]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qed/qed_dev.c
qed: Use VF-queue feature
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_ll2.h"
33 #include "qed_mcp.h"
34 #include "qed_reg_addr.h"
35 #include "qed_sp.h"
36 #include "qed_sriov.h"
37 #include "qed_vf.h"
38 #include "qed_roce.h"
39
40 static DEFINE_SPINLOCK(qm_lock);
41
42 #define QED_MIN_DPIS            (4)
43 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
44
45 /* API common to all protocols */
46 enum BAR_ID {
47         BAR_ID_0,       /* used for GRC */
48         BAR_ID_1        /* Used for doorbells */
49 };
50
51 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, enum BAR_ID bar_id)
52 {
53         u32 bar_reg = (bar_id == BAR_ID_0 ?
54                        PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
55         u32 val;
56
57         if (IS_VF(p_hwfn->cdev))
58                 return 1 << 17;
59
60         val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
61         if (val)
62                 return 1 << (val + 15);
63
64         /* Old MFW initialized above registered only conditionally */
65         if (p_hwfn->cdev->num_hwfns > 1) {
66                 DP_INFO(p_hwfn,
67                         "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
68                         return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
69         } else {
70                 DP_INFO(p_hwfn,
71                         "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
72                         return 512 * 1024;
73         }
74 }
75
76 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
77 {
78         u32 i;
79
80         cdev->dp_level = dp_level;
81         cdev->dp_module = dp_module;
82         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
83                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
84
85                 p_hwfn->dp_level = dp_level;
86                 p_hwfn->dp_module = dp_module;
87         }
88 }
89
90 void qed_init_struct(struct qed_dev *cdev)
91 {
92         u8 i;
93
94         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
95                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
96
97                 p_hwfn->cdev = cdev;
98                 p_hwfn->my_id = i;
99                 p_hwfn->b_active = false;
100
101                 mutex_init(&p_hwfn->dmae_info.mutex);
102         }
103
104         /* hwfn 0 is always active */
105         cdev->hwfns[0].b_active = true;
106
107         /* set the default cache alignment to 128 */
108         cdev->cache_shift = 7;
109 }
110
111 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
112 {
113         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
114
115         kfree(qm_info->qm_pq_params);
116         qm_info->qm_pq_params = NULL;
117         kfree(qm_info->qm_vport_params);
118         qm_info->qm_vport_params = NULL;
119         kfree(qm_info->qm_port_params);
120         qm_info->qm_port_params = NULL;
121         kfree(qm_info->wfq_data);
122         qm_info->wfq_data = NULL;
123 }
124
125 void qed_resc_free(struct qed_dev *cdev)
126 {
127         int i;
128
129         if (IS_VF(cdev))
130                 return;
131
132         kfree(cdev->fw_data);
133         cdev->fw_data = NULL;
134
135         kfree(cdev->reset_stats);
136
137         for_each_hwfn(cdev, i) {
138                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
139
140                 kfree(p_hwfn->p_tx_cids);
141                 p_hwfn->p_tx_cids = NULL;
142                 kfree(p_hwfn->p_rx_cids);
143                 p_hwfn->p_rx_cids = NULL;
144         }
145
146         for_each_hwfn(cdev, i) {
147                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
148
149                 qed_cxt_mngr_free(p_hwfn);
150                 qed_qm_info_free(p_hwfn);
151                 qed_spq_free(p_hwfn);
152                 qed_eq_free(p_hwfn, p_hwfn->p_eq);
153                 qed_consq_free(p_hwfn, p_hwfn->p_consq);
154                 qed_int_free(p_hwfn);
155 #ifdef CONFIG_QED_LL2
156                 qed_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
157 #endif
158                 qed_iov_free(p_hwfn);
159                 qed_dmae_info_free(p_hwfn);
160                 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
161         }
162 }
163
164 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
165 {
166         u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
167         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
168         struct init_qm_port_params *p_qm_port;
169         bool init_rdma_offload_pq = false;
170         bool init_pure_ack_pq = false;
171         bool init_ooo_pq = false;
172         u16 num_pqs, multi_cos_tcs = 1;
173         u8 pf_wfq = qm_info->pf_wfq;
174         u32 pf_rl = qm_info->pf_rl;
175         u16 num_pf_rls = 0;
176         u16 num_vfs = 0;
177
178 #ifdef CONFIG_QED_SRIOV
179         if (p_hwfn->cdev->p_iov_info)
180                 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
181 #endif
182         memset(qm_info, 0, sizeof(*qm_info));
183
184         num_pqs = multi_cos_tcs + num_vfs + 1;  /* The '1' is for pure-LB */
185         num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
186
187         if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
188                 num_pqs++;      /* for RoCE queue */
189                 init_rdma_offload_pq = true;
190                 /* we subtract num_vfs because each require a rate limiter,
191                  * and one default rate limiter
192                  */
193                 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
194                         num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
195
196                 num_pqs += num_pf_rls;
197                 qm_info->num_pf_rls = (u8) num_pf_rls;
198         }
199
200         if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
201                 num_pqs += 2;   /* for iSCSI pure-ACK / OOO queue */
202                 init_pure_ack_pq = true;
203                 init_ooo_pq = true;
204         }
205
206         /* Sanity checking that setup requires legal number of resources */
207         if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
208                 DP_ERR(p_hwfn,
209                        "Need too many Physical queues - 0x%04x when only %04x are available\n",
210                        num_pqs, RESC_NUM(p_hwfn, QED_PQ));
211                 return -EINVAL;
212         }
213
214         /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
215          */
216         qm_info->qm_pq_params = kcalloc(num_pqs,
217                                         sizeof(struct init_qm_pq_params),
218                                         b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
219         if (!qm_info->qm_pq_params)
220                 goto alloc_err;
221
222         qm_info->qm_vport_params = kcalloc(num_vports,
223                                            sizeof(struct init_qm_vport_params),
224                                            b_sleepable ? GFP_KERNEL
225                                                        : GFP_ATOMIC);
226         if (!qm_info->qm_vport_params)
227                 goto alloc_err;
228
229         qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
230                                           sizeof(struct init_qm_port_params),
231                                           b_sleepable ? GFP_KERNEL
232                                                       : GFP_ATOMIC);
233         if (!qm_info->qm_port_params)
234                 goto alloc_err;
235
236         qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
237                                     b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
238         if (!qm_info->wfq_data)
239                 goto alloc_err;
240
241         vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
242
243         /* First init rate limited queues */
244         for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
245                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
246                 qm_info->qm_pq_params[curr_queue].tc_id =
247                     p_hwfn->hw_info.non_offload_tc;
248                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
249                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
250         }
251
252         /* First init per-TC PQs */
253         for (i = 0; i < multi_cos_tcs; i++) {
254                 struct init_qm_pq_params *params =
255                     &qm_info->qm_pq_params[curr_queue++];
256
257                 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
258                     p_hwfn->hw_info.personality == QED_PCI_ETH) {
259                         params->vport_id = vport_id;
260                         params->tc_id = p_hwfn->hw_info.non_offload_tc;
261                         params->wrr_group = 1;
262                 } else {
263                         params->vport_id = vport_id;
264                         params->tc_id = p_hwfn->hw_info.offload_tc;
265                         params->wrr_group = 1;
266                 }
267         }
268
269         /* Then init pure-LB PQ */
270         qm_info->pure_lb_pq = curr_queue;
271         qm_info->qm_pq_params[curr_queue].vport_id =
272             (u8) RESC_START(p_hwfn, QED_VPORT);
273         qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
274         qm_info->qm_pq_params[curr_queue].wrr_group = 1;
275         curr_queue++;
276
277         qm_info->offload_pq = 0;
278         if (init_rdma_offload_pq) {
279                 qm_info->offload_pq = curr_queue;
280                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
281                 qm_info->qm_pq_params[curr_queue].tc_id =
282                     p_hwfn->hw_info.offload_tc;
283                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
284                 curr_queue++;
285         }
286
287         if (init_pure_ack_pq) {
288                 qm_info->pure_ack_pq = curr_queue;
289                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
290                 qm_info->qm_pq_params[curr_queue].tc_id =
291                     p_hwfn->hw_info.offload_tc;
292                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
293                 curr_queue++;
294         }
295
296         if (init_ooo_pq) {
297                 qm_info->ooo_pq = curr_queue;
298                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
299                 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
300                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
301                 curr_queue++;
302         }
303
304         /* Then init per-VF PQs */
305         vf_offset = curr_queue;
306         for (i = 0; i < num_vfs; i++) {
307                 /* First vport is used by the PF */
308                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
309                 qm_info->qm_pq_params[curr_queue].tc_id =
310                     p_hwfn->hw_info.non_offload_tc;
311                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
312                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
313                 curr_queue++;
314         }
315
316         qm_info->vf_queues_offset = vf_offset;
317         qm_info->num_pqs = num_pqs;
318         qm_info->num_vports = num_vports;
319
320         /* Initialize qm port parameters */
321         num_ports = p_hwfn->cdev->num_ports_in_engines;
322         for (i = 0; i < num_ports; i++) {
323                 p_qm_port = &qm_info->qm_port_params[i];
324                 p_qm_port->active = 1;
325                 if (num_ports == 4)
326                         p_qm_port->active_phys_tcs = 0x7;
327                 else
328                         p_qm_port->active_phys_tcs = 0x9f;
329                 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
330                 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
331         }
332
333         qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
334
335         qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
336
337         qm_info->num_vf_pqs = num_vfs;
338         qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
339
340         for (i = 0; i < qm_info->num_vports; i++)
341                 qm_info->qm_vport_params[i].vport_wfq = 1;
342
343         qm_info->vport_rl_en = 1;
344         qm_info->vport_wfq_en = 1;
345         qm_info->pf_rl = pf_rl;
346         qm_info->pf_wfq = pf_wfq;
347
348         return 0;
349
350 alloc_err:
351         qed_qm_info_free(p_hwfn);
352         return -ENOMEM;
353 }
354
355 /* This function reconfigures the QM pf on the fly.
356  * For this purpose we:
357  * 1. reconfigure the QM database
358  * 2. set new values to runtime arrat
359  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
360  * 4. activate init tool in QM_PF stage
361  * 5. send an sdm_qm_cmd through rbc interface to release the QM
362  */
363 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
364 {
365         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
366         bool b_rc;
367         int rc;
368
369         /* qm_info is allocated in qed_init_qm_info() which is already called
370          * from qed_resc_alloc() or previous call of qed_qm_reconf().
371          * The allocated size may change each init, so we free it before next
372          * allocation.
373          */
374         qed_qm_info_free(p_hwfn);
375
376         /* initialize qed's qm data structure */
377         rc = qed_init_qm_info(p_hwfn, false);
378         if (rc)
379                 return rc;
380
381         /* stop PF's qm queues */
382         spin_lock_bh(&qm_lock);
383         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
384                                     qm_info->start_pq, qm_info->num_pqs);
385         spin_unlock_bh(&qm_lock);
386         if (!b_rc)
387                 return -EINVAL;
388
389         /* clear the QM_PF runtime phase leftovers from previous init */
390         qed_init_clear_rt_data(p_hwfn);
391
392         /* prepare QM portion of runtime array */
393         qed_qm_init_pf(p_hwfn);
394
395         /* activate init tool on runtime array */
396         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
397                           p_hwfn->hw_info.hw_mode);
398         if (rc)
399                 return rc;
400
401         /* start PF's qm queues */
402         spin_lock_bh(&qm_lock);
403         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
404                                     qm_info->start_pq, qm_info->num_pqs);
405         spin_unlock_bh(&qm_lock);
406         if (!b_rc)
407                 return -EINVAL;
408
409         return 0;
410 }
411
412 int qed_resc_alloc(struct qed_dev *cdev)
413 {
414 #ifdef CONFIG_QED_LL2
415         struct qed_ll2_info *p_ll2_info;
416 #endif
417         struct qed_consq *p_consq;
418         struct qed_eq *p_eq;
419         int i, rc = 0;
420
421         if (IS_VF(cdev))
422                 return rc;
423
424         cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
425         if (!cdev->fw_data)
426                 return -ENOMEM;
427
428         /* Allocate Memory for the Queue->CID mapping */
429         for_each_hwfn(cdev, i) {
430                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
431                 int tx_size = sizeof(struct qed_hw_cid_data) *
432                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
433                 int rx_size = sizeof(struct qed_hw_cid_data) *
434                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
435
436                 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
437                 if (!p_hwfn->p_tx_cids)
438                         goto alloc_no_mem;
439
440                 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
441                 if (!p_hwfn->p_rx_cids)
442                         goto alloc_no_mem;
443         }
444
445         for_each_hwfn(cdev, i) {
446                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
447                 u32 n_eqes, num_cons;
448
449                 /* First allocate the context manager structure */
450                 rc = qed_cxt_mngr_alloc(p_hwfn);
451                 if (rc)
452                         goto alloc_err;
453
454                 /* Set the HW cid/tid numbers (in the contest manager)
455                  * Must be done prior to any further computations.
456                  */
457                 rc = qed_cxt_set_pf_params(p_hwfn);
458                 if (rc)
459                         goto alloc_err;
460
461                 /* Prepare and process QM requirements */
462                 rc = qed_init_qm_info(p_hwfn, true);
463                 if (rc)
464                         goto alloc_err;
465
466                 /* Compute the ILT client partition */
467                 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
468                 if (rc)
469                         goto alloc_err;
470
471                 /* CID map / ILT shadow table / T2
472                  * The talbes sizes are determined by the computations above
473                  */
474                 rc = qed_cxt_tables_alloc(p_hwfn);
475                 if (rc)
476                         goto alloc_err;
477
478                 /* SPQ, must follow ILT because initializes SPQ context */
479                 rc = qed_spq_alloc(p_hwfn);
480                 if (rc)
481                         goto alloc_err;
482
483                 /* SP status block allocation */
484                 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
485                                                          RESERVED_PTT_DPC);
486
487                 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
488                 if (rc)
489                         goto alloc_err;
490
491                 rc = qed_iov_alloc(p_hwfn);
492                 if (rc)
493                         goto alloc_err;
494
495                 /* EQ */
496                 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
497                 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
498                         num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
499                                                                PROTOCOLID_ROCE,
500                                                                NULL) * 2;
501                         n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
502                 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
503                         num_cons =
504                             qed_cxt_get_proto_cid_count(p_hwfn,
505                                                         PROTOCOLID_ISCSI,
506                                                         NULL);
507                         n_eqes += 2 * num_cons;
508                 }
509
510                 if (n_eqes > 0xFFFF) {
511                         DP_ERR(p_hwfn,
512                                "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
513                                n_eqes, 0xFFFF);
514                         rc = -EINVAL;
515                         goto alloc_err;
516                 }
517
518                 p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
519                 if (!p_eq)
520                         goto alloc_no_mem;
521                 p_hwfn->p_eq = p_eq;
522
523                 p_consq = qed_consq_alloc(p_hwfn);
524                 if (!p_consq)
525                         goto alloc_no_mem;
526                 p_hwfn->p_consq = p_consq;
527
528 #ifdef CONFIG_QED_LL2
529                 if (p_hwfn->using_ll2) {
530                         p_ll2_info = qed_ll2_alloc(p_hwfn);
531                         if (!p_ll2_info)
532                                 goto alloc_no_mem;
533                         p_hwfn->p_ll2_info = p_ll2_info;
534                 }
535 #endif
536
537                 /* DMA info initialization */
538                 rc = qed_dmae_info_alloc(p_hwfn);
539                 if (rc)
540                         goto alloc_err;
541
542                 /* DCBX initialization */
543                 rc = qed_dcbx_info_alloc(p_hwfn);
544                 if (rc)
545                         goto alloc_err;
546         }
547
548         cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
549         if (!cdev->reset_stats)
550                 goto alloc_no_mem;
551
552         return 0;
553
554 alloc_no_mem:
555         rc = -ENOMEM;
556 alloc_err:
557         qed_resc_free(cdev);
558         return rc;
559 }
560
561 void qed_resc_setup(struct qed_dev *cdev)
562 {
563         int i;
564
565         if (IS_VF(cdev))
566                 return;
567
568         for_each_hwfn(cdev, i) {
569                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
570
571                 qed_cxt_mngr_setup(p_hwfn);
572                 qed_spq_setup(p_hwfn);
573                 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
574                 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
575
576                 /* Read shadow of current MFW mailbox */
577                 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
578                 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
579                        p_hwfn->mcp_info->mfw_mb_cur,
580                        p_hwfn->mcp_info->mfw_mb_length);
581
582                 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
583
584                 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
585 #ifdef CONFIG_QED_LL2
586                 if (p_hwfn->using_ll2)
587                         qed_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
588 #endif
589         }
590 }
591
592 #define FINAL_CLEANUP_POLL_CNT          (100)
593 #define FINAL_CLEANUP_POLL_TIME         (10)
594 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
595                       struct qed_ptt *p_ptt, u16 id, bool is_vf)
596 {
597         u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
598         int rc = -EBUSY;
599
600         addr = GTT_BAR0_MAP_REG_USDM_RAM +
601                 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
602
603         if (is_vf)
604                 id += 0x10;
605
606         command |= X_FINAL_CLEANUP_AGG_INT <<
607                 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
608         command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
609         command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
610         command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
611
612         /* Make sure notification is not set before initiating final cleanup */
613         if (REG_RD(p_hwfn, addr)) {
614                 DP_NOTICE(p_hwfn,
615                           "Unexpected; Found final cleanup notification before initiating final cleanup\n");
616                 REG_WR(p_hwfn, addr, 0);
617         }
618
619         DP_VERBOSE(p_hwfn, QED_MSG_IOV,
620                    "Sending final cleanup for PFVF[%d] [Command %08x\n]",
621                    id, command);
622
623         qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
624
625         /* Poll until completion */
626         while (!REG_RD(p_hwfn, addr) && count--)
627                 msleep(FINAL_CLEANUP_POLL_TIME);
628
629         if (REG_RD(p_hwfn, addr))
630                 rc = 0;
631         else
632                 DP_NOTICE(p_hwfn,
633                           "Failed to receive FW final cleanup notification\n");
634
635         /* Cleanup afterwards */
636         REG_WR(p_hwfn, addr, 0);
637
638         return rc;
639 }
640
641 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
642 {
643         int hw_mode = 0;
644
645         hw_mode = (1 << MODE_BB_B0);
646
647         switch (p_hwfn->cdev->num_ports_in_engines) {
648         case 1:
649                 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
650                 break;
651         case 2:
652                 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
653                 break;
654         case 4:
655                 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
656                 break;
657         default:
658                 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
659                           p_hwfn->cdev->num_ports_in_engines);
660                 return;
661         }
662
663         switch (p_hwfn->cdev->mf_mode) {
664         case QED_MF_DEFAULT:
665         case QED_MF_NPAR:
666                 hw_mode |= 1 << MODE_MF_SI;
667                 break;
668         case QED_MF_OVLAN:
669                 hw_mode |= 1 << MODE_MF_SD;
670                 break;
671         default:
672                 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
673                 hw_mode |= 1 << MODE_MF_SI;
674         }
675
676         hw_mode |= 1 << MODE_ASIC;
677
678         if (p_hwfn->cdev->num_hwfns > 1)
679                 hw_mode |= 1 << MODE_100G;
680
681         p_hwfn->hw_info.hw_mode = hw_mode;
682
683         DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
684                    "Configuring function for hw_mode: 0x%08x\n",
685                    p_hwfn->hw_info.hw_mode);
686 }
687
688 /* Init run time data for all PFs on an engine. */
689 static void qed_init_cau_rt_data(struct qed_dev *cdev)
690 {
691         u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
692         int i, sb_id;
693
694         for_each_hwfn(cdev, i) {
695                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
696                 struct qed_igu_info *p_igu_info;
697                 struct qed_igu_block *p_block;
698                 struct cau_sb_entry sb_entry;
699
700                 p_igu_info = p_hwfn->hw_info.p_igu_info;
701
702                 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
703                      sb_id++) {
704                         p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
705                         if (!p_block->is_pf)
706                                 continue;
707
708                         qed_init_cau_sb_entry(p_hwfn, &sb_entry,
709                                               p_block->function_id, 0, 0);
710                         STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
711                 }
712         }
713 }
714
715 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
716                               struct qed_ptt *p_ptt, int hw_mode)
717 {
718         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
719         struct qed_qm_common_rt_init_params params;
720         struct qed_dev *cdev = p_hwfn->cdev;
721         u16 num_pfs, pf_id;
722         u32 concrete_fid;
723         int rc = 0;
724         u8 vf_id;
725
726         qed_init_cau_rt_data(cdev);
727
728         /* Program GTT windows */
729         qed_gtt_init(p_hwfn);
730
731         if (p_hwfn->mcp_info) {
732                 if (p_hwfn->mcp_info->func_info.bandwidth_max)
733                         qm_info->pf_rl_en = 1;
734                 if (p_hwfn->mcp_info->func_info.bandwidth_min)
735                         qm_info->pf_wfq_en = 1;
736         }
737
738         memset(&params, 0, sizeof(params));
739         params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
740         params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
741         params.pf_rl_en = qm_info->pf_rl_en;
742         params.pf_wfq_en = qm_info->pf_wfq_en;
743         params.vport_rl_en = qm_info->vport_rl_en;
744         params.vport_wfq_en = qm_info->vport_wfq_en;
745         params.port_params = qm_info->qm_port_params;
746
747         qed_qm_common_rt_init(p_hwfn, &params);
748
749         qed_cxt_hw_init_common(p_hwfn);
750
751         /* Close gate from NIG to BRB/Storm; By default they are open, but
752          * we close them to prevent NIG from passing data to reset blocks.
753          * Should have been done in the ENGINE phase, but init-tool lacks
754          * proper port-pretend capabilities.
755          */
756         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
757         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
758         qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
759         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
760         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
761         qed_port_unpretend(p_hwfn, p_ptt);
762
763         rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
764         if (rc)
765                 return rc;
766
767         qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
768         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
769
770         if (QED_IS_BB(p_hwfn->cdev)) {
771                 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
772                 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
773                         qed_fid_pretend(p_hwfn, p_ptt, pf_id);
774                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
775                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
776                 }
777                 /* pretend to original PF */
778                 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
779         }
780
781         for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
782                 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
783                 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
784                 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
785                 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
786                 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
787                 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
788         }
789         /* pretend to original PF */
790         qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
791
792         return rc;
793 }
794
795 static int
796 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
797                      struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
798 {
799         u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
800         u32 dpi_bit_shift, dpi_count;
801         u32 min_dpis;
802
803         /* Calculate DPI size */
804         dpi_page_size_1 = QED_WID_SIZE * n_cpus;
805         dpi_page_size_2 = max_t(u32, QED_WID_SIZE, PAGE_SIZE);
806         dpi_page_size = max_t(u32, dpi_page_size_1, dpi_page_size_2);
807         dpi_page_size = roundup_pow_of_two(dpi_page_size);
808         dpi_bit_shift = ilog2(dpi_page_size / 4096);
809
810         dpi_count = pwm_region_size / dpi_page_size;
811
812         min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
813         min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
814
815         p_hwfn->dpi_size = dpi_page_size;
816         p_hwfn->dpi_count = dpi_count;
817
818         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
819
820         if (dpi_count < min_dpis)
821                 return -EINVAL;
822
823         return 0;
824 }
825
826 enum QED_ROCE_EDPM_MODE {
827         QED_ROCE_EDPM_MODE_ENABLE = 0,
828         QED_ROCE_EDPM_MODE_FORCE_ON = 1,
829         QED_ROCE_EDPM_MODE_DISABLE = 2,
830 };
831
832 static int
833 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
834 {
835         u32 pwm_regsize, norm_regsize;
836         u32 non_pwm_conn, min_addr_reg1;
837         u32 db_bar_size, n_cpus;
838         u32 roce_edpm_mode;
839         u32 pf_dems_shift;
840         int rc = 0;
841         u8 cond;
842
843         db_bar_size = qed_hw_bar_size(p_hwfn, BAR_ID_1);
844         if (p_hwfn->cdev->num_hwfns > 1)
845                 db_bar_size /= 2;
846
847         /* Calculate doorbell regions */
848         non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
849                        qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
850                                                    NULL) +
851                        qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
852                                                    NULL);
853         norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, 4096);
854         min_addr_reg1 = norm_regsize / 4096;
855         pwm_regsize = db_bar_size - norm_regsize;
856
857         /* Check that the normal and PWM sizes are valid */
858         if (db_bar_size < norm_regsize) {
859                 DP_ERR(p_hwfn->cdev,
860                        "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
861                        db_bar_size, norm_regsize);
862                 return -EINVAL;
863         }
864
865         if (pwm_regsize < QED_MIN_PWM_REGION) {
866                 DP_ERR(p_hwfn->cdev,
867                        "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
868                        pwm_regsize,
869                        QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
870                 return -EINVAL;
871         }
872
873         /* Calculate number of DPIs */
874         roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
875         if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
876             ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
877                 /* Either EDPM is mandatory, or we are attempting to allocate a
878                  * WID per CPU.
879                  */
880                 n_cpus = num_active_cpus();
881                 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
882         }
883
884         cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
885                (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
886         if (cond || p_hwfn->dcbx_no_edpm) {
887                 /* Either EDPM is disabled from user configuration, or it is
888                  * disabled via DCBx, or it is not mandatory and we failed to
889                  * allocated a WID per CPU.
890                  */
891                 n_cpus = 1;
892                 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
893
894                 if (cond)
895                         qed_rdma_dpm_bar(p_hwfn, p_ptt);
896         }
897
898         DP_INFO(p_hwfn,
899                 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
900                 norm_regsize,
901                 pwm_regsize,
902                 p_hwfn->dpi_size,
903                 p_hwfn->dpi_count,
904                 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
905                 "disabled" : "enabled");
906
907         if (rc) {
908                 DP_ERR(p_hwfn,
909                        "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
910                        p_hwfn->dpi_count,
911                        p_hwfn->pf_params.rdma_pf_params.min_dpis);
912                 return -EINVAL;
913         }
914
915         p_hwfn->dpi_start_offset = norm_regsize;
916
917         /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
918         pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
919         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
920         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
921
922         return 0;
923 }
924
925 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
926                             struct qed_ptt *p_ptt, int hw_mode)
927 {
928         return qed_init_run(p_hwfn, p_ptt, PHASE_PORT,
929                             p_hwfn->port_id, hw_mode);
930 }
931
932 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
933                           struct qed_ptt *p_ptt,
934                           struct qed_tunn_start_params *p_tunn,
935                           int hw_mode,
936                           bool b_hw_start,
937                           enum qed_int_mode int_mode,
938                           bool allow_npar_tx_switch)
939 {
940         u8 rel_pf_id = p_hwfn->rel_pf_id;
941         int rc = 0;
942
943         if (p_hwfn->mcp_info) {
944                 struct qed_mcp_function_info *p_info;
945
946                 p_info = &p_hwfn->mcp_info->func_info;
947                 if (p_info->bandwidth_min)
948                         p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
949
950                 /* Update rate limit once we'll actually have a link */
951                 p_hwfn->qm_info.pf_rl = 100000;
952         }
953
954         qed_cxt_hw_init_pf(p_hwfn);
955
956         qed_int_igu_init_rt(p_hwfn);
957
958         /* Set VLAN in NIG if needed */
959         if (hw_mode & BIT(MODE_MF_SD)) {
960                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
961                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
962                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
963                              p_hwfn->hw_info.ovlan);
964         }
965
966         /* Enable classification by MAC if needed */
967         if (hw_mode & BIT(MODE_MF_SI)) {
968                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
969                            "Configuring TAGMAC_CLS_TYPE\n");
970                 STORE_RT_REG(p_hwfn,
971                              NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
972         }
973
974         /* Protocl Configuration  */
975         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
976                      (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
977         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
978         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
979
980         /* Cleanup chip from previous driver if such remains exist */
981         rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
982         if (rc)
983                 return rc;
984
985         /* PF Init sequence */
986         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
987         if (rc)
988                 return rc;
989
990         /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
991         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
992         if (rc)
993                 return rc;
994
995         /* Pure runtime initializations - directly to the HW  */
996         qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
997
998         rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
999         if (rc)
1000                 return rc;
1001
1002         if (b_hw_start) {
1003                 /* enable interrupts */
1004                 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1005
1006                 /* send function start command */
1007                 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
1008                                      allow_npar_tx_switch);
1009                 if (rc)
1010                         DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1011         }
1012         return rc;
1013 }
1014
1015 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
1016                                struct qed_ptt *p_ptt,
1017                                u8 enable)
1018 {
1019         u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1020
1021         /* Change PF in PXP */
1022         qed_wr(p_hwfn, p_ptt,
1023                PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1024
1025         /* wait until value is set - try for 1 second every 50us */
1026         for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1027                 val = qed_rd(p_hwfn, p_ptt,
1028                              PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1029                 if (val == set_val)
1030                         break;
1031
1032                 usleep_range(50, 60);
1033         }
1034
1035         if (val != set_val) {
1036                 DP_NOTICE(p_hwfn,
1037                           "PFID_ENABLE_MASTER wasn't changed after a second\n");
1038                 return -EAGAIN;
1039         }
1040
1041         return 0;
1042 }
1043
1044 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
1045                                 struct qed_ptt *p_main_ptt)
1046 {
1047         /* Read shadow of current MFW mailbox */
1048         qed_mcp_read_mb(p_hwfn, p_main_ptt);
1049         memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1050                p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
1051 }
1052
1053 int qed_hw_init(struct qed_dev *cdev,
1054                 struct qed_tunn_start_params *p_tunn,
1055                 bool b_hw_start,
1056                 enum qed_int_mode int_mode,
1057                 bool allow_npar_tx_switch,
1058                 const u8 *bin_fw_data)
1059 {
1060         u32 load_code, param, drv_mb_param;
1061         bool b_default_mtu = true;
1062         struct qed_hwfn *p_hwfn;
1063         int rc = 0, mfw_rc, i;
1064
1065         if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
1066                 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
1067                 return -EINVAL;
1068         }
1069
1070         if (IS_PF(cdev)) {
1071                 rc = qed_init_fw_data(cdev, bin_fw_data);
1072                 if (rc)
1073                         return rc;
1074         }
1075
1076         for_each_hwfn(cdev, i) {
1077                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1078
1079                 /* If management didn't provide a default, set one of our own */
1080                 if (!p_hwfn->hw_info.mtu) {
1081                         p_hwfn->hw_info.mtu = 1500;
1082                         b_default_mtu = false;
1083                 }
1084
1085                 if (IS_VF(cdev)) {
1086                         p_hwfn->b_int_enabled = 1;
1087                         continue;
1088                 }
1089
1090                 /* Enable DMAE in PXP */
1091                 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1092
1093                 qed_calc_hw_mode(p_hwfn);
1094
1095                 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1096                 if (rc) {
1097                         DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
1098                         return rc;
1099                 }
1100
1101                 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1102
1103                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
1104                            "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1105                            rc, load_code);
1106
1107                 p_hwfn->first_on_engine = (load_code ==
1108                                            FW_MSG_CODE_DRV_LOAD_ENGINE);
1109
1110                 switch (load_code) {
1111                 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1112                         rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1113                                                 p_hwfn->hw_info.hw_mode);
1114                         if (rc)
1115                                 break;
1116                 /* Fall into */
1117                 case FW_MSG_CODE_DRV_LOAD_PORT:
1118                         rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1119                                               p_hwfn->hw_info.hw_mode);
1120                         if (rc)
1121                                 break;
1122
1123                 /* Fall into */
1124                 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1125                         rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1126                                             p_tunn, p_hwfn->hw_info.hw_mode,
1127                                             b_hw_start, int_mode,
1128                                             allow_npar_tx_switch);
1129                         break;
1130                 default:
1131                         rc = -EINVAL;
1132                         break;
1133                 }
1134
1135                 if (rc)
1136                         DP_NOTICE(p_hwfn,
1137                                   "init phase failed for loadcode 0x%x (rc %d)\n",
1138                                    load_code, rc);
1139
1140                 /* ACK mfw regardless of success or failure of initialization */
1141                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1142                                      DRV_MSG_CODE_LOAD_DONE,
1143                                      0, &load_code, &param);
1144                 if (rc)
1145                         return rc;
1146                 if (mfw_rc) {
1147                         DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1148                         return mfw_rc;
1149                 }
1150
1151                 /* send DCBX attention request command */
1152                 DP_VERBOSE(p_hwfn,
1153                            QED_MSG_DCB,
1154                            "sending phony dcbx set command to trigger DCBx attention handling\n");
1155                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1156                                      DRV_MSG_CODE_SET_DCBX,
1157                                      1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1158                                      &load_code, &param);
1159                 if (mfw_rc) {
1160                         DP_NOTICE(p_hwfn,
1161                                   "Failed to send DCBX attention request\n");
1162                         return mfw_rc;
1163                 }
1164
1165                 p_hwfn->hw_init_done = true;
1166         }
1167
1168         if (IS_PF(cdev)) {
1169                 p_hwfn = QED_LEADING_HWFN(cdev);
1170                 drv_mb_param = (FW_MAJOR_VERSION << 24) |
1171                                (FW_MINOR_VERSION << 16) |
1172                                (FW_REVISION_VERSION << 8) |
1173                                (FW_ENGINEERING_VERSION);
1174                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1175                                  DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
1176                                  drv_mb_param, &load_code, &param);
1177                 if (rc)
1178                         DP_INFO(p_hwfn, "Failed to update firmware version\n");
1179
1180                 if (!b_default_mtu) {
1181                         rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
1182                                                    p_hwfn->hw_info.mtu);
1183                         if (rc)
1184                                 DP_INFO(p_hwfn,
1185                                         "Failed to update default mtu\n");
1186                 }
1187
1188                 rc = qed_mcp_ov_update_driver_state(p_hwfn,
1189                                                     p_hwfn->p_main_ptt,
1190                                                   QED_OV_DRIVER_STATE_DISABLED);
1191                 if (rc)
1192                         DP_INFO(p_hwfn, "Failed to update driver state\n");
1193
1194                 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
1195                                                QED_OV_ESWITCH_VEB);
1196                 if (rc)
1197                         DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
1198         }
1199
1200         return 0;
1201 }
1202
1203 #define QED_HW_STOP_RETRY_LIMIT (10)
1204 static void qed_hw_timers_stop(struct qed_dev *cdev,
1205                                struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1206 {
1207         int i;
1208
1209         /* close timers */
1210         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1211         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1212
1213         for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1214                 if ((!qed_rd(p_hwfn, p_ptt,
1215                              TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1216                     (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1217                         break;
1218
1219                 /* Dependent on number of connection/tasks, possibly
1220                  * 1ms sleep is required between polls
1221                  */
1222                 usleep_range(1000, 2000);
1223         }
1224
1225         if (i < QED_HW_STOP_RETRY_LIMIT)
1226                 return;
1227
1228         DP_NOTICE(p_hwfn,
1229                   "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1230                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1231                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1232 }
1233
1234 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1235 {
1236         int j;
1237
1238         for_each_hwfn(cdev, j) {
1239                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1240                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1241
1242                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1243         }
1244 }
1245
1246 int qed_hw_stop(struct qed_dev *cdev)
1247 {
1248         int rc = 0, t_rc;
1249         int j;
1250
1251         for_each_hwfn(cdev, j) {
1252                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1253                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1254
1255                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1256
1257                 if (IS_VF(cdev)) {
1258                         qed_vf_pf_int_cleanup(p_hwfn);
1259                         continue;
1260                 }
1261
1262                 /* mark the hw as uninitialized... */
1263                 p_hwfn->hw_init_done = false;
1264
1265                 rc = qed_sp_pf_stop(p_hwfn);
1266                 if (rc)
1267                         DP_NOTICE(p_hwfn,
1268                                   "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1269
1270                 qed_wr(p_hwfn, p_ptt,
1271                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1272
1273                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1274                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1275                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1276                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1277                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1278
1279                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1280
1281                 /* Disable Attention Generation */
1282                 qed_int_igu_disable_int(p_hwfn, p_ptt);
1283
1284                 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1285                 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1286
1287                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1288
1289                 /* Need to wait 1ms to guarantee SBs are cleared */
1290                 usleep_range(1000, 2000);
1291         }
1292
1293         if (IS_PF(cdev)) {
1294                 /* Disable DMAE in PXP - in CMT, this should only be done for
1295                  * first hw-function, and only after all transactions have
1296                  * stopped for all active hw-functions.
1297                  */
1298                 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1299                                            cdev->hwfns[0].p_main_ptt, false);
1300                 if (t_rc != 0)
1301                         rc = t_rc;
1302         }
1303
1304         return rc;
1305 }
1306
1307 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1308 {
1309         int j;
1310
1311         for_each_hwfn(cdev, j) {
1312                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1313                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1314
1315                 if (IS_VF(cdev)) {
1316                         qed_vf_pf_int_cleanup(p_hwfn);
1317                         continue;
1318                 }
1319
1320                 DP_VERBOSE(p_hwfn,
1321                            NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
1322
1323                 qed_wr(p_hwfn, p_ptt,
1324                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1325
1326                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1327                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1328                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1329                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1330                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1331
1332                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1333
1334                 /* Need to wait 1ms to guarantee SBs are cleared */
1335                 usleep_range(1000, 2000);
1336         }
1337 }
1338
1339 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1340 {
1341         if (IS_VF(p_hwfn->cdev))
1342                 return;
1343
1344         /* Re-open incoming traffic */
1345         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1346                NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1347 }
1348
1349 static int qed_reg_assert(struct qed_hwfn *p_hwfn,
1350                           struct qed_ptt *p_ptt, u32 reg, bool expected)
1351 {
1352         u32 assert_val = qed_rd(p_hwfn, p_ptt, reg);
1353
1354         if (assert_val != expected) {
1355                 DP_NOTICE(p_hwfn, "Value at address 0x%08x != 0x%08x\n",
1356                           reg, expected);
1357                 return -EINVAL;
1358         }
1359
1360         return 0;
1361 }
1362
1363 int qed_hw_reset(struct qed_dev *cdev)
1364 {
1365         int rc = 0;
1366         u32 unload_resp, unload_param;
1367         u32 wol_param;
1368         int i;
1369
1370         switch (cdev->wol_config) {
1371         case QED_OV_WOL_DISABLED:
1372                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
1373                 break;
1374         case QED_OV_WOL_ENABLED:
1375                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
1376                 break;
1377         default:
1378                 DP_NOTICE(cdev,
1379                           "Unknown WoL configuration %02x\n", cdev->wol_config);
1380                 /* Fallthrough */
1381         case QED_OV_WOL_DEFAULT:
1382                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1383         }
1384
1385         for_each_hwfn(cdev, i) {
1386                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1387
1388                 if (IS_VF(cdev)) {
1389                         rc = qed_vf_pf_reset(p_hwfn);
1390                         if (rc)
1391                                 return rc;
1392                         continue;
1393                 }
1394
1395                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1396
1397                 /* Check for incorrect states */
1398                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1399                                QM_REG_USG_CNT_PF_TX, 0);
1400                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1401                                QM_REG_USG_CNT_PF_OTHER, 0);
1402
1403                 /* Disable PF in HW blocks */
1404                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1405                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1406                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1407                        TCFC_REG_STRONG_ENABLE_PF, 0);
1408                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1409                        CCFC_REG_STRONG_ENABLE_PF, 0);
1410
1411                 /* Send unload command to MCP */
1412                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1413                                  DRV_MSG_CODE_UNLOAD_REQ, wol_param,
1414                                  &unload_resp, &unload_param);
1415                 if (rc) {
1416                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1417                         unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1418                 }
1419
1420                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1421                                  DRV_MSG_CODE_UNLOAD_DONE,
1422                                  0, &unload_resp, &unload_param);
1423                 if (rc) {
1424                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1425                         return rc;
1426                 }
1427         }
1428
1429         return rc;
1430 }
1431
1432 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1433 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1434 {
1435         qed_ptt_pool_free(p_hwfn);
1436         kfree(p_hwfn->hw_info.p_igu_info);
1437 }
1438
1439 /* Setup bar access */
1440 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1441 {
1442         /* clear indirect access */
1443         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1444         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1445         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1446         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1447
1448         /* Clean Previous errors if such exist */
1449         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1450                PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
1451
1452         /* enable internal target-read */
1453         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1454                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1455 }
1456
1457 static void get_function_id(struct qed_hwfn *p_hwfn)
1458 {
1459         /* ME Register */
1460         p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
1461                                                   PXP_PF_ME_OPAQUE_ADDR);
1462
1463         p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1464
1465         p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1466         p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1467                                       PXP_CONCRETE_FID_PFID);
1468         p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1469                                     PXP_CONCRETE_FID_PORT);
1470
1471         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1472                    "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
1473                    p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
1474 }
1475
1476 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1477 {
1478         u32 *feat_num = p_hwfn->hw_info.feat_num;
1479         struct qed_sb_cnt_info sb_cnt_info;
1480         int num_features = 1;
1481
1482         if (IS_ENABLED(CONFIG_QED_RDMA) &&
1483             p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
1484                 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
1485                  * the status blocks equally between L2 / RoCE but with
1486                  * consideration as to how many l2 queues / cnqs we have.
1487                  */
1488                 num_features++;
1489
1490                 feat_num[QED_RDMA_CNQ] =
1491                         min_t(u32, RESC_NUM(p_hwfn, QED_SB) / num_features,
1492                               RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
1493         }
1494
1495         feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1496                                                 num_features,
1497                                         RESC_NUM(p_hwfn, QED_L2_QUEUE));
1498
1499         memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1500         qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1501         feat_num[QED_VF_L2_QUE] =
1502             min_t(u32,
1503                   RESC_NUM(p_hwfn, QED_L2_QUEUE) -
1504                   FEAT_NUM(p_hwfn, QED_PF_L2_QUE), sb_cnt_info.sb_iov_cnt);
1505
1506         DP_VERBOSE(p_hwfn,
1507                    NETIF_MSG_PROBE,
1508                    "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
1509                    (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
1510                    (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
1511                    (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
1512                    RESC_NUM(p_hwfn, QED_SB), num_features);
1513 }
1514
1515 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1516 {
1517         u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1518         u32 *resc_start = p_hwfn->hw_info.resc_start;
1519         u8 num_funcs = p_hwfn->num_funcs_on_engine;
1520         u32 *resc_num = p_hwfn->hw_info.resc_num;
1521         struct qed_sb_cnt_info sb_cnt_info;
1522         int i, max_vf_vlan_filters;
1523
1524         memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1525
1526 #ifdef CONFIG_QED_SRIOV
1527         max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1528 #else
1529         max_vf_vlan_filters = 0;
1530 #endif
1531
1532         qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1533
1534         resc_num[QED_SB] = min_t(u32,
1535                                  (MAX_SB_PER_PATH_BB / num_funcs),
1536                                  sb_cnt_info.sb_cnt);
1537         resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1538         resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1539         resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1540         resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1541         resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1542         resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1543         resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1544                              num_funcs;
1545         resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1546         resc_num[QED_LL2_QUEUE] = MAX_NUM_LL2_RX_QUEUES / num_funcs;
1547         resc_num[QED_RDMA_CNQ_RAM] = NUM_OF_CMDQS_CQS / num_funcs;
1548         resc_num[QED_RDMA_STATS_QUEUE] = RDMA_NUM_STATISTIC_COUNTERS_BB /
1549                                          num_funcs;
1550
1551         for (i = 0; i < QED_MAX_RESC; i++)
1552                 resc_start[i] = resc_num[i] * enabled_func_idx;
1553
1554         /* Sanity for ILT */
1555         if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1556                 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1557                           RESC_START(p_hwfn, QED_ILT),
1558                           RESC_END(p_hwfn, QED_ILT) - 1);
1559                 return -EINVAL;
1560         }
1561
1562         qed_hw_set_feat(p_hwfn);
1563
1564         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1565                    "The numbers for each resource are:\n"
1566                    "SB = %d start = %d\n"
1567                    "L2_QUEUE = %d start = %d\n"
1568                    "VPORT = %d start = %d\n"
1569                    "PQ = %d start = %d\n"
1570                    "RL = %d start = %d\n"
1571                    "MAC = %d start = %d\n"
1572                    "VLAN = %d start = %d\n"
1573                    "ILT = %d start = %d\n"
1574                    "LL2_QUEUE = %d start = %d\n",
1575                    p_hwfn->hw_info.resc_num[QED_SB],
1576                    p_hwfn->hw_info.resc_start[QED_SB],
1577                    p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1578                    p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1579                    p_hwfn->hw_info.resc_num[QED_VPORT],
1580                    p_hwfn->hw_info.resc_start[QED_VPORT],
1581                    p_hwfn->hw_info.resc_num[QED_PQ],
1582                    p_hwfn->hw_info.resc_start[QED_PQ],
1583                    p_hwfn->hw_info.resc_num[QED_RL],
1584                    p_hwfn->hw_info.resc_start[QED_RL],
1585                    p_hwfn->hw_info.resc_num[QED_MAC],
1586                    p_hwfn->hw_info.resc_start[QED_MAC],
1587                    p_hwfn->hw_info.resc_num[QED_VLAN],
1588                    p_hwfn->hw_info.resc_start[QED_VLAN],
1589                    p_hwfn->hw_info.resc_num[QED_ILT],
1590                    p_hwfn->hw_info.resc_start[QED_ILT],
1591                    RESC_NUM(p_hwfn, QED_LL2_QUEUE),
1592                    RESC_START(p_hwfn, QED_LL2_QUEUE));
1593
1594         return 0;
1595 }
1596
1597 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1598 {
1599         u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1600         u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1601         struct qed_mcp_link_params *link;
1602
1603         /* Read global nvm_cfg address */
1604         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1605
1606         /* Verify MCP has initialized it */
1607         if (!nvm_cfg_addr) {
1608                 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1609                 return -EINVAL;
1610         }
1611
1612         /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1613         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1614
1615         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1616                offsetof(struct nvm_cfg1, glob) +
1617                offsetof(struct nvm_cfg1_glob, core_cfg);
1618
1619         core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1620
1621         switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1622                 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1623         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1624                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1625                 break;
1626         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1627                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1628                 break;
1629         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1630                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1631                 break;
1632         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1633                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1634                 break;
1635         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1636                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1637                 break;
1638         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1639                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1640                 break;
1641         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1642                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1643                 break;
1644         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1645                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1646                 break;
1647         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1648                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1649                 break;
1650         default:
1651                 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
1652                 break;
1653         }
1654
1655         /* Read default link configuration */
1656         link = &p_hwfn->mcp_info->link_input;
1657         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1658                         offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1659         link_temp = qed_rd(p_hwfn, p_ptt,
1660                            port_cfg_addr +
1661                            offsetof(struct nvm_cfg1_port, speed_cap_mask));
1662         link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1663         link->speed.advertised_speeds = link_temp;
1664
1665         link_temp = link->speed.advertised_speeds;
1666         p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
1667
1668         link_temp = qed_rd(p_hwfn, p_ptt,
1669                            port_cfg_addr +
1670                            offsetof(struct nvm_cfg1_port, link_settings));
1671         switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1672                 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1673         case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1674                 link->speed.autoneg = true;
1675                 break;
1676         case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1677                 link->speed.forced_speed = 1000;
1678                 break;
1679         case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1680                 link->speed.forced_speed = 10000;
1681                 break;
1682         case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1683                 link->speed.forced_speed = 25000;
1684                 break;
1685         case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1686                 link->speed.forced_speed = 40000;
1687                 break;
1688         case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1689                 link->speed.forced_speed = 50000;
1690                 break;
1691         case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1692                 link->speed.forced_speed = 100000;
1693                 break;
1694         default:
1695                 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
1696         }
1697
1698         link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1699         link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1700         link->pause.autoneg = !!(link_temp &
1701                                  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1702         link->pause.forced_rx = !!(link_temp &
1703                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1704         link->pause.forced_tx = !!(link_temp &
1705                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1706         link->loopback_mode = 0;
1707
1708         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1709                    "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1710                    link->speed.forced_speed, link->speed.advertised_speeds,
1711                    link->speed.autoneg, link->pause.autoneg);
1712
1713         /* Read Multi-function information from shmem */
1714         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1715                offsetof(struct nvm_cfg1, glob) +
1716                offsetof(struct nvm_cfg1_glob, generic_cont0);
1717
1718         generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1719
1720         mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1721                   NVM_CFG1_GLOB_MF_MODE_OFFSET;
1722
1723         switch (mf_mode) {
1724         case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1725                 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1726                 break;
1727         case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1728                 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1729                 break;
1730         case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1731                 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1732                 break;
1733         }
1734         DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1735                 p_hwfn->cdev->mf_mode);
1736
1737         /* Read Multi-function information from shmem */
1738         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1739                 offsetof(struct nvm_cfg1, glob) +
1740                 offsetof(struct nvm_cfg1_glob, device_capabilities);
1741
1742         device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1743         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1744                 __set_bit(QED_DEV_CAP_ETH,
1745                           &p_hwfn->hw_info.device_capabilities);
1746         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1747                 __set_bit(QED_DEV_CAP_ISCSI,
1748                           &p_hwfn->hw_info.device_capabilities);
1749         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1750                 __set_bit(QED_DEV_CAP_ROCE,
1751                           &p_hwfn->hw_info.device_capabilities);
1752
1753         return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1754 }
1755
1756 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1757 {
1758         u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1759         u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1760
1761         num_funcs = MAX_NUM_PFS_BB;
1762
1763         /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1764          * in the other bits are selected.
1765          * Bits 1-15 are for functions 1-15, respectively, and their value is
1766          * '0' only for enabled functions (function 0 always exists and
1767          * enabled).
1768          * In case of CMT, only the "even" functions are enabled, and thus the
1769          * number of functions for both hwfns is learnt from the same bits.
1770          */
1771         reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1772
1773         if (reg_function_hide & 0x1) {
1774                 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1775                         num_funcs = 0;
1776                         eng_mask = 0xaaaa;
1777                 } else {
1778                         num_funcs = 1;
1779                         eng_mask = 0x5554;
1780                 }
1781
1782                 /* Get the number of the enabled functions on the engine */
1783                 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1784                 while (tmp) {
1785                         if (tmp & 0x1)
1786                                 num_funcs++;
1787                         tmp >>= 0x1;
1788                 }
1789
1790                 /* Get the PF index within the enabled functions */
1791                 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1792                 tmp = reg_function_hide & eng_mask & low_pfs_mask;
1793                 while (tmp) {
1794                         if (tmp & 0x1)
1795                                 enabled_func_idx--;
1796                         tmp >>= 0x1;
1797                 }
1798         }
1799
1800         p_hwfn->num_funcs_on_engine = num_funcs;
1801         p_hwfn->enabled_func_idx = enabled_func_idx;
1802
1803         DP_VERBOSE(p_hwfn,
1804                    NETIF_MSG_PROBE,
1805                    "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
1806                    p_hwfn->rel_pf_id,
1807                    p_hwfn->abs_pf_id,
1808                    p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
1809 }
1810
1811 static int
1812 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1813                 struct qed_ptt *p_ptt,
1814                 enum qed_pci_personality personality)
1815 {
1816         u32 port_mode;
1817         int rc;
1818
1819         /* Since all information is common, only first hwfns should do this */
1820         if (IS_LEAD_HWFN(p_hwfn)) {
1821                 rc = qed_iov_hw_info(p_hwfn);
1822                 if (rc)
1823                         return rc;
1824         }
1825
1826         /* Read the port mode */
1827         port_mode = qed_rd(p_hwfn, p_ptt,
1828                            CNIG_REG_NW_PORT_MODE_BB_B0);
1829
1830         if (port_mode < 3) {
1831                 p_hwfn->cdev->num_ports_in_engines = 1;
1832         } else if (port_mode <= 5) {
1833                 p_hwfn->cdev->num_ports_in_engines = 2;
1834         } else {
1835                 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1836                           p_hwfn->cdev->num_ports_in_engines);
1837
1838                 /* Default num_ports_in_engines to something */
1839                 p_hwfn->cdev->num_ports_in_engines = 1;
1840         }
1841
1842         qed_hw_get_nvm_info(p_hwfn, p_ptt);
1843
1844         rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1845         if (rc)
1846                 return rc;
1847
1848         if (qed_mcp_is_init(p_hwfn))
1849                 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1850                                 p_hwfn->mcp_info->func_info.mac);
1851         else
1852                 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1853
1854         if (qed_mcp_is_init(p_hwfn)) {
1855                 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1856                         p_hwfn->hw_info.ovlan =
1857                                 p_hwfn->mcp_info->func_info.ovlan;
1858
1859                 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1860         }
1861
1862         if (qed_mcp_is_init(p_hwfn)) {
1863                 enum qed_pci_personality protocol;
1864
1865                 protocol = p_hwfn->mcp_info->func_info.protocol;
1866                 p_hwfn->hw_info.personality = protocol;
1867         }
1868
1869         qed_get_num_funcs(p_hwfn, p_ptt);
1870
1871         if (qed_mcp_is_init(p_hwfn))
1872                 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
1873
1874         return qed_hw_get_resc(p_hwfn);
1875 }
1876
1877 static int qed_get_dev_info(struct qed_dev *cdev)
1878 {
1879         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1880         u32 tmp;
1881
1882         /* Read Vendor Id / Device Id */
1883         pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
1884         pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
1885
1886         cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1887                                      MISCS_REG_CHIP_NUM);
1888         cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1889                                      MISCS_REG_CHIP_REV);
1890         MASK_FIELD(CHIP_REV, cdev->chip_rev);
1891
1892         cdev->type = QED_DEV_TYPE_BB;
1893         /* Learn number of HW-functions */
1894         tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1895                      MISCS_REG_CMT_ENABLED_FOR_PAIR);
1896
1897         if (tmp & (1 << p_hwfn->rel_pf_id)) {
1898                 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1899                 cdev->num_hwfns = 2;
1900         } else {
1901                 cdev->num_hwfns = 1;
1902         }
1903
1904         cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1905                                     MISCS_REG_CHIP_TEST_REG) >> 4;
1906         MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1907         cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1908                                        MISCS_REG_CHIP_METAL);
1909         MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1910
1911         DP_INFO(cdev->hwfns,
1912                 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1913                 cdev->chip_num, cdev->chip_rev,
1914                 cdev->chip_bond_id, cdev->chip_metal);
1915
1916         if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1917                 DP_NOTICE(cdev->hwfns,
1918                           "The chip type/rev (BB A0) is not supported!\n");
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1926                                  void __iomem *p_regview,
1927                                  void __iomem *p_doorbells,
1928                                  enum qed_pci_personality personality)
1929 {
1930         int rc = 0;
1931
1932         /* Split PCI bars evenly between hwfns */
1933         p_hwfn->regview = p_regview;
1934         p_hwfn->doorbells = p_doorbells;
1935
1936         if (IS_VF(p_hwfn->cdev))
1937                 return qed_vf_hw_prepare(p_hwfn);
1938
1939         /* Validate that chip access is feasible */
1940         if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1941                 DP_ERR(p_hwfn,
1942                        "Reading the ME register returns all Fs; Preventing further chip access\n");
1943                 return -EINVAL;
1944         }
1945
1946         get_function_id(p_hwfn);
1947
1948         /* Allocate PTT pool */
1949         rc = qed_ptt_pool_alloc(p_hwfn);
1950         if (rc)
1951                 goto err0;
1952
1953         /* Allocate the main PTT */
1954         p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1955
1956         /* First hwfn learns basic information, e.g., number of hwfns */
1957         if (!p_hwfn->my_id) {
1958                 rc = qed_get_dev_info(p_hwfn->cdev);
1959                 if (rc)
1960                         goto err1;
1961         }
1962
1963         qed_hw_hwfn_prepare(p_hwfn);
1964
1965         /* Initialize MCP structure */
1966         rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1967         if (rc) {
1968                 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1969                 goto err1;
1970         }
1971
1972         /* Read the device configuration information from the HW and SHMEM */
1973         rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1974         if (rc) {
1975                 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1976                 goto err2;
1977         }
1978
1979         /* Allocate the init RT array and initialize the init-ops engine */
1980         rc = qed_init_alloc(p_hwfn);
1981         if (rc)
1982                 goto err2;
1983
1984         return rc;
1985 err2:
1986         if (IS_LEAD_HWFN(p_hwfn))
1987                 qed_iov_free_hw_info(p_hwfn->cdev);
1988         qed_mcp_free(p_hwfn);
1989 err1:
1990         qed_hw_hwfn_free(p_hwfn);
1991 err0:
1992         return rc;
1993 }
1994
1995 int qed_hw_prepare(struct qed_dev *cdev,
1996                    int personality)
1997 {
1998         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1999         int rc;
2000
2001         /* Store the precompiled init data ptrs */
2002         if (IS_PF(cdev))
2003                 qed_init_iro_array(cdev);
2004
2005         /* Initialize the first hwfn - will learn number of hwfns */
2006         rc = qed_hw_prepare_single(p_hwfn,
2007                                    cdev->regview,
2008                                    cdev->doorbells, personality);
2009         if (rc)
2010                 return rc;
2011
2012         personality = p_hwfn->hw_info.personality;
2013
2014         /* Initialize the rest of the hwfns */
2015         if (cdev->num_hwfns > 1) {
2016                 void __iomem *p_regview, *p_doorbell;
2017                 u8 __iomem *addr;
2018
2019                 /* adjust bar offset for second engine */
2020                 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
2021                 p_regview = addr;
2022
2023                 /* adjust doorbell bar offset for second engine */
2024                 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
2025                 p_doorbell = addr;
2026
2027                 /* prepare second hw function */
2028                 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
2029                                            p_doorbell, personality);
2030
2031                 /* in case of error, need to free the previously
2032                  * initiliazed hwfn 0.
2033                  */
2034                 if (rc) {
2035                         if (IS_PF(cdev)) {
2036                                 qed_init_free(p_hwfn);
2037                                 qed_mcp_free(p_hwfn);
2038                                 qed_hw_hwfn_free(p_hwfn);
2039                         }
2040                 }
2041         }
2042
2043         return rc;
2044 }
2045
2046 void qed_hw_remove(struct qed_dev *cdev)
2047 {
2048         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2049         int i;
2050
2051         if (IS_PF(cdev))
2052                 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
2053                                                QED_OV_DRIVER_STATE_NOT_LOADED);
2054
2055         for_each_hwfn(cdev, i) {
2056                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2057
2058                 if (IS_VF(cdev)) {
2059                         qed_vf_pf_release(p_hwfn);
2060                         continue;
2061                 }
2062
2063                 qed_init_free(p_hwfn);
2064                 qed_hw_hwfn_free(p_hwfn);
2065                 qed_mcp_free(p_hwfn);
2066         }
2067
2068         qed_iov_free_hw_info(cdev);
2069 }
2070
2071 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
2072                                     struct qed_chain *p_chain)
2073 {
2074         void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
2075         dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
2076         struct qed_chain_next *p_next;
2077         u32 size, i;
2078
2079         if (!p_virt)
2080                 return;
2081
2082         size = p_chain->elem_size * p_chain->usable_per_page;
2083
2084         for (i = 0; i < p_chain->page_cnt; i++) {
2085                 if (!p_virt)
2086                         break;
2087
2088                 p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
2089                 p_virt_next = p_next->next_virt;
2090                 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
2091
2092                 dma_free_coherent(&cdev->pdev->dev,
2093                                   QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
2094
2095                 p_virt = p_virt_next;
2096                 p_phys = p_phys_next;
2097         }
2098 }
2099
2100 static void qed_chain_free_single(struct qed_dev *cdev,
2101                                   struct qed_chain *p_chain)
2102 {
2103         if (!p_chain->p_virt_addr)
2104                 return;
2105
2106         dma_free_coherent(&cdev->pdev->dev,
2107                           QED_CHAIN_PAGE_SIZE,
2108                           p_chain->p_virt_addr, p_chain->p_phys_addr);
2109 }
2110
2111 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2112 {
2113         void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
2114         u32 page_cnt = p_chain->page_cnt, i, pbl_size;
2115         u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
2116
2117         if (!pp_virt_addr_tbl)
2118                 return;
2119
2120         if (!p_chain->pbl.p_virt_table)
2121                 goto out;
2122
2123         for (i = 0; i < page_cnt; i++) {
2124                 if (!pp_virt_addr_tbl[i])
2125                         break;
2126
2127                 dma_free_coherent(&cdev->pdev->dev,
2128                                   QED_CHAIN_PAGE_SIZE,
2129                                   pp_virt_addr_tbl[i],
2130                                   *(dma_addr_t *)p_pbl_virt);
2131
2132                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2133         }
2134
2135         pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2136         dma_free_coherent(&cdev->pdev->dev,
2137                           pbl_size,
2138                           p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
2139 out:
2140         vfree(p_chain->pbl.pp_virt_addr_tbl);
2141 }
2142
2143 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
2144 {
2145         switch (p_chain->mode) {
2146         case QED_CHAIN_MODE_NEXT_PTR:
2147                 qed_chain_free_next_ptr(cdev, p_chain);
2148                 break;
2149         case QED_CHAIN_MODE_SINGLE:
2150                 qed_chain_free_single(cdev, p_chain);
2151                 break;
2152         case QED_CHAIN_MODE_PBL:
2153                 qed_chain_free_pbl(cdev, p_chain);
2154                 break;
2155         }
2156 }
2157
2158 static int
2159 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
2160                              enum qed_chain_cnt_type cnt_type,
2161                              size_t elem_size, u32 page_cnt)
2162 {
2163         u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
2164
2165         /* The actual chain size can be larger than the maximal possible value
2166          * after rounding up the requested elements number to pages, and after
2167          * taking into acount the unusuable elements (next-ptr elements).
2168          * The size of a "u16" chain can be (U16_MAX + 1) since the chain
2169          * size/capacity fields are of a u32 type.
2170          */
2171         if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
2172              chain_size > 0x10000) ||
2173             (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
2174              chain_size > 0x100000000ULL)) {
2175                 DP_NOTICE(cdev,
2176                           "The actual chain size (0x%llx) is larger than the maximal possible value\n",
2177                           chain_size);
2178                 return -EINVAL;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int
2185 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2186 {
2187         void *p_virt = NULL, *p_virt_prev = NULL;
2188         dma_addr_t p_phys = 0;
2189         u32 i;
2190
2191         for (i = 0; i < p_chain->page_cnt; i++) {
2192                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2193                                             QED_CHAIN_PAGE_SIZE,
2194                                             &p_phys, GFP_KERNEL);
2195                 if (!p_virt)
2196                         return -ENOMEM;
2197
2198                 if (i == 0) {
2199                         qed_chain_init_mem(p_chain, p_virt, p_phys);
2200                         qed_chain_reset(p_chain);
2201                 } else {
2202                         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2203                                                      p_virt, p_phys);
2204                 }
2205
2206                 p_virt_prev = p_virt;
2207         }
2208         /* Last page's next element should point to the beginning of the
2209          * chain.
2210          */
2211         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2212                                      p_chain->p_virt_addr,
2213                                      p_chain->p_phys_addr);
2214
2215         return 0;
2216 }
2217
2218 static int
2219 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2220 {
2221         dma_addr_t p_phys = 0;
2222         void *p_virt = NULL;
2223
2224         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2225                                     QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2226         if (!p_virt)
2227                 return -ENOMEM;
2228
2229         qed_chain_init_mem(p_chain, p_virt, p_phys);
2230         qed_chain_reset(p_chain);
2231
2232         return 0;
2233 }
2234
2235 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2236 {
2237         u32 page_cnt = p_chain->page_cnt, size, i;
2238         dma_addr_t p_phys = 0, p_pbl_phys = 0;
2239         void **pp_virt_addr_tbl = NULL;
2240         u8 *p_pbl_virt = NULL;
2241         void *p_virt = NULL;
2242
2243         size = page_cnt * sizeof(*pp_virt_addr_tbl);
2244         pp_virt_addr_tbl = vzalloc(size);
2245         if (!pp_virt_addr_tbl)
2246                 return -ENOMEM;
2247
2248         /* The allocation of the PBL table is done with its full size, since it
2249          * is expected to be successive.
2250          * qed_chain_init_pbl_mem() is called even in a case of an allocation
2251          * failure, since pp_virt_addr_tbl was previously allocated, and it
2252          * should be saved to allow its freeing during the error flow.
2253          */
2254         size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2255         p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2256                                         size, &p_pbl_phys, GFP_KERNEL);
2257         qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2258                                pp_virt_addr_tbl);
2259         if (!p_pbl_virt)
2260                 return -ENOMEM;
2261
2262         for (i = 0; i < page_cnt; i++) {
2263                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2264                                             QED_CHAIN_PAGE_SIZE,
2265                                             &p_phys, GFP_KERNEL);
2266                 if (!p_virt)
2267                         return -ENOMEM;
2268
2269                 if (i == 0) {
2270                         qed_chain_init_mem(p_chain, p_virt, p_phys);
2271                         qed_chain_reset(p_chain);
2272                 }
2273
2274                 /* Fill the PBL table with the physical address of the page */
2275                 *(dma_addr_t *)p_pbl_virt = p_phys;
2276                 /* Keep the virtual address of the page */
2277                 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2278
2279                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2280         }
2281
2282         return 0;
2283 }
2284
2285 int qed_chain_alloc(struct qed_dev *cdev,
2286                     enum qed_chain_use_mode intended_use,
2287                     enum qed_chain_mode mode,
2288                     enum qed_chain_cnt_type cnt_type,
2289                     u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2290 {
2291         u32 page_cnt;
2292         int rc = 0;
2293
2294         if (mode == QED_CHAIN_MODE_SINGLE)
2295                 page_cnt = 1;
2296         else
2297                 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2298
2299         rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2300         if (rc) {
2301                 DP_NOTICE(cdev,
2302                           "Cannot allocate a chain with the given arguments:\n");
2303                 DP_NOTICE(cdev,
2304                           "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2305                           intended_use, mode, cnt_type, num_elems, elem_size);
2306                 return rc;
2307         }
2308
2309         qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2310                               mode, cnt_type);
2311
2312         switch (mode) {
2313         case QED_CHAIN_MODE_NEXT_PTR:
2314                 rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2315                 break;
2316         case QED_CHAIN_MODE_SINGLE:
2317                 rc = qed_chain_alloc_single(cdev, p_chain);
2318                 break;
2319         case QED_CHAIN_MODE_PBL:
2320                 rc = qed_chain_alloc_pbl(cdev, p_chain);
2321                 break;
2322         }
2323         if (rc)
2324                 goto nomem;
2325
2326         return 0;
2327
2328 nomem:
2329         qed_chain_free(cdev, p_chain);
2330         return rc;
2331 }
2332
2333 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2334 {
2335         if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2336                 u16 min, max;
2337
2338                 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2339                 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2340                 DP_NOTICE(p_hwfn,
2341                           "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2342                           src_id, min, max);
2343
2344                 return -EINVAL;
2345         }
2346
2347         *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2348
2349         return 0;
2350 }
2351
2352 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2353 {
2354         if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2355                 u8 min, max;
2356
2357                 min = (u8)RESC_START(p_hwfn, QED_VPORT);
2358                 max = min + RESC_NUM(p_hwfn, QED_VPORT);
2359                 DP_NOTICE(p_hwfn,
2360                           "vport id [%d] is not valid, available indices [%d - %d]\n",
2361                           src_id, min, max);
2362
2363                 return -EINVAL;
2364         }
2365
2366         *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2367
2368         return 0;
2369 }
2370
2371 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2372 {
2373         if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2374                 u8 min, max;
2375
2376                 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2377                 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2378                 DP_NOTICE(p_hwfn,
2379                           "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2380                           src_id, min, max);
2381
2382                 return -EINVAL;
2383         }
2384
2385         *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2386
2387         return 0;
2388 }
2389
2390 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
2391                                   u8 *p_filter)
2392 {
2393         *p_high = p_filter[1] | (p_filter[0] << 8);
2394         *p_low = p_filter[5] | (p_filter[4] << 8) |
2395                  (p_filter[3] << 16) | (p_filter[2] << 24);
2396 }
2397
2398 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
2399                            struct qed_ptt *p_ptt, u8 *p_filter)
2400 {
2401         u32 high = 0, low = 0, en;
2402         int i;
2403
2404         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2405                 return 0;
2406
2407         qed_llh_mac_to_filter(&high, &low, p_filter);
2408
2409         /* Find a free entry and utilize it */
2410         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2411                 en = qed_rd(p_hwfn, p_ptt,
2412                             NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
2413                 if (en)
2414                         continue;
2415                 qed_wr(p_hwfn, p_ptt,
2416                        NIG_REG_LLH_FUNC_FILTER_VALUE +
2417                        2 * i * sizeof(u32), low);
2418                 qed_wr(p_hwfn, p_ptt,
2419                        NIG_REG_LLH_FUNC_FILTER_VALUE +
2420                        (2 * i + 1) * sizeof(u32), high);
2421                 qed_wr(p_hwfn, p_ptt,
2422                        NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
2423                 qed_wr(p_hwfn, p_ptt,
2424                        NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
2425                        i * sizeof(u32), 0);
2426                 qed_wr(p_hwfn, p_ptt,
2427                        NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
2428                 break;
2429         }
2430         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
2431                 DP_NOTICE(p_hwfn,
2432                           "Failed to find an empty LLH filter to utilize\n");
2433                 return -EINVAL;
2434         }
2435
2436         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2437                    "mac: %pM is added at %d\n",
2438                    p_filter, i);
2439
2440         return 0;
2441 }
2442
2443 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
2444                                struct qed_ptt *p_ptt, u8 *p_filter)
2445 {
2446         u32 high = 0, low = 0;
2447         int i;
2448
2449         if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2450                 return;
2451
2452         qed_llh_mac_to_filter(&high, &low, p_filter);
2453
2454         /* Find the entry and clean it */
2455         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2456                 if (qed_rd(p_hwfn, p_ptt,
2457                            NIG_REG_LLH_FUNC_FILTER_VALUE +
2458                            2 * i * sizeof(u32)) != low)
2459                         continue;
2460                 if (qed_rd(p_hwfn, p_ptt,
2461                            NIG_REG_LLH_FUNC_FILTER_VALUE +
2462                            (2 * i + 1) * sizeof(u32)) != high)
2463                         continue;
2464
2465                 qed_wr(p_hwfn, p_ptt,
2466                        NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
2467                 qed_wr(p_hwfn, p_ptt,
2468                        NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
2469                 qed_wr(p_hwfn, p_ptt,
2470                        NIG_REG_LLH_FUNC_FILTER_VALUE +
2471                        (2 * i + 1) * sizeof(u32), 0);
2472
2473                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2474                            "mac: %pM is removed from %d\n",
2475                            p_filter, i);
2476                 break;
2477         }
2478         if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
2479                 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
2480 }
2481
2482 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2483                             u32 hw_addr, void *p_eth_qzone,
2484                             size_t eth_qzone_size, u8 timeset)
2485 {
2486         struct coalescing_timeset *p_coal_timeset;
2487
2488         if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2489                 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2490                 return -EINVAL;
2491         }
2492
2493         p_coal_timeset = p_eth_qzone;
2494         memset(p_coal_timeset, 0, eth_qzone_size);
2495         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2496         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2497         qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2498
2499         return 0;
2500 }
2501
2502 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2503                          u16 coalesce, u8 qid, u16 sb_id)
2504 {
2505         struct ustorm_eth_queue_zone eth_qzone;
2506         u8 timeset, timer_res;
2507         u16 fw_qid = 0;
2508         u32 address;
2509         int rc;
2510
2511         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2512         if (coalesce <= 0x7F) {
2513                 timer_res = 0;
2514         } else if (coalesce <= 0xFF) {
2515                 timer_res = 1;
2516         } else if (coalesce <= 0x1FF) {
2517                 timer_res = 2;
2518         } else {
2519                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2520                 return -EINVAL;
2521         }
2522         timeset = (u8)(coalesce >> timer_res);
2523
2524         rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2525         if (rc)
2526                 return rc;
2527
2528         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2529         if (rc)
2530                 goto out;
2531
2532         address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2533
2534         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2535                               sizeof(struct ustorm_eth_queue_zone), timeset);
2536         if (rc)
2537                 goto out;
2538
2539         p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2540 out:
2541         return rc;
2542 }
2543
2544 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2545                          u16 coalesce, u8 qid, u16 sb_id)
2546 {
2547         struct xstorm_eth_queue_zone eth_qzone;
2548         u8 timeset, timer_res;
2549         u16 fw_qid = 0;
2550         u32 address;
2551         int rc;
2552
2553         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2554         if (coalesce <= 0x7F) {
2555                 timer_res = 0;
2556         } else if (coalesce <= 0xFF) {
2557                 timer_res = 1;
2558         } else if (coalesce <= 0x1FF) {
2559                 timer_res = 2;
2560         } else {
2561                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2562                 return -EINVAL;
2563         }
2564         timeset = (u8)(coalesce >> timer_res);
2565
2566         rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2567         if (rc)
2568                 return rc;
2569
2570         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2571         if (rc)
2572                 goto out;
2573
2574         address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2575
2576         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2577                               sizeof(struct xstorm_eth_queue_zone), timeset);
2578         if (rc)
2579                 goto out;
2580
2581         p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2582 out:
2583         return rc;
2584 }
2585
2586 /* Calculate final WFQ values for all vports and configure them.
2587  * After this configuration each vport will have
2588  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2589  */
2590 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2591                                              struct qed_ptt *p_ptt,
2592                                              u32 min_pf_rate)
2593 {
2594         struct init_qm_vport_params *vport_params;
2595         int i;
2596
2597         vport_params = p_hwfn->qm_info.qm_vport_params;
2598
2599         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2600                 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2601
2602                 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2603                                                 min_pf_rate;
2604                 qed_init_vport_wfq(p_hwfn, p_ptt,
2605                                    vport_params[i].first_tx_pq_id,
2606                                    vport_params[i].vport_wfq);
2607         }
2608 }
2609
2610 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2611                                        u32 min_pf_rate)
2612
2613 {
2614         int i;
2615
2616         for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2617                 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2618 }
2619
2620 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2621                                            struct qed_ptt *p_ptt,
2622                                            u32 min_pf_rate)
2623 {
2624         struct init_qm_vport_params *vport_params;
2625         int i;
2626
2627         vport_params = p_hwfn->qm_info.qm_vport_params;
2628
2629         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2630                 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2631                 qed_init_vport_wfq(p_hwfn, p_ptt,
2632                                    vport_params[i].first_tx_pq_id,
2633                                    vport_params[i].vport_wfq);
2634         }
2635 }
2636
2637 /* This function performs several validations for WFQ
2638  * configuration and required min rate for a given vport
2639  * 1. req_rate must be greater than one percent of min_pf_rate.
2640  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2641  *    rates to get less than one percent of min_pf_rate.
2642  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2643  */
2644 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2645                               u16 vport_id, u32 req_rate, u32 min_pf_rate)
2646 {
2647         u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2648         int non_requested_count = 0, req_count = 0, i, num_vports;
2649
2650         num_vports = p_hwfn->qm_info.num_vports;
2651
2652         /* Accounting for the vports which are configured for WFQ explicitly */
2653         for (i = 0; i < num_vports; i++) {
2654                 u32 tmp_speed;
2655
2656                 if ((i != vport_id) &&
2657                     p_hwfn->qm_info.wfq_data[i].configured) {
2658                         req_count++;
2659                         tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2660                         total_req_min_rate += tmp_speed;
2661                 }
2662         }
2663
2664         /* Include current vport data as well */
2665         req_count++;
2666         total_req_min_rate += req_rate;
2667         non_requested_count = num_vports - req_count;
2668
2669         if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2670                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2671                            "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2672                            vport_id, req_rate, min_pf_rate);
2673                 return -EINVAL;
2674         }
2675
2676         if (num_vports > QED_WFQ_UNIT) {
2677                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2678                            "Number of vports is greater than %d\n",
2679                            QED_WFQ_UNIT);
2680                 return -EINVAL;
2681         }
2682
2683         if (total_req_min_rate > min_pf_rate) {
2684                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2685                            "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2686                            total_req_min_rate, min_pf_rate);
2687                 return -EINVAL;
2688         }
2689
2690         total_left_rate = min_pf_rate - total_req_min_rate;
2691
2692         left_rate_per_vp = total_left_rate / non_requested_count;
2693         if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
2694                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2695                            "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2696                            left_rate_per_vp, min_pf_rate);
2697                 return -EINVAL;
2698         }
2699
2700         p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2701         p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2702
2703         for (i = 0; i < num_vports; i++) {
2704                 if (p_hwfn->qm_info.wfq_data[i].configured)
2705                         continue;
2706
2707                 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2708         }
2709
2710         return 0;
2711 }
2712
2713 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2714                                      struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2715 {
2716         struct qed_mcp_link_state *p_link;
2717         int rc = 0;
2718
2719         p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2720
2721         if (!p_link->min_pf_rate) {
2722                 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2723                 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2724                 return rc;
2725         }
2726
2727         rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2728
2729         if (!rc)
2730                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2731                                                  p_link->min_pf_rate);
2732         else
2733                 DP_NOTICE(p_hwfn,
2734                           "Validation failed while configuring min rate\n");
2735
2736         return rc;
2737 }
2738
2739 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2740                                                  struct qed_ptt *p_ptt,
2741                                                  u32 min_pf_rate)
2742 {
2743         bool use_wfq = false;
2744         int rc = 0;
2745         u16 i;
2746
2747         /* Validate all pre configured vports for wfq */
2748         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2749                 u32 rate;
2750
2751                 if (!p_hwfn->qm_info.wfq_data[i].configured)
2752                         continue;
2753
2754                 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2755                 use_wfq = true;
2756
2757                 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2758                 if (rc) {
2759                         DP_NOTICE(p_hwfn,
2760                                   "WFQ validation failed while configuring min rate\n");
2761                         break;
2762                 }
2763         }
2764
2765         if (!rc && use_wfq)
2766                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2767         else
2768                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2769
2770         return rc;
2771 }
2772
2773 /* Main API for qed clients to configure vport min rate.
2774  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2775  * rate - Speed in Mbps needs to be assigned to a given vport.
2776  */
2777 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2778 {
2779         int i, rc = -EINVAL;
2780
2781         /* Currently not supported; Might change in future */
2782         if (cdev->num_hwfns > 1) {
2783                 DP_NOTICE(cdev,
2784                           "WFQ configuration is not supported for this device\n");
2785                 return rc;
2786         }
2787
2788         for_each_hwfn(cdev, i) {
2789                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2790                 struct qed_ptt *p_ptt;
2791
2792                 p_ptt = qed_ptt_acquire(p_hwfn);
2793                 if (!p_ptt)
2794                         return -EBUSY;
2795
2796                 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2797
2798                 if (rc) {
2799                         qed_ptt_release(p_hwfn, p_ptt);
2800                         return rc;
2801                 }
2802
2803                 qed_ptt_release(p_hwfn, p_ptt);
2804         }
2805
2806         return rc;
2807 }
2808
2809 /* API to configure WFQ from mcp link change */
2810 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2811 {
2812         int i;
2813
2814         if (cdev->num_hwfns > 1) {
2815                 DP_VERBOSE(cdev,
2816                            NETIF_MSG_LINK,
2817                            "WFQ configuration is not supported for this device\n");
2818                 return;
2819         }
2820
2821         for_each_hwfn(cdev, i) {
2822                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2823
2824                 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2825                                                       p_hwfn->p_dpc_ptt,
2826                                                       min_pf_rate);
2827         }
2828 }
2829
2830 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2831                                      struct qed_ptt *p_ptt,
2832                                      struct qed_mcp_link_state *p_link,
2833                                      u8 max_bw)
2834 {
2835         int rc = 0;
2836
2837         p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2838
2839         if (!p_link->line_speed && (max_bw != 100))
2840                 return rc;
2841
2842         p_link->speed = (p_link->line_speed * max_bw) / 100;
2843         p_hwfn->qm_info.pf_rl = p_link->speed;
2844
2845         /* Since the limiter also affects Tx-switched traffic, we don't want it
2846          * to limit such traffic in case there's no actual limit.
2847          * In that case, set limit to imaginary high boundary.
2848          */
2849         if (max_bw == 100)
2850                 p_hwfn->qm_info.pf_rl = 100000;
2851
2852         rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2853                             p_hwfn->qm_info.pf_rl);
2854
2855         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2856                    "Configured MAX bandwidth to be %08x Mb/sec\n",
2857                    p_link->speed);
2858
2859         return rc;
2860 }
2861
2862 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2863 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2864 {
2865         int i, rc = -EINVAL;
2866
2867         if (max_bw < 1 || max_bw > 100) {
2868                 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2869                 return rc;
2870         }
2871
2872         for_each_hwfn(cdev, i) {
2873                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2874                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2875                 struct qed_mcp_link_state *p_link;
2876                 struct qed_ptt *p_ptt;
2877
2878                 p_link = &p_lead->mcp_info->link_output;
2879
2880                 p_ptt = qed_ptt_acquire(p_hwfn);
2881                 if (!p_ptt)
2882                         return -EBUSY;
2883
2884                 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2885                                                       p_link, max_bw);
2886
2887                 qed_ptt_release(p_hwfn, p_ptt);
2888
2889                 if (rc)
2890                         break;
2891         }
2892
2893         return rc;
2894 }
2895
2896 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2897                                      struct qed_ptt *p_ptt,
2898                                      struct qed_mcp_link_state *p_link,
2899                                      u8 min_bw)
2900 {
2901         int rc = 0;
2902
2903         p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2904         p_hwfn->qm_info.pf_wfq = min_bw;
2905
2906         if (!p_link->line_speed)
2907                 return rc;
2908
2909         p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2910
2911         rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2912
2913         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2914                    "Configured MIN bandwidth to be %d Mb/sec\n",
2915                    p_link->min_pf_rate);
2916
2917         return rc;
2918 }
2919
2920 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2921 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2922 {
2923         int i, rc = -EINVAL;
2924
2925         if (min_bw < 1 || min_bw > 100) {
2926                 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2927                 return rc;
2928         }
2929
2930         for_each_hwfn(cdev, i) {
2931                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2932                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2933                 struct qed_mcp_link_state *p_link;
2934                 struct qed_ptt *p_ptt;
2935
2936                 p_link = &p_lead->mcp_info->link_output;
2937
2938                 p_ptt = qed_ptt_acquire(p_hwfn);
2939                 if (!p_ptt)
2940                         return -EBUSY;
2941
2942                 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2943                                                       p_link, min_bw);
2944                 if (rc) {
2945                         qed_ptt_release(p_hwfn, p_ptt);
2946                         return rc;
2947                 }
2948
2949                 if (p_link->min_pf_rate) {
2950                         u32 min_rate = p_link->min_pf_rate;
2951
2952                         rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2953                                                                    p_ptt,
2954                                                                    min_rate);
2955                 }
2956
2957                 qed_ptt_release(p_hwfn, p_ptt);
2958         }
2959
2960         return rc;
2961 }
2962
2963 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2964 {
2965         struct qed_mcp_link_state *p_link;
2966
2967         p_link = &p_hwfn->mcp_info->link_output;
2968
2969         if (p_link->min_pf_rate)
2970                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2971                                                p_link->min_pf_rate);
2972
2973         memset(p_hwfn->qm_info.wfq_data, 0,
2974                sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2975 }