]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
qlge: Fix memory leak in the process of refill
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103  * resources shared between the NIC driver, MPI firmware,
104  * FCOE firmware and the FC driver.
105  */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108         u32 sem_bits = 0;
109
110         switch (sem_mask) {
111         case SEM_XGMAC0_MASK:
112                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113                 break;
114         case SEM_XGMAC1_MASK:
115                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116                 break;
117         case SEM_ICB_MASK:
118                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119                 break;
120         case SEM_MAC_ADDR_MASK:
121                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122                 break;
123         case SEM_FLASH_MASK:
124                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125                 break;
126         case SEM_PROBE_MASK:
127                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128                 break;
129         case SEM_RT_IDX_MASK:
130                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131                 break;
132         case SEM_PROC_REG_MASK:
133                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134                 break;
135         default:
136                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137                 return -EINVAL;
138         }
139
140         ql_write32(qdev, SEM, sem_bits | sem_mask);
141         return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146         unsigned int wait_count = 30;
147         do {
148                 if (!ql_sem_trylock(qdev, sem_mask))
149                         return 0;
150                 udelay(100);
151         } while (--wait_count);
152         return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157         ql_write32(qdev, SEM, sem_mask);
158         ql_read32(qdev, SEM);   /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162  * in a given register.  It is used mostly by the initialize
163  * process, but is also used in kernel thread API such as
164  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165  */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168         u32 temp;
169         int count = UDELAY_COUNT;
170
171         while (count) {
172                 temp = ql_read32(qdev, reg);
173
174                 /* check for errors */
175                 if (temp & err_bit) {
176                         netif_alert(qdev, probe, qdev->ndev,
177                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
178                                     reg, temp);
179                         return -EIO;
180                 } else if (temp & bit)
181                         return 0;
182                 udelay(UDELAY_DELAY);
183                 count--;
184         }
185         netif_alert(qdev, probe, qdev->ndev,
186                     "Timed out waiting for reg %x to come ready.\n", reg);
187         return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191  * to the chip. This function waits for an operation to complete.
192  */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195         int count = UDELAY_COUNT;
196         u32 temp;
197
198         while (count) {
199                 temp = ql_read32(qdev, CFG);
200                 if (temp & CFG_LE)
201                         return -EIO;
202                 if (!(temp & bit))
203                         return 0;
204                 udelay(UDELAY_DELAY);
205                 count--;
206         }
207         return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212  * sets address, triggers download, waits for completion.
213  */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215                  u16 q_id)
216 {
217         u64 map;
218         int status = 0;
219         int direction;
220         u32 mask;
221         u32 value;
222
223         direction =
224             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225             PCI_DMA_FROMDEVICE;
226
227         map = pci_map_single(qdev->pdev, ptr, size, direction);
228         if (pci_dma_mapping_error(qdev->pdev, map)) {
229                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230                 return -ENOMEM;
231         }
232
233         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234         if (status)
235                 return status;
236
237         status = ql_wait_cfg(qdev, bit);
238         if (status) {
239                 netif_err(qdev, ifup, qdev->ndev,
240                           "Timed out waiting for CFG to come ready.\n");
241                 goto exit;
242         }
243
244         ql_write32(qdev, ICB_L, (u32) map);
245         ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247         mask = CFG_Q_MASK | (bit << 16);
248         value = bit | (q_id << CFG_Q_SHIFT);
249         ql_write32(qdev, CFG, (mask | value));
250
251         /*
252          * Wait for the bit to clear after signaling hw.
253          */
254         status = ql_wait_cfg(qdev, bit);
255 exit:
256         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
257         pci_unmap_single(qdev->pdev, map, size, direction);
258         return status;
259 }
260
261 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263                         u32 *value)
264 {
265         u32 offset = 0;
266         int status;
267
268         switch (type) {
269         case MAC_ADDR_TYPE_MULTI_MAC:
270         case MAC_ADDR_TYPE_CAM_MAC:
271                 {
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         status =
287                             ql_wait_reg_rdy(qdev,
288                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                         if (status)
290                                 goto exit;
291                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                         status =
295                             ql_wait_reg_rdy(qdev,
296                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297                         if (status)
298                                 goto exit;
299                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
301                                 status =
302                                     ql_wait_reg_rdy(qdev,
303                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304                                 if (status)
305                                         goto exit;
306                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
308                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309                                 status =
310                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311                                                     MAC_ADDR_MR, 0);
312                                 if (status)
313                                         goto exit;
314                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315                         }
316                         break;
317                 }
318         case MAC_ADDR_TYPE_VLAN:
319         case MAC_ADDR_TYPE_MULTI_FLTR:
320         default:
321                 netif_crit(qdev, ifup, qdev->ndev,
322                            "Address type %d not yet supported.\n", type);
323                 status = -EPERM;
324         }
325 exit:
326         return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330  * inbound frame matching.
331  */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333                                u16 index)
334 {
335         u32 offset = 0;
336         int status = 0;
337
338         switch (type) {
339         case MAC_ADDR_TYPE_MULTI_MAC:
340                 {
341                         u32 upper = (addr[0] << 8) | addr[1];
342                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343                                         (addr[4] << 8) | (addr[5]);
344
345                         status =
346                                 ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351                                 (index << MAC_ADDR_IDX_SHIFT) |
352                                 type | MAC_ADDR_E);
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                                 ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360                                 (index << MAC_ADDR_IDX_SHIFT) |
361                                 type | MAC_ADDR_E);
362
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                                 ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367                         if (status)
368                                 goto exit;
369                         break;
370                 }
371         case MAC_ADDR_TYPE_CAM_MAC:
372                 {
373                         u32 cam_output;
374                         u32 upper = (addr[0] << 8) | addr[1];
375                         u32 lower =
376                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377                             (addr[5]);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, lower);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
394                                    type);       /* type */
395                         ql_write32(qdev, MAC_ADDR_DATA, upper);
396                         status =
397                             ql_wait_reg_rdy(qdev,
398                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399                         if (status)
400                                 goto exit;
401                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
402                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
403                                    type);       /* type */
404                         /* This field should also include the queue id
405                            and possibly the function id.  Right now we hardcode
406                            the route field to NIC core.
407                          */
408                         cam_output = (CAM_OUT_ROUTE_NIC |
409                                       (qdev->
410                                        func << CAM_OUT_FUNC_SHIFT) |
411                                         (0 << CAM_OUT_CQ_ID_SHIFT));
412                         if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
413                                 cam_output |= CAM_OUT_RV;
414                         /* route to NIC core */
415                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416                         break;
417                 }
418         case MAC_ADDR_TYPE_VLAN:
419                 {
420                         u32 enable_bit = *((u32 *) &addr[0]);
421                         /* For VLAN, the addr actually holds a bit that
422                          * either enables or disables the vlan id we are
423                          * addressing. It's either MAC_ADDR_E on or off.
424                          * That's bit-27 we're talking about.
425                          */
426                         status =
427                             ql_wait_reg_rdy(qdev,
428                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429                         if (status)
430                                 goto exit;
431                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
433                                    type |       /* type */
434                                    enable_bit); /* enable/disable */
435                         break;
436                 }
437         case MAC_ADDR_TYPE_MULTI_FLTR:
438         default:
439                 netif_crit(qdev, ifup, qdev->ndev,
440                            "Address type %d not yet supported.\n", type);
441                 status = -EPERM;
442         }
443 exit:
444         return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448  * have to clear it to prevent wrong frame routing
449  * especially in a bonding environment.
450  */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453         int status;
454         char zero_mac_addr[ETH_ALEN];
455         char *addr;
456
457         if (set) {
458                 addr = &qdev->current_mac_addr[0];
459                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460                              "Set Mac addr %pM\n", addr);
461         } else {
462                 memset(zero_mac_addr, 0, ETH_ALEN);
463                 addr = &zero_mac_addr[0];
464                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465                              "Clearing MAC address\n");
466         }
467         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468         if (status)
469                 return status;
470         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473         if (status)
474                 netif_err(qdev, ifup, qdev->ndev,
475                           "Failed to init mac address.\n");
476         return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482         netif_carrier_on(qdev->ndev);
483         ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         switch (mask) {
526         case RT_IDX_CAM_HIT:
527                 {
528                         value = RT_IDX_DST_CAM_Q |      /* dest */
529                             RT_IDX_TYPE_NICQ |  /* type */
530                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531                         break;
532                 }
533         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
534                 {
535                         value = RT_IDX_DST_DFLT_Q |     /* dest */
536                             RT_IDX_TYPE_NICQ |  /* type */
537                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538                         break;
539                 }
540         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
541                 {
542                         value = RT_IDX_DST_DFLT_Q |     /* dest */
543                             RT_IDX_TYPE_NICQ |  /* type */
544                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545                         break;
546                 }
547         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548                 {
549                         value = RT_IDX_DST_DFLT_Q | /* dest */
550                                 RT_IDX_TYPE_NICQ | /* type */
551                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
552                                 RT_IDX_IDX_SHIFT); /* index */
553                         break;
554                 }
555         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q | /* dest */
558                                 RT_IDX_TYPE_NICQ | /* type */
559                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560                                 RT_IDX_IDX_SHIFT); /* index */
561                         break;
562                 }
563         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
564                 {
565                         value = RT_IDX_DST_DFLT_Q |     /* dest */
566                             RT_IDX_TYPE_NICQ |  /* type */
567                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568                         break;
569                 }
570         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
571                 {
572                         value = RT_IDX_DST_DFLT_Q |     /* dest */
573                             RT_IDX_TYPE_NICQ |  /* type */
574                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575                         break;
576                 }
577         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
578                 {
579                         value = RT_IDX_DST_DFLT_Q |     /* dest */
580                             RT_IDX_TYPE_NICQ |  /* type */
581                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582                         break;
583                 }
584         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
585                 {
586                         value = RT_IDX_DST_RSS |        /* dest */
587                             RT_IDX_TYPE_NICQ |  /* type */
588                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589                         break;
590                 }
591         case 0:         /* Clear the E-bit on an entry. */
592                 {
593                         value = RT_IDX_DST_DFLT_Q |     /* dest */
594                             RT_IDX_TYPE_NICQ |  /* type */
595                             (index << RT_IDX_IDX_SHIFT);/* index */
596                         break;
597                 }
598         default:
599                 netif_err(qdev, ifup, qdev->ndev,
600                           "Mask type %d not yet supported.\n", mask);
601                 status = -EPERM;
602                 goto exit;
603         }
604
605         if (value) {
606                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607                 if (status)
608                         goto exit;
609                 value |= (enable ? RT_IDX_E : 0);
610                 ql_write32(qdev, RT_IDX, value);
611                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612         }
613 exit:
614         return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628  * Otherwise, we may have multiple outstanding workers and don't want to
629  * enable until the last one finishes. In this case, the irq_cnt gets
630  * incremented every time we queue a worker and decremented every time
631  * a worker finishes.  Once it hits zero we enable the interrupt.
632  */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635         u32 var = 0;
636         unsigned long hw_flags = 0;
637         struct intr_context *ctx = qdev->intr_context + intr;
638
639         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640                 /* Always enable if we're MSIX multi interrupts and
641                  * it's not the default (zeroeth) interrupt.
642                  */
643                 ql_write32(qdev, INTR_EN,
644                            ctx->intr_en_mask);
645                 var = ql_read32(qdev, STS);
646                 return var;
647         }
648
649         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650         if (atomic_dec_and_test(&ctx->irq_cnt)) {
651                 ql_write32(qdev, INTR_EN,
652                            ctx->intr_en_mask);
653                 var = ql_read32(qdev, STS);
654         }
655         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656         return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661         u32 var = 0;
662         struct intr_context *ctx;
663
664         /* HW disables for us if we're MSIX multi interrupts and
665          * it's not the default (zeroeth) interrupt.
666          */
667         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668                 return 0;
669
670         ctx = qdev->intr_context + intr;
671         spin_lock(&qdev->hw_lock);
672         if (!atomic_read(&ctx->irq_cnt)) {
673                 ql_write32(qdev, INTR_EN,
674                 ctx->intr_dis_mask);
675                 var = ql_read32(qdev, STS);
676         }
677         atomic_inc(&ctx->irq_cnt);
678         spin_unlock(&qdev->hw_lock);
679         return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684         int i;
685         for (i = 0; i < qdev->intr_count; i++) {
686                 /* The enable call does a atomic_dec_and_test
687                  * and enables only if the result is zero.
688                  * So we precharge it here.
689                  */
690                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691                         i == 0))
692                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693                 ql_enable_completion_interrupt(qdev, i);
694         }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700         int status, i;
701         u16 csum = 0;
702         __le16 *flash = (__le16 *)&qdev->flash;
703
704         status = strncmp((char *)&qdev->flash, str, 4);
705         if (status) {
706                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707                 return  status;
708         }
709
710         for (i = 0; i < size; i++)
711                 csum += le16_to_cpu(*flash++);
712
713         if (csum)
714                 netif_err(qdev, ifup, qdev->ndev,
715                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717         return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733         if (status)
734                 goto exit;
735          /* This data is stored on flash as an array of
736          * __le32.  Since ql_read32() returns cpu endian
737          * we need to swap it back.
738          */
739         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741         return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746         u32 i, size;
747         int status;
748         __le32 *p = (__le32 *)&qdev->flash;
749         u32 offset;
750         u8 mac_addr[6];
751
752         /* Get flash offset for function and adjust
753          * for dword access.
754          */
755         if (!qdev->port)
756                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757         else
758                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761                 return -ETIMEDOUT;
762
763         size = sizeof(struct flash_params_8000) / sizeof(u32);
764         for (i = 0; i < size; i++, p++) {
765                 status = ql_read_flash_word(qdev, i+offset, p);
766                 if (status) {
767                         netif_err(qdev, ifup, qdev->ndev,
768                                   "Error reading flash.\n");
769                         goto exit;
770                 }
771         }
772
773         status = ql_validate_flash(qdev,
774                         sizeof(struct flash_params_8000) / sizeof(u16),
775                         "8000");
776         if (status) {
777                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778                 status = -EINVAL;
779                 goto exit;
780         }
781
782         /* Extract either manufacturer or BOFM modified
783          * MAC address.
784          */
785         if (qdev->flash.flash_params_8000.data_type1 == 2)
786                 memcpy(mac_addr,
787                         qdev->flash.flash_params_8000.mac_addr1,
788                         qdev->ndev->addr_len);
789         else
790                 memcpy(mac_addr,
791                         qdev->flash.flash_params_8000.mac_addr,
792                         qdev->ndev->addr_len);
793
794         if (!is_valid_ether_addr(mac_addr)) {
795                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796                 status = -EINVAL;
797                 goto exit;
798         }
799
800         memcpy(qdev->ndev->dev_addr,
801                 mac_addr,
802                 qdev->ndev->addr_len);
803
804 exit:
805         ql_sem_unlock(qdev, SEM_FLASH_MASK);
806         return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811         int i;
812         int status;
813         __le32 *p = (__le32 *)&qdev->flash;
814         u32 offset = 0;
815         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817         /* Second function's parameters follow the first
818          * function's.
819          */
820         if (qdev->port)
821                 offset = size;
822
823         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824                 return -ETIMEDOUT;
825
826         for (i = 0; i < size; i++, p++) {
827                 status = ql_read_flash_word(qdev, i+offset, p);
828                 if (status) {
829                         netif_err(qdev, ifup, qdev->ndev,
830                                   "Error reading flash.\n");
831                         goto exit;
832                 }
833
834         }
835
836         status = ql_validate_flash(qdev,
837                         sizeof(struct flash_params_8012) / sizeof(u16),
838                         "8012");
839         if (status) {
840                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841                 status = -EINVAL;
842                 goto exit;
843         }
844
845         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846                 status = -EINVAL;
847                 goto exit;
848         }
849
850         memcpy(qdev->ndev->dev_addr,
851                 qdev->flash.flash_params_8012.mac_addr,
852                 qdev->ndev->addr_len);
853
854 exit:
855         ql_sem_unlock(qdev, SEM_FLASH_MASK);
856         return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860  * register pair.  Each read/write requires us to wait for the ready
861  * bit before reading/writing the data.
862  */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865         int status;
866         /* wait for reg to come ready */
867         status = ql_wait_reg_rdy(qdev,
868                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869         if (status)
870                 return status;
871         /* write the data to the data reg */
872         ql_write32(qdev, XGMAC_DATA, data);
873         /* trigger the write */
874         ql_write32(qdev, XGMAC_ADDR, reg);
875         return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879  * register pair.  Each read/write requires us to wait for the ready
880  * bit before reading/writing the data.
881  */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884         int status = 0;
885         /* wait for reg to come ready */
886         status = ql_wait_reg_rdy(qdev,
887                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888         if (status)
889                 goto exit;
890         /* set up for reg read */
891         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892         /* wait for reg to come ready */
893         status = ql_wait_reg_rdy(qdev,
894                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895         if (status)
896                 goto exit;
897         /* get the data */
898         *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900         return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906         int status = 0;
907         u32 hi = 0;
908         u32 lo = 0;
909
910         status = ql_read_xgmac_reg(qdev, reg, &lo);
911         if (status)
912                 goto exit;
913
914         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915         if (status)
916                 goto exit;
917
918         *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921         return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926         int status;
927         /*
928          * Get MPI firmware version for driver banner
929          * and ethool info.
930          */
931         status = ql_mb_about_fw(qdev);
932         if (status)
933                 goto exit;
934         status = ql_mb_get_fw_state(qdev);
935         if (status)
936                 goto exit;
937         /* Wake up a worker to get/set the TX/RX frame sizes. */
938         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940         return status;
941 }
942
943 /* Take the MAC Core out of reset.
944  * Enable statistics counting.
945  * Take the transmitter/receiver out of reset.
946  * This functionality may be done in the MPI firmware at a
947  * later date.
948  */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951         int status = 0;
952         u32 data;
953
954         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955                 /* Another function has the semaphore, so
956                  * wait for the port init bit to come ready.
957                  */
958                 netif_info(qdev, link, qdev->ndev,
959                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961                 if (status) {
962                         netif_crit(qdev, link, qdev->ndev,
963                                    "Port initialize timed out.\n");
964                 }
965                 return status;
966         }
967
968         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969         /* Set the core reset. */
970         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971         if (status)
972                 goto end;
973         data |= GLOBAL_CFG_RESET;
974         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975         if (status)
976                 goto end;
977
978         /* Clear the core reset and turn on jumbo for receiver. */
979         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
980         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
981         data |= GLOBAL_CFG_TX_STAT_EN;
982         data |= GLOBAL_CFG_RX_STAT_EN;
983         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984         if (status)
985                 goto end;
986
987         /* Enable transmitter, and clear it's reset. */
988         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989         if (status)
990                 goto end;
991         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
992         data |= TX_CFG_EN;      /* Enable the transmitter. */
993         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994         if (status)
995                 goto end;
996
997         /* Enable receiver and clear it's reset. */
998         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999         if (status)
1000                 goto end;
1001         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1002         data |= RX_CFG_EN;      /* Enable the receiver. */
1003         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004         if (status)
1005                 goto end;
1006
1007         /* Turn on jumbo. */
1008         status =
1009             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010         if (status)
1011                 goto end;
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014         if (status)
1015                 goto end;
1016
1017         /* Signal to the world that the port is enabled.        */
1018         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021         return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026         return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033         rx_ring->lbq_curr_idx++;
1034         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035                 rx_ring->lbq_curr_idx = 0;
1036         rx_ring->lbq_free_cnt++;
1037         return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041                 struct rx_ring *rx_ring)
1042 {
1043         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045         pci_dma_sync_single_for_cpu(qdev->pdev,
1046                                         dma_unmap_addr(lbq_desc, mapaddr),
1047                                     rx_ring->lbq_buf_size,
1048                                         PCI_DMA_FROMDEVICE);
1049
1050         /* If it's the last chunk of our master page then
1051          * we unmap it.
1052          */
1053         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054                                         == ql_lbq_block_size(qdev))
1055                 pci_unmap_page(qdev->pdev,
1056                                 lbq_desc->p.pg_chunk.map,
1057                                 ql_lbq_block_size(qdev),
1058                                 PCI_DMA_FROMDEVICE);
1059         return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066         rx_ring->sbq_curr_idx++;
1067         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068                 rx_ring->sbq_curr_idx = 0;
1069         rx_ring->sbq_free_cnt++;
1070         return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076         rx_ring->cnsmr_idx++;
1077         rx_ring->curr_entry++;
1078         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079                 rx_ring->cnsmr_idx = 0;
1080                 rx_ring->curr_entry = rx_ring->cq_base;
1081         }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090                                                 struct bq_desc *lbq_desc)
1091 {
1092         if (!rx_ring->pg_chunk.page) {
1093                 u64 map;
1094                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095                                                 GFP_ATOMIC,
1096                                                 qdev->lbq_buf_order);
1097                 if (unlikely(!rx_ring->pg_chunk.page)) {
1098                         netif_err(qdev, drv, qdev->ndev,
1099                                   "page allocation failed.\n");
1100                         return -ENOMEM;
1101                 }
1102                 rx_ring->pg_chunk.offset = 0;
1103                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104                                         0, ql_lbq_block_size(qdev),
1105                                         PCI_DMA_FROMDEVICE);
1106                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107                         __free_pages(rx_ring->pg_chunk.page,
1108                                         qdev->lbq_buf_order);
1109                         netif_err(qdev, drv, qdev->ndev,
1110                                   "PCI mapping failed.\n");
1111                         return -ENOMEM;
1112                 }
1113                 rx_ring->pg_chunk.map = map;
1114                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115         }
1116
1117         /* Copy the current master pg_chunk info
1118          * to the current descriptor.
1119          */
1120         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122         /* Adjust the master page chunk for next
1123          * buffer get.
1124          */
1125         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127                 rx_ring->pg_chunk.page = NULL;
1128                 lbq_desc->p.pg_chunk.last_flag = 1;
1129         } else {
1130                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131                 get_page(rx_ring->pg_chunk.page);
1132                 lbq_desc->p.pg_chunk.last_flag = 0;
1133         }
1134         return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139         u32 clean_idx = rx_ring->lbq_clean_idx;
1140         u32 start_idx = clean_idx;
1141         struct bq_desc *lbq_desc;
1142         u64 map;
1143         int i;
1144
1145         while (rx_ring->lbq_free_cnt > 32) {
1146                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148                                      "lbq: try cleaning clean_idx = %d.\n",
1149                                      clean_idx);
1150                         lbq_desc = &rx_ring->lbq[clean_idx];
1151                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152                                 rx_ring->lbq_clean_idx = clean_idx;
1153                                 netif_err(qdev, ifup, qdev->ndev,
1154                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155                                                 i, clean_idx);
1156                                 return;
1157                         }
1158
1159                         map = lbq_desc->p.pg_chunk.map +
1160                                 lbq_desc->p.pg_chunk.offset;
1161                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162                         dma_unmap_len_set(lbq_desc, maplen,
1163                                         rx_ring->lbq_buf_size);
1164                                 *lbq_desc->addr = cpu_to_le64(map);
1165
1166                         pci_dma_sync_single_for_device(qdev->pdev, map,
1167                                                 rx_ring->lbq_buf_size,
1168                                                 PCI_DMA_FROMDEVICE);
1169                         clean_idx++;
1170                         if (clean_idx == rx_ring->lbq_len)
1171                                 clean_idx = 0;
1172                 }
1173
1174                 rx_ring->lbq_clean_idx = clean_idx;
1175                 rx_ring->lbq_prod_idx += 16;
1176                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177                         rx_ring->lbq_prod_idx = 0;
1178                 rx_ring->lbq_free_cnt -= 16;
1179         }
1180
1181         if (start_idx != clean_idx) {
1182                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183                              "lbq: updating prod idx = %d.\n",
1184                              rx_ring->lbq_prod_idx);
1185                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186                                 rx_ring->lbq_prod_idx_db_reg);
1187         }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193         u32 clean_idx = rx_ring->sbq_clean_idx;
1194         u32 start_idx = clean_idx;
1195         struct bq_desc *sbq_desc;
1196         u64 map;
1197         int i;
1198
1199         while (rx_ring->sbq_free_cnt > 16) {
1200                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201                         sbq_desc = &rx_ring->sbq[clean_idx];
1202                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203                                      "sbq: try cleaning clean_idx = %d.\n",
1204                                      clean_idx);
1205                         if (sbq_desc->p.skb == NULL) {
1206                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1207                                              qdev->ndev,
1208                                              "sbq: getting new skb for index %d.\n",
1209                                              sbq_desc->index);
1210                                 sbq_desc->p.skb =
1211                                     netdev_alloc_skb(qdev->ndev,
1212                                                      SMALL_BUFFER_SIZE);
1213                                 if (sbq_desc->p.skb == NULL) {
1214                                         netif_err(qdev, probe, qdev->ndev,
1215                                                   "Couldn't get an skb.\n");
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Process an inbound completion from an rx ring. */
1437 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1438                                         struct rx_ring *rx_ring,
1439                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1440                                         u32 length,
1441                                         u16 vlan_id)
1442 {
1443         struct sk_buff *skb;
1444         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1445         struct napi_struct *napi = &rx_ring->napi;
1446
1447         napi->dev = qdev->ndev;
1448
1449         skb = napi_get_frags(napi);
1450         if (!skb) {
1451                 netif_err(qdev, drv, qdev->ndev,
1452                           "Couldn't get an skb, exiting.\n");
1453                 rx_ring->rx_dropped++;
1454                 put_page(lbq_desc->p.pg_chunk.page);
1455                 return;
1456         }
1457         prefetch(lbq_desc->p.pg_chunk.va);
1458         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1459                              lbq_desc->p.pg_chunk.page,
1460                              lbq_desc->p.pg_chunk.offset,
1461                              length);
1462
1463         skb->len += length;
1464         skb->data_len += length;
1465         skb->truesize += length;
1466         skb_shinfo(skb)->nr_frags++;
1467
1468         rx_ring->rx_packets++;
1469         rx_ring->rx_bytes += length;
1470         skb->ip_summed = CHECKSUM_UNNECESSARY;
1471         skb_record_rx_queue(skb, rx_ring->cq_id);
1472         if (vlan_id != 0xffff)
1473                 __vlan_hwaccel_put_tag(skb, vlan_id);
1474         napi_gro_frags(napi);
1475 }
1476
1477 /* Process an inbound completion from an rx ring. */
1478 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1479                                         struct rx_ring *rx_ring,
1480                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1481                                         u32 length,
1482                                         u16 vlan_id)
1483 {
1484         struct net_device *ndev = qdev->ndev;
1485         struct sk_buff *skb = NULL;
1486         void *addr;
1487         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1488         struct napi_struct *napi = &rx_ring->napi;
1489
1490         skb = netdev_alloc_skb(ndev, length);
1491         if (!skb) {
1492                 netif_err(qdev, drv, qdev->ndev,
1493                           "Couldn't get an skb, need to unwind!.\n");
1494                 rx_ring->rx_dropped++;
1495                 put_page(lbq_desc->p.pg_chunk.page);
1496                 return;
1497         }
1498
1499         addr = lbq_desc->p.pg_chunk.va;
1500         prefetch(addr);
1501
1502
1503         /* Frame error, so drop the packet. */
1504         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505                 netif_info(qdev, drv, qdev->ndev,
1506                           "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1507                 rx_ring->rx_errors++;
1508                 goto err_out;
1509         }
1510
1511         /* The max framesize filter on this chip is set higher than
1512          * MTU since FCoE uses 2k frames.
1513          */
1514         if (skb->len > ndev->mtu + ETH_HLEN) {
1515                 netif_err(qdev, drv, qdev->ndev,
1516                           "Segment too small, dropping.\n");
1517                 rx_ring->rx_dropped++;
1518                 goto err_out;
1519         }
1520         memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1521         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1522                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1523                      length);
1524         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1525                                 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1526                                 length-ETH_HLEN);
1527         skb->len += length-ETH_HLEN;
1528         skb->data_len += length-ETH_HLEN;
1529         skb->truesize += length-ETH_HLEN;
1530
1531         rx_ring->rx_packets++;
1532         rx_ring->rx_bytes += skb->len;
1533         skb->protocol = eth_type_trans(skb, ndev);
1534         skb_checksum_none_assert(skb);
1535
1536         if ((ndev->features & NETIF_F_RXCSUM) &&
1537                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1538                 /* TCP frame. */
1539                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1540                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541                                      "TCP checksum done!\n");
1542                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1543                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1544                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1545                         /* Unfragmented ipv4 UDP frame. */
1546                         struct iphdr *iph =
1547                                 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1548                         if (!(iph->frag_off &
1549                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1550                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1552                                              qdev->ndev,
1553                                              "UDP checksum done!\n");
1554                         }
1555                 }
1556         }
1557
1558         skb_record_rx_queue(skb, rx_ring->cq_id);
1559         if (vlan_id != 0xffff)
1560                 __vlan_hwaccel_put_tag(skb, vlan_id);
1561         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1562                 napi_gro_receive(napi, skb);
1563         else
1564                 netif_receive_skb(skb);
1565         return;
1566 err_out:
1567         dev_kfree_skb_any(skb);
1568         put_page(lbq_desc->p.pg_chunk.page);
1569 }
1570
1571 /* Process an inbound completion from an rx ring. */
1572 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1573                                         struct rx_ring *rx_ring,
1574                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1575                                         u32 length,
1576                                         u16 vlan_id)
1577 {
1578         struct net_device *ndev = qdev->ndev;
1579         struct sk_buff *skb = NULL;
1580         struct sk_buff *new_skb = NULL;
1581         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1582
1583         skb = sbq_desc->p.skb;
1584         /* Allocate new_skb and copy */
1585         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1586         if (new_skb == NULL) {
1587                 netif_err(qdev, probe, qdev->ndev,
1588                           "No skb available, drop the packet.\n");
1589                 rx_ring->rx_dropped++;
1590                 return;
1591         }
1592         skb_reserve(new_skb, NET_IP_ALIGN);
1593         memcpy(skb_put(new_skb, length), skb->data, length);
1594         skb = new_skb;
1595
1596         /* Frame error, so drop the packet. */
1597         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1598                 netif_info(qdev, drv, qdev->ndev,
1599                           "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1600                 dev_kfree_skb_any(skb);
1601                 rx_ring->rx_errors++;
1602                 return;
1603         }
1604
1605         /* loopback self test for ethtool */
1606         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1607                 ql_check_lb_frame(qdev, skb);
1608                 dev_kfree_skb_any(skb);
1609                 return;
1610         }
1611
1612         /* The max framesize filter on this chip is set higher than
1613          * MTU since FCoE uses 2k frames.
1614          */
1615         if (skb->len > ndev->mtu + ETH_HLEN) {
1616                 dev_kfree_skb_any(skb);
1617                 rx_ring->rx_dropped++;
1618                 return;
1619         }
1620
1621         prefetch(skb->data);
1622         skb->dev = ndev;
1623         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1624                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1625                              "%s Multicast.\n",
1626                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1627                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1628                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1629                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1630                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1631                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1632         }
1633         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1634                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1635                              "Promiscuous Packet.\n");
1636
1637         rx_ring->rx_packets++;
1638         rx_ring->rx_bytes += skb->len;
1639         skb->protocol = eth_type_trans(skb, ndev);
1640         skb_checksum_none_assert(skb);
1641
1642         /* If rx checksum is on, and there are no
1643          * csum or frame errors.
1644          */
1645         if ((ndev->features & NETIF_F_RXCSUM) &&
1646                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1647                 /* TCP frame. */
1648                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1649                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1650                                      "TCP checksum done!\n");
1651                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1652                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1653                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1654                         /* Unfragmented ipv4 UDP frame. */
1655                         struct iphdr *iph = (struct iphdr *) skb->data;
1656                         if (!(iph->frag_off &
1657                                 ntohs(IP_MF|IP_OFFSET))) {
1658                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1659                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1660                                              qdev->ndev,
1661                                              "UDP checksum done!\n");
1662                         }
1663                 }
1664         }
1665
1666         skb_record_rx_queue(skb, rx_ring->cq_id);
1667         if (vlan_id != 0xffff)
1668                 __vlan_hwaccel_put_tag(skb, vlan_id);
1669         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1670                 napi_gro_receive(&rx_ring->napi, skb);
1671         else
1672                 netif_receive_skb(skb);
1673 }
1674
1675 static void ql_realign_skb(struct sk_buff *skb, int len)
1676 {
1677         void *temp_addr = skb->data;
1678
1679         /* Undo the skb_reserve(skb,32) we did before
1680          * giving to hardware, and realign data on
1681          * a 2-byte boundary.
1682          */
1683         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1684         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1685         skb_copy_to_linear_data(skb, temp_addr,
1686                 (unsigned int)len);
1687 }
1688
1689 /*
1690  * This function builds an skb for the given inbound
1691  * completion.  It will be rewritten for readability in the near
1692  * future, but for not it works well.
1693  */
1694 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1695                                        struct rx_ring *rx_ring,
1696                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1697 {
1698         struct bq_desc *lbq_desc;
1699         struct bq_desc *sbq_desc;
1700         struct sk_buff *skb = NULL;
1701         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1702        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1703
1704         /*
1705          * Handle the header buffer if present.
1706          */
1707         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1708             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1709                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1710                              "Header of %d bytes in small buffer.\n", hdr_len);
1711                 /*
1712                  * Headers fit nicely into a small buffer.
1713                  */
1714                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1715                 pci_unmap_single(qdev->pdev,
1716                                 dma_unmap_addr(sbq_desc, mapaddr),
1717                                 dma_unmap_len(sbq_desc, maplen),
1718                                 PCI_DMA_FROMDEVICE);
1719                 skb = sbq_desc->p.skb;
1720                 ql_realign_skb(skb, hdr_len);
1721                 skb_put(skb, hdr_len);
1722                 sbq_desc->p.skb = NULL;
1723         }
1724
1725         /*
1726          * Handle the data buffer(s).
1727          */
1728         if (unlikely(!length)) {        /* Is there data too? */
1729                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1730                              "No Data buffer in this packet.\n");
1731                 return skb;
1732         }
1733
1734         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1735                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1736                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1737                                      "Headers in small, data of %d bytes in small, combine them.\n",
1738                                      length);
1739                         /*
1740                          * Data is less than small buffer size so it's
1741                          * stuffed in a small buffer.
1742                          * For this case we append the data
1743                          * from the "data" small buffer to the "header" small
1744                          * buffer.
1745                          */
1746                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1747                         pci_dma_sync_single_for_cpu(qdev->pdev,
1748                                                     dma_unmap_addr
1749                                                     (sbq_desc, mapaddr),
1750                                                     dma_unmap_len
1751                                                     (sbq_desc, maplen),
1752                                                     PCI_DMA_FROMDEVICE);
1753                         memcpy(skb_put(skb, length),
1754                                sbq_desc->p.skb->data, length);
1755                         pci_dma_sync_single_for_device(qdev->pdev,
1756                                                        dma_unmap_addr
1757                                                        (sbq_desc,
1758                                                         mapaddr),
1759                                                        dma_unmap_len
1760                                                        (sbq_desc,
1761                                                         maplen),
1762                                                        PCI_DMA_FROMDEVICE);
1763                 } else {
1764                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1765                                      "%d bytes in a single small buffer.\n",
1766                                      length);
1767                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1768                         skb = sbq_desc->p.skb;
1769                         ql_realign_skb(skb, length);
1770                         skb_put(skb, length);
1771                         pci_unmap_single(qdev->pdev,
1772                                          dma_unmap_addr(sbq_desc,
1773                                                         mapaddr),
1774                                          dma_unmap_len(sbq_desc,
1775                                                        maplen),
1776                                          PCI_DMA_FROMDEVICE);
1777                         sbq_desc->p.skb = NULL;
1778                 }
1779         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1780                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1781                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1782                                      "Header in small, %d bytes in large. Chain large to small!\n",
1783                                      length);
1784                         /*
1785                          * The data is in a single large buffer.  We
1786                          * chain it to the header buffer's skb and let
1787                          * it rip.
1788                          */
1789                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1790                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1791                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1792                                      lbq_desc->p.pg_chunk.offset, length);
1793                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1794                                                 lbq_desc->p.pg_chunk.offset,
1795                                                 length);
1796                         skb->len += length;
1797                         skb->data_len += length;
1798                         skb->truesize += length;
1799                 } else {
1800                         /*
1801                          * The headers and data are in a single large buffer. We
1802                          * copy it to a new skb and let it go. This can happen with
1803                          * jumbo mtu on a non-TCP/UDP frame.
1804                          */
1805                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1806                         skb = netdev_alloc_skb(qdev->ndev, length);
1807                         if (skb == NULL) {
1808                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1809                                              "No skb available, drop the packet.\n");
1810                                 return NULL;
1811                         }
1812                         pci_unmap_page(qdev->pdev,
1813                                        dma_unmap_addr(lbq_desc,
1814                                                       mapaddr),
1815                                        dma_unmap_len(lbq_desc, maplen),
1816                                        PCI_DMA_FROMDEVICE);
1817                         skb_reserve(skb, NET_IP_ALIGN);
1818                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1819                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1820                                      length);
1821                         skb_fill_page_desc(skb, 0,
1822                                                 lbq_desc->p.pg_chunk.page,
1823                                                 lbq_desc->p.pg_chunk.offset,
1824                                                 length);
1825                         skb->len += length;
1826                         skb->data_len += length;
1827                         skb->truesize += length;
1828                         length -= length;
1829                         __pskb_pull_tail(skb,
1830                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1831                                 VLAN_ETH_HLEN : ETH_HLEN);
1832                 }
1833         } else {
1834                 /*
1835                  * The data is in a chain of large buffers
1836                  * pointed to by a small buffer.  We loop
1837                  * thru and chain them to the our small header
1838                  * buffer's skb.
1839                  * frags:  There are 18 max frags and our small
1840                  *         buffer will hold 32 of them. The thing is,
1841                  *         we'll use 3 max for our 9000 byte jumbo
1842                  *         frames.  If the MTU goes up we could
1843                  *          eventually be in trouble.
1844                  */
1845                 int size, i = 0;
1846                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1847                 pci_unmap_single(qdev->pdev,
1848                                  dma_unmap_addr(sbq_desc, mapaddr),
1849                                  dma_unmap_len(sbq_desc, maplen),
1850                                  PCI_DMA_FROMDEVICE);
1851                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1852                         /*
1853                          * This is an non TCP/UDP IP frame, so
1854                          * the headers aren't split into a small
1855                          * buffer.  We have to use the small buffer
1856                          * that contains our sg list as our skb to
1857                          * send upstairs. Copy the sg list here to
1858                          * a local buffer and use it to find the
1859                          * pages to chain.
1860                          */
1861                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1862                                      "%d bytes of headers & data in chain of large.\n",
1863                                      length);
1864                         skb = sbq_desc->p.skb;
1865                         sbq_desc->p.skb = NULL;
1866                         skb_reserve(skb, NET_IP_ALIGN);
1867                 }
1868                 while (length > 0) {
1869                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870                         size = (length < rx_ring->lbq_buf_size) ? length :
1871                                 rx_ring->lbq_buf_size;
1872
1873                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1874                                      "Adding page %d to skb for %d bytes.\n",
1875                                      i, size);
1876                         skb_fill_page_desc(skb, i,
1877                                                 lbq_desc->p.pg_chunk.page,
1878                                                 lbq_desc->p.pg_chunk.offset,
1879                                                 size);
1880                         skb->len += size;
1881                         skb->data_len += size;
1882                         skb->truesize += size;
1883                         length -= size;
1884                         i++;
1885                 }
1886                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1887                                 VLAN_ETH_HLEN : ETH_HLEN);
1888         }
1889         return skb;
1890 }
1891
1892 /* Process an inbound completion from an rx ring. */
1893 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1894                                    struct rx_ring *rx_ring,
1895                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1896                                    u16 vlan_id)
1897 {
1898         struct net_device *ndev = qdev->ndev;
1899         struct sk_buff *skb = NULL;
1900
1901         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1902
1903         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1904         if (unlikely(!skb)) {
1905                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1906                              "No skb available, drop packet.\n");
1907                 rx_ring->rx_dropped++;
1908                 return;
1909         }
1910
1911         /* Frame error, so drop the packet. */
1912         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1913                 netif_info(qdev, drv, qdev->ndev,
1914                           "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1915                 dev_kfree_skb_any(skb);
1916                 rx_ring->rx_errors++;
1917                 return;
1918         }
1919
1920         /* The max framesize filter on this chip is set higher than
1921          * MTU since FCoE uses 2k frames.
1922          */
1923         if (skb->len > ndev->mtu + ETH_HLEN) {
1924                 dev_kfree_skb_any(skb);
1925                 rx_ring->rx_dropped++;
1926                 return;
1927         }
1928
1929         /* loopback self test for ethtool */
1930         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1931                 ql_check_lb_frame(qdev, skb);
1932                 dev_kfree_skb_any(skb);
1933                 return;
1934         }
1935
1936         prefetch(skb->data);
1937         skb->dev = ndev;
1938         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1939                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1940                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1941                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1942                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1943                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1944                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1945                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1946                 rx_ring->rx_multicast++;
1947         }
1948         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1949                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1950                              "Promiscuous Packet.\n");
1951         }
1952
1953         skb->protocol = eth_type_trans(skb, ndev);
1954         skb_checksum_none_assert(skb);
1955
1956         /* If rx checksum is on, and there are no
1957          * csum or frame errors.
1958          */
1959         if ((ndev->features & NETIF_F_RXCSUM) &&
1960                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1961                 /* TCP frame. */
1962                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1963                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964                                      "TCP checksum done!\n");
1965                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1966                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1967                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1968                 /* Unfragmented ipv4 UDP frame. */
1969                         struct iphdr *iph = (struct iphdr *) skb->data;
1970                         if (!(iph->frag_off &
1971                                 ntohs(IP_MF|IP_OFFSET))) {
1972                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1973                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974                                              "TCP checksum done!\n");
1975                         }
1976                 }
1977         }
1978
1979         rx_ring->rx_packets++;
1980         rx_ring->rx_bytes += skb->len;
1981         skb_record_rx_queue(skb, rx_ring->cq_id);
1982         if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1983                 __vlan_hwaccel_put_tag(skb, vlan_id);
1984         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1985                 napi_gro_receive(&rx_ring->napi, skb);
1986         else
1987                 netif_receive_skb(skb);
1988 }
1989
1990 /* Process an inbound completion from an rx ring. */
1991 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1992                                         struct rx_ring *rx_ring,
1993                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
1994 {
1995         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1996         u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1997                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1998                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1999
2000         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2001
2002         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2003                 /* The data and headers are split into
2004                  * separate buffers.
2005                  */
2006                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2007                                                 vlan_id);
2008         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2009                 /* The data fit in a single small buffer.
2010                  * Allocate a new skb, copy the data and
2011                  * return the buffer to the free pool.
2012                  */
2013                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2014                                                 length, vlan_id);
2015         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2016                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2017                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2018                 /* TCP packet in a page chunk that's been checksummed.
2019                  * Tack it on to our GRO skb and let it go.
2020                  */
2021                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2022                                                 length, vlan_id);
2023         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2024                 /* Non-TCP packet in a page chunk. Allocate an
2025                  * skb, tack it on frags, and send it up.
2026                  */
2027                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2028                                                 length, vlan_id);
2029         } else {
2030                 /* Non-TCP/UDP large frames that span multiple buffers
2031                  * can be processed corrrectly by the split frame logic.
2032                  */
2033                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2034                                                 vlan_id);
2035         }
2036
2037         return (unsigned long)length;
2038 }
2039
2040 /* Process an outbound completion from an rx ring. */
2041 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2042                                    struct ob_mac_iocb_rsp *mac_rsp)
2043 {
2044         struct tx_ring *tx_ring;
2045         struct tx_ring_desc *tx_ring_desc;
2046
2047         QL_DUMP_OB_MAC_RSP(mac_rsp);
2048         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2049         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2050         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2051         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2052         tx_ring->tx_packets++;
2053         dev_kfree_skb(tx_ring_desc->skb);
2054         tx_ring_desc->skb = NULL;
2055
2056         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2057                                         OB_MAC_IOCB_RSP_S |
2058                                         OB_MAC_IOCB_RSP_L |
2059                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2060                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2061                         netif_warn(qdev, tx_done, qdev->ndev,
2062                                    "Total descriptor length did not match transfer length.\n");
2063                 }
2064                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2065                         netif_warn(qdev, tx_done, qdev->ndev,
2066                                    "Frame too short to be valid, not sent.\n");
2067                 }
2068                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2069                         netif_warn(qdev, tx_done, qdev->ndev,
2070                                    "Frame too long, but sent anyway.\n");
2071                 }
2072                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2073                         netif_warn(qdev, tx_done, qdev->ndev,
2074                                    "PCI backplane error. Frame not sent.\n");
2075                 }
2076         }
2077         atomic_inc(&tx_ring->tx_count);
2078 }
2079
2080 /* Fire up a handler to reset the MPI processor. */
2081 void ql_queue_fw_error(struct ql_adapter *qdev)
2082 {
2083         ql_link_off(qdev);
2084         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2085 }
2086
2087 void ql_queue_asic_error(struct ql_adapter *qdev)
2088 {
2089         ql_link_off(qdev);
2090         ql_disable_interrupts(qdev);
2091         /* Clear adapter up bit to signal the recovery
2092          * process that it shouldn't kill the reset worker
2093          * thread
2094          */
2095         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2096         /* Set asic recovery bit to indicate reset process that we are
2097          * in fatal error recovery process rather than normal close
2098          */
2099         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2100         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2101 }
2102
2103 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2104                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2105 {
2106         switch (ib_ae_rsp->event) {
2107         case MGMT_ERR_EVENT:
2108                 netif_err(qdev, rx_err, qdev->ndev,
2109                           "Management Processor Fatal Error.\n");
2110                 ql_queue_fw_error(qdev);
2111                 return;
2112
2113         case CAM_LOOKUP_ERR_EVENT:
2114                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2115                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2116                 ql_queue_asic_error(qdev);
2117                 return;
2118
2119         case SOFT_ECC_ERROR_EVENT:
2120                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2121                 ql_queue_asic_error(qdev);
2122                 break;
2123
2124         case PCI_ERR_ANON_BUF_RD:
2125                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2126                                         "anonymous buffers from rx_ring %d.\n",
2127                                         ib_ae_rsp->q_id);
2128                 ql_queue_asic_error(qdev);
2129                 break;
2130
2131         default:
2132                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2133                           ib_ae_rsp->event);
2134                 ql_queue_asic_error(qdev);
2135                 break;
2136         }
2137 }
2138
2139 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2140 {
2141         struct ql_adapter *qdev = rx_ring->qdev;
2142         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2143         struct ob_mac_iocb_rsp *net_rsp = NULL;
2144         int count = 0;
2145
2146         struct tx_ring *tx_ring;
2147         /* While there are entries in the completion queue. */
2148         while (prod != rx_ring->cnsmr_idx) {
2149
2150                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2151                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2152                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2153
2154                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2155                 rmb();
2156                 switch (net_rsp->opcode) {
2157
2158                 case OPCODE_OB_MAC_TSO_IOCB:
2159                 case OPCODE_OB_MAC_IOCB:
2160                         ql_process_mac_tx_intr(qdev, net_rsp);
2161                         break;
2162                 default:
2163                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2164                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2165                                      net_rsp->opcode);
2166                 }
2167                 count++;
2168                 ql_update_cq(rx_ring);
2169                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2170         }
2171         if (!net_rsp)
2172                 return 0;
2173         ql_write_cq_idx(rx_ring);
2174         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2175         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2176                 if (atomic_read(&tx_ring->queue_stopped) &&
2177                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2178                         /*
2179                          * The queue got stopped because the tx_ring was full.
2180                          * Wake it up, because it's now at least 25% empty.
2181                          */
2182                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2183         }
2184
2185         return count;
2186 }
2187
2188 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2189 {
2190         struct ql_adapter *qdev = rx_ring->qdev;
2191         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2192         struct ql_net_rsp_iocb *net_rsp;
2193         int count = 0;
2194
2195         /* While there are entries in the completion queue. */
2196         while (prod != rx_ring->cnsmr_idx) {
2197
2198                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2199                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2200                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2201
2202                 net_rsp = rx_ring->curr_entry;
2203                 rmb();
2204                 switch (net_rsp->opcode) {
2205                 case OPCODE_IB_MAC_IOCB:
2206                         ql_process_mac_rx_intr(qdev, rx_ring,
2207                                                (struct ib_mac_iocb_rsp *)
2208                                                net_rsp);
2209                         break;
2210
2211                 case OPCODE_IB_AE_IOCB:
2212                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2213                                                 net_rsp);
2214                         break;
2215                 default:
2216                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2218                                      net_rsp->opcode);
2219                         break;
2220                 }
2221                 count++;
2222                 ql_update_cq(rx_ring);
2223                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2224                 if (count == budget)
2225                         break;
2226         }
2227         ql_update_buffer_queues(qdev, rx_ring);
2228         ql_write_cq_idx(rx_ring);
2229         return count;
2230 }
2231
2232 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2233 {
2234         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2235         struct ql_adapter *qdev = rx_ring->qdev;
2236         struct rx_ring *trx_ring;
2237         int i, work_done = 0;
2238         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2239
2240         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2241                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2242
2243         /* Service the TX rings first.  They start
2244          * right after the RSS rings. */
2245         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2246                 trx_ring = &qdev->rx_ring[i];
2247                 /* If this TX completion ring belongs to this vector and
2248                  * it's not empty then service it.
2249                  */
2250                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2251                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2252                                         trx_ring->cnsmr_idx)) {
2253                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2254                                      "%s: Servicing TX completion ring %d.\n",
2255                                      __func__, trx_ring->cq_id);
2256                         ql_clean_outbound_rx_ring(trx_ring);
2257                 }
2258         }
2259
2260         /*
2261          * Now service the RSS ring if it's active.
2262          */
2263         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2264                                         rx_ring->cnsmr_idx) {
2265                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2266                              "%s: Servicing RX completion ring %d.\n",
2267                              __func__, rx_ring->cq_id);
2268                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2269         }
2270
2271         if (work_done < budget) {
2272                 napi_complete(napi);
2273                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2274         }
2275         return work_done;
2276 }
2277
2278 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2279 {
2280         struct ql_adapter *qdev = netdev_priv(ndev);
2281
2282         if (features & NETIF_F_HW_VLAN_RX) {
2283                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2284                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2285         } else {
2286                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2287         }
2288 }
2289
2290 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2291         netdev_features_t features)
2292 {
2293         /*
2294          * Since there is no support for separate rx/tx vlan accel
2295          * enable/disable make sure tx flag is always in same state as rx.
2296          */
2297         if (features & NETIF_F_HW_VLAN_RX)
2298                 features |= NETIF_F_HW_VLAN_TX;
2299         else
2300                 features &= ~NETIF_F_HW_VLAN_TX;
2301
2302         return features;
2303 }
2304
2305 static int qlge_set_features(struct net_device *ndev,
2306         netdev_features_t features)
2307 {
2308         netdev_features_t changed = ndev->features ^ features;
2309
2310         if (changed & NETIF_F_HW_VLAN_RX)
2311                 qlge_vlan_mode(ndev, features);
2312
2313         return 0;
2314 }
2315
2316 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2317 {
2318         u32 enable_bit = MAC_ADDR_E;
2319         int err;
2320
2321         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2322                                   MAC_ADDR_TYPE_VLAN, vid);
2323         if (err)
2324                 netif_err(qdev, ifup, qdev->ndev,
2325                           "Failed to init vlan address.\n");
2326         return err;
2327 }
2328
2329 static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2330 {
2331         struct ql_adapter *qdev = netdev_priv(ndev);
2332         int status;
2333         int err;
2334
2335         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2336         if (status)
2337                 return status;
2338
2339         err = __qlge_vlan_rx_add_vid(qdev, vid);
2340         set_bit(vid, qdev->active_vlans);
2341
2342         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2343
2344         return err;
2345 }
2346
2347 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2348 {
2349         u32 enable_bit = 0;
2350         int err;
2351
2352         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2353                                   MAC_ADDR_TYPE_VLAN, vid);
2354         if (err)
2355                 netif_err(qdev, ifup, qdev->ndev,
2356                           "Failed to clear vlan address.\n");
2357         return err;
2358 }
2359
2360 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2361 {
2362         struct ql_adapter *qdev = netdev_priv(ndev);
2363         int status;
2364         int err;
2365
2366         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2367         if (status)
2368                 return status;
2369
2370         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2371         clear_bit(vid, qdev->active_vlans);
2372
2373         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2374
2375         return err;
2376 }
2377
2378 static void qlge_restore_vlan(struct ql_adapter *qdev)
2379 {
2380         int status;
2381         u16 vid;
2382
2383         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2384         if (status)
2385                 return;
2386
2387         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2388                 __qlge_vlan_rx_add_vid(qdev, vid);
2389
2390         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2391 }
2392
2393 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2394 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2395 {
2396         struct rx_ring *rx_ring = dev_id;
2397         napi_schedule(&rx_ring->napi);
2398         return IRQ_HANDLED;
2399 }
2400
2401 /* This handles a fatal error, MPI activity, and the default
2402  * rx_ring in an MSI-X multiple vector environment.
2403  * In MSI/Legacy environment it also process the rest of
2404  * the rx_rings.
2405  */
2406 static irqreturn_t qlge_isr(int irq, void *dev_id)
2407 {
2408         struct rx_ring *rx_ring = dev_id;
2409         struct ql_adapter *qdev = rx_ring->qdev;
2410         struct intr_context *intr_context = &qdev->intr_context[0];
2411         u32 var;
2412         int work_done = 0;
2413
2414         spin_lock(&qdev->hw_lock);
2415         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2416                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2417                              "Shared Interrupt, Not ours!\n");
2418                 spin_unlock(&qdev->hw_lock);
2419                 return IRQ_NONE;
2420         }
2421         spin_unlock(&qdev->hw_lock);
2422
2423         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2424
2425         /*
2426          * Check for fatal error.
2427          */
2428         if (var & STS_FE) {
2429                 ql_queue_asic_error(qdev);
2430                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2431                 var = ql_read32(qdev, ERR_STS);
2432                 netdev_err(qdev->ndev, "Resetting chip. "
2433                                         "Error Status Register = 0x%x\n", var);
2434                 return IRQ_HANDLED;
2435         }
2436
2437         /*
2438          * Check MPI processor activity.
2439          */
2440         if ((var & STS_PI) &&
2441                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2442                 /*
2443                  * We've got an async event or mailbox completion.
2444                  * Handle it and clear the source of the interrupt.
2445                  */
2446                 netif_err(qdev, intr, qdev->ndev,
2447                           "Got MPI processor interrupt.\n");
2448                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2449                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2450                 queue_delayed_work_on(smp_processor_id(),
2451                                 qdev->workqueue, &qdev->mpi_work, 0);
2452                 work_done++;
2453         }
2454
2455         /*
2456          * Get the bit-mask that shows the active queues for this
2457          * pass.  Compare it to the queues that this irq services
2458          * and call napi if there's a match.
2459          */
2460         var = ql_read32(qdev, ISR1);
2461         if (var & intr_context->irq_mask) {
2462                 netif_info(qdev, intr, qdev->ndev,
2463                            "Waking handler for rx_ring[0].\n");
2464                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2465                 napi_schedule(&rx_ring->napi);
2466                 work_done++;
2467         }
2468         ql_enable_completion_interrupt(qdev, intr_context->intr);
2469         return work_done ? IRQ_HANDLED : IRQ_NONE;
2470 }
2471
2472 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2473 {
2474
2475         if (skb_is_gso(skb)) {
2476                 int err;
2477                 if (skb_header_cloned(skb)) {
2478                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479                         if (err)
2480                                 return err;
2481                 }
2482
2483                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2484                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2485                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2486                 mac_iocb_ptr->total_hdrs_len =
2487                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2488                 mac_iocb_ptr->net_trans_offset =
2489                     cpu_to_le16(skb_network_offset(skb) |
2490                                 skb_transport_offset(skb)
2491                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2492                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2493                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2494                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2495                         struct iphdr *iph = ip_hdr(skb);
2496                         iph->check = 0;
2497                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2498                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2499                                                                  iph->daddr, 0,
2500                                                                  IPPROTO_TCP,
2501                                                                  0);
2502                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2503                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2504                         tcp_hdr(skb)->check =
2505                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2506                                              &ipv6_hdr(skb)->daddr,
2507                                              0, IPPROTO_TCP, 0);
2508                 }
2509                 return 1;
2510         }
2511         return 0;
2512 }
2513
2514 static void ql_hw_csum_setup(struct sk_buff *skb,
2515                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2516 {
2517         int len;
2518         struct iphdr *iph = ip_hdr(skb);
2519         __sum16 *check;
2520         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2521         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2522         mac_iocb_ptr->net_trans_offset =
2523                 cpu_to_le16(skb_network_offset(skb) |
2524                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2525
2526         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2527         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2528         if (likely(iph->protocol == IPPROTO_TCP)) {
2529                 check = &(tcp_hdr(skb)->check);
2530                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2531                 mac_iocb_ptr->total_hdrs_len =
2532                     cpu_to_le16(skb_transport_offset(skb) +
2533                                 (tcp_hdr(skb)->doff << 2));
2534         } else {
2535                 check = &(udp_hdr(skb)->check);
2536                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2537                 mac_iocb_ptr->total_hdrs_len =
2538                     cpu_to_le16(skb_transport_offset(skb) +
2539                                 sizeof(struct udphdr));
2540         }
2541         *check = ~csum_tcpudp_magic(iph->saddr,
2542                                     iph->daddr, len, iph->protocol, 0);
2543 }
2544
2545 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2546 {
2547         struct tx_ring_desc *tx_ring_desc;
2548         struct ob_mac_iocb_req *mac_iocb_ptr;
2549         struct ql_adapter *qdev = netdev_priv(ndev);
2550         int tso;
2551         struct tx_ring *tx_ring;
2552         u32 tx_ring_idx = (u32) skb->queue_mapping;
2553
2554         tx_ring = &qdev->tx_ring[tx_ring_idx];
2555
2556         if (skb_padto(skb, ETH_ZLEN))
2557                 return NETDEV_TX_OK;
2558
2559         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2560                 netif_info(qdev, tx_queued, qdev->ndev,
2561                            "%s: shutting down tx queue %d du to lack of resources.\n",
2562                            __func__, tx_ring_idx);
2563                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2564                 atomic_inc(&tx_ring->queue_stopped);
2565                 tx_ring->tx_errors++;
2566                 return NETDEV_TX_BUSY;
2567         }
2568         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2569         mac_iocb_ptr = tx_ring_desc->queue_entry;
2570         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2571
2572         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2573         mac_iocb_ptr->tid = tx_ring_desc->index;
2574         /* We use the upper 32-bits to store the tx queue for this IO.
2575          * When we get the completion we can use it to establish the context.
2576          */
2577         mac_iocb_ptr->txq_idx = tx_ring_idx;
2578         tx_ring_desc->skb = skb;
2579
2580         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2581
2582         if (vlan_tx_tag_present(skb)) {
2583                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2584                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2585                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2586                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2587         }
2588         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2589         if (tso < 0) {
2590                 dev_kfree_skb_any(skb);
2591                 return NETDEV_TX_OK;
2592         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2593                 ql_hw_csum_setup(skb,
2594                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2595         }
2596         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2597                         NETDEV_TX_OK) {
2598                 netif_err(qdev, tx_queued, qdev->ndev,
2599                           "Could not map the segments.\n");
2600                 tx_ring->tx_errors++;
2601                 return NETDEV_TX_BUSY;
2602         }
2603         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2604         tx_ring->prod_idx++;
2605         if (tx_ring->prod_idx == tx_ring->wq_len)
2606                 tx_ring->prod_idx = 0;
2607         wmb();
2608
2609         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2610         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2611                      "tx queued, slot %d, len %d\n",
2612                      tx_ring->prod_idx, skb->len);
2613
2614         atomic_dec(&tx_ring->tx_count);
2615         return NETDEV_TX_OK;
2616 }
2617
2618
2619 static void ql_free_shadow_space(struct ql_adapter *qdev)
2620 {
2621         if (qdev->rx_ring_shadow_reg_area) {
2622                 pci_free_consistent(qdev->pdev,
2623                                     PAGE_SIZE,
2624                                     qdev->rx_ring_shadow_reg_area,
2625                                     qdev->rx_ring_shadow_reg_dma);
2626                 qdev->rx_ring_shadow_reg_area = NULL;
2627         }
2628         if (qdev->tx_ring_shadow_reg_area) {
2629                 pci_free_consistent(qdev->pdev,
2630                                     PAGE_SIZE,
2631                                     qdev->tx_ring_shadow_reg_area,
2632                                     qdev->tx_ring_shadow_reg_dma);
2633                 qdev->tx_ring_shadow_reg_area = NULL;
2634         }
2635 }
2636
2637 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2638 {
2639         qdev->rx_ring_shadow_reg_area =
2640             pci_alloc_consistent(qdev->pdev,
2641                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2642         if (qdev->rx_ring_shadow_reg_area == NULL) {
2643                 netif_err(qdev, ifup, qdev->ndev,
2644                           "Allocation of RX shadow space failed.\n");
2645                 return -ENOMEM;
2646         }
2647         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2648         qdev->tx_ring_shadow_reg_area =
2649             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2650                                  &qdev->tx_ring_shadow_reg_dma);
2651         if (qdev->tx_ring_shadow_reg_area == NULL) {
2652                 netif_err(qdev, ifup, qdev->ndev,
2653                           "Allocation of TX shadow space failed.\n");
2654                 goto err_wqp_sh_area;
2655         }
2656         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2657         return 0;
2658
2659 err_wqp_sh_area:
2660         pci_free_consistent(qdev->pdev,
2661                             PAGE_SIZE,
2662                             qdev->rx_ring_shadow_reg_area,
2663                             qdev->rx_ring_shadow_reg_dma);
2664         return -ENOMEM;
2665 }
2666
2667 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2668 {
2669         struct tx_ring_desc *tx_ring_desc;
2670         int i;
2671         struct ob_mac_iocb_req *mac_iocb_ptr;
2672
2673         mac_iocb_ptr = tx_ring->wq_base;
2674         tx_ring_desc = tx_ring->q;
2675         for (i = 0; i < tx_ring->wq_len; i++) {
2676                 tx_ring_desc->index = i;
2677                 tx_ring_desc->skb = NULL;
2678                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2679                 mac_iocb_ptr++;
2680                 tx_ring_desc++;
2681         }
2682         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2683         atomic_set(&tx_ring->queue_stopped, 0);
2684 }
2685
2686 static void ql_free_tx_resources(struct ql_adapter *qdev,
2687                                  struct tx_ring *tx_ring)
2688 {
2689         if (tx_ring->wq_base) {
2690                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2691                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2692                 tx_ring->wq_base = NULL;
2693         }
2694         kfree(tx_ring->q);
2695         tx_ring->q = NULL;
2696 }
2697
2698 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2699                                  struct tx_ring *tx_ring)
2700 {
2701         tx_ring->wq_base =
2702             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2703                                  &tx_ring->wq_base_dma);
2704
2705         if ((tx_ring->wq_base == NULL) ||
2706             tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2707                 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2708                 return -ENOMEM;
2709         }
2710         tx_ring->q =
2711             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2712         if (tx_ring->q == NULL)
2713                 goto err;
2714
2715         return 0;
2716 err:
2717         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2718                             tx_ring->wq_base, tx_ring->wq_base_dma);
2719         return -ENOMEM;
2720 }
2721
2722 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2723 {
2724         struct bq_desc *lbq_desc;
2725
2726         uint32_t  curr_idx, clean_idx;
2727
2728         curr_idx = rx_ring->lbq_curr_idx;
2729         clean_idx = rx_ring->lbq_clean_idx;
2730         while (curr_idx != clean_idx) {
2731                 lbq_desc = &rx_ring->lbq[curr_idx];
2732
2733                 if (lbq_desc->p.pg_chunk.last_flag) {
2734                         pci_unmap_page(qdev->pdev,
2735                                 lbq_desc->p.pg_chunk.map,
2736                                 ql_lbq_block_size(qdev),
2737                                        PCI_DMA_FROMDEVICE);
2738                         lbq_desc->p.pg_chunk.last_flag = 0;
2739                 }
2740
2741                 put_page(lbq_desc->p.pg_chunk.page);
2742                 lbq_desc->p.pg_chunk.page = NULL;
2743
2744                 if (++curr_idx == rx_ring->lbq_len)
2745                         curr_idx = 0;
2746
2747         }
2748 }
2749
2750 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2751 {
2752         int i;
2753         struct bq_desc *sbq_desc;
2754
2755         for (i = 0; i < rx_ring->sbq_len; i++) {
2756                 sbq_desc = &rx_ring->sbq[i];
2757                 if (sbq_desc == NULL) {
2758                         netif_err(qdev, ifup, qdev->ndev,
2759                                   "sbq_desc %d is NULL.\n", i);
2760                         return;
2761                 }
2762                 if (sbq_desc->p.skb) {
2763                         pci_unmap_single(qdev->pdev,
2764                                          dma_unmap_addr(sbq_desc, mapaddr),
2765                                          dma_unmap_len(sbq_desc, maplen),
2766                                          PCI_DMA_FROMDEVICE);
2767                         dev_kfree_skb(sbq_desc->p.skb);
2768                         sbq_desc->p.skb = NULL;
2769                 }
2770         }
2771 }
2772
2773 /* Free all large and small rx buffers associated
2774  * with the completion queues for this device.
2775  */
2776 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2777 {
2778         int i;
2779         struct rx_ring *rx_ring;
2780
2781         for (i = 0; i < qdev->rx_ring_count; i++) {
2782                 rx_ring = &qdev->rx_ring[i];
2783                 if (rx_ring->lbq)
2784                         ql_free_lbq_buffers(qdev, rx_ring);
2785                 if (rx_ring->sbq)
2786                         ql_free_sbq_buffers(qdev, rx_ring);
2787         }
2788 }
2789
2790 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2791 {
2792         struct rx_ring *rx_ring;
2793         int i;
2794
2795         for (i = 0; i < qdev->rx_ring_count; i++) {
2796                 rx_ring = &qdev->rx_ring[i];
2797                 if (rx_ring->type != TX_Q)
2798                         ql_update_buffer_queues(qdev, rx_ring);
2799         }
2800 }
2801
2802 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2803                                 struct rx_ring *rx_ring)
2804 {
2805         int i;
2806         struct bq_desc *lbq_desc;
2807         __le64 *bq = rx_ring->lbq_base;
2808
2809         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2810         for (i = 0; i < rx_ring->lbq_len; i++) {
2811                 lbq_desc = &rx_ring->lbq[i];
2812                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2813                 lbq_desc->index = i;
2814                 lbq_desc->addr = bq;
2815                 bq++;
2816         }
2817 }
2818
2819 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2820                                 struct rx_ring *rx_ring)
2821 {
2822         int i;
2823         struct bq_desc *sbq_desc;
2824         __le64 *bq = rx_ring->sbq_base;
2825
2826         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2827         for (i = 0; i < rx_ring->sbq_len; i++) {
2828                 sbq_desc = &rx_ring->sbq[i];
2829                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2830                 sbq_desc->index = i;
2831                 sbq_desc->addr = bq;
2832                 bq++;
2833         }
2834 }
2835
2836 static void ql_free_rx_resources(struct ql_adapter *qdev,
2837                                  struct rx_ring *rx_ring)
2838 {
2839         /* Free the small buffer queue. */
2840         if (rx_ring->sbq_base) {
2841                 pci_free_consistent(qdev->pdev,
2842                                     rx_ring->sbq_size,
2843                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2844                 rx_ring->sbq_base = NULL;
2845         }
2846
2847         /* Free the small buffer queue control blocks. */
2848         kfree(rx_ring->sbq);
2849         rx_ring->sbq = NULL;
2850
2851         /* Free the large buffer queue. */
2852         if (rx_ring->lbq_base) {
2853                 pci_free_consistent(qdev->pdev,
2854                                     rx_ring->lbq_size,
2855                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2856                 rx_ring->lbq_base = NULL;
2857         }
2858
2859         /* Free the large buffer queue control blocks. */
2860         kfree(rx_ring->lbq);
2861         rx_ring->lbq = NULL;
2862
2863         /* Free the rx queue. */
2864         if (rx_ring->cq_base) {
2865                 pci_free_consistent(qdev->pdev,
2866                                     rx_ring->cq_size,
2867                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2868                 rx_ring->cq_base = NULL;
2869         }
2870 }
2871
2872 /* Allocate queues and buffers for this completions queue based
2873  * on the values in the parameter structure. */
2874 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2875                                  struct rx_ring *rx_ring)
2876 {
2877
2878         /*
2879          * Allocate the completion queue for this rx_ring.
2880          */
2881         rx_ring->cq_base =
2882             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2883                                  &rx_ring->cq_base_dma);
2884
2885         if (rx_ring->cq_base == NULL) {
2886                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2887                 return -ENOMEM;
2888         }
2889
2890         if (rx_ring->sbq_len) {
2891                 /*
2892                  * Allocate small buffer queue.
2893                  */
2894                 rx_ring->sbq_base =
2895                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2896                                          &rx_ring->sbq_base_dma);
2897
2898                 if (rx_ring->sbq_base == NULL) {
2899                         netif_err(qdev, ifup, qdev->ndev,
2900                                   "Small buffer queue allocation failed.\n");
2901                         goto err_mem;
2902                 }
2903
2904                 /*
2905                  * Allocate small buffer queue control blocks.
2906                  */
2907                 rx_ring->sbq =
2908                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2909                             GFP_KERNEL);
2910                 if (rx_ring->sbq == NULL) {
2911                         netif_err(qdev, ifup, qdev->ndev,
2912                                   "Small buffer queue control block allocation failed.\n");
2913                         goto err_mem;
2914                 }
2915
2916                 ql_init_sbq_ring(qdev, rx_ring);
2917         }
2918
2919         if (rx_ring->lbq_len) {
2920                 /*
2921                  * Allocate large buffer queue.
2922                  */
2923                 rx_ring->lbq_base =
2924                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2925                                          &rx_ring->lbq_base_dma);
2926
2927                 if (rx_ring->lbq_base == NULL) {
2928                         netif_err(qdev, ifup, qdev->ndev,
2929                                   "Large buffer queue allocation failed.\n");
2930                         goto err_mem;
2931                 }
2932                 /*
2933                  * Allocate large buffer queue control blocks.
2934                  */
2935                 rx_ring->lbq =
2936                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2937                             GFP_KERNEL);
2938                 if (rx_ring->lbq == NULL) {
2939                         netif_err(qdev, ifup, qdev->ndev,
2940                                   "Large buffer queue control block allocation failed.\n");
2941                         goto err_mem;
2942                 }
2943
2944                 ql_init_lbq_ring(qdev, rx_ring);
2945         }
2946
2947         return 0;
2948
2949 err_mem:
2950         ql_free_rx_resources(qdev, rx_ring);
2951         return -ENOMEM;
2952 }
2953
2954 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2955 {
2956         struct tx_ring *tx_ring;
2957         struct tx_ring_desc *tx_ring_desc;
2958         int i, j;
2959
2960         /*
2961          * Loop through all queues and free
2962          * any resources.
2963          */
2964         for (j = 0; j < qdev->tx_ring_count; j++) {
2965                 tx_ring = &qdev->tx_ring[j];
2966                 for (i = 0; i < tx_ring->wq_len; i++) {
2967                         tx_ring_desc = &tx_ring->q[i];
2968                         if (tx_ring_desc && tx_ring_desc->skb) {
2969                                 netif_err(qdev, ifdown, qdev->ndev,
2970                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
2971                                           tx_ring_desc->skb, j,
2972                                           tx_ring_desc->index);
2973                                 ql_unmap_send(qdev, tx_ring_desc,
2974                                               tx_ring_desc->map_cnt);
2975                                 dev_kfree_skb(tx_ring_desc->skb);
2976                                 tx_ring_desc->skb = NULL;
2977                         }
2978                 }
2979         }
2980 }
2981
2982 static void ql_free_mem_resources(struct ql_adapter *qdev)
2983 {
2984         int i;
2985
2986         for (i = 0; i < qdev->tx_ring_count; i++)
2987                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2988         for (i = 0; i < qdev->rx_ring_count; i++)
2989                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2990         ql_free_shadow_space(qdev);
2991 }
2992
2993 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2994 {
2995         int i;
2996
2997         /* Allocate space for our shadow registers and such. */
2998         if (ql_alloc_shadow_space(qdev))
2999                 return -ENOMEM;
3000
3001         for (i = 0; i < qdev->rx_ring_count; i++) {
3002                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3003                         netif_err(qdev, ifup, qdev->ndev,
3004                                   "RX resource allocation failed.\n");
3005                         goto err_mem;
3006                 }
3007         }
3008         /* Allocate tx queue resources */
3009         for (i = 0; i < qdev->tx_ring_count; i++) {
3010                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3011                         netif_err(qdev, ifup, qdev->ndev,
3012                                   "TX resource allocation failed.\n");
3013                         goto err_mem;
3014                 }
3015         }
3016         return 0;
3017
3018 err_mem:
3019         ql_free_mem_resources(qdev);
3020         return -ENOMEM;
3021 }
3022
3023 /* Set up the rx ring control block and pass it to the chip.
3024  * The control block is defined as
3025  * "Completion Queue Initialization Control Block", or cqicb.
3026  */
3027 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3028 {
3029         struct cqicb *cqicb = &rx_ring->cqicb;
3030         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3031                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3032         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3033                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3034         void __iomem *doorbell_area =
3035             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3036         int err = 0;
3037         u16 bq_len;
3038         u64 tmp;
3039         __le64 *base_indirect_ptr;
3040         int page_entries;
3041
3042         /* Set up the shadow registers for this ring. */
3043         rx_ring->prod_idx_sh_reg = shadow_reg;
3044         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3045         *rx_ring->prod_idx_sh_reg = 0;
3046         shadow_reg += sizeof(u64);
3047         shadow_reg_dma += sizeof(u64);
3048         rx_ring->lbq_base_indirect = shadow_reg;
3049         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3050         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3051         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3052         rx_ring->sbq_base_indirect = shadow_reg;
3053         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3054
3055         /* PCI doorbell mem area + 0x00 for consumer index register */
3056         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3057         rx_ring->cnsmr_idx = 0;
3058         rx_ring->curr_entry = rx_ring->cq_base;
3059
3060         /* PCI doorbell mem area + 0x04 for valid register */
3061         rx_ring->valid_db_reg = doorbell_area + 0x04;
3062
3063         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3064         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3065
3066         /* PCI doorbell mem area + 0x1c */
3067         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3068
3069         memset((void *)cqicb, 0, sizeof(struct cqicb));
3070         cqicb->msix_vect = rx_ring->irq;
3071
3072         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3073         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3074
3075         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3076
3077         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3078
3079         /*
3080          * Set up the control block load flags.
3081          */
3082         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3083             FLAGS_LV |          /* Load MSI-X vector */
3084             FLAGS_LI;           /* Load irq delay values */
3085         if (rx_ring->lbq_len) {
3086                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3087                 tmp = (u64)rx_ring->lbq_base_dma;
3088                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3089                 page_entries = 0;
3090                 do {
3091                         *base_indirect_ptr = cpu_to_le64(tmp);
3092                         tmp += DB_PAGE_SIZE;
3093                         base_indirect_ptr++;
3094                         page_entries++;
3095                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3096                 cqicb->lbq_addr =
3097                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3098                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3099                         (u16) rx_ring->lbq_buf_size;
3100                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3101                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3102                         (u16) rx_ring->lbq_len;
3103                 cqicb->lbq_len = cpu_to_le16(bq_len);
3104                 rx_ring->lbq_prod_idx = 0;
3105                 rx_ring->lbq_curr_idx = 0;
3106                 rx_ring->lbq_clean_idx = 0;
3107                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3108         }
3109         if (rx_ring->sbq_len) {
3110                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3111                 tmp = (u64)rx_ring->sbq_base_dma;
3112                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3113                 page_entries = 0;
3114                 do {
3115                         *base_indirect_ptr = cpu_to_le64(tmp);
3116                         tmp += DB_PAGE_SIZE;
3117                         base_indirect_ptr++;
3118                         page_entries++;
3119                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3120                 cqicb->sbq_addr =
3121                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3122                 cqicb->sbq_buf_size =
3123                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3124                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3125                         (u16) rx_ring->sbq_len;
3126                 cqicb->sbq_len = cpu_to_le16(bq_len);
3127                 rx_ring->sbq_prod_idx = 0;
3128                 rx_ring->sbq_curr_idx = 0;
3129                 rx_ring->sbq_clean_idx = 0;
3130                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3131         }
3132         switch (rx_ring->type) {
3133         case TX_Q:
3134                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3135                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3136                 break;
3137         case RX_Q:
3138                 /* Inbound completion handling rx_rings run in
3139                  * separate NAPI contexts.
3140                  */
3141                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3142                                64);
3143                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3144                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3145                 break;
3146         default:
3147                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3148                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3149         }
3150         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3151                            CFG_LCQ, rx_ring->cq_id);
3152         if (err) {
3153                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3154                 return err;
3155         }
3156         return err;
3157 }
3158
3159 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3160 {
3161         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3162         void __iomem *doorbell_area =
3163             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3164         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3165             (tx_ring->wq_id * sizeof(u64));
3166         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3167             (tx_ring->wq_id * sizeof(u64));
3168         int err = 0;
3169
3170         /*
3171          * Assign doorbell registers for this tx_ring.
3172          */
3173         /* TX PCI doorbell mem area for tx producer index */
3174         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3175         tx_ring->prod_idx = 0;
3176         /* TX PCI doorbell mem area + 0x04 */
3177         tx_ring->valid_db_reg = doorbell_area + 0x04;
3178
3179         /*
3180          * Assign shadow registers for this tx_ring.
3181          */
3182         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3183         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3184
3185         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3186         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3187                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3188         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3189         wqicb->rid = 0;
3190         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3191
3192         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3193
3194         ql_init_tx_ring(qdev, tx_ring);
3195
3196         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3197                            (u16) tx_ring->wq_id);
3198         if (err) {
3199                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3200                 return err;
3201         }
3202         return err;
3203 }
3204
3205 static void ql_disable_msix(struct ql_adapter *qdev)
3206 {
3207         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3208                 pci_disable_msix(qdev->pdev);
3209                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3210                 kfree(qdev->msi_x_entry);
3211                 qdev->msi_x_entry = NULL;
3212         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3213                 pci_disable_msi(qdev->pdev);
3214                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3215         }
3216 }
3217
3218 /* We start by trying to get the number of vectors
3219  * stored in qdev->intr_count. If we don't get that
3220  * many then we reduce the count and try again.
3221  */
3222 static void ql_enable_msix(struct ql_adapter *qdev)
3223 {
3224         int i, err;
3225
3226         /* Get the MSIX vectors. */
3227         if (qlge_irq_type == MSIX_IRQ) {
3228                 /* Try to alloc space for the msix struct,
3229                  * if it fails then go to MSI/legacy.
3230                  */
3231                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3232                                             sizeof(struct msix_entry),
3233                                             GFP_KERNEL);
3234                 if (!qdev->msi_x_entry) {
3235                         qlge_irq_type = MSI_IRQ;
3236                         goto msi;
3237                 }
3238
3239                 for (i = 0; i < qdev->intr_count; i++)
3240                         qdev->msi_x_entry[i].entry = i;
3241
3242                 /* Loop to get our vectors.  We start with
3243                  * what we want and settle for what we get.
3244                  */
3245                 do {
3246                         err = pci_enable_msix(qdev->pdev,
3247                                 qdev->msi_x_entry, qdev->intr_count);
3248                         if (err > 0)
3249                                 qdev->intr_count = err;
3250                 } while (err > 0);
3251
3252                 if (err < 0) {
3253                         kfree(qdev->msi_x_entry);
3254                         qdev->msi_x_entry = NULL;
3255                         netif_warn(qdev, ifup, qdev->ndev,
3256                                    "MSI-X Enable failed, trying MSI.\n");
3257                         qdev->intr_count = 1;
3258                         qlge_irq_type = MSI_IRQ;
3259                 } else if (err == 0) {
3260                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3261                         netif_info(qdev, ifup, qdev->ndev,
3262                                    "MSI-X Enabled, got %d vectors.\n",
3263                                    qdev->intr_count);
3264                         return;
3265                 }
3266         }
3267 msi:
3268         qdev->intr_count = 1;
3269         if (qlge_irq_type == MSI_IRQ) {
3270                 if (!pci_enable_msi(qdev->pdev)) {
3271                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3272                         netif_info(qdev, ifup, qdev->ndev,
3273                                    "Running with MSI interrupts.\n");
3274                         return;
3275                 }
3276         }
3277         qlge_irq_type = LEG_IRQ;
3278         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3279                      "Running with legacy interrupts.\n");
3280 }
3281
3282 /* Each vector services 1 RSS ring and and 1 or more
3283  * TX completion rings.  This function loops through
3284  * the TX completion rings and assigns the vector that
3285  * will service it.  An example would be if there are
3286  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3287  * This would mean that vector 0 would service RSS ring 0
3288  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3289  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3290  */
3291 static void ql_set_tx_vect(struct ql_adapter *qdev)
3292 {
3293         int i, j, vect;
3294         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3295
3296         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3297                 /* Assign irq vectors to TX rx_rings.*/
3298                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3299                                          i < qdev->rx_ring_count; i++) {
3300                         if (j == tx_rings_per_vector) {
3301                                 vect++;
3302                                 j = 0;
3303                         }
3304                         qdev->rx_ring[i].irq = vect;
3305                         j++;
3306                 }
3307         } else {
3308                 /* For single vector all rings have an irq
3309                  * of zero.
3310                  */
3311                 for (i = 0; i < qdev->rx_ring_count; i++)
3312                         qdev->rx_ring[i].irq = 0;
3313         }
3314 }
3315
3316 /* Set the interrupt mask for this vector.  Each vector
3317  * will service 1 RSS ring and 1 or more TX completion
3318  * rings.  This function sets up a bit mask per vector
3319  * that indicates which rings it services.
3320  */
3321 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3322 {
3323         int j, vect = ctx->intr;
3324         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3325
3326         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3327                 /* Add the RSS ring serviced by this vector
3328                  * to the mask.
3329                  */
3330                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3331                 /* Add the TX ring(s) serviced by this vector
3332                  * to the mask. */
3333                 for (j = 0; j < tx_rings_per_vector; j++) {
3334                         ctx->irq_mask |=
3335                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3336                         (vect * tx_rings_per_vector) + j].cq_id);
3337                 }
3338         } else {
3339                 /* For single vector we just shift each queue's
3340                  * ID into the mask.
3341                  */
3342                 for (j = 0; j < qdev->rx_ring_count; j++)
3343                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3344         }
3345 }
3346
3347 /*
3348  * Here we build the intr_context structures based on
3349  * our rx_ring count and intr vector count.
3350  * The intr_context structure is used to hook each vector
3351  * to possibly different handlers.
3352  */
3353 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3354 {
3355         int i = 0;
3356         struct intr_context *intr_context = &qdev->intr_context[0];
3357
3358         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3359                 /* Each rx_ring has it's
3360                  * own intr_context since we have separate
3361                  * vectors for each queue.
3362                  */
3363                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3364                         qdev->rx_ring[i].irq = i;
3365                         intr_context->intr = i;
3366                         intr_context->qdev = qdev;
3367                         /* Set up this vector's bit-mask that indicates
3368                          * which queues it services.
3369                          */
3370                         ql_set_irq_mask(qdev, intr_context);
3371                         /*
3372                          * We set up each vectors enable/disable/read bits so
3373                          * there's no bit/mask calculations in the critical path.
3374                          */
3375                         intr_context->intr_en_mask =
3376                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3377                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3378                             | i;
3379                         intr_context->intr_dis_mask =
3380                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3381                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3382                             INTR_EN_IHD | i;
3383                         intr_context->intr_read_mask =
3384                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3385                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3386                             i;
3387                         if (i == 0) {
3388                                 /* The first vector/queue handles
3389                                  * broadcast/multicast, fatal errors,
3390                                  * and firmware events.  This in addition
3391                                  * to normal inbound NAPI processing.
3392                                  */
3393                                 intr_context->handler = qlge_isr;
3394                                 sprintf(intr_context->name, "%s-rx-%d",
3395                                         qdev->ndev->name, i);
3396                         } else {
3397                                 /*
3398                                  * Inbound queues handle unicast frames only.
3399                                  */
3400                                 intr_context->handler = qlge_msix_rx_isr;
3401                                 sprintf(intr_context->name, "%s-rx-%d",
3402                                         qdev->ndev->name, i);
3403                         }
3404                 }
3405         } else {
3406                 /*
3407                  * All rx_rings use the same intr_context since
3408                  * there is only one vector.
3409                  */
3410                 intr_context->intr = 0;
3411                 intr_context->qdev = qdev;
3412                 /*
3413                  * We set up each vectors enable/disable/read bits so
3414                  * there's no bit/mask calculations in the critical path.
3415                  */
3416                 intr_context->intr_en_mask =
3417                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3418                 intr_context->intr_dis_mask =
3419                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3420                     INTR_EN_TYPE_DISABLE;
3421                 intr_context->intr_read_mask =
3422                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3423                 /*
3424                  * Single interrupt means one handler for all rings.
3425                  */
3426                 intr_context->handler = qlge_isr;
3427                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3428                 /* Set up this vector's bit-mask that indicates
3429                  * which queues it services. In this case there is
3430                  * a single vector so it will service all RSS and
3431                  * TX completion rings.
3432                  */
3433                 ql_set_irq_mask(qdev, intr_context);
3434         }
3435         /* Tell the TX completion rings which MSIx vector
3436          * they will be using.
3437          */
3438         ql_set_tx_vect(qdev);
3439 }
3440
3441 static void ql_free_irq(struct ql_adapter *qdev)
3442 {
3443         int i;
3444         struct intr_context *intr_context = &qdev->intr_context[0];
3445
3446         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447                 if (intr_context->hooked) {
3448                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3449                                 free_irq(qdev->msi_x_entry[i].vector,
3450                                          &qdev->rx_ring[i]);
3451                         } else {
3452                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3453                         }
3454                 }
3455         }
3456         ql_disable_msix(qdev);
3457 }
3458
3459 static int ql_request_irq(struct ql_adapter *qdev)
3460 {
3461         int i;
3462         int status = 0;
3463         struct pci_dev *pdev = qdev->pdev;
3464         struct intr_context *intr_context = &qdev->intr_context[0];
3465
3466         ql_resolve_queues_to_irqs(qdev);
3467
3468         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3469                 atomic_set(&intr_context->irq_cnt, 0);
3470                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3471                         status = request_irq(qdev->msi_x_entry[i].vector,
3472                                              intr_context->handler,
3473                                              0,
3474                                              intr_context->name,
3475                                              &qdev->rx_ring[i]);
3476                         if (status) {
3477                                 netif_err(qdev, ifup, qdev->ndev,
3478                                           "Failed request for MSIX interrupt %d.\n",
3479                                           i);
3480                                 goto err_irq;
3481                         }
3482                 } else {
3483                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3484                                      "trying msi or legacy interrupts.\n");
3485                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3486                                      "%s: irq = %d.\n", __func__, pdev->irq);
3487                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3488                                      "%s: context->name = %s.\n", __func__,
3489                                      intr_context->name);
3490                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3491                                      "%s: dev_id = 0x%p.\n", __func__,
3492                                      &qdev->rx_ring[0]);
3493                         status =
3494                             request_irq(pdev->irq, qlge_isr,
3495                                         test_bit(QL_MSI_ENABLED,
3496                                                  &qdev->
3497                                                  flags) ? 0 : IRQF_SHARED,
3498                                         intr_context->name, &qdev->rx_ring[0]);
3499                         if (status)
3500                                 goto err_irq;
3501
3502                         netif_err(qdev, ifup, qdev->ndev,
3503                                   "Hooked intr %d, queue type %s, with name %s.\n",
3504                                   i,
3505                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3506                                   "DEFAULT_Q" :
3507                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3508                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3509                                   intr_context->name);
3510                 }
3511                 intr_context->hooked = 1;
3512         }
3513         return status;
3514 err_irq:
3515         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3516         ql_free_irq(qdev);
3517         return status;
3518 }
3519
3520 static int ql_start_rss(struct ql_adapter *qdev)
3521 {
3522         static const u8 init_hash_seed[] = {
3523                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3524                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3525                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3526                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3527                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3528         };
3529         struct ricb *ricb = &qdev->ricb;
3530         int status = 0;
3531         int i;
3532         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3533
3534         memset((void *)ricb, 0, sizeof(*ricb));
3535
3536         ricb->base_cq = RSS_L4K;
3537         ricb->flags =
3538                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3539         ricb->mask = cpu_to_le16((u16)(0x3ff));
3540
3541         /*
3542          * Fill out the Indirection Table.
3543          */
3544         for (i = 0; i < 1024; i++)
3545                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3546
3547         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3548         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3549
3550         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3551         if (status) {
3552                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3553                 return status;
3554         }
3555         return status;
3556 }
3557
3558 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3559 {
3560         int i, status = 0;
3561
3562         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3563         if (status)
3564                 return status;
3565         /* Clear all the entries in the routing table. */
3566         for (i = 0; i < 16; i++) {
3567                 status = ql_set_routing_reg(qdev, i, 0, 0);
3568                 if (status) {
3569                         netif_err(qdev, ifup, qdev->ndev,
3570                                   "Failed to init routing register for CAM packets.\n");
3571                         break;
3572                 }
3573         }
3574         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3575         return status;
3576 }
3577
3578 /* Initialize the frame-to-queue routing. */
3579 static int ql_route_initialize(struct ql_adapter *qdev)
3580 {
3581         int status = 0;
3582
3583         /* Clear all the entries in the routing table. */
3584         status = ql_clear_routing_entries(qdev);
3585         if (status)
3586                 return status;
3587
3588         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3589         if (status)
3590                 return status;
3591
3592         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3593                                                 RT_IDX_IP_CSUM_ERR, 1);
3594         if (status) {
3595                 netif_err(qdev, ifup, qdev->ndev,
3596                         "Failed to init routing register "
3597                         "for IP CSUM error packets.\n");
3598                 goto exit;
3599         }
3600         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3601                                                 RT_IDX_TU_CSUM_ERR, 1);
3602         if (status) {
3603                 netif_err(qdev, ifup, qdev->ndev,
3604                         "Failed to init routing register "
3605                         "for TCP/UDP CSUM error packets.\n");
3606                 goto exit;
3607         }
3608         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3609         if (status) {
3610                 netif_err(qdev, ifup, qdev->ndev,
3611                           "Failed to init routing register for broadcast packets.\n");
3612                 goto exit;
3613         }
3614         /* If we have more than one inbound queue, then turn on RSS in the
3615          * routing block.
3616          */
3617         if (qdev->rss_ring_count > 1) {
3618                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3619                                         RT_IDX_RSS_MATCH, 1);
3620                 if (status) {
3621                         netif_err(qdev, ifup, qdev->ndev,
3622                                   "Failed to init routing register for MATCH RSS packets.\n");
3623                         goto exit;
3624                 }
3625         }
3626
3627         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3628                                     RT_IDX_CAM_HIT, 1);
3629         if (status)
3630                 netif_err(qdev, ifup, qdev->ndev,
3631                           "Failed to init routing register for CAM packets.\n");
3632 exit:
3633         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3634         return status;
3635 }
3636
3637 int ql_cam_route_initialize(struct ql_adapter *qdev)
3638 {
3639         int status, set;
3640
3641         /* If check if the link is up and use to
3642          * determine if we are setting or clearing
3643          * the MAC address in the CAM.
3644          */
3645         set = ql_read32(qdev, STS);
3646         set &= qdev->port_link_up;
3647         status = ql_set_mac_addr(qdev, set);
3648         if (status) {
3649                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3650                 return status;
3651         }
3652
3653         status = ql_route_initialize(qdev);
3654         if (status)
3655                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3656
3657         return status;
3658 }
3659
3660 static int ql_adapter_initialize(struct ql_adapter *qdev)
3661 {
3662         u32 value, mask;
3663         int i;
3664         int status = 0;
3665
3666         /*
3667          * Set up the System register to halt on errors.
3668          */
3669         value = SYS_EFE | SYS_FAE;
3670         mask = value << 16;
3671         ql_write32(qdev, SYS, mask | value);
3672
3673         /* Set the default queue, and VLAN behavior. */
3674         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3675         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3676         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3677
3678         /* Set the MPI interrupt to enabled. */
3679         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3680
3681         /* Enable the function, set pagesize, enable error checking. */
3682         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3683             FSC_EC | FSC_VM_PAGE_4K;
3684         value |= SPLT_SETTING;
3685
3686         /* Set/clear header splitting. */
3687         mask = FSC_VM_PAGESIZE_MASK |
3688             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3689         ql_write32(qdev, FSC, mask | value);
3690
3691         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3692
3693         /* Set RX packet routing to use port/pci function on which the
3694          * packet arrived on in addition to usual frame routing.
3695          * This is helpful on bonding where both interfaces can have
3696          * the same MAC address.
3697          */
3698         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3699         /* Reroute all packets to our Interface.
3700          * They may have been routed to MPI firmware
3701          * due to WOL.
3702          */
3703         value = ql_read32(qdev, MGMT_RCV_CFG);
3704         value &= ~MGMT_RCV_CFG_RM;
3705         mask = 0xffff0000;
3706
3707         /* Sticky reg needs clearing due to WOL. */
3708         ql_write32(qdev, MGMT_RCV_CFG, mask);
3709         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3710
3711         /* Default WOL is enable on Mezz cards */
3712         if (qdev->pdev->subsystem_device == 0x0068 ||
3713                         qdev->pdev->subsystem_device == 0x0180)
3714                 qdev->wol = WAKE_MAGIC;
3715
3716         /* Start up the rx queues. */
3717         for (i = 0; i < qdev->rx_ring_count; i++) {
3718                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3719                 if (status) {
3720                         netif_err(qdev, ifup, qdev->ndev,
3721                                   "Failed to start rx ring[%d].\n", i);
3722                         return status;
3723                 }
3724         }
3725
3726         /* If there is more than one inbound completion queue
3727          * then download a RICB to configure RSS.
3728          */
3729         if (qdev->rss_ring_count > 1) {
3730                 status = ql_start_rss(qdev);
3731                 if (status) {
3732                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3733                         return status;
3734                 }
3735         }
3736
3737         /* Start up the tx queues. */
3738         for (i = 0; i < qdev->tx_ring_count; i++) {
3739                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3740                 if (status) {
3741                         netif_err(qdev, ifup, qdev->ndev,
3742                                   "Failed to start tx ring[%d].\n", i);
3743                         return status;
3744                 }
3745         }
3746
3747         /* Initialize the port and set the max framesize. */
3748         status = qdev->nic_ops->port_initialize(qdev);
3749         if (status)
3750                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3751
3752         /* Set up the MAC address and frame routing filter. */
3753         status = ql_cam_route_initialize(qdev);
3754         if (status) {
3755                 netif_err(qdev, ifup, qdev->ndev,
3756                           "Failed to init CAM/Routing tables.\n");
3757                 return status;
3758         }
3759
3760         /* Start NAPI for the RSS queues. */
3761         for (i = 0; i < qdev->rss_ring_count; i++)
3762                 napi_enable(&qdev->rx_ring[i].napi);
3763
3764         return status;
3765 }
3766
3767 /* Issue soft reset to chip. */
3768 static int ql_adapter_reset(struct ql_adapter *qdev)
3769 {
3770         u32 value;
3771         int status = 0;
3772         unsigned long end_jiffies;
3773
3774         /* Clear all the entries in the routing table. */
3775         status = ql_clear_routing_entries(qdev);
3776         if (status) {
3777                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3778                 return status;
3779         }
3780
3781         end_jiffies = jiffies +
3782                 max((unsigned long)1, usecs_to_jiffies(30));
3783
3784         /* Check if bit is set then skip the mailbox command and
3785          * clear the bit, else we are in normal reset process.
3786          */
3787         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3788                 /* Stop management traffic. */
3789                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3790
3791                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3792                 ql_wait_fifo_empty(qdev);
3793         } else
3794                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3795
3796         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3797
3798         do {
3799                 value = ql_read32(qdev, RST_FO);
3800                 if ((value & RST_FO_FR) == 0)
3801                         break;
3802                 cpu_relax();
3803         } while (time_before(jiffies, end_jiffies));
3804
3805         if (value & RST_FO_FR) {
3806                 netif_err(qdev, ifdown, qdev->ndev,
3807                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3808                 status = -ETIMEDOUT;
3809         }
3810
3811         /* Resume management traffic. */
3812         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3813         return status;
3814 }
3815
3816 static void ql_display_dev_info(struct net_device *ndev)
3817 {
3818         struct ql_adapter *qdev = netdev_priv(ndev);
3819
3820         netif_info(qdev, probe, qdev->ndev,
3821                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3822                    "XG Roll = %d, XG Rev = %d.\n",
3823                    qdev->func,
3824                    qdev->port,
3825                    qdev->chip_rev_id & 0x0000000f,
3826                    qdev->chip_rev_id >> 4 & 0x0000000f,
3827                    qdev->chip_rev_id >> 8 & 0x0000000f,
3828                    qdev->chip_rev_id >> 12 & 0x0000000f);
3829         netif_info(qdev, probe, qdev->ndev,
3830                    "MAC address %pM\n", ndev->dev_addr);
3831 }
3832
3833 static int ql_wol(struct ql_adapter *qdev)
3834 {
3835         int status = 0;
3836         u32 wol = MB_WOL_DISABLE;
3837
3838         /* The CAM is still intact after a reset, but if we
3839          * are doing WOL, then we may need to program the
3840          * routing regs. We would also need to issue the mailbox
3841          * commands to instruct the MPI what to do per the ethtool
3842          * settings.
3843          */
3844
3845         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3846                         WAKE_MCAST | WAKE_BCAST)) {
3847                 netif_err(qdev, ifdown, qdev->ndev,
3848                           "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3849                           qdev->wol);
3850                 return -EINVAL;
3851         }
3852
3853         if (qdev->wol & WAKE_MAGIC) {
3854                 status = ql_mb_wol_set_magic(qdev, 1);
3855                 if (status) {
3856                         netif_err(qdev, ifdown, qdev->ndev,
3857                                   "Failed to set magic packet on %s.\n",
3858                                   qdev->ndev->name);
3859                         return status;
3860                 } else
3861                         netif_info(qdev, drv, qdev->ndev,
3862                                    "Enabled magic packet successfully on %s.\n",
3863                                    qdev->ndev->name);
3864
3865                 wol |= MB_WOL_MAGIC_PKT;
3866         }
3867
3868         if (qdev->wol) {
3869                 wol |= MB_WOL_MODE_ON;
3870                 status = ql_mb_wol_mode(qdev, wol);
3871                 netif_err(qdev, drv, qdev->ndev,
3872                           "WOL %s (wol code 0x%x) on %s\n",
3873                           (status == 0) ? "Successfully set" : "Failed",
3874                           wol, qdev->ndev->name);
3875         }
3876
3877         return status;
3878 }
3879
3880 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3881 {
3882
3883         /* Don't kill the reset worker thread if we
3884          * are in the process of recovery.
3885          */
3886         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3887                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3888         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3889         cancel_delayed_work_sync(&qdev->mpi_work);
3890         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3891         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3892         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3893 }
3894
3895 static int ql_adapter_down(struct ql_adapter *qdev)
3896 {
3897         int i, status = 0;
3898
3899         ql_link_off(qdev);
3900
3901         ql_cancel_all_work_sync(qdev);
3902
3903         for (i = 0; i < qdev->rss_ring_count; i++)
3904                 napi_disable(&qdev->rx_ring[i].napi);
3905
3906         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3907
3908         ql_disable_interrupts(qdev);
3909
3910         ql_tx_ring_clean(qdev);
3911
3912         /* Call netif_napi_del() from common point.
3913          */
3914         for (i = 0; i < qdev->rss_ring_count; i++)
3915                 netif_napi_del(&qdev->rx_ring[i].napi);
3916
3917         status = ql_adapter_reset(qdev);
3918         if (status)
3919                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3920                           qdev->func);
3921         ql_free_rx_buffers(qdev);
3922
3923         return status;
3924 }
3925
3926 static int ql_adapter_up(struct ql_adapter *qdev)
3927 {
3928         int err = 0;
3929
3930         err = ql_adapter_initialize(qdev);
3931         if (err) {
3932                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3933                 goto err_init;
3934         }
3935         set_bit(QL_ADAPTER_UP, &qdev->flags);
3936         ql_alloc_rx_buffers(qdev);
3937         /* If the port is initialized and the
3938          * link is up the turn on the carrier.
3939          */
3940         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3941                         (ql_read32(qdev, STS) & qdev->port_link_up))
3942                 ql_link_on(qdev);
3943         /* Restore rx mode. */
3944         clear_bit(QL_ALLMULTI, &qdev->flags);
3945         clear_bit(QL_PROMISCUOUS, &qdev->flags);
3946         qlge_set_multicast_list(qdev->ndev);
3947
3948         /* Restore vlan setting. */
3949         qlge_restore_vlan(qdev);
3950
3951         ql_enable_interrupts(qdev);
3952         ql_enable_all_completion_interrupts(qdev);
3953         netif_tx_start_all_queues(qdev->ndev);
3954
3955         return 0;
3956 err_init:
3957         ql_adapter_reset(qdev);
3958         return err;
3959 }
3960
3961 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3962 {
3963         ql_free_mem_resources(qdev);
3964         ql_free_irq(qdev);
3965 }
3966
3967 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3968 {
3969         int status = 0;
3970
3971         if (ql_alloc_mem_resources(qdev)) {
3972                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
3973                 return -ENOMEM;
3974         }
3975         status = ql_request_irq(qdev);
3976         return status;
3977 }
3978
3979 static int qlge_close(struct net_device *ndev)
3980 {
3981         struct ql_adapter *qdev = netdev_priv(ndev);
3982
3983         /* If we hit pci_channel_io_perm_failure
3984          * failure condition, then we already
3985          * brought the adapter down.
3986          */
3987         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3988                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3989                 clear_bit(QL_EEH_FATAL, &qdev->flags);
3990                 return 0;
3991         }
3992
3993         /*
3994          * Wait for device to recover from a reset.
3995          * (Rarely happens, but possible.)
3996          */
3997         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3998                 msleep(1);
3999         ql_adapter_down(qdev);
4000         ql_release_adapter_resources(qdev);
4001         return 0;
4002 }
4003
4004 static int ql_configure_rings(struct ql_adapter *qdev)
4005 {
4006         int i;
4007         struct rx_ring *rx_ring;
4008         struct tx_ring *tx_ring;
4009         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4010         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4011                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4012
4013         qdev->lbq_buf_order = get_order(lbq_buf_len);
4014
4015         /* In a perfect world we have one RSS ring for each CPU
4016          * and each has it's own vector.  To do that we ask for
4017          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4018          * vector count to what we actually get.  We then
4019          * allocate an RSS ring for each.
4020          * Essentially, we are doing min(cpu_count, msix_vector_count).
4021          */
4022         qdev->intr_count = cpu_cnt;
4023         ql_enable_msix(qdev);
4024         /* Adjust the RSS ring count to the actual vector count. */
4025         qdev->rss_ring_count = qdev->intr_count;
4026         qdev->tx_ring_count = cpu_cnt;
4027         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4028
4029         for (i = 0; i < qdev->tx_ring_count; i++) {
4030                 tx_ring = &qdev->tx_ring[i];
4031                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4032                 tx_ring->qdev = qdev;
4033                 tx_ring->wq_id = i;
4034                 tx_ring->wq_len = qdev->tx_ring_size;
4035                 tx_ring->wq_size =
4036                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4037
4038                 /*
4039                  * The completion queue ID for the tx rings start
4040                  * immediately after the rss rings.
4041                  */
4042                 tx_ring->cq_id = qdev->rss_ring_count + i;
4043         }
4044
4045         for (i = 0; i < qdev->rx_ring_count; i++) {
4046                 rx_ring = &qdev->rx_ring[i];
4047                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4048                 rx_ring->qdev = qdev;
4049                 rx_ring->cq_id = i;
4050                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4051                 if (i < qdev->rss_ring_count) {
4052                         /*
4053                          * Inbound (RSS) queues.
4054                          */
4055                         rx_ring->cq_len = qdev->rx_ring_size;
4056                         rx_ring->cq_size =
4057                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4058                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4059                         rx_ring->lbq_size =
4060                             rx_ring->lbq_len * sizeof(__le64);
4061                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4062                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4063                         rx_ring->sbq_size =
4064                             rx_ring->sbq_len * sizeof(__le64);
4065                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4066                         rx_ring->type = RX_Q;
4067                 } else {
4068                         /*
4069                          * Outbound queue handles outbound completions only.
4070                          */
4071                         /* outbound cq is same size as tx_ring it services. */
4072                         rx_ring->cq_len = qdev->tx_ring_size;
4073                         rx_ring->cq_size =
4074                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4075                         rx_ring->lbq_len = 0;
4076                         rx_ring->lbq_size = 0;
4077                         rx_ring->lbq_buf_size = 0;
4078                         rx_ring->sbq_len = 0;
4079                         rx_ring->sbq_size = 0;
4080                         rx_ring->sbq_buf_size = 0;
4081                         rx_ring->type = TX_Q;
4082                 }
4083         }
4084         return 0;
4085 }
4086
4087 static int qlge_open(struct net_device *ndev)
4088 {
4089         int err = 0;
4090         struct ql_adapter *qdev = netdev_priv(ndev);
4091
4092         err = ql_adapter_reset(qdev);
4093         if (err)
4094                 return err;
4095
4096         err = ql_configure_rings(qdev);
4097         if (err)
4098                 return err;
4099
4100         err = ql_get_adapter_resources(qdev);
4101         if (err)
4102                 goto error_up;
4103
4104         err = ql_adapter_up(qdev);
4105         if (err)
4106                 goto error_up;
4107
4108         return err;
4109
4110 error_up:
4111         ql_release_adapter_resources(qdev);
4112         return err;
4113 }
4114
4115 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4116 {
4117         struct rx_ring *rx_ring;
4118         int i, status;
4119         u32 lbq_buf_len;
4120
4121         /* Wait for an outstanding reset to complete. */
4122         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4123                 int i = 3;
4124                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4125                         netif_err(qdev, ifup, qdev->ndev,
4126                                   "Waiting for adapter UP...\n");
4127                         ssleep(1);
4128                 }
4129
4130                 if (!i) {
4131                         netif_err(qdev, ifup, qdev->ndev,
4132                                   "Timed out waiting for adapter UP\n");
4133                         return -ETIMEDOUT;
4134                 }
4135         }
4136
4137         status = ql_adapter_down(qdev);
4138         if (status)
4139                 goto error;
4140
4141         /* Get the new rx buffer size. */
4142         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4143                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4144         qdev->lbq_buf_order = get_order(lbq_buf_len);
4145
4146         for (i = 0; i < qdev->rss_ring_count; i++) {
4147                 rx_ring = &qdev->rx_ring[i];
4148                 /* Set the new size. */
4149                 rx_ring->lbq_buf_size = lbq_buf_len;
4150         }
4151
4152         status = ql_adapter_up(qdev);
4153         if (status)
4154                 goto error;
4155
4156         return status;
4157 error:
4158         netif_alert(qdev, ifup, qdev->ndev,
4159                     "Driver up/down cycle failed, closing device.\n");
4160         set_bit(QL_ADAPTER_UP, &qdev->flags);
4161         dev_close(qdev->ndev);
4162         return status;
4163 }
4164
4165 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4166 {
4167         struct ql_adapter *qdev = netdev_priv(ndev);
4168         int status;
4169
4170         if (ndev->mtu == 1500 && new_mtu == 9000) {
4171                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4172         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4173                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4174         } else
4175                 return -EINVAL;
4176
4177         queue_delayed_work(qdev->workqueue,
4178                         &qdev->mpi_port_cfg_work, 3*HZ);
4179
4180         ndev->mtu = new_mtu;
4181
4182         if (!netif_running(qdev->ndev)) {
4183                 return 0;
4184         }
4185
4186         status = ql_change_rx_buffers(qdev);
4187         if (status) {
4188                 netif_err(qdev, ifup, qdev->ndev,
4189                           "Changing MTU failed.\n");
4190         }
4191
4192         return status;
4193 }
4194
4195 static struct net_device_stats *qlge_get_stats(struct net_device
4196                                                *ndev)
4197 {
4198         struct ql_adapter *qdev = netdev_priv(ndev);
4199         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4200         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4201         unsigned long pkts, mcast, dropped, errors, bytes;
4202         int i;
4203
4204         /* Get RX stats. */
4205         pkts = mcast = dropped = errors = bytes = 0;
4206         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4207                         pkts += rx_ring->rx_packets;
4208                         bytes += rx_ring->rx_bytes;
4209                         dropped += rx_ring->rx_dropped;
4210                         errors += rx_ring->rx_errors;
4211                         mcast += rx_ring->rx_multicast;
4212         }
4213         ndev->stats.rx_packets = pkts;
4214         ndev->stats.rx_bytes = bytes;
4215         ndev->stats.rx_dropped = dropped;
4216         ndev->stats.rx_errors = errors;
4217         ndev->stats.multicast = mcast;
4218
4219         /* Get TX stats. */
4220         pkts = errors = bytes = 0;
4221         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4222                         pkts += tx_ring->tx_packets;
4223                         bytes += tx_ring->tx_bytes;
4224                         errors += tx_ring->tx_errors;
4225         }
4226         ndev->stats.tx_packets = pkts;
4227         ndev->stats.tx_bytes = bytes;
4228         ndev->stats.tx_errors = errors;
4229         return &ndev->stats;
4230 }
4231
4232 static void qlge_set_multicast_list(struct net_device *ndev)
4233 {
4234         struct ql_adapter *qdev = netdev_priv(ndev);
4235         struct netdev_hw_addr *ha;
4236         int i, status;
4237
4238         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4239         if (status)
4240                 return;
4241         /*
4242          * Set or clear promiscuous mode if a
4243          * transition is taking place.
4244          */
4245         if (ndev->flags & IFF_PROMISC) {
4246                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4247                         if (ql_set_routing_reg
4248                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4249                                 netif_err(qdev, hw, qdev->ndev,
4250                                           "Failed to set promiscuous mode.\n");
4251                         } else {
4252                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4253                         }
4254                 }
4255         } else {
4256                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4257                         if (ql_set_routing_reg
4258                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4259                                 netif_err(qdev, hw, qdev->ndev,
4260                                           "Failed to clear promiscuous mode.\n");
4261                         } else {
4262                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4263                         }
4264                 }
4265         }
4266
4267         /*
4268          * Set or clear all multicast mode if a
4269          * transition is taking place.
4270          */
4271         if ((ndev->flags & IFF_ALLMULTI) ||
4272             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4273                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4274                         if (ql_set_routing_reg
4275                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4276                                 netif_err(qdev, hw, qdev->ndev,
4277                                           "Failed to set all-multi mode.\n");
4278                         } else {
4279                                 set_bit(QL_ALLMULTI, &qdev->flags);
4280                         }
4281                 }
4282         } else {
4283                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4284                         if (ql_set_routing_reg
4285                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4286                                 netif_err(qdev, hw, qdev->ndev,
4287                                           "Failed to clear all-multi mode.\n");
4288                         } else {
4289                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4290                         }
4291                 }
4292         }
4293
4294         if (!netdev_mc_empty(ndev)) {
4295                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4296                 if (status)
4297                         goto exit;
4298                 i = 0;
4299                 netdev_for_each_mc_addr(ha, ndev) {
4300                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4301                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4302                                 netif_err(qdev, hw, qdev->ndev,
4303                                           "Failed to loadmulticast address.\n");
4304                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4305                                 goto exit;
4306                         }
4307                         i++;
4308                 }
4309                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4310                 if (ql_set_routing_reg
4311                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4312                         netif_err(qdev, hw, qdev->ndev,
4313                                   "Failed to set multicast match mode.\n");
4314                 } else {
4315                         set_bit(QL_ALLMULTI, &qdev->flags);
4316                 }
4317         }
4318 exit:
4319         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4320 }
4321
4322 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4323 {
4324         struct ql_adapter *qdev = netdev_priv(ndev);
4325         struct sockaddr *addr = p;
4326         int status;
4327
4328         if (!is_valid_ether_addr(addr->sa_data))
4329                 return -EADDRNOTAVAIL;
4330         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4331         /* Update local copy of current mac address. */
4332         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4333
4334         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4335         if (status)
4336                 return status;
4337         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4338                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4339         if (status)
4340                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4341         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4342         return status;
4343 }
4344
4345 static void qlge_tx_timeout(struct net_device *ndev)
4346 {
4347         struct ql_adapter *qdev = netdev_priv(ndev);
4348         ql_queue_asic_error(qdev);
4349 }
4350
4351 static void ql_asic_reset_work(struct work_struct *work)
4352 {
4353         struct ql_adapter *qdev =
4354             container_of(work, struct ql_adapter, asic_reset_work.work);
4355         int status;
4356         rtnl_lock();
4357         status = ql_adapter_down(qdev);
4358         if (status)
4359                 goto error;
4360
4361         status = ql_adapter_up(qdev);
4362         if (status)
4363                 goto error;
4364
4365         /* Restore rx mode. */
4366         clear_bit(QL_ALLMULTI, &qdev->flags);
4367         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4368         qlge_set_multicast_list(qdev->ndev);
4369
4370         rtnl_unlock();
4371         return;
4372 error:
4373         netif_alert(qdev, ifup, qdev->ndev,
4374                     "Driver up/down cycle failed, closing device\n");
4375
4376         set_bit(QL_ADAPTER_UP, &qdev->flags);
4377         dev_close(qdev->ndev);
4378         rtnl_unlock();
4379 }
4380
4381 static const struct nic_operations qla8012_nic_ops = {
4382         .get_flash              = ql_get_8012_flash_params,
4383         .port_initialize        = ql_8012_port_initialize,
4384 };
4385
4386 static const struct nic_operations qla8000_nic_ops = {
4387         .get_flash              = ql_get_8000_flash_params,
4388         .port_initialize        = ql_8000_port_initialize,
4389 };
4390
4391 /* Find the pcie function number for the other NIC
4392  * on this chip.  Since both NIC functions share a
4393  * common firmware we have the lowest enabled function
4394  * do any common work.  Examples would be resetting
4395  * after a fatal firmware error, or doing a firmware
4396  * coredump.
4397  */
4398 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4399 {
4400         int status = 0;
4401         u32 temp;
4402         u32 nic_func1, nic_func2;
4403
4404         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4405                         &temp);
4406         if (status)
4407                 return status;
4408
4409         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4410                         MPI_TEST_NIC_FUNC_MASK);
4411         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4412                         MPI_TEST_NIC_FUNC_MASK);
4413
4414         if (qdev->func == nic_func1)
4415                 qdev->alt_func = nic_func2;
4416         else if (qdev->func == nic_func2)
4417                 qdev->alt_func = nic_func1;
4418         else
4419                 status = -EIO;
4420
4421         return status;
4422 }
4423
4424 static int ql_get_board_info(struct ql_adapter *qdev)
4425 {
4426         int status;
4427         qdev->func =
4428             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4429         if (qdev->func > 3)
4430                 return -EIO;
4431
4432         status = ql_get_alt_pcie_func(qdev);
4433         if (status)
4434                 return status;
4435
4436         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4437         if (qdev->port) {
4438                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4439                 qdev->port_link_up = STS_PL1;
4440                 qdev->port_init = STS_PI1;
4441                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4442                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4443         } else {
4444                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4445                 qdev->port_link_up = STS_PL0;
4446                 qdev->port_init = STS_PI0;
4447                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4448                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4449         }
4450         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4451         qdev->device_id = qdev->pdev->device;
4452         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4453                 qdev->nic_ops = &qla8012_nic_ops;
4454         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4455                 qdev->nic_ops = &qla8000_nic_ops;
4456         return status;
4457 }
4458
4459 static void ql_release_all(struct pci_dev *pdev)
4460 {
4461         struct net_device *ndev = pci_get_drvdata(pdev);
4462         struct ql_adapter *qdev = netdev_priv(ndev);
4463
4464         if (qdev->workqueue) {
4465                 destroy_workqueue(qdev->workqueue);
4466                 qdev->workqueue = NULL;
4467         }
4468
4469         if (qdev->reg_base)
4470                 iounmap(qdev->reg_base);
4471         if (qdev->doorbell_area)
4472                 iounmap(qdev->doorbell_area);
4473         vfree(qdev->mpi_coredump);
4474         pci_release_regions(pdev);
4475         pci_set_drvdata(pdev, NULL);
4476 }
4477
4478 static int __devinit ql_init_device(struct pci_dev *pdev,
4479                                     struct net_device *ndev, int cards_found)
4480 {
4481         struct ql_adapter *qdev = netdev_priv(ndev);
4482         int err = 0;
4483
4484         memset((void *)qdev, 0, sizeof(*qdev));
4485         err = pci_enable_device(pdev);
4486         if (err) {
4487                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4488                 return err;
4489         }
4490
4491         qdev->ndev = ndev;
4492         qdev->pdev = pdev;
4493         pci_set_drvdata(pdev, ndev);
4494
4495         /* Set PCIe read request size */
4496         err = pcie_set_readrq(pdev, 4096);
4497         if (err) {
4498                 dev_err(&pdev->dev, "Set readrq failed.\n");
4499                 goto err_out1;
4500         }
4501
4502         err = pci_request_regions(pdev, DRV_NAME);
4503         if (err) {
4504                 dev_err(&pdev->dev, "PCI region request failed.\n");
4505                 return err;
4506         }
4507
4508         pci_set_master(pdev);
4509         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4510                 set_bit(QL_DMA64, &qdev->flags);
4511                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4512         } else {
4513                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4514                 if (!err)
4515                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4516         }
4517
4518         if (err) {
4519                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4520                 goto err_out2;
4521         }
4522
4523         /* Set PCIe reset type for EEH to fundamental. */
4524         pdev->needs_freset = 1;
4525         pci_save_state(pdev);
4526         qdev->reg_base =
4527             ioremap_nocache(pci_resource_start(pdev, 1),
4528                             pci_resource_len(pdev, 1));
4529         if (!qdev->reg_base) {
4530                 dev_err(&pdev->dev, "Register mapping failed.\n");
4531                 err = -ENOMEM;
4532                 goto err_out2;
4533         }
4534
4535         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4536         qdev->doorbell_area =
4537             ioremap_nocache(pci_resource_start(pdev, 3),
4538                             pci_resource_len(pdev, 3));
4539         if (!qdev->doorbell_area) {
4540                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4541                 err = -ENOMEM;
4542                 goto err_out2;
4543         }
4544
4545         err = ql_get_board_info(qdev);
4546         if (err) {
4547                 dev_err(&pdev->dev, "Register access failed.\n");
4548                 err = -EIO;
4549                 goto err_out2;
4550         }
4551         qdev->msg_enable = netif_msg_init(debug, default_msg);
4552         spin_lock_init(&qdev->hw_lock);
4553         spin_lock_init(&qdev->stats_lock);
4554
4555         if (qlge_mpi_coredump) {
4556                 qdev->mpi_coredump =
4557                         vmalloc(sizeof(struct ql_mpi_coredump));
4558                 if (qdev->mpi_coredump == NULL) {
4559                         dev_err(&pdev->dev, "Coredump alloc failed.\n");
4560                         err = -ENOMEM;
4561                         goto err_out2;
4562                 }
4563                 if (qlge_force_coredump)
4564                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4565         }
4566         /* make sure the EEPROM is good */
4567         err = qdev->nic_ops->get_flash(qdev);
4568         if (err) {
4569                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4570                 goto err_out2;
4571         }
4572
4573         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4574         /* Keep local copy of current mac address. */
4575         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4576
4577         /* Set up the default ring sizes. */
4578         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4579         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4580
4581         /* Set up the coalescing parameters. */
4582         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4583         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4584         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4585         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4586
4587         /*
4588          * Set up the operating parameters.
4589          */
4590         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4591         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4592         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4593         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4594         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4595         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4596         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4597         init_completion(&qdev->ide_completion);
4598         mutex_init(&qdev->mpi_mutex);
4599
4600         if (!cards_found) {
4601                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4602                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4603                          DRV_NAME, DRV_VERSION);
4604         }
4605         return 0;
4606 err_out2:
4607         ql_release_all(pdev);
4608 err_out1:
4609         pci_disable_device(pdev);
4610         return err;
4611 }
4612
4613 static const struct net_device_ops qlge_netdev_ops = {
4614         .ndo_open               = qlge_open,
4615         .ndo_stop               = qlge_close,
4616         .ndo_start_xmit         = qlge_send,
4617         .ndo_change_mtu         = qlge_change_mtu,
4618         .ndo_get_stats          = qlge_get_stats,
4619         .ndo_set_rx_mode        = qlge_set_multicast_list,
4620         .ndo_set_mac_address    = qlge_set_mac_address,
4621         .ndo_validate_addr      = eth_validate_addr,
4622         .ndo_tx_timeout         = qlge_tx_timeout,
4623         .ndo_fix_features       = qlge_fix_features,
4624         .ndo_set_features       = qlge_set_features,
4625         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4626         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4627 };
4628
4629 static void ql_timer(unsigned long data)
4630 {
4631         struct ql_adapter *qdev = (struct ql_adapter *)data;
4632         u32 var = 0;
4633
4634         var = ql_read32(qdev, STS);
4635         if (pci_channel_offline(qdev->pdev)) {
4636                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4637                 return;
4638         }
4639
4640         mod_timer(&qdev->timer, jiffies + (5*HZ));
4641 }
4642
4643 static int __devinit qlge_probe(struct pci_dev *pdev,
4644                                 const struct pci_device_id *pci_entry)
4645 {
4646         struct net_device *ndev = NULL;
4647         struct ql_adapter *qdev = NULL;
4648         static int cards_found = 0;
4649         int err = 0;
4650
4651         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4652                         min(MAX_CPUS, (int)num_online_cpus()));
4653         if (!ndev)
4654                 return -ENOMEM;
4655
4656         err = ql_init_device(pdev, ndev, cards_found);
4657         if (err < 0) {
4658                 free_netdev(ndev);
4659                 return err;
4660         }
4661
4662         qdev = netdev_priv(ndev);
4663         SET_NETDEV_DEV(ndev, &pdev->dev);
4664         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4665                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4666                 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4667         ndev->features = ndev->hw_features |
4668                 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4669
4670         if (test_bit(QL_DMA64, &qdev->flags))
4671                 ndev->features |= NETIF_F_HIGHDMA;
4672
4673         /*
4674          * Set up net_device structure.
4675          */
4676         ndev->tx_queue_len = qdev->tx_ring_size;
4677         ndev->irq = pdev->irq;
4678
4679         ndev->netdev_ops = &qlge_netdev_ops;
4680         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4681         ndev->watchdog_timeo = 10 * HZ;
4682
4683         err = register_netdev(ndev);
4684         if (err) {
4685                 dev_err(&pdev->dev, "net device registration failed.\n");
4686                 ql_release_all(pdev);
4687                 pci_disable_device(pdev);
4688                 return err;
4689         }
4690         /* Start up the timer to trigger EEH if
4691          * the bus goes dead
4692          */
4693         init_timer_deferrable(&qdev->timer);
4694         qdev->timer.data = (unsigned long)qdev;
4695         qdev->timer.function = ql_timer;
4696         qdev->timer.expires = jiffies + (5*HZ);
4697         add_timer(&qdev->timer);
4698         ql_link_off(qdev);
4699         ql_display_dev_info(ndev);
4700         atomic_set(&qdev->lb_count, 0);
4701         cards_found++;
4702         return 0;
4703 }
4704
4705 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4706 {
4707         return qlge_send(skb, ndev);
4708 }
4709
4710 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4711 {
4712         return ql_clean_inbound_rx_ring(rx_ring, budget);
4713 }
4714
4715 static void __devexit qlge_remove(struct pci_dev *pdev)
4716 {
4717         struct net_device *ndev = pci_get_drvdata(pdev);
4718         struct ql_adapter *qdev = netdev_priv(ndev);
4719         del_timer_sync(&qdev->timer);
4720         ql_cancel_all_work_sync(qdev);
4721         unregister_netdev(ndev);
4722         ql_release_all(pdev);
4723         pci_disable_device(pdev);
4724         free_netdev(ndev);
4725 }
4726
4727 /* Clean up resources without touching hardware. */
4728 static void ql_eeh_close(struct net_device *ndev)
4729 {
4730         int i;
4731         struct ql_adapter *qdev = netdev_priv(ndev);
4732
4733         if (netif_carrier_ok(ndev)) {
4734                 netif_carrier_off(ndev);
4735                 netif_stop_queue(ndev);
4736         }
4737
4738         /* Disabling the timer */
4739         del_timer_sync(&qdev->timer);
4740         ql_cancel_all_work_sync(qdev);
4741
4742         for (i = 0; i < qdev->rss_ring_count; i++)
4743                 netif_napi_del(&qdev->rx_ring[i].napi);
4744
4745         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4746         ql_tx_ring_clean(qdev);
4747         ql_free_rx_buffers(qdev);
4748         ql_release_adapter_resources(qdev);
4749 }
4750
4751 /*
4752  * This callback is called by the PCI subsystem whenever
4753  * a PCI bus error is detected.
4754  */
4755 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4756                                                enum pci_channel_state state)
4757 {
4758         struct net_device *ndev = pci_get_drvdata(pdev);
4759         struct ql_adapter *qdev = netdev_priv(ndev);
4760
4761         switch (state) {
4762         case pci_channel_io_normal:
4763                 return PCI_ERS_RESULT_CAN_RECOVER;
4764         case pci_channel_io_frozen:
4765                 netif_device_detach(ndev);
4766                 if (netif_running(ndev))
4767                         ql_eeh_close(ndev);
4768                 pci_disable_device(pdev);
4769                 return PCI_ERS_RESULT_NEED_RESET;
4770         case pci_channel_io_perm_failure:
4771                 dev_err(&pdev->dev,
4772                         "%s: pci_channel_io_perm_failure.\n", __func__);
4773                 ql_eeh_close(ndev);
4774                 set_bit(QL_EEH_FATAL, &qdev->flags);
4775                 return PCI_ERS_RESULT_DISCONNECT;
4776         }
4777
4778         /* Request a slot reset. */
4779         return PCI_ERS_RESULT_NEED_RESET;
4780 }
4781
4782 /*
4783  * This callback is called after the PCI buss has been reset.
4784  * Basically, this tries to restart the card from scratch.
4785  * This is a shortened version of the device probe/discovery code,
4786  * it resembles the first-half of the () routine.
4787  */
4788 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4789 {
4790         struct net_device *ndev = pci_get_drvdata(pdev);
4791         struct ql_adapter *qdev = netdev_priv(ndev);
4792
4793         pdev->error_state = pci_channel_io_normal;
4794
4795         pci_restore_state(pdev);
4796         if (pci_enable_device(pdev)) {
4797                 netif_err(qdev, ifup, qdev->ndev,
4798                           "Cannot re-enable PCI device after reset.\n");
4799                 return PCI_ERS_RESULT_DISCONNECT;
4800         }
4801         pci_set_master(pdev);
4802
4803         if (ql_adapter_reset(qdev)) {
4804                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4805                 set_bit(QL_EEH_FATAL, &qdev->flags);
4806                 return PCI_ERS_RESULT_DISCONNECT;
4807         }
4808
4809         return PCI_ERS_RESULT_RECOVERED;
4810 }
4811
4812 static void qlge_io_resume(struct pci_dev *pdev)
4813 {
4814         struct net_device *ndev = pci_get_drvdata(pdev);
4815         struct ql_adapter *qdev = netdev_priv(ndev);
4816         int err = 0;
4817
4818         if (netif_running(ndev)) {
4819                 err = qlge_open(ndev);
4820                 if (err) {
4821                         netif_err(qdev, ifup, qdev->ndev,
4822                                   "Device initialization failed after reset.\n");
4823                         return;
4824                 }
4825         } else {
4826                 netif_err(qdev, ifup, qdev->ndev,
4827                           "Device was not running prior to EEH.\n");
4828         }
4829         mod_timer(&qdev->timer, jiffies + (5*HZ));
4830         netif_device_attach(ndev);
4831 }
4832
4833 static struct pci_error_handlers qlge_err_handler = {
4834         .error_detected = qlge_io_error_detected,
4835         .slot_reset = qlge_io_slot_reset,
4836         .resume = qlge_io_resume,
4837 };
4838
4839 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4840 {
4841         struct net_device *ndev = pci_get_drvdata(pdev);
4842         struct ql_adapter *qdev = netdev_priv(ndev);
4843         int err;
4844
4845         netif_device_detach(ndev);
4846         del_timer_sync(&qdev->timer);
4847
4848         if (netif_running(ndev)) {
4849                 err = ql_adapter_down(qdev);
4850                 if (!err)
4851                         return err;
4852         }
4853
4854         ql_wol(qdev);
4855         err = pci_save_state(pdev);
4856         if (err)
4857                 return err;
4858
4859         pci_disable_device(pdev);
4860
4861         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4862
4863         return 0;
4864 }
4865
4866 #ifdef CONFIG_PM
4867 static int qlge_resume(struct pci_dev *pdev)
4868 {
4869         struct net_device *ndev = pci_get_drvdata(pdev);
4870         struct ql_adapter *qdev = netdev_priv(ndev);
4871         int err;
4872
4873         pci_set_power_state(pdev, PCI_D0);
4874         pci_restore_state(pdev);
4875         err = pci_enable_device(pdev);
4876         if (err) {
4877                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4878                 return err;
4879         }
4880         pci_set_master(pdev);
4881
4882         pci_enable_wake(pdev, PCI_D3hot, 0);
4883         pci_enable_wake(pdev, PCI_D3cold, 0);
4884
4885         if (netif_running(ndev)) {
4886                 err = ql_adapter_up(qdev);
4887                 if (err)
4888                         return err;
4889         }
4890
4891         mod_timer(&qdev->timer, jiffies + (5*HZ));
4892         netif_device_attach(ndev);
4893
4894         return 0;
4895 }
4896 #endif /* CONFIG_PM */
4897
4898 static void qlge_shutdown(struct pci_dev *pdev)
4899 {
4900         qlge_suspend(pdev, PMSG_SUSPEND);
4901 }
4902
4903 static struct pci_driver qlge_driver = {
4904         .name = DRV_NAME,
4905         .id_table = qlge_pci_tbl,
4906         .probe = qlge_probe,
4907         .remove = __devexit_p(qlge_remove),
4908 #ifdef CONFIG_PM
4909         .suspend = qlge_suspend,
4910         .resume = qlge_resume,
4911 #endif
4912         .shutdown = qlge_shutdown,
4913         .err_handler = &qlge_err_handler
4914 };
4915
4916 static int __init qlge_init_module(void)
4917 {
4918         return pci_register_driver(&qlge_driver);
4919 }
4920
4921 static void __exit qlge_exit(void)
4922 {
4923         pci_unregister_driver(&qlge_driver);
4924 }
4925
4926 module_init(qlge_init_module);
4927 module_exit(qlge_exit);