]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qed/qed_init_ops.c
Merge tag 'nfs-for-4.12-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qed / qed_init_ops.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include "qed.h"
41 #include "qed_hsi.h"
42 #include "qed_hw.h"
43 #include "qed_init_ops.h"
44 #include "qed_reg_addr.h"
45 #include "qed_sriov.h"
46
47 #define QED_INIT_MAX_POLL_COUNT 100
48 #define QED_INIT_POLL_PERIOD_US 500
49
50 static u32 pxp_global_win[] = {
51         0,
52         0,
53         0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */
54         0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */
55         0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */
56         0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */
57         0x1d80, /* win 6: addr=0x1d80000, size=4096 bytes */
58         0x1d81, /* win 7: addr=0x1d81000, size=4096 bytes */
59         0x1d82, /* win 8: addr=0x1d82000, size=4096 bytes */
60         0x1e00, /* win 9: addr=0x1e00000, size=4096 bytes */
61         0x1e80, /* win 10: addr=0x1e80000, size=4096 bytes */
62         0x1f00, /* win 11: addr=0x1f00000, size=4096 bytes */
63         0,
64         0,
65         0,
66         0,
67         0,
68         0,
69         0,
70 };
71
72 void qed_init_iro_array(struct qed_dev *cdev)
73 {
74         cdev->iro_arr = iro_arr;
75 }
76
77 /* Runtime configuration helpers */
78 void qed_init_clear_rt_data(struct qed_hwfn *p_hwfn)
79 {
80         int i;
81
82         for (i = 0; i < RUNTIME_ARRAY_SIZE; i++)
83                 p_hwfn->rt_data.b_valid[i] = false;
84 }
85
86 void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 val)
87 {
88         p_hwfn->rt_data.init_val[rt_offset] = val;
89         p_hwfn->rt_data.b_valid[rt_offset] = true;
90 }
91
92 void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn,
93                            u32 rt_offset, u32 *p_val, size_t size)
94 {
95         size_t i;
96
97         for (i = 0; i < size / sizeof(u32); i++) {
98                 p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i];
99                 p_hwfn->rt_data.b_valid[rt_offset + i]  = true;
100         }
101 }
102
103 static int qed_init_rt(struct qed_hwfn  *p_hwfn,
104                        struct qed_ptt *p_ptt,
105                        u32 addr, u16 rt_offset, u16 size, bool b_must_dmae)
106 {
107         u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset];
108         bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset];
109         u16 i, segment;
110         int rc = 0;
111
112         /* Since not all RT entries are initialized, go over the RT and
113          * for each segment of initialized values use DMA.
114          */
115         for (i = 0; i < size; i++) {
116                 if (!p_valid[i])
117                         continue;
118
119                 /* In case there isn't any wide-bus configuration here,
120                  * simply write the data instead of using dmae.
121                  */
122                 if (!b_must_dmae) {
123                         qed_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]);
124                         continue;
125                 }
126
127                 /* Start of a new segment */
128                 for (segment = 1; i + segment < size; segment++)
129                         if (!p_valid[i + segment])
130                                 break;
131
132                 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
133                                        (uintptr_t)(p_init_val + i),
134                                        addr + (i << 2), segment, 0);
135                 if (rc)
136                         return rc;
137
138                 /* Jump over the entire segment, including invalid entry */
139                 i += segment;
140         }
141
142         return rc;
143 }
144
145 int qed_init_alloc(struct qed_hwfn *p_hwfn)
146 {
147         struct qed_rt_data *rt_data = &p_hwfn->rt_data;
148
149         if (IS_VF(p_hwfn->cdev))
150                 return 0;
151
152         rt_data->b_valid = kzalloc(sizeof(bool) * RUNTIME_ARRAY_SIZE,
153                                    GFP_KERNEL);
154         if (!rt_data->b_valid)
155                 return -ENOMEM;
156
157         rt_data->init_val = kzalloc(sizeof(u32) * RUNTIME_ARRAY_SIZE,
158                                     GFP_KERNEL);
159         if (!rt_data->init_val) {
160                 kfree(rt_data->b_valid);
161                 return -ENOMEM;
162         }
163
164         return 0;
165 }
166
167 void qed_init_free(struct qed_hwfn *p_hwfn)
168 {
169         kfree(p_hwfn->rt_data.init_val);
170         kfree(p_hwfn->rt_data.b_valid);
171 }
172
173 static int qed_init_array_dmae(struct qed_hwfn *p_hwfn,
174                                struct qed_ptt *p_ptt,
175                                u32 addr,
176                                u32 dmae_data_offset,
177                                u32 size,
178                                const u32 *buf,
179                                bool b_must_dmae,
180                                bool b_can_dmae)
181 {
182         int rc = 0;
183
184         /* Perform DMAE only for lengthy enough sections or for wide-bus */
185         if (!b_can_dmae || (!b_must_dmae && (size < 16))) {
186                 const u32 *data = buf + dmae_data_offset;
187                 u32 i;
188
189                 for (i = 0; i < size; i++)
190                         qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]);
191         } else {
192                 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
193                                        (uintptr_t)(buf + dmae_data_offset),
194                                        addr, size, 0);
195         }
196
197         return rc;
198 }
199
200 static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn,
201                               struct qed_ptt *p_ptt,
202                               u32 addr, u32 fill, u32 fill_count)
203 {
204         static u32 zero_buffer[DMAE_MAX_RW_SIZE];
205
206         memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE);
207
208         /* invoke the DMAE virtual/physical buffer API with
209          * 1. DMAE init channel
210          * 2. addr,
211          * 3. p_hwfb->temp_data,
212          * 4. fill_count
213          */
214
215         return qed_dmae_host2grc(p_hwfn, p_ptt,
216                                  (uintptr_t)(&zero_buffer[0]),
217                                  addr, fill_count, QED_DMAE_FLAG_RW_REPL_SRC);
218 }
219
220 static void qed_init_fill(struct qed_hwfn *p_hwfn,
221                           struct qed_ptt *p_ptt,
222                           u32 addr, u32 fill, u32 fill_count)
223 {
224         u32 i;
225
226         for (i = 0; i < fill_count; i++, addr += sizeof(u32))
227                 qed_wr(p_hwfn, p_ptt, addr, fill);
228 }
229
230 static int qed_init_cmd_array(struct qed_hwfn *p_hwfn,
231                               struct qed_ptt *p_ptt,
232                               struct init_write_op *cmd,
233                               bool b_must_dmae, bool b_can_dmae)
234 {
235         u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset);
236         u32 data = le32_to_cpu(cmd->data);
237         u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
238
239         u32 offset, output_len, input_len, max_size;
240         struct qed_dev *cdev = p_hwfn->cdev;
241         union init_array_hdr *hdr;
242         const u32 *array_data;
243         int rc = 0;
244         u32 size;
245
246         array_data = cdev->fw_data->arr_data;
247
248         hdr = (union init_array_hdr *)(array_data + dmae_array_offset);
249         data = le32_to_cpu(hdr->raw.data);
250         switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) {
251         case INIT_ARR_ZIPPED:
252                 offset = dmae_array_offset + 1;
253                 input_len = GET_FIELD(data,
254                                       INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE);
255                 max_size = MAX_ZIPPED_SIZE * 4;
256                 memset(p_hwfn->unzip_buf, 0, max_size);
257
258                 output_len = qed_unzip_data(p_hwfn, input_len,
259                                             (u8 *)&array_data[offset],
260                                             max_size, (u8 *)p_hwfn->unzip_buf);
261                 if (output_len) {
262                         rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0,
263                                                  output_len,
264                                                  p_hwfn->unzip_buf,
265                                                  b_must_dmae, b_can_dmae);
266                 } else {
267                         DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n");
268                         rc = -EINVAL;
269                 }
270                 break;
271         case INIT_ARR_PATTERN:
272         {
273                 u32 repeats = GET_FIELD(data,
274                                         INIT_ARRAY_PATTERN_HDR_REPETITIONS);
275                 u32 i;
276
277                 size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE);
278
279                 for (i = 0; i < repeats; i++, addr += size << 2) {
280                         rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
281                                                  dmae_array_offset + 1,
282                                                  size, array_data,
283                                                  b_must_dmae, b_can_dmae);
284                         if (rc)
285                                 break;
286                 }
287                 break;
288         }
289         case INIT_ARR_STANDARD:
290                 size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE);
291                 rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
292                                          dmae_array_offset + 1,
293                                          size, array_data,
294                                          b_must_dmae, b_can_dmae);
295                 break;
296         }
297
298         return rc;
299 }
300
301 /* init_ops write command */
302 static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn,
303                            struct qed_ptt *p_ptt,
304                            struct init_write_op *p_cmd, bool b_can_dmae)
305 {
306         u32 data = le32_to_cpu(p_cmd->data);
307         bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS);
308         u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
309         union init_write_args *arg = &p_cmd->args;
310         int rc = 0;
311
312         /* Sanitize */
313         if (b_must_dmae && !b_can_dmae) {
314                 DP_NOTICE(p_hwfn,
315                           "Need to write to %08x for Wide-bus but DMAE isn't allowed\n",
316                           addr);
317                 return -EINVAL;
318         }
319
320         switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) {
321         case INIT_SRC_INLINE:
322                 data = le32_to_cpu(p_cmd->args.inline_val);
323                 qed_wr(p_hwfn, p_ptt, addr, data);
324                 break;
325         case INIT_SRC_ZEROS:
326                 data = le32_to_cpu(p_cmd->args.zeros_count);
327                 if (b_must_dmae || (b_can_dmae && (data >= 64)))
328                         rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, 0, data);
329                 else
330                         qed_init_fill(p_hwfn, p_ptt, addr, 0, data);
331                 break;
332         case INIT_SRC_ARRAY:
333                 rc = qed_init_cmd_array(p_hwfn, p_ptt, p_cmd,
334                                         b_must_dmae, b_can_dmae);
335                 break;
336         case INIT_SRC_RUNTIME:
337                 qed_init_rt(p_hwfn, p_ptt, addr,
338                             le16_to_cpu(arg->runtime.offset),
339                             le16_to_cpu(arg->runtime.size),
340                             b_must_dmae);
341                 break;
342         }
343
344         return rc;
345 }
346
347 static inline bool comp_eq(u32 val, u32 expected_val)
348 {
349         return val == expected_val;
350 }
351
352 static inline bool comp_and(u32 val, u32 expected_val)
353 {
354         return (val & expected_val) == expected_val;
355 }
356
357 static inline bool comp_or(u32 val, u32 expected_val)
358 {
359         return (val | expected_val) > 0;
360 }
361
362 /* init_ops read/poll commands */
363 static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn,
364                             struct qed_ptt *p_ptt, struct init_read_op *cmd)
365 {
366         bool (*comp_check)(u32 val, u32 expected_val);
367         u32 delay = QED_INIT_POLL_PERIOD_US, val;
368         u32 data, addr, poll;
369         int i;
370
371         data = le32_to_cpu(cmd->op_data);
372         addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2;
373         poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE);
374
375
376         val = qed_rd(p_hwfn, p_ptt, addr);
377
378         if (poll == INIT_POLL_NONE)
379                 return;
380
381         switch (poll) {
382         case INIT_POLL_EQ:
383                 comp_check = comp_eq;
384                 break;
385         case INIT_POLL_OR:
386                 comp_check = comp_or;
387                 break;
388         case INIT_POLL_AND:
389                 comp_check = comp_and;
390                 break;
391         default:
392                 DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n",
393                        cmd->op_data);
394                 return;
395         }
396
397         data = le32_to_cpu(cmd->expected_val);
398         for (i = 0;
399              i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data);
400              i++) {
401                 udelay(delay);
402                 val = qed_rd(p_hwfn, p_ptt, addr);
403         }
404
405         if (i == QED_INIT_MAX_POLL_COUNT) {
406                 DP_ERR(p_hwfn,
407                        "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparsion %08x)]\n",
408                        addr, le32_to_cpu(cmd->expected_val),
409                        val, le32_to_cpu(cmd->op_data));
410         }
411 }
412
413 /* init_ops callbacks entry point */
414 static void qed_init_cmd_cb(struct qed_hwfn *p_hwfn,
415                             struct qed_ptt *p_ptt,
416                             struct init_callback_op *p_cmd)
417 {
418         DP_NOTICE(p_hwfn, "Currently init values have no need of callbacks\n");
419 }
420
421 static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn,
422                                   u16 *p_offset, int modes)
423 {
424         struct qed_dev *cdev = p_hwfn->cdev;
425         const u8 *modes_tree_buf;
426         u8 arg1, arg2, tree_val;
427
428         modes_tree_buf = cdev->fw_data->modes_tree_buf;
429         tree_val = modes_tree_buf[(*p_offset)++];
430         switch (tree_val) {
431         case INIT_MODE_OP_NOT:
432                 return qed_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1;
433         case INIT_MODE_OP_OR:
434                 arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
435                 arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
436                 return arg1 | arg2;
437         case INIT_MODE_OP_AND:
438                 arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
439                 arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
440                 return arg1 & arg2;
441         default:
442                 tree_val -= MAX_INIT_MODE_OPS;
443                 return (modes & BIT(tree_val)) ? 1 : 0;
444         }
445 }
446
447 static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn,
448                              struct init_if_mode_op *p_cmd, int modes)
449 {
450         u16 offset = le16_to_cpu(p_cmd->modes_buf_offset);
451
452         if (qed_init_cmd_mode_match(p_hwfn, &offset, modes))
453                 return 0;
454         else
455                 return GET_FIELD(le32_to_cpu(p_cmd->op_data),
456                                  INIT_IF_MODE_OP_CMD_OFFSET);
457 }
458
459 static u32 qed_init_cmd_phase(struct qed_hwfn *p_hwfn,
460                               struct init_if_phase_op *p_cmd,
461                               u32 phase, u32 phase_id)
462 {
463         u32 data = le32_to_cpu(p_cmd->phase_data);
464         u32 op_data = le32_to_cpu(p_cmd->op_data);
465
466         if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase &&
467               (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID ||
468                GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id)))
469                 return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET);
470         else
471                 return 0;
472 }
473
474 int qed_init_run(struct qed_hwfn *p_hwfn,
475                  struct qed_ptt *p_ptt, int phase, int phase_id, int modes)
476 {
477         struct qed_dev *cdev = p_hwfn->cdev;
478         u32 cmd_num, num_init_ops;
479         union init_op *init_ops;
480         bool b_dmae = false;
481         int rc = 0;
482
483         num_init_ops = cdev->fw_data->init_ops_size;
484         init_ops = cdev->fw_data->init_ops;
485
486         p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC);
487         if (!p_hwfn->unzip_buf)
488                 return -ENOMEM;
489
490         for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) {
491                 union init_op *cmd = &init_ops[cmd_num];
492                 u32 data = le32_to_cpu(cmd->raw.op_data);
493
494                 switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) {
495                 case INIT_OP_WRITE:
496                         rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write,
497                                              b_dmae);
498                         break;
499                 case INIT_OP_READ:
500                         qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read);
501                         break;
502                 case INIT_OP_IF_MODE:
503                         cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode,
504                                                      modes);
505                         break;
506                 case INIT_OP_IF_PHASE:
507                         cmd_num += qed_init_cmd_phase(p_hwfn, &cmd->if_phase,
508                                                       phase, phase_id);
509                         b_dmae = GET_FIELD(data, INIT_IF_PHASE_OP_DMAE_ENABLE);
510                         break;
511                 case INIT_OP_DELAY:
512                         /* qed_init_run is always invoked from
513                          * sleep-able context
514                          */
515                         udelay(le32_to_cpu(cmd->delay.delay));
516                         break;
517
518                 case INIT_OP_CALLBACK:
519                         qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback);
520                         break;
521                 }
522
523                 if (rc)
524                         break;
525         }
526
527         kfree(p_hwfn->unzip_buf);
528         return rc;
529 }
530
531 void qed_gtt_init(struct qed_hwfn *p_hwfn)
532 {
533         u32 gtt_base;
534         u32 i;
535
536         /* Set the global windows */
537         gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START;
538
539         for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++)
540                 if (pxp_global_win[i])
541                         REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE,
542                                pxp_global_win[i]);
543 }
544
545 int qed_init_fw_data(struct qed_dev *cdev, const u8 *data)
546 {
547         struct qed_fw_data *fw = cdev->fw_data;
548         struct bin_buffer_hdr *buf_hdr;
549         u32 offset, len;
550
551         if (!data) {
552                 DP_NOTICE(cdev, "Invalid fw data\n");
553                 return -EINVAL;
554         }
555
556         /* First Dword contains metadata and should be skipped */
557         buf_hdr = (struct bin_buffer_hdr *)data;
558
559         offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset;
560         fw->fw_ver_info = (struct fw_ver_info *)(data + offset);
561
562         offset = buf_hdr[BIN_BUF_INIT_CMD].offset;
563         fw->init_ops = (union init_op *)(data + offset);
564
565         offset = buf_hdr[BIN_BUF_INIT_VAL].offset;
566         fw->arr_data = (u32 *)(data + offset);
567
568         offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset;
569         fw->modes_tree_buf = (u8 *)(data + offset);
570         len = buf_hdr[BIN_BUF_INIT_CMD].length;
571         fw->init_ops_size = len / sizeof(struct init_raw_op);
572
573         return 0;
574 }