                                   ring->dev->name);
2495                         goto end;
2496                 }
2497                 if (off && (off == ring->rxd_count)) {
2498                         ring->rx_curr_put_info.block_index++;
2499                         if (ring->rx_curr_put_info.block_index ==
2500                             ring->block_count)
2501                                 ring->rx_curr_put_info.block_index = 0;
2502                         block_no = ring->rx_curr_put_info.block_index;
2503                         off = 0;
2504                         ring->rx_curr_put_info.offset = off;
2505                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507                                   ring->dev->name, rxdp);
2508
2509                 }
2510
2511                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512                     ((ring->rxd_mode == RXD_MODE_3B) &&
2513                      (rxdp->Control_2 & s2BIT(0)))) {
2514                         ring->rx_curr_put_info.offset = off;
2515                         goto end;
2516                 }
2517                 /* calculate size of skb based on ring mode */
2518                 size = ring->mtu +
2519                         HEADER_ETHERNET_II_802_3_SIZE +
2520                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521                 if (ring->rxd_mode == RXD_MODE_1)
2522                         size += NET_IP_ALIGN;
2523                 else
2524                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525
2526                 /* allocate skb */
2527                 skb = netdev_alloc_skb(nic->dev, size);
2528                 if (!skb) {
2529                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530                                   ring->dev->name);
2531                         if (first_rxdp) {
2532                                 wmb();
2533                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2534                         }
2535                         swstats->mem_alloc_fail_cnt++;
2536
2537                         return -ENOMEM ;
2538                 }
2539                 swstats->mem_allocated += skb->truesize;
2540
2541                 if (ring->rxd_mode == RXD_MODE_1) {
2542                         /* 1 buffer mode - normal operation mode */
2543                         rxdp1 = (struct RxD1 *)rxdp;
2544                         memset(rxdp, 0, sizeof(struct RxD1));
2545                         skb_reserve(skb, NET_IP_ALIGN);
2546                         rxdp1->Buffer0_ptr =
2547                                 pci_map_single(ring->pdev, skb->data,
2548                                                size - NET_IP_ALIGN,
2549                                                PCI_DMA_FROMDEVICE);
2550                         if (pci_dma_mapping_error(nic->pdev,
2551                                                   rxdp1->Buffer0_ptr))
2552                                 goto pci_map_failed;
2553
2554                         rxdp->Control_2 =
2555                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556                         rxdp->Host_Control = (unsigned long)skb;
2557                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2558                         /*
2559                          * 2 buffer mode -
2560                          * 2 buffer mode provides 128
2561                          * byte aligned receive buffers.
2562                          */
2563
2564                         rxdp3 = (struct RxD3 *)rxdp;
2565                         /* save buffer pointers to avoid frequent dma mapping */
2566                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2567                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2568                         memset(rxdp, 0, sizeof(struct RxD3));
2569                         /* restore the buffer pointers for dma sync*/
2570                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2571                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2572
2573                         ba = &ring->ba[block_no][off];
2574                         skb_reserve(skb, BUF0_LEN);
2575                         tmp = (u64)(unsigned long)skb->data;
2576                         tmp += ALIGN_SIZE;
2577                         tmp &= ~ALIGN_SIZE;
2578                         skb->data = (void *) (unsigned long)tmp;
2579                         skb_reset_tail_pointer(skb);
2580
2581                         if (from_card_up) {
2582                                 rxdp3->Buffer0_ptr =
2583                                         pci_map_single(ring->pdev, ba->ba_0,
2584                                                        BUF0_LEN,
2585                                                        PCI_DMA_FROMDEVICE);
2586                                 if (pci_dma_mapping_error(nic->pdev,
2587                                                           rxdp3->Buffer0_ptr))
2588                                         goto pci_map_failed;
2589                         } else
2590                                 pci_dma_sync_single_for_device(ring->pdev,
2591                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2592                                                                BUF0_LEN,
2593                                                                PCI_DMA_FROMDEVICE);
2594
2595                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596                         if (ring->rxd_mode == RXD_MODE_3B) {
2597                                 /* Two buffer mode */
2598
2599                                 /*
2600                                  * Buffer2 will have L3/L4 header plus
2601                                  * L4 payload
2602                                  */
2603                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604                                                                     skb->data,
2605                                                                     ring->mtu + 4,
2606                                                                     PCI_DMA_FROMDEVICE);
2607
2608                                 if (pci_dma_mapping_error(nic->pdev,
2609                                                           rxdp3->Buffer2_ptr))
2610                                         goto pci_map_failed;
2611
2612                                 if (from_card_up) {
2613                                         rxdp3->Buffer1_ptr =
2614                                                 pci_map_single(ring->pdev,
2615                                                                ba->ba_1,
2616                                                                BUF1_LEN,
2617                                                                PCI_DMA_FROMDEVICE);
2618
2619                                         if (pci_dma_mapping_error(nic->pdev,
2620                                                                   rxdp3->Buffer1_ptr)) {
2621                                                 pci_unmap_single(ring->pdev,
2622                                                                  (dma_addr_t)(unsigned long)
2623                                                                  skb->data,
2624                                                                  ring->mtu + 4,
2625                                                                  PCI_DMA_FROMDEVICE);
2626                                                 goto pci_map_failed;
2627                                         }
2628                                 }
2629                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631                                         (ring->mtu + 4);
2632                         }
2633                         rxdp->Control_2 |= s2BIT(0);
2634                         rxdp->Host_Control = (unsigned long) (skb);
2635                 }
2636                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637                         rxdp->Control_1 |= RXD_OWN_XENA;
2638                 off++;
2639                 if (off == (ring->rxd_count + 1))
2640                         off = 0;
2641                 ring->rx_curr_put_info.offset = off;
2642
2643                 rxdp->Control_2 |= SET_RXD_MARKER;
2644                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645                         if (first_rxdp) {
2646                                 wmb();
2647                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2648                         }
2649                         first_rxdp = rxdp;
2650                 }
2651                 ring->rx_bufs_left += 1;
2652                 alloc_tab++;
2653         }
2654
2655 end:
2656         /* Transfer ownership of first descriptor to adapter just before
2657          * exiting. Before that, use memory barrier so that ownership
2658          * and other fields are seen by adapter correctly.
2659          */
2660         if (first_rxdp) {
2661                 wmb();
2662                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2663         }
2664
2665         return SUCCESS;
2666
2667 pci_map_failed:
2668         swstats->pci_map_fail_cnt++;
2669         swstats->mem_freed += skb->truesize;
2670         dev_kfree_skb_irq(skb);
2671         return -ENOMEM;
2672 }
2673
2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675 {
2676         struct net_device *dev = sp->dev;
2677         int j;
2678         struct sk_buff *skb;
2679         struct RxD_t *rxdp;
2680         struct RxD1 *rxdp1;
2681         struct RxD3 *rxdp3;
2682         struct mac_info *mac_control = &sp->mac_control;
2683         struct stat_block *stats = mac_control->stats_info;
2684         struct swStat *swstats = &stats->sw_stat;
2685
2686         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687                 rxdp = mac_control->rings[ring_no].
2688                         rx_blocks[blk].rxds[j].virt_addr;
2689                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690                 if (!skb)
2691                         continue;
2692                 if (sp->rxd_mode == RXD_MODE_1) {
2693                         rxdp1 = (struct RxD1 *)rxdp;
2694                         pci_unmap_single(sp->pdev,
2695                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2696                                          dev->mtu +
2697                                          HEADER_ETHERNET_II_802_3_SIZE +
2698                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699                                          PCI_DMA_FROMDEVICE);
2700                         memset(rxdp, 0, sizeof(struct RxD1));
2701                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2702                         rxdp3 = (struct RxD3 *)rxdp;
2703                         pci_unmap_single(sp->pdev,
2704                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2705                                          BUF0_LEN,
2706                                          PCI_DMA_FROMDEVICE);
2707                         pci_unmap_single(sp->pdev,
2708                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2709                                          BUF1_LEN,
2710                                          PCI_DMA_FROMDEVICE);
2711                         pci_unmap_single(sp->pdev,
2712                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2713                                          dev->mtu + 4,
2714                                          PCI_DMA_FROMDEVICE);
2715                         memset(rxdp, 0, sizeof(struct RxD3));
2716                 }
2717                 swstats->mem_freed += skb->truesize;
2718                 dev_kfree_skb(skb);
2719                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2720         }
2721 }
2722
2723 /**
2724  *  free_rx_buffers - Frees all Rx buffers
2725  *  @sp: device private variable.
2726  *  Description:
2727  *  This function will free all Rx buffers allocated by host.
2728  *  Return Value:
2729  *  NONE.
2730  */
2731
2732 static void free_rx_buffers(struct s2io_nic *sp)
2733 {
2734         struct net_device *dev = sp->dev;
2735         int i, blk = 0, buf_cnt = 0;
2736         struct config_param *config = &sp->config;
2737         struct mac_info *mac_control = &sp->mac_control;
2738
2739         for (i = 0; i < config->rx_ring_num; i++) {
2740                 struct ring_info *ring = &mac_control->rings[i];
2741
2742                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743                         free_rxd_blk(sp, i, blk);
2744
2745                 ring->rx_curr_put_info.block_index = 0;
2746                 ring->rx_curr_get_info.block_index = 0;
2747                 ring->rx_curr_put_info.offset = 0;
2748                 ring->rx_curr_get_info.offset = 0;
2749                 ring->rx_bufs_left = 0;
2750                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751                           dev->name, buf_cnt, i);
2752         }
2753 }
2754
2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756 {
2757         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759                           ring->dev->name);
2760         }
2761         return 0;
2762 }
2763
2764 /**
2765  * s2io_poll - Rx interrupt handler for NAPI support
2766  * @napi : pointer to the napi structure.
2767  * @budget : The number of packets that were budgeted to be processed
2768  * during  one pass through the 'Poll" function.
2769  * Description:
2770  * Comes into picture only if NAPI support has been incorporated. It does
2771  * the same thing that rx_intr_handler does, but not in a interrupt context
2772  * also It will process only a given number of packets.
2773  * Return value:
2774  * 0 on success and 1 if there are No Rx packets to be processed.
2775  */
2776
2777 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778 {
2779         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780         struct net_device *dev = ring->dev;
2781         int pkts_processed = 0;
2782         u8 __iomem *addr = NULL;
2783         u8 val8 = 0;
2784         struct s2io_nic *nic = netdev_priv(dev);
2785         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786         int budget_org = budget;
2787
2788         if (unlikely(!is_s2io_card_up(nic)))
2789                 return 0;
2790
2791         pkts_processed = rx_intr_handler(ring, budget);
2792         s2io_chk_rx_buffers(nic, ring);
2793
2794         if (pkts_processed < budget_org) {
2795                 napi_complete(napi);
2796                 /*Re Enable MSI-Rx Vector*/
2797                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798                 addr += 7 - ring->ring_no;
2799                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800                 writeb(val8, addr);
2801                 val8 = readb(addr);
2802         }
2803         return pkts_processed;
2804 }
2805
2806 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807 {
2808         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809         int pkts_processed = 0;
2810         int ring_pkts_processed, i;
2811         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812         int budget_org = budget;
2813         struct config_param *config = &nic->config;
2814         struct mac_info *mac_control = &nic->mac_control;
2815
2816         if (unlikely(!is_s2io_card_up(nic)))
2817                 return 0;
2818
2819         for (i = 0; i < config->rx_ring_num; i++) {
2820                 struct ring_info *ring = &mac_control->rings[i];
2821                 ring_pkts_processed = rx_intr_handler(ring, budget);
2822                 s2io_chk_rx_buffers(nic, ring);
2823                 pkts_processed += ring_pkts_processed;
2824                 budget -= ring_pkts_processed;
2825                 if (budget <= 0)
2826                         break;
2827         }
2828         if (pkts_processed < budget_org) {
2829                 napi_complete(napi);
2830                 /* Re enable the Rx interrupts for the ring */
2831                 writeq(0, &bar0->rx_traffic_mask);
2832                 readl(&bar0->rx_traffic_mask);
2833         }
2834         return pkts_processed;
2835 }
2836
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 /**
2839  * s2io_netpoll - netpoll event handler entry point
2840  * @dev : pointer to the device structure.
2841  * Description:
2842  *      This function will be called by upper layer to check for events on the
2843  * interface in situations where interrupts are disabled. It is used for
2844  * specific in-kernel networking tasks, such as remote consoles and kernel
2845  * debugging over the network (example netdump in RedHat).
2846  */
2847 static void s2io_netpoll(struct net_device *dev)
2848 {
2849         struct s2io_nic *nic = netdev_priv(dev);
2850         const int irq = nic->pdev->irq;
2851         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2852         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2853         int i;
2854         struct config_param *config = &nic->config;
2855         struct mac_info *mac_control = &nic->mac_control;
2856
2857         if (pci_channel_offline(nic->pdev))
2858                 return;
2859
2860         disable_irq(irq);
2861
2862         writeq(val64, &bar0->rx_traffic_int);
2863         writeq(val64, &bar0->tx_traffic_int);
2864
2865         /* we need to free up the transmitted skbufs or else netpoll will
2866          * run out of skbs and will fail and eventually netpoll application such
2867          * as netdump will fail.
2868          */
2869         for (i = 0; i < config->tx_fifo_num; i++)
2870                 tx_intr_handler(&mac_control->fifos[i]);
2871
2872         /* check for received packet and indicate up to network */
2873         for (i = 0; i < config->rx_ring_num; i++) {
2874                 struct ring_info *ring = &mac_control->rings[i];
2875
2876                 rx_intr_handler(ring, 0);
2877         }
2878
2879         for (i = 0; i < config->rx_ring_num; i++) {
2880                 struct ring_info *ring = &mac_control->rings[i];
2881
2882                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2883                         DBG_PRINT(INFO_DBG,
2884                                   "%s: Out of memory in Rx Netpoll!!\n",
2885                                   dev->name);
2886                         break;
2887                 }
2888         }
2889         enable_irq(irq);
2890 }
2891 #endif
2892
2893 /**
2894  *  rx_intr_handler - Rx interrupt handler
2895  *  @ring_info: per ring structure.
2896  *  @budget: budget for napi processing.
2897  *  Description:
2898  *  If the interrupt is because of a received frame or if the
2899  *  receive ring contains fresh as yet un-processed frames,this function is
2900  *  called. It picks out the RxD at which place the last Rx processing had
2901  *  stopped and sends the skb to the OSM's Rx handler and then increments
2902  *  the offset.
2903  *  Return Value:
2904  *  No. of napi packets processed.
2905  */
2906 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2907 {
2908         int get_block, put_block;
2909         struct rx_curr_get_info get_info, put_info;
2910         struct RxD_t *rxdp;
2911         struct sk_buff *skb;
2912         int pkt_cnt = 0, napi_pkts = 0;
2913         int i;
2914         struct RxD1 *rxdp1;
2915         struct RxD3 *rxdp3;
2916
2917         get_info = ring_data->rx_curr_get_info;
2918         get_block = get_info.block_index;
2919         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2920         put_block = put_info.block_index;
2921         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2922
2923         while (RXD_IS_UP2DT(rxdp)) {
2924                 /*
2925                  * If your are next to put index then it's
2926                  * FIFO full condition
2927                  */
2928                 if ((get_block == put_block) &&
2929                     (get_info.offset + 1) == put_info.offset) {
2930                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2931                                   ring_data->dev->name);
2932                         break;
2933                 }
2934                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2935                 if (skb == NULL) {
2936                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2937                                   ring_data->dev->name);
2938                         return 0;
2939                 }
2940                 if (ring_data->rxd_mode == RXD_MODE_1) {
2941                         rxdp1 = (struct RxD1 *)rxdp;
2942                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2943                                          rxdp1->Buffer0_ptr,
2944                                          ring_data->mtu +
2945                                          HEADER_ETHERNET_II_802_3_SIZE +
2946                                          HEADER_802_2_SIZE +
2947                                          HEADER_SNAP_SIZE,
2948                                          PCI_DMA_FROMDEVICE);
2949                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2950                         rxdp3 = (struct RxD3 *)rxdp;
2951                         pci_dma_sync_single_for_cpu(ring_data->pdev,
2952                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
2953                                                     BUF0_LEN,
2954                                                     PCI_DMA_FROMDEVICE);
2955                         pci_unmap_single(ring_data->pdev,
2956                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2957                                          ring_data->mtu + 4,
2958                                          PCI_DMA_FROMDEVICE);
2959                 }
2960                 prefetch(skb->data);
2961                 rx_osm_handler(ring_data, rxdp);
2962                 get_info.offset++;
2963                 ring_data->rx_curr_get_info.offset = get_info.offset;
2964                 rxdp = ring_data->rx_blocks[get_block].
2965                         rxds[get_info.offset].virt_addr;
2966                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2967                         get_info.offset = 0;
2968                         ring_data->rx_curr_get_info.offset = get_info.offset;
2969                         get_block++;
2970                         if (get_block == ring_data->block_count)
2971                                 get_block = 0;
2972                         ring_data->rx_curr_get_info.block_index = get_block;
2973                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2974                 }
2975
2976                 if (ring_data->nic->config.napi) {
2977                         budget--;
2978                         napi_pkts++;
2979                         if (!budget)
2980                                 break;
2981                 }
2982                 pkt_cnt++;
2983                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2984                         break;
2985         }
2986         if (ring_data->lro) {
2987                 /* Clear all LRO sessions before exiting */
2988                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2989                         struct lro *lro = &ring_data->lro0_n[i];
2990                         if (lro->in_use) {
2991                                 update_L3L4_header(ring_data->nic, lro);
2992                                 queue_rx_frame(lro->parent, lro->vlan_tag);
2993                                 clear_lro_session(lro);
2994                         }
2995                 }
2996         }
2997         return napi_pkts;
2998 }
2999
3000 /**
3001  *  tx_intr_handler - Transmit interrupt handler
3002  *  @nic : device private variable
3003  *  Description:
3004  *  If an interrupt was raised to indicate DMA complete of the
3005  *  Tx packet, this function is called. It identifies the last TxD
3006  *  whose buffer was freed and frees all skbs whose data have already
3007  *  DMA'ed into the NICs internal memory.
3008  *  Return Value:
3009  *  NONE
3010  */
3011
3012 static void tx_intr_handler(struct fifo_info *fifo_data)
3013 {
3014         struct s2io_nic *nic = fifo_data->nic;
3015         struct tx_curr_get_info get_info, put_info;
3016         struct sk_buff *skb = NULL;
3017         struct TxD *txdlp;
3018         int pkt_cnt = 0;
3019         unsigned long flags = 0;
3020         u8 err_mask;
3021         struct stat_block *stats = nic->mac_control.stats_info;
3022         struct swStat *swstats = &stats->sw_stat;
3023
3024         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3025                 return;
3026
3027         get_info = fifo_data->tx_curr_get_info;
3028         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3029         txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3030         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3031                (get_info.offset != put_info.offset) &&
3032                (txdlp->Host_Control)) {
3033                 /* Check for TxD errors */
3034                 if (txdlp->Control_1 & TXD_T_CODE) {
3035                         unsigned long long err;
3036                         err = txdlp->Control_1 & TXD_T_CODE;
3037                         if (err & 0x1) {
3038                                 swstats->parity_err_cnt++;
3039                         }
3040
3041                         /* update t_code statistics */
3042                         err_mask = err >> 48;
3043                         switch (err_mask) {
3044                         case 2:
3045                                 swstats->tx_buf_abort_cnt++;
3046                                 break;
3047
3048                         case 3:
3049                                 swstats->tx_desc_abort_cnt++;
3050                                 break;
3051
3052                         case 7:
3053                                 swstats->tx_parity_err_cnt++;
3054                                 break;
3055
3056                         case 10:
3057                                 swstats->tx_link_loss_cnt++;
3058                                 break;
3059
3060                         case 15:
3061                                 swstats->tx_list_proc_err_cnt++;
3062                                 break;
3063                         }
3064                 }
3065
3066                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3067                 if (skb == NULL) {
3068                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3069                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3070                                   __func__);
3071                         return;
3072                 }
3073                 pkt_cnt++;
3074
3075                 /* Updating the statistics block */
3076                 swstats->mem_freed += skb->truesize;
3077                 dev_kfree_skb_irq(skb);
3078
3079                 get_info.offset++;
3080                 if (get_info.offset == get_info.fifo_len + 1)
3081                         get_info.offset = 0;
3082                 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3083                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3084         }
3085
3086         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3087
3088         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3089 }
3090
3091 /**
3092  *  s2io_mdio_write - Function to write in to MDIO registers
3093  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3094  *  @addr     : address value
3095  *  @value    : data value
3096  *  @dev      : pointer to net_device structure
3097  *  Description:
3098  *  This function is used to write values to the MDIO registers
3099  *  NONE
3100  */
3101 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3102                             struct net_device *dev)
3103 {
3104         u64 val64;
3105         struct s2io_nic *sp = netdev_priv(dev);
3106         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3107
3108         /* address transaction */
3109         val64 = MDIO_MMD_INDX_ADDR(addr) |
3110                 MDIO_MMD_DEV_ADDR(mmd_type) |
3111                 MDIO_MMS_PRT_ADDR(0x0);
3112         writeq(val64, &bar0->mdio_control);
3113         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3114         writeq(val64, &bar0->mdio_control);
3115         udelay(100);
3116
3117         /* Data transaction */
3118         val64 = MDIO_MMD_INDX_ADDR(addr) |
3119                 MDIO_MMD_DEV_ADDR(mmd_type) |
3120                 MDIO_MMS_PRT_ADDR(0x0) |
3121                 MDIO_MDIO_DATA(value) |
3122                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3123         writeq(val64, &bar0->mdio_control);
3124         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3125         writeq(val64, &bar0->mdio_control);
3126         udelay(100);
3127
3128         val64 = MDIO_MMD_INDX_ADDR(addr) |
3129                 MDIO_MMD_DEV_ADDR(mmd_type) |
3130                 MDIO_MMS_PRT_ADDR(0x0) |
3131                 MDIO_OP(MDIO_OP_READ_TRANS);
3132         writeq(val64, &bar0->mdio_control);
3133         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3134         writeq(val64, &bar0->mdio_control);
3135         udelay(100);
3136 }
3137
3138 /**
3139  *  s2io_mdio_read - Function to write in to MDIO registers
3140  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3141  *  @addr     : address value
3142  *  @dev      : pointer to net_device structure
3143  *  Description:
3144  *  This function is used to read values to the MDIO registers
3145  *  NONE
3146  */
3147 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3148 {
3149         u64 val64 = 0x0;
3150         u64 rval64 = 0x0;
3151         struct s2io_nic *sp = netdev_priv(dev);
3152         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3153
3154         /* address transaction */
3155         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3156                          | MDIO_MMD_DEV_ADDR(mmd_type)
3157                          | MDIO_MMS_PRT_ADDR(0x0));
3158         writeq(val64, &bar0->mdio_control);
3159         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3160         writeq(val64, &bar0->mdio_control);
3161         udelay(100);
3162
3163         /* Data transaction */
3164         val64 = MDIO_MMD_INDX_ADDR(addr) |
3165                 MDIO_MMD_DEV_ADDR(mmd_type) |
3166                 MDIO_MMS_PRT_ADDR(0x0) |
3167                 MDIO_OP(MDIO_OP_READ_TRANS);
3168         writeq(val64, &bar0->mdio_control);
3169         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3170         writeq(val64, &bar0->mdio_control);
3171         udelay(100);
3172
3173         /* Read the value from regs */
3174         rval64 = readq(&bar0->mdio_control);
3175         rval64 = rval64 & 0xFFFF0000;
3176         rval64 = rval64 >> 16;
3177         return rval64;
3178 }
3179
3180 /**
3181  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3182  *  @counter      : counter value to be updated
3183  *  @flag         : flag to indicate the status
3184  *  @type         : counter type
3185  *  Description:
3186  *  This function is to check the status of the xpak counters value
3187  *  NONE
3188  */
3189
3190 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3191                                   u16 flag, u16 type)
3192 {
3193         u64 mask = 0x3;
3194         u64 val64;
3195         int i;
3196         for (i = 0; i < index; i++)
3197                 mask = mask << 0x2;
3198
3199         if (flag > 0) {
3200                 *counter = *counter + 1;
3201                 val64 = *regs_stat & mask;
3202                 val64 = val64 >> (index * 0x2);
3203                 val64 = val64 + 1;
3204                 if (val64 == 3) {
3205                         switch (type) {
3206                         case 1:
3207                                 DBG_PRINT(ERR_DBG,
3208                                           "Take Xframe NIC out of service.\n");
3209                                 DBG_PRINT(ERR_DBG,
3210 "Excessive temperatures may result in premature transceiver failure.\n");
3211                                 break;
3212                         case 2:
3213                                 DBG_PRINT(ERR_DBG,
3214                                           "Take Xframe NIC out of service.\n");
3215                                 DBG_PRINT(ERR_DBG,
3216 "Excessive bias currents may indicate imminent laser diode failure.\n");
3217                                 break;
3218                         case 3:
3219                                 DBG_PRINT(ERR_DBG,
3220                                           "Take Xframe NIC out of service.\n");
3221                                 DBG_PRINT(ERR_DBG,
3222 "Excessive laser output power may saturate far-end receiver.\n");
3223                                 break;
3224                         default:
3225                                 DBG_PRINT(ERR_DBG,
3226                                           "Incorrect XPAK Alarm type\n");
3227                         }
3228                         val64 = 0x0;
3229                 }
3230                 val64 = val64 << (index * 0x2);
3231                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3232
3233         } else {
3234                 *regs_stat = *regs_stat & (~mask);
3235         }
3236 }
3237
3238 /**
3239  *  s2io_updt_xpak_counter - Function to update the xpak counters
3240  *  @dev         : pointer to net_device struct
3241  *  Description:
3242  *  This function is to upate the status of the xpak counters value
3243  *  NONE
3244  */
3245 static void s2io_updt_xpak_counter(struct net_device *dev)
3246 {
3247         u16 flag  = 0x0;
3248         u16 type  = 0x0;
3249         u16 val16 = 0x0;
3250         u64 val64 = 0x0;
3251         u64 addr  = 0x0;
3252
3253         struct s2io_nic *sp = netdev_priv(dev);
3254         struct stat_block *stats = sp->mac_control.stats_info;
3255         struct xpakStat *xstats = &stats->xpak_stat;
3256
3257         /* Check the communication with the MDIO slave */
3258         addr = MDIO_CTRL1;
3259         val64 = 0x0;
3260         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3261         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3262                 DBG_PRINT(ERR_DBG,
3263                           "ERR: MDIO slave access failed - Returned %llx\n",
3264                           (unsigned long long)val64);
3265                 return;
3266         }
3267
3268         /* Check for the expected value of control reg 1 */
3269         if (val64 != MDIO_CTRL1_SPEED10G) {
3270                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3271                           "Returned: %llx- Expected: 0x%x\n",
3272                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3273                 return;
3274         }
3275
3276         /* Loading the DOM register to MDIO register */
3277         addr = 0xA100;
3278         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3279         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3280
3281         /* Reading the Alarm flags */
3282         addr = 0xA070;
3283         val64 = 0x0;
3284         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3285
3286         flag = CHECKBIT(val64, 0x7);
3287         type = 1;
3288         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3289                               &xstats->xpak_regs_stat,
3290                               0x0, flag, type);
3291
3292         if (CHECKBIT(val64, 0x6))
3293                 xstats->alarm_transceiver_temp_low++;
3294
3295         flag = CHECKBIT(val64, 0x3);
3296         type = 2;
3297         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3298                               &xstats->xpak_regs_stat,
3299                               0x2, flag, type);
3300
3301         if (CHECKBIT(val64, 0x2))
3302                 xstats->alarm_laser_bias_current_low++;
3303
3304         flag = CHECKBIT(val64, 0x1);
3305         type = 3;
3306         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3307                               &xstats->xpak_regs_stat,
3308                               0x4, flag, type);
3309
3310         if (CHECKBIT(val64, 0x0))
3311                 xstats->alarm_laser_output_power_low++;
3312
3313         /* Reading the Warning flags */
3314         addr = 0xA074;
3315         val64 = 0x0;
3316         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3317
3318         if (CHECKBIT(val64, 0x7))
3319                 xstats->warn_transceiver_temp_high++;
3320
3321         if (CHECKBIT(val64, 0x6))
3322                 xstats->warn_transceiver_temp_low++;
3323
3324         if (CHECKBIT(val64, 0x3))
3325                 xstats->warn_laser_bias_current_high++;
3326
3327         if (CHECKBIT(val64, 0x2))
3328                 xstats->warn_laser_bias_current_low++;
3329
3330         if (CHECKBIT(val64, 0x1))
3331                 xstats->warn_laser_output_power_high++;
3332
3333         if (CHECKBIT(val64, 0x0))
3334                 xstats->warn_laser_output_power_low++;
3335 }
3336
3337 /**
3338  *  wait_for_cmd_complete - waits for a command to complete.
3339  *  @sp : private member of the device structure, which is a pointer to the
3340  *  s2io_nic structure.
3341  *  Description: Function that waits for a command to Write into RMAC
3342  *  ADDR DATA registers to be completed and returns either success or
3343  *  error depending on whether the command was complete or not.
3344  *  Return value:
3345  *   SUCCESS on success and FAILURE on failure.
3346  */
3347
3348 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3349                                  int bit_state)
3350 {
3351         int ret = FAILURE, cnt = 0, delay = 1;
3352         u64 val64;
3353
3354         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3355                 return FAILURE;
3356
3357         do {
3358                 val64 = readq(addr);
3359                 if (bit_state == S2IO_BIT_RESET) {
3360                         if (!(val64 & busy_bit)) {
3361                                 ret = SUCCESS;
3362                                 break;
3363                         }
3364                 } else {
3365                         if (val64 & busy_bit) {
3366                                 ret = SUCCESS;
3367                                 break;
3368                         }
3369                 }
3370
3371                 if (in_interrupt())
3372                         mdelay(delay);
3373                 else
3374                         msleep(delay);
3375
3376                 if (++cnt >= 10)
3377                         delay = 50;
3378         } while (cnt < 20);
3379         return ret;
3380 }
3381 /**
3382  * check_pci_device_id - Checks if the device id is supported
3383  * @id : device id
3384  * Description: Function to check if the pci device id is supported by driver.
3385  * Return value: Actual device id if supported else PCI_ANY_ID
3386  */
3387 static u16 check_pci_device_id(u16 id)
3388 {
3389         switch (id) {
3390         case PCI_DEVICE_ID_HERC_WIN:
3391         case PCI_DEVICE_ID_HERC_UNI:
3392                 return XFRAME_II_DEVICE;
3393         case PCI_DEVICE_ID_S2IO_UNI:
3394         case PCI_DEVICE_ID_S2IO_WIN:
3395                 return XFRAME_I_DEVICE;
3396         default:
3397                 return PCI_ANY_ID;
3398         }
3399 }
3400
3401 /**
3402  *  s2io_reset - Resets the card.
3403  *  @sp : private member of the device structure.
3404  *  Description: Function to Reset the card. This function then also
3405  *  restores the previously saved PCI configuration space registers as
3406  *  the card reset also resets the configuration space.
3407  *  Return value:
3408  *  void.
3409  */
3410
3411 static void s2io_reset(struct s2io_nic *sp)
3412 {
3413         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3414         u64 val64;
3415         u16 subid, pci_cmd;
3416         int i;
3417         u16 val16;
3418         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3419         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3420         struct stat_block *stats;
3421         struct swStat *swstats;
3422
3423         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3424                   __func__, pci_name(sp->pdev));
3425
3426         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3427         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3428
3429         val64 = SW_RESET_ALL;
3430         writeq(val64, &bar0->sw_reset);
3431         if (strstr(sp->product_name, "CX4"))
3432                 msleep(750);
3433         msleep(250);
3434         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3435
3436                 /* Restore the PCI state saved during initialization. */
3437                 pci_restore_state(sp->pdev);
3438                 pci_save_state(sp->pdev);
3439                 pci_read_config_word(sp->pdev, 0x2, &val16);
3440                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3441                         break;
3442                 msleep(200);
3443         }
3444
3445         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3446                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3447
3448         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3449
3450         s2io_init_pci(sp);
3451
3452         /* Set swapper to enable I/O register access */
3453         s2io_set_swapper(sp);
3454
3455         /* restore mac_addr entries */
3456         do_s2io_restore_unicast_mc(sp);
3457
3458         /* Restore the MSIX table entries from local variables */
3459         restore_xmsi_data(sp);
3460
3461         /* Clear certain PCI/PCI-X fields after reset */
3462         if (sp->device_type == XFRAME_II_DEVICE) {
3463                 /* Clear "detected parity error" bit */
3464                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3465
3466                 /* Clearing PCIX Ecc status register */
3467                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3468
3469                 /* Clearing PCI_STATUS error reflected here */
3470                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3471         }
3472
3473         /* Reset device statistics maintained by OS */
3474         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3475
3476         stats = sp->mac_control.stats_info;
3477         swstats = &stats->sw_stat;
3478
3479         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3480         up_cnt = swstats->link_up_cnt;
3481         down_cnt = swstats->link_down_cnt;
3482         up_time = swstats->link_up_time;
3483         down_time = swstats->link_down_time;
3484         reset_cnt = swstats->soft_reset_cnt;
3485         mem_alloc_cnt = swstats->mem_allocated;
3486         mem_free_cnt = swstats->mem_freed;
3487         watchdog_cnt = swstats->watchdog_timer_cnt;
3488
3489         memset(stats, 0, sizeof(struct stat_block));
3490
3491         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3492         swstats->link_up_cnt = up_cnt;
3493         swstats->link_down_cnt = down_cnt;
3494         swstats->link_up_time = up_time;
3495         swstats->link_down_time = down_time;
3496         swstats->soft_reset_cnt = reset_cnt;
3497         swstats->mem_allocated = mem_alloc_cnt;
3498         swstats->mem_freed = mem_free_cnt;
3499         swstats->watchdog_timer_cnt = watchdog_cnt;
3500
3501         /* SXE-002: Configure link and activity LED to turn it off */
3502         subid = sp->pdev->subsystem_device;
3503         if (((subid & 0xFF) >= 0x07) &&
3504             (sp->device_type == XFRAME_I_DEVICE)) {
3505                 val64 = readq(&bar0->gpio_control);
3506                 val64 |= 0x0000800000000000ULL;
3507                 writeq(val64, &bar0->gpio_control);
3508                 val64 = 0x0411040400000000ULL;
3509                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3510         }
3511
3512         /*
3513          * Clear spurious ECC interrupts that would have occurred on
3514          * XFRAME II cards after reset.
3515          */
3516         if (sp->device_type == XFRAME_II_DEVICE) {
3517                 val64 = readq(&bar0->pcc_err_reg);
3518                 writeq(val64, &bar0->pcc_err_reg);
3519         }
3520
3521         sp->device_enabled_once = false;
3522 }
3523
3524 /**
3525  *  s2io_set_swapper - to set the swapper controle on the card
3526  *  @sp : private member of the device structure,
3527  *  pointer to the s2io_nic structure.
3528  *  Description: Function to set the swapper control on the card
3529  *  correctly depending on the 'endianness' of the system.
3530  *  Return value:
3531  *  SUCCESS on success and FAILURE on failure.
3532  */
3533
3534 static int s2io_set_swapper(struct s2io_nic *sp)
3535 {
3536         struct net_device *dev = sp->dev;
3537         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3538         u64 val64, valt, valr;
3539
3540         /*
3541          * Set proper endian settings and verify the same by reading
3542          * the PIF Feed-back register.
3543          */
3544
3545         val64 = readq(&bar0->pif_rd_swapper_fb);
3546         if (val64 != 0x0123456789ABCDEFULL) {
3547                 int i = 0;
3548                 static const u64 value[] = {
3549                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3550                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3551                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3552                         0                       /* FE=0, SE=0 */
3553                 };
3554
3555                 while (i < 4) {
3556                         writeq(value[i], &bar0->swapper_ctrl);
3557                         val64 = readq(&bar0->pif_rd_swapper_fb);
3558                         if (val64 == 0x0123456789ABCDEFULL)
3559                                 break;
3560                         i++;
3561                 }
3562                 if (i == 4) {
3563                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3564                                   "feedback read %llx\n",
3565                                   dev->name, (unsigned long long)val64);
3566                         return FAILURE;
3567                 }
3568                 valr = value[i];
3569         } else {
3570                 valr = readq(&bar0->swapper_ctrl);
3571         }
3572
3573         valt = 0x0123456789ABCDEFULL;
3574         writeq(valt, &bar0->xmsi_address);
3575         val64 = readq(&bar0->xmsi_address);
3576
3577         if (val64 != valt) {
3578                 int i = 0;
3579                 static const u64 value[] = {
3580                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3581                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3582                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3583                         0                       /* FE=0, SE=0 */
3584                 };
3585
3586                 while (i < 4) {
3587                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3588                         writeq(valt, &bar0->xmsi_address);
3589                         val64 = readq(&bar0->xmsi_address);
3590                         if (val64 == valt)
3591                                 break;
3592                         i++;
3593                 }
3594                 if (i == 4) {
3595                         unsigned long long x = val64;
3596                         DBG_PRINT(ERR_DBG,
3597                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3598                         return FAILURE;
3599                 }
3600         }
3601         val64 = readq(&bar0->swapper_ctrl);
3602         val64 &= 0xFFFF000000000000ULL;
3603
3604 #ifdef __BIG_ENDIAN
3605         /*
3606          * The device by default set to a big endian format, so a
3607          * big endian driver need not set anything.
3608          */
3609         val64 |= (SWAPPER_CTRL_TXP_FE |
3610                   SWAPPER_CTRL_TXP_SE |
3611                   SWAPPER_CTRL_TXD_R_FE |
3612                   SWAPPER_CTRL_TXD_W_FE |
3613                   SWAPPER_CTRL_TXF_R_FE |
3614                   SWAPPER_CTRL_RXD_R_FE |
3615                   SWAPPER_CTRL_RXD_W_FE |
3616                   SWAPPER_CTRL_RXF_W_FE |
3617                   SWAPPER_CTRL_XMSI_FE |
3618                   SWAPPER_CTRL_STATS_FE |
3619                   SWAPPER_CTRL_STATS_SE);
3620         if (sp->config.intr_type == INTA)
3621                 val64 |= SWAPPER_CTRL_XMSI_SE;
3622         writeq(val64, &bar0->swapper_ctrl);
3623 #else
3624         /*
3625          * Initially we enable all bits to make it accessible by the
3626          * driver, then we selectively enable only those bits that
3627          * we want to set.
3628          */
3629         val64 |= (SWAPPER_CTRL_TXP_FE |
3630                   SWAPPER_CTRL_TXP_SE |
3631                   SWAPPER_CTRL_TXD_R_FE |
3632                   SWAPPER_CTRL_TXD_R_SE |
3633                   SWAPPER_CTRL_TXD_W_FE |
3634                   SWAPPER_CTRL_TXD_W_SE |
3635                   SWAPPER_CTRL_TXF_R_FE |
3636                   SWAPPER_CTRL_RXD_R_FE |
3637                   SWAPPER_CTRL_RXD_R_SE |
3638                   SWAPPER_CTRL_RXD_W_FE |
3639                   SWAPPER_CTRL_RXD_W_SE |
3640                   SWAPPER_CTRL_RXF_W_FE |
3641                   SWAPPER_CTRL_XMSI_FE |
3642                   SWAPPER_CTRL_STATS_FE |
3643                   SWAPPER_CTRL_STATS_SE);
3644         if (sp->config.intr_type == INTA)
3645                 val64 |= SWAPPER_CTRL_XMSI_SE;
3646         writeq(val64, &bar0->swapper_ctrl);
3647 #endif
3648         val64 = readq(&bar0->swapper_ctrl);
3649
3650         /*
3651          * Verifying if endian settings are accurate by reading a
3652          * feedback register.
3653          */
3654         val64 = readq(&bar0->pif_rd_swapper_fb);
3655         if (val64 != 0x0123456789ABCDEFULL) {
3656                 /* Endian settings are incorrect, calls for another dekko. */
3657                 DBG_PRINT(ERR_DBG,
3658                           "%s: Endian settings are wrong, feedback read %llx\n",
3659                           dev->name, (unsigned long long)val64);
3660                 return FAILURE;
3661         }
3662
3663         return SUCCESS;
3664 }
3665
3666 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3667 {
3668         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3669         u64 val64;
3670         int ret = 0, cnt = 0;
3671
3672         do {
3673                 val64 = readq(&bar0->xmsi_access);
3674                 if (!(val64 & s2BIT(15)))
3675                         break;
3676                 mdelay(1);
3677                 cnt++;
3678         } while (cnt < 5);
3679         if (cnt == 5) {
3680                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3681                 ret = 1;
3682         }
3683
3684         return ret;
3685 }
3686
3687 static void restore_xmsi_data(struct s2io_nic *nic)
3688 {
3689         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3690         u64 val64;
3691         int i, msix_index;
3692
3693         if (nic->device_type == XFRAME_I_DEVICE)
3694                 return;
3695
3696         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3697                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3698                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3699                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3700                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3701                 writeq(val64, &bar0->xmsi_access);
3702                 if (wait_for_msix_trans(nic, msix_index)) {
3703                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3704                                   __func__, msix_index);
3705                         continue;
3706                 }
3707         }
3708 }
3709
3710 static void store_xmsi_data(struct s2io_nic *nic)
3711 {
3712         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3713         u64 val64, addr, data;
3714         int i, msix_index;
3715
3716         if (nic->device_type == XFRAME_I_DEVICE)
3717                 return;
3718
3719         /* Store and display */
3720         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3721                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3722                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3723                 writeq(val64, &bar0->xmsi_access);
3724                 if (wait_for_msix_trans(nic, msix_index)) {
3725                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3726                                   __func__, msix_index);
3727                         continue;
3728                 }
3729                 addr = readq(&bar0->xmsi_address);
3730                 data = readq(&bar0->xmsi_data);
3731                 if (addr && data) {
3732                         nic->msix_info[i].addr = addr;
3733                         nic->msix_info[i].data = data;
3734                 }
3735         }
3736 }
3737
3738 static int s2io_enable_msi_x(struct s2io_nic *nic)
3739 {
3740         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3741         u64 rx_mat;
3742         u16 msi_control; /* Temp variable */
3743         int ret, i, j, msix_indx = 1;
3744         int size;
3745         struct stat_block *stats = nic->mac_control.stats_info;
3746         struct swStat *swstats = &stats->sw_stat;
3747
3748         size = nic->num_entries * sizeof(struct msix_entry);
3749         nic->entries = kzalloc(size, GFP_KERNEL);
3750         if (!nic->entries) {
3751                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3752                           __func__);
3753                 swstats->mem_alloc_fail_cnt++;
3754                 return -ENOMEM;
3755         }
3756         swstats->mem_allocated += size;
3757
3758         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3759         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3760         if (!nic->s2io_entries) {
3761                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3762                           __func__);
3763                 swstats->mem_alloc_fail_cnt++;
3764                 kfree(nic->entries);
3765                 swstats->mem_freed
3766                         += (nic->num_entries * sizeof(struct msix_entry));
3767                 return -ENOMEM;
3768         }
3769         swstats->mem_allocated += size;
3770
3771         nic->entries[0].entry = 0;
3772         nic->s2io_entries[0].entry = 0;
3773         nic->s2io_entries[0].in_use = MSIX_FLG;
3774         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3775         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3776
3777         for (i = 1; i < nic->num_entries; i++) {
3778                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3779                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3780                 nic->s2io_entries[i].arg = NULL;
3781                 nic->s2io_entries[i].in_use = 0;
3782         }
3783
3784         rx_mat = readq(&bar0->rx_mat);
3785         for (j = 0; j < nic->config.rx_ring_num; j++) {
3786                 rx_mat |= RX_MAT_SET(j, msix_indx);
3787                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3788                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3789                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3790                 msix_indx += 8;
3791         }
3792         writeq(rx_mat, &bar0->rx_mat);
3793         readq(&bar0->rx_mat);
3794
3795         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3796         /* We fail init if error or we get less vectors than min required */
3797         if (ret) {
3798                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3799                 kfree(nic->entries);
3800                 swstats->mem_freed += nic->num_entries *
3801                         sizeof(struct msix_entry);
3802                 kfree(nic->s2io_entries);
3803                 swstats->mem_freed += nic->num_entries *
3804                         sizeof(struct s2io_msix_entry);
3805                 nic->entries = NULL;
3806                 nic->s2io_entries = NULL;
3807                 return -ENOMEM;
3808         }
3809
3810         /*
3811          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3812          * in the herc NIC. (Temp change, needs to be removed later)
3813          */
3814         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3815         msi_control |= 0x1; /* Enable MSI */
3816         pci_write_config_word(nic->pdev, 0x42, msi_control);
3817
3818         return 0;
3819 }
3820
3821 /* Handle software interrupt used during MSI(X) test */
3822 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3823 {
3824         struct s2io_nic *sp = dev_id;
3825
3826         sp->msi_detected = 1;
3827         wake_up(&sp->msi_wait);
3828
3829         return IRQ_HANDLED;
3830 }
3831
3832 /* Test interrupt path by forcing a a software IRQ */
3833 static int s2io_test_msi(struct s2io_nic *sp)
3834 {
3835         struct pci_dev *pdev = sp->pdev;
3836         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3837         int err;
3838         u64 val64, saved64;
3839
3840         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3841                           sp->name, sp);
3842         if (err) {
3843                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3844                           sp->dev->name, pci_name(pdev), pdev->irq);
3845                 return err;
3846         }
3847
3848         init_waitqueue_head(&sp->msi_wait);
3849         sp->msi_detected = 0;
3850
3851         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3852         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3853         val64 |= SCHED_INT_CTRL_TIMER_EN;
3854         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3855         writeq(val64, &bar0->scheduled_int_ctrl);
3856
3857         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3858
3859         if (!sp->msi_detected) {
3860                 /* MSI(X) test failed, go back to INTx mode */
3861                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3862                           "using MSI(X) during test\n",
3863                           sp->dev->name, pci_name(pdev));
3864
3865                 err = -EOPNOTSUPP;
3866         }
3867
3868         free_irq(sp->entries[1].vector, sp);
3869
3870         writeq(saved64, &bar0->scheduled_int_ctrl);
3871
3872         return err;
3873 }
3874
3875 static void remove_msix_isr(struct s2io_nic *sp)
3876 {
3877         int i;
3878         u16 msi_control;
3879
3880         for (i = 0; i < sp->num_entries; i++) {
3881                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3882                         int vector = sp->entries[i].vector;
3883                         void *arg = sp->s2io_entries[i].arg;
3884                         free_irq(vector, arg);
3885                 }
3886         }
3887
3888         kfree(sp->entries);
3889         kfree(sp->s2io_entries);
3890         sp->entries = NULL;
3891         sp->s2io_entries = NULL;
3892
3893         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3894         msi_control &= 0xFFFE; /* Disable MSI */
3895         pci_write_config_word(sp->pdev, 0x42, msi_control);
3896
3897         pci_disable_msix(sp->pdev);
3898 }
3899
3900 static void remove_inta_isr(struct s2io_nic *sp)
3901 {
3902         free_irq(sp->pdev->irq, sp->dev);
3903 }
3904
3905 /* ********************************************************* *
3906  * Functions defined below concern the OS part of the driver *
3907  * ********************************************************* */
3908
3909 /**
3910  *  s2io_open - open entry point of the driver
3911  *  @dev : pointer to the device structure.
3912  *  Description:
3913  *  This function is the open entry point of the driver. It mainly calls a
3914  *  function to allocate Rx buffers and inserts them into the buffer
3915  *  descriptors and then enables the Rx part of the NIC.
3916  *  Return value:
3917  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3918  *   file on failure.
3919  */
3920
3921 static int s2io_open(struct net_device *dev)
3922 {
3923         struct s2io_nic *sp = netdev_priv(dev);
3924         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3925         int err = 0;
3926
3927         /*
3928          * Make sure you have link off by default every time
3929          * Nic is initialized
3930          */
3931         netif_carrier_off(dev);
3932         sp->last_link_state = 0;
3933
3934         /* Initialize H/W and enable interrupts */
3935         err = s2io_card_up(sp);
3936         if (err) {
3937                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3938                           dev->name);
3939                 goto hw_init_failed;
3940         }
3941
3942         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3943                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3944                 s2io_card_down(sp);
3945                 err = -ENODEV;
3946                 goto hw_init_failed;
3947         }
3948         s2io_start_all_tx_queue(sp);
3949         return 0;
3950
3951 hw_init_failed:
3952         if (sp->config.intr_type == MSI_X) {
3953                 if (sp->entries) {
3954                         kfree(sp->entries);
3955                         swstats->mem_freed += sp->num_entries *
3956                                 sizeof(struct msix_entry);
3957                 }
3958                 if (sp->s2io_entries) {
3959                         kfree(sp->s2io_entries);
3960                         swstats->mem_freed += sp->num_entries *
3961                                 sizeof(struct s2io_msix_entry);
3962                 }
3963         }
3964         return err;
3965 }
3966
3967 /**
3968  *  s2io_close -close entry point of the driver
3969  *  @dev : device pointer.
3970  *  Description:
3971  *  This is the stop entry point of the driver. It needs to undo exactly
3972  *  whatever was done by the open entry point,thus it's usually referred to
3973  *  as the close function.Among other things this function mainly stops the
3974  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3975  *  Return value:
3976  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3977  *  file on failure.
3978  */
3979
3980 static int s2io_close(struct net_device *dev)
3981 {
3982         struct s2io_nic *sp = netdev_priv(dev);
3983         struct config_param *config = &sp->config;
3984         u64 tmp64;
3985         int offset;
3986
3987         /* Return if the device is already closed               *
3988          *  Can happen when s2io_card_up failed in change_mtu    *
3989          */
3990         if (!is_s2io_card_up(sp))
3991                 return 0;
3992
3993         s2io_stop_all_tx_queue(sp);
3994         /* delete all populated mac entries */
3995         for (offset = 1; offset < config->max_mc_addr; offset++) {
3996                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3997                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3998                         do_s2io_delete_unicast_mc(sp, tmp64);
3999         }
4000
4001         s2io_card_down(sp);
4002
4003         return 0;
4004 }
4005
4006 /**
4007  *  s2io_xmit - Tx entry point of te driver
4008  *  @skb : the socket buffer containing the Tx data.
4009  *  @dev : device pointer.
4010  *  Description :
4011  *  This function is the Tx entry point of the driver. S2IO NIC supports
4012  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4013  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4014  *  not be upadted.
4015  *  Return value:
4016  *  0 on success & 1 on failure.
4017  */
4018
4019 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4020 {
4021         struct s2io_nic *sp = netdev_priv(dev);
4022         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4023         register u64 val64;
4024         struct TxD *txdp;
4025         struct TxFIFO_element __iomem *tx_fifo;
4026         unsigned long flags = 0;
4027         u16 vlan_tag = 0;
4028         struct fifo_info *fifo = NULL;
4029         int do_spin_lock = 1;
4030         int offload_type;
4031         int enable_per_list_interrupt = 0;
4032         struct config_param *config = &sp->config;
4033         struct mac_info *mac_control = &sp->mac_control;
4034         struct stat_block *stats = mac_control->stats_info;
4035         struct swStat *swstats = &stats->sw_stat;
4036
4037         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4038
4039         if (unlikely(skb->len <= 0)) {
4040                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4041                 dev_kfree_skb_any(skb);
4042                 return NETDEV_TX_OK;
4043         }
4044
4045         if (!is_s2io_card_up(sp)) {
4046                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4047                           dev->name);
4048                 dev_kfree_skb(skb);
4049                 return NETDEV_TX_OK;
4050         }
4051
4052         queue = 0;
4053         if (vlan_tx_tag_present(skb))
4054                 vlan_tag = vlan_tx_tag_get(skb);
4055         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4056                 if (skb->protocol == htons(ETH_P_IP)) {
4057                         struct iphdr *ip;
4058                         struct tcphdr *th;
4059                         ip = ip_hdr(skb);
4060
4061                         if (!ip_is_fragment(ip)) {
4062                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4063                                                        ip->ihl*4);
4064
4065                                 if (ip->protocol == IPPROTO_TCP) {
4066                                         queue_len = sp->total_tcp_fifos;
4067                                         queue = (ntohs(th->source) +
4068                                                  ntohs(th->dest)) &
4069                                                 sp->fifo_selector[queue_len - 1];
4070                                         if (queue >= queue_len)
4071                                                 queue = queue_len - 1;
4072                                 } else if (ip->protocol == IPPROTO_UDP) {
4073                                         queue_len = sp->total_udp_fifos;
4074                                         queue = (ntohs(th->source) +
4075                                                  ntohs(th->dest)) &
4076                                                 sp->fifo_selector[queue_len - 1];
4077                                         if (queue >= queue_len)
4078                                                 queue = queue_len - 1;
4079                                         queue += sp->udp_fifo_idx;
4080                                         if (skb->len > 1024)
4081                                                 enable_per_list_interrupt = 1;
4082                                         do_spin_lock = 0;
4083                                 }
4084                         }
4085                 }
4086         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4087                 /* get fifo number based on skb->priority value */
4088                 queue = config->fifo_mapping
4089                         [skb->priority & (MAX_TX_FIFOS - 1)];
4090         fifo = &mac_control->fifos[queue];
4091
4092         if (do_spin_lock)
4093                 spin_lock_irqsave(&fifo->tx_lock, flags);
4094         else {
4095                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4096                         return NETDEV_TX_LOCKED;
4097         }
4098
4099         if (sp->config.multiq) {
4100                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4101                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102                         return NETDEV_TX_BUSY;
4103                 }
4104         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4105                 if (netif_queue_stopped(dev)) {
4106                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4107                         return NETDEV_TX_BUSY;
4108                 }
4109         }
4110
4111         put_off = (u16)fifo->tx_curr_put_info.offset;
4112         get_off = (u16)fifo->tx_curr_get_info.offset;
4113         txdp = fifo->list_info[put_off].list_virt_addr;
4114
4115         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4116         /* Avoid "put" pointer going beyond "get" pointer */
4117         if (txdp->Host_Control ||
4118             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4119                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4120                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4121                 dev_kfree_skb(skb);
4122                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4123                 return NETDEV_TX_OK;
4124         }
4125
4126         offload_type = s2io_offload_type(skb);
4127         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4128                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4129                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4130         }
4131         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4132                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4133                                     TXD_TX_CKO_TCP_EN |
4134                                     TXD_TX_CKO_UDP_EN);
4135         }
4136         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4137         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4138         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4139         if (enable_per_list_interrupt)
4140                 if (put_off & (queue_len >> 5))
4141                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4142         if (vlan_tag) {
4143                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4144                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4145         }
4146
4147         frg_len = skb_headlen(skb);
4148         if (offload_type == SKB_GSO_UDP) {
4149                 int ufo_size;
4150
4151                 ufo_size = s2io_udp_mss(skb);
4152                 ufo_size &= ~7;
4153                 txdp->Control_1 |= TXD_UFO_EN;
4154                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4155                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4156 #ifdef __BIG_ENDIAN
4157                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4158                 fifo->ufo_in_band_v[put_off] =
4159                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4160 #else
4161                 fifo->ufo_in_band_v[put_off] =
4162                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4163 #endif
4164                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4165                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4166                                                       fifo->ufo_in_band_v,
4167                                                       sizeof(u64),
4168                                                       PCI_DMA_TODEVICE);
4169                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4170                         goto pci_map_failed;
4171                 txdp++;
4172         }
4173
4174         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4175                                               frg_len, PCI_DMA_TODEVICE);
4176         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4177                 goto pci_map_failed;
4178
4179         txdp->Host_Control = (unsigned long)skb;
4180         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4181         if (offload_type == SKB_GSO_UDP)
4182                 txdp->Control_1 |= TXD_UFO_EN;
4183
4184         frg_cnt = skb_shinfo(skb)->nr_frags;
4185         /* For fragmented SKB. */
4186         for (i = 0; i < frg_cnt; i++) {
4187                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4188                 /* A '0' length fragment will be ignored */
4189                 if (!skb_frag_size(frag))
4190                         continue;
4191                 txdp++;
4192                 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4193                                                              frag, 0,
4194                                                              skb_frag_size(frag),
4195                                                              DMA_TO_DEVICE);
4196                 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4197                 if (offload_type == SKB_GSO_UDP)
4198                         txdp->Control_1 |= TXD_UFO_EN;
4199         }
4200         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4201
4202         if (offload_type == SKB_GSO_UDP)
4203                 frg_cnt++; /* as Txd0 was used for inband header */
4204
4205         tx_fifo = mac_control->tx_FIFO_start[queue];
4206         val64 = fifo->list_info[put_off].list_phy_addr;
4207         writeq(val64, &tx_fifo->TxDL_Pointer);
4208
4209         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4210                  TX_FIFO_LAST_LIST);
4211         if (offload_type)
4212                 val64 |= TX_FIFO_SPECIAL_FUNC;
4213
4214         writeq(val64, &tx_fifo->List_Control);
4215
4216         mmiowb();
4217
4218         put_off++;
4219         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4220                 put_off = 0;
4221         fifo->tx_curr_put_info.offset = put_off;
4222
4223         /* Avoid "put" pointer going beyond "get" pointer */
4224         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4225                 swstats->fifo_full_cnt++;
4226                 DBG_PRINT(TX_DBG,
4227                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4228                           put_off, get_off);
4229                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4230         }
4231         swstats->mem_allocated += skb->truesize;
4232         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4233
4234         if (sp->config.intr_type == MSI_X)
4235                 tx_intr_handler(fifo);
4236
4237         return NETDEV_TX_OK;
4238
4239 pci_map_failed:
4240         swstats->pci_map_fail_cnt++;
4241         s2io_stop_tx_queue(sp, fifo->fifo_no);
4242         swstats->mem_freed += skb->truesize;
4243         dev_kfree_skb(skb);
4244         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4245         return NETDEV_TX_OK;
4246 }
4247
4248 static void
4249 s2io_alarm_handle(unsigned long data)
4250 {
4251         struct s2io_nic *sp = (struct s2io_nic *)data;
4252         struct net_device *dev = sp->dev;
4253
4254         s2io_handle_errors(dev);
4255         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4256 }
4257
4258 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4259 {
4260         struct ring_info *ring = (struct ring_info *)dev_id;
4261         struct s2io_nic *sp = ring->nic;
4262         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4263
4264         if (unlikely(!is_s2io_card_up(sp)))
4265                 return IRQ_HANDLED;
4266
4267         if (sp->config.napi) {
4268                 u8 __iomem *addr = NULL;
4269                 u8 val8 = 0;
4270
4271                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4272                 addr += (7 - ring->ring_no);
4273                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4274                 writeb(val8, addr);
4275                 val8 = readb(addr);
4276                 napi_schedule(&ring->napi);
4277         } else {
4278                 rx_intr_handler(ring, 0);
4279                 s2io_chk_rx_buffers(sp, ring);
4280         }
4281
4282         return IRQ_HANDLED;
4283 }
4284
4285 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4286 {
4287         int i;
4288         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4289         struct s2io_nic *sp = fifos->nic;
4290         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4291         struct config_param *config  = &sp->config;
4292         u64 reason;
4293
4294         if (unlikely(!is_s2io_card_up(sp)))
4295                 return IRQ_NONE;
4296
4297         reason = readq(&bar0->general_int_status);
4298         if (unlikely(reason == S2IO_MINUS_ONE))
4299                 /* Nothing much can be done. Get out */
4300                 return IRQ_HANDLED;
4301
4302         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4303                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4304
4305                 if (reason & GEN_INTR_TXPIC)
4306                         s2io_txpic_intr_handle(sp);
4307
4308                 if (reason & GEN_INTR_TXTRAFFIC)
4309                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4310
4311                 for (i = 0; i < config->tx_fifo_num; i++)
4312                         tx_intr_handler(&fifos[i]);
4313
4314                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4315                 readl(&bar0->general_int_status);
4316                 return IRQ_HANDLED;
4317         }
4318         /* The interrupt was not raised by us */
4319         return IRQ_NONE;
4320 }
4321
4322 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4323 {
4324         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4325         u64 val64;
4326
4327         val64 = readq(&bar0->pic_int_status);
4328         if (val64 & PIC_INT_GPIO) {
4329                 val64 = readq(&bar0->gpio_int_reg);
4330                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4331                     (val64 & GPIO_INT_REG_LINK_UP)) {
4332                         /*
4333                          * This is unstable state so clear both up/down
4334                          * interrupt and adapter to re-evaluate the link state.
4335                          */
4336                         val64 |= GPIO_INT_REG_LINK_DOWN;
4337                         val64 |= GPIO_INT_REG_LINK_UP;
4338                         writeq(val64, &bar0->gpio_int_reg);
4339                         val64 = readq(&bar0->gpio_int_mask);
4340                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4341                                    GPIO_INT_MASK_LINK_DOWN);
4342                         writeq(val64, &bar0->gpio_int_mask);
4343                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4344                         val64 = readq(&bar0->adapter_status);
4345                         /* Enable Adapter */
4346                         val64 = readq(&bar0->adapter_control);
4347                         val64 |= ADAPTER_CNTL_EN;
4348                         writeq(val64, &bar0->adapter_control);
4349                         val64 |= ADAPTER_LED_ON;
4350                         writeq(val64, &bar0->adapter_control);
4351                         if (!sp->device_enabled_once)
4352                                 sp->device_enabled_once = 1;
4353
4354                         s2io_link(sp, LINK_UP);
4355                         /*
4356                          * unmask link down interrupt and mask link-up
4357                          * intr
4358                          */
4359                         val64 = readq(&bar0->gpio_int_mask);
4360                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4361                         val64 |= GPIO_INT_MASK_LINK_UP;
4362                         writeq(val64, &bar0->gpio_int_mask);
4363
4364                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4365                         val64 = readq(&bar0->adapter_status);
4366                         s2io_link(sp, LINK_DOWN);
4367                         /* Link is down so unmaks link up interrupt */
4368                         val64 = readq(&bar0->gpio_int_mask);
4369                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4370                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4371                         writeq(val64, &bar0->gpio_int_mask);
4372
4373                         /* turn off LED */
4374                         val64 = readq(&bar0->adapter_control);
4375                         val64 = val64 & (~ADAPTER_LED_ON);
4376                         writeq(val64, &bar0->adapter_control);
4377                 }
4378         }
4379         val64 = readq(&bar0->gpio_int_mask);
4380 }
4381
4382 /**
4383  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4384  *  @value: alarm bits
4385  *  @addr: address value
4386  *  @cnt: counter variable
4387  *  Description: Check for alarm and increment the counter
4388  *  Return Value:
4389  *  1 - if alarm bit set
4390  *  0 - if alarm bit is not set
4391  */
4392 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4393                                  unsigned long long *cnt)
4394 {
4395         u64 val64;
4396         val64 = readq(addr);
4397         if (val64 & value) {
4398                 writeq(val64, addr);
4399                 (*cnt)++;
4400                 return 1;
4401         }
4402         return 0;
4403
4404 }
4405
4406 /**
4407  *  s2io_handle_errors - Xframe error indication handler
4408  *  @nic: device private variable
4409  *  Description: Handle alarms such as loss of link, single or
4410  *  double ECC errors, critical and serious errors.
4411  *  Return Value:
4412  *  NONE
4413  */
4414 static void s2io_handle_errors(void *dev_id)
4415 {
4416         struct net_device *dev = (struct net_device *)dev_id;
4417         struct s2io_nic *sp = netdev_priv(dev);
4418         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4419         u64 temp64 = 0, val64 = 0;
4420         int i = 0;
4421
4422         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4423         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4424
4425         if (!is_s2io_card_up(sp))
4426                 return;
4427
4428         if (pci_channel_offline(sp->pdev))
4429                 return;
4430
4431         memset(&sw_stat->ring_full_cnt, 0,
4432                sizeof(sw_stat->ring_full_cnt));
4433
4434         /* Handling the XPAK counters update */
4435         if (stats->xpak_timer_count < 72000) {
4436                 /* waiting for an hour */
4437                 stats->xpak_timer_count++;
4438         } else {
4439                 s2io_updt_xpak_counter(dev);
4440                 /* reset the count to zero */
4441                 stats->xpak_timer_count = 0;
4442         }
4443
4444         /* Handling link status change error Intr */
4445         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4446                 val64 = readq(&bar0->mac_rmac_err_reg);
4447                 writeq(val64, &bar0->mac_rmac_err_reg);
4448                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4449                         schedule_work(&sp->set_link_task);
4450         }
4451
4452         /* In case of a serious error, the device will be Reset. */
4453         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4454                                   &sw_stat->serious_err_cnt))
4455                 goto reset;
4456
4457         /* Check for data parity error */
4458         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4459                                   &sw_stat->parity_err_cnt))
4460                 goto reset;
4461
4462         /* Check for ring full counter */
4463         if (sp->device_type == XFRAME_II_DEVICE) {
4464                 val64 = readq(&bar0->ring_bump_counter1);
4465                 for (i = 0; i < 4; i++) {
4466                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4467                         temp64 >>= 64 - ((i+1)*16);
4468                         sw_stat->ring_full_cnt[i] += temp64;
4469                 }
4470
4471                 val64 = readq(&bar0->ring_bump_counter2);
4472                 for (i = 0; i < 4; i++) {
4473                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4474                         temp64 >>= 64 - ((i+1)*16);
4475                         sw_stat->ring_full_cnt[i+4] += temp64;
4476                 }
4477         }
4478
4479         val64 = readq(&bar0->txdma_int_status);
4480         /*check for pfc_err*/
4481         if (val64 & TXDMA_PFC_INT) {
4482                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4483                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4484                                           PFC_PCIX_ERR,
4485                                           &bar0->pfc_err_reg,
4486                                           &sw_stat->pfc_err_cnt))
4487                         goto reset;
4488                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4489                                       &bar0->pfc_err_reg,
4490                                       &sw_stat->pfc_err_cnt);
4491         }
4492
4493         /*check for tda_err*/
4494         if (val64 & TXDMA_TDA_INT) {
4495                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4496                                           TDA_SM0_ERR_ALARM |
4497                                           TDA_SM1_ERR_ALARM,
4498                                           &bar0->tda_err_reg,
4499                                           &sw_stat->tda_err_cnt))
4500                         goto reset;
4501                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4502                                       &bar0->tda_err_reg,
4503                                       &sw_stat->tda_err_cnt);
4504         }
4505         /*check for pcc_err*/
4506         if (val64 & TXDMA_PCC_INT) {
4507                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4508                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4509                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4510                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4511                                           PCC_TXB_ECC_DB_ERR,
4512                                           &bar0->pcc_err_reg,
4513                                           &sw_stat->pcc_err_cnt))
4514                         goto reset;
4515                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4516                                       &bar0->pcc_err_reg,
4517                                       &sw_stat->pcc_err_cnt);
4518         }
4519
4520         /*check for tti_err*/
4521         if (val64 & TXDMA_TTI_INT) {
4522                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4523                                           &bar0->tti_err_reg,
4524                                           &sw_stat->tti_err_cnt))
4525                         goto reset;
4526                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4527                                       &bar0->tti_err_reg,
4528                                       &sw_stat->tti_err_cnt);
4529         }
4530
4531         /*check for lso_err*/
4532         if (val64 & TXDMA_LSO_INT) {
4533                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4534                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4535                                           &bar0->lso_err_reg,
4536                                           &sw_stat->lso_err_cnt))
4537                         goto reset;
4538                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4539                                       &bar0->lso_err_reg,
4540                                       &sw_stat->lso_err_cnt);
4541         }
4542
4543         /*check for tpa_err*/
4544         if (val64 & TXDMA_TPA_INT) {
4545                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4546                                           &bar0->tpa_err_reg,
4547                                           &sw_stat->tpa_err_cnt))
4548                         goto reset;
4549                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4550                                       &bar0->tpa_err_reg,
4551                                       &sw_stat->tpa_err_cnt);
4552         }
4553
4554         /*check for sm_err*/
4555         if (val64 & TXDMA_SM_INT) {
4556                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4557                                           &bar0->sm_err_reg,
4558                                           &sw_stat->sm_err_cnt))
4559                         goto reset;
4560         }
4561
4562         val64 = readq(&bar0->mac_int_status);
4563         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4564                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4565                                           &bar0->mac_tmac_err_reg,
4566                                           &sw_stat->mac_tmac_err_cnt))
4567                         goto reset;
4568                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4569                                       TMAC_DESC_ECC_SG_ERR |
4570                                       TMAC_DESC_ECC_DB_ERR,
4571                                       &bar0->mac_tmac_err_reg,
4572                                       &sw_stat->mac_tmac_err_cnt);
4573         }
4574
4575         val64 = readq(&bar0->xgxs_int_status);
4576         if (val64 & XGXS_INT_STATUS_TXGXS) {
4577                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4578                                           &bar0->xgxs_txgxs_err_reg,
4579                                           &sw_stat->xgxs_txgxs_err_cnt))
4580                         goto reset;
4581                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4582                                       &bar0->xgxs_txgxs_err_reg,
4583                                       &sw_stat->xgxs_txgxs_err_cnt);
4584         }
4585
4586         val64 = readq(&bar0->rxdma_int_status);
4587         if (val64 & RXDMA_INT_RC_INT_M) {
4588                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4589                                           RC_FTC_ECC_DB_ERR |
4590                                           RC_PRCn_SM_ERR_ALARM |
4591                                           RC_FTC_SM_ERR_ALARM,
4592                                           &bar0->rc_err_reg,
4593                                           &sw_stat->rc_err_cnt))
4594                         goto reset;
4595                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4596                                       RC_FTC_ECC_SG_ERR |
4597                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4598                                       &sw_stat->rc_err_cnt);
4599                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4600                                           PRC_PCI_AB_WR_Rn |
4601                                           PRC_PCI_AB_F_WR_Rn,
4602                                           &bar0->prc_pcix_err_reg,
4603                                           &sw_stat->prc_pcix_err_cnt))
4604                         goto reset;
4605                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4606                                       PRC_PCI_DP_WR_Rn |
4607                                       PRC_PCI_DP_F_WR_Rn,
4608                                       &bar0->prc_pcix_err_reg,
4609                                       &sw_stat->prc_pcix_err_cnt);
4610         }
4611
4612         if (val64 & RXDMA_INT_RPA_INT_M) {
4613                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4614                                           &bar0->rpa_err_reg,
4615                                           &sw_stat->rpa_err_cnt))
4616                         goto reset;
4617                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4618                                       &bar0->rpa_err_reg,
4619                                       &sw_stat->rpa_err_cnt);
4620         }
4621
4622         if (val64 & RXDMA_INT_RDA_INT_M) {
4623                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4624                                           RDA_FRM_ECC_DB_N_AERR |
4625                                           RDA_SM1_ERR_ALARM |
4626                                           RDA_SM0_ERR_ALARM |
4627                                           RDA_RXD_ECC_DB_SERR,
4628                                           &bar0->rda_err_reg,
4629                                           &sw_stat->rda_err_cnt))
4630                         goto reset;
4631                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4632                                       RDA_FRM_ECC_SG_ERR |
4633                                       RDA_MISC_ERR |
4634                                       RDA_PCIX_ERR,
4635                                       &bar0->rda_err_reg,
4636                                       &sw_stat->rda_err_cnt);
4637         }
4638
4639         if (val64 & RXDMA_INT_RTI_INT_M) {
4640                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4641                                           &bar0->rti_err_reg,
4642                                           &sw_stat->rti_err_cnt))
4643                         goto reset;
4644                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4645                                       &bar0->rti_err_reg,
4646                                       &sw_stat->rti_err_cnt);
4647         }
4648
4649         val64 = readq(&bar0->mac_int_status);
4650         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4651                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4652                                           &bar0->mac_rmac_err_reg,
4653                                           &sw_stat->mac_rmac_err_cnt))
4654                         goto reset;
4655                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4656                                       RMAC_SINGLE_ECC_ERR |
4657                                       RMAC_DOUBLE_ECC_ERR,
4658                                       &bar0->mac_rmac_err_reg,
4659                                       &sw_stat->mac_rmac_err_cnt);
4660         }
4661
4662         val64 = readq(&bar0->xgxs_int_status);
4663         if (val64 & XGXS_INT_STATUS_RXGXS) {
4664                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4665                                           &bar0->xgxs_rxgxs_err_reg,
4666                                           &sw_stat->xgxs_rxgxs_err_cnt))
4667                         goto reset;
4668         }
4669
4670         val64 = readq(&bar0->mc_int_status);
4671         if (val64 & MC_INT_STATUS_MC_INT) {
4672                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4673                                           &bar0->mc_err_reg,
4674                                           &sw_stat->mc_err_cnt))
4675                         goto reset;
4676
4677                 /* Handling Ecc errors */
4678                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4679                         writeq(val64, &bar0->mc_err_reg);
4680                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4681                                 sw_stat->double_ecc_errs++;
4682                                 if (sp->device_type != XFRAME_II_DEVICE) {
4683                                         /*
4684                                          * Reset XframeI only if critical error
4685                                          */
4686                                         if (val64 &
4687                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4688                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4689                                                 goto reset;
4690                                 }
4691                         } else
4692                                 sw_stat->single_ecc_errs++;
4693                 }
4694         }
4695         return;
4696
4697 reset:
4698         s2io_stop_all_tx_queue(sp);
4699         schedule_work(&sp->rst_timer_task);
4700         sw_stat->soft_reset_cnt++;
4701 }
4702
4703 /**
4704  *  s2io_isr - ISR handler of the device .
4705  *  @irq: the irq of the device.
4706  *  @dev_id: a void pointer to the dev structure of the NIC.
4707  *  Description:  This function is the ISR handler of the device. It
4708  *  identifies the reason for the interrupt and calls the relevant
4709  *  service routines. As a contongency measure, this ISR allocates the
4710  *  recv buffers, if their numbers are below the panic value which is
4711  *  presently set to 25% of the original number of rcv buffers allocated.
4712  *  Return value:
4713  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4714  *   IRQ_NONE: will be returned if interrupt is not from our device
4715  */
4716 static irqreturn_t s2io_isr(int irq, void *dev_id)
4717 {
4718         struct net_device *dev = (struct net_device *)dev_id;
4719         struct s2io_nic *sp = netdev_priv(dev);
4720         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4721         int i;
4722         u64 reason = 0;
4723         struct mac_info *mac_control;
4724         struct config_param *config;
4725
4726         /* Pretend we handled any irq's from a disconnected card */
4727         if (pci_channel_offline(sp->pdev))
4728                 return IRQ_NONE;
4729
4730         if (!is_s2io_card_up(sp))
4731                 return IRQ_NONE;
4732
4733         config = &sp->config;
4734         mac_control = &sp->mac_control;
4735
4736         /*
4737          * Identify the cause for interrupt and call the appropriate
4738          * interrupt handler. Causes for the interrupt could be;
4739          * 1. Rx of packet.
4740          * 2. Tx complete.
4741          * 3. Link down.
4742          */
4743         reason = readq(&bar0->general_int_status);
4744
4745         if (unlikely(reason == S2IO_MINUS_ONE))
4746                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4747
4748         if (reason &
4749             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4750                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4751
4752                 if (config->napi) {
4753                         if (reason & GEN_INTR_RXTRAFFIC) {
4754                                 napi_schedule(&sp->napi);
4755                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4756                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4757                                 readl(&bar0->rx_traffic_int);
4758                         }
4759                 } else {
4760                         /*
4761                          * rx_traffic_int reg is an R1 register, writing all 1's
4762                          * will ensure that the actual interrupt causing bit
4763                          * get's cleared and hence a read can be avoided.
4764                          */
4765                         if (reason & GEN_INTR_RXTRAFFIC)
4766                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4767
4768                         for (i = 0; i < config->rx_ring_num; i++) {
4769                                 struct ring_info *ring = &mac_control->rings[i];
4770
4771                                 rx_intr_handler(ring, 0);
4772                         }
4773                 }
4774
4775                 /*
4776                  * tx_traffic_int reg is an R1 register, writing all 1's
4777                  * will ensure that the actual interrupt causing bit get's
4778                  * cleared and hence a read can be avoided.
4779                  */
4780                 if (reason & GEN_INTR_TXTRAFFIC)
4781                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4782
4783                 for (i = 0; i < config->tx_fifo_num; i++)
4784                         tx_intr_handler(&mac_control->fifos[i]);
4785
4786                 if (reason & GEN_INTR_TXPIC)
4787                         s2io_txpic_intr_handle(sp);
4788
4789                 /*
4790                  * Reallocate the buffers from the interrupt handler itself.
4791                  */
4792                 if (!config->napi) {
4793                         for (i = 0; i < config->rx_ring_num; i++) {
4794                                 struct ring_info *ring = &mac_control->rings[i];
4795
4796                                 s2io_chk_rx_buffers(sp, ring);
4797                         }
4798                 }
4799                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4800                 readl(&bar0->general_int_status);
4801
4802                 return IRQ_HANDLED;
4803
4804         } else if (!reason) {
4805                 /* The interrupt was not raised by us */
4806                 return IRQ_NONE;
4807         }
4808
4809         return IRQ_HANDLED;
4810 }
4811
4812 /**
4813  * s2io_updt_stats -
4814  */
4815 static void s2io_updt_stats(struct s2io_nic *sp)
4816 {
4817         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4818         u64 val64;
4819         int cnt = 0;
4820
4821         if (is_s2io_card_up(sp)) {
4822                 /* Apprx 30us on a 133 MHz bus */
4823                 val64 = SET_UPDT_CLICKS(10) |
4824                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4825                 writeq(val64, &bar0->stat_cfg);
4826                 do {
4827                         udelay(100);
4828                         val64 = readq(&bar0->stat_cfg);
4829                         if (!(val64 & s2BIT(0)))
4830                                 break;
4831                         cnt++;
4832                         if (cnt == 5)
4833                                 break; /* Updt failed */
4834                 } while (1);
4835         }
4836 }
4837
4838 /**
4839  *  s2io_get_stats - Updates the device statistics structure.
4840  *  @dev : pointer to the device structure.
4841  *  Description:
4842  *  This function updates the device statistics structure in the s2io_nic
4843  *  structure and returns a pointer to the same.
4844  *  Return value:
4845  *  pointer to the updated net_device_stats structure.
4846  */
4847 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4848 {
4849         struct s2io_nic *sp = netdev_priv(dev);
4850         struct mac_info *mac_control = &sp->mac_control;
4851         struct stat_block *stats = mac_control->stats_info;
4852         u64 delta;
4853
4854         /* Configure Stats for immediate updt */
4855         s2io_updt_stats(sp);
4856
4857         /* A device reset will cause the on-adapter statistics to be zero'ed.
4858          * This can be done while running by changing the MTU.  To prevent the
4859          * system from having the stats zero'ed, the driver keeps a copy of the
4860          * last update to the system (which is also zero'ed on reset).  This
4861          * enables the driver to accurately know the delta between the last
4862          * update and the current update.
4863          */
4864         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4865                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4866         sp->stats.rx_packets += delta;
4867         dev->stats.rx_packets += delta;
4868
4869         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4870                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4871         sp->stats.tx_packets += delta;
4872         dev->stats.tx_packets += delta;
4873
4874         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4875                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4876         sp->stats.rx_bytes += delta;
4877         dev->stats.rx_bytes += delta;
4878
4879         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4880                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4881         sp->stats.tx_bytes += delta;
4882         dev->stats.tx_bytes += delta;
4883
4884         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4885         sp->stats.rx_errors += delta;
4886         dev->stats.rx_errors += delta;
4887
4888         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4889                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4890         sp->stats.tx_errors += delta;
4891         dev->stats.tx_errors += delta;
4892
4893         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4894         sp->stats.rx_dropped += delta;
4895         dev->stats.rx_dropped += delta;
4896
4897         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4898         sp->stats.tx_dropped += delta;
4899         dev->stats.tx_dropped += delta;
4900
4901         /* The adapter MAC interprets pause frames as multicast packets, but
4902          * does not pass them up.  This erroneously increases the multicast
4903          * packet count and needs to be deducted when the multicast frame count
4904          * is queried.
4905          */
4906         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4907                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4908         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4909         delta -= sp->stats.multicast;
4910         sp->stats.multicast += delta;
4911         dev->stats.multicast += delta;
4912
4913         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4914                 le32_to_cpu(stats->rmac_usized_frms)) +
4915                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4916         sp->stats.rx_length_errors += delta;
4917         dev->stats.rx_length_errors += delta;
4918
4919         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4920         sp->stats.rx_crc_errors += delta;
4921         dev->stats.rx_crc_errors += delta;
4922
4923         return &dev->stats;
4924 }
4925
4926 /**
4927  *  s2io_set_multicast - entry point for multicast address enable/disable.
4928  *  @dev : pointer to the device structure
4929  *  Description:
4930  *  This function is a driver entry point which gets called by the kernel
4931  *  whenever multicast addresses must be enabled/disabled. This also gets
4932  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4933  *  determine, if multicast address must be enabled or if promiscuous mode
4934  *  is to be disabled etc.
4935  *  Return value:
4936  *  void.
4937  */
4938
4939 static void s2io_set_multicast(struct net_device *dev)
4940 {
4941         int i, j, prev_cnt;
4942         struct netdev_hw_addr *ha;
4943         struct s2io_nic *sp = netdev_priv(dev);
4944         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4945         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4946                 0xfeffffffffffULL;
4947         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4948         void __iomem *add;
4949         struct config_param *config = &sp->config;
4950
4951         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4952                 /*  Enable all Multicast addresses */
4953                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4954                        &bar0->rmac_addr_data0_mem);
4955                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4956                        &bar0->rmac_addr_data1_mem);
4957                 val64 = RMAC_ADDR_CMD_MEM_WE |
4958                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4959                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4960                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4961                 /* Wait till command completes */
4962                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4963                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4964                                       S2IO_BIT_RESET);
4965
4966                 sp->m_cast_flg = 1;
4967                 sp->all_multi_pos = config->max_mc_addr - 1;
4968         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4969                 /*  Disable all Multicast addresses */
4970                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4971                        &bar0->rmac_addr_data0_mem);
4972                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4973                        &bar0->rmac_addr_data1_mem);
4974                 val64 = RMAC_ADDR_CMD_MEM_WE |
4975                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4976                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4977                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4978                 /* Wait till command completes */
4979                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4980                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4981                                       S2IO_BIT_RESET);
4982
4983                 sp->m_cast_flg = 0;
4984                 sp->all_multi_pos = 0;
4985         }
4986
4987         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4988                 /*  Put the NIC into promiscuous mode */
4989                 add = &bar0->mac_cfg;
4990                 val64 = readq(&bar0->mac_cfg);
4991                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4992
4993                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4994                 writel((u32)val64, add);
4995                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4996                 writel((u32) (val64 >> 32), (add + 4));
4997
4998                 if (vlan_tag_strip != 1) {
4999                         val64 = readq(&bar0->rx_pa_cfg);
5000                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5001                         writeq(val64, &bar0->rx_pa_cfg);
5002                         sp->vlan_strip_flag = 0;
5003                 }
5004
5005                 val64 = readq(&bar0->mac_cfg);
5006                 sp->promisc_flg = 1;
5007                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5008                           dev->name);
5009         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5010                 /*  Remove the NIC from promiscuous mode */
5011                 add = &bar0->mac_cfg;
5012                 val64 = readq(&bar0->mac_cfg);
5013                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5014
5015                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5016                 writel((u32)val64, add);
5017                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5018                 writel((u32) (val64 >> 32), (add + 4));
5019
5020                 if (vlan_tag_strip != 0) {
5021                         val64 = readq(&bar0->rx_pa_cfg);
5022                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5023                         writeq(val64, &bar0->rx_pa_cfg);
5024                         sp->vlan_strip_flag = 1;
5025                 }
5026
5027                 val64 = readq(&bar0->mac_cfg);
5028                 sp->promisc_flg = 0;
5029                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5030         }
5031
5032         /*  Update individual M_CAST address list */
5033         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5034                 if (netdev_mc_count(dev) >
5035                     (config->max_mc_addr - config->max_mac_addr)) {
5036                         DBG_PRINT(ERR_DBG,
5037                                   "%s: No more Rx filters can be added - "
5038                                   "please enable ALL_MULTI instead\n",
5039                                   dev->name);
5040                         return;
5041                 }
5042
5043                 prev_cnt = sp->mc_addr_count;
5044                 sp->mc_addr_count = netdev_mc_count(dev);
5045
5046                 /* Clear out the previous list of Mc in the H/W. */
5047                 for (i = 0; i < prev_cnt; i++) {
5048                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5049                                &bar0->rmac_addr_data0_mem);
5050                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051                                &bar0->rmac_addr_data1_mem);
5052                         val64 = RMAC_ADDR_CMD_MEM_WE |
5053                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5054                                 RMAC_ADDR_CMD_MEM_OFFSET
5055                                 (config->mc_start_offset + i);
5056                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5057
5058                         /* Wait for command completes */
5059                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5060                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5061                                                   S2IO_BIT_RESET)) {
5062                                 DBG_PRINT(ERR_DBG,
5063                                           "%s: Adding Multicasts failed\n",
5064                                           dev->name);
5065                                 return;
5066                         }
5067                 }
5068
5069                 /* Create the new Rx filter list and update the same in H/W. */
5070                 i = 0;
5071                 netdev_for_each_mc_addr(ha, dev) {
5072                         mac_addr = 0;
5073                         for (j = 0; j < ETH_ALEN; j++) {
5074                                 mac_addr |= ha->addr[j];
5075                                 mac_addr <<= 8;
5076                         }
5077                         mac_addr >>= 8;
5078                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5079                                &bar0->rmac_addr_data0_mem);
5080                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5081                                &bar0->rmac_addr_data1_mem);
5082                         val64 = RMAC_ADDR_CMD_MEM_WE |
5083                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5084                                 RMAC_ADDR_CMD_MEM_OFFSET
5085                                 (i + config->mc_start_offset);
5086                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5087
5088                         /* Wait for command completes */
5089                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5090                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5091                                                   S2IO_BIT_RESET)) {
5092                                 DBG_PRINT(ERR_DBG,
5093                                           "%s: Adding Multicasts failed\n",
5094                                           dev->name);
5095                                 return;
5096                         }
5097                         i++;
5098                 }
5099         }
5100 }
5101
5102 /* read from CAM unicast & multicast addresses and store it in
5103  * def_mac_addr structure
5104  */
5105 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5106 {
5107         int offset;
5108         u64 mac_addr = 0x0;
5109         struct config_param *config = &sp->config;
5110
5111         /* store unicast & multicast mac addresses */
5112         for (offset = 0; offset < config->max_mc_addr; offset++) {
5113                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5114                 /* if read fails disable the entry */
5115                 if (mac_addr == FAILURE)
5116                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5117                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5118         }
5119 }
5120
5121 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5122 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5123 {
5124         int offset;
5125         struct config_param *config = &sp->config;
5126         /* restore unicast mac address */
5127         for (offset = 0; offset < config->max_mac_addr; offset++)
5128                 do_s2io_prog_unicast(sp->dev,
5129                                      sp->def_mac_addr[offset].mac_addr);
5130
5131         /* restore multicast mac address */
5132         for (offset = config->mc_start_offset;
5133              offset < config->max_mc_addr; offset++)
5134                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5135 }
5136
5137 /* add a multicast MAC address to CAM */
5138 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5139 {
5140         int i;
5141         u64 mac_addr = 0;
5142         struct config_param *config = &sp->config;
5143
5144         for (i = 0; i < ETH_ALEN; i++) {
5145                 mac_addr <<= 8;
5146                 mac_addr |= addr[i];
5147         }
5148         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5149                 return SUCCESS;
5150
5151         /* check if the multicast mac already preset in CAM */
5152         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5153                 u64 tmp64;
5154                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5155                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5156                         break;
5157
5158                 if (tmp64 == mac_addr)
5159                         return SUCCESS;
5160         }
5161         if (i == config->max_mc_addr) {
5162                 DBG_PRINT(ERR_DBG,
5163                           "CAM full no space left for multicast MAC\n");
5164                 return FAILURE;
5165         }
5166         /* Update the internal structure with this new mac address */
5167         do_s2io_copy_mac_addr(sp, i, mac_addr);
5168
5169         return do_s2io_add_mac(sp, mac_addr, i);
5170 }
5171
5172 /* add MAC address to CAM */
5173 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5174 {
5175         u64 val64;
5176         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5177
5178         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5179                &bar0->rmac_addr_data0_mem);
5180
5181         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5182                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5183         writeq(val64, &bar0->rmac_addr_cmd_mem);
5184
5185         /* Wait till command completes */
5186         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5187                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5188                                   S2IO_BIT_RESET)) {
5189                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5190                 return FAILURE;
5191         }
5192         return SUCCESS;
5193 }
5194 /* deletes a specified unicast/multicast mac entry from CAM */
5195 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5196 {
5197         int offset;
5198         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5199         struct config_param *config = &sp->config;
5200
5201         for (offset = 1;
5202              offset < config->max_mc_addr; offset++) {
5203                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5204                 if (tmp64 == addr) {
5205                         /* disable the entry by writing  0xffffffffffffULL */
5206                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5207                                 return FAILURE;
5208                         /* store the new mac list from CAM */
5209                         do_s2io_store_unicast_mc(sp);
5210                         return SUCCESS;
5211                 }
5212         }
5213         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5214                   (unsigned long long)addr);
5215         return FAILURE;
5216 }
5217
5218 /* read mac entries from CAM */
5219 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5220 {
5221         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5222         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5223
5224         /* read mac addr */
5225         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5226                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5227         writeq(val64, &bar0->rmac_addr_cmd_mem);
5228
5229         /* Wait till command completes */
5230         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5231                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5232                                   S2IO_BIT_RESET)) {
5233                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5234                 return FAILURE;
5235         }
5236         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5237
5238         return tmp64 >> 16;
5239 }
5240
5241 /**
5242  * s2io_set_mac_addr - driver entry point
5243  */
5244
5245 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5246 {
5247         struct sockaddr *addr = p;
5248
5249         if (!is_valid_ether_addr(addr->sa_data))
5250                 return -EADDRNOTAVAIL;
5251
5252         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5253
5254         /* store the MAC address in CAM */
5255         return do_s2io_prog_unicast(dev, dev->dev_addr);
5256 }
5257 /**
5258  *  do_s2io_prog_unicast - Programs the Xframe mac address
5259  *  @dev : pointer to the device structure.
5260  *  @addr: a uchar pointer to the new mac address which is to be set.
5261  *  Description : This procedure will program the Xframe to receive
5262  *  frames with new Mac Address
5263  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5264  *  as defined in errno.h file on failure.
5265  */
5266
5267 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5268 {
5269         struct s2io_nic *sp = netdev_priv(dev);
5270         register u64 mac_addr = 0, perm_addr = 0;
5271         int i;
5272         u64 tmp64;
5273         struct config_param *config = &sp->config;
5274
5275         /*
5276          * Set the new MAC address as the new unicast filter and reflect this
5277          * change on the device address registered with the OS. It will be
5278          * at offset 0.
5279          */
5280         for (i = 0; i < ETH_ALEN; i++) {
5281                 mac_addr <<= 8;
5282                 mac_addr |= addr[i];
5283                 perm_addr <<= 8;
5284                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5285         }
5286
5287         /* check if the dev_addr is different than perm_addr */
5288         if (mac_addr == perm_addr)
5289                 return SUCCESS;
5290
5291         /* check if the mac already preset in CAM */
5292         for (i = 1; i < config->max_mac_addr; i++) {
5293                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5294                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5295                         break;
5296
5297                 if (tmp64 == mac_addr) {
5298                         DBG_PRINT(INFO_DBG,
5299                                   "MAC addr:0x%llx already present in CAM\n",
5300                                   (unsigned long long)mac_addr);
5301                         return SUCCESS;
5302                 }
5303         }
5304         if (i == config->max_mac_addr) {
5305                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5306                 return FAILURE;
5307         }
5308         /* Update the internal structure with this new mac address */
5309         do_s2io_copy_mac_addr(sp, i, mac_addr);
5310
5311         return do_s2io_add_mac(sp, mac_addr, i);
5312 }
5313
5314 /**
5315  * s2io_ethtool_sset - Sets different link parameters.
5316  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5317  * @info: pointer to the structure with parameters given by ethtool to set
5318  * link information.
5319  * Description:
5320  * The function sets different link parameters provided by the user onto
5321  * the NIC.
5322  * Return value:
5323  * 0 on success.
5324  */
5325
5326 static int s2io_ethtool_sset(struct net_device *dev,
5327                              struct ethtool_cmd *info)
5328 {
5329         struct s2io_nic *sp = netdev_priv(dev);
5330         if ((info->autoneg == AUTONEG_ENABLE) ||
5331             (ethtool_cmd_speed(info) != SPEED_10000) ||
5332             (info->duplex != DUPLEX_FULL))
5333                 return -EINVAL;
5334         else {
5335                 s2io_close(sp->dev);
5336                 s2io_open(sp->dev);
5337         }
5338
5339         return 0;
5340 }
5341
5342 /**
5343  * s2io_ethtol_gset - Return link specific information.
5344  * @sp : private member of the device structure, pointer to the
5345  *      s2io_nic structure.
5346  * @info : pointer to the structure with parameters given by ethtool
5347  * to return link information.
5348  * Description:
5349  * Returns link specific information like speed, duplex etc.. to ethtool.
5350  * Return value :
5351  * return 0 on success.
5352  */
5353
5354 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5355 {
5356         struct s2io_nic *sp = netdev_priv(dev);
5357         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359         info->port = PORT_FIBRE;
5360
5361         /* info->transceiver */
5362         info->transceiver = XCVR_EXTERNAL;
5363
5364         if (netif_carrier_ok(sp->dev)) {
5365                 ethtool_cmd_speed_set(info, SPEED_10000);
5366                 info->duplex = DUPLEX_FULL;
5367         } else {
5368                 ethtool_cmd_speed_set(info, -1);
5369                 info->duplex = -1;
5370         }
5371
5372         info->autoneg = AUTONEG_DISABLE;
5373         return 0;
5374 }
5375
5376 /**
5377  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5378  * @sp : private member of the device structure, which is a pointer to the
5379  * s2io_nic structure.
5380  * @info : pointer to the structure with parameters given by ethtool to
5381  * return driver information.
5382  * Description:
5383  * Returns driver specefic information like name, version etc.. to ethtool.
5384  * Return value:
5385  *  void
5386  */
5387
5388 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5389                                   struct ethtool_drvinfo *info)
5390 {
5391         struct s2io_nic *sp = netdev_priv(dev);
5392
5393         strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5394         strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5395         strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5396         info->regdump_len = XENA_REG_SPACE;
5397         info->eedump_len = XENA_EEPROM_SPACE;
5398 }
5399
5400 /**
5401  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5402  *  @sp: private member of the device structure, which is a pointer to the
5403  *  s2io_nic structure.
5404  *  @regs : pointer to the structure with parameters given by ethtool for
5405  *  dumping the registers.
5406  *  @reg_space: The input argumnet into which all the registers are dumped.
5407  *  Description:
5408  *  Dumps the entire register space of xFrame NIC into the user given
5409  *  buffer area.
5410  * Return value :
5411  * void .
5412  */
5413
5414 static void s2io_ethtool_gregs(struct net_device *dev,
5415                                struct ethtool_regs *regs, void *space)
5416 {
5417         int i;
5418         u64 reg;
5419         u8 *reg_space = (u8 *)space;
5420         struct s2io_nic *sp = netdev_priv(dev);
5421
5422         regs->len = XENA_REG_SPACE;
5423         regs->version = sp->pdev->subsystem_device;
5424
5425         for (i = 0; i < regs->len; i += 8) {
5426                 reg = readq(sp->bar0 + i);
5427                 memcpy((reg_space + i), &reg, 8);
5428         }
5429 }
5430
5431 /*
5432  *  s2io_set_led - control NIC led
5433  */
5434 static void s2io_set_led(struct s2io_nic *sp, bool on)
5435 {
5436         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5437         u16 subid = sp->pdev->subsystem_device;
5438         u64 val64;
5439
5440         if ((sp->device_type == XFRAME_II_DEVICE) ||
5441             ((subid & 0xFF) >= 0x07)) {
5442                 val64 = readq(&bar0->gpio_control);
5443                 if (on)
5444                         val64 |= GPIO_CTRL_GPIO_0;
5445                 else
5446                         val64 &= ~GPIO_CTRL_GPIO_0;
5447
5448                 writeq(val64, &bar0->gpio_control);
5449         } else {
5450                 val64 = readq(&bar0->adapter_control);
5451                 if (on)
5452                         val64 |= ADAPTER_LED_ON;
5453                 else
5454                         val64 &= ~ADAPTER_LED_ON;
5455
5456                 writeq(val64, &bar0->adapter_control);
5457         }
5458
5459 }
5460
5461 /**
5462  * s2io_ethtool_set_led - To physically identify the nic on the system.
5463  * @dev : network device
5464  * @state: led setting
5465  *
5466  * Description: Used to physically identify the NIC on the system.
5467  * The Link LED will blink for a time specified by the user for
5468  * identification.
5469  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5470  * identification is possible only if it's link is up.
5471  */
5472
5473 static int s2io_ethtool_set_led(struct net_device *dev,
5474                                 enum ethtool_phys_id_state state)
5475 {
5476         struct s2io_nic *sp = netdev_priv(dev);
5477         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5478         u16 subid = sp->pdev->subsystem_device;
5479
5480         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5481                 u64 val64 = readq(&bar0->adapter_control);
5482                 if (!(val64 & ADAPTER_CNTL_EN)) {
5483                         pr_err("Adapter Link down, cannot blink LED\n");
5484                         return -EAGAIN;
5485                 }
5486         }
5487
5488         switch (state) {
5489         case ETHTOOL_ID_ACTIVE:
5490                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5491                 return 1;       /* cycle on/off once per second */
5492
5493         case ETHTOOL_ID_ON:
5494                 s2io_set_led(sp, true);
5495                 break;
5496
5497         case ETHTOOL_ID_OFF:
5498                 s2io_set_led(sp, false);
5499                 break;
5500
5501         case ETHTOOL_ID_INACTIVE:
5502                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5503                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5504         }
5505
5506         return 0;
5507 }
5508
5509 static void s2io_ethtool_gringparam(struct net_device *dev,
5510                                     struct ethtool_ringparam *ering)
5511 {
5512         struct s2io_nic *sp = netdev_priv(dev);
5513         int i, tx_desc_count = 0, rx_desc_count = 0;
5514
5515         if (sp->rxd_mode == RXD_MODE_1) {
5516                 ering->rx_max_pending = MAX_RX_DESC_1;
5517                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5518         } else {
5519                 ering->rx_max_pending = MAX_RX_DESC_2;
5520                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5521         }
5522
5523         ering->tx_max_pending = MAX_TX_DESC;
5524
5525         for (i = 0; i < sp->config.rx_ring_num; i++)
5526                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5527         ering->rx_pending = rx_desc_count;
5528         ering->rx_jumbo_pending = rx_desc_count;
5529
5530         for (i = 0; i < sp->config.tx_fifo_num; i++)
5531                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5532         ering->tx_pending = tx_desc_count;
5533         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5534 }
5535
5536 /**
5537  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5538  * @sp : private member of the device structure, which is a pointer to the
5539  *      s2io_nic structure.
5540  * @ep : pointer to the structure with pause parameters given by ethtool.
5541  * Description:
5542  * Returns the Pause frame generation and reception capability of the NIC.
5543  * Return value:
5544  *  void
5545  */
5546 static void s2io_ethtool_getpause_data(struct net_device *dev,
5547                                        struct ethtool_pauseparam *ep)
5548 {
5549         u64 val64;
5550         struct s2io_nic *sp = netdev_priv(dev);
5551         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5552
5553         val64 = readq(&bar0->rmac_pause_cfg);
5554         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5555                 ep->tx_pause = true;
5556         if (val64 & RMAC_PAUSE_RX_ENABLE)
5557                 ep->rx_pause = true;
5558         ep->autoneg = false;
5559 }
5560
5561 /**
5562  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5563  * @sp : private member of the device structure, which is a pointer to the
5564  *      s2io_nic structure.
5565  * @ep : pointer to the structure with pause parameters given by ethtool.
5566  * Description:
5567  * It can be used to set or reset Pause frame generation or reception
5568  * support of the NIC.
5569  * Return value:
5570  * int, returns 0 on Success
5571  */
5572
5573 static int s2io_ethtool_setpause_data(struct net_device *dev,
5574                                       struct ethtool_pauseparam *ep)
5575 {
5576         u64 val64;
5577         struct s2io_nic *sp = netdev_priv(dev);
5578         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5579
5580         val64 = readq(&bar0->rmac_pause_cfg);
5581         if (ep->tx_pause)
5582                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5583         else
5584                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5585         if (ep->rx_pause)
5586                 val64 |= RMAC_PAUSE_RX_ENABLE;
5587         else
5588                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5589         writeq(val64, &bar0->rmac_pause_cfg);
5590         return 0;
5591 }
5592
5593 /**
5594  * read_eeprom - reads 4 bytes of data from user given offset.
5595  * @sp : private member of the device structure, which is a pointer to the
5596  *      s2io_nic structure.
5597  * @off : offset at which the data must be written
5598  * @data : Its an output parameter where the data read at the given
5599  *      offset is stored.
5600  * Description:
5601  * Will read 4 bytes of data from the user given offset and return the
5602  * read data.
5603  * NOTE: Will allow to read only part of the EEPROM visible through the
5604  *   I2C bus.
5605  * Return value:
5606  *  -1 on failure and 0 on success.
5607  */
5608
5609 #define S2IO_DEV_ID             5
5610 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5611 {
5612         int ret = -1;
5613         u32 exit_cnt = 0;
5614         u64 val64;
5615         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5616
5617         if (sp->device_type == XFRAME_I_DEVICE) {
5618                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5619                         I2C_CONTROL_ADDR(off) |
5620                         I2C_CONTROL_BYTE_CNT(0x3) |
5621                         I2C_CONTROL_READ |
5622                         I2C_CONTROL_CNTL_START;
5623                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5624
5625                 while (exit_cnt < 5) {
5626                         val64 = readq(&bar0->i2c_control);
5627                         if (I2C_CONTROL_CNTL_END(val64)) {
5628                                 *data = I2C_CONTROL_GET_DATA(val64);
5629                                 ret = 0;
5630                                 break;
5631                         }
5632                         msleep(50);
5633                         exit_cnt++;
5634                 }
5635         }
5636
5637         if (sp->device_type == XFRAME_II_DEVICE) {
5638                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5639                         SPI_CONTROL_BYTECNT(0x3) |
5640                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5641                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5642                 val64 |= SPI_CONTROL_REQ;
5643                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5644                 while (exit_cnt < 5) {
5645                         val64 = readq(&bar0->spi_control);
5646                         if (val64 & SPI_CONTROL_NACK) {
5647                                 ret = 1;
5648                                 break;
5649                         } else if (val64 & SPI_CONTROL_DONE) {
5650                                 *data = readq(&bar0->spi_data);
5651                                 *data &= 0xffffff;
5652                                 ret = 0;
5653                                 break;
5654                         }
5655                         msleep(50);
5656                         exit_cnt++;
5657                 }
5658         }
5659         return ret;
5660 }
5661
5662 /**
5663  *  write_eeprom - actually writes the relevant part of the data value.
5664  *  @sp : private member of the device structure, which is a pointer to the
5665  *       s2io_nic structure.
5666  *  @off : offset at which the data must be written
5667  *  @data : The data that is to be written
5668  *  @cnt : Number of bytes of the data that are actually to be written into
5669  *  the Eeprom. (max of 3)
5670  * Description:
5671  *  Actually writes the relevant part of the data value into the Eeprom
5672  *  through the I2C bus.
5673  * Return value:
5674  *  0 on success, -1 on failure.
5675  */
5676
5677 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5678 {
5679         int exit_cnt = 0, ret = -1;
5680         u64 val64;
5681         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5682
5683         if (sp->device_type == XFRAME_I_DEVICE) {
5684                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5685                         I2C_CONTROL_ADDR(off) |
5686                         I2C_CONTROL_BYTE_CNT(cnt) |
5687                         I2C_CONTROL_SET_DATA((u32)data) |
5688                         I2C_CONTROL_CNTL_START;
5689                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5690
5691                 while (exit_cnt < 5) {
5692                         val64 = readq(&bar0->i2c_control);
5693                         if (I2C_CONTROL_CNTL_END(val64)) {
5694                                 if (!(val64 & I2C_CONTROL_NACK))
5695                                         ret = 0;
5696                                 break;
5697                         }
5698                         msleep(50);
5699                         exit_cnt++;
5700                 }
5701         }
5702
5703         if (sp->device_type == XFRAME_II_DEVICE) {
5704                 int write_cnt = (cnt == 8) ? 0 : cnt;
5705                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5706
5707                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5708                         SPI_CONTROL_BYTECNT(write_cnt) |
5709                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5710                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5711                 val64 |= SPI_CONTROL_REQ;
5712                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5713                 while (exit_cnt < 5) {
5714                         val64 = readq(&bar0->spi_control);
5715                         if (val64 & SPI_CONTROL_NACK) {
5716                                 ret = 1;
5717                                 break;
5718                         } else if (val64 & SPI_CONTROL_DONE) {
5719                                 ret = 0;
5720                                 break;
5721                         }
5722                         msleep(50);
5723                         exit_cnt++;
5724                 }
5725         }
5726         return ret;
5727 }
5728 static void s2io_vpd_read(struct s2io_nic *nic)
5729 {
5730         u8 *vpd_data;
5731         u8 data;
5732         int i = 0, cnt, len, fail = 0;
5733         int vpd_addr = 0x80;
5734         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5735
5736         if (nic->device_type == XFRAME_II_DEVICE) {
5737                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5738                 vpd_addr = 0x80;
5739         } else {
5740                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5741                 vpd_addr = 0x50;
5742         }
5743         strcpy(nic->serial_num, "NOT AVAILABLE");
5744
5745         vpd_data = kmalloc(256, GFP_KERNEL);
5746         if (!vpd_data) {
5747                 swstats->mem_alloc_fail_cnt++;
5748                 return;
5749         }
5750         swstats->mem_allocated += 256;
5751
5752         for (i = 0; i < 256; i += 4) {
5753                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5754                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5755                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5756                 for (cnt = 0; cnt < 5; cnt++) {
5757                         msleep(2);
5758                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5759                         if (data == 0x80)
5760                                 break;
5761                 }
5762                 if (cnt >= 5) {
5763                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5764                         fail = 1;
5765                         break;
5766                 }
5767                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5768                                       (u32 *)&vpd_data[i]);
5769         }
5770
5771         if (!fail) {
5772                 /* read serial number of adapter */
5773                 for (cnt = 0; cnt < 252; cnt++) {
5774                         if ((vpd_data[cnt] == 'S') &&
5775                             (vpd_data[cnt+1] == 'N')) {
5776                                 len = vpd_data[cnt+2];
5777                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5778                                         memcpy(nic->serial_num,
5779                                                &vpd_data[cnt + 3],
5780                                                len);
5781                                         memset(nic->serial_num+len,
5782                                                0,
5783                                                VPD_STRING_LEN-len);
5784                                         break;
5785                                 }
5786                         }
5787                 }
5788         }
5789
5790         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5791                 len = vpd_data[1];
5792                 memcpy(nic->product_name, &vpd_data[3], len);
5793                 nic->product_name[len] = 0;
5794         }
5795         kfree(vpd_data);
5796         swstats->mem_freed += 256;
5797 }
5798
5799 /**
5800  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5801  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5802  *  @eeprom : pointer to the user level structure provided by ethtool,
5803  *  containing all relevant information.
5804  *  @data_buf : user defined value to be written into Eeprom.
5805  *  Description: Reads the values stored in the Eeprom at given offset
5806  *  for a given length. Stores these values int the input argument data
5807  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5808  *  Return value:
5809  *  int  0 on success
5810  */
5811
5812 static int s2io_ethtool_geeprom(struct net_device *dev,
5813                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5814 {
5815         u32 i, valid;
5816         u64 data;
5817         struct s2io_nic *sp = netdev_priv(dev);
5818
5819         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5820
5821         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5822                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5823
5824         for (i = 0; i < eeprom->len; i += 4) {
5825                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5826                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5827                         return -EFAULT;
5828                 }
5829                 valid = INV(data);
5830                 memcpy((data_buf + i), &valid, 4);
5831         }
5832         return 0;
5833 }
5834
5835 /**
5836  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5837  *  @sp : private member of the device structure, which is a pointer to the
5838  *  s2io_nic structure.
5839  *  @eeprom : pointer to the user level structure provided by ethtool,
5840  *  containing all relevant information.
5841  *  @data_buf ; user defined value to be written into Eeprom.
5842  *  Description:
5843  *  Tries to write the user provided value in the Eeprom, at the offset
5844  *  given by the user.
5845  *  Return value:
5846  *  0 on success, -EFAULT on failure.
5847  */
5848
5849 static int s2io_ethtool_seeprom(struct net_device *dev,
5850                                 struct ethtool_eeprom *eeprom,
5851                                 u8 *data_buf)
5852 {
5853         int len = eeprom->len, cnt = 0;
5854         u64 valid = 0, data;
5855         struct s2io_nic *sp = netdev_priv(dev);
5856
5857         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5858                 DBG_PRINT(ERR_DBG,
5859                           "ETHTOOL_WRITE_EEPROM Err: "
5860                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5861                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5862                           eeprom->magic);
5863                 return -EFAULT;
5864         }
5865
5866         while (len) {
5867                 data = (u32)data_buf[cnt] & 0x000000FF;
5868                 if (data)
5869                         valid = (u32)(data << 24);
5870                 else
5871                         valid = data;
5872
5873                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5874                         DBG_PRINT(ERR_DBG,
5875                                   "ETHTOOL_WRITE_EEPROM Err: "
5876                                   "Cannot write into the specified offset\n");
5877                         return -EFAULT;
5878                 }
5879                 cnt++;
5880                 len--;
5881         }
5882
5883         return 0;
5884 }
5885
5886 /**
5887  * s2io_register_test - reads and writes into all clock domains.
5888  * @sp : private member of the device structure, which is a pointer to the
5889  * s2io_nic structure.
5890  * @data : variable that returns the result of each of the test conducted b
5891  * by the driver.
5892  * Description:
5893  * Read and write into all clock domains. The NIC has 3 clock domains,
5894  * see that registers in all the three regions are accessible.
5895  * Return value:
5896  * 0 on success.
5897  */
5898
5899 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5900 {
5901         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5902         u64 val64 = 0, exp_val;
5903         int fail = 0;
5904
5905         val64 = readq(&bar0->pif_rd_swapper_fb);
5906         if (val64 != 0x123456789abcdefULL) {
5907                 fail = 1;
5908                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5909         }
5910
5911         val64 = readq(&bar0->rmac_pause_cfg);
5912         if (val64 != 0xc000ffff00000000ULL) {
5913                 fail = 1;
5914                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5915         }
5916
5917         val64 = readq(&bar0->rx_queue_cfg);
5918         if (sp->device_type == XFRAME_II_DEVICE)
5919                 exp_val = 0x0404040404040404ULL;
5920         else
5921                 exp_val = 0x0808080808080808ULL;
5922         if (val64 != exp_val) {
5923                 fail = 1;
5924                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5925         }
5926
5927         val64 = readq(&bar0->xgxs_efifo_cfg);
5928         if (val64 != 0x000000001923141EULL) {
5929                 fail = 1;
5930                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5931         }
5932
5933         val64 = 0x5A5A5A5A5A5A5A5AULL;
5934         writeq(val64, &bar0->xmsi_data);
5935         val64 = readq(&bar0->xmsi_data);
5936         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5937                 fail = 1;
5938                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5939         }
5940
5941         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5942         writeq(val64, &bar0->xmsi_data);
5943         val64 = readq(&bar0->xmsi_data);
5944         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5945                 fail = 1;
5946                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5947         }
5948
5949         *data = fail;
5950         return fail;
5951 }
5952
5953 /**
5954  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5955  * @sp : private member of the device structure, which is a pointer to the
5956  * s2io_nic structure.
5957  * @data:variable that returns the result of each of the test conducted by
5958  * the driver.
5959  * Description:
5960  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5961  * register.
5962  * Return value:
5963  * 0 on success.
5964  */
5965
5966 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5967 {
5968         int fail = 0;
5969         u64 ret_data, org_4F0, org_7F0;
5970         u8 saved_4F0 = 0, saved_7F0 = 0;
5971         struct net_device *dev = sp->dev;
5972
5973         /* Test Write Error at offset 0 */
5974         /* Note that SPI interface allows write access to all areas
5975          * of EEPROM. Hence doing all negative testing only for Xframe I.
5976          */
5977         if (sp->device_type == XFRAME_I_DEVICE)
5978                 if (!write_eeprom(sp, 0, 0, 3))
5979                         fail = 1;
5980
5981         /* Save current values at offsets 0x4F0 and 0x7F0 */
5982         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5983                 saved_4F0 = 1;
5984         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5985                 saved_7F0 = 1;
5986
5987         /* Test Write at offset 4f0 */
5988         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5989                 fail = 1;
5990         if (read_eeprom(sp, 0x4F0, &ret_data))
5991                 fail = 1;
5992
5993         if (ret_data != 0x012345) {
5994                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5995                           "Data written %llx Data read %llx\n",
5996                           dev->name, (unsigned long long)0x12345,
5997                           (unsigned long long)ret_data);
5998                 fail = 1;
5999         }
6000
6001         /* Reset the EEPROM data go FFFF */
6002         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6003
6004         /* Test Write Request Error at offset 0x7c */
6005         if (sp->device_type == XFRAME_I_DEVICE)
6006                 if (!write_eeprom(sp, 0x07C, 0, 3))
6007                         fail = 1;
6008
6009         /* Test Write Request at offset 0x7f0 */
6010         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6011                 fail = 1;
6012         if (read_eeprom(sp, 0x7F0, &ret_data))
6013                 fail = 1;
6014
6015         if (ret_data != 0x012345) {
6016                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6017                           "Data written %llx Data read %llx\n",
6018                           dev->name, (unsigned long long)0x12345,
6019                           (unsigned long long)ret_data);
6020                 fail = 1;
6021         }
6022
6023         /* Reset the EEPROM data go FFFF */
6024         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6025
6026         if (sp->device_type == XFRAME_I_DEVICE) {
6027                 /* Test Write Error at offset 0x80 */
6028                 if (!write_eeprom(sp, 0x080, 0, 3))
6029                         fail = 1;
6030
6031                 /* Test Write Error at offset 0xfc */
6032                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6033                         fail = 1;
6034
6035                 /* Test Write Error at offset 0x100 */
6036                 if (!write_eeprom(sp, 0x100, 0, 3))
6037                         fail = 1;
6038
6039                 /* Test Write Error at offset 4ec */
6040                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6041                         fail = 1;
6042         }
6043
6044         /* Restore values at offsets 0x4F0 and 0x7F0 */
6045         if (saved_4F0)
6046                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6047         if (saved_7F0)
6048                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6049
6050         *data = fail;
6051         return fail;
6052 }
6053
6054 /**
6055  * s2io_bist_test - invokes the MemBist test of the card .
6056  * @sp : private member of the device structure, which is a pointer to the
6057  * s2io_nic structure.
6058  * @data:variable that returns the result of each of the test conducted by
6059  * the driver.
6060  * Description:
6061  * This invokes the MemBist test of the card. We give around
6062  * 2 secs time for the Test to complete. If it's still not complete
6063  * within this peiod, we consider that the test failed.
6064  * Return value:
6065  * 0 on success and -1 on failure.
6066  */
6067
6068 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6069 {
6070         u8 bist = 0;
6071         int cnt = 0, ret = -1;
6072
6073         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6074         bist |= PCI_BIST_START;
6075         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6076
6077         while (cnt < 20) {
6078                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6079                 if (!(bist & PCI_BIST_START)) {
6080                         *data = (bist & PCI_BIST_CODE_MASK);
6081                         ret = 0;
6082                         break;
6083                 }
6084                 msleep(100);
6085                 cnt++;
6086         }
6087
6088         return ret;
6089 }
6090
6091 /**
6092  * s2io_link_test - verifies the link state of the nic
6093  * @sp ; private member of the device structure, which is a pointer to the
6094  * s2io_nic structure.
6095  * @data: variable that returns the result of each of the test conducted by
6096  * the driver.
6097  * Description:
6098  * The function verifies the link state of the NIC and updates the input
6099  * argument 'data' appropriately.
6100  * Return value:
6101  * 0 on success.
6102  */
6103
6104 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6105 {
6106         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6107         u64 val64;
6108
6109         val64 = readq(&bar0->adapter_status);
6110         if (!(LINK_IS_UP(val64)))
6111                 *data = 1;
6112         else
6113                 *data = 0;
6114
6115         return *data;
6116 }
6117
6118 /**
6119  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6120  * @sp: private member of the device structure, which is a pointer to the
6121  * s2io_nic structure.
6122  * @data: variable that returns the result of each of the test
6123  * conducted by the driver.
6124  * Description:
6125  *  This is one of the offline test that tests the read and write
6126  *  access to the RldRam chip on the NIC.
6127  * Return value:
6128  *  0 on success.
6129  */
6130
6131 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6132 {
6133         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6134         u64 val64;
6135         int cnt, iteration = 0, test_fail = 0;
6136
6137         val64 = readq(&bar0->adapter_control);
6138         val64 &= ~ADAPTER_ECC_EN;
6139         writeq(val64, &bar0->adapter_control);
6140
6141         val64 = readq(&bar0->mc_rldram_test_ctrl);
6142         val64 |= MC_RLDRAM_TEST_MODE;
6143         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6144
6145         val64 = readq(&bar0->mc_rldram_mrs);
6146         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6147         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6148
6149         val64 |= MC_RLDRAM_MRS_ENABLE;
6150         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6151
6152         while (iteration < 2) {
6153                 val64 = 0x55555555aaaa0000ULL;
6154                 if (iteration == 1)
6155                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6156                 writeq(val64, &bar0->mc_rldram_test_d0);
6157
6158                 val64 = 0xaaaa5a5555550000ULL;
6159                 if (iteration == 1)
6160                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6161                 writeq(val64, &bar0->mc_rldram_test_d1);
6162
6163                 val64 = 0x55aaaaaaaa5a0000ULL;
6164                 if (iteration == 1)
6165                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166                 writeq(val64, &bar0->mc_rldram_test_d2);
6167
6168                 val64 = (u64) (0x0000003ffffe0100ULL);
6169                 writeq(val64, &bar0->mc_rldram_test_add);
6170
6171                 val64 = MC_RLDRAM_TEST_MODE |
6172                         MC_RLDRAM_TEST_WRITE |
6173                         MC_RLDRAM_TEST_GO;
6174                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6175
6176                 for (cnt = 0; cnt < 5; cnt++) {
6177                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6178                         if (val64 & MC_RLDRAM_TEST_DONE)
6179                                 break;
6180                         msleep(200);
6181                 }
6182
6183                 if (cnt == 5)
6184                         break;
6185
6186                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6187                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188
6189                 for (cnt = 0; cnt < 5; cnt++) {
6190                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6191                         if (val64 & MC_RLDRAM_TEST_DONE)
6192                                 break;
6193                         msleep(500);
6194                 }
6195
6196                 if (cnt == 5)
6197                         break;
6198
6199                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6200                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6201                         test_fail = 1;
6202
6203                 iteration++;
6204         }
6205
6206         *data = test_fail;
6207
6208         /* Bring the adapter out of test mode */
6209         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6210
6211         return test_fail;
6212 }
6213
6214 /**
6215  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6216  *  @sp : private member of the device structure, which is a pointer to the
6217  *  s2io_nic structure.
6218  *  @ethtest : pointer to a ethtool command specific structure that will be
6219  *  returned to the user.
6220  *  @data : variable that returns the result of each of the test
6221  * conducted by the driver.
6222  * Description:
6223  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6224  *  the health of the card.
6225  * Return value:
6226  *  void
6227  */
6228
6229 static void s2io_ethtool_test(struct net_device *dev,
6230                               struct ethtool_test *ethtest,
6231                               uint64_t *data)
6232 {
6233         struct s2io_nic *sp = netdev_priv(dev);
6234         int orig_state = netif_running(sp->dev);
6235
6236         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6237                 /* Offline Tests. */
6238                 if (orig_state)
6239                         s2io_close(sp->dev);
6240
6241                 if (s2io_register_test(sp, &data[0]))
6242                         ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244                 s2io_reset(sp);
6245
6246                 if (s2io_rldram_test(sp, &data[3]))
6247                         ethtest->flags |= ETH_TEST_FL_FAILED;
6248
6249                 s2io_reset(sp);
6250
6251                 if (s2io_eeprom_test(sp, &data[1]))
6252                         ethtest->flags |= ETH_TEST_FL_FAILED;
6253
6254                 if (s2io_bist_test(sp, &data[4]))
6255                         ethtest->flags |= ETH_TEST_FL_FAILED;
6256
6257                 if (orig_state)
6258                         s2io_open(sp->dev);
6259
6260                 data[2] = 0;
6261         } else {
6262                 /* Online Tests. */
6263                 if (!orig_state) {
6264                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6265                                   dev->name);
6266                         data[0] = -1;
6267                         data[1] = -1;
6268                         data[2] = -1;
6269                         data[3] = -1;
6270                         data[4] = -1;
6271                 }
6272
6273                 if (s2io_link_test(sp, &data[2]))
6274                         ethtest->flags |= ETH_TEST_FL_FAILED;
6275
6276                 data[0] = 0;
6277                 data[1] = 0;
6278                 data[3] = 0;
6279                 data[4] = 0;
6280         }
6281 }
6282
6283 static void s2io_get_ethtool_stats(struct net_device *dev,
6284                                    struct ethtool_stats *estats,
6285                                    u64 *tmp_stats)
6286 {
6287         int i = 0, k;
6288         struct s2io_nic *sp = netdev_priv(dev);
6289         struct stat_block *stats = sp->mac_control.stats_info;
6290         struct swStat *swstats = &stats->sw_stat;
6291         struct xpakStat *xstats = &stats->xpak_stat;
6292
6293         s2io_updt_stats(sp);
6294         tmp_stats[i++] =
6295                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6296                 le32_to_cpu(stats->tmac_frms);
6297         tmp_stats[i++] =
6298                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6299                 le32_to_cpu(stats->tmac_data_octets);
6300         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6301         tmp_stats[i++] =
6302                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6303                 le32_to_cpu(stats->tmac_mcst_frms);
6304         tmp_stats[i++] =
6305                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6306                 le32_to_cpu(stats->tmac_bcst_frms);
6307         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6308         tmp_stats[i++] =
6309                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6310                 le32_to_cpu(stats->tmac_ttl_octets);
6311         tmp_stats[i++] =
6312                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6313                 le32_to_cpu(stats->tmac_ucst_frms);
6314         tmp_stats[i++] =
6315                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6316                 le32_to_cpu(stats->tmac_nucst_frms);
6317         tmp_stats[i++] =
6318                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6319                 le32_to_cpu(stats->tmac_any_err_frms);
6320         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6321         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6322         tmp_stats[i++] =
6323                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6324                 le32_to_cpu(stats->tmac_vld_ip);
6325         tmp_stats[i++] =
6326                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6327                 le32_to_cpu(stats->tmac_drop_ip);
6328         tmp_stats[i++] =
6329                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6330                 le32_to_cpu(stats->tmac_icmp);
6331         tmp_stats[i++] =
6332                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6333                 le32_to_cpu(stats->tmac_rst_tcp);
6334         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6335         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6336                 le32_to_cpu(stats->tmac_udp);
6337         tmp_stats[i++] =
6338                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6339                 le32_to_cpu(stats->rmac_vld_frms);
6340         tmp_stats[i++] =
6341                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6342                 le32_to_cpu(stats->rmac_data_octets);
6343         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6344         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6345         tmp_stats[i++] =
6346                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6347                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6348         tmp_stats[i++] =
6349                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6350                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6351         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6352         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6353         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6354         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6355         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6358                 le32_to_cpu(stats->rmac_ttl_octets);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6361                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6362         tmp_stats[i++] =
6363                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6364                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6365         tmp_stats[i++] =
6366                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6367                 le32_to_cpu(stats->rmac_discarded_frms);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6370                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6371         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6372         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6375                 le32_to_cpu(stats->rmac_usized_frms);
6376         tmp_stats[i++] =
6377                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6378                 le32_to_cpu(stats->rmac_osized_frms);
6379         tmp_stats[i++] =
6380                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6381                 le32_to_cpu(stats->rmac_frag_frms);
6382         tmp_stats[i++] =
6383                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6384                 le32_to_cpu(stats->rmac_jabber_frms);
6385         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6386         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6387         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6388         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6389         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6390         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6391         tmp_stats[i++] =
6392                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6393                 le32_to_cpu(stats->rmac_ip);
6394         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6395         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6396         tmp_stats[i++] =
6397                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6398                 le32_to_cpu(stats->rmac_drop_ip);
6399         tmp_stats[i++] =
6400                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6401                 le32_to_cpu(stats->rmac_icmp);
6402         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6405                 le32_to_cpu(stats->rmac_udp);
6406         tmp_stats[i++] =
6407                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6408                 le32_to_cpu(stats->rmac_err_drp_udp);
6409         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6410         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6411         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6412         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6413         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6414         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6418         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6419         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6420         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6421         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6422         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6423         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6424         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6425         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6426         tmp_stats[i++] =
6427                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6428                 le32_to_cpu(stats->rmac_pause_cnt);
6429         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6430         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6431         tmp_stats[i++] =
6432                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6433                 le32_to_cpu(stats->rmac_accepted_ip);
6434         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6435         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6436         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6437         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6438         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6439         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6440         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6441         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6442         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6443         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6444         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6445         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6446         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6447         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6448         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6449         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6450         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6451         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6452         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6453
6454         /* Enhanced statistics exist only for Hercules */
6455         if (sp->device_type == XFRAME_II_DEVICE) {
6456                 tmp_stats[i++] =
6457                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6458                 tmp_stats[i++] =
6459                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6460                 tmp_stats[i++] =
6461                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6462                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6463                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6464                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6465                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6466                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6467                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6468                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6469                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6470                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6471                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6472                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6473                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6474                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6475         }
6476
6477         tmp_stats[i++] = 0;
6478         tmp_stats[i++] = swstats->single_ecc_errs;
6479         tmp_stats[i++] = swstats->double_ecc_errs;
6480         tmp_stats[i++] = swstats->parity_err_cnt;
6481         tmp_stats[i++] = swstats->serious_err_cnt;
6482         tmp_stats[i++] = swstats->soft_reset_cnt;
6483         tmp_stats[i++] = swstats->fifo_full_cnt;
6484         for (k = 0; k < MAX_RX_RINGS; k++)
6485                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6486         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6487         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6488         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6489         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6490         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6491         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6492         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6493         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6494         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6495         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6496         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6497         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6498         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6499         tmp_stats[i++] = swstats->sending_both;
6500         tmp_stats[i++] = swstats->outof_sequence_pkts;
6501         tmp_stats[i++] = swstats->flush_max_pkts;
6502         if (swstats->num_aggregations) {
6503                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6504                 int count = 0;
6505                 /*
6506                  * Since 64-bit divide does not work on all platforms,
6507                  * do repeated subtraction.
6508                  */
6509                 while (tmp >= swstats->num_aggregations) {
6510                         tmp -= swstats->num_aggregations;
6511                         count++;
6512                 }
6513                 tmp_stats[i++] = count;
6514         } else
6515                 tmp_stats[i++] = 0;
6516         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6517         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6518         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6519         tmp_stats[i++] = swstats->mem_allocated;
6520         tmp_stats[i++] = swstats->mem_freed;
6521         tmp_stats[i++] = swstats->link_up_cnt;
6522         tmp_stats[i++] = swstats->link_down_cnt;
6523         tmp_stats[i++] = swstats->link_up_time;
6524         tmp_stats[i++] = swstats->link_down_time;
6525
6526         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6527         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6528         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6529         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6530         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6531
6532         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6533         tmp_stats[i++] = swstats->rx_abort_cnt;
6534         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6535         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6536         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6537         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6538         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6539         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6540         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6541         tmp_stats[i++] = swstats->tda_err_cnt;
6542         tmp_stats[i++] = swstats->pfc_err_cnt;
6543         tmp_stats[i++] = swstats->pcc_err_cnt;
6544         tmp_stats[i++] = swstats->tti_err_cnt;
6545         tmp_stats[i++] = swstats->tpa_err_cnt;
6546         tmp_stats[i++] = swstats->sm_err_cnt;
6547         tmp_stats[i++] = swstats->lso_err_cnt;
6548         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6549         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6550         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6551         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6552         tmp_stats[i++] = swstats->rc_err_cnt;
6553         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6554         tmp_stats[i++] = swstats->rpa_err_cnt;
6555         tmp_stats[i++] = swstats->rda_err_cnt;
6556         tmp_stats[i++] = swstats->rti_err_cnt;
6557         tmp_stats[i++] = swstats->mc_err_cnt;
6558 }
6559
6560 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6561 {
6562         return XENA_REG_SPACE;
6563 }
6564
6565
6566 static int s2io_get_eeprom_len(struct net_device *dev)
6567 {
6568         return XENA_EEPROM_SPACE;
6569 }
6570
6571 static int s2io_get_sset_count(struct net_device *dev, int sset)
6572 {
6573         struct s2io_nic *sp = netdev_priv(dev);
6574
6575         switch (sset) {
6576         case ETH_SS_TEST:
6577                 return S2IO_TEST_LEN;
6578         case ETH_SS_STATS:
6579                 switch (sp->device_type) {
6580                 case XFRAME_I_DEVICE:
6581                         return XFRAME_I_STAT_LEN;
6582                 case XFRAME_II_DEVICE:
6583                         return XFRAME_II_STAT_LEN;
6584                 default:
6585                         return 0;
6586                 }
6587         default:
6588                 return -EOPNOTSUPP;
6589         }
6590 }
6591
6592 static void s2io_ethtool_get_strings(struct net_device *dev,
6593                                      u32 stringset, u8 *data)
6594 {
6595         int stat_size = 0;
6596         struct s2io_nic *sp = netdev_priv(dev);
6597
6598         switch (stringset) {
6599         case ETH_SS_TEST:
6600                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6601                 break;
6602         case ETH_SS_STATS:
6603                 stat_size = sizeof(ethtool_xena_stats_keys);
6604                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6605                 if (sp->device_type == XFRAME_II_DEVICE) {
6606                         memcpy(data + stat_size,
6607                                &ethtool_enhanced_stats_keys,
6608                                sizeof(ethtool_enhanced_stats_keys));
6609                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6610                 }
6611
6612                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6613                        sizeof(ethtool_driver_stats_keys));
6614         }
6615 }
6616
6617 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6618 {
6619         struct s2io_nic *sp = netdev_priv(dev);
6620         netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6621
6622         if (changed && netif_running(dev)) {
6623                 int rc;
6624
6625                 s2io_stop_all_tx_queue(sp);
6626                 s2io_card_down(sp);
6627                 dev->features = features;
6628                 rc = s2io_card_up(sp);
6629                 if (rc)
6630                         s2io_reset(sp);
6631                 else
6632                         s2io_start_all_tx_queue(sp);
6633
6634                 return rc ? rc : 1;
6635         }
6636
6637         return 0;
6638 }
6639
6640 static const struct ethtool_ops netdev_ethtool_ops = {
6641         .get_settings = s2io_ethtool_gset,
6642         .set_settings = s2io_ethtool_sset,
6643         .get_drvinfo = s2io_ethtool_gdrvinfo,
6644         .get_regs_len = s2io_ethtool_get_regs_len,
6645         .get_regs = s2io_ethtool_gregs,
6646         .get_link = ethtool_op_get_link,
6647         .get_eeprom_len = s2io_get_eeprom_len,
6648         .get_eeprom = s2io_ethtool_geeprom,
6649         .set_eeprom = s2io_ethtool_seeprom,
6650         .get_ringparam = s2io_ethtool_gringparam,
6651         .get_pauseparam = s2io_ethtool_getpause_data,
6652         .set_pauseparam = s2io_ethtool_setpause_data,
6653         .self_test = s2io_ethtool_test,
6654         .get_strings = s2io_ethtool_get_strings,
6655         .set_phys_id = s2io_ethtool_set_led,
6656         .get_ethtool_stats = s2io_get_ethtool_stats,
6657         .get_sset_count = s2io_get_sset_count,
6658 };
6659
6660 /**
6661  *  s2io_ioctl - Entry point for the Ioctl
6662  *  @dev :  Device pointer.
6663  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6664  *  a proprietary structure used to pass information to the driver.
6665  *  @cmd :  This is used to distinguish between the different commands that
6666  *  can be passed to the IOCTL functions.
6667  *  Description:
6668  *  Currently there are no special functionality supported in IOCTL, hence
6669  *  function always return EOPNOTSUPPORTED
6670  */
6671
6672 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6673 {
6674         return -EOPNOTSUPP;
6675 }
6676
6677 /**
6678  *  s2io_change_mtu - entry point to change MTU size for the device.
6679  *   @dev : device pointer.
6680  *   @new_mtu : the new MTU size for the device.
6681  *   Description: A driver entry point to change MTU size for the device.
6682  *   Before changing the MTU the device must be stopped.
6683  *  Return value:
6684  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6685  *   file on failure.
6686  */
6687
6688 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6689 {
6690         struct s2io_nic *sp = netdev_priv(dev);
6691         int ret = 0;
6692
6693         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6694                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6695                 return -EPERM;
6696         }
6697
6698         dev->mtu = new_mtu;
6699         if (netif_running(dev)) {
6700                 s2io_stop_all_tx_queue(sp);
6701                 s2io_card_down(sp);
6702                 ret = s2io_card_up(sp);
6703                 if (ret) {
6704                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6705                                   __func__);
6706                         return ret;
6707                 }
6708                 s2io_wake_all_tx_queue(sp);
6709         } else { /* Device is down */
6710                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6711                 u64 val64 = new_mtu;
6712
6713                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6714         }
6715
6716         return ret;
6717 }
6718
6719 /**
6720  * s2io_set_link - Set the LInk status
6721  * @data: long pointer to device private structue
6722  * Description: Sets the link status for the adapter
6723  */
6724
6725 static void s2io_set_link(struct work_struct *work)
6726 {
6727         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6728                                             set_link_task);
6729         struct net_device *dev = nic->dev;
6730         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6731         register u64 val64;
6732         u16 subid;
6733
6734         rtnl_lock();
6735
6736         if (!netif_running(dev))
6737                 goto out_unlock;
6738
6739         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6740                 /* The card is being reset, no point doing anything */
6741                 goto out_unlock;
6742         }
6743
6744         subid = nic->pdev->subsystem_device;
6745         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746                 /*
6747                  * Allow a small delay for the NICs self initiated
6748                  * cleanup to complete.
6749                  */
6750                 msleep(100);
6751         }
6752
6753         val64 = readq(&bar0->adapter_status);
6754         if (LINK_IS_UP(val64)) {
6755                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6756                         if (verify_xena_quiescence(nic)) {
6757                                 val64 = readq(&bar0->adapter_control);
6758                                 val64 |= ADAPTER_CNTL_EN;
6759                                 writeq(val64, &bar0->adapter_control);
6760                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6761                                             nic->device_type, subid)) {
6762                                         val64 = readq(&bar0->gpio_control);
6763                                         val64 |= GPIO_CTRL_GPIO_0;
6764                                         writeq(val64, &bar0->gpio_control);
6765                                         val64 = readq(&bar0->gpio_control);
6766                                 } else {
6767                                         val64 |= ADAPTER_LED_ON;
6768                                         writeq(val64, &bar0->adapter_control);
6769                                 }
6770                                 nic->device_enabled_once = true;
6771                         } else {
6772                                 DBG_PRINT(ERR_DBG,
6773                                           "%s: Error: device is not Quiescent\n",
6774                                           dev->name);
6775                                 s2io_stop_all_tx_queue(nic);
6776                         }
6777                 }
6778                 val64 = readq(&bar0->adapter_control);
6779                 val64 |= ADAPTER_LED_ON;
6780                 writeq(val64, &bar0->adapter_control);
6781                 s2io_link(nic, LINK_UP);
6782         } else {
6783                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6784                                                       subid)) {
6785                         val64 = readq(&bar0->gpio_control);
6786                         val64 &= ~GPIO_CTRL_GPIO_0;
6787                         writeq(val64, &bar0->gpio_control);
6788                         val64 = readq(&bar0->gpio_control);
6789                 }
6790                 /* turn off LED */
6791                 val64 = readq(&bar0->adapter_control);
6792                 val64 = val64 & (~ADAPTER_LED_ON);
6793                 writeq(val64, &bar0->adapter_control);
6794                 s2io_link(nic, LINK_DOWN);
6795         }
6796         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6797
6798 out_unlock:
6799         rtnl_unlock();
6800 }
6801
6802 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6803                                   struct buffAdd *ba,
6804                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6805                                   u64 *temp2, int size)
6806 {
6807         struct net_device *dev = sp->dev;
6808         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6809
6810         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6811                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6812                 /* allocate skb */
6813                 if (*skb) {
6814                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6815                         /*
6816                          * As Rx frame are not going to be processed,
6817                          * using same mapped address for the Rxd
6818                          * buffer pointer
6819                          */
6820                         rxdp1->Buffer0_ptr = *temp0;
6821                 } else {
6822                         *skb = netdev_alloc_skb(dev, size);
6823                         if (!(*skb)) {
6824                                 DBG_PRINT(INFO_DBG,
6825                                           "%s: Out of memory to allocate %s\n",
6826                                           dev->name, "1 buf mode SKBs");
6827                                 stats->mem_alloc_fail_cnt++;
6828                                 return -ENOMEM ;
6829                         }
6830                         stats->mem_allocated += (*skb)->truesize;
6831                         /* storing the mapped addr in a temp variable
6832                          * such it will be used for next rxd whose
6833                          * Host Control is NULL
6834                          */
6835                         rxdp1->Buffer0_ptr = *temp0 =
6836                                 pci_map_single(sp->pdev, (*skb)->data,
6837                                                size - NET_IP_ALIGN,
6838                                                PCI_DMA_FROMDEVICE);
6839                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6840                                 goto memalloc_failed;
6841                         rxdp->Host_Control = (unsigned long) (*skb);
6842                 }
6843         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6844                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6845                 /* Two buffer Mode */
6846                 if (*skb) {
6847                         rxdp3->Buffer2_ptr = *temp2;
6848                         rxdp3->Buffer0_ptr = *temp0;
6849                         rxdp3->Buffer1_ptr = *temp1;
6850                 } else {
6851                         *skb = netdev_alloc_skb(dev, size);
6852                         if (!(*skb)) {
6853                                 DBG_PRINT(INFO_DBG,
6854                                           "%s: Out of memory to allocate %s\n",
6855                                           dev->name,
6856                                           "2 buf mode SKBs");
6857                                 stats->mem_alloc_fail_cnt++;
6858                                 return -ENOMEM;
6859                         }
6860                         stats->mem_allocated += (*skb)->truesize;
6861                         rxdp3->Buffer2_ptr = *temp2 =
6862                                 pci_map_single(sp->pdev, (*skb)->data,
6863                                                dev->mtu + 4,
6864                                                PCI_DMA_FROMDEVICE);
6865                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6866                                 goto memalloc_failed;
6867                         rxdp3->Buffer0_ptr = *temp0 =
6868                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6869                                                PCI_DMA_FROMDEVICE);
6870                         if (pci_dma_mapping_error(sp->pdev,
6871                                                   rxdp3->Buffer0_ptr)) {
6872                                 pci_unmap_single(sp->pdev,
6873                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6874                                                  dev->mtu + 4,
6875                                                  PCI_DMA_FROMDEVICE);
6876                                 goto memalloc_failed;
6877                         }
6878                         rxdp->Host_Control = (unsigned long) (*skb);
6879
6880                         /* Buffer-1 will be dummy buffer not used */
6881                         rxdp3->Buffer1_ptr = *temp1 =
6882                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6883                                                PCI_DMA_FROMDEVICE);
6884                         if (pci_dma_mapping_error(sp->pdev,
6885                                                   rxdp3->Buffer1_ptr)) {
6886                                 pci_unmap_single(sp->pdev,
6887                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6888                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6889                                 pci_unmap_single(sp->pdev,
6890                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6891                                                  dev->mtu + 4,
6892                                                  PCI_DMA_FROMDEVICE);
6893                                 goto memalloc_failed;
6894                         }
6895                 }
6896         }
6897         return 0;
6898
6899 memalloc_failed:
6900         stats->pci_map_fail_cnt++;
6901         stats->mem_freed += (*skb)->truesize;
6902         dev_kfree_skb(*skb);
6903         return -ENOMEM;
6904 }
6905
6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6907                                 int size)
6908 {
6909         struct net_device *dev = sp->dev;
6910         if (sp->rxd_mode == RXD_MODE_1) {
6911                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6912         } else if (sp->rxd_mode == RXD_MODE_3B) {
6913                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6914                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6915                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6916         }
6917 }
6918
6919 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6920 {
6921         int i, j, k, blk_cnt = 0, size;
6922         struct config_param *config = &sp->config;
6923         struct mac_info *mac_control = &sp->mac_control;
6924         struct net_device *dev = sp->dev;
6925         struct RxD_t *rxdp = NULL;
6926         struct sk_buff *skb = NULL;
6927         struct buffAdd *ba = NULL;
6928         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6929
6930         /* Calculate the size based on ring mode */
6931         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6932                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6933         if (sp->rxd_mode == RXD_MODE_1)
6934                 size += NET_IP_ALIGN;
6935         else if (sp->rxd_mode == RXD_MODE_3B)
6936                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6937
6938         for (i = 0; i < config->rx_ring_num; i++) {
6939                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6940                 struct ring_info *ring = &mac_control->rings[i];
6941
6942                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6943
6944                 for (j = 0; j < blk_cnt; j++) {
6945                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6946                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6947                                 if (sp->rxd_mode == RXD_MODE_3B)
6948                                         ba = &ring->ba[j][k];
6949                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6950                                                            &temp0_64,
6951                                                            &temp1_64,
6952                                                            &temp2_64,
6953                                                            size) == -ENOMEM) {
6954                                         return 0;
6955                                 }
6956
6957                                 set_rxd_buffer_size(sp, rxdp, size);
6958                                 wmb();
6959                                 /* flip the Ownership bit to Hardware */
6960                                 rxdp->Control_1 |= RXD_OWN_XENA;
6961                         }
6962                 }
6963         }
6964         return 0;
6965
6966 }
6967
6968 static int s2io_add_isr(struct s2io_nic *sp)
6969 {
6970         int ret = 0;
6971         struct net_device *dev = sp->dev;
6972         int err = 0;
6973
6974         if (sp->config.intr_type == MSI_X)
6975                 ret = s2io_enable_msi_x(sp);
6976         if (ret) {
6977                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6978                 sp->config.intr_type = INTA;
6979         }
6980
6981         /*
6982          * Store the values of the MSIX table in
6983          * the struct s2io_nic structure
6984          */
6985         store_xmsi_data(sp);
6986
6987         /* After proper initialization of H/W, register ISR */
6988         if (sp->config.intr_type == MSI_X) {
6989                 int i, msix_rx_cnt = 0;
6990
6991                 for (i = 0; i < sp->num_entries; i++) {
6992                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6993                                 if (sp->s2io_entries[i].type ==
6994                                     MSIX_RING_TYPE) {
6995                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6996                                                 dev->name, i);
6997                                         err = request_irq(sp->entries[i].vector,
6998                                                           s2io_msix_ring_handle,
6999                                                           0,
7000                                                           sp->desc[i],
7001                                                           sp->s2io_entries[i].arg);
7002                                 } else if (sp->s2io_entries[i].type ==
7003                                            MSIX_ALARM_TYPE) {
7004                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7005                                                 dev->name, i);
7006                                         err = request_irq(sp->entries[i].vector,
7007                                                           s2io_msix_fifo_handle,
7008                                                           0,
7009                                                           sp->desc[i],
7010                                                           sp->s2io_entries[i].arg);
7011
7012                                 }
7013                                 /* if either data or addr is zero print it. */
7014                                 if (!(sp->msix_info[i].addr &&
7015                                       sp->msix_info[i].data)) {
7016                                         DBG_PRINT(ERR_DBG,
7017                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7018                                                   sp->desc[i],
7019                                                   (unsigned long long)
7020                                                   sp->msix_info[i].addr,
7021                                                   (unsigned long long)
7022                                                   ntohl(sp->msix_info[i].data));
7023                                 } else
7024                                         msix_rx_cnt++;
7025                                 if (err) {
7026                                         remove_msix_isr(sp);
7027
7028                                         DBG_PRINT(ERR_DBG,
7029                                                   "%s:MSI-X-%d registration "
7030                                                   "failed\n", dev->name, i);
7031
7032                                         DBG_PRINT(ERR_DBG,
7033                                                   "%s: Defaulting to INTA\n",
7034                                                   dev->name);
7035                                         sp->config.intr_type = INTA;
7036                                         break;
7037                                 }
7038                                 sp->s2io_entries[i].in_use =
7039                                         MSIX_REGISTERED_SUCCESS;
7040                         }
7041                 }
7042                 if (!err) {
7043                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7044                         DBG_PRINT(INFO_DBG,
7045                                   "MSI-X-TX entries enabled through alarm vector\n");
7046                 }
7047         }
7048         if (sp->config.intr_type == INTA) {
7049                 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7050                                   sp->name, dev);
7051                 if (err) {
7052                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7053                                   dev->name);
7054                         return -1;
7055                 }
7056         }
7057         return 0;
7058 }
7059
7060 static void s2io_rem_isr(struct s2io_nic *sp)
7061 {
7062         if (sp->config.intr_type == MSI_X)
7063                 remove_msix_isr(sp);
7064         else
7065                 remove_inta_isr(sp);
7066 }
7067
7068 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7069 {
7070         int cnt = 0;
7071         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7072         register u64 val64 = 0;
7073         struct config_param *config;
7074         config = &sp->config;
7075
7076         if (!is_s2io_card_up(sp))
7077                 return;
7078
7079         del_timer_sync(&sp->alarm_timer);
7080         /* If s2io_set_link task is executing, wait till it completes. */
7081         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7082                 msleep(50);
7083         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7084
7085         /* Disable napi */
7086         if (sp->config.napi) {
7087                 int off = 0;
7088                 if (config->intr_type ==  MSI_X) {
7089                         for (; off < sp->config.rx_ring_num; off++)
7090                                 napi_disable(&sp->mac_control.rings[off].napi);
7091                 }
7092                 else
7093                         napi_disable(&sp->napi);
7094         }
7095
7096         /* disable Tx and Rx traffic on the NIC */
7097         if (do_io)
7098                 stop_nic(sp);
7099
7100         s2io_rem_isr(sp);
7101
7102         /* stop the tx queue, indicate link down */
7103         s2io_link(sp, LINK_DOWN);
7104
7105         /* Check if the device is Quiescent and then Reset the NIC */
7106         while (do_io) {
7107                 /* As per the HW requirement we need to replenish the
7108                  * receive buffer to avoid the ring bump. Since there is
7109                  * no intention of processing the Rx frame at this pointwe are
7110                  * just setting the ownership bit of rxd in Each Rx
7111                  * ring to HW and set the appropriate buffer size
7112                  * based on the ring mode
7113                  */
7114                 rxd_owner_bit_reset(sp);
7115
7116                 val64 = readq(&bar0->adapter_status);
7117                 if (verify_xena_quiescence(sp)) {
7118                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7119                                 break;
7120                 }
7121
7122                 msleep(50);
7123                 cnt++;
7124                 if (cnt == 10) {
7125                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7126                                   "adapter status reads 0x%llx\n",
7127                                   (unsigned long long)val64);
7128                         break;
7129                 }
7130         }
7131         if (do_io)
7132                 s2io_reset(sp);
7133
7134         /* Free all Tx buffers */
7135         free_tx_buffers(sp);
7136
7137         /* Free all Rx buffers */
7138         free_rx_buffers(sp);
7139
7140         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7141 }
7142
7143 static void s2io_card_down(struct s2io_nic *sp)
7144 {
7145         do_s2io_card_down(sp, 1);
7146 }
7147
7148 static int s2io_card_up(struct s2io_nic *sp)
7149 {
7150         int i, ret = 0;
7151         struct config_param *config;
7152         struct mac_info *mac_control;
7153         struct net_device *dev = sp->dev;
7154         u16 interruptible;
7155
7156         /* Initialize the H/W I/O registers */
7157         ret = init_nic(sp);
7158         if (ret != 0) {
7159                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7160                           dev->name);
7161                 if (ret != -EIO)
7162                         s2io_reset(sp);
7163                 return ret;
7164         }
7165
7166         /*
7167          * Initializing the Rx buffers. For now we are considering only 1
7168          * Rx ring and initializing buffers into 30 Rx blocks
7169          */
7170         config = &sp->config;
7171         mac_control = &sp->mac_control;
7172
7173         for (i = 0; i < config->rx_ring_num; i++) {
7174                 struct ring_info *ring = &mac_control->rings[i];
7175
7176                 ring->mtu = dev->mtu;
7177                 ring->lro = !!(dev->features & NETIF_F_LRO);
7178                 ret = fill_rx_buffers(sp, ring, 1);
7179                 if (ret) {
7180                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7181                                   dev->name);
7182                         s2io_reset(sp);
7183                         free_rx_buffers(sp);
7184                         return -ENOMEM;
7185                 }
7186                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7187                           ring->rx_bufs_left);
7188         }
7189
7190         /* Initialise napi */
7191         if (config->napi) {
7192                 if (config->intr_type ==  MSI_X) {
7193                         for (i = 0; i < sp->config.rx_ring_num; i++)
7194                                 napi_enable(&sp->mac_control.rings[i].napi);
7195                 } else {
7196                         napi_enable(&sp->napi);
7197                 }
7198         }
7199
7200         /* Maintain the state prior to the open */
7201         if (sp->promisc_flg)
7202                 sp->promisc_flg = 0;
7203         if (sp->m_cast_flg) {
7204                 sp->m_cast_flg = 0;
7205                 sp->all_multi_pos = 0;
7206         }
7207
7208         /* Setting its receive mode */
7209         s2io_set_multicast(dev);
7210
7211         if (dev->features & NETIF_F_LRO) {
7212                 /* Initialize max aggregatable pkts per session based on MTU */
7213                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7214                 /* Check if we can use (if specified) user provided value */
7215                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7216                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7217         }
7218
7219         /* Enable Rx Traffic and interrupts on the NIC */
7220         if (start_nic(sp)) {
7221                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7222                 s2io_reset(sp);
7223                 free_rx_buffers(sp);
7224                 return -ENODEV;
7225         }
7226
7227         /* Add interrupt service routine */
7228         if (s2io_add_isr(sp) != 0) {
7229                 if (sp->config.intr_type == MSI_X)
7230                         s2io_rem_isr(sp);
7231                 s2io_reset(sp);
7232                 free_rx_buffers(sp);
7233                 return -ENODEV;
7234         }
7235
7236         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7237
7238         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7239
7240         /*  Enable select interrupts */
7241         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7242         if (sp->config.intr_type != INTA) {
7243                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7244                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7245         } else {
7246                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7247                 interruptible |= TX_PIC_INTR;
7248                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249         }
7250
7251         return 0;
7252 }
7253
7254 /**
7255  * s2io_restart_nic - Resets the NIC.
7256  * @data : long pointer to the device private structure
7257  * Description:
7258  * This function is scheduled to be run by the s2io_tx_watchdog
7259  * function after 0.5 secs to reset the NIC. The idea is to reduce
7260  * the run time of the watch dog routine which is run holding a
7261  * spin lock.
7262  */
7263
7264 static void s2io_restart_nic(struct work_struct *work)
7265 {
7266         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7267         struct net_device *dev = sp->dev;
7268
7269         rtnl_lock();
7270
7271         if (!netif_running(dev))
7272                 goto out_unlock;
7273
7274         s2io_card_down(sp);
7275         if (s2io_card_up(sp)) {
7276                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7277         }
7278         s2io_wake_all_tx_queue(sp);
7279         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7280 out_unlock:
7281         rtnl_unlock();
7282 }
7283
7284 /**
7285  *  s2io_tx_watchdog - Watchdog for transmit side.
7286  *  @dev : Pointer to net device structure
7287  *  Description:
7288  *  This function is triggered if the Tx Queue is stopped
7289  *  for a pre-defined amount of time when the Interface is still up.
7290  *  If the Interface is jammed in such a situation, the hardware is
7291  *  reset (by s2io_close) and restarted again (by s2io_open) to
7292  *  overcome any problem that might have been caused in the hardware.
7293  *  Return value:
7294  *  void
7295  */
7296
7297 static void s2io_tx_watchdog(struct net_device *dev)
7298 {
7299         struct s2io_nic *sp = netdev_priv(dev);
7300         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7301
7302         if (netif_carrier_ok(dev)) {
7303                 swstats->watchdog_timer_cnt++;
7304                 schedule_work(&sp->rst_timer_task);
7305                 swstats->soft_reset_cnt++;
7306         }
7307 }
7308
7309 /**
7310  *   rx_osm_handler - To perform some OS related operations on SKB.
7311  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7312  *   @skb : the socket buffer pointer.
7313  *   @len : length of the packet
7314  *   @cksum : FCS checksum of the frame.
7315  *   @ring_no : the ring from which this RxD was extracted.
7316  *   Description:
7317  *   This function is called by the Rx interrupt serivce routine to perform
7318  *   some OS related operations on the SKB before passing it to the upper
7319  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7320  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7321  *   to the upper layer. If the checksum is wrong, it increments the Rx
7322  *   packet error count, frees the SKB and returns error.
7323  *   Return value:
7324  *   SUCCESS on success and -1 on failure.
7325  */
7326 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7327 {
7328         struct s2io_nic *sp = ring_data->nic;
7329         struct net_device *dev = ring_data->dev;
7330         struct sk_buff *skb = (struct sk_buff *)
7331                 ((unsigned long)rxdp->Host_Control);
7332         int ring_no = ring_data->ring_no;
7333         u16 l3_csum, l4_csum;
7334         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7335         struct lro *uninitialized_var(lro);
7336         u8 err_mask;
7337         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7338
7339         skb->dev = dev;
7340
7341         if (err) {
7342                 /* Check for parity error */
7343                 if (err & 0x1)
7344                         swstats->parity_err_cnt++;
7345
7346                 err_mask = err >> 48;
7347                 switch (err_mask) {
7348                 case 1:
7349                         swstats->rx_parity_err_cnt++;
7350                         break;
7351
7352                 case 2:
7353                         swstats->rx_abort_cnt++;
7354                         break;
7355
7356                 case 3:
7357                         swstats->rx_parity_abort_cnt++;
7358                         break;
7359
7360                 case 4:
7361                         swstats->rx_rda_fail_cnt++;
7362                         break;
7363
7364                 case 5:
7365                         swstats->rx_unkn_prot_cnt++;
7366                         break;
7367
7368                 case 6:
7369                         swstats->rx_fcs_err_cnt++;
7370                         break;
7371
7372                 case 7:
7373                         swstats->rx_buf_size_err_cnt++;
7374                         break;
7375
7376                 case 8:
7377                         swstats->rx_rxd_corrupt_cnt++;
7378                         break;
7379
7380                 case 15:
7381                         swstats->rx_unkn_err_cnt++;
7382                         break;
7383                 }
7384                 /*
7385                  * Drop the packet if bad transfer code. Exception being
7386                  * 0x5, which could be due to unsupported IPv6 extension header.
7387                  * In this case, we let stack handle the packet.
7388                  * Note that in this case, since checksum will be incorrect,
7389                  * stack will validate the same.
7390                  */
7391                 if (err_mask != 0x5) {
7392                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7393                                   dev->name, err_mask);
7394                         dev->stats.rx_crc_errors++;
7395                         swstats->mem_freed
7396                                 += skb->truesize;
7397                         dev_kfree_skb(skb);
7398                         ring_data->rx_bufs_left -= 1;
7399                         rxdp->Host_Control = 0;
7400                         return 0;
7401                 }
7402         }
7403
7404         rxdp->Host_Control = 0;
7405         if (sp->rxd_mode == RXD_MODE_1) {
7406                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7407
7408                 skb_put(skb, len);
7409         } else if (sp->rxd_mode == RXD_MODE_3B) {
7410                 int get_block = ring_data->rx_curr_get_info.block_index;
7411                 int get_off = ring_data->rx_curr_get_info.offset;
7412                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7413                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7414                 unsigned char *buff = skb_push(skb, buf0_len);
7415
7416                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7417                 memcpy(buff, ba->ba_0, buf0_len);
7418                 skb_put(skb, buf2_len);
7419         }
7420
7421         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7422             ((!ring_data->lro) ||
7423              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7424             (dev->features & NETIF_F_RXCSUM)) {
7425                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7426                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7427                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7428                         /*
7429                          * NIC verifies if the Checksum of the received
7430                          * frame is Ok or not and accordingly returns
7431                          * a flag in the RxD.
7432                          */
7433                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7434                         if (ring_data->lro) {
7435                                 u32 tcp_len = 0;
7436                                 u8 *tcp;
7437                                 int ret = 0;
7438
7439                                 ret = s2io_club_tcp_session(ring_data,
7440                                                             skb->data, &tcp,
7441                                                             &tcp_len, &lro,
7442                                                             rxdp, sp);
7443                                 switch (ret) {
7444                                 case 3: /* Begin anew */
7445                                         lro->parent = skb;
7446                                         goto aggregate;
7447                                 case 1: /* Aggregate */
7448                                         lro_append_pkt(sp, lro, skb, tcp_len);
7449                                         goto aggregate;
7450                                 case 4: /* Flush session */
7451                                         lro_append_pkt(sp, lro, skb, tcp_len);
7452                                         queue_rx_frame(lro->parent,
7453                                                        lro->vlan_tag);
7454                                         clear_lro_session(lro);
7455                                         swstats->flush_max_pkts++;
7456                                         goto aggregate;
7457                                 case 2: /* Flush both */
7458                                         lro->parent->data_len = lro->frags_len;
7459                                         swstats->sending_both++;
7460                                         queue_rx_frame(lro->parent,
7461                                                        lro->vlan_tag);
7462                                         clear_lro_session(lro);
7463                                         goto send_up;
7464                                 case 0: /* sessions exceeded */
7465                                 case -1: /* non-TCP or not L2 aggregatable */
7466                                 case 5: /*
7467                                          * First pkt in session not
7468                                          * L3/L4 aggregatable
7469                                          */
7470                                         break;
7471                                 default:
7472                                         DBG_PRINT(ERR_DBG,
7473                                                   "%s: Samadhana!!\n",
7474                                                   __func__);
7475                                         BUG();
7476                                 }
7477                         }
7478                 } else {
7479                         /*
7480                          * Packet with erroneous checksum, let the
7481                          * upper layers deal with it.
7482                          */
7483                         skb_checksum_none_assert(skb);
7484                 }
7485         } else
7486                 skb_checksum_none_assert(skb);
7487
7488         swstats->mem_freed += skb->truesize;
7489 send_up:
7490         skb_record_rx_queue(skb, ring_no);
7491         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7492 aggregate:
7493         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7494         return SUCCESS;
7495 }
7496
7497 /**
7498  *  s2io_link - stops/starts the Tx queue.
7499  *  @sp : private member of the device structure, which is a pointer to the
7500  *  s2io_nic structure.
7501  *  @link : inidicates whether link is UP/DOWN.
7502  *  Description:
7503  *  This function stops/starts the Tx queue depending on whether the link
7504  *  status of the NIC is is down or up. This is called by the Alarm
7505  *  interrupt handler whenever a link change interrupt comes up.
7506  *  Return value:
7507  *  void.
7508  */
7509
7510 static void s2io_link(struct s2io_nic *sp, int link)
7511 {
7512         struct net_device *dev = sp->dev;
7513         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7514
7515         if (link != sp->last_link_state) {
7516                 init_tti(sp, link);
7517                 if (link == LINK_DOWN) {
7518                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7519                         s2io_stop_all_tx_queue(sp);
7520                         netif_carrier_off(dev);
7521                         if (swstats->link_up_cnt)
7522                                 swstats->link_up_time =
7523                                         jiffies - sp->start_time;
7524                         swstats->link_down_cnt++;
7525                 } else {
7526                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7527                         if (swstats->link_down_cnt)
7528                                 swstats->link_down_time =
7529                                         jiffies - sp->start_time;
7530                         swstats->link_up_cnt++;
7531                         netif_carrier_on(dev);
7532                         s2io_wake_all_tx_queue(sp);
7533                 }
7534         }
7535         sp->last_link_state = link;
7536         sp->start_time = jiffies;
7537 }
7538
7539 /**
7540  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7541  *  @sp : private member of the device structure, which is a pointer to the
7542  *  s2io_nic structure.
7543  *  Description:
7544  *  This function initializes a few of the PCI and PCI-X configuration registers
7545  *  with recommended values.
7546  *  Return value:
7547  *  void
7548  */
7549
7550 static void s2io_init_pci(struct s2io_nic *sp)
7551 {
7552         u16 pci_cmd = 0, pcix_cmd = 0;
7553
7554         /* Enable Data Parity Error Recovery in PCI-X command register. */
7555         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7556                              &(pcix_cmd));
7557         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7558                               (pcix_cmd | 1));
7559         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560                              &(pcix_cmd));
7561
7562         /* Set the PErr Response bit in PCI command register. */
7563         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7564         pci_write_config_word(sp->pdev, PCI_COMMAND,
7565                               (pci_cmd | PCI_COMMAND_PARITY));
7566         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7567 }
7568
7569 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7570                             u8 *dev_multiq)
7571 {
7572         int i;
7573
7574         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7575                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7576                           "(%d) not supported\n", tx_fifo_num);
7577
7578                 if (tx_fifo_num < 1)
7579                         tx_fifo_num = 1;
7580                 else
7581                         tx_fifo_num = MAX_TX_FIFOS;
7582
7583                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7584         }
7585
7586         if (multiq)
7587                 *dev_multiq = multiq;
7588
7589         if (tx_steering_type && (1 == tx_fifo_num)) {
7590                 if (tx_steering_type != TX_DEFAULT_STEERING)
7591                         DBG_PRINT(ERR_DBG,
7592                                   "Tx steering is not supported with "
7593                                   "one fifo. Disabling Tx steering.\n");
7594                 tx_steering_type = NO_STEERING;
7595         }
7596
7597         if ((tx_steering_type < NO_STEERING) ||
7598             (tx_steering_type > TX_DEFAULT_STEERING)) {
7599                 DBG_PRINT(ERR_DBG,
7600                           "Requested transmit steering not supported\n");
7601                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7602                 tx_steering_type = NO_STEERING;
7603         }
7604
7605         if (rx_ring_num > MAX_RX_RINGS) {
7606                 DBG_PRINT(ERR_DBG,
7607                           "Requested number of rx rings not supported\n");
7608                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7609                           MAX_RX_RINGS);
7610                 rx_ring_num = MAX_RX_RINGS;
7611         }
7612
7613         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7614                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7615                           "Defaulting to INTA\n");
7616                 *dev_intr_type = INTA;
7617         }
7618
7619         if ((*dev_intr_type == MSI_X) &&
7620             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7621              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7622                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7623                           "Defaulting to INTA\n");
7624                 *dev_intr_type = INTA;
7625         }
7626
7627         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7628                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7629                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7630                 rx_ring_mode = 1;
7631         }
7632
7633         for (i = 0; i < MAX_RX_RINGS; i++)
7634                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7635                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7636                                   "supported\nDefaulting to %d\n",
7637                                   MAX_RX_BLOCKS_PER_RING);
7638                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7639                 }
7640
7641         return SUCCESS;
7642 }
7643
7644 /**
7645  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7646  * or Traffic class respectively.
7647  * @nic: device private variable
7648  * Description: The function configures the receive steering to
7649  * desired receive ring.
7650  * Return Value:  SUCCESS on success and
7651  * '-1' on failure (endian settings incorrect).
7652  */
7653 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654 {
7655         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7656         register u64 val64 = 0;
7657
7658         if (ds_codepoint > 63)
7659                 return FAILURE;
7660
7661         val64 = RTS_DS_MEM_DATA(ring);
7662         writeq(val64, &bar0->rts_ds_mem_data);
7663
7664         val64 = RTS_DS_MEM_CTRL_WE |
7665                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7666                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667
7668         writeq(val64, &bar0->rts_ds_mem_ctrl);
7669
7670         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7671                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7672                                      S2IO_BIT_RESET);
7673 }
7674
7675 static const struct net_device_ops s2io_netdev_ops = {
7676         .ndo_open               = s2io_open,
7677         .ndo_stop               = s2io_close,
7678         .ndo_get_stats          = s2io_get_stats,
7679         .ndo_start_xmit         = s2io_xmit,
7680         .ndo_validate_addr      = eth_validate_addr,
7681         .ndo_set_rx_mode        = s2io_set_multicast,
7682         .ndo_do_ioctl           = s2io_ioctl,
7683         .ndo_set_mac_address    = s2io_set_mac_addr,
7684         .ndo_change_mtu         = s2io_change_mtu,
7685         .ndo_set_features       = s2io_set_features,
7686         .ndo_tx_timeout         = s2io_tx_watchdog,
7687 #ifdef CONFIG_NET_POLL_CONTROLLER
7688         .ndo_poll_controller    = s2io_netpoll,
7689 #endif
7690 };
7691
7692 /**
7693  *  s2io_init_nic - Initialization of the adapter .
7694  *  @pdev : structure containing the PCI related information of the device.
7695  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7696  *  Description:
7697  *  The function initializes an adapter identified by the pci_dec structure.
7698  *  All OS related initialization including memory and device structure and
7699  *  initlaization of the device private variable is done. Also the swapper
7700  *  control register is initialized to enable read and write into the I/O
7701  *  registers of the device.
7702  *  Return value:
7703  *  returns 0 on success and negative on failure.
7704  */
7705
7706 static int
7707 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7708 {
7709         struct s2io_nic *sp;
7710         struct net_device *dev;
7711         int i, j, ret;
7712         int dma_flag = false;
7713         u32 mac_up, mac_down;
7714         u64 val64 = 0, tmp64 = 0;
7715         struct XENA_dev_config __iomem *bar0 = NULL;
7716         u16 subid;
7717         struct config_param *config;
7718         struct mac_info *mac_control;
7719         int mode;
7720         u8 dev_intr_type = intr_type;
7721         u8 dev_multiq = 0;
7722
7723         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7724         if (ret)
7725                 return ret;
7726
7727         ret = pci_enable_device(pdev);
7728         if (ret) {
7729                 DBG_PRINT(ERR_DBG,
7730                           "%s: pci_enable_device failed\n", __func__);
7731                 return ret;
7732         }
7733
7734         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7735                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7736                 dma_flag = true;
7737                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7738                         DBG_PRINT(ERR_DBG,
7739                                   "Unable to obtain 64bit DMA "
7740                                   "for consistent allocations\n");
7741                         pci_disable_device(pdev);
7742                         return -ENOMEM;
7743                 }
7744         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7745                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7746         } else {
7747                 pci_disable_device(pdev);
7748                 return -ENOMEM;
7749         }
7750         ret = pci_request_regions(pdev, s2io_driver_name);
7751         if (ret) {
7752                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7753                           __func__, ret);
7754                 pci_disable_device(pdev);
7755                 return -ENODEV;
7756         }
7757         if (dev_multiq)
7758                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7759         else
7760                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7761         if (dev == NULL) {
7762                 pci_disable_device(pdev);
7763                 pci_release_regions(pdev);
7764                 return -ENODEV;
7765         }
7766
7767         pci_set_master(pdev);
7768         pci_set_drvdata(pdev, dev);
7769         SET_NETDEV_DEV(dev, &pdev->dev);
7770
7771         /*  Private member variable initialized to s2io NIC structure */
7772         sp = netdev_priv(dev);
7773         sp->dev = dev;
7774         sp->pdev = pdev;
7775         sp->high_dma_flag = dma_flag;
7776         sp->device_enabled_once = false;
7777         if (rx_ring_mode == 1)
7778                 sp->rxd_mode = RXD_MODE_1;
7779         if (rx_ring_mode == 2)
7780                 sp->rxd_mode = RXD_MODE_3B;
7781
7782         sp->config.intr_type = dev_intr_type;
7783
7784         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7785             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7786                 sp->device_type = XFRAME_II_DEVICE;
7787         else
7788                 sp->device_type = XFRAME_I_DEVICE;
7789
7790
7791         /* Initialize some PCI/PCI-X fields of the NIC. */
7792         s2io_init_pci(sp);
7793
7794         /*
7795          * Setting the device configuration parameters.
7796          * Most of these parameters can be specified by the user during
7797          * module insertion as they are module loadable parameters. If
7798          * these parameters are not not specified during load time, they
7799          * are initialized with default values.
7800          */
7801         config = &sp->config;
7802         mac_control = &sp->mac_control;
7803
7804         config->napi = napi;
7805         config->tx_steering_type = tx_steering_type;
7806
7807         /* Tx side parameters. */
7808         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7809                 config->tx_fifo_num = MAX_TX_FIFOS;
7810         else
7811                 config->tx_fifo_num = tx_fifo_num;
7812
7813         /* Initialize the fifos used for tx steering */
7814         if (config->tx_fifo_num < 5) {
7815                 if (config->tx_fifo_num  == 1)
7816                         sp->total_tcp_fifos = 1;
7817                 else
7818                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7819                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7820                 sp->total_udp_fifos = 1;
7821                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7822         } else {
7823                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7824                                        FIFO_OTHER_MAX_NUM);
7825                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7826                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7827                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7828         }
7829
7830         config->multiq = dev_multiq;
7831         for (i = 0; i < config->tx_fifo_num; i++) {
7832                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7833
7834                 tx_cfg->fifo_len = tx_fifo_len[i];
7835                 tx_cfg->fifo_priority = i;
7836         }
7837
7838         /* mapping the QoS priority to the configured fifos */
7839         for (i = 0; i < MAX_TX_FIFOS; i++)
7840                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7841
7842         /* map the hashing selector table to the configured fifos */
7843         for (i = 0; i < config->tx_fifo_num; i++)
7844                 sp->fifo_selector[i] = fifo_selector[i];
7845
7846
7847         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7848         for (i = 0; i < config->tx_fifo_num; i++) {
7849                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7850
7851                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7852                 if (tx_cfg->fifo_len < 65) {
7853                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7854                         break;
7855                 }
7856         }
7857         /* + 2 because one Txd for skb->data and one Txd for UFO */
7858         config->max_txds = MAX_SKB_FRAGS + 2;
7859
7860         /* Rx side parameters. */
7861         config->rx_ring_num = rx_ring_num;
7862         for (i = 0; i < config->rx_ring_num; i++) {
7863                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7864                 struct ring_info *ring = &mac_control->rings[i];
7865
7866                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7867                 rx_cfg->ring_priority = i;
7868                 ring->rx_bufs_left = 0;
7869                 ring->rxd_mode = sp->rxd_mode;
7870                 ring->rxd_count = rxd_count[sp->rxd_mode];
7871                 ring->pdev = sp->pdev;
7872                 ring->dev = sp->dev;
7873         }
7874
7875         for (i = 0; i < rx_ring_num; i++) {
7876                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7877
7878                 rx_cfg->ring_org = RING_ORG_BUFF1;
7879                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7880         }
7881
7882         /*  Setting Mac Control parameters */
7883         mac_control->rmac_pause_time = rmac_pause_time;
7884         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7885         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7886
7887
7888         /*  initialize the shared memory used by the NIC and the host */
7889         if (init_shared_mem(sp)) {
7890                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7891                 ret = -ENOMEM;
7892                 goto mem_alloc_failed;
7893         }
7894
7895         sp->bar0 = pci_ioremap_bar(pdev, 0);
7896         if (!sp->bar0) {
7897                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7898                           dev->name);
7899                 ret = -ENOMEM;
7900                 goto bar0_remap_failed;
7901         }
7902
7903         sp->bar1 = pci_ioremap_bar(pdev, 2);
7904         if (!sp->bar1) {
7905                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7906                           dev->name);
7907                 ret = -ENOMEM;
7908                 goto bar1_remap_failed;
7909         }
7910
7911         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7912         for (j = 0; j < MAX_TX_FIFOS; j++) {
7913                 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7914         }
7915
7916         /*  Driver entry points */
7917         dev->netdev_ops = &s2io_netdev_ops;
7918         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7919         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7920                 NETIF_F_TSO | NETIF_F_TSO6 |
7921                 NETIF_F_RXCSUM | NETIF_F_LRO;
7922         dev->features |= dev->hw_features |
7923                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7924         if (sp->device_type & XFRAME_II_DEVICE) {
7925                 dev->hw_features |= NETIF_F_UFO;
7926                 if (ufo)
7927                         dev->features |= NETIF_F_UFO;
7928         }
7929         if (sp->high_dma_flag == true)
7930                 dev->features |= NETIF_F_HIGHDMA;
7931         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7932         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7933         INIT_WORK(&sp->set_link_task, s2io_set_link);
7934
7935         pci_save_state(sp->pdev);
7936
7937         /* Setting swapper control on the NIC, for proper reset operation */
7938         if (s2io_set_swapper(sp)) {
7939                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7940                           dev->name);
7941                 ret = -EAGAIN;
7942                 goto set_swap_failed;
7943         }
7944
7945         /* Verify if the Herc works on the slot its placed into */
7946         if (sp->device_type & XFRAME_II_DEVICE) {
7947                 mode = s2io_verify_pci_mode(sp);
7948                 if (mode < 0) {
7949                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7950                                   __func__);
7951                         ret = -EBADSLT;
7952                         goto set_swap_failed;
7953                 }
7954         }
7955
7956         if (sp->config.intr_type == MSI_X) {
7957                 sp->num_entries = config->rx_ring_num + 1;
7958                 ret = s2io_enable_msi_x(sp);
7959
7960                 if (!ret) {
7961                         ret = s2io_test_msi(sp);
7962                         /* rollback MSI-X, will re-enable during add_isr() */
7963                         remove_msix_isr(sp);
7964                 }
7965                 if (ret) {
7966
7967                         DBG_PRINT(ERR_DBG,
7968                                   "MSI-X requested but failed to enable\n");
7969                         sp->config.intr_type = INTA;
7970                 }
7971         }
7972
7973         if (config->intr_type ==  MSI_X) {
7974                 for (i = 0; i < config->rx_ring_num ; i++) {
7975                         struct ring_info *ring = &mac_control->rings[i];
7976
7977                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7978                 }
7979         } else {
7980                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7981         }
7982
7983         /* Not needed for Herc */
7984         if (sp->device_type & XFRAME_I_DEVICE) {
7985                 /*
7986                  * Fix for all "FFs" MAC address problems observed on
7987                  * Alpha platforms
7988                  */
7989                 fix_mac_address(sp);
7990                 s2io_reset(sp);
7991         }
7992
7993         /*
7994          * MAC address initialization.
7995          * For now only one mac address will be read and used.
7996          */
7997         bar0 = sp->bar0;
7998         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7999                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8000         writeq(val64, &bar0->rmac_addr_cmd_mem);
8001         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8002                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8003                               S2IO_BIT_RESET);
8004         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8005         mac_down = (u32)tmp64;
8006         mac_up = (u32) (tmp64 >> 32);
8007
8008         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8009         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8010         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8011         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8012         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8013         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8014
8015         /*  Set the factory defined MAC address initially   */
8016         dev->addr_len = ETH_ALEN;
8017         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8018
8019         /* initialize number of multicast & unicast MAC entries variables */
8020         if (sp->device_type == XFRAME_I_DEVICE) {
8021                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8022                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8023                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8024         } else if (sp->device_type == XFRAME_II_DEVICE) {
8025                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8026                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8027                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8028         }
8029
8030         /* store mac addresses from CAM to s2io_nic structure */
8031         do_s2io_store_unicast_mc(sp);
8032
8033         /* Configure MSIX vector for number of rings configured plus one */
8034         if ((sp->device_type == XFRAME_II_DEVICE) &&
8035             (config->intr_type == MSI_X))
8036                 sp->num_entries = config->rx_ring_num + 1;
8037
8038         /* Store the values of the MSIX table in the s2io_nic structure */
8039         store_xmsi_data(sp);
8040         /* reset Nic and bring it to known state */
8041         s2io_reset(sp);
8042
8043         /*
8044          * Initialize link state flags
8045          * and the card state parameter
8046          */
8047         sp->state = 0;
8048
8049         /* Initialize spinlocks */
8050         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8051                 struct fifo_info *fifo = &mac_control->fifos[i];
8052
8053                 spin_lock_init(&fifo->tx_lock);
8054         }
8055
8056         /*
8057          * SXE-002: Configure link and activity LED to init state
8058          * on driver load.
8059          */
8060         subid = sp->pdev->subsystem_device;
8061         if ((subid & 0xFF) >= 0x07) {
8062                 val64 = readq(&bar0->gpio_control);
8063                 val64 |= 0x0000800000000000ULL;
8064                 writeq(val64, &bar0->gpio_control);
8065                 val64 = 0x0411040400000000ULL;
8066                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8067                 val64 = readq(&bar0->gpio_control);
8068         }
8069
8070         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8071
8072         if (register_netdev(dev)) {
8073                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8074                 ret = -ENODEV;
8075                 goto register_failed;
8076         }
8077         s2io_vpd_read(sp);
8078         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8079         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8080                   sp->product_name, pdev->revision);
8081         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8082                   s2io_driver_version);
8083         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8084         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8085         if (sp->device_type & XFRAME_II_DEVICE) {
8086                 mode = s2io_print_pci_mode(sp);
8087                 if (mode < 0) {
8088                         ret = -EBADSLT;
8089                         unregister_netdev(dev);
8090                         goto set_swap_failed;
8091                 }
8092         }
8093         switch (sp->rxd_mode) {
8094         case RXD_MODE_1:
8095                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8096                           dev->name);
8097                 break;
8098         case RXD_MODE_3B:
8099                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8100                           dev->name);
8101                 break;
8102         }
8103
8104         switch (sp->config.napi) {
8105         case 0:
8106                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8107                 break;
8108         case 1:
8109                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8110                 break;
8111         }
8112
8113         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8114                   sp->config.tx_fifo_num);
8115
8116         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8117                   sp->config.rx_ring_num);
8118
8119         switch (sp->config.intr_type) {
8120         case INTA:
8121                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8122                 break;
8123         case MSI_X:
8124                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8125                 break;
8126         }
8127         if (sp->config.multiq) {
8128                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8129                         struct fifo_info *fifo = &mac_control->fifos[i];
8130
8131                         fifo->multiq = config->multiq;
8132                 }
8133                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8134                           dev->name);
8135         } else
8136                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8137                           dev->name);
8138
8139         switch (sp->config.tx_steering_type) {
8140         case NO_STEERING:
8141                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8142                           dev->name);
8143                 break;
8144         case TX_PRIORITY_STEERING:
8145                 DBG_PRINT(ERR_DBG,
8146                           "%s: Priority steering enabled for transmit\n",
8147                           dev->name);
8148                 break;
8149         case TX_DEFAULT_STEERING:
8150                 DBG_PRINT(ERR_DBG,
8151                           "%s: Default steering enabled for transmit\n",
8152                           dev->name);
8153         }
8154
8155         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8156                   dev->name);
8157         if (ufo)
8158                 DBG_PRINT(ERR_DBG,
8159                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8160                           dev->name);
8161         /* Initialize device name */
8162         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8163
8164         if (vlan_tag_strip)
8165                 sp->vlan_strip_flag = 1;
8166         else
8167                 sp->vlan_strip_flag = 0;
8168
8169         /*
8170          * Make Link state as off at this point, when the Link change
8171          * interrupt comes the state will be automatically changed to
8172          * the right state.
8173          */
8174         netif_carrier_off(dev);
8175
8176         return 0;
8177
8178 register_failed:
8179 set_swap_failed:
8180         iounmap(sp->bar1);
8181 bar1_remap_failed:
8182         iounmap(sp->bar0);
8183 bar0_remap_failed:
8184 mem_alloc_failed:
8185         free_shared_mem(sp);
8186         pci_disable_device(pdev);
8187         pci_release_regions(pdev);
8188         free_netdev(dev);
8189
8190         return ret;
8191 }
8192
8193 /**
8194  * s2io_rem_nic - Free the PCI device
8195  * @pdev: structure containing the PCI related information of the device.
8196  * Description: This function is called by the Pci subsystem to release a
8197  * PCI device and free up all resource held up by the device. This could
8198  * be in response to a Hot plug event or when the driver is to be removed
8199  * from memory.
8200  */
8201
8202 static void s2io_rem_nic(struct pci_dev *pdev)
8203 {
8204         struct net_device *dev = pci_get_drvdata(pdev);
8205         struct s2io_nic *sp;
8206
8207         if (dev == NULL) {
8208                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209                 return;
8210         }
8211
8212         sp = netdev_priv(dev);
8213
8214         cancel_work_sync(&sp->rst_timer_task);
8215         cancel_work_sync(&sp->set_link_task);
8216
8217         unregister_netdev(dev);
8218
8219         free_shared_mem(sp);
8220         iounmap(sp->bar0);
8221         iounmap(sp->bar1);
8222         pci_release_regions(pdev);
8223         free_netdev(dev);
8224         pci_disable_device(pdev);
8225 }
8226
8227 /**
8228  * s2io_starter - Entry point for the driver
8229  * Description: This function is the entry point for the driver. It verifies
8230  * the module loadable parameters and initializes PCI configuration space.
8231  */
8232
8233 static int __init s2io_starter(void)
8234 {
8235         return pci_register_driver(&s2io_driver);
8236 }
8237
8238 /**
8239  * s2io_closer - Cleanup routine for the driver
8240  * Description: This function is the cleanup routine for the driver. It
8241  * unregisters the driver.
8242  */
8243
8244 static __exit void s2io_closer(void)
8245 {
8246         pci_unregister_driver(&s2io_driver);
8247         DBG_PRINT(INIT_DBG, "cleanup done\n");
8248 }
8249
8250 module_init(s2io_starter);
8251 module_exit(s2io_closer);
8252
8253 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8254                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8255                                 struct s2io_nic *sp)
8256 {
8257         int ip_off;
8258         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8259
8260         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8261                 DBG_PRINT(INIT_DBG,
8262                           "%s: Non-TCP frames not supported for LRO\n",
8263                           __func__);
8264                 return -1;
8265         }
8266
8267         /* Checking for DIX type or DIX type with VLAN */
8268         if ((l2_type == 0) || (l2_type == 4)) {
8269                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8270                 /*
8271                  * If vlan stripping is disabled and the frame is VLAN tagged,
8272                  * shift the offset by the VLAN header size bytes.
8273                  */
8274                 if ((!sp->vlan_strip_flag) &&
8275                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8276                         ip_off += HEADER_VLAN_SIZE;
8277         } else {
8278                 /* LLC, SNAP etc are considered non-mergeable */
8279                 return -1;
8280         }
8281
8282         *ip = (struct iphdr *)(buffer + ip_off);
8283         ip_len = (u8)((*ip)->ihl);
8284         ip_len <<= 2;
8285         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8286
8287         return 0;
8288 }
8289
8290 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8291                                   struct tcphdr *tcp)
8292 {
8293         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8294         if ((lro->iph->saddr != ip->saddr) ||
8295             (lro->iph->daddr != ip->daddr) ||
8296             (lro->tcph->source != tcp->source) ||
8297             (lro->tcph->dest != tcp->dest))
8298                 return -1;
8299         return 0;
8300 }
8301
8302 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8303 {
8304         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8305 }
8306
8307 static void initiate_new_session(struct lro *lro, u8 *l2h,
8308                                  struct iphdr *ip, struct tcphdr *tcp,
8309                                  u32 tcp_pyld_len, u16 vlan_tag)
8310 {
8311         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8312         lro->l2h = l2h;
8313         lro->iph = ip;
8314         lro->tcph = tcp;
8315         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8316         lro->tcp_ack = tcp->ack_seq;
8317         lro->sg_num = 1;
8318         lro->total_len = ntohs(ip->tot_len);
8319         lro->frags_len = 0;
8320         lro->vlan_tag = vlan_tag;
8321         /*
8322          * Check if we saw TCP timestamp.
8323          * Other consistency checks have already been done.
8324          */
8325         if (tcp->doff == 8) {
8326                 __be32 *ptr;
8327                 ptr = (__be32 *)(tcp+1);
8328                 lro->saw_ts = 1;
8329                 lro->cur_tsval = ntohl(*(ptr+1));
8330                 lro->cur_tsecr = *(ptr+2);
8331         }
8332         lro->in_use = 1;
8333 }
8334
8335 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8336 {
8337         struct iphdr *ip = lro->iph;
8338         struct tcphdr *tcp = lro->tcph;
8339         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8340
8341         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8342
8343         /* Update L3 header */
8344         csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8345         ip->tot_len = htons(lro->total_len);
8346
8347         /* Update L4 header */
8348         tcp->ack_seq = lro->tcp_ack;
8349         tcp->window = lro->window;
8350
8351         /* Update tsecr field if this session has timestamps enabled */
8352         if (lro->saw_ts) {
8353                 __be32 *ptr = (__be32 *)(tcp + 1);
8354                 *(ptr+2) = lro->cur_tsecr;
8355         }
8356
8357         /* Update counters required for calculation of
8358          * average no. of packets aggregated.
8359          */
8360         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8361         swstats->num_aggregations++;
8362 }
8363
8364 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8365                              struct tcphdr *tcp, u32 l4_pyld)
8366 {
8367         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8368         lro->total_len += l4_pyld;
8369         lro->frags_len += l4_pyld;
8370         lro->tcp_next_seq += l4_pyld;
8371         lro->sg_num++;
8372
8373         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8374         lro->tcp_ack = tcp->ack_seq;
8375         lro->window = tcp->window;
8376
8377         if (lro->saw_ts) {
8378                 __be32 *ptr;
8379                 /* Update tsecr and tsval from this packet */
8380                 ptr = (__be32 *)(tcp+1);
8381                 lro->cur_tsval = ntohl(*(ptr+1));
8382                 lro->cur_tsecr = *(ptr + 2);
8383         }
8384 }
8385
8386 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8387                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8388 {
8389         u8 *ptr;
8390
8391         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8392
8393         if (!tcp_pyld_len) {
8394                 /* Runt frame or a pure ack */
8395                 return -1;
8396         }
8397
8398         if (ip->ihl != 5) /* IP has options */
8399                 return -1;
8400
8401         /* If we see CE codepoint in IP header, packet is not mergeable */
8402         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8403                 return -1;
8404
8405         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8406         if (tcp->urg || tcp->psh || tcp->rst ||
8407             tcp->syn || tcp->fin ||
8408             tcp->ece || tcp->cwr || !tcp->ack) {
8409                 /*
8410                  * Currently recognize only the ack control word and
8411                  * any other control field being set would result in
8412                  * flushing the LRO session
8413                  */
8414                 return -1;
8415         }
8416
8417         /*
8418          * Allow only one TCP timestamp option. Don't aggregate if
8419          * any other options are detected.
8420          */
8421         if (tcp->doff != 5 && tcp->doff != 8)
8422                 return -1;
8423
8424         if (tcp->doff == 8) {
8425                 ptr = (u8 *)(tcp + 1);
8426                 while (*ptr == TCPOPT_NOP)
8427                         ptr++;
8428                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8429                         return -1;
8430
8431                 /* Ensure timestamp value increases monotonically */
8432                 if (l_lro)
8433                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8434                                 return -1;
8435
8436                 /* timestamp echo reply should be non-zero */
8437                 if (*((__be32 *)(ptr+6)) == 0)
8438                         return -1;
8439         }
8440
8441         return 0;
8442 }
8443
8444 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8445                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8446                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8447 {
8448         struct iphdr *ip;
8449         struct tcphdr *tcph;
8450         int ret = 0, i;
8451         u16 vlan_tag = 0;
8452         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8453
8454         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8455                                    rxdp, sp);
8456         if (ret)
8457                 return ret;
8458
8459         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8460
8461         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8462         tcph = (struct tcphdr *)*tcp;
8463         *tcp_len = get_l4_pyld_length(ip, tcph);
8464         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8465                 struct lro *l_lro = &ring_data->lro0_n[i];
8466                 if (l_lro->in_use) {
8467                         if (check_for_socket_match(l_lro, ip, tcph))
8468                                 continue;
8469                         /* Sock pair matched */
8470                         *lro = l_lro;
8471
8472                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8473                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8474                                           "expected 0x%x, actual 0x%x\n",
8475                                           __func__,
8476                                           (*lro)->tcp_next_seq,
8477                                           ntohl(tcph->seq));
8478
8479                                 swstats->outof_sequence_pkts++;
8480                                 ret = 2;
8481                                 break;
8482                         }
8483
8484                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8485                                                       *tcp_len))
8486                                 ret = 1; /* Aggregate */
8487                         else
8488                                 ret = 2; /* Flush both */
8489                         break;
8490                 }
8491         }
8492
8493         if (ret == 0) {
8494                 /* Before searching for available LRO objects,
8495                  * check if the pkt is L3/L4 aggregatable. If not
8496                  * don't create new LRO session. Just send this
8497                  * packet up.
8498                  */
8499                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8500                         return 5;
8501
8502                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8503                         struct lro *l_lro = &ring_data->lro0_n[i];
8504                         if (!(l_lro->in_use)) {
8505                                 *lro = l_lro;
8506                                 ret = 3; /* Begin anew */
8507                                 break;
8508                         }
8509                 }
8510         }
8511
8512         if (ret == 0) { /* sessions exceeded */
8513                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8514                           __func__);
8515                 *lro = NULL;
8516                 return ret;
8517         }
8518
8519         switch (ret) {
8520         case 3:
8521                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8522                                      vlan_tag);
8523                 break;
8524         case 2:
8525                 update_L3L4_header(sp, *lro);
8526                 break;
8527         case 1:
8528                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8529                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8530                         update_L3L4_header(sp, *lro);
8531                         ret = 4; /* Flush the LRO */
8532                 }
8533                 break;
8534         default:
8535                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8536                 break;
8537         }
8538
8539         return ret;
8540 }
8541
8542 static void clear_lro_session(struct lro *lro)
8543 {
8544         static u16 lro_struct_size = sizeof(struct lro);
8545
8546         memset(lro, 0, lro_struct_size);
8547 }
8548
8549 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8550 {
8551         struct net_device *dev = skb->dev;
8552         struct s2io_nic *sp = netdev_priv(dev);
8553
8554         skb->protocol = eth_type_trans(skb, dev);
8555         if (vlan_tag && sp->vlan_strip_flag)
8556                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8557         if (sp->config.napi)
8558                 netif_receive_skb(skb);
8559         else
8560                 netif_rx(skb);
8561 }
8562
8563 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8564                            struct sk_buff *skb, u32 tcp_len)
8565 {
8566         struct sk_buff *first = lro->parent;
8567         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8568
8569         first->len += tcp_len;
8570         first->data_len = lro->frags_len;
8571         skb_pull(skb, (skb->len - tcp_len));
8572         if (skb_shinfo(first)->frag_list)
8573                 lro->last_frag->next = skb;
8574         else
8575                 skb_shinfo(first)->frag_list = skb;
8576         first->truesize += skb->truesize;
8577         lro->last_frag = skb;
8578         swstats->clubbed_frms_cnt++;
8579 }
8580
8581 /**
8582  * s2io_io_error_detected - called when PCI error is detected
8583  * @pdev: Pointer to PCI device
8584  * @state: The current pci connection state
8585  *
8586  * This function is called after a PCI bus error affecting
8587  * this device has been detected.
8588  */
8589 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8590                                                pci_channel_state_t state)
8591 {
8592         struct net_device *netdev = pci_get_drvdata(pdev);
8593         struct s2io_nic *sp = netdev_priv(netdev);
8594
8595         netif_device_detach(netdev);
8596
8597         if (state == pci_channel_io_perm_failure)
8598                 return PCI_ERS_RESULT_DISCONNECT;
8599
8600         if (netif_running(netdev)) {
8601                 /* Bring down the card, while avoiding PCI I/O */
8602                 do_s2io_card_down(sp, 0);
8603         }
8604         pci_disable_device(pdev);
8605
8606         return PCI_ERS_RESULT_NEED_RESET;
8607 }
8608
8609 /**
8610  * s2io_io_slot_reset - called after the pci bus has been reset.
8611  * @pdev: Pointer to PCI device
8612  *
8613  * Restart the card from scratch, as if from a cold-boot.
8614  * At this point, the card has exprienced a hard reset,
8615  * followed by fixups by BIOS, and has its config space
8616  * set up identically to what it was at cold boot.
8617  */
8618 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8619 {
8620         struct net_device *netdev = pci_get_drvdata(pdev);
8621         struct s2io_nic *sp = netdev_priv(netdev);
8622
8623         if (pci_enable_device(pdev)) {
8624                 pr_err("Cannot re-enable PCI device after reset.\n");
8625                 return PCI_ERS_RESULT_DISCONNECT;
8626         }
8627
8628         pci_set_master(pdev);
8629         s2io_reset(sp);
8630
8631         return PCI_ERS_RESULT_RECOVERED;
8632 }
8633
8634 /**
8635  * s2io_io_resume - called when traffic can start flowing again.
8636  * @pdev: Pointer to PCI device
8637  *
8638  * This callback is called when the error recovery driver tells
8639  * us that its OK to resume normal operation.
8640  */
8641 static void s2io_io_resume(struct pci_dev *pdev)
8642 {
8643         struct net_device *netdev = pci_get_drvdata(pdev);
8644         struct s2io_nic *sp = netdev_priv(netdev);
8645
8646         if (netif_running(netdev)) {
8647                 if (s2io_card_up(sp)) {
8648                         pr_err("Can't bring device back up after reset.\n");
8649                         return;
8650                 }
8651
8652                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8653                         s2io_card_down(sp);
8654                         pr_err("Can't restore mac addr after reset.\n");
8655                         return;
8656                 }
8657         }
8658
8659         netif_device_attach(netdev);
8660         netif_tx_wake_all_queues(netdev);
8661 }