]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
Merge remote-tracking branch 'net-next/master'
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *);
100 static void qlge_set_multicast_list(struct net_device *);
101 static int ql_adapter_down(struct ql_adapter *);
102 static int ql_adapter_up(struct ql_adapter *);
103
104 /* This hardware semaphore causes exclusive access to
105  * resources shared between the NIC driver, MPI firmware,
106  * FCOE firmware and the FC driver.
107  */
108 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
109 {
110         u32 sem_bits = 0;
111
112         switch (sem_mask) {
113         case SEM_XGMAC0_MASK:
114                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
115                 break;
116         case SEM_XGMAC1_MASK:
117                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
118                 break;
119         case SEM_ICB_MASK:
120                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
121                 break;
122         case SEM_MAC_ADDR_MASK:
123                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
124                 break;
125         case SEM_FLASH_MASK:
126                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
127                 break;
128         case SEM_PROBE_MASK:
129                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
130                 break;
131         case SEM_RT_IDX_MASK:
132                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
133                 break;
134         case SEM_PROC_REG_MASK:
135                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
136                 break;
137         default:
138                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
139                 return -EINVAL;
140         }
141
142         ql_write32(qdev, SEM, sem_bits | sem_mask);
143         return !(ql_read32(qdev, SEM) & sem_bits);
144 }
145
146 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 {
148         unsigned int wait_count = 30;
149         do {
150                 if (!ql_sem_trylock(qdev, sem_mask))
151                         return 0;
152                 udelay(100);
153         } while (--wait_count);
154         return -ETIMEDOUT;
155 }
156
157 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 {
159         ql_write32(qdev, SEM, sem_mask);
160         ql_read32(qdev, SEM);   /* flush */
161 }
162
163 /* This function waits for a specific bit to come ready
164  * in a given register.  It is used mostly by the initialize
165  * process, but is also used in kernel thread API such as
166  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167  */
168 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
169 {
170         u32 temp;
171         int count = UDELAY_COUNT;
172
173         while (count) {
174                 temp = ql_read32(qdev, reg);
175
176                 /* check for errors */
177                 if (temp & err_bit) {
178                         netif_alert(qdev, probe, qdev->ndev,
179                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
180                                     reg, temp);
181                         return -EIO;
182                 } else if (temp & bit)
183                         return 0;
184                 udelay(UDELAY_DELAY);
185                 count--;
186         }
187         netif_alert(qdev, probe, qdev->ndev,
188                     "Timed out waiting for reg %x to come ready.\n", reg);
189         return -ETIMEDOUT;
190 }
191
192 /* The CFG register is used to download TX and RX control blocks
193  * to the chip. This function waits for an operation to complete.
194  */
195 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 {
197         int count = UDELAY_COUNT;
198         u32 temp;
199
200         while (count) {
201                 temp = ql_read32(qdev, CFG);
202                 if (temp & CFG_LE)
203                         return -EIO;
204                 if (!(temp & bit))
205                         return 0;
206                 udelay(UDELAY_DELAY);
207                 count--;
208         }
209         return -ETIMEDOUT;
210 }
211
212
213 /* Used to issue init control blocks to hw. Maps control block,
214  * sets address, triggers download, waits for completion.
215  */
216 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
217                  u16 q_id)
218 {
219         u64 map;
220         int status = 0;
221         int direction;
222         u32 mask;
223         u32 value;
224
225         direction =
226             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
227             PCI_DMA_FROMDEVICE;
228
229         map = pci_map_single(qdev->pdev, ptr, size, direction);
230         if (pci_dma_mapping_error(qdev->pdev, map)) {
231                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
232                 return -ENOMEM;
233         }
234
235         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
236         if (status)
237                 return status;
238
239         status = ql_wait_cfg(qdev, bit);
240         if (status) {
241                 netif_err(qdev, ifup, qdev->ndev,
242                           "Timed out waiting for CFG to come ready.\n");
243                 goto exit;
244         }
245
246         ql_write32(qdev, ICB_L, (u32) map);
247         ql_write32(qdev, ICB_H, (u32) (map >> 32));
248
249         mask = CFG_Q_MASK | (bit << 16);
250         value = bit | (q_id << CFG_Q_SHIFT);
251         ql_write32(qdev, CFG, (mask | value));
252
253         /*
254          * Wait for the bit to clear after signaling hw.
255          */
256         status = ql_wait_cfg(qdev, bit);
257 exit:
258         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
259         pci_unmap_single(qdev->pdev, map, size, direction);
260         return status;
261 }
262
263 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
264 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
265                         u32 *value)
266 {
267         u32 offset = 0;
268         int status;
269
270         switch (type) {
271         case MAC_ADDR_TYPE_MULTI_MAC:
272         case MAC_ADDR_TYPE_CAM_MAC:
273                 {
274                         status =
275                             ql_wait_reg_rdy(qdev,
276                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
277                         if (status)
278                                 goto exit;
279                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
280                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
281                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
282                         status =
283                             ql_wait_reg_rdy(qdev,
284                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
285                         if (status)
286                                 goto exit;
287                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
288                         status =
289                             ql_wait_reg_rdy(qdev,
290                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
291                         if (status)
292                                 goto exit;
293                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
294                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
295                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
296                         status =
297                             ql_wait_reg_rdy(qdev,
298                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
299                         if (status)
300                                 goto exit;
301                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
302                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
303                                 status =
304                                     ql_wait_reg_rdy(qdev,
305                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
306                                 if (status)
307                                         goto exit;
308                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
309                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
310                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
311                                 status =
312                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
313                                                     MAC_ADDR_MR, 0);
314                                 if (status)
315                                         goto exit;
316                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
317                         }
318                         break;
319                 }
320         case MAC_ADDR_TYPE_VLAN:
321         case MAC_ADDR_TYPE_MULTI_FLTR:
322         default:
323                 netif_crit(qdev, ifup, qdev->ndev,
324                            "Address type %d not yet supported.\n", type);
325                 status = -EPERM;
326         }
327 exit:
328         return status;
329 }
330
331 /* Set up a MAC, multicast or VLAN address for the
332  * inbound frame matching.
333  */
334 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
335                                u16 index)
336 {
337         u32 offset = 0;
338         int status = 0;
339
340         switch (type) {
341         case MAC_ADDR_TYPE_MULTI_MAC:
342                 {
343                         u32 upper = (addr[0] << 8) | addr[1];
344                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
345                                         (addr[4] << 8) | (addr[5]);
346
347                         status =
348                                 ql_wait_reg_rdy(qdev,
349                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350                         if (status)
351                                 goto exit;
352                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
353                                 (index << MAC_ADDR_IDX_SHIFT) |
354                                 type | MAC_ADDR_E);
355                         ql_write32(qdev, MAC_ADDR_DATA, lower);
356                         status =
357                                 ql_wait_reg_rdy(qdev,
358                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359                         if (status)
360                                 goto exit;
361                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
362                                 (index << MAC_ADDR_IDX_SHIFT) |
363                                 type | MAC_ADDR_E);
364
365                         ql_write32(qdev, MAC_ADDR_DATA, upper);
366                         status =
367                                 ql_wait_reg_rdy(qdev,
368                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
369                         if (status)
370                                 goto exit;
371                         break;
372                 }
373         case MAC_ADDR_TYPE_CAM_MAC:
374                 {
375                         u32 cam_output;
376                         u32 upper = (addr[0] << 8) | addr[1];
377                         u32 lower =
378                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
379                             (addr[5]);
380                         status =
381                             ql_wait_reg_rdy(qdev,
382                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
383                         if (status)
384                                 goto exit;
385                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
386                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
387                                    type);       /* type */
388                         ql_write32(qdev, MAC_ADDR_DATA, lower);
389                         status =
390                             ql_wait_reg_rdy(qdev,
391                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
392                         if (status)
393                                 goto exit;
394                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
395                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
396                                    type);       /* type */
397                         ql_write32(qdev, MAC_ADDR_DATA, upper);
398                         status =
399                             ql_wait_reg_rdy(qdev,
400                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
401                         if (status)
402                                 goto exit;
403                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
404                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
405                                    type);       /* type */
406                         /* This field should also include the queue id
407                            and possibly the function id.  Right now we hardcode
408                            the route field to NIC core.
409                          */
410                         cam_output = (CAM_OUT_ROUTE_NIC |
411                                       (qdev->
412                                        func << CAM_OUT_FUNC_SHIFT) |
413                                         (0 << CAM_OUT_CQ_ID_SHIFT));
414                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415                                 cam_output |= CAM_OUT_RV;
416                         /* route to NIC core */
417                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
418                         break;
419                 }
420         case MAC_ADDR_TYPE_VLAN:
421                 {
422                         u32 enable_bit = *((u32 *) &addr[0]);
423                         /* For VLAN, the addr actually holds a bit that
424                          * either enables or disables the vlan id we are
425                          * addressing. It's either MAC_ADDR_E on or off.
426                          * That's bit-27 we're talking about.
427                          */
428                         status =
429                             ql_wait_reg_rdy(qdev,
430                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
431                         if (status)
432                                 goto exit;
433                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
434                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
435                                    type |       /* type */
436                                    enable_bit); /* enable/disable */
437                         break;
438                 }
439         case MAC_ADDR_TYPE_MULTI_FLTR:
440         default:
441                 netif_crit(qdev, ifup, qdev->ndev,
442                            "Address type %d not yet supported.\n", type);
443                 status = -EPERM;
444         }
445 exit:
446         return status;
447 }
448
449 /* Set or clear MAC address in hardware. We sometimes
450  * have to clear it to prevent wrong frame routing
451  * especially in a bonding environment.
452  */
453 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
454 {
455         int status;
456         char zero_mac_addr[ETH_ALEN];
457         char *addr;
458
459         if (set) {
460                 addr = &qdev->current_mac_addr[0];
461                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
462                              "Set Mac addr %pM\n", addr);
463         } else {
464                 memset(zero_mac_addr, 0, ETH_ALEN);
465                 addr = &zero_mac_addr[0];
466                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
467                              "Clearing MAC address\n");
468         }
469         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
470         if (status)
471                 return status;
472         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
473                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
474         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
475         if (status)
476                 netif_err(qdev, ifup, qdev->ndev,
477                           "Failed to init mac address.\n");
478         return status;
479 }
480
481 void ql_link_on(struct ql_adapter *qdev)
482 {
483         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
484         netif_carrier_on(qdev->ndev);
485         ql_set_mac_addr(qdev, 1);
486 }
487
488 void ql_link_off(struct ql_adapter *qdev)
489 {
490         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
491         netif_carrier_off(qdev->ndev);
492         ql_set_mac_addr(qdev, 0);
493 }
494
495 /* Get a specific frame routing value from the CAM.
496  * Used for debug and reg dump.
497  */
498 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
499 {
500         int status = 0;
501
502         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
503         if (status)
504                 goto exit;
505
506         ql_write32(qdev, RT_IDX,
507                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
508         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
509         if (status)
510                 goto exit;
511         *value = ql_read32(qdev, RT_DATA);
512 exit:
513         return status;
514 }
515
516 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
517  * to route different frame types to various inbound queues.  We send broadcast/
518  * multicast/error frames to the default queue for slow handling,
519  * and CAM hit/RSS frames to the fast handling queues.
520  */
521 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
522                               int enable)
523 {
524         int status = -EINVAL; /* Return error if no mask match. */
525         u32 value = 0;
526
527         switch (mask) {
528         case RT_IDX_CAM_HIT:
529                 {
530                         value = RT_IDX_DST_CAM_Q |      /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
543                 {
544                         value = RT_IDX_DST_DFLT_Q |     /* dest */
545                             RT_IDX_TYPE_NICQ |  /* type */
546                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
547                         break;
548                 }
549         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550                 {
551                         value = RT_IDX_DST_DFLT_Q | /* dest */
552                                 RT_IDX_TYPE_NICQ | /* type */
553                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
554                                 RT_IDX_IDX_SHIFT); /* index */
555                         break;
556                 }
557         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558                 {
559                         value = RT_IDX_DST_DFLT_Q | /* dest */
560                                 RT_IDX_TYPE_NICQ | /* type */
561                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
562                                 RT_IDX_IDX_SHIFT); /* index */
563                         break;
564                 }
565         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
566                 {
567                         value = RT_IDX_DST_DFLT_Q |     /* dest */
568                             RT_IDX_TYPE_NICQ |  /* type */
569                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
570                         break;
571                 }
572         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
573                 {
574                         value = RT_IDX_DST_DFLT_Q |     /* dest */
575                             RT_IDX_TYPE_NICQ |  /* type */
576                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
577                         break;
578                 }
579         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
580                 {
581                         value = RT_IDX_DST_DFLT_Q |     /* dest */
582                             RT_IDX_TYPE_NICQ |  /* type */
583                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
584                         break;
585                 }
586         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
587                 {
588                         value = RT_IDX_DST_RSS |        /* dest */
589                             RT_IDX_TYPE_NICQ |  /* type */
590                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
591                         break;
592                 }
593         case 0:         /* Clear the E-bit on an entry. */
594                 {
595                         value = RT_IDX_DST_DFLT_Q |     /* dest */
596                             RT_IDX_TYPE_NICQ |  /* type */
597                             (index << RT_IDX_IDX_SHIFT);/* index */
598                         break;
599                 }
600         default:
601                 netif_err(qdev, ifup, qdev->ndev,
602                           "Mask type %d not yet supported.\n", mask);
603                 status = -EPERM;
604                 goto exit;
605         }
606
607         if (value) {
608                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
609                 if (status)
610                         goto exit;
611                 value |= (enable ? RT_IDX_E : 0);
612                 ql_write32(qdev, RT_IDX, value);
613                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
614         }
615 exit:
616         return status;
617 }
618
619 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 {
621         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
622 }
623
624 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 {
626         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
627 }
628
629 /* If we're running with multiple MSI-X vectors then we enable on the fly.
630  * Otherwise, we may have multiple outstanding workers and don't want to
631  * enable until the last one finishes. In this case, the irq_cnt gets
632  * incremented every time we queue a worker and decremented every time
633  * a worker finishes.  Once it hits zero we enable the interrupt.
634  */
635 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
636 {
637         u32 var = 0;
638         unsigned long hw_flags = 0;
639         struct intr_context *ctx = qdev->intr_context + intr;
640
641         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
642                 /* Always enable if we're MSIX multi interrupts and
643                  * it's not the default (zeroeth) interrupt.
644                  */
645                 ql_write32(qdev, INTR_EN,
646                            ctx->intr_en_mask);
647                 var = ql_read32(qdev, STS);
648                 return var;
649         }
650
651         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
652         if (atomic_dec_and_test(&ctx->irq_cnt)) {
653                 ql_write32(qdev, INTR_EN,
654                            ctx->intr_en_mask);
655                 var = ql_read32(qdev, STS);
656         }
657         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
658         return var;
659 }
660
661 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
662 {
663         u32 var = 0;
664         struct intr_context *ctx;
665
666         /* HW disables for us if we're MSIX multi interrupts and
667          * it's not the default (zeroeth) interrupt.
668          */
669         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
670                 return 0;
671
672         ctx = qdev->intr_context + intr;
673         spin_lock(&qdev->hw_lock);
674         if (!atomic_read(&ctx->irq_cnt)) {
675                 ql_write32(qdev, INTR_EN,
676                 ctx->intr_dis_mask);
677                 var = ql_read32(qdev, STS);
678         }
679         atomic_inc(&ctx->irq_cnt);
680         spin_unlock(&qdev->hw_lock);
681         return var;
682 }
683
684 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
685 {
686         int i;
687         for (i = 0; i < qdev->intr_count; i++) {
688                 /* The enable call does a atomic_dec_and_test
689                  * and enables only if the result is zero.
690                  * So we precharge it here.
691                  */
692                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
693                         i == 0))
694                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
695                 ql_enable_completion_interrupt(qdev, i);
696         }
697
698 }
699
700 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
701 {
702         int status, i;
703         u16 csum = 0;
704         __le16 *flash = (__le16 *)&qdev->flash;
705
706         status = strncmp((char *)&qdev->flash, str, 4);
707         if (status) {
708                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
709                 return  status;
710         }
711
712         for (i = 0; i < size; i++)
713                 csum += le16_to_cpu(*flash++);
714
715         if (csum)
716                 netif_err(qdev, ifup, qdev->ndev,
717                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
718
719         return csum;
720 }
721
722 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
723 {
724         int status = 0;
725         /* wait for reg to come ready */
726         status = ql_wait_reg_rdy(qdev,
727                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
728         if (status)
729                 goto exit;
730         /* set up for reg read */
731         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
732         /* wait for reg to come ready */
733         status = ql_wait_reg_rdy(qdev,
734                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
735         if (status)
736                 goto exit;
737          /* This data is stored on flash as an array of
738          * __le32.  Since ql_read32() returns cpu endian
739          * we need to swap it back.
740          */
741         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
742 exit:
743         return status;
744 }
745
746 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
747 {
748         u32 i, size;
749         int status;
750         __le32 *p = (__le32 *)&qdev->flash;
751         u32 offset;
752         u8 mac_addr[6];
753
754         /* Get flash offset for function and adjust
755          * for dword access.
756          */
757         if (!qdev->port)
758                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
759         else
760                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761
762         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
763                 return -ETIMEDOUT;
764
765         size = sizeof(struct flash_params_8000) / sizeof(u32);
766         for (i = 0; i < size; i++, p++) {
767                 status = ql_read_flash_word(qdev, i+offset, p);
768                 if (status) {
769                         netif_err(qdev, ifup, qdev->ndev,
770                                   "Error reading flash.\n");
771                         goto exit;
772                 }
773         }
774
775         status = ql_validate_flash(qdev,
776                         sizeof(struct flash_params_8000) / sizeof(u16),
777                         "8000");
778         if (status) {
779                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
780                 status = -EINVAL;
781                 goto exit;
782         }
783
784         /* Extract either manufacturer or BOFM modified
785          * MAC address.
786          */
787         if (qdev->flash.flash_params_8000.data_type1 == 2)
788                 memcpy(mac_addr,
789                         qdev->flash.flash_params_8000.mac_addr1,
790                         qdev->ndev->addr_len);
791         else
792                 memcpy(mac_addr,
793                         qdev->flash.flash_params_8000.mac_addr,
794                         qdev->ndev->addr_len);
795
796         if (!is_valid_ether_addr(mac_addr)) {
797                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
798                 status = -EINVAL;
799                 goto exit;
800         }
801
802         memcpy(qdev->ndev->dev_addr,
803                 mac_addr,
804                 qdev->ndev->addr_len);
805
806 exit:
807         ql_sem_unlock(qdev, SEM_FLASH_MASK);
808         return status;
809 }
810
811 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
812 {
813         int i;
814         int status;
815         __le32 *p = (__le32 *)&qdev->flash;
816         u32 offset = 0;
817         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818
819         /* Second function's parameters follow the first
820          * function's.
821          */
822         if (qdev->port)
823                 offset = size;
824
825         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
826                 return -ETIMEDOUT;
827
828         for (i = 0; i < size; i++, p++) {
829                 status = ql_read_flash_word(qdev, i+offset, p);
830                 if (status) {
831                         netif_err(qdev, ifup, qdev->ndev,
832                                   "Error reading flash.\n");
833                         goto exit;
834                 }
835
836         }
837
838         status = ql_validate_flash(qdev,
839                         sizeof(struct flash_params_8012) / sizeof(u16),
840                         "8012");
841         if (status) {
842                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
843                 status = -EINVAL;
844                 goto exit;
845         }
846
847         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
848                 status = -EINVAL;
849                 goto exit;
850         }
851
852         memcpy(qdev->ndev->dev_addr,
853                 qdev->flash.flash_params_8012.mac_addr,
854                 qdev->ndev->addr_len);
855
856 exit:
857         ql_sem_unlock(qdev, SEM_FLASH_MASK);
858         return status;
859 }
860
861 /* xgmac register are located behind the xgmac_addr and xgmac_data
862  * register pair.  Each read/write requires us to wait for the ready
863  * bit before reading/writing the data.
864  */
865 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
866 {
867         int status;
868         /* wait for reg to come ready */
869         status = ql_wait_reg_rdy(qdev,
870                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
871         if (status)
872                 return status;
873         /* write the data to the data reg */
874         ql_write32(qdev, XGMAC_DATA, data);
875         /* trigger the write */
876         ql_write32(qdev, XGMAC_ADDR, reg);
877         return status;
878 }
879
880 /* xgmac register are located behind the xgmac_addr and xgmac_data
881  * register pair.  Each read/write requires us to wait for the ready
882  * bit before reading/writing the data.
883  */
884 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
885 {
886         int status = 0;
887         /* wait for reg to come ready */
888         status = ql_wait_reg_rdy(qdev,
889                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
890         if (status)
891                 goto exit;
892         /* set up for reg read */
893         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
894         /* wait for reg to come ready */
895         status = ql_wait_reg_rdy(qdev,
896                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
897         if (status)
898                 goto exit;
899         /* get the data */
900         *data = ql_read32(qdev, XGMAC_DATA);
901 exit:
902         return status;
903 }
904
905 /* This is used for reading the 64-bit statistics regs. */
906 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
907 {
908         int status = 0;
909         u32 hi = 0;
910         u32 lo = 0;
911
912         status = ql_read_xgmac_reg(qdev, reg, &lo);
913         if (status)
914                 goto exit;
915
916         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
917         if (status)
918                 goto exit;
919
920         *data = (u64) lo | ((u64) hi << 32);
921
922 exit:
923         return status;
924 }
925
926 static int ql_8000_port_initialize(struct ql_adapter *qdev)
927 {
928         int status;
929         /*
930          * Get MPI firmware version for driver banner
931          * and ethool info.
932          */
933         status = ql_mb_about_fw(qdev);
934         if (status)
935                 goto exit;
936         status = ql_mb_get_fw_state(qdev);
937         if (status)
938                 goto exit;
939         /* Wake up a worker to get/set the TX/RX frame sizes. */
940         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
941 exit:
942         return status;
943 }
944
945 /* Take the MAC Core out of reset.
946  * Enable statistics counting.
947  * Take the transmitter/receiver out of reset.
948  * This functionality may be done in the MPI firmware at a
949  * later date.
950  */
951 static int ql_8012_port_initialize(struct ql_adapter *qdev)
952 {
953         int status = 0;
954         u32 data;
955
956         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
957                 /* Another function has the semaphore, so
958                  * wait for the port init bit to come ready.
959                  */
960                 netif_info(qdev, link, qdev->ndev,
961                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
962                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
963                 if (status) {
964                         netif_crit(qdev, link, qdev->ndev,
965                                    "Port initialize timed out.\n");
966                 }
967                 return status;
968         }
969
970         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
971         /* Set the core reset. */
972         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
973         if (status)
974                 goto end;
975         data |= GLOBAL_CFG_RESET;
976         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
977         if (status)
978                 goto end;
979
980         /* Clear the core reset and turn on jumbo for receiver. */
981         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
982         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
983         data |= GLOBAL_CFG_TX_STAT_EN;
984         data |= GLOBAL_CFG_RX_STAT_EN;
985         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
986         if (status)
987                 goto end;
988
989         /* Enable transmitter, and clear it's reset. */
990         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
991         if (status)
992                 goto end;
993         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
994         data |= TX_CFG_EN;      /* Enable the transmitter. */
995         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
996         if (status)
997                 goto end;
998
999         /* Enable receiver and clear it's reset. */
1000         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1001         if (status)
1002                 goto end;
1003         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1004         data |= RX_CFG_EN;      /* Enable the receiver. */
1005         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1006         if (status)
1007                 goto end;
1008
1009         /* Turn on jumbo. */
1010         status =
1011             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1012         if (status)
1013                 goto end;
1014         status =
1015             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1016         if (status)
1017                 goto end;
1018
1019         /* Signal to the world that the port is enabled.        */
1020         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1021 end:
1022         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1023         return status;
1024 }
1025
1026 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 {
1028         return PAGE_SIZE << qdev->lbq_buf_order;
1029 }
1030
1031 /* Get the next large buffer. */
1032 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 {
1034         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1035         rx_ring->lbq_curr_idx++;
1036         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1037                 rx_ring->lbq_curr_idx = 0;
1038         rx_ring->lbq_free_cnt++;
1039         return lbq_desc;
1040 }
1041
1042 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1043                 struct rx_ring *rx_ring)
1044 {
1045         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046
1047         pci_dma_sync_single_for_cpu(qdev->pdev,
1048                                         dma_unmap_addr(lbq_desc, mapaddr),
1049                                     rx_ring->lbq_buf_size,
1050                                         PCI_DMA_FROMDEVICE);
1051
1052         /* If it's the last chunk of our master page then
1053          * we unmap it.
1054          */
1055         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1056                                         == ql_lbq_block_size(qdev))
1057                 pci_unmap_page(qdev->pdev,
1058                                 lbq_desc->p.pg_chunk.map,
1059                                 ql_lbq_block_size(qdev),
1060                                 PCI_DMA_FROMDEVICE);
1061         return lbq_desc;
1062 }
1063
1064 /* Get the next small buffer. */
1065 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 {
1067         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1068         rx_ring->sbq_curr_idx++;
1069         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1070                 rx_ring->sbq_curr_idx = 0;
1071         rx_ring->sbq_free_cnt++;
1072         return sbq_desc;
1073 }
1074
1075 /* Update an rx ring index. */
1076 static void ql_update_cq(struct rx_ring *rx_ring)
1077 {
1078         rx_ring->cnsmr_idx++;
1079         rx_ring->curr_entry++;
1080         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1081                 rx_ring->cnsmr_idx = 0;
1082                 rx_ring->curr_entry = rx_ring->cq_base;
1083         }
1084 }
1085
1086 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 {
1088         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1089 }
1090
1091 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1092                                                 struct bq_desc *lbq_desc)
1093 {
1094         if (!rx_ring->pg_chunk.page) {
1095                 u64 map;
1096                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1097                                                 GFP_ATOMIC,
1098                                                 qdev->lbq_buf_order);
1099                 if (unlikely(!rx_ring->pg_chunk.page)) {
1100                         netif_err(qdev, drv, qdev->ndev,
1101                                   "page allocation failed.\n");
1102                         return -ENOMEM;
1103                 }
1104                 rx_ring->pg_chunk.offset = 0;
1105                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1106                                         0, ql_lbq_block_size(qdev),
1107                                         PCI_DMA_FROMDEVICE);
1108                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1109                         __free_pages(rx_ring->pg_chunk.page,
1110                                         qdev->lbq_buf_order);
1111                         rx_ring->pg_chunk.page = NULL;
1112                         netif_err(qdev, drv, qdev->ndev,
1113                                   "PCI mapping failed.\n");
1114                         return -ENOMEM;
1115                 }
1116                 rx_ring->pg_chunk.map = map;
1117                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1118         }
1119
1120         /* Copy the current master pg_chunk info
1121          * to the current descriptor.
1122          */
1123         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1124
1125         /* Adjust the master page chunk for next
1126          * buffer get.
1127          */
1128         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1129         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1130                 rx_ring->pg_chunk.page = NULL;
1131                 lbq_desc->p.pg_chunk.last_flag = 1;
1132         } else {
1133                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1134                 get_page(rx_ring->pg_chunk.page);
1135                 lbq_desc->p.pg_chunk.last_flag = 0;
1136         }
1137         return 0;
1138 }
1139 /* Process (refill) a large buffer queue. */
1140 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1141 {
1142         u32 clean_idx = rx_ring->lbq_clean_idx;
1143         u32 start_idx = clean_idx;
1144         struct bq_desc *lbq_desc;
1145         u64 map;
1146         int i;
1147
1148         while (rx_ring->lbq_free_cnt > 32) {
1149                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1150                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1151                                      "lbq: try cleaning clean_idx = %d.\n",
1152                                      clean_idx);
1153                         lbq_desc = &rx_ring->lbq[clean_idx];
1154                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1155                                 rx_ring->lbq_clean_idx = clean_idx;
1156                                 netif_err(qdev, ifup, qdev->ndev,
1157                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1158                                                 i, clean_idx);
1159                                 return;
1160                         }
1161
1162                         map = lbq_desc->p.pg_chunk.map +
1163                                 lbq_desc->p.pg_chunk.offset;
1164                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1165                         dma_unmap_len_set(lbq_desc, maplen,
1166                                         rx_ring->lbq_buf_size);
1167                                 *lbq_desc->addr = cpu_to_le64(map);
1168
1169                         pci_dma_sync_single_for_device(qdev->pdev, map,
1170                                                 rx_ring->lbq_buf_size,
1171                                                 PCI_DMA_FROMDEVICE);
1172                         clean_idx++;
1173                         if (clean_idx == rx_ring->lbq_len)
1174                                 clean_idx = 0;
1175                 }
1176
1177                 rx_ring->lbq_clean_idx = clean_idx;
1178                 rx_ring->lbq_prod_idx += 16;
1179                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1180                         rx_ring->lbq_prod_idx = 0;
1181                 rx_ring->lbq_free_cnt -= 16;
1182         }
1183
1184         if (start_idx != clean_idx) {
1185                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1186                              "lbq: updating prod idx = %d.\n",
1187                              rx_ring->lbq_prod_idx);
1188                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1189                                 rx_ring->lbq_prod_idx_db_reg);
1190         }
1191 }
1192
1193 /* Process (refill) a small buffer queue. */
1194 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1195 {
1196         u32 clean_idx = rx_ring->sbq_clean_idx;
1197         u32 start_idx = clean_idx;
1198         struct bq_desc *sbq_desc;
1199         u64 map;
1200         int i;
1201
1202         while (rx_ring->sbq_free_cnt > 16) {
1203                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1204                         sbq_desc = &rx_ring->sbq[clean_idx];
1205                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1206                                      "sbq: try cleaning clean_idx = %d.\n",
1207                                      clean_idx);
1208                         if (sbq_desc->p.skb == NULL) {
1209                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1210                                              qdev->ndev,
1211                                              "sbq: getting new skb for index %d.\n",
1212                                              sbq_desc->index);
1213                                 sbq_desc->p.skb =
1214                                     netdev_alloc_skb(qdev->ndev,
1215                                                      SMALL_BUFFER_SIZE);
1216                                 if (sbq_desc->p.skb == NULL) {
1217                                         rx_ring->sbq_clean_idx = clean_idx;
1218                                         return;
1219                                 }
1220                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1221                                 map = pci_map_single(qdev->pdev,
1222                                                      sbq_desc->p.skb->data,
1223                                                      rx_ring->sbq_buf_size,
1224                                                      PCI_DMA_FROMDEVICE);
1225                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1226                                         netif_err(qdev, ifup, qdev->ndev,
1227                                                   "PCI mapping failed.\n");
1228                                         rx_ring->sbq_clean_idx = clean_idx;
1229                                         dev_kfree_skb_any(sbq_desc->p.skb);
1230                                         sbq_desc->p.skb = NULL;
1231                                         return;
1232                                 }
1233                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1234                                 dma_unmap_len_set(sbq_desc, maplen,
1235                                                   rx_ring->sbq_buf_size);
1236                                 *sbq_desc->addr = cpu_to_le64(map);
1237                         }
1238
1239                         clean_idx++;
1240                         if (clean_idx == rx_ring->sbq_len)
1241                                 clean_idx = 0;
1242                 }
1243                 rx_ring->sbq_clean_idx = clean_idx;
1244                 rx_ring->sbq_prod_idx += 16;
1245                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1246                         rx_ring->sbq_prod_idx = 0;
1247                 rx_ring->sbq_free_cnt -= 16;
1248         }
1249
1250         if (start_idx != clean_idx) {
1251                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1252                              "sbq: updating prod idx = %d.\n",
1253                              rx_ring->sbq_prod_idx);
1254                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1255                                 rx_ring->sbq_prod_idx_db_reg);
1256         }
1257 }
1258
1259 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1260                                     struct rx_ring *rx_ring)
1261 {
1262         ql_update_sbq(qdev, rx_ring);
1263         ql_update_lbq(qdev, rx_ring);
1264 }
1265
1266 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1267  * fails at some stage, or from the interrupt when a tx completes.
1268  */
1269 static void ql_unmap_send(struct ql_adapter *qdev,
1270                           struct tx_ring_desc *tx_ring_desc, int mapped)
1271 {
1272         int i;
1273         for (i = 0; i < mapped; i++) {
1274                 if (i == 0 || (i == 7 && mapped > 7)) {
1275                         /*
1276                          * Unmap the skb->data area, or the
1277                          * external sglist (AKA the Outbound
1278                          * Address List (OAL)).
1279                          * If its the zeroeth element, then it's
1280                          * the skb->data area.  If it's the 7th
1281                          * element and there is more than 6 frags,
1282                          * then its an OAL.
1283                          */
1284                         if (i == 7) {
1285                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1286                                              qdev->ndev,
1287                                              "unmapping OAL area.\n");
1288                         }
1289                         pci_unmap_single(qdev->pdev,
1290                                          dma_unmap_addr(&tx_ring_desc->map[i],
1291                                                         mapaddr),
1292                                          dma_unmap_len(&tx_ring_desc->map[i],
1293                                                        maplen),
1294                                          PCI_DMA_TODEVICE);
1295                 } else {
1296                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1297                                      "unmapping frag %d.\n", i);
1298                         pci_unmap_page(qdev->pdev,
1299                                        dma_unmap_addr(&tx_ring_desc->map[i],
1300                                                       mapaddr),
1301                                        dma_unmap_len(&tx_ring_desc->map[i],
1302                                                      maplen), PCI_DMA_TODEVICE);
1303                 }
1304         }
1305
1306 }
1307
1308 /* Map the buffers for this transmit.  This will return
1309  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1310  */
1311 static int ql_map_send(struct ql_adapter *qdev,
1312                        struct ob_mac_iocb_req *mac_iocb_ptr,
1313                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1314 {
1315         int len = skb_headlen(skb);
1316         dma_addr_t map;
1317         int frag_idx, err, map_idx = 0;
1318         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1319         int frag_cnt = skb_shinfo(skb)->nr_frags;
1320
1321         if (frag_cnt) {
1322                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1323                              "frag_cnt = %d.\n", frag_cnt);
1324         }
1325         /*
1326          * Map the skb buffer first.
1327          */
1328         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1329
1330         err = pci_dma_mapping_error(qdev->pdev, map);
1331         if (err) {
1332                 netif_err(qdev, tx_queued, qdev->ndev,
1333                           "PCI mapping failed with error: %d\n", err);
1334
1335                 return NETDEV_TX_BUSY;
1336         }
1337
1338         tbd->len = cpu_to_le32(len);
1339         tbd->addr = cpu_to_le64(map);
1340         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1341         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1342         map_idx++;
1343
1344         /*
1345          * This loop fills the remainder of the 8 address descriptors
1346          * in the IOCB.  If there are more than 7 fragments, then the
1347          * eighth address desc will point to an external list (OAL).
1348          * When this happens, the remainder of the frags will be stored
1349          * in this list.
1350          */
1351         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1352                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1353                 tbd++;
1354                 if (frag_idx == 6 && frag_cnt > 7) {
1355                         /* Let's tack on an sglist.
1356                          * Our control block will now
1357                          * look like this:
1358                          * iocb->seg[0] = skb->data
1359                          * iocb->seg[1] = frag[0]
1360                          * iocb->seg[2] = frag[1]
1361                          * iocb->seg[3] = frag[2]
1362                          * iocb->seg[4] = frag[3]
1363                          * iocb->seg[5] = frag[4]
1364                          * iocb->seg[6] = frag[5]
1365                          * iocb->seg[7] = ptr to OAL (external sglist)
1366                          * oal->seg[0] = frag[6]
1367                          * oal->seg[1] = frag[7]
1368                          * oal->seg[2] = frag[8]
1369                          * oal->seg[3] = frag[9]
1370                          * oal->seg[4] = frag[10]
1371                          *      etc...
1372                          */
1373                         /* Tack on the OAL in the eighth segment of IOCB. */
1374                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1375                                              sizeof(struct oal),
1376                                              PCI_DMA_TODEVICE);
1377                         err = pci_dma_mapping_error(qdev->pdev, map);
1378                         if (err) {
1379                                 netif_err(qdev, tx_queued, qdev->ndev,
1380                                           "PCI mapping outbound address list with error: %d\n",
1381                                           err);
1382                                 goto map_error;
1383                         }
1384
1385                         tbd->addr = cpu_to_le64(map);
1386                         /*
1387                          * The length is the number of fragments
1388                          * that remain to be mapped times the length
1389                          * of our sglist (OAL).
1390                          */
1391                         tbd->len =
1392                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1393                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1394                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1395                                            map);
1396                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1397                                           sizeof(struct oal));
1398                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1399                         map_idx++;
1400                 }
1401
1402                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1403                                        DMA_TO_DEVICE);
1404
1405                 err = dma_mapping_error(&qdev->pdev->dev, map);
1406                 if (err) {
1407                         netif_err(qdev, tx_queued, qdev->ndev,
1408                                   "PCI mapping frags failed with error: %d.\n",
1409                                   err);
1410                         goto map_error;
1411                 }
1412
1413                 tbd->addr = cpu_to_le64(map);
1414                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1415                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1416                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1417                                   skb_frag_size(frag));
1418
1419         }
1420         /* Save the number of segments we've mapped. */
1421         tx_ring_desc->map_cnt = map_idx;
1422         /* Terminate the last segment. */
1423         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1424         return NETDEV_TX_OK;
1425
1426 map_error:
1427         /*
1428          * If the first frag mapping failed, then i will be zero.
1429          * This causes the unmap of the skb->data area.  Otherwise
1430          * we pass in the number of frags that mapped successfully
1431          * so they can be umapped.
1432          */
1433         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1434         return NETDEV_TX_BUSY;
1435 }
1436
1437 /* Categorizing receive firmware frame errors */
1438 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1439                                  struct rx_ring *rx_ring)
1440 {
1441         struct nic_stats *stats = &qdev->nic_stats;
1442
1443         stats->rx_err_count++;
1444         rx_ring->rx_errors++;
1445
1446         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1447         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1448                 stats->rx_code_err++;
1449                 break;
1450         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1451                 stats->rx_oversize_err++;
1452                 break;
1453         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1454                 stats->rx_undersize_err++;
1455                 break;
1456         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1457                 stats->rx_preamble_err++;
1458                 break;
1459         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1460                 stats->rx_frame_len_err++;
1461                 break;
1462         case IB_MAC_IOCB_RSP_ERR_CRC:
1463                 stats->rx_crc_err++;
1464         default:
1465                 break;
1466         }
1467 }
1468
1469 /**
1470  * ql_update_mac_hdr_len - helper routine to update the mac header length
1471  * based on vlan tags if present
1472  */
1473 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1474                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1475                                   void *page, size_t *len)
1476 {
1477         u16 *tags;
1478
1479         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1480                 return;
1481         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1482                 tags = (u16 *)page;
1483                 /* Look for stacked vlan tags in ethertype field */
1484                 if (tags[6] == ETH_P_8021Q &&
1485                     tags[8] == ETH_P_8021Q)
1486                         *len += 2 * VLAN_HLEN;
1487                 else
1488                         *len += VLAN_HLEN;
1489         }
1490 }
1491
1492 /* Process an inbound completion from an rx ring. */
1493 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1494                                         struct rx_ring *rx_ring,
1495                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1496                                         u32 length,
1497                                         u16 vlan_id)
1498 {
1499         struct sk_buff *skb;
1500         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1501         struct napi_struct *napi = &rx_ring->napi;
1502
1503         /* Frame error, so drop the packet. */
1504         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1506                 put_page(lbq_desc->p.pg_chunk.page);
1507                 return;
1508         }
1509         napi->dev = qdev->ndev;
1510
1511         skb = napi_get_frags(napi);
1512         if (!skb) {
1513                 netif_err(qdev, drv, qdev->ndev,
1514                           "Couldn't get an skb, exiting.\n");
1515                 rx_ring->rx_dropped++;
1516                 put_page(lbq_desc->p.pg_chunk.page);
1517                 return;
1518         }
1519         prefetch(lbq_desc->p.pg_chunk.va);
1520         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1521                              lbq_desc->p.pg_chunk.page,
1522                              lbq_desc->p.pg_chunk.offset,
1523                              length);
1524
1525         skb->len += length;
1526         skb->data_len += length;
1527         skb->truesize += length;
1528         skb_shinfo(skb)->nr_frags++;
1529
1530         rx_ring->rx_packets++;
1531         rx_ring->rx_bytes += length;
1532         skb->ip_summed = CHECKSUM_UNNECESSARY;
1533         skb_record_rx_queue(skb, rx_ring->cq_id);
1534         if (vlan_id != 0xffff)
1535                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1536         napi_gro_frags(napi);
1537 }
1538
1539 /* Process an inbound completion from an rx ring. */
1540 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1541                                         struct rx_ring *rx_ring,
1542                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1543                                         u32 length,
1544                                         u16 vlan_id)
1545 {
1546         struct net_device *ndev = qdev->ndev;
1547         struct sk_buff *skb = NULL;
1548         void *addr;
1549         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1550         struct napi_struct *napi = &rx_ring->napi;
1551         size_t hlen = ETH_HLEN;
1552
1553         skb = netdev_alloc_skb(ndev, length);
1554         if (!skb) {
1555                 rx_ring->rx_dropped++;
1556                 put_page(lbq_desc->p.pg_chunk.page);
1557                 return;
1558         }
1559
1560         addr = lbq_desc->p.pg_chunk.va;
1561         prefetch(addr);
1562
1563         /* Frame error, so drop the packet. */
1564         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1565                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1566                 goto err_out;
1567         }
1568
1569         /* Update the MAC header length*/
1570         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1571
1572         /* The max framesize filter on this chip is set higher than
1573          * MTU since FCoE uses 2k frames.
1574          */
1575         if (skb->len > ndev->mtu + hlen) {
1576                 netif_err(qdev, drv, qdev->ndev,
1577                           "Segment too small, dropping.\n");
1578                 rx_ring->rx_dropped++;
1579                 goto err_out;
1580         }
1581         memcpy(skb_put(skb, hlen), addr, hlen);
1582         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1583                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1584                      length);
1585         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1586                                 lbq_desc->p.pg_chunk.offset + hlen,
1587                                 length - hlen);
1588         skb->len += length - hlen;
1589         skb->data_len += length - hlen;
1590         skb->truesize += length - hlen;
1591
1592         rx_ring->rx_packets++;
1593         rx_ring->rx_bytes += skb->len;
1594         skb->protocol = eth_type_trans(skb, ndev);
1595         skb_checksum_none_assert(skb);
1596
1597         if ((ndev->features & NETIF_F_RXCSUM) &&
1598                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1599                 /* TCP frame. */
1600                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1601                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1602                                      "TCP checksum done!\n");
1603                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1604                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1605                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1606                         /* Unfragmented ipv4 UDP frame. */
1607                         struct iphdr *iph =
1608                                 (struct iphdr *)((u8 *)addr + hlen);
1609                         if (!(iph->frag_off &
1610                                 htons(IP_MF|IP_OFFSET))) {
1611                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1612                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1613                                              qdev->ndev,
1614                                              "UDP checksum done!\n");
1615                         }
1616                 }
1617         }
1618
1619         skb_record_rx_queue(skb, rx_ring->cq_id);
1620         if (vlan_id != 0xffff)
1621                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1622         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1623                 napi_gro_receive(napi, skb);
1624         else
1625                 netif_receive_skb(skb);
1626         return;
1627 err_out:
1628         dev_kfree_skb_any(skb);
1629         put_page(lbq_desc->p.pg_chunk.page);
1630 }
1631
1632 /* Process an inbound completion from an rx ring. */
1633 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1634                                         struct rx_ring *rx_ring,
1635                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1636                                         u32 length,
1637                                         u16 vlan_id)
1638 {
1639         struct net_device *ndev = qdev->ndev;
1640         struct sk_buff *skb = NULL;
1641         struct sk_buff *new_skb = NULL;
1642         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1643
1644         skb = sbq_desc->p.skb;
1645         /* Allocate new_skb and copy */
1646         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1647         if (new_skb == NULL) {
1648                 rx_ring->rx_dropped++;
1649                 return;
1650         }
1651         skb_reserve(new_skb, NET_IP_ALIGN);
1652         memcpy(skb_put(new_skb, length), skb->data, length);
1653         skb = new_skb;
1654
1655         /* Frame error, so drop the packet. */
1656         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1657                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1658                 dev_kfree_skb_any(skb);
1659                 return;
1660         }
1661
1662         /* loopback self test for ethtool */
1663         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1664                 ql_check_lb_frame(qdev, skb);
1665                 dev_kfree_skb_any(skb);
1666                 return;
1667         }
1668
1669         /* The max framesize filter on this chip is set higher than
1670          * MTU since FCoE uses 2k frames.
1671          */
1672         if (skb->len > ndev->mtu + ETH_HLEN) {
1673                 dev_kfree_skb_any(skb);
1674                 rx_ring->rx_dropped++;
1675                 return;
1676         }
1677
1678         prefetch(skb->data);
1679         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1680                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1681                              "%s Multicast.\n",
1682                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1683                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1684                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1685                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1686                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1687                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1688         }
1689         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1690                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691                              "Promiscuous Packet.\n");
1692
1693         rx_ring->rx_packets++;
1694         rx_ring->rx_bytes += skb->len;
1695         skb->protocol = eth_type_trans(skb, ndev);
1696         skb_checksum_none_assert(skb);
1697
1698         /* If rx checksum is on, and there are no
1699          * csum or frame errors.
1700          */
1701         if ((ndev->features & NETIF_F_RXCSUM) &&
1702                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1703                 /* TCP frame. */
1704                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1705                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1706                                      "TCP checksum done!\n");
1707                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1708                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1709                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1710                         /* Unfragmented ipv4 UDP frame. */
1711                         struct iphdr *iph = (struct iphdr *) skb->data;
1712                         if (!(iph->frag_off &
1713                                 htons(IP_MF|IP_OFFSET))) {
1714                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1715                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1716                                              qdev->ndev,
1717                                              "UDP checksum done!\n");
1718                         }
1719                 }
1720         }
1721
1722         skb_record_rx_queue(skb, rx_ring->cq_id);
1723         if (vlan_id != 0xffff)
1724                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1725         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1726                 napi_gro_receive(&rx_ring->napi, skb);
1727         else
1728                 netif_receive_skb(skb);
1729 }
1730
1731 static void ql_realign_skb(struct sk_buff *skb, int len)
1732 {
1733         void *temp_addr = skb->data;
1734
1735         /* Undo the skb_reserve(skb,32) we did before
1736          * giving to hardware, and realign data on
1737          * a 2-byte boundary.
1738          */
1739         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1740         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1741         skb_copy_to_linear_data(skb, temp_addr,
1742                 (unsigned int)len);
1743 }
1744
1745 /*
1746  * This function builds an skb for the given inbound
1747  * completion.  It will be rewritten for readability in the near
1748  * future, but for not it works well.
1749  */
1750 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1751                                        struct rx_ring *rx_ring,
1752                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1753 {
1754         struct bq_desc *lbq_desc;
1755         struct bq_desc *sbq_desc;
1756         struct sk_buff *skb = NULL;
1757         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1758         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1759         size_t hlen = ETH_HLEN;
1760
1761         /*
1762          * Handle the header buffer if present.
1763          */
1764         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1765             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1766                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1767                              "Header of %d bytes in small buffer.\n", hdr_len);
1768                 /*
1769                  * Headers fit nicely into a small buffer.
1770                  */
1771                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1772                 pci_unmap_single(qdev->pdev,
1773                                 dma_unmap_addr(sbq_desc, mapaddr),
1774                                 dma_unmap_len(sbq_desc, maplen),
1775                                 PCI_DMA_FROMDEVICE);
1776                 skb = sbq_desc->p.skb;
1777                 ql_realign_skb(skb, hdr_len);
1778                 skb_put(skb, hdr_len);
1779                 sbq_desc->p.skb = NULL;
1780         }
1781
1782         /*
1783          * Handle the data buffer(s).
1784          */
1785         if (unlikely(!length)) {        /* Is there data too? */
1786                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1787                              "No Data buffer in this packet.\n");
1788                 return skb;
1789         }
1790
1791         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1792                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1793                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1794                                      "Headers in small, data of %d bytes in small, combine them.\n",
1795                                      length);
1796                         /*
1797                          * Data is less than small buffer size so it's
1798                          * stuffed in a small buffer.
1799                          * For this case we append the data
1800                          * from the "data" small buffer to the "header" small
1801                          * buffer.
1802                          */
1803                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1804                         pci_dma_sync_single_for_cpu(qdev->pdev,
1805                                                     dma_unmap_addr
1806                                                     (sbq_desc, mapaddr),
1807                                                     dma_unmap_len
1808                                                     (sbq_desc, maplen),
1809                                                     PCI_DMA_FROMDEVICE);
1810                         memcpy(skb_put(skb, length),
1811                                sbq_desc->p.skb->data, length);
1812                         pci_dma_sync_single_for_device(qdev->pdev,
1813                                                        dma_unmap_addr
1814                                                        (sbq_desc,
1815                                                         mapaddr),
1816                                                        dma_unmap_len
1817                                                        (sbq_desc,
1818                                                         maplen),
1819                                                        PCI_DMA_FROMDEVICE);
1820                 } else {
1821                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1822                                      "%d bytes in a single small buffer.\n",
1823                                      length);
1824                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1825                         skb = sbq_desc->p.skb;
1826                         ql_realign_skb(skb, length);
1827                         skb_put(skb, length);
1828                         pci_unmap_single(qdev->pdev,
1829                                          dma_unmap_addr(sbq_desc,
1830                                                         mapaddr),
1831                                          dma_unmap_len(sbq_desc,
1832                                                        maplen),
1833                                          PCI_DMA_FROMDEVICE);
1834                         sbq_desc->p.skb = NULL;
1835                 }
1836         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1837                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1838                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1839                                      "Header in small, %d bytes in large. Chain large to small!\n",
1840                                      length);
1841                         /*
1842                          * The data is in a single large buffer.  We
1843                          * chain it to the header buffer's skb and let
1844                          * it rip.
1845                          */
1846                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1847                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1848                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1849                                      lbq_desc->p.pg_chunk.offset, length);
1850                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1851                                                 lbq_desc->p.pg_chunk.offset,
1852                                                 length);
1853                         skb->len += length;
1854                         skb->data_len += length;
1855                         skb->truesize += length;
1856                 } else {
1857                         /*
1858                          * The headers and data are in a single large buffer. We
1859                          * copy it to a new skb and let it go. This can happen with
1860                          * jumbo mtu on a non-TCP/UDP frame.
1861                          */
1862                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1863                         skb = netdev_alloc_skb(qdev->ndev, length);
1864                         if (skb == NULL) {
1865                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1866                                              "No skb available, drop the packet.\n");
1867                                 return NULL;
1868                         }
1869                         pci_unmap_page(qdev->pdev,
1870                                        dma_unmap_addr(lbq_desc,
1871                                                       mapaddr),
1872                                        dma_unmap_len(lbq_desc, maplen),
1873                                        PCI_DMA_FROMDEVICE);
1874                         skb_reserve(skb, NET_IP_ALIGN);
1875                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1876                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1877                                      length);
1878                         skb_fill_page_desc(skb, 0,
1879                                                 lbq_desc->p.pg_chunk.page,
1880                                                 lbq_desc->p.pg_chunk.offset,
1881                                                 length);
1882                         skb->len += length;
1883                         skb->data_len += length;
1884                         skb->truesize += length;
1885                         length -= length;
1886                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1887                                               lbq_desc->p.pg_chunk.va,
1888                                               &hlen);
1889                         __pskb_pull_tail(skb, hlen);
1890                 }
1891         } else {
1892                 /*
1893                  * The data is in a chain of large buffers
1894                  * pointed to by a small buffer.  We loop
1895                  * thru and chain them to the our small header
1896                  * buffer's skb.
1897                  * frags:  There are 18 max frags and our small
1898                  *         buffer will hold 32 of them. The thing is,
1899                  *         we'll use 3 max for our 9000 byte jumbo
1900                  *         frames.  If the MTU goes up we could
1901                  *          eventually be in trouble.
1902                  */
1903                 int size, i = 0;
1904                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1905                 pci_unmap_single(qdev->pdev,
1906                                  dma_unmap_addr(sbq_desc, mapaddr),
1907                                  dma_unmap_len(sbq_desc, maplen),
1908                                  PCI_DMA_FROMDEVICE);
1909                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1910                         /*
1911                          * This is an non TCP/UDP IP frame, so
1912                          * the headers aren't split into a small
1913                          * buffer.  We have to use the small buffer
1914                          * that contains our sg list as our skb to
1915                          * send upstairs. Copy the sg list here to
1916                          * a local buffer and use it to find the
1917                          * pages to chain.
1918                          */
1919                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1920                                      "%d bytes of headers & data in chain of large.\n",
1921                                      length);
1922                         skb = sbq_desc->p.skb;
1923                         sbq_desc->p.skb = NULL;
1924                         skb_reserve(skb, NET_IP_ALIGN);
1925                 }
1926                 while (length > 0) {
1927                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1928                         size = (length < rx_ring->lbq_buf_size) ? length :
1929                                 rx_ring->lbq_buf_size;
1930
1931                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1932                                      "Adding page %d to skb for %d bytes.\n",
1933                                      i, size);
1934                         skb_fill_page_desc(skb, i,
1935                                                 lbq_desc->p.pg_chunk.page,
1936                                                 lbq_desc->p.pg_chunk.offset,
1937                                                 size);
1938                         skb->len += size;
1939                         skb->data_len += size;
1940                         skb->truesize += size;
1941                         length -= size;
1942                         i++;
1943                 }
1944                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1945                                       &hlen);
1946                 __pskb_pull_tail(skb, hlen);
1947         }
1948         return skb;
1949 }
1950
1951 /* Process an inbound completion from an rx ring. */
1952 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1953                                    struct rx_ring *rx_ring,
1954                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1955                                    u16 vlan_id)
1956 {
1957         struct net_device *ndev = qdev->ndev;
1958         struct sk_buff *skb = NULL;
1959
1960         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1961
1962         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1963         if (unlikely(!skb)) {
1964                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965                              "No skb available, drop packet.\n");
1966                 rx_ring->rx_dropped++;
1967                 return;
1968         }
1969
1970         /* Frame error, so drop the packet. */
1971         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1972                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1973                 dev_kfree_skb_any(skb);
1974                 return;
1975         }
1976
1977         /* The max framesize filter on this chip is set higher than
1978          * MTU since FCoE uses 2k frames.
1979          */
1980         if (skb->len > ndev->mtu + ETH_HLEN) {
1981                 dev_kfree_skb_any(skb);
1982                 rx_ring->rx_dropped++;
1983                 return;
1984         }
1985
1986         /* loopback self test for ethtool */
1987         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1988                 ql_check_lb_frame(qdev, skb);
1989                 dev_kfree_skb_any(skb);
1990                 return;
1991         }
1992
1993         prefetch(skb->data);
1994         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1995                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1996                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1997                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1998                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1999                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2000                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2001                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2002                 rx_ring->rx_multicast++;
2003         }
2004         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2005                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2006                              "Promiscuous Packet.\n");
2007         }
2008
2009         skb->protocol = eth_type_trans(skb, ndev);
2010         skb_checksum_none_assert(skb);
2011
2012         /* If rx checksum is on, and there are no
2013          * csum or frame errors.
2014          */
2015         if ((ndev->features & NETIF_F_RXCSUM) &&
2016                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2017                 /* TCP frame. */
2018                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2019                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2020                                      "TCP checksum done!\n");
2021                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2022                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2023                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2024                 /* Unfragmented ipv4 UDP frame. */
2025                         struct iphdr *iph = (struct iphdr *) skb->data;
2026                         if (!(iph->frag_off &
2027                                 htons(IP_MF|IP_OFFSET))) {
2028                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2029                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030                                              "TCP checksum done!\n");
2031                         }
2032                 }
2033         }
2034
2035         rx_ring->rx_packets++;
2036         rx_ring->rx_bytes += skb->len;
2037         skb_record_rx_queue(skb, rx_ring->cq_id);
2038         if (vlan_id != 0xffff)
2039                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2040         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2041                 napi_gro_receive(&rx_ring->napi, skb);
2042         else
2043                 netif_receive_skb(skb);
2044 }
2045
2046 /* Process an inbound completion from an rx ring. */
2047 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2048                                         struct rx_ring *rx_ring,
2049                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2050 {
2051         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2052         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2053                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2054                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2055                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2056
2057         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2058
2059         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2060                 /* The data and headers are split into
2061                  * separate buffers.
2062                  */
2063                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2064                                                 vlan_id);
2065         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2066                 /* The data fit in a single small buffer.
2067                  * Allocate a new skb, copy the data and
2068                  * return the buffer to the free pool.
2069                  */
2070                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2071                                                 length, vlan_id);
2072         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2073                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2074                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2075                 /* TCP packet in a page chunk that's been checksummed.
2076                  * Tack it on to our GRO skb and let it go.
2077                  */
2078                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2079                                                 length, vlan_id);
2080         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2081                 /* Non-TCP packet in a page chunk. Allocate an
2082                  * skb, tack it on frags, and send it up.
2083                  */
2084                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2085                                                 length, vlan_id);
2086         } else {
2087                 /* Non-TCP/UDP large frames that span multiple buffers
2088                  * can be processed corrrectly by the split frame logic.
2089                  */
2090                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2091                                                 vlan_id);
2092         }
2093
2094         return (unsigned long)length;
2095 }
2096
2097 /* Process an outbound completion from an rx ring. */
2098 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2099                                    struct ob_mac_iocb_rsp *mac_rsp)
2100 {
2101         struct tx_ring *tx_ring;
2102         struct tx_ring_desc *tx_ring_desc;
2103
2104         QL_DUMP_OB_MAC_RSP(mac_rsp);
2105         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2106         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2107         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2108         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2109         tx_ring->tx_packets++;
2110         dev_kfree_skb(tx_ring_desc->skb);
2111         tx_ring_desc->skb = NULL;
2112
2113         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2114                                         OB_MAC_IOCB_RSP_S |
2115                                         OB_MAC_IOCB_RSP_L |
2116                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2117                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2118                         netif_warn(qdev, tx_done, qdev->ndev,
2119                                    "Total descriptor length did not match transfer length.\n");
2120                 }
2121                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2122                         netif_warn(qdev, tx_done, qdev->ndev,
2123                                    "Frame too short to be valid, not sent.\n");
2124                 }
2125                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2126                         netif_warn(qdev, tx_done, qdev->ndev,
2127                                    "Frame too long, but sent anyway.\n");
2128                 }
2129                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2130                         netif_warn(qdev, tx_done, qdev->ndev,
2131                                    "PCI backplane error. Frame not sent.\n");
2132                 }
2133         }
2134         atomic_inc(&tx_ring->tx_count);
2135 }
2136
2137 /* Fire up a handler to reset the MPI processor. */
2138 void ql_queue_fw_error(struct ql_adapter *qdev)
2139 {
2140         ql_link_off(qdev);
2141         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2142 }
2143
2144 void ql_queue_asic_error(struct ql_adapter *qdev)
2145 {
2146         ql_link_off(qdev);
2147         ql_disable_interrupts(qdev);
2148         /* Clear adapter up bit to signal the recovery
2149          * process that it shouldn't kill the reset worker
2150          * thread
2151          */
2152         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2153         /* Set asic recovery bit to indicate reset process that we are
2154          * in fatal error recovery process rather than normal close
2155          */
2156         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2157         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2158 }
2159
2160 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2161                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2162 {
2163         switch (ib_ae_rsp->event) {
2164         case MGMT_ERR_EVENT:
2165                 netif_err(qdev, rx_err, qdev->ndev,
2166                           "Management Processor Fatal Error.\n");
2167                 ql_queue_fw_error(qdev);
2168                 return;
2169
2170         case CAM_LOOKUP_ERR_EVENT:
2171                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2172                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2173                 ql_queue_asic_error(qdev);
2174                 return;
2175
2176         case SOFT_ECC_ERROR_EVENT:
2177                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2178                 ql_queue_asic_error(qdev);
2179                 break;
2180
2181         case PCI_ERR_ANON_BUF_RD:
2182                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2183                                         "anonymous buffers from rx_ring %d.\n",
2184                                         ib_ae_rsp->q_id);
2185                 ql_queue_asic_error(qdev);
2186                 break;
2187
2188         default:
2189                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2190                           ib_ae_rsp->event);
2191                 ql_queue_asic_error(qdev);
2192                 break;
2193         }
2194 }
2195
2196 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 {
2198         struct ql_adapter *qdev = rx_ring->qdev;
2199         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2200         struct ob_mac_iocb_rsp *net_rsp = NULL;
2201         int count = 0;
2202
2203         struct tx_ring *tx_ring;
2204         /* While there are entries in the completion queue. */
2205         while (prod != rx_ring->cnsmr_idx) {
2206
2207                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2208                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2209                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210
2211                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2212                 rmb();
2213                 switch (net_rsp->opcode) {
2214
2215                 case OPCODE_OB_MAC_TSO_IOCB:
2216                 case OPCODE_OB_MAC_IOCB:
2217                         ql_process_mac_tx_intr(qdev, net_rsp);
2218                         break;
2219                 default:
2220                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2221                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2222                                      net_rsp->opcode);
2223                 }
2224                 count++;
2225                 ql_update_cq(rx_ring);
2226                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227         }
2228         if (!net_rsp)
2229                 return 0;
2230         ql_write_cq_idx(rx_ring);
2231         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2232         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2233                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2234                         /*
2235                          * The queue got stopped because the tx_ring was full.
2236                          * Wake it up, because it's now at least 25% empty.
2237                          */
2238                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2239         }
2240
2241         return count;
2242 }
2243
2244 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2245 {
2246         struct ql_adapter *qdev = rx_ring->qdev;
2247         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2248         struct ql_net_rsp_iocb *net_rsp;
2249         int count = 0;
2250
2251         /* While there are entries in the completion queue. */
2252         while (prod != rx_ring->cnsmr_idx) {
2253
2254                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2255                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2256                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2257
2258                 net_rsp = rx_ring->curr_entry;
2259                 rmb();
2260                 switch (net_rsp->opcode) {
2261                 case OPCODE_IB_MAC_IOCB:
2262                         ql_process_mac_rx_intr(qdev, rx_ring,
2263                                                (struct ib_mac_iocb_rsp *)
2264                                                net_rsp);
2265                         break;
2266
2267                 case OPCODE_IB_AE_IOCB:
2268                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2269                                                 net_rsp);
2270                         break;
2271                 default:
2272                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2273                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2274                                      net_rsp->opcode);
2275                         break;
2276                 }
2277                 count++;
2278                 ql_update_cq(rx_ring);
2279                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2280                 if (count == budget)
2281                         break;
2282         }
2283         ql_update_buffer_queues(qdev, rx_ring);
2284         ql_write_cq_idx(rx_ring);
2285         return count;
2286 }
2287
2288 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2289 {
2290         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2291         struct ql_adapter *qdev = rx_ring->qdev;
2292         struct rx_ring *trx_ring;
2293         int i, work_done = 0;
2294         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2295
2296         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2297                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2298
2299         /* Service the TX rings first.  They start
2300          * right after the RSS rings. */
2301         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2302                 trx_ring = &qdev->rx_ring[i];
2303                 /* If this TX completion ring belongs to this vector and
2304                  * it's not empty then service it.
2305                  */
2306                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2307                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2308                                         trx_ring->cnsmr_idx)) {
2309                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2310                                      "%s: Servicing TX completion ring %d.\n",
2311                                      __func__, trx_ring->cq_id);
2312                         ql_clean_outbound_rx_ring(trx_ring);
2313                 }
2314         }
2315
2316         /*
2317          * Now service the RSS ring if it's active.
2318          */
2319         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2320                                         rx_ring->cnsmr_idx) {
2321                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2322                              "%s: Servicing RX completion ring %d.\n",
2323                              __func__, rx_ring->cq_id);
2324                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2325         }
2326
2327         if (work_done < budget) {
2328                 napi_complete(napi);
2329                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2330         }
2331         return work_done;
2332 }
2333
2334 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2335 {
2336         struct ql_adapter *qdev = netdev_priv(ndev);
2337
2338         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2339                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2340                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2341         } else {
2342                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2343         }
2344 }
2345
2346 /**
2347  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2348  * based on the features to enable/disable hardware vlan accel
2349  */
2350 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2351                                         netdev_features_t features)
2352 {
2353         struct ql_adapter *qdev = netdev_priv(ndev);
2354         int status = 0;
2355
2356         status = ql_adapter_down(qdev);
2357         if (status) {
2358                 netif_err(qdev, link, qdev->ndev,
2359                           "Failed to bring down the adapter\n");
2360                 return status;
2361         }
2362
2363         /* update the features with resent change */
2364         ndev->features = features;
2365
2366         status = ql_adapter_up(qdev);
2367         if (status) {
2368                 netif_err(qdev, link, qdev->ndev,
2369                           "Failed to bring up the adapter\n");
2370                 return status;
2371         }
2372         return status;
2373 }
2374
2375 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2376         netdev_features_t features)
2377 {
2378         int err;
2379         /*
2380          * Since there is no support for separate rx/tx vlan accel
2381          * enable/disable make sure tx flag is always in same state as rx.
2382          */
2383         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2384                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2385         else
2386                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2387
2388         /* Update the behavior of vlan accel in the adapter */
2389         err = qlge_update_hw_vlan_features(ndev, features);
2390         if (err)
2391                 return err;
2392
2393         return features;
2394 }
2395
2396 static int qlge_set_features(struct net_device *ndev,
2397         netdev_features_t features)
2398 {
2399         netdev_features_t changed = ndev->features ^ features;
2400
2401         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2402                 qlge_vlan_mode(ndev, features);
2403
2404         return 0;
2405 }
2406
2407 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2408 {
2409         u32 enable_bit = MAC_ADDR_E;
2410         int err;
2411
2412         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2413                                   MAC_ADDR_TYPE_VLAN, vid);
2414         if (err)
2415                 netif_err(qdev, ifup, qdev->ndev,
2416                           "Failed to init vlan address.\n");
2417         return err;
2418 }
2419
2420 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2421 {
2422         struct ql_adapter *qdev = netdev_priv(ndev);
2423         int status;
2424         int err;
2425
2426         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2427         if (status)
2428                 return status;
2429
2430         err = __qlge_vlan_rx_add_vid(qdev, vid);
2431         set_bit(vid, qdev->active_vlans);
2432
2433         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2434
2435         return err;
2436 }
2437
2438 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2439 {
2440         u32 enable_bit = 0;
2441         int err;
2442
2443         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2444                                   MAC_ADDR_TYPE_VLAN, vid);
2445         if (err)
2446                 netif_err(qdev, ifup, qdev->ndev,
2447                           "Failed to clear vlan address.\n");
2448         return err;
2449 }
2450
2451 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2452 {
2453         struct ql_adapter *qdev = netdev_priv(ndev);
2454         int status;
2455         int err;
2456
2457         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2458         if (status)
2459                 return status;
2460
2461         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2462         clear_bit(vid, qdev->active_vlans);
2463
2464         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2465
2466         return err;
2467 }
2468
2469 static void qlge_restore_vlan(struct ql_adapter *qdev)
2470 {
2471         int status;
2472         u16 vid;
2473
2474         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2475         if (status)
2476                 return;
2477
2478         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2479                 __qlge_vlan_rx_add_vid(qdev, vid);
2480
2481         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2482 }
2483
2484 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2485 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2486 {
2487         struct rx_ring *rx_ring = dev_id;
2488         napi_schedule(&rx_ring->napi);
2489         return IRQ_HANDLED;
2490 }
2491
2492 /* This handles a fatal error, MPI activity, and the default
2493  * rx_ring in an MSI-X multiple vector environment.
2494  * In MSI/Legacy environment it also process the rest of
2495  * the rx_rings.
2496  */
2497 static irqreturn_t qlge_isr(int irq, void *dev_id)
2498 {
2499         struct rx_ring *rx_ring = dev_id;
2500         struct ql_adapter *qdev = rx_ring->qdev;
2501         struct intr_context *intr_context = &qdev->intr_context[0];
2502         u32 var;
2503         int work_done = 0;
2504
2505         spin_lock(&qdev->hw_lock);
2506         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2507                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2508                              "Shared Interrupt, Not ours!\n");
2509                 spin_unlock(&qdev->hw_lock);
2510                 return IRQ_NONE;
2511         }
2512         spin_unlock(&qdev->hw_lock);
2513
2514         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2515
2516         /*
2517          * Check for fatal error.
2518          */
2519         if (var & STS_FE) {
2520                 ql_queue_asic_error(qdev);
2521                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2522                 var = ql_read32(qdev, ERR_STS);
2523                 netdev_err(qdev->ndev, "Resetting chip. "
2524                                         "Error Status Register = 0x%x\n", var);
2525                 return IRQ_HANDLED;
2526         }
2527
2528         /*
2529          * Check MPI processor activity.
2530          */
2531         if ((var & STS_PI) &&
2532                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2533                 /*
2534                  * We've got an async event or mailbox completion.
2535                  * Handle it and clear the source of the interrupt.
2536                  */
2537                 netif_err(qdev, intr, qdev->ndev,
2538                           "Got MPI processor interrupt.\n");
2539                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2540                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2541                 queue_delayed_work_on(smp_processor_id(),
2542                                 qdev->workqueue, &qdev->mpi_work, 0);
2543                 work_done++;
2544         }
2545
2546         /*
2547          * Get the bit-mask that shows the active queues for this
2548          * pass.  Compare it to the queues that this irq services
2549          * and call napi if there's a match.
2550          */
2551         var = ql_read32(qdev, ISR1);
2552         if (var & intr_context->irq_mask) {
2553                 netif_info(qdev, intr, qdev->ndev,
2554                            "Waking handler for rx_ring[0].\n");
2555                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2556                 napi_schedule(&rx_ring->napi);
2557                 work_done++;
2558         }
2559         ql_enable_completion_interrupt(qdev, intr_context->intr);
2560         return work_done ? IRQ_HANDLED : IRQ_NONE;
2561 }
2562
2563 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2564 {
2565
2566         if (skb_is_gso(skb)) {
2567                 int err;
2568                 if (skb_header_cloned(skb)) {
2569                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2570                         if (err)
2571                                 return err;
2572                 }
2573
2574                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2575                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2576                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2577                 mac_iocb_ptr->total_hdrs_len =
2578                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2579                 mac_iocb_ptr->net_trans_offset =
2580                     cpu_to_le16(skb_network_offset(skb) |
2581                                 skb_transport_offset(skb)
2582                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2583                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2584                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2585                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2586                         struct iphdr *iph = ip_hdr(skb);
2587                         iph->check = 0;
2588                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2589                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2590                                                                  iph->daddr, 0,
2591                                                                  IPPROTO_TCP,
2592                                                                  0);
2593                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2594                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2595                         tcp_hdr(skb)->check =
2596                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2597                                              &ipv6_hdr(skb)->daddr,
2598                                              0, IPPROTO_TCP, 0);
2599                 }
2600                 return 1;
2601         }
2602         return 0;
2603 }
2604
2605 static void ql_hw_csum_setup(struct sk_buff *skb,
2606                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2607 {
2608         int len;
2609         struct iphdr *iph = ip_hdr(skb);
2610         __sum16 *check;
2611         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2612         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2613         mac_iocb_ptr->net_trans_offset =
2614                 cpu_to_le16(skb_network_offset(skb) |
2615                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2616
2617         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2618         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2619         if (likely(iph->protocol == IPPROTO_TCP)) {
2620                 check = &(tcp_hdr(skb)->check);
2621                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2622                 mac_iocb_ptr->total_hdrs_len =
2623                     cpu_to_le16(skb_transport_offset(skb) +
2624                                 (tcp_hdr(skb)->doff << 2));
2625         } else {
2626                 check = &(udp_hdr(skb)->check);
2627                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2628                 mac_iocb_ptr->total_hdrs_len =
2629                     cpu_to_le16(skb_transport_offset(skb) +
2630                                 sizeof(struct udphdr));
2631         }
2632         *check = ~csum_tcpudp_magic(iph->saddr,
2633                                     iph->daddr, len, iph->protocol, 0);
2634 }
2635
2636 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2637 {
2638         struct tx_ring_desc *tx_ring_desc;
2639         struct ob_mac_iocb_req *mac_iocb_ptr;
2640         struct ql_adapter *qdev = netdev_priv(ndev);
2641         int tso;
2642         struct tx_ring *tx_ring;
2643         u32 tx_ring_idx = (u32) skb->queue_mapping;
2644
2645         tx_ring = &qdev->tx_ring[tx_ring_idx];
2646
2647         if (skb_padto(skb, ETH_ZLEN))
2648                 return NETDEV_TX_OK;
2649
2650         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2651                 netif_info(qdev, tx_queued, qdev->ndev,
2652                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2653                            __func__, tx_ring_idx);
2654                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2655                 tx_ring->tx_errors++;
2656                 return NETDEV_TX_BUSY;
2657         }
2658         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2659         mac_iocb_ptr = tx_ring_desc->queue_entry;
2660         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2661
2662         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2663         mac_iocb_ptr->tid = tx_ring_desc->index;
2664         /* We use the upper 32-bits to store the tx queue for this IO.
2665          * When we get the completion we can use it to establish the context.
2666          */
2667         mac_iocb_ptr->txq_idx = tx_ring_idx;
2668         tx_ring_desc->skb = skb;
2669
2670         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2671
2672         if (vlan_tx_tag_present(skb)) {
2673                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2674                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2675                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2676                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2677         }
2678         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2679         if (tso < 0) {
2680                 dev_kfree_skb_any(skb);
2681                 return NETDEV_TX_OK;
2682         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2683                 ql_hw_csum_setup(skb,
2684                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2685         }
2686         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2687                         NETDEV_TX_OK) {
2688                 netif_err(qdev, tx_queued, qdev->ndev,
2689                           "Could not map the segments.\n");
2690                 tx_ring->tx_errors++;
2691                 return NETDEV_TX_BUSY;
2692         }
2693         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2694         tx_ring->prod_idx++;
2695         if (tx_ring->prod_idx == tx_ring->wq_len)
2696                 tx_ring->prod_idx = 0;
2697         wmb();
2698
2699         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2700         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2701                      "tx queued, slot %d, len %d\n",
2702                      tx_ring->prod_idx, skb->len);
2703
2704         atomic_dec(&tx_ring->tx_count);
2705
2706         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2707                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2708                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2709                         /*
2710                          * The queue got stopped because the tx_ring was full.
2711                          * Wake it up, because it's now at least 25% empty.
2712                          */
2713                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2714         }
2715         return NETDEV_TX_OK;
2716 }
2717
2718
2719 static void ql_free_shadow_space(struct ql_adapter *qdev)
2720 {
2721         if (qdev->rx_ring_shadow_reg_area) {
2722                 pci_free_consistent(qdev->pdev,
2723                                     PAGE_SIZE,
2724                                     qdev->rx_ring_shadow_reg_area,
2725                                     qdev->rx_ring_shadow_reg_dma);
2726                 qdev->rx_ring_shadow_reg_area = NULL;
2727         }
2728         if (qdev->tx_ring_shadow_reg_area) {
2729                 pci_free_consistent(qdev->pdev,
2730                                     PAGE_SIZE,
2731                                     qdev->tx_ring_shadow_reg_area,
2732                                     qdev->tx_ring_shadow_reg_dma);
2733                 qdev->tx_ring_shadow_reg_area = NULL;
2734         }
2735 }
2736
2737 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2738 {
2739         qdev->rx_ring_shadow_reg_area =
2740             pci_alloc_consistent(qdev->pdev,
2741                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2742         if (qdev->rx_ring_shadow_reg_area == NULL) {
2743                 netif_err(qdev, ifup, qdev->ndev,
2744                           "Allocation of RX shadow space failed.\n");
2745                 return -ENOMEM;
2746         }
2747         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2748         qdev->tx_ring_shadow_reg_area =
2749             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2750                                  &qdev->tx_ring_shadow_reg_dma);
2751         if (qdev->tx_ring_shadow_reg_area == NULL) {
2752                 netif_err(qdev, ifup, qdev->ndev,
2753                           "Allocation of TX shadow space failed.\n");
2754                 goto err_wqp_sh_area;
2755         }
2756         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2757         return 0;
2758
2759 err_wqp_sh_area:
2760         pci_free_consistent(qdev->pdev,
2761                             PAGE_SIZE,
2762                             qdev->rx_ring_shadow_reg_area,
2763                             qdev->rx_ring_shadow_reg_dma);
2764         return -ENOMEM;
2765 }
2766
2767 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2768 {
2769         struct tx_ring_desc *tx_ring_desc;
2770         int i;
2771         struct ob_mac_iocb_req *mac_iocb_ptr;
2772
2773         mac_iocb_ptr = tx_ring->wq_base;
2774         tx_ring_desc = tx_ring->q;
2775         for (i = 0; i < tx_ring->wq_len; i++) {
2776                 tx_ring_desc->index = i;
2777                 tx_ring_desc->skb = NULL;
2778                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2779                 mac_iocb_ptr++;
2780                 tx_ring_desc++;
2781         }
2782         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2783 }
2784
2785 static void ql_free_tx_resources(struct ql_adapter *qdev,
2786                                  struct tx_ring *tx_ring)
2787 {
2788         if (tx_ring->wq_base) {
2789                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2790                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2791                 tx_ring->wq_base = NULL;
2792         }
2793         kfree(tx_ring->q);
2794         tx_ring->q = NULL;
2795 }
2796
2797 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2798                                  struct tx_ring *tx_ring)
2799 {
2800         tx_ring->wq_base =
2801             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2802                                  &tx_ring->wq_base_dma);
2803
2804         if ((tx_ring->wq_base == NULL) ||
2805             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2806                 goto pci_alloc_err;
2807
2808         tx_ring->q =
2809             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2810         if (tx_ring->q == NULL)
2811                 goto err;
2812
2813         return 0;
2814 err:
2815         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2816                             tx_ring->wq_base, tx_ring->wq_base_dma);
2817         tx_ring->wq_base = NULL;
2818 pci_alloc_err:
2819         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2820         return -ENOMEM;
2821 }
2822
2823 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2824 {
2825         struct bq_desc *lbq_desc;
2826
2827         uint32_t  curr_idx, clean_idx;
2828
2829         curr_idx = rx_ring->lbq_curr_idx;
2830         clean_idx = rx_ring->lbq_clean_idx;
2831         while (curr_idx != clean_idx) {
2832                 lbq_desc = &rx_ring->lbq[curr_idx];
2833
2834                 if (lbq_desc->p.pg_chunk.last_flag) {
2835                         pci_unmap_page(qdev->pdev,
2836                                 lbq_desc->p.pg_chunk.map,
2837                                 ql_lbq_block_size(qdev),
2838                                        PCI_DMA_FROMDEVICE);
2839                         lbq_desc->p.pg_chunk.last_flag = 0;
2840                 }
2841
2842                 put_page(lbq_desc->p.pg_chunk.page);
2843                 lbq_desc->p.pg_chunk.page = NULL;
2844
2845                 if (++curr_idx == rx_ring->lbq_len)
2846                         curr_idx = 0;
2847
2848         }
2849         if (rx_ring->pg_chunk.page) {
2850                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2851                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2852                 put_page(rx_ring->pg_chunk.page);
2853                 rx_ring->pg_chunk.page = NULL;
2854         }
2855 }
2856
2857 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2858 {
2859         int i;
2860         struct bq_desc *sbq_desc;
2861
2862         for (i = 0; i < rx_ring->sbq_len; i++) {
2863                 sbq_desc = &rx_ring->sbq[i];
2864                 if (sbq_desc == NULL) {
2865                         netif_err(qdev, ifup, qdev->ndev,
2866                                   "sbq_desc %d is NULL.\n", i);
2867                         return;
2868                 }
2869                 if (sbq_desc->p.skb) {
2870                         pci_unmap_single(qdev->pdev,
2871                                          dma_unmap_addr(sbq_desc, mapaddr),
2872                                          dma_unmap_len(sbq_desc, maplen),
2873                                          PCI_DMA_FROMDEVICE);
2874                         dev_kfree_skb(sbq_desc->p.skb);
2875                         sbq_desc->p.skb = NULL;
2876                 }
2877         }
2878 }
2879
2880 /* Free all large and small rx buffers associated
2881  * with the completion queues for this device.
2882  */
2883 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2884 {
2885         int i;
2886         struct rx_ring *rx_ring;
2887
2888         for (i = 0; i < qdev->rx_ring_count; i++) {
2889                 rx_ring = &qdev->rx_ring[i];
2890                 if (rx_ring->lbq)
2891                         ql_free_lbq_buffers(qdev, rx_ring);
2892                 if (rx_ring->sbq)
2893                         ql_free_sbq_buffers(qdev, rx_ring);
2894         }
2895 }
2896
2897 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2898 {
2899         struct rx_ring *rx_ring;
2900         int i;
2901
2902         for (i = 0; i < qdev->rx_ring_count; i++) {
2903                 rx_ring = &qdev->rx_ring[i];
2904                 if (rx_ring->type != TX_Q)
2905                         ql_update_buffer_queues(qdev, rx_ring);
2906         }
2907 }
2908
2909 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2910                                 struct rx_ring *rx_ring)
2911 {
2912         int i;
2913         struct bq_desc *lbq_desc;
2914         __le64 *bq = rx_ring->lbq_base;
2915
2916         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2917         for (i = 0; i < rx_ring->lbq_len; i++) {
2918                 lbq_desc = &rx_ring->lbq[i];
2919                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2920                 lbq_desc->index = i;
2921                 lbq_desc->addr = bq;
2922                 bq++;
2923         }
2924 }
2925
2926 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2927                                 struct rx_ring *rx_ring)
2928 {
2929         int i;
2930         struct bq_desc *sbq_desc;
2931         __le64 *bq = rx_ring->sbq_base;
2932
2933         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2934         for (i = 0; i < rx_ring->sbq_len; i++) {
2935                 sbq_desc = &rx_ring->sbq[i];
2936                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2937                 sbq_desc->index = i;
2938                 sbq_desc->addr = bq;
2939                 bq++;
2940         }
2941 }
2942
2943 static void ql_free_rx_resources(struct ql_adapter *qdev,
2944                                  struct rx_ring *rx_ring)
2945 {
2946         /* Free the small buffer queue. */
2947         if (rx_ring->sbq_base) {
2948                 pci_free_consistent(qdev->pdev,
2949                                     rx_ring->sbq_size,
2950                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2951                 rx_ring->sbq_base = NULL;
2952         }
2953
2954         /* Free the small buffer queue control blocks. */
2955         kfree(rx_ring->sbq);
2956         rx_ring->sbq = NULL;
2957
2958         /* Free the large buffer queue. */
2959         if (rx_ring->lbq_base) {
2960                 pci_free_consistent(qdev->pdev,
2961                                     rx_ring->lbq_size,
2962                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2963                 rx_ring->lbq_base = NULL;
2964         }
2965
2966         /* Free the large buffer queue control blocks. */
2967         kfree(rx_ring->lbq);
2968         rx_ring->lbq = NULL;
2969
2970         /* Free the rx queue. */
2971         if (rx_ring->cq_base) {
2972                 pci_free_consistent(qdev->pdev,
2973                                     rx_ring->cq_size,
2974                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2975                 rx_ring->cq_base = NULL;
2976         }
2977 }
2978
2979 /* Allocate queues and buffers for this completions queue based
2980  * on the values in the parameter structure. */
2981 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2982                                  struct rx_ring *rx_ring)
2983 {
2984
2985         /*
2986          * Allocate the completion queue for this rx_ring.
2987          */
2988         rx_ring->cq_base =
2989             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2990                                  &rx_ring->cq_base_dma);
2991
2992         if (rx_ring->cq_base == NULL) {
2993                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2994                 return -ENOMEM;
2995         }
2996
2997         if (rx_ring->sbq_len) {
2998                 /*
2999                  * Allocate small buffer queue.
3000                  */
3001                 rx_ring->sbq_base =
3002                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3003                                          &rx_ring->sbq_base_dma);
3004
3005                 if (rx_ring->sbq_base == NULL) {
3006                         netif_err(qdev, ifup, qdev->ndev,
3007                                   "Small buffer queue allocation failed.\n");
3008                         goto err_mem;
3009                 }
3010
3011                 /*
3012                  * Allocate small buffer queue control blocks.
3013                  */
3014                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3015                                              sizeof(struct bq_desc),
3016                                              GFP_KERNEL);
3017                 if (rx_ring->sbq == NULL)
3018                         goto err_mem;
3019
3020                 ql_init_sbq_ring(qdev, rx_ring);
3021         }
3022
3023         if (rx_ring->lbq_len) {
3024                 /*
3025                  * Allocate large buffer queue.
3026                  */
3027                 rx_ring->lbq_base =
3028                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3029                                          &rx_ring->lbq_base_dma);
3030
3031                 if (rx_ring->lbq_base == NULL) {
3032                         netif_err(qdev, ifup, qdev->ndev,
3033                                   "Large buffer queue allocation failed.\n");
3034                         goto err_mem;
3035                 }
3036                 /*
3037                  * Allocate large buffer queue control blocks.
3038                  */
3039                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3040                                              sizeof(struct bq_desc),
3041                                              GFP_KERNEL);
3042                 if (rx_ring->lbq == NULL)
3043                         goto err_mem;
3044
3045                 ql_init_lbq_ring(qdev, rx_ring);
3046         }
3047
3048         return 0;
3049
3050 err_mem:
3051         ql_free_rx_resources(qdev, rx_ring);
3052         return -ENOMEM;
3053 }
3054
3055 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3056 {
3057         struct tx_ring *tx_ring;
3058         struct tx_ring_desc *tx_ring_desc;
3059         int i, j;
3060
3061         /*
3062          * Loop through all queues and free
3063          * any resources.
3064          */
3065         for (j = 0; j < qdev->tx_ring_count; j++) {
3066                 tx_ring = &qdev->tx_ring[j];
3067                 for (i = 0; i < tx_ring->wq_len; i++) {
3068                         tx_ring_desc = &tx_ring->q[i];
3069                         if (tx_ring_desc && tx_ring_desc->skb) {
3070                                 netif_err(qdev, ifdown, qdev->ndev,
3071                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3072                                           tx_ring_desc->skb, j,
3073                                           tx_ring_desc->index);
3074                                 ql_unmap_send(qdev, tx_ring_desc,
3075                                               tx_ring_desc->map_cnt);
3076                                 dev_kfree_skb(tx_ring_desc->skb);
3077                                 tx_ring_desc->skb = NULL;
3078                         }
3079                 }
3080         }
3081 }
3082
3083 static void ql_free_mem_resources(struct ql_adapter *qdev)
3084 {
3085         int i;
3086
3087         for (i = 0; i < qdev->tx_ring_count; i++)
3088                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3089         for (i = 0; i < qdev->rx_ring_count; i++)
3090                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3091         ql_free_shadow_space(qdev);
3092 }
3093
3094 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3095 {
3096         int i;
3097
3098         /* Allocate space for our shadow registers and such. */
3099         if (ql_alloc_shadow_space(qdev))
3100                 return -ENOMEM;
3101
3102         for (i = 0; i < qdev->rx_ring_count; i++) {
3103                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3104                         netif_err(qdev, ifup, qdev->ndev,
3105                                   "RX resource allocation failed.\n");
3106                         goto err_mem;
3107                 }
3108         }
3109         /* Allocate tx queue resources */
3110         for (i = 0; i < qdev->tx_ring_count; i++) {
3111                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3112                         netif_err(qdev, ifup, qdev->ndev,
3113                                   "TX resource allocation failed.\n");
3114                         goto err_mem;
3115                 }
3116         }
3117         return 0;
3118
3119 err_mem:
3120         ql_free_mem_resources(qdev);
3121         return -ENOMEM;
3122 }
3123
3124 /* Set up the rx ring control block and pass it to the chip.
3125  * The control block is defined as
3126  * "Completion Queue Initialization Control Block", or cqicb.
3127  */
3128 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3129 {
3130         struct cqicb *cqicb = &rx_ring->cqicb;
3131         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3132                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3133         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3134                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3135         void __iomem *doorbell_area =
3136             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3137         int err = 0;
3138         u16 bq_len;
3139         u64 tmp;
3140         __le64 *base_indirect_ptr;
3141         int page_entries;
3142
3143         /* Set up the shadow registers for this ring. */
3144         rx_ring->prod_idx_sh_reg = shadow_reg;
3145         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3146         *rx_ring->prod_idx_sh_reg = 0;
3147         shadow_reg += sizeof(u64);
3148         shadow_reg_dma += sizeof(u64);
3149         rx_ring->lbq_base_indirect = shadow_reg;
3150         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3151         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3152         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3153         rx_ring->sbq_base_indirect = shadow_reg;
3154         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3155
3156         /* PCI doorbell mem area + 0x00 for consumer index register */
3157         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3158         rx_ring->cnsmr_idx = 0;
3159         rx_ring->curr_entry = rx_ring->cq_base;
3160
3161         /* PCI doorbell mem area + 0x04 for valid register */
3162         rx_ring->valid_db_reg = doorbell_area + 0x04;
3163
3164         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3165         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3166
3167         /* PCI doorbell mem area + 0x1c */
3168         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3169
3170         memset((void *)cqicb, 0, sizeof(struct cqicb));
3171         cqicb->msix_vect = rx_ring->irq;
3172
3173         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3174         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3175
3176         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3177
3178         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3179
3180         /*
3181          * Set up the control block load flags.
3182          */
3183         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3184             FLAGS_LV |          /* Load MSI-X vector */
3185             FLAGS_LI;           /* Load irq delay values */
3186         if (rx_ring->lbq_len) {
3187                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3188                 tmp = (u64)rx_ring->lbq_base_dma;
3189                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3190                 page_entries = 0;
3191                 do {
3192                         *base_indirect_ptr = cpu_to_le64(tmp);
3193                         tmp += DB_PAGE_SIZE;
3194                         base_indirect_ptr++;
3195                         page_entries++;
3196                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3197                 cqicb->lbq_addr =
3198                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3199                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3200                         (u16) rx_ring->lbq_buf_size;
3201                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3202                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3203                         (u16) rx_ring->lbq_len;
3204                 cqicb->lbq_len = cpu_to_le16(bq_len);
3205                 rx_ring->lbq_prod_idx = 0;
3206                 rx_ring->lbq_curr_idx = 0;
3207                 rx_ring->lbq_clean_idx = 0;
3208                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3209         }
3210         if (rx_ring->sbq_len) {
3211                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3212                 tmp = (u64)rx_ring->sbq_base_dma;
3213                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3214                 page_entries = 0;
3215                 do {
3216                         *base_indirect_ptr = cpu_to_le64(tmp);
3217                         tmp += DB_PAGE_SIZE;
3218                         base_indirect_ptr++;
3219                         page_entries++;
3220                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3221                 cqicb->sbq_addr =
3222                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3223                 cqicb->sbq_buf_size =
3224                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3225                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3226                         (u16) rx_ring->sbq_len;
3227                 cqicb->sbq_len = cpu_to_le16(bq_len);
3228                 rx_ring->sbq_prod_idx = 0;
3229                 rx_ring->sbq_curr_idx = 0;
3230                 rx_ring->sbq_clean_idx = 0;
3231                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3232         }
3233         switch (rx_ring->type) {
3234         case TX_Q:
3235                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3236                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3237                 break;
3238         case RX_Q:
3239                 /* Inbound completion handling rx_rings run in
3240                  * separate NAPI contexts.
3241                  */
3242                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3243                                64);
3244                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3245                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3246                 break;
3247         default:
3248                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3249                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3250         }
3251         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3252                            CFG_LCQ, rx_ring->cq_id);
3253         if (err) {
3254                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3255                 return err;
3256         }
3257         return err;
3258 }
3259
3260 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3261 {
3262         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3263         void __iomem *doorbell_area =
3264             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3265         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3266             (tx_ring->wq_id * sizeof(u64));
3267         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3268             (tx_ring->wq_id * sizeof(u64));
3269         int err = 0;
3270
3271         /*
3272          * Assign doorbell registers for this tx_ring.
3273          */
3274         /* TX PCI doorbell mem area for tx producer index */
3275         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3276         tx_ring->prod_idx = 0;
3277         /* TX PCI doorbell mem area + 0x04 */
3278         tx_ring->valid_db_reg = doorbell_area + 0x04;
3279
3280         /*
3281          * Assign shadow registers for this tx_ring.
3282          */
3283         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3284         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3285
3286         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3287         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3288                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3289         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3290         wqicb->rid = 0;
3291         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3292
3293         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3294
3295         ql_init_tx_ring(qdev, tx_ring);
3296
3297         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3298                            (u16) tx_ring->wq_id);
3299         if (err) {
3300                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3301                 return err;
3302         }
3303         return err;
3304 }
3305
3306 static void ql_disable_msix(struct ql_adapter *qdev)
3307 {
3308         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3309                 pci_disable_msix(qdev->pdev);
3310                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3311                 kfree(qdev->msi_x_entry);
3312                 qdev->msi_x_entry = NULL;
3313         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3314                 pci_disable_msi(qdev->pdev);
3315                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3316         }
3317 }
3318
3319 /* We start by trying to get the number of vectors
3320  * stored in qdev->intr_count. If we don't get that
3321  * many then we reduce the count and try again.
3322  */
3323 static void ql_enable_msix(struct ql_adapter *qdev)
3324 {
3325         int i, err;
3326
3327         /* Get the MSIX vectors. */
3328         if (qlge_irq_type == MSIX_IRQ) {
3329                 /* Try to alloc space for the msix struct,
3330                  * if it fails then go to MSI/legacy.
3331                  */
3332                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3333                                             sizeof(struct msix_entry),
3334                                             GFP_KERNEL);
3335                 if (!qdev->msi_x_entry) {
3336                         qlge_irq_type = MSI_IRQ;
3337                         goto msi;
3338                 }
3339
3340                 for (i = 0; i < qdev->intr_count; i++)
3341                         qdev->msi_x_entry[i].entry = i;
3342
3343                 /* Loop to get our vectors.  We start with
3344                  * what we want and settle for what we get.
3345                  */
3346                 do {
3347                         err = pci_enable_msix(qdev->pdev,
3348                                 qdev->msi_x_entry, qdev->intr_count);
3349                         if (err > 0)
3350                                 qdev->intr_count = err;
3351                 } while (err > 0);
3352
3353                 if (err < 0) {
3354                         kfree(qdev->msi_x_entry);
3355                         qdev->msi_x_entry = NULL;
3356                         netif_warn(qdev, ifup, qdev->ndev,
3357                                    "MSI-X Enable failed, trying MSI.\n");
3358                         qdev->intr_count = 1;
3359                         qlge_irq_type = MSI_IRQ;
3360                 } else if (err == 0) {
3361                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3362                         netif_info(qdev, ifup, qdev->ndev,
3363                                    "MSI-X Enabled, got %d vectors.\n",
3364                                    qdev->intr_count);
3365                         return;
3366                 }
3367         }
3368 msi:
3369         qdev->intr_count = 1;
3370         if (qlge_irq_type == MSI_IRQ) {
3371                 if (!pci_enable_msi(qdev->pdev)) {
3372                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3373                         netif_info(qdev, ifup, qdev->ndev,
3374                                    "Running with MSI interrupts.\n");
3375                         return;
3376                 }
3377         }
3378         qlge_irq_type = LEG_IRQ;
3379         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3380                      "Running with legacy interrupts.\n");
3381 }
3382
3383 /* Each vector services 1 RSS ring and and 1 or more
3384  * TX completion rings.  This function loops through
3385  * the TX completion rings and assigns the vector that
3386  * will service it.  An example would be if there are
3387  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3388  * This would mean that vector 0 would service RSS ring 0
3389  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3390  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3391  */
3392 static void ql_set_tx_vect(struct ql_adapter *qdev)
3393 {
3394         int i, j, vect;
3395         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3396
3397         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3398                 /* Assign irq vectors to TX rx_rings.*/
3399                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3400                                          i < qdev->rx_ring_count; i++) {
3401                         if (j == tx_rings_per_vector) {
3402                                 vect++;
3403                                 j = 0;
3404                         }
3405                         qdev->rx_ring[i].irq = vect;
3406                         j++;
3407                 }
3408         } else {
3409                 /* For single vector all rings have an irq
3410                  * of zero.
3411                  */
3412                 for (i = 0; i < qdev->rx_ring_count; i++)
3413                         qdev->rx_ring[i].irq = 0;
3414         }
3415 }
3416
3417 /* Set the interrupt mask for this vector.  Each vector
3418  * will service 1 RSS ring and 1 or more TX completion
3419  * rings.  This function sets up a bit mask per vector
3420  * that indicates which rings it services.
3421  */
3422 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3423 {
3424         int j, vect = ctx->intr;
3425         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3426
3427         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3428                 /* Add the RSS ring serviced by this vector
3429                  * to the mask.
3430                  */
3431                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3432                 /* Add the TX ring(s) serviced by this vector
3433                  * to the mask. */
3434                 for (j = 0; j < tx_rings_per_vector; j++) {
3435                         ctx->irq_mask |=
3436                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3437                         (vect * tx_rings_per_vector) + j].cq_id);
3438                 }
3439         } else {
3440                 /* For single vector we just shift each queue's
3441                  * ID into the mask.
3442                  */
3443                 for (j = 0; j < qdev->rx_ring_count; j++)
3444                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3445         }
3446 }
3447
3448 /*
3449  * Here we build the intr_context structures based on
3450  * our rx_ring count and intr vector count.
3451  * The intr_context structure is used to hook each vector
3452  * to possibly different handlers.
3453  */
3454 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3455 {
3456         int i = 0;
3457         struct intr_context *intr_context = &qdev->intr_context[0];
3458
3459         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3460                 /* Each rx_ring has it's
3461                  * own intr_context since we have separate
3462                  * vectors for each queue.
3463                  */
3464                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3465                         qdev->rx_ring[i].irq = i;
3466                         intr_context->intr = i;
3467                         intr_context->qdev = qdev;
3468                         /* Set up this vector's bit-mask that indicates
3469                          * which queues it services.
3470                          */
3471                         ql_set_irq_mask(qdev, intr_context);
3472                         /*
3473                          * We set up each vectors enable/disable/read bits so
3474                          * there's no bit/mask calculations in the critical path.
3475                          */
3476                         intr_context->intr_en_mask =
3477                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3478                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3479                             | i;
3480                         intr_context->intr_dis_mask =
3481                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3482                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3483                             INTR_EN_IHD | i;
3484                         intr_context->intr_read_mask =
3485                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3486                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3487                             i;
3488                         if (i == 0) {
3489                                 /* The first vector/queue handles
3490                                  * broadcast/multicast, fatal errors,
3491                                  * and firmware events.  This in addition
3492                                  * to normal inbound NAPI processing.
3493                                  */
3494                                 intr_context->handler = qlge_isr;
3495                                 sprintf(intr_context->name, "%s-rx-%d",
3496                                         qdev->ndev->name, i);
3497                         } else {
3498                                 /*
3499                                  * Inbound queues handle unicast frames only.
3500                                  */
3501                                 intr_context->handler = qlge_msix_rx_isr;
3502                                 sprintf(intr_context->name, "%s-rx-%d",
3503                                         qdev->ndev->name, i);
3504                         }
3505                 }
3506         } else {
3507                 /*
3508                  * All rx_rings use the same intr_context since
3509                  * there is only one vector.
3510                  */
3511                 intr_context->intr = 0;
3512                 intr_context->qdev = qdev;
3513                 /*
3514                  * We set up each vectors enable/disable/read bits so
3515                  * there's no bit/mask calculations in the critical path.
3516                  */
3517                 intr_context->intr_en_mask =
3518                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3519                 intr_context->intr_dis_mask =
3520                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3521                     INTR_EN_TYPE_DISABLE;
3522                 intr_context->intr_read_mask =
3523                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3524                 /*
3525                  * Single interrupt means one handler for all rings.
3526                  */
3527                 intr_context->handler = qlge_isr;
3528                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3529                 /* Set up this vector's bit-mask that indicates
3530                  * which queues it services. In this case there is
3531                  * a single vector so it will service all RSS and
3532                  * TX completion rings.
3533                  */
3534                 ql_set_irq_mask(qdev, intr_context);
3535         }
3536         /* Tell the TX completion rings which MSIx vector
3537          * they will be using.
3538          */
3539         ql_set_tx_vect(qdev);
3540 }
3541
3542 static void ql_free_irq(struct ql_adapter *qdev)
3543 {
3544         int i;
3545         struct intr_context *intr_context = &qdev->intr_context[0];
3546
3547         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3548                 if (intr_context->hooked) {
3549                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3550                                 free_irq(qdev->msi_x_entry[i].vector,
3551                                          &qdev->rx_ring[i]);
3552                         } else {
3553                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3554                         }
3555                 }
3556         }
3557         ql_disable_msix(qdev);
3558 }
3559
3560 static int ql_request_irq(struct ql_adapter *qdev)
3561 {
3562         int i;
3563         int status = 0;
3564         struct pci_dev *pdev = qdev->pdev;
3565         struct intr_context *intr_context = &qdev->intr_context[0];
3566
3567         ql_resolve_queues_to_irqs(qdev);
3568
3569         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3570                 atomic_set(&intr_context->irq_cnt, 0);
3571                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3572                         status = request_irq(qdev->msi_x_entry[i].vector,
3573                                              intr_context->handler,
3574                                              0,
3575                                              intr_context->name,
3576                                              &qdev->rx_ring[i]);
3577                         if (status) {
3578                                 netif_err(qdev, ifup, qdev->ndev,
3579                                           "Failed request for MSIX interrupt %d.\n",
3580                                           i);
3581                                 goto err_irq;
3582                         }
3583                 } else {
3584                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3585                                      "trying msi or legacy interrupts.\n");
3586                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3587                                      "%s: irq = %d.\n", __func__, pdev->irq);
3588                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3589                                      "%s: context->name = %s.\n", __func__,
3590                                      intr_context->name);
3591                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3592                                      "%s: dev_id = 0x%p.\n", __func__,
3593                                      &qdev->rx_ring[0]);
3594                         status =
3595                             request_irq(pdev->irq, qlge_isr,
3596                                         test_bit(QL_MSI_ENABLED,
3597                                                  &qdev->
3598                                                  flags) ? 0 : IRQF_SHARED,
3599                                         intr_context->name, &qdev->rx_ring[0]);
3600                         if (status)
3601                                 goto err_irq;
3602
3603                         netif_err(qdev, ifup, qdev->ndev,
3604                                   "Hooked intr %d, queue type %s, with name %s.\n",
3605                                   i,
3606                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3607                                   "DEFAULT_Q" :
3608                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3609                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3610                                   intr_context->name);
3611                 }
3612                 intr_context->hooked = 1;
3613         }
3614         return status;
3615 err_irq:
3616         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3617         ql_free_irq(qdev);
3618         return status;
3619 }
3620
3621 static int ql_start_rss(struct ql_adapter *qdev)
3622 {
3623         static const u8 init_hash_seed[] = {
3624                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3625                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3626                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3627                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3628                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3629         };
3630         struct ricb *ricb = &qdev->ricb;
3631         int status = 0;
3632         int i;
3633         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3634
3635         memset((void *)ricb, 0, sizeof(*ricb));
3636
3637         ricb->base_cq = RSS_L4K;
3638         ricb->flags =
3639                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3640         ricb->mask = cpu_to_le16((u16)(0x3ff));
3641
3642         /*
3643          * Fill out the Indirection Table.
3644          */
3645         for (i = 0; i < 1024; i++)
3646                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3647
3648         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3649         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3650
3651         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3652         if (status) {
3653                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3654                 return status;
3655         }
3656         return status;
3657 }
3658
3659 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3660 {
3661         int i, status = 0;
3662
3663         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3664         if (status)
3665                 return status;
3666         /* Clear all the entries in the routing table. */
3667         for (i = 0; i < 16; i++) {
3668                 status = ql_set_routing_reg(qdev, i, 0, 0);
3669                 if (status) {
3670                         netif_err(qdev, ifup, qdev->ndev,
3671                                   "Failed to init routing register for CAM packets.\n");
3672                         break;
3673                 }
3674         }
3675         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3676         return status;
3677 }
3678
3679 /* Initialize the frame-to-queue routing. */
3680 static int ql_route_initialize(struct ql_adapter *qdev)
3681 {
3682         int status = 0;
3683
3684         /* Clear all the entries in the routing table. */
3685         status = ql_clear_routing_entries(qdev);
3686         if (status)
3687                 return status;
3688
3689         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3690         if (status)
3691                 return status;
3692
3693         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3694                                                 RT_IDX_IP_CSUM_ERR, 1);
3695         if (status) {
3696                 netif_err(qdev, ifup, qdev->ndev,
3697                         "Failed to init routing register "
3698                         "for IP CSUM error packets.\n");
3699                 goto exit;
3700         }
3701         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3702                                                 RT_IDX_TU_CSUM_ERR, 1);
3703         if (status) {
3704                 netif_err(qdev, ifup, qdev->ndev,
3705                         "Failed to init routing register "
3706                         "for TCP/UDP CSUM error packets.\n");
3707                 goto exit;
3708         }
3709         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3710         if (status) {
3711                 netif_err(qdev, ifup, qdev->ndev,
3712                           "Failed to init routing register for broadcast packets.\n");
3713                 goto exit;
3714         }
3715         /* If we have more than one inbound queue, then turn on RSS in the
3716          * routing block.
3717          */
3718         if (qdev->rss_ring_count > 1) {
3719                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3720                                         RT_IDX_RSS_MATCH, 1);
3721                 if (status) {
3722                         netif_err(qdev, ifup, qdev->ndev,
3723                                   "Failed to init routing register for MATCH RSS packets.\n");
3724                         goto exit;
3725                 }
3726         }
3727
3728         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3729                                     RT_IDX_CAM_HIT, 1);
3730         if (status)
3731                 netif_err(qdev, ifup, qdev->ndev,
3732                           "Failed to init routing register for CAM packets.\n");
3733 exit:
3734         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3735         return status;
3736 }
3737
3738 int ql_cam_route_initialize(struct ql_adapter *qdev)
3739 {
3740         int status, set;
3741
3742         /* If check if the link is up and use to
3743          * determine if we are setting or clearing
3744          * the MAC address in the CAM.
3745          */
3746         set = ql_read32(qdev, STS);
3747         set &= qdev->port_link_up;
3748         status = ql_set_mac_addr(qdev, set);
3749         if (status) {
3750                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3751                 return status;
3752         }
3753
3754         status = ql_route_initialize(qdev);
3755         if (status)
3756                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3757
3758         return status;
3759 }
3760
3761 static int ql_adapter_initialize(struct ql_adapter *qdev)
3762 {
3763         u32 value, mask;
3764         int i;
3765         int status = 0;
3766
3767         /*
3768          * Set up the System register to halt on errors.
3769          */
3770         value = SYS_EFE | SYS_FAE;
3771         mask = value << 16;
3772         ql_write32(qdev, SYS, mask | value);
3773
3774         /* Set the default queue, and VLAN behavior. */
3775         value = NIC_RCV_CFG_DFQ;
3776         mask = NIC_RCV_CFG_DFQ_MASK;
3777         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3778                 value |= NIC_RCV_CFG_RV;
3779                 mask |= (NIC_RCV_CFG_RV << 16);
3780         }
3781         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3782
3783         /* Set the MPI interrupt to enabled. */
3784         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3785
3786         /* Enable the function, set pagesize, enable error checking. */
3787         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3788             FSC_EC | FSC_VM_PAGE_4K;
3789         value |= SPLT_SETTING;
3790
3791         /* Set/clear header splitting. */
3792         mask = FSC_VM_PAGESIZE_MASK |
3793             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3794         ql_write32(qdev, FSC, mask | value);
3795
3796         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3797
3798         /* Set RX packet routing to use port/pci function on which the
3799          * packet arrived on in addition to usual frame routing.
3800          * This is helpful on bonding where both interfaces can have
3801          * the same MAC address.
3802          */
3803         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3804         /* Reroute all packets to our Interface.
3805          * They may have been routed to MPI firmware
3806          * due to WOL.
3807          */
3808         value = ql_read32(qdev, MGMT_RCV_CFG);
3809         value &= ~MGMT_RCV_CFG_RM;
3810         mask = 0xffff0000;
3811
3812         /* Sticky reg needs clearing due to WOL. */
3813         ql_write32(qdev, MGMT_RCV_CFG, mask);
3814         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3815
3816         /* Default WOL is enable on Mezz cards */
3817         if (qdev->pdev->subsystem_device == 0x0068 ||
3818                         qdev->pdev->subsystem_device == 0x0180)
3819                 qdev->wol = WAKE_MAGIC;
3820
3821         /* Start up the rx queues. */
3822         for (i = 0; i < qdev->rx_ring_count; i++) {
3823                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3824                 if (status) {
3825                         netif_err(qdev, ifup, qdev->ndev,
3826                                   "Failed to start rx ring[%d].\n", i);
3827                         return status;
3828                 }
3829         }
3830
3831         /* If there is more than one inbound completion queue
3832          * then download a RICB to configure RSS.
3833          */
3834         if (qdev->rss_ring_count > 1) {
3835                 status = ql_start_rss(qdev);
3836                 if (status) {
3837                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3838                         return status;
3839                 }
3840         }
3841
3842         /* Start up the tx queues. */
3843         for (i = 0; i < qdev->tx_ring_count; i++) {
3844                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3845                 if (status) {
3846                         netif_err(qdev, ifup, qdev->ndev,
3847                                   "Failed to start tx ring[%d].\n", i);
3848                         return status;
3849                 }
3850         }
3851
3852         /* Initialize the port and set the max framesize. */
3853         status = qdev->nic_ops->port_initialize(qdev);
3854         if (status)
3855                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3856
3857         /* Set up the MAC address and frame routing filter. */
3858         status = ql_cam_route_initialize(qdev);
3859         if (status) {
3860                 netif_err(qdev, ifup, qdev->ndev,
3861                           "Failed to init CAM/Routing tables.\n");
3862                 return status;
3863         }
3864
3865         /* Start NAPI for the RSS queues. */
3866         for (i = 0; i < qdev->rss_ring_count; i++)
3867                 napi_enable(&qdev->rx_ring[i].napi);
3868
3869         return status;
3870 }
3871
3872 /* Issue soft reset to chip. */
3873 static int ql_adapter_reset(struct ql_adapter *qdev)
3874 {
3875         u32 value;
3876         int status = 0;
3877         unsigned long end_jiffies;
3878
3879         /* Clear all the entries in the routing table. */
3880         status = ql_clear_routing_entries(qdev);
3881         if (status) {
3882                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3883                 return status;
3884         }
3885
3886         end_jiffies = jiffies +
3887                 max((unsigned long)1, usecs_to_jiffies(30));
3888
3889         /* Check if bit is set then skip the mailbox command and
3890          * clear the bit, else we are in normal reset process.
3891          */
3892         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3893                 /* Stop management traffic. */
3894                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3895
3896                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3897                 ql_wait_fifo_empty(qdev);
3898         } else
3899                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3900
3901         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3902
3903         do {
3904                 value = ql_read32(qdev, RST_FO);
3905                 if ((value & RST_FO_FR) == 0)
3906                         break;
3907                 cpu_relax();
3908         } while (time_before(jiffies, end_jiffies));
3909
3910         if (value & RST_FO_FR) {
3911                 netif_err(qdev, ifdown, qdev->ndev,
3912                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3913                 status = -ETIMEDOUT;
3914         }
3915
3916         /* Resume management traffic. */
3917         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3918         return status;
3919 }
3920
3921 static void ql_display_dev_info(struct net_device *ndev)
3922 {
3923         struct ql_adapter *qdev = netdev_priv(ndev);
3924
3925         netif_info(qdev, probe, qdev->ndev,
3926                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3927                    "XG Roll = %d, XG Rev = %d.\n",
3928                    qdev->func,
3929                    qdev->port,
3930                    qdev->chip_rev_id & 0x0000000f,
3931                    qdev->chip_rev_id >> 4 & 0x0000000f,
3932                    qdev->chip_rev_id >> 8 & 0x0000000f,
3933                    qdev->chip_rev_id >> 12 & 0x0000000f);
3934         netif_info(qdev, probe, qdev->ndev,
3935                    "MAC address %pM\n", ndev->dev_addr);
3936 }
3937
3938 static int ql_wol(struct ql_adapter *qdev)
3939 {
3940         int status = 0;
3941         u32 wol = MB_WOL_DISABLE;
3942
3943         /* The CAM is still intact after a reset, but if we
3944          * are doing WOL, then we may need to program the
3945          * routing regs. We would also need to issue the mailbox
3946          * commands to instruct the MPI what to do per the ethtool
3947          * settings.
3948          */
3949
3950         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3951                         WAKE_MCAST | WAKE_BCAST)) {
3952                 netif_err(qdev, ifdown, qdev->ndev,
3953                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3954                           qdev->wol);
3955                 return -EINVAL;
3956         }
3957
3958         if (qdev->wol & WAKE_MAGIC) {
3959                 status = ql_mb_wol_set_magic(qdev, 1);
3960                 if (status) {
3961                         netif_err(qdev, ifdown, qdev->ndev,
3962                                   "Failed to set magic packet on %s.\n",
3963                                   qdev->ndev->name);
3964                         return status;
3965                 } else
3966                         netif_info(qdev, drv, qdev->ndev,
3967                                    "Enabled magic packet successfully on %s.\n",
3968                                    qdev->ndev->name);
3969
3970                 wol |= MB_WOL_MAGIC_PKT;
3971         }
3972
3973         if (qdev->wol) {
3974                 wol |= MB_WOL_MODE_ON;
3975                 status = ql_mb_wol_mode(qdev, wol);
3976                 netif_err(qdev, drv, qdev->ndev,
3977                           "WOL %s (wol code 0x%x) on %s\n",
3978                           (status == 0) ? "Successfully set" : "Failed",
3979                           wol, qdev->ndev->name);
3980         }
3981
3982         return status;
3983 }
3984
3985 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3986 {
3987
3988         /* Don't kill the reset worker thread if we
3989          * are in the process of recovery.
3990          */
3991         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3992                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3993         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3994         cancel_delayed_work_sync(&qdev->mpi_work);
3995         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3996         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3997         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3998 }
3999
4000 static int ql_adapter_down(struct ql_adapter *qdev)
4001 {
4002         int i, status = 0;
4003
4004         ql_link_off(qdev);
4005
4006         ql_cancel_all_work_sync(qdev);
4007
4008         for (i = 0; i < qdev->rss_ring_count; i++)
4009                 napi_disable(&qdev->rx_ring[i].napi);
4010
4011         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4012
4013         ql_disable_interrupts(qdev);
4014
4015         ql_tx_ring_clean(qdev);
4016
4017         /* Call netif_napi_del() from common point.
4018          */
4019         for (i = 0; i < qdev->rss_ring_count; i++)
4020                 netif_napi_del(&qdev->rx_ring[i].napi);
4021
4022         status = ql_adapter_reset(qdev);
4023         if (status)
4024                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4025                           qdev->func);
4026         ql_free_rx_buffers(qdev);
4027
4028         return status;
4029 }
4030
4031 static int ql_adapter_up(struct ql_adapter *qdev)
4032 {
4033         int err = 0;
4034
4035         err = ql_adapter_initialize(qdev);
4036         if (err) {
4037                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4038                 goto err_init;
4039         }
4040         set_bit(QL_ADAPTER_UP, &qdev->flags);
4041         ql_alloc_rx_buffers(qdev);
4042         /* If the port is initialized and the
4043          * link is up the turn on the carrier.
4044          */
4045         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4046                         (ql_read32(qdev, STS) & qdev->port_link_up))
4047                 ql_link_on(qdev);
4048         /* Restore rx mode. */
4049         clear_bit(QL_ALLMULTI, &qdev->flags);
4050         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4051         qlge_set_multicast_list(qdev->ndev);
4052
4053         /* Restore vlan setting. */
4054         qlge_restore_vlan(qdev);
4055
4056         ql_enable_interrupts(qdev);
4057         ql_enable_all_completion_interrupts(qdev);
4058         netif_tx_start_all_queues(qdev->ndev);
4059
4060         return 0;
4061 err_init:
4062         ql_adapter_reset(qdev);
4063         return err;
4064 }
4065
4066 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4067 {
4068         ql_free_mem_resources(qdev);
4069         ql_free_irq(qdev);
4070 }
4071
4072 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4073 {
4074         int status = 0;
4075
4076         if (ql_alloc_mem_resources(qdev)) {
4077                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4078                 return -ENOMEM;
4079         }
4080         status = ql_request_irq(qdev);
4081         return status;
4082 }
4083
4084 static int qlge_close(struct net_device *ndev)
4085 {
4086         struct ql_adapter *qdev = netdev_priv(ndev);
4087
4088         /* If we hit pci_channel_io_perm_failure
4089          * failure condition, then we already
4090          * brought the adapter down.
4091          */
4092         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4093                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4094                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4095                 return 0;
4096         }
4097
4098         /*
4099          * Wait for device to recover from a reset.
4100          * (Rarely happens, but possible.)
4101          */
4102         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4103                 msleep(1);
4104         ql_adapter_down(qdev);
4105         ql_release_adapter_resources(qdev);
4106         return 0;
4107 }
4108
4109 static int ql_configure_rings(struct ql_adapter *qdev)
4110 {
4111         int i;
4112         struct rx_ring *rx_ring;
4113         struct tx_ring *tx_ring;
4114         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4115         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4116                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4117
4118         qdev->lbq_buf_order = get_order(lbq_buf_len);
4119
4120         /* In a perfect world we have one RSS ring for each CPU
4121          * and each has it's own vector.  To do that we ask for
4122          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4123          * vector count to what we actually get.  We then
4124          * allocate an RSS ring for each.
4125          * Essentially, we are doing min(cpu_count, msix_vector_count).
4126          */
4127         qdev->intr_count = cpu_cnt;
4128         ql_enable_msix(qdev);
4129         /* Adjust the RSS ring count to the actual vector count. */
4130         qdev->rss_ring_count = qdev->intr_count;
4131         qdev->tx_ring_count = cpu_cnt;
4132         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4133
4134         for (i = 0; i < qdev->tx_ring_count; i++) {
4135                 tx_ring = &qdev->tx_ring[i];
4136                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4137                 tx_ring->qdev = qdev;
4138                 tx_ring->wq_id = i;
4139                 tx_ring->wq_len = qdev->tx_ring_size;
4140                 tx_ring->wq_size =
4141                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4142
4143                 /*
4144                  * The completion queue ID for the tx rings start
4145                  * immediately after the rss rings.
4146                  */
4147                 tx_ring->cq_id = qdev->rss_ring_count + i;
4148         }
4149
4150         for (i = 0; i < qdev->rx_ring_count; i++) {
4151                 rx_ring = &qdev->rx_ring[i];
4152                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4153                 rx_ring->qdev = qdev;
4154                 rx_ring->cq_id = i;
4155                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4156                 if (i < qdev->rss_ring_count) {
4157                         /*
4158                          * Inbound (RSS) queues.
4159                          */
4160                         rx_ring->cq_len = qdev->rx_ring_size;
4161                         rx_ring->cq_size =
4162                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4163                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4164                         rx_ring->lbq_size =
4165                             rx_ring->lbq_len * sizeof(__le64);
4166                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4167                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4168                         rx_ring->sbq_size =
4169                             rx_ring->sbq_len * sizeof(__le64);
4170                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4171                         rx_ring->type = RX_Q;
4172                 } else {
4173                         /*
4174                          * Outbound queue handles outbound completions only.
4175                          */
4176                         /* outbound cq is same size as tx_ring it services. */
4177                         rx_ring->cq_len = qdev->tx_ring_size;
4178                         rx_ring->cq_size =
4179                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4180                         rx_ring->lbq_len = 0;
4181                         rx_ring->lbq_size = 0;
4182                         rx_ring->lbq_buf_size = 0;
4183                         rx_ring->sbq_len = 0;
4184                         rx_ring->sbq_size = 0;
4185                         rx_ring->sbq_buf_size = 0;
4186                         rx_ring->type = TX_Q;
4187                 }
4188         }
4189         return 0;
4190 }
4191
4192 static int qlge_open(struct net_device *ndev)
4193 {
4194         int err = 0;
4195         struct ql_adapter *qdev = netdev_priv(ndev);
4196
4197         err = ql_adapter_reset(qdev);
4198         if (err)
4199                 return err;
4200
4201         err = ql_configure_rings(qdev);
4202         if (err)
4203                 return err;
4204
4205         err = ql_get_adapter_resources(qdev);
4206         if (err)
4207                 goto error_up;
4208
4209         err = ql_adapter_up(qdev);
4210         if (err)
4211                 goto error_up;
4212
4213         return err;
4214
4215 error_up:
4216         ql_release_adapter_resources(qdev);
4217         return err;
4218 }
4219
4220 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4221 {
4222         struct rx_ring *rx_ring;
4223         int i, status;
4224         u32 lbq_buf_len;
4225
4226         /* Wait for an outstanding reset to complete. */
4227         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4228                 int i = 3;
4229                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4230                         netif_err(qdev, ifup, qdev->ndev,
4231                                   "Waiting for adapter UP...\n");
4232                         ssleep(1);
4233                 }
4234
4235                 if (!i) {
4236                         netif_err(qdev, ifup, qdev->ndev,
4237                                   "Timed out waiting for adapter UP\n");
4238                         return -ETIMEDOUT;
4239                 }
4240         }
4241
4242         status = ql_adapter_down(qdev);
4243         if (status)
4244                 goto error;
4245
4246         /* Get the new rx buffer size. */
4247         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4248                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4249         qdev->lbq_buf_order = get_order(lbq_buf_len);
4250
4251         for (i = 0; i < qdev->rss_ring_count; i++) {
4252                 rx_ring = &qdev->rx_ring[i];
4253                 /* Set the new size. */
4254                 rx_ring->lbq_buf_size = lbq_buf_len;
4255         }
4256
4257         status = ql_adapter_up(qdev);
4258         if (status)
4259                 goto error;
4260
4261         return status;
4262 error:
4263         netif_alert(qdev, ifup, qdev->ndev,
4264                     "Driver up/down cycle failed, closing device.\n");
4265         set_bit(QL_ADAPTER_UP, &qdev->flags);
4266         dev_close(qdev->ndev);
4267         return status;
4268 }
4269
4270 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4271 {
4272         struct ql_adapter *qdev = netdev_priv(ndev);
4273         int status;
4274
4275         if (ndev->mtu == 1500 && new_mtu == 9000) {
4276                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4277         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4278                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4279         } else
4280                 return -EINVAL;
4281
4282         queue_delayed_work(qdev->workqueue,
4283                         &qdev->mpi_port_cfg_work, 3*HZ);
4284
4285         ndev->mtu = new_mtu;
4286
4287         if (!netif_running(qdev->ndev)) {
4288                 return 0;
4289         }
4290
4291         status = ql_change_rx_buffers(qdev);
4292         if (status) {
4293                 netif_err(qdev, ifup, qdev->ndev,
4294                           "Changing MTU failed.\n");
4295         }
4296
4297         return status;
4298 }
4299
4300 static struct net_device_stats *qlge_get_stats(struct net_device
4301                                                *ndev)
4302 {
4303         struct ql_adapter *qdev = netdev_priv(ndev);
4304         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4305         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4306         unsigned long pkts, mcast, dropped, errors, bytes;
4307         int i;
4308
4309         /* Get RX stats. */
4310         pkts = mcast = dropped = errors = bytes = 0;
4311         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4312                         pkts += rx_ring->rx_packets;
4313                         bytes += rx_ring->rx_bytes;
4314                         dropped += rx_ring->rx_dropped;
4315                         errors += rx_ring->rx_errors;
4316                         mcast += rx_ring->rx_multicast;
4317         }
4318         ndev->stats.rx_packets = pkts;
4319         ndev->stats.rx_bytes = bytes;
4320         ndev->stats.rx_dropped = dropped;
4321         ndev->stats.rx_errors = errors;
4322         ndev->stats.multicast = mcast;
4323
4324         /* Get TX stats. */
4325         pkts = errors = bytes = 0;
4326         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4327                         pkts += tx_ring->tx_packets;
4328                         bytes += tx_ring->tx_bytes;
4329                         errors += tx_ring->tx_errors;
4330         }
4331         ndev->stats.tx_packets = pkts;
4332         ndev->stats.tx_bytes = bytes;
4333         ndev->stats.tx_errors = errors;
4334         return &ndev->stats;
4335 }
4336
4337 static void qlge_set_multicast_list(struct net_device *ndev)
4338 {
4339         struct ql_adapter *qdev = netdev_priv(ndev);
4340         struct netdev_hw_addr *ha;
4341         int i, status;
4342
4343         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4344         if (status)
4345                 return;
4346         /*
4347          * Set or clear promiscuous mode if a
4348          * transition is taking place.
4349          */
4350         if (ndev->flags & IFF_PROMISC) {
4351                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4352                         if (ql_set_routing_reg
4353                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4354                                 netif_err(qdev, hw, qdev->ndev,
4355                                           "Failed to set promiscuous mode.\n");
4356                         } else {
4357                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4358                         }
4359                 }
4360         } else {
4361                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4362                         if (ql_set_routing_reg
4363                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4364                                 netif_err(qdev, hw, qdev->ndev,
4365                                           "Failed to clear promiscuous mode.\n");
4366                         } else {
4367                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4368                         }
4369                 }
4370         }
4371
4372         /*
4373          * Set or clear all multicast mode if a
4374          * transition is taking place.
4375          */
4376         if ((ndev->flags & IFF_ALLMULTI) ||
4377             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4378                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4379                         if (ql_set_routing_reg
4380                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4381                                 netif_err(qdev, hw, qdev->ndev,
4382                                           "Failed to set all-multi mode.\n");
4383                         } else {
4384                                 set_bit(QL_ALLMULTI, &qdev->flags);
4385                         }
4386                 }
4387         } else {
4388                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4389                         if (ql_set_routing_reg
4390                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4391                                 netif_err(qdev, hw, qdev->ndev,
4392                                           "Failed to clear all-multi mode.\n");
4393                         } else {
4394                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4395                         }
4396                 }
4397         }
4398
4399         if (!netdev_mc_empty(ndev)) {
4400                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4401                 if (status)
4402                         goto exit;
4403                 i = 0;
4404                 netdev_for_each_mc_addr(ha, ndev) {
4405                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4406                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4407                                 netif_err(qdev, hw, qdev->ndev,
4408                                           "Failed to loadmulticast address.\n");
4409                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4410                                 goto exit;
4411                         }
4412                         i++;
4413                 }
4414                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4415                 if (ql_set_routing_reg
4416                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4417                         netif_err(qdev, hw, qdev->ndev,
4418                                   "Failed to set multicast match mode.\n");
4419                 } else {
4420                         set_bit(QL_ALLMULTI, &qdev->flags);
4421                 }
4422         }
4423 exit:
4424         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4425 }
4426
4427 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4428 {
4429         struct ql_adapter *qdev = netdev_priv(ndev);
4430         struct sockaddr *addr = p;
4431         int status;
4432
4433         if (!is_valid_ether_addr(addr->sa_data))
4434                 return -EADDRNOTAVAIL;
4435         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4436         /* Update local copy of current mac address. */
4437         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4438
4439         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4440         if (status)
4441                 return status;
4442         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4443                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4444         if (status)
4445                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4446         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4447         return status;
4448 }
4449
4450 static void qlge_tx_timeout(struct net_device *ndev)
4451 {
4452         struct ql_adapter *qdev = netdev_priv(ndev);
4453         ql_queue_asic_error(qdev);
4454 }
4455
4456 static void ql_asic_reset_work(struct work_struct *work)
4457 {
4458         struct ql_adapter *qdev =
4459             container_of(work, struct ql_adapter, asic_reset_work.work);
4460         int status;
4461         rtnl_lock();
4462         status = ql_adapter_down(qdev);
4463         if (status)
4464                 goto error;
4465
4466         status = ql_adapter_up(qdev);
4467         if (status)
4468                 goto error;
4469
4470         /* Restore rx mode. */
4471         clear_bit(QL_ALLMULTI, &qdev->flags);
4472         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4473         qlge_set_multicast_list(qdev->ndev);
4474
4475         rtnl_unlock();
4476         return;
4477 error:
4478         netif_alert(qdev, ifup, qdev->ndev,
4479                     "Driver up/down cycle failed, closing device\n");
4480
4481         set_bit(QL_ADAPTER_UP, &qdev->flags);
4482         dev_close(qdev->ndev);
4483         rtnl_unlock();
4484 }
4485
4486 static const struct nic_operations qla8012_nic_ops = {
4487         .get_flash              = ql_get_8012_flash_params,
4488         .port_initialize        = ql_8012_port_initialize,
4489 };
4490
4491 static const struct nic_operations qla8000_nic_ops = {
4492         .get_flash              = ql_get_8000_flash_params,
4493         .port_initialize        = ql_8000_port_initialize,
4494 };
4495
4496 /* Find the pcie function number for the other NIC
4497  * on this chip.  Since both NIC functions share a
4498  * common firmware we have the lowest enabled function
4499  * do any common work.  Examples would be resetting
4500  * after a fatal firmware error, or doing a firmware
4501  * coredump.
4502  */
4503 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4504 {
4505         int status = 0;
4506         u32 temp;
4507         u32 nic_func1, nic_func2;
4508
4509         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4510                         &temp);
4511         if (status)
4512                 return status;
4513
4514         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4515                         MPI_TEST_NIC_FUNC_MASK);
4516         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4517                         MPI_TEST_NIC_FUNC_MASK);
4518
4519         if (qdev->func == nic_func1)
4520                 qdev->alt_func = nic_func2;
4521         else if (qdev->func == nic_func2)
4522                 qdev->alt_func = nic_func1;
4523         else
4524                 status = -EIO;
4525
4526         return status;
4527 }
4528
4529 static int ql_get_board_info(struct ql_adapter *qdev)
4530 {
4531         int status;
4532         qdev->func =
4533             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4534         if (qdev->func > 3)
4535                 return -EIO;
4536
4537         status = ql_get_alt_pcie_func(qdev);
4538         if (status)
4539                 return status;
4540
4541         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4542         if (qdev->port) {
4543                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4544                 qdev->port_link_up = STS_PL1;
4545                 qdev->port_init = STS_PI1;
4546                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4547                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4548         } else {
4549                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4550                 qdev->port_link_up = STS_PL0;
4551                 qdev->port_init = STS_PI0;
4552                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4553                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4554         }
4555         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4556         qdev->device_id = qdev->pdev->device;
4557         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4558                 qdev->nic_ops = &qla8012_nic_ops;
4559         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4560                 qdev->nic_ops = &qla8000_nic_ops;
4561         return status;
4562 }
4563
4564 static void ql_release_all(struct pci_dev *pdev)
4565 {
4566         struct net_device *ndev = pci_get_drvdata(pdev);
4567         struct ql_adapter *qdev = netdev_priv(ndev);
4568
4569         if (qdev->workqueue) {
4570                 destroy_workqueue(qdev->workqueue);
4571                 qdev->workqueue = NULL;
4572         }
4573
4574         if (qdev->reg_base)
4575                 iounmap(qdev->reg_base);
4576         if (qdev->doorbell_area)
4577                 iounmap(qdev->doorbell_area);
4578         vfree(qdev->mpi_coredump);
4579         pci_release_regions(pdev);
4580 }
4581
4582 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4583                           int cards_found)
4584 {
4585         struct ql_adapter *qdev = netdev_priv(ndev);
4586         int err = 0;
4587
4588         memset((void *)qdev, 0, sizeof(*qdev));
4589         err = pci_enable_device(pdev);
4590         if (err) {
4591                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4592                 return err;
4593         }
4594
4595         qdev->ndev = ndev;
4596         qdev->pdev = pdev;
4597         pci_set_drvdata(pdev, ndev);
4598
4599         /* Set PCIe read request size */
4600         err = pcie_set_readrq(pdev, 4096);
4601         if (err) {
4602                 dev_err(&pdev->dev, "Set readrq failed.\n");
4603                 goto err_out1;
4604         }
4605
4606         err = pci_request_regions(pdev, DRV_NAME);
4607         if (err) {
4608                 dev_err(&pdev->dev, "PCI region request failed.\n");
4609                 return err;
4610         }
4611
4612         pci_set_master(pdev);
4613         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4614                 set_bit(QL_DMA64, &qdev->flags);
4615                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4616         } else {
4617                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4618                 if (!err)
4619                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4620         }
4621
4622         if (err) {
4623                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4624                 goto err_out2;
4625         }
4626
4627         /* Set PCIe reset type for EEH to fundamental. */
4628         pdev->needs_freset = 1;
4629         pci_save_state(pdev);
4630         qdev->reg_base =
4631             ioremap_nocache(pci_resource_start(pdev, 1),
4632                             pci_resource_len(pdev, 1));
4633         if (!qdev->reg_base) {
4634                 dev_err(&pdev->dev, "Register mapping failed.\n");
4635                 err = -ENOMEM;
4636                 goto err_out2;
4637         }
4638
4639         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4640         qdev->doorbell_area =
4641             ioremap_nocache(pci_resource_start(pdev, 3),
4642                             pci_resource_len(pdev, 3));
4643         if (!qdev->doorbell_area) {
4644                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4645                 err = -ENOMEM;
4646                 goto err_out2;
4647         }
4648
4649         err = ql_get_board_info(qdev);
4650         if (err) {
4651                 dev_err(&pdev->dev, "Register access failed.\n");
4652                 err = -EIO;
4653                 goto err_out2;
4654         }
4655         qdev->msg_enable = netif_msg_init(debug, default_msg);
4656         spin_lock_init(&qdev->hw_lock);
4657         spin_lock_init(&qdev->stats_lock);
4658
4659         if (qlge_mpi_coredump) {
4660                 qdev->mpi_coredump =
4661                         vmalloc(sizeof(struct ql_mpi_coredump));
4662                 if (qdev->mpi_coredump == NULL) {
4663                         err = -ENOMEM;
4664                         goto err_out2;
4665                 }
4666                 if (qlge_force_coredump)
4667                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4668         }
4669         /* make sure the EEPROM is good */
4670         err = qdev->nic_ops->get_flash(qdev);
4671         if (err) {
4672                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4673                 goto err_out2;
4674         }
4675
4676         /* Keep local copy of current mac address. */
4677         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4678
4679         /* Set up the default ring sizes. */
4680         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4681         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4682
4683         /* Set up the coalescing parameters. */
4684         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4685         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4686         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4687         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4688
4689         /*
4690          * Set up the operating parameters.
4691          */
4692         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4693         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4694         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4695         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4696         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4697         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4698         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4699         init_completion(&qdev->ide_completion);
4700         mutex_init(&qdev->mpi_mutex);
4701
4702         if (!cards_found) {
4703                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4704                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4705                          DRV_NAME, DRV_VERSION);
4706         }
4707         return 0;
4708 err_out2:
4709         ql_release_all(pdev);
4710 err_out1:
4711         pci_disable_device(pdev);
4712         return err;
4713 }
4714
4715 static const struct net_device_ops qlge_netdev_ops = {
4716         .ndo_open               = qlge_open,
4717         .ndo_stop               = qlge_close,
4718         .ndo_start_xmit         = qlge_send,
4719         .ndo_change_mtu         = qlge_change_mtu,
4720         .ndo_get_stats          = qlge_get_stats,
4721         .ndo_set_rx_mode        = qlge_set_multicast_list,
4722         .ndo_set_mac_address    = qlge_set_mac_address,
4723         .ndo_validate_addr      = eth_validate_addr,
4724         .ndo_tx_timeout         = qlge_tx_timeout,
4725         .ndo_fix_features       = qlge_fix_features,
4726         .ndo_set_features       = qlge_set_features,
4727         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4728         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4729 };
4730
4731 static void ql_timer(unsigned long data)
4732 {
4733         struct ql_adapter *qdev = (struct ql_adapter *)data;
4734         u32 var = 0;
4735
4736         var = ql_read32(qdev, STS);
4737         if (pci_channel_offline(qdev->pdev)) {
4738                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4739                 return;
4740         }
4741
4742         mod_timer(&qdev->timer, jiffies + (5*HZ));
4743 }
4744
4745 static int qlge_probe(struct pci_dev *pdev,
4746                       const struct pci_device_id *pci_entry)
4747 {
4748         struct net_device *ndev = NULL;
4749         struct ql_adapter *qdev = NULL;
4750         static int cards_found = 0;
4751         int err = 0;
4752
4753         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4754                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4755         if (!ndev)
4756                 return -ENOMEM;
4757
4758         err = ql_init_device(pdev, ndev, cards_found);
4759         if (err < 0) {
4760                 free_netdev(ndev);
4761                 return err;
4762         }
4763
4764         qdev = netdev_priv(ndev);
4765         SET_NETDEV_DEV(ndev, &pdev->dev);
4766         ndev->hw_features = NETIF_F_SG |
4767                             NETIF_F_IP_CSUM |
4768                             NETIF_F_TSO |
4769                             NETIF_F_TSO_ECN |
4770                             NETIF_F_HW_VLAN_CTAG_TX |
4771                             NETIF_F_HW_VLAN_CTAG_RX |
4772                             NETIF_F_HW_VLAN_CTAG_FILTER |
4773                             NETIF_F_RXCSUM;
4774         ndev->features = ndev->hw_features;
4775         ndev->vlan_features = ndev->hw_features;
4776
4777         if (test_bit(QL_DMA64, &qdev->flags))
4778                 ndev->features |= NETIF_F_HIGHDMA;
4779
4780         /*
4781          * Set up net_device structure.
4782          */
4783         ndev->tx_queue_len = qdev->tx_ring_size;
4784         ndev->irq = pdev->irq;
4785
4786         ndev->netdev_ops = &qlge_netdev_ops;
4787         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4788         ndev->watchdog_timeo = 10 * HZ;
4789
4790         err = register_netdev(ndev);
4791         if (err) {
4792                 dev_err(&pdev->dev, "net device registration failed.\n");
4793                 ql_release_all(pdev);
4794                 pci_disable_device(pdev);
4795                 free_netdev(ndev);
4796                 return err;
4797         }
4798         /* Start up the timer to trigger EEH if
4799          * the bus goes dead
4800          */
4801         init_timer_deferrable(&qdev->timer);
4802         qdev->timer.data = (unsigned long)qdev;
4803         qdev->timer.function = ql_timer;
4804         qdev->timer.expires = jiffies + (5*HZ);
4805         add_timer(&qdev->timer);
4806         ql_link_off(qdev);
4807         ql_display_dev_info(ndev);
4808         atomic_set(&qdev->lb_count, 0);
4809         cards_found++;
4810         return 0;
4811 }
4812
4813 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4814 {
4815         return qlge_send(skb, ndev);
4816 }
4817
4818 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4819 {
4820         return ql_clean_inbound_rx_ring(rx_ring, budget);
4821 }
4822
4823 static void qlge_remove(struct pci_dev *pdev)
4824 {
4825         struct net_device *ndev = pci_get_drvdata(pdev);
4826         struct ql_adapter *qdev = netdev_priv(ndev);
4827         del_timer_sync(&qdev->timer);
4828         ql_cancel_all_work_sync(qdev);
4829         unregister_netdev(ndev);
4830         ql_release_all(pdev);
4831         pci_disable_device(pdev);
4832         free_netdev(ndev);
4833 }
4834
4835 /* Clean up resources without touching hardware. */
4836 static void ql_eeh_close(struct net_device *ndev)
4837 {
4838         int i;
4839         struct ql_adapter *qdev = netdev_priv(ndev);
4840
4841         if (netif_carrier_ok(ndev)) {
4842                 netif_carrier_off(ndev);
4843                 netif_stop_queue(ndev);
4844         }
4845
4846         /* Disabling the timer */
4847         del_timer_sync(&qdev->timer);
4848         ql_cancel_all_work_sync(qdev);
4849
4850         for (i = 0; i < qdev->rss_ring_count; i++)
4851                 netif_napi_del(&qdev->rx_ring[i].napi);
4852
4853         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4854         ql_tx_ring_clean(qdev);
4855         ql_free_rx_buffers(qdev);
4856         ql_release_adapter_resources(qdev);
4857 }
4858
4859 /*
4860  * This callback is called by the PCI subsystem whenever
4861  * a PCI bus error is detected.
4862  */
4863 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4864                                                enum pci_channel_state state)
4865 {
4866         struct net_device *ndev = pci_get_drvdata(pdev);
4867         struct ql_adapter *qdev = netdev_priv(ndev);
4868
4869         switch (state) {
4870         case pci_channel_io_normal:
4871                 return PCI_ERS_RESULT_CAN_RECOVER;
4872         case pci_channel_io_frozen:
4873                 netif_device_detach(ndev);
4874                 if (netif_running(ndev))
4875                         ql_eeh_close(ndev);
4876                 pci_disable_device(pdev);
4877                 return PCI_ERS_RESULT_NEED_RESET;
4878         case pci_channel_io_perm_failure:
4879                 dev_err(&pdev->dev,
4880                         "%s: pci_channel_io_perm_failure.\n", __func__);
4881                 ql_eeh_close(ndev);
4882                 set_bit(QL_EEH_FATAL, &qdev->flags);
4883                 return PCI_ERS_RESULT_DISCONNECT;
4884         }
4885
4886         /* Request a slot reset. */
4887         return PCI_ERS_RESULT_NEED_RESET;
4888 }
4889
4890 /*
4891  * This callback is called after the PCI buss has been reset.
4892  * Basically, this tries to restart the card from scratch.
4893  * This is a shortened version of the device probe/discovery code,
4894  * it resembles the first-half of the () routine.
4895  */
4896 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4897 {
4898         struct net_device *ndev = pci_get_drvdata(pdev);
4899         struct ql_adapter *qdev = netdev_priv(ndev);
4900
4901         pdev->error_state = pci_channel_io_normal;
4902
4903         pci_restore_state(pdev);
4904         if (pci_enable_device(pdev)) {
4905                 netif_err(qdev, ifup, qdev->ndev,
4906                           "Cannot re-enable PCI device after reset.\n");
4907                 return PCI_ERS_RESULT_DISCONNECT;
4908         }
4909         pci_set_master(pdev);
4910
4911         if (ql_adapter_reset(qdev)) {
4912                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4913                 set_bit(QL_EEH_FATAL, &qdev->flags);
4914                 return PCI_ERS_RESULT_DISCONNECT;
4915         }
4916
4917         return PCI_ERS_RESULT_RECOVERED;
4918 }
4919
4920 static void qlge_io_resume(struct pci_dev *pdev)
4921 {
4922         struct net_device *ndev = pci_get_drvdata(pdev);
4923         struct ql_adapter *qdev = netdev_priv(ndev);
4924         int err = 0;
4925
4926         if (netif_running(ndev)) {
4927                 err = qlge_open(ndev);
4928                 if (err) {
4929                         netif_err(qdev, ifup, qdev->ndev,
4930                                   "Device initialization failed after reset.\n");
4931                         return;
4932                 }
4933         } else {
4934                 netif_err(qdev, ifup, qdev->ndev,
4935                           "Device was not running prior to EEH.\n");
4936         }
4937         mod_timer(&qdev->timer, jiffies + (5*HZ));
4938         netif_device_attach(ndev);
4939 }
4940
4941 static const struct pci_error_handlers qlge_err_handler = {
4942         .error_detected = qlge_io_error_detected,
4943         .slot_reset = qlge_io_slot_reset,
4944         .resume = qlge_io_resume,
4945 };
4946
4947 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4948 {
4949         struct net_device *ndev = pci_get_drvdata(pdev);
4950         struct ql_adapter *qdev = netdev_priv(ndev);
4951         int err;
4952
4953         netif_device_detach(ndev);
4954         del_timer_sync(&qdev->timer);
4955
4956         if (netif_running(ndev)) {
4957                 err = ql_adapter_down(qdev);
4958                 if (!err)
4959                         return err;
4960         }
4961
4962         ql_wol(qdev);
4963         err = pci_save_state(pdev);
4964         if (err)
4965                 return err;
4966
4967         pci_disable_device(pdev);
4968
4969         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4970
4971         return 0;
4972 }
4973
4974 #ifdef CONFIG_PM
4975 static int qlge_resume(struct pci_dev *pdev)
4976 {
4977         struct net_device *ndev = pci_get_drvdata(pdev);
4978         struct ql_adapter *qdev = netdev_priv(ndev);
4979         int err;
4980
4981         pci_set_power_state(pdev, PCI_D0);
4982         pci_restore_state(pdev);
4983         err = pci_enable_device(pdev);
4984         if (err) {
4985                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4986                 return err;
4987         }
4988         pci_set_master(pdev);
4989
4990         pci_enable_wake(pdev, PCI_D3hot, 0);
4991         pci_enable_wake(pdev, PCI_D3cold, 0);
4992
4993         if (netif_running(ndev)) {
4994                 err = ql_adapter_up(qdev);
4995                 if (err)
4996                         return err;
4997         }
4998
4999         mod_timer(&qdev->timer, jiffies + (5*HZ));
5000         netif_device_attach(ndev);
5001
5002         return 0;
5003 }
5004 #endif /* CONFIG_PM */
5005
5006 static void qlge_shutdown(struct pci_dev *pdev)
5007 {
5008         qlge_suspend(pdev, PMSG_SUSPEND);
5009 }
5010
5011 static struct pci_driver qlge_driver = {
5012         .name = DRV_NAME,
5013         .id_table = qlge_pci_tbl,
5014         .probe = qlge_probe,
5015         .remove = qlge_remove,
5016 #ifdef CONFIG_PM
5017         .suspend = qlge_suspend,
5018         .resume = qlge_resume,
5019 #endif
5020         .shutdown = qlge_shutdown,
5021         .err_handler = &qlge_err_handler
5022 };
5023
5024 module_pci_driver(qlge_driver);