]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/renesas/sh_eth.c
13abe917cbdf55d4bebc0371b4be15ec070c6be4
[karo-tx-linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43
44 #include "sh_eth.h"
45
46 #define SH_ETH_DEF_MSG_ENABLE \
47                 (NETIF_MSG_LINK | \
48                 NETIF_MSG_TIMER | \
49                 NETIF_MSG_RX_ERR| \
50                 NETIF_MSG_TX_ERR)
51
52 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
53         [EDSR]          = 0x0000,
54         [EDMR]          = 0x0400,
55         [EDTRR]         = 0x0408,
56         [EDRRR]         = 0x0410,
57         [EESR]          = 0x0428,
58         [EESIPR]        = 0x0430,
59         [TDLAR]         = 0x0010,
60         [TDFAR]         = 0x0014,
61         [TDFXR]         = 0x0018,
62         [TDFFR]         = 0x001c,
63         [RDLAR]         = 0x0030,
64         [RDFAR]         = 0x0034,
65         [RDFXR]         = 0x0038,
66         [RDFFR]         = 0x003c,
67         [TRSCER]        = 0x0438,
68         [RMFCR]         = 0x0440,
69         [TFTR]          = 0x0448,
70         [FDR]           = 0x0450,
71         [RMCR]          = 0x0458,
72         [RPADIR]        = 0x0460,
73         [FCFTR]         = 0x0468,
74         [CSMR]          = 0x04E4,
75
76         [ECMR]          = 0x0500,
77         [ECSR]          = 0x0510,
78         [ECSIPR]        = 0x0518,
79         [PIR]           = 0x0520,
80         [PSR]           = 0x0528,
81         [PIPR]          = 0x052c,
82         [RFLR]          = 0x0508,
83         [APR]           = 0x0554,
84         [MPR]           = 0x0558,
85         [PFTCR]         = 0x055c,
86         [PFRCR]         = 0x0560,
87         [TPAUSER]       = 0x0564,
88         [GECMR]         = 0x05b0,
89         [BCULR]         = 0x05b4,
90         [MAHR]          = 0x05c0,
91         [MALR]          = 0x05c8,
92         [TROCR]         = 0x0700,
93         [CDCR]          = 0x0708,
94         [LCCR]          = 0x0710,
95         [CEFCR]         = 0x0740,
96         [FRECR]         = 0x0748,
97         [TSFRCR]        = 0x0750,
98         [TLFRCR]        = 0x0758,
99         [RFCR]          = 0x0760,
100         [CERCR]         = 0x0768,
101         [CEECR]         = 0x0770,
102         [MAFCR]         = 0x0778,
103         [RMII_MII]      = 0x0790,
104
105         [ARSTR]         = 0x0000,
106         [TSU_CTRST]     = 0x0004,
107         [TSU_FWEN0]     = 0x0010,
108         [TSU_FWEN1]     = 0x0014,
109         [TSU_FCM]       = 0x0018,
110         [TSU_BSYSL0]    = 0x0020,
111         [TSU_BSYSL1]    = 0x0024,
112         [TSU_PRISL0]    = 0x0028,
113         [TSU_PRISL1]    = 0x002c,
114         [TSU_FWSL0]     = 0x0030,
115         [TSU_FWSL1]     = 0x0034,
116         [TSU_FWSLC]     = 0x0038,
117         [TSU_QTAG0]     = 0x0040,
118         [TSU_QTAG1]     = 0x0044,
119         [TSU_FWSR]      = 0x0050,
120         [TSU_FWINMK]    = 0x0054,
121         [TSU_ADQT0]     = 0x0048,
122         [TSU_ADQT1]     = 0x004c,
123         [TSU_VTAG0]     = 0x0058,
124         [TSU_VTAG1]     = 0x005c,
125         [TSU_ADSBSY]    = 0x0060,
126         [TSU_TEN]       = 0x0064,
127         [TSU_POST1]     = 0x0070,
128         [TSU_POST2]     = 0x0074,
129         [TSU_POST3]     = 0x0078,
130         [TSU_POST4]     = 0x007c,
131         [TSU_ADRH0]     = 0x0100,
132         [TSU_ADRL0]     = 0x0104,
133         [TSU_ADRH31]    = 0x01f8,
134         [TSU_ADRL31]    = 0x01fc,
135
136         [TXNLCR0]       = 0x0080,
137         [TXALCR0]       = 0x0084,
138         [RXNLCR0]       = 0x0088,
139         [RXALCR0]       = 0x008c,
140         [FWNLCR0]       = 0x0090,
141         [FWALCR0]       = 0x0094,
142         [TXNLCR1]       = 0x00a0,
143         [TXALCR1]       = 0x00a0,
144         [RXNLCR1]       = 0x00a8,
145         [RXALCR1]       = 0x00ac,
146         [FWNLCR1]       = 0x00b0,
147         [FWALCR1]       = 0x00b4,
148 };
149
150 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
151         [ECMR]          = 0x0100,
152         [RFLR]          = 0x0108,
153         [ECSR]          = 0x0110,
154         [ECSIPR]        = 0x0118,
155         [PIR]           = 0x0120,
156         [PSR]           = 0x0128,
157         [RDMLR]         = 0x0140,
158         [IPGR]          = 0x0150,
159         [APR]           = 0x0154,
160         [MPR]           = 0x0158,
161         [TPAUSER]       = 0x0164,
162         [RFCF]          = 0x0160,
163         [TPAUSECR]      = 0x0168,
164         [BCFRR]         = 0x016c,
165         [MAHR]          = 0x01c0,
166         [MALR]          = 0x01c8,
167         [TROCR]         = 0x01d0,
168         [CDCR]          = 0x01d4,
169         [LCCR]          = 0x01d8,
170         [CNDCR]         = 0x01dc,
171         [CEFCR]         = 0x01e4,
172         [FRECR]         = 0x01e8,
173         [TSFRCR]        = 0x01ec,
174         [TLFRCR]        = 0x01f0,
175         [RFCR]          = 0x01f4,
176         [MAFCR]         = 0x01f8,
177         [RTRATE]        = 0x01fc,
178
179         [EDMR]          = 0x0000,
180         [EDTRR]         = 0x0008,
181         [EDRRR]         = 0x0010,
182         [TDLAR]         = 0x0018,
183         [RDLAR]         = 0x0020,
184         [EESR]          = 0x0028,
185         [EESIPR]        = 0x0030,
186         [TRSCER]        = 0x0038,
187         [RMFCR]         = 0x0040,
188         [TFTR]          = 0x0048,
189         [FDR]           = 0x0050,
190         [RMCR]          = 0x0058,
191         [TFUCR]         = 0x0064,
192         [RFOCR]         = 0x0068,
193         [FCFTR]         = 0x0070,
194         [RPADIR]        = 0x0078,
195         [TRIMD]         = 0x007c,
196         [RBWAR]         = 0x00c8,
197         [RDFAR]         = 0x00cc,
198         [TBRAR]         = 0x00d4,
199         [TDFAR]         = 0x00d8,
200 };
201
202 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
203         [ECMR]          = 0x0160,
204         [ECSR]          = 0x0164,
205         [ECSIPR]        = 0x0168,
206         [PIR]           = 0x016c,
207         [MAHR]          = 0x0170,
208         [MALR]          = 0x0174,
209         [RFLR]          = 0x0178,
210         [PSR]           = 0x017c,
211         [TROCR]         = 0x0180,
212         [CDCR]          = 0x0184,
213         [LCCR]          = 0x0188,
214         [CNDCR]         = 0x018c,
215         [CEFCR]         = 0x0194,
216         [FRECR]         = 0x0198,
217         [TSFRCR]        = 0x019c,
218         [TLFRCR]        = 0x01a0,
219         [RFCR]          = 0x01a4,
220         [MAFCR]         = 0x01a8,
221         [IPGR]          = 0x01b4,
222         [APR]           = 0x01b8,
223         [MPR]           = 0x01bc,
224         [TPAUSER]       = 0x01c4,
225         [BCFR]          = 0x01cc,
226
227         [ARSTR]         = 0x0000,
228         [TSU_CTRST]     = 0x0004,
229         [TSU_FWEN0]     = 0x0010,
230         [TSU_FWEN1]     = 0x0014,
231         [TSU_FCM]       = 0x0018,
232         [TSU_BSYSL0]    = 0x0020,
233         [TSU_BSYSL1]    = 0x0024,
234         [TSU_PRISL0]    = 0x0028,
235         [TSU_PRISL1]    = 0x002c,
236         [TSU_FWSL0]     = 0x0030,
237         [TSU_FWSL1]     = 0x0034,
238         [TSU_FWSLC]     = 0x0038,
239         [TSU_QTAGM0]    = 0x0040,
240         [TSU_QTAGM1]    = 0x0044,
241         [TSU_ADQT0]     = 0x0048,
242         [TSU_ADQT1]     = 0x004c,
243         [TSU_FWSR]      = 0x0050,
244         [TSU_FWINMK]    = 0x0054,
245         [TSU_ADSBSY]    = 0x0060,
246         [TSU_TEN]       = 0x0064,
247         [TSU_POST1]     = 0x0070,
248         [TSU_POST2]     = 0x0074,
249         [TSU_POST3]     = 0x0078,
250         [TSU_POST4]     = 0x007c,
251
252         [TXNLCR0]       = 0x0080,
253         [TXALCR0]       = 0x0084,
254         [RXNLCR0]       = 0x0088,
255         [RXALCR0]       = 0x008c,
256         [FWNLCR0]       = 0x0090,
257         [FWALCR0]       = 0x0094,
258         [TXNLCR1]       = 0x00a0,
259         [TXALCR1]       = 0x00a0,
260         [RXNLCR1]       = 0x00a8,
261         [RXALCR1]       = 0x00ac,
262         [FWNLCR1]       = 0x00b0,
263         [FWALCR1]       = 0x00b4,
264
265         [TSU_ADRH0]     = 0x0100,
266         [TSU_ADRL0]     = 0x0104,
267         [TSU_ADRL31]    = 0x01fc,
268 };
269
270 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
271         defined(CONFIG_CPU_SUBTYPE_SH7763) || \
272         defined(CONFIG_ARCH_R8A7740)
273 static void sh_eth_select_mii(struct net_device *ndev)
274 {
275         u32 value = 0x0;
276         struct sh_eth_private *mdp = netdev_priv(ndev);
277
278         switch (mdp->phy_interface) {
279         case PHY_INTERFACE_MODE_GMII:
280                 value = 0x2;
281                 break;
282         case PHY_INTERFACE_MODE_MII:
283                 value = 0x1;
284                 break;
285         case PHY_INTERFACE_MODE_RMII:
286                 value = 0x0;
287                 break;
288         default:
289                 pr_warn("PHY interface mode was not setup. Set to MII.\n");
290                 value = 0x1;
291                 break;
292         }
293
294         sh_eth_write(ndev, value, RMII_MII);
295 }
296 #endif
297
298 /* There is CPU dependent code */
299 #if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
300 #define SH_ETH_RESET_DEFAULT    1
301 static void sh_eth_set_duplex(struct net_device *ndev)
302 {
303         struct sh_eth_private *mdp = netdev_priv(ndev);
304
305         if (mdp->duplex) /* Full */
306                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
307         else            /* Half */
308                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
309 }
310
311 static void sh_eth_set_rate(struct net_device *ndev)
312 {
313         struct sh_eth_private *mdp = netdev_priv(ndev);
314         unsigned int bits = ECMR_RTM;
315
316 #if defined(CONFIG_ARCH_R8A7779)
317         bits |= ECMR_ELB;
318 #endif
319
320         switch (mdp->speed) {
321         case 10: /* 10BASE */
322                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
323                 break;
324         case 100:/* 100BASE */
325                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
326                 break;
327         default:
328                 break;
329         }
330 }
331
332 /* SH7724 */
333 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
334         .set_duplex     = sh_eth_set_duplex,
335         .set_rate       = sh_eth_set_rate,
336
337         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
338         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
339         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
340
341         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
342         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
343                           EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
344         .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
345
346         .apr            = 1,
347         .mpr            = 1,
348         .tpauser        = 1,
349         .hw_swap        = 1,
350         .rpadir         = 1,
351         .rpadir_value   = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
352 };
353 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
354 #define SH_ETH_HAS_BOTH_MODULES 1
355 #define SH_ETH_HAS_TSU  1
356 static int sh_eth_check_reset(struct net_device *ndev);
357
358 static void sh_eth_set_duplex(struct net_device *ndev)
359 {
360         struct sh_eth_private *mdp = netdev_priv(ndev);
361
362         if (mdp->duplex) /* Full */
363                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
364         else            /* Half */
365                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
366 }
367
368 static void sh_eth_set_rate(struct net_device *ndev)
369 {
370         struct sh_eth_private *mdp = netdev_priv(ndev);
371
372         switch (mdp->speed) {
373         case 10: /* 10BASE */
374                 sh_eth_write(ndev, 0, RTRATE);
375                 break;
376         case 100:/* 100BASE */
377                 sh_eth_write(ndev, 1, RTRATE);
378                 break;
379         default:
380                 break;
381         }
382 }
383
384 /* SH7757 */
385 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
386         .set_duplex             = sh_eth_set_duplex,
387         .set_rate               = sh_eth_set_rate,
388
389         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
390         .rmcr_value     = 0x00000001,
391
392         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
393         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
394                           EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
395         .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
396
397         .apr            = 1,
398         .mpr            = 1,
399         .tpauser        = 1,
400         .hw_swap        = 1,
401         .no_ade         = 1,
402         .rpadir         = 1,
403         .rpadir_value   = 2 << 16,
404 };
405
406 #define SH_GIGA_ETH_BASE        0xfee00000
407 #define GIGA_MALR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
408 #define GIGA_MAHR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
409 static void sh_eth_chip_reset_giga(struct net_device *ndev)
410 {
411         int i;
412         unsigned long mahr[2], malr[2];
413
414         /* save MAHR and MALR */
415         for (i = 0; i < 2; i++) {
416                 malr[i] = ioread32((void *)GIGA_MALR(i));
417                 mahr[i] = ioread32((void *)GIGA_MAHR(i));
418         }
419
420         /* reset device */
421         iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
422         mdelay(1);
423
424         /* restore MAHR and MALR */
425         for (i = 0; i < 2; i++) {
426                 iowrite32(malr[i], (void *)GIGA_MALR(i));
427                 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
428         }
429 }
430
431 static int sh_eth_is_gether(struct sh_eth_private *mdp);
432 static int sh_eth_reset(struct net_device *ndev)
433 {
434         struct sh_eth_private *mdp = netdev_priv(ndev);
435         int ret = 0;
436
437         if (sh_eth_is_gether(mdp)) {
438                 sh_eth_write(ndev, 0x03, EDSR);
439                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
440                                 EDMR);
441
442                 ret = sh_eth_check_reset(ndev);
443                 if (ret)
444                         goto out;
445
446                 /* Table Init */
447                 sh_eth_write(ndev, 0x0, TDLAR);
448                 sh_eth_write(ndev, 0x0, TDFAR);
449                 sh_eth_write(ndev, 0x0, TDFXR);
450                 sh_eth_write(ndev, 0x0, TDFFR);
451                 sh_eth_write(ndev, 0x0, RDLAR);
452                 sh_eth_write(ndev, 0x0, RDFAR);
453                 sh_eth_write(ndev, 0x0, RDFXR);
454                 sh_eth_write(ndev, 0x0, RDFFR);
455         } else {
456                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
457                                 EDMR);
458                 mdelay(3);
459                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
460                                 EDMR);
461         }
462
463 out:
464         return ret;
465 }
466
467 static void sh_eth_set_duplex_giga(struct net_device *ndev)
468 {
469         struct sh_eth_private *mdp = netdev_priv(ndev);
470
471         if (mdp->duplex) /* Full */
472                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
473         else            /* Half */
474                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
475 }
476
477 static void sh_eth_set_rate_giga(struct net_device *ndev)
478 {
479         struct sh_eth_private *mdp = netdev_priv(ndev);
480
481         switch (mdp->speed) {
482         case 10: /* 10BASE */
483                 sh_eth_write(ndev, 0x00000000, GECMR);
484                 break;
485         case 100:/* 100BASE */
486                 sh_eth_write(ndev, 0x00000010, GECMR);
487                 break;
488         case 1000: /* 1000BASE */
489                 sh_eth_write(ndev, 0x00000020, GECMR);
490                 break;
491         default:
492                 break;
493         }
494 }
495
496 /* SH7757(GETHERC) */
497 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
498         .chip_reset     = sh_eth_chip_reset_giga,
499         .set_duplex     = sh_eth_set_duplex_giga,
500         .set_rate       = sh_eth_set_rate_giga,
501
502         .ecsr_value     = ECSR_ICD | ECSR_MPD,
503         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
504         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
505
506         .tx_check       = EESR_TC1 | EESR_FTC,
507         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
508                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
509                           EESR_ECI,
510         .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
511                           EESR_TFE,
512         .fdr_value      = 0x0000072f,
513         .rmcr_value     = 0x00000001,
514
515         .apr            = 1,
516         .mpr            = 1,
517         .tpauser        = 1,
518         .bculr          = 1,
519         .hw_swap        = 1,
520         .rpadir         = 1,
521         .rpadir_value   = 2 << 16,
522         .no_trimd       = 1,
523         .no_ade         = 1,
524         .tsu            = 1,
525 };
526
527 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
528 {
529         if (sh_eth_is_gether(mdp))
530                 return &sh_eth_my_cpu_data_giga;
531         else
532                 return &sh_eth_my_cpu_data;
533 }
534
535 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
536 #define SH_ETH_HAS_TSU  1
537 static int sh_eth_check_reset(struct net_device *ndev);
538 static void sh_eth_reset_hw_crc(struct net_device *ndev);
539
540 static void sh_eth_chip_reset(struct net_device *ndev)
541 {
542         struct sh_eth_private *mdp = netdev_priv(ndev);
543
544         /* reset device */
545         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
546         mdelay(1);
547 }
548
549 static void sh_eth_set_duplex(struct net_device *ndev)
550 {
551         struct sh_eth_private *mdp = netdev_priv(ndev);
552
553         if (mdp->duplex) /* Full */
554                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
555         else            /* Half */
556                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
557 }
558
559 static void sh_eth_set_rate(struct net_device *ndev)
560 {
561         struct sh_eth_private *mdp = netdev_priv(ndev);
562
563         switch (mdp->speed) {
564         case 10: /* 10BASE */
565                 sh_eth_write(ndev, GECMR_10, GECMR);
566                 break;
567         case 100:/* 100BASE */
568                 sh_eth_write(ndev, GECMR_100, GECMR);
569                 break;
570         case 1000: /* 1000BASE */
571                 sh_eth_write(ndev, GECMR_1000, GECMR);
572                 break;
573         default:
574                 break;
575         }
576 }
577
578 /* sh7763 */
579 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
580         .chip_reset     = sh_eth_chip_reset,
581         .set_duplex     = sh_eth_set_duplex,
582         .set_rate       = sh_eth_set_rate,
583
584         .ecsr_value     = ECSR_ICD | ECSR_MPD,
585         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
586         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
587
588         .tx_check       = EESR_TC1 | EESR_FTC,
589         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
590                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
591                           EESR_ECI,
592         .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
593                           EESR_TFE,
594
595         .apr            = 1,
596         .mpr            = 1,
597         .tpauser        = 1,
598         .bculr          = 1,
599         .hw_swap        = 1,
600         .no_trimd       = 1,
601         .no_ade         = 1,
602         .tsu            = 1,
603 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
604         .hw_crc     = 1,
605         .select_mii = 1,
606 #endif
607 };
608
609 static int sh_eth_reset(struct net_device *ndev)
610 {
611         int ret = 0;
612
613         sh_eth_write(ndev, EDSR_ENALL, EDSR);
614         sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
615
616         ret = sh_eth_check_reset(ndev);
617         if (ret)
618                 goto out;
619
620         /* Table Init */
621         sh_eth_write(ndev, 0x0, TDLAR);
622         sh_eth_write(ndev, 0x0, TDFAR);
623         sh_eth_write(ndev, 0x0, TDFXR);
624         sh_eth_write(ndev, 0x0, TDFFR);
625         sh_eth_write(ndev, 0x0, RDLAR);
626         sh_eth_write(ndev, 0x0, RDFAR);
627         sh_eth_write(ndev, 0x0, RDFXR);
628         sh_eth_write(ndev, 0x0, RDFFR);
629
630         /* Reset HW CRC register */
631         sh_eth_reset_hw_crc(ndev);
632
633         /* Select MII mode */
634         if (sh_eth_my_cpu_data.select_mii)
635                 sh_eth_select_mii(ndev);
636 out:
637         return ret;
638 }
639
640 static void sh_eth_reset_hw_crc(struct net_device *ndev)
641 {
642         if (sh_eth_my_cpu_data.hw_crc)
643                 sh_eth_write(ndev, 0x0, CSMR);
644 }
645
646 #elif defined(CONFIG_ARCH_R8A7740)
647 #define SH_ETH_HAS_TSU  1
648 static int sh_eth_check_reset(struct net_device *ndev);
649
650 static void sh_eth_chip_reset(struct net_device *ndev)
651 {
652         struct sh_eth_private *mdp = netdev_priv(ndev);
653
654         /* reset device */
655         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
656         mdelay(1);
657
658         sh_eth_select_mii(ndev);
659 }
660
661 static int sh_eth_reset(struct net_device *ndev)
662 {
663         int ret = 0;
664
665         sh_eth_write(ndev, EDSR_ENALL, EDSR);
666         sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
667
668         ret = sh_eth_check_reset(ndev);
669         if (ret)
670                 goto out;
671
672         /* Table Init */
673         sh_eth_write(ndev, 0x0, TDLAR);
674         sh_eth_write(ndev, 0x0, TDFAR);
675         sh_eth_write(ndev, 0x0, TDFXR);
676         sh_eth_write(ndev, 0x0, TDFFR);
677         sh_eth_write(ndev, 0x0, RDLAR);
678         sh_eth_write(ndev, 0x0, RDFAR);
679         sh_eth_write(ndev, 0x0, RDFXR);
680         sh_eth_write(ndev, 0x0, RDFFR);
681
682 out:
683         return ret;
684 }
685
686 static void sh_eth_set_duplex(struct net_device *ndev)
687 {
688         struct sh_eth_private *mdp = netdev_priv(ndev);
689
690         if (mdp->duplex) /* Full */
691                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
692         else            /* Half */
693                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
694 }
695
696 static void sh_eth_set_rate(struct net_device *ndev)
697 {
698         struct sh_eth_private *mdp = netdev_priv(ndev);
699
700         switch (mdp->speed) {
701         case 10: /* 10BASE */
702                 sh_eth_write(ndev, GECMR_10, GECMR);
703                 break;
704         case 100:/* 100BASE */
705                 sh_eth_write(ndev, GECMR_100, GECMR);
706                 break;
707         case 1000: /* 1000BASE */
708                 sh_eth_write(ndev, GECMR_1000, GECMR);
709                 break;
710         default:
711                 break;
712         }
713 }
714
715 /* R8A7740 */
716 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
717         .chip_reset     = sh_eth_chip_reset,
718         .set_duplex     = sh_eth_set_duplex,
719         .set_rate       = sh_eth_set_rate,
720
721         .ecsr_value     = ECSR_ICD | ECSR_MPD,
722         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
723         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
724
725         .tx_check       = EESR_TC1 | EESR_FTC,
726         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
727                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
728                           EESR_ECI,
729         .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
730                           EESR_TFE,
731
732         .apr            = 1,
733         .mpr            = 1,
734         .tpauser        = 1,
735         .bculr          = 1,
736         .hw_swap        = 1,
737         .no_trimd       = 1,
738         .no_ade         = 1,
739         .tsu            = 1,
740         .select_mii     = 1,
741 };
742
743 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
744 #define SH_ETH_RESET_DEFAULT    1
745 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
746         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
747
748         .apr            = 1,
749         .mpr            = 1,
750         .tpauser        = 1,
751         .hw_swap        = 1,
752 };
753 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
754 #define SH_ETH_RESET_DEFAULT    1
755 #define SH_ETH_HAS_TSU  1
756 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
757         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
758         .tsu            = 1,
759 };
760 #endif
761
762 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
763 {
764         if (!cd->ecsr_value)
765                 cd->ecsr_value = DEFAULT_ECSR_INIT;
766
767         if (!cd->ecsipr_value)
768                 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
769
770         if (!cd->fcftr_value)
771                 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
772                                   DEFAULT_FIFO_F_D_RFD;
773
774         if (!cd->fdr_value)
775                 cd->fdr_value = DEFAULT_FDR_INIT;
776
777         if (!cd->rmcr_value)
778                 cd->rmcr_value = DEFAULT_RMCR_VALUE;
779
780         if (!cd->tx_check)
781                 cd->tx_check = DEFAULT_TX_CHECK;
782
783         if (!cd->eesr_err_check)
784                 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
785
786         if (!cd->tx_error_check)
787                 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
788 }
789
790 #if defined(SH_ETH_RESET_DEFAULT)
791 /* Chip Reset */
792 static int  sh_eth_reset(struct net_device *ndev)
793 {
794         sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
795         mdelay(3);
796         sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
797
798         return 0;
799 }
800 #else
801 static int sh_eth_check_reset(struct net_device *ndev)
802 {
803         int ret = 0;
804         int cnt = 100;
805
806         while (cnt > 0) {
807                 if (!(sh_eth_read(ndev, EDMR) & 0x3))
808                         break;
809                 mdelay(1);
810                 cnt--;
811         }
812         if (cnt < 0) {
813                 pr_err("Device reset fail\n");
814                 ret = -ETIMEDOUT;
815         }
816         return ret;
817 }
818 #endif
819
820 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
821 static void sh_eth_set_receive_align(struct sk_buff *skb)
822 {
823         int reserve;
824
825         reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
826         if (reserve)
827                 skb_reserve(skb, reserve);
828 }
829 #else
830 static void sh_eth_set_receive_align(struct sk_buff *skb)
831 {
832         skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
833 }
834 #endif
835
836
837 /* CPU <-> EDMAC endian convert */
838 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
839 {
840         switch (mdp->edmac_endian) {
841         case EDMAC_LITTLE_ENDIAN:
842                 return cpu_to_le32(x);
843         case EDMAC_BIG_ENDIAN:
844                 return cpu_to_be32(x);
845         }
846         return x;
847 }
848
849 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
850 {
851         switch (mdp->edmac_endian) {
852         case EDMAC_LITTLE_ENDIAN:
853                 return le32_to_cpu(x);
854         case EDMAC_BIG_ENDIAN:
855                 return be32_to_cpu(x);
856         }
857         return x;
858 }
859
860 /*
861  * Program the hardware MAC address from dev->dev_addr.
862  */
863 static void update_mac_address(struct net_device *ndev)
864 {
865         sh_eth_write(ndev,
866                 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
867                 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
868         sh_eth_write(ndev,
869                 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
870 }
871
872 /*
873  * Get MAC address from SuperH MAC address register
874  *
875  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
876  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
877  * When you want use this device, you must set MAC address in bootloader.
878  *
879  */
880 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
881 {
882         if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
883                 memcpy(ndev->dev_addr, mac, 6);
884         } else {
885                 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
886                 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
887                 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
888                 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
889                 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
890                 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
891         }
892 }
893
894 static int sh_eth_is_gether(struct sh_eth_private *mdp)
895 {
896         if (mdp->reg_offset == sh_eth_offset_gigabit)
897                 return 1;
898         else
899                 return 0;
900 }
901
902 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
903 {
904         if (sh_eth_is_gether(mdp))
905                 return EDTRR_TRNS_GETHER;
906         else
907                 return EDTRR_TRNS_ETHER;
908 }
909
910 struct bb_info {
911         void (*set_gate)(void *addr);
912         struct mdiobb_ctrl ctrl;
913         void *addr;
914         u32 mmd_msk;/* MMD */
915         u32 mdo_msk;
916         u32 mdi_msk;
917         u32 mdc_msk;
918 };
919
920 /* PHY bit set */
921 static void bb_set(void *addr, u32 msk)
922 {
923         iowrite32(ioread32(addr) | msk, addr);
924 }
925
926 /* PHY bit clear */
927 static void bb_clr(void *addr, u32 msk)
928 {
929         iowrite32((ioread32(addr) & ~msk), addr);
930 }
931
932 /* PHY bit read */
933 static int bb_read(void *addr, u32 msk)
934 {
935         return (ioread32(addr) & msk) != 0;
936 }
937
938 /* Data I/O pin control */
939 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
940 {
941         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
942
943         if (bitbang->set_gate)
944                 bitbang->set_gate(bitbang->addr);
945
946         if (bit)
947                 bb_set(bitbang->addr, bitbang->mmd_msk);
948         else
949                 bb_clr(bitbang->addr, bitbang->mmd_msk);
950 }
951
952 /* Set bit data*/
953 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
954 {
955         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
956
957         if (bitbang->set_gate)
958                 bitbang->set_gate(bitbang->addr);
959
960         if (bit)
961                 bb_set(bitbang->addr, bitbang->mdo_msk);
962         else
963                 bb_clr(bitbang->addr, bitbang->mdo_msk);
964 }
965
966 /* Get bit data*/
967 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
968 {
969         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
970
971         if (bitbang->set_gate)
972                 bitbang->set_gate(bitbang->addr);
973
974         return bb_read(bitbang->addr, bitbang->mdi_msk);
975 }
976
977 /* MDC pin control */
978 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
979 {
980         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
981
982         if (bitbang->set_gate)
983                 bitbang->set_gate(bitbang->addr);
984
985         if (bit)
986                 bb_set(bitbang->addr, bitbang->mdc_msk);
987         else
988                 bb_clr(bitbang->addr, bitbang->mdc_msk);
989 }
990
991 /* mdio bus control struct */
992 static struct mdiobb_ops bb_ops = {
993         .owner = THIS_MODULE,
994         .set_mdc = sh_mdc_ctrl,
995         .set_mdio_dir = sh_mmd_ctrl,
996         .set_mdio_data = sh_set_mdio,
997         .get_mdio_data = sh_get_mdio,
998 };
999
1000 /* free skb and descriptor buffer */
1001 static void sh_eth_ring_free(struct net_device *ndev)
1002 {
1003         struct sh_eth_private *mdp = netdev_priv(ndev);
1004         int i;
1005
1006         /* Free Rx skb ringbuffer */
1007         if (mdp->rx_skbuff) {
1008                 for (i = 0; i < mdp->num_rx_ring; i++) {
1009                         if (mdp->rx_skbuff[i])
1010                                 dev_kfree_skb(mdp->rx_skbuff[i]);
1011                 }
1012         }
1013         kfree(mdp->rx_skbuff);
1014         mdp->rx_skbuff = NULL;
1015
1016         /* Free Tx skb ringbuffer */
1017         if (mdp->tx_skbuff) {
1018                 for (i = 0; i < mdp->num_tx_ring; i++) {
1019                         if (mdp->tx_skbuff[i])
1020                                 dev_kfree_skb(mdp->tx_skbuff[i]);
1021                 }
1022         }
1023         kfree(mdp->tx_skbuff);
1024         mdp->tx_skbuff = NULL;
1025 }
1026
1027 /* format skb and descriptor buffer */
1028 static void sh_eth_ring_format(struct net_device *ndev)
1029 {
1030         struct sh_eth_private *mdp = netdev_priv(ndev);
1031         int i;
1032         struct sk_buff *skb;
1033         struct sh_eth_rxdesc *rxdesc = NULL;
1034         struct sh_eth_txdesc *txdesc = NULL;
1035         int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1036         int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1037
1038         mdp->cur_rx = mdp->cur_tx = 0;
1039         mdp->dirty_rx = mdp->dirty_tx = 0;
1040
1041         memset(mdp->rx_ring, 0, rx_ringsize);
1042
1043         /* build Rx ring buffer */
1044         for (i = 0; i < mdp->num_rx_ring; i++) {
1045                 /* skb */
1046                 mdp->rx_skbuff[i] = NULL;
1047                 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1048                 mdp->rx_skbuff[i] = skb;
1049                 if (skb == NULL)
1050                         break;
1051                 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1052                                 DMA_FROM_DEVICE);
1053                 sh_eth_set_receive_align(skb);
1054
1055                 /* RX descriptor */
1056                 rxdesc = &mdp->rx_ring[i];
1057                 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1058                 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1059
1060                 /* The size of the buffer is 16 byte boundary. */
1061                 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1062                 /* Rx descriptor address set */
1063                 if (i == 0) {
1064                         sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1065                         if (sh_eth_is_gether(mdp))
1066                                 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1067                 }
1068         }
1069
1070         mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1071
1072         /* Mark the last entry as wrapping the ring. */
1073         rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1074
1075         memset(mdp->tx_ring, 0, tx_ringsize);
1076
1077         /* build Tx ring buffer */
1078         for (i = 0; i < mdp->num_tx_ring; i++) {
1079                 mdp->tx_skbuff[i] = NULL;
1080                 txdesc = &mdp->tx_ring[i];
1081                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1082                 txdesc->buffer_length = 0;
1083                 if (i == 0) {
1084                         /* Tx descriptor address set */
1085                         sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1086                         if (sh_eth_is_gether(mdp))
1087                                 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1088                 }
1089         }
1090
1091         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1092 }
1093
1094 /* Get skb and descriptor buffer */
1095 static int sh_eth_ring_init(struct net_device *ndev)
1096 {
1097         struct sh_eth_private *mdp = netdev_priv(ndev);
1098         int rx_ringsize, tx_ringsize, ret = 0;
1099
1100         /*
1101          * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1102          * card needs room to do 8 byte alignment, +2 so we can reserve
1103          * the first 2 bytes, and +16 gets room for the status word from the
1104          * card.
1105          */
1106         mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1107                           (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1108         if (mdp->cd->rpadir)
1109                 mdp->rx_buf_sz += NET_IP_ALIGN;
1110
1111         /* Allocate RX and TX skb rings */
1112         mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1113                                        sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1114         if (!mdp->rx_skbuff) {
1115                 ret = -ENOMEM;
1116                 return ret;
1117         }
1118
1119         mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1120                                        sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1121         if (!mdp->tx_skbuff) {
1122                 ret = -ENOMEM;
1123                 goto skb_ring_free;
1124         }
1125
1126         /* Allocate all Rx descriptors. */
1127         rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1128         mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1129                                           GFP_KERNEL);
1130         if (!mdp->rx_ring) {
1131                 ret = -ENOMEM;
1132                 goto desc_ring_free;
1133         }
1134
1135         mdp->dirty_rx = 0;
1136
1137         /* Allocate all Tx descriptors. */
1138         tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1139         mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1140                                           GFP_KERNEL);
1141         if (!mdp->tx_ring) {
1142                 ret = -ENOMEM;
1143                 goto desc_ring_free;
1144         }
1145         return ret;
1146
1147 desc_ring_free:
1148         /* free DMA buffer */
1149         dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1150
1151 skb_ring_free:
1152         /* Free Rx and Tx skb ring buffer */
1153         sh_eth_ring_free(ndev);
1154         mdp->tx_ring = NULL;
1155         mdp->rx_ring = NULL;
1156
1157         return ret;
1158 }
1159
1160 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1161 {
1162         int ringsize;
1163
1164         if (mdp->rx_ring) {
1165                 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1166                 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1167                                   mdp->rx_desc_dma);
1168                 mdp->rx_ring = NULL;
1169         }
1170
1171         if (mdp->tx_ring) {
1172                 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1173                 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1174                                   mdp->tx_desc_dma);
1175                 mdp->tx_ring = NULL;
1176         }
1177 }
1178
1179 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1180 {
1181         int ret = 0;
1182         struct sh_eth_private *mdp = netdev_priv(ndev);
1183         u32 val;
1184
1185         /* Soft Reset */
1186         ret = sh_eth_reset(ndev);
1187         if (ret)
1188                 goto out;
1189
1190         /* Descriptor format */
1191         sh_eth_ring_format(ndev);
1192         if (mdp->cd->rpadir)
1193                 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1194
1195         /* all sh_eth int mask */
1196         sh_eth_write(ndev, 0, EESIPR);
1197
1198 #if defined(__LITTLE_ENDIAN)
1199         if (mdp->cd->hw_swap)
1200                 sh_eth_write(ndev, EDMR_EL, EDMR);
1201         else
1202 #endif
1203                 sh_eth_write(ndev, 0, EDMR);
1204
1205         /* FIFO size set */
1206         sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1207         sh_eth_write(ndev, 0, TFTR);
1208
1209         /* Frame recv control */
1210         sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1211
1212         sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1213
1214         if (mdp->cd->bculr)
1215                 sh_eth_write(ndev, 0x800, BCULR);       /* Burst sycle set */
1216
1217         sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1218
1219         if (!mdp->cd->no_trimd)
1220                 sh_eth_write(ndev, 0, TRIMD);
1221
1222         /* Recv frame limit set register */
1223         sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1224                      RFLR);
1225
1226         sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1227         if (start)
1228                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1229
1230         /* PAUSE Prohibition */
1231         val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1232                 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1233
1234         sh_eth_write(ndev, val, ECMR);
1235
1236         if (mdp->cd->set_rate)
1237                 mdp->cd->set_rate(ndev);
1238
1239         /* E-MAC Status Register clear */
1240         sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1241
1242         /* E-MAC Interrupt Enable register */
1243         if (start)
1244                 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1245
1246         /* Set MAC address */
1247         update_mac_address(ndev);
1248
1249         /* mask reset */
1250         if (mdp->cd->apr)
1251                 sh_eth_write(ndev, APR_AP, APR);
1252         if (mdp->cd->mpr)
1253                 sh_eth_write(ndev, MPR_MP, MPR);
1254         if (mdp->cd->tpauser)
1255                 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1256
1257         if (start) {
1258                 /* Setting the Rx mode will start the Rx process. */
1259                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1260
1261                 netif_start_queue(ndev);
1262         }
1263
1264 out:
1265         return ret;
1266 }
1267
1268 /* free Tx skb function */
1269 static int sh_eth_txfree(struct net_device *ndev)
1270 {
1271         struct sh_eth_private *mdp = netdev_priv(ndev);
1272         struct sh_eth_txdesc *txdesc;
1273         int freeNum = 0;
1274         int entry = 0;
1275
1276         for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1277                 entry = mdp->dirty_tx % mdp->num_tx_ring;
1278                 txdesc = &mdp->tx_ring[entry];
1279                 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1280                         break;
1281                 /* Free the original skb. */
1282                 if (mdp->tx_skbuff[entry]) {
1283                         dma_unmap_single(&ndev->dev, txdesc->addr,
1284                                          txdesc->buffer_length, DMA_TO_DEVICE);
1285                         dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1286                         mdp->tx_skbuff[entry] = NULL;
1287                         freeNum++;
1288                 }
1289                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1290                 if (entry >= mdp->num_tx_ring - 1)
1291                         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1292
1293                 ndev->stats.tx_packets++;
1294                 ndev->stats.tx_bytes += txdesc->buffer_length;
1295         }
1296         return freeNum;
1297 }
1298
1299 /* Packet receive function */
1300 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1301 {
1302         struct sh_eth_private *mdp = netdev_priv(ndev);
1303         struct sh_eth_rxdesc *rxdesc;
1304
1305         int entry = mdp->cur_rx % mdp->num_rx_ring;
1306         int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1307         struct sk_buff *skb;
1308         u16 pkt_len = 0;
1309         u32 desc_status;
1310
1311         rxdesc = &mdp->rx_ring[entry];
1312         while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1313                 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1314                 pkt_len = rxdesc->frame_length;
1315
1316 #if defined(CONFIG_ARCH_R8A7740)
1317                 desc_status >>= 16;
1318 #endif
1319
1320                 if (--boguscnt < 0)
1321                         break;
1322
1323                 if (!(desc_status & RDFEND))
1324                         ndev->stats.rx_length_errors++;
1325
1326                 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1327                                    RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1328                         ndev->stats.rx_errors++;
1329                         if (desc_status & RD_RFS1)
1330                                 ndev->stats.rx_crc_errors++;
1331                         if (desc_status & RD_RFS2)
1332                                 ndev->stats.rx_frame_errors++;
1333                         if (desc_status & RD_RFS3)
1334                                 ndev->stats.rx_length_errors++;
1335                         if (desc_status & RD_RFS4)
1336                                 ndev->stats.rx_length_errors++;
1337                         if (desc_status & RD_RFS6)
1338                                 ndev->stats.rx_missed_errors++;
1339                         if (desc_status & RD_RFS10)
1340                                 ndev->stats.rx_over_errors++;
1341                 } else {
1342                         if (!mdp->cd->hw_swap)
1343                                 sh_eth_soft_swap(
1344                                         phys_to_virt(ALIGN(rxdesc->addr, 4)),
1345                                         pkt_len + 2);
1346                         skb = mdp->rx_skbuff[entry];
1347                         mdp->rx_skbuff[entry] = NULL;
1348                         if (mdp->cd->rpadir)
1349                                 skb_reserve(skb, NET_IP_ALIGN);
1350                         skb_put(skb, pkt_len);
1351                         skb->protocol = eth_type_trans(skb, ndev);
1352                         netif_rx(skb);
1353                         ndev->stats.rx_packets++;
1354                         ndev->stats.rx_bytes += pkt_len;
1355                 }
1356                 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1357                 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1358                 rxdesc = &mdp->rx_ring[entry];
1359         }
1360
1361         /* Refill the Rx ring buffers. */
1362         for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1363                 entry = mdp->dirty_rx % mdp->num_rx_ring;
1364                 rxdesc = &mdp->rx_ring[entry];
1365                 /* The size of the buffer is 16 byte boundary. */
1366                 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1367
1368                 if (mdp->rx_skbuff[entry] == NULL) {
1369                         skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1370                         mdp->rx_skbuff[entry] = skb;
1371                         if (skb == NULL)
1372                                 break;  /* Better luck next round. */
1373                         dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1374                                         DMA_FROM_DEVICE);
1375                         sh_eth_set_receive_align(skb);
1376
1377                         skb_checksum_none_assert(skb);
1378                         rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1379                 }
1380                 if (entry >= mdp->num_rx_ring - 1)
1381                         rxdesc->status |=
1382                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1383                 else
1384                         rxdesc->status |=
1385                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1386         }
1387
1388         /* Restart Rx engine if stopped. */
1389         /* If we don't need to check status, don't. -KDU */
1390         if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1391                 /* fix the values for the next receiving if RDE is set */
1392                 if (intr_status & EESR_RDE)
1393                         mdp->cur_rx = mdp->dirty_rx =
1394                                 (sh_eth_read(ndev, RDFAR) -
1395                                  sh_eth_read(ndev, RDLAR)) >> 4;
1396                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1397         }
1398
1399         return 0;
1400 }
1401
1402 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1403 {
1404         /* disable tx and rx */
1405         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1406                 ~(ECMR_RE | ECMR_TE), ECMR);
1407 }
1408
1409 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1410 {
1411         /* enable tx and rx */
1412         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1413                 (ECMR_RE | ECMR_TE), ECMR);
1414 }
1415
1416 /* error control function */
1417 static void sh_eth_error(struct net_device *ndev, int intr_status)
1418 {
1419         struct sh_eth_private *mdp = netdev_priv(ndev);
1420         u32 felic_stat;
1421         u32 link_stat;
1422         u32 mask;
1423
1424         if (intr_status & EESR_ECI) {
1425                 felic_stat = sh_eth_read(ndev, ECSR);
1426                 sh_eth_write(ndev, felic_stat, ECSR);   /* clear int */
1427                 if (felic_stat & ECSR_ICD)
1428                         ndev->stats.tx_carrier_errors++;
1429                 if (felic_stat & ECSR_LCHNG) {
1430                         /* Link Changed */
1431                         if (mdp->cd->no_psr || mdp->no_ether_link) {
1432                                 if (mdp->link == PHY_DOWN)
1433                                         link_stat = 0;
1434                                 else
1435                                         link_stat = PHY_ST_LINK;
1436                         } else {
1437                                 link_stat = (sh_eth_read(ndev, PSR));
1438                                 if (mdp->ether_link_active_low)
1439                                         link_stat = ~link_stat;
1440                         }
1441                         if (!(link_stat & PHY_ST_LINK))
1442                                 sh_eth_rcv_snd_disable(ndev);
1443                         else {
1444                                 /* Link Up */
1445                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1446                                           ~DMAC_M_ECI, EESIPR);
1447                                 /*clear int */
1448                                 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1449                                           ECSR);
1450                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1451                                           DMAC_M_ECI, EESIPR);
1452                                 /* enable tx and rx */
1453                                 sh_eth_rcv_snd_enable(ndev);
1454                         }
1455                 }
1456         }
1457
1458         if (intr_status & EESR_TWB) {
1459                 /* Write buck end. unused write back interrupt */
1460                 if (intr_status & EESR_TABT)    /* Transmit Abort int */
1461                         ndev->stats.tx_aborted_errors++;
1462                         if (netif_msg_tx_err(mdp))
1463                                 dev_err(&ndev->dev, "Transmit Abort\n");
1464         }
1465
1466         if (intr_status & EESR_RABT) {
1467                 /* Receive Abort int */
1468                 if (intr_status & EESR_RFRMER) {
1469                         /* Receive Frame Overflow int */
1470                         ndev->stats.rx_frame_errors++;
1471                         if (netif_msg_rx_err(mdp))
1472                                 dev_err(&ndev->dev, "Receive Abort\n");
1473                 }
1474         }
1475
1476         if (intr_status & EESR_TDE) {
1477                 /* Transmit Descriptor Empty int */
1478                 ndev->stats.tx_fifo_errors++;
1479                 if (netif_msg_tx_err(mdp))
1480                         dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1481         }
1482
1483         if (intr_status & EESR_TFE) {
1484                 /* FIFO under flow */
1485                 ndev->stats.tx_fifo_errors++;
1486                 if (netif_msg_tx_err(mdp))
1487                         dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1488         }
1489
1490         if (intr_status & EESR_RDE) {
1491                 /* Receive Descriptor Empty int */
1492                 ndev->stats.rx_over_errors++;
1493
1494                 if (netif_msg_rx_err(mdp))
1495                         dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1496         }
1497
1498         if (intr_status & EESR_RFE) {
1499                 /* Receive FIFO Overflow int */
1500                 ndev->stats.rx_fifo_errors++;
1501                 if (netif_msg_rx_err(mdp))
1502                         dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1503         }
1504
1505         if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1506                 /* Address Error */
1507                 ndev->stats.tx_fifo_errors++;
1508                 if (netif_msg_tx_err(mdp))
1509                         dev_err(&ndev->dev, "Address Error\n");
1510         }
1511
1512         mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1513         if (mdp->cd->no_ade)
1514                 mask &= ~EESR_ADE;
1515         if (intr_status & mask) {
1516                 /* Tx error */
1517                 u32 edtrr = sh_eth_read(ndev, EDTRR);
1518                 /* dmesg */
1519                 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1520                                 intr_status, mdp->cur_tx);
1521                 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1522                                 mdp->dirty_tx, (u32) ndev->state, edtrr);
1523                 /* dirty buffer free */
1524                 sh_eth_txfree(ndev);
1525
1526                 /* SH7712 BUG */
1527                 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1528                         /* tx dma start */
1529                         sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1530                 }
1531                 /* wakeup */
1532                 netif_wake_queue(ndev);
1533         }
1534 }
1535
1536 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1537 {
1538         struct net_device *ndev = netdev;
1539         struct sh_eth_private *mdp = netdev_priv(ndev);
1540         struct sh_eth_cpu_data *cd = mdp->cd;
1541         irqreturn_t ret = IRQ_NONE;
1542         u32 intr_status = 0;
1543
1544         spin_lock(&mdp->lock);
1545
1546         /* Get interrpt stat */
1547         intr_status = sh_eth_read(ndev, EESR);
1548         /* Clear interrupt */
1549         if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1550                         EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1551                         cd->tx_check | cd->eesr_err_check)) {
1552                 sh_eth_write(ndev, intr_status, EESR);
1553                 ret = IRQ_HANDLED;
1554         } else
1555                 goto other_irq;
1556
1557         if (intr_status & (EESR_FRC | /* Frame recv*/
1558                         EESR_RMAF | /* Multi cast address recv*/
1559                         EESR_RRF  | /* Bit frame recv */
1560                         EESR_RTLF | /* Long frame recv*/
1561                         EESR_RTSF | /* short frame recv */
1562                         EESR_PRE  | /* PHY-LSI recv error */
1563                         EESR_CERF)){ /* recv frame CRC error */
1564                 sh_eth_rx(ndev, intr_status);
1565         }
1566
1567         /* Tx Check */
1568         if (intr_status & cd->tx_check) {
1569                 sh_eth_txfree(ndev);
1570                 netif_wake_queue(ndev);
1571         }
1572
1573         if (intr_status & cd->eesr_err_check)
1574                 sh_eth_error(ndev, intr_status);
1575
1576 other_irq:
1577         spin_unlock(&mdp->lock);
1578
1579         return ret;
1580 }
1581
1582 /* PHY state control function */
1583 static void sh_eth_adjust_link(struct net_device *ndev)
1584 {
1585         struct sh_eth_private *mdp = netdev_priv(ndev);
1586         struct phy_device *phydev = mdp->phydev;
1587         int new_state = 0;
1588
1589         if (phydev->link != PHY_DOWN) {
1590                 if (phydev->duplex != mdp->duplex) {
1591                         new_state = 1;
1592                         mdp->duplex = phydev->duplex;
1593                         if (mdp->cd->set_duplex)
1594                                 mdp->cd->set_duplex(ndev);
1595                 }
1596
1597                 if (phydev->speed != mdp->speed) {
1598                         new_state = 1;
1599                         mdp->speed = phydev->speed;
1600                         if (mdp->cd->set_rate)
1601                                 mdp->cd->set_rate(ndev);
1602                 }
1603                 if (mdp->link == PHY_DOWN) {
1604                         sh_eth_write(ndev,
1605                                 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1606                         new_state = 1;
1607                         mdp->link = phydev->link;
1608                 }
1609         } else if (mdp->link) {
1610                 new_state = 1;
1611                 mdp->link = PHY_DOWN;
1612                 mdp->speed = 0;
1613                 mdp->duplex = -1;
1614         }
1615
1616         if (new_state && netif_msg_link(mdp))
1617                 phy_print_status(phydev);
1618 }
1619
1620 /* PHY init function */
1621 static int sh_eth_phy_init(struct net_device *ndev)
1622 {
1623         struct sh_eth_private *mdp = netdev_priv(ndev);
1624         char phy_id[MII_BUS_ID_SIZE + 3];
1625         struct phy_device *phydev = NULL;
1626
1627         snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1628                 mdp->mii_bus->id , mdp->phy_id);
1629
1630         mdp->link = PHY_DOWN;
1631         mdp->speed = 0;
1632         mdp->duplex = -1;
1633
1634         /* Try connect to PHY */
1635         phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1636                              mdp->phy_interface);
1637         if (IS_ERR(phydev)) {
1638                 dev_err(&ndev->dev, "phy_connect failed\n");
1639                 return PTR_ERR(phydev);
1640         }
1641
1642         dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1643                 phydev->addr, phydev->drv->name);
1644
1645         mdp->phydev = phydev;
1646
1647         return 0;
1648 }
1649
1650 /* PHY control start function */
1651 static int sh_eth_phy_start(struct net_device *ndev)
1652 {
1653         struct sh_eth_private *mdp = netdev_priv(ndev);
1654         int ret;
1655
1656         ret = sh_eth_phy_init(ndev);
1657         if (ret)
1658                 return ret;
1659
1660         /* reset phy - this also wakes it from PDOWN */
1661         phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1662         phy_start(mdp->phydev);
1663
1664         return 0;
1665 }
1666
1667 static int sh_eth_get_settings(struct net_device *ndev,
1668                         struct ethtool_cmd *ecmd)
1669 {
1670         struct sh_eth_private *mdp = netdev_priv(ndev);
1671         unsigned long flags;
1672         int ret;
1673
1674         spin_lock_irqsave(&mdp->lock, flags);
1675         ret = phy_ethtool_gset(mdp->phydev, ecmd);
1676         spin_unlock_irqrestore(&mdp->lock, flags);
1677
1678         return ret;
1679 }
1680
1681 static int sh_eth_set_settings(struct net_device *ndev,
1682                 struct ethtool_cmd *ecmd)
1683 {
1684         struct sh_eth_private *mdp = netdev_priv(ndev);
1685         unsigned long flags;
1686         int ret;
1687
1688         spin_lock_irqsave(&mdp->lock, flags);
1689
1690         /* disable tx and rx */
1691         sh_eth_rcv_snd_disable(ndev);
1692
1693         ret = phy_ethtool_sset(mdp->phydev, ecmd);
1694         if (ret)
1695                 goto error_exit;
1696
1697         if (ecmd->duplex == DUPLEX_FULL)
1698                 mdp->duplex = 1;
1699         else
1700                 mdp->duplex = 0;
1701
1702         if (mdp->cd->set_duplex)
1703                 mdp->cd->set_duplex(ndev);
1704
1705 error_exit:
1706         mdelay(1);
1707
1708         /* enable tx and rx */
1709         sh_eth_rcv_snd_enable(ndev);
1710
1711         spin_unlock_irqrestore(&mdp->lock, flags);
1712
1713         return ret;
1714 }
1715
1716 static int sh_eth_nway_reset(struct net_device *ndev)
1717 {
1718         struct sh_eth_private *mdp = netdev_priv(ndev);
1719         unsigned long flags;
1720         int ret;
1721
1722         spin_lock_irqsave(&mdp->lock, flags);
1723         ret = phy_start_aneg(mdp->phydev);
1724         spin_unlock_irqrestore(&mdp->lock, flags);
1725
1726         return ret;
1727 }
1728
1729 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1730 {
1731         struct sh_eth_private *mdp = netdev_priv(ndev);
1732         return mdp->msg_enable;
1733 }
1734
1735 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1736 {
1737         struct sh_eth_private *mdp = netdev_priv(ndev);
1738         mdp->msg_enable = value;
1739 }
1740
1741 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1742         "rx_current", "tx_current",
1743         "rx_dirty", "tx_dirty",
1744 };
1745 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1746
1747 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1748 {
1749         switch (sset) {
1750         case ETH_SS_STATS:
1751                 return SH_ETH_STATS_LEN;
1752         default:
1753                 return -EOPNOTSUPP;
1754         }
1755 }
1756
1757 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1758                         struct ethtool_stats *stats, u64 *data)
1759 {
1760         struct sh_eth_private *mdp = netdev_priv(ndev);
1761         int i = 0;
1762
1763         /* device-specific stats */
1764         data[i++] = mdp->cur_rx;
1765         data[i++] = mdp->cur_tx;
1766         data[i++] = mdp->dirty_rx;
1767         data[i++] = mdp->dirty_tx;
1768 }
1769
1770 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1771 {
1772         switch (stringset) {
1773         case ETH_SS_STATS:
1774                 memcpy(data, *sh_eth_gstrings_stats,
1775                                         sizeof(sh_eth_gstrings_stats));
1776                 break;
1777         }
1778 }
1779
1780 static void sh_eth_get_ringparam(struct net_device *ndev,
1781                                  struct ethtool_ringparam *ring)
1782 {
1783         struct sh_eth_private *mdp = netdev_priv(ndev);
1784
1785         ring->rx_max_pending = RX_RING_MAX;
1786         ring->tx_max_pending = TX_RING_MAX;
1787         ring->rx_pending = mdp->num_rx_ring;
1788         ring->tx_pending = mdp->num_tx_ring;
1789 }
1790
1791 static int sh_eth_set_ringparam(struct net_device *ndev,
1792                                 struct ethtool_ringparam *ring)
1793 {
1794         struct sh_eth_private *mdp = netdev_priv(ndev);
1795         int ret;
1796
1797         if (ring->tx_pending > TX_RING_MAX ||
1798             ring->rx_pending > RX_RING_MAX ||
1799             ring->tx_pending < TX_RING_MIN ||
1800             ring->rx_pending < RX_RING_MIN)
1801                 return -EINVAL;
1802         if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1803                 return -EINVAL;
1804
1805         if (netif_running(ndev)) {
1806                 netif_tx_disable(ndev);
1807                 /* Disable interrupts by clearing the interrupt mask. */
1808                 sh_eth_write(ndev, 0x0000, EESIPR);
1809                 /* Stop the chip's Tx and Rx processes. */
1810                 sh_eth_write(ndev, 0, EDTRR);
1811                 sh_eth_write(ndev, 0, EDRRR);
1812                 synchronize_irq(ndev->irq);
1813         }
1814
1815         /* Free all the skbuffs in the Rx queue. */
1816         sh_eth_ring_free(ndev);
1817         /* Free DMA buffer */
1818         sh_eth_free_dma_buffer(mdp);
1819
1820         /* Set new parameters */
1821         mdp->num_rx_ring = ring->rx_pending;
1822         mdp->num_tx_ring = ring->tx_pending;
1823
1824         ret = sh_eth_ring_init(ndev);
1825         if (ret < 0) {
1826                 dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1827                 return ret;
1828         }
1829         ret = sh_eth_dev_init(ndev, false);
1830         if (ret < 0) {
1831                 dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1832                 return ret;
1833         }
1834
1835         if (netif_running(ndev)) {
1836                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1837                 /* Setting the Rx mode will start the Rx process. */
1838                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1839                 netif_wake_queue(ndev);
1840         }
1841
1842         return 0;
1843 }
1844
1845 static const struct ethtool_ops sh_eth_ethtool_ops = {
1846         .get_settings   = sh_eth_get_settings,
1847         .set_settings   = sh_eth_set_settings,
1848         .nway_reset     = sh_eth_nway_reset,
1849         .get_msglevel   = sh_eth_get_msglevel,
1850         .set_msglevel   = sh_eth_set_msglevel,
1851         .get_link       = ethtool_op_get_link,
1852         .get_strings    = sh_eth_get_strings,
1853         .get_ethtool_stats  = sh_eth_get_ethtool_stats,
1854         .get_sset_count     = sh_eth_get_sset_count,
1855         .get_ringparam  = sh_eth_get_ringparam,
1856         .set_ringparam  = sh_eth_set_ringparam,
1857 };
1858
1859 /* network device open function */
1860 static int sh_eth_open(struct net_device *ndev)
1861 {
1862         int ret = 0;
1863         struct sh_eth_private *mdp = netdev_priv(ndev);
1864
1865         pm_runtime_get_sync(&mdp->pdev->dev);
1866
1867         ret = request_irq(ndev->irq, sh_eth_interrupt,
1868 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1869         defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1870         defined(CONFIG_CPU_SUBTYPE_SH7757)
1871                                 IRQF_SHARED,
1872 #else
1873                                 0,
1874 #endif
1875                                 ndev->name, ndev);
1876         if (ret) {
1877                 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1878                 return ret;
1879         }
1880
1881         /* Descriptor set */
1882         ret = sh_eth_ring_init(ndev);
1883         if (ret)
1884                 goto out_free_irq;
1885
1886         /* device init */
1887         ret = sh_eth_dev_init(ndev, true);
1888         if (ret)
1889                 goto out_free_irq;
1890
1891         /* PHY control start*/
1892         ret = sh_eth_phy_start(ndev);
1893         if (ret)
1894                 goto out_free_irq;
1895
1896         return ret;
1897
1898 out_free_irq:
1899         free_irq(ndev->irq, ndev);
1900         pm_runtime_put_sync(&mdp->pdev->dev);
1901         return ret;
1902 }
1903
1904 /* Timeout function */
1905 static void sh_eth_tx_timeout(struct net_device *ndev)
1906 {
1907         struct sh_eth_private *mdp = netdev_priv(ndev);
1908         struct sh_eth_rxdesc *rxdesc;
1909         int i;
1910
1911         netif_stop_queue(ndev);
1912
1913         if (netif_msg_timer(mdp))
1914                 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1915                " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1916
1917         /* tx_errors count up */
1918         ndev->stats.tx_errors++;
1919
1920         /* Free all the skbuffs in the Rx queue. */
1921         for (i = 0; i < mdp->num_rx_ring; i++) {
1922                 rxdesc = &mdp->rx_ring[i];
1923                 rxdesc->status = 0;
1924                 rxdesc->addr = 0xBADF00D0;
1925                 if (mdp->rx_skbuff[i])
1926                         dev_kfree_skb(mdp->rx_skbuff[i]);
1927                 mdp->rx_skbuff[i] = NULL;
1928         }
1929         for (i = 0; i < mdp->num_tx_ring; i++) {
1930                 if (mdp->tx_skbuff[i])
1931                         dev_kfree_skb(mdp->tx_skbuff[i]);
1932                 mdp->tx_skbuff[i] = NULL;
1933         }
1934
1935         /* device init */
1936         sh_eth_dev_init(ndev, true);
1937 }
1938
1939 /* Packet transmit function */
1940 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1941 {
1942         struct sh_eth_private *mdp = netdev_priv(ndev);
1943         struct sh_eth_txdesc *txdesc;
1944         u32 entry;
1945         unsigned long flags;
1946
1947         spin_lock_irqsave(&mdp->lock, flags);
1948         if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1949                 if (!sh_eth_txfree(ndev)) {
1950                         if (netif_msg_tx_queued(mdp))
1951                                 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1952                         netif_stop_queue(ndev);
1953                         spin_unlock_irqrestore(&mdp->lock, flags);
1954                         return NETDEV_TX_BUSY;
1955                 }
1956         }
1957         spin_unlock_irqrestore(&mdp->lock, flags);
1958
1959         entry = mdp->cur_tx % mdp->num_tx_ring;
1960         mdp->tx_skbuff[entry] = skb;
1961         txdesc = &mdp->tx_ring[entry];
1962         /* soft swap. */
1963         if (!mdp->cd->hw_swap)
1964                 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1965                                  skb->len + 2);
1966         txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1967                                       DMA_TO_DEVICE);
1968         if (skb->len < ETHERSMALL)
1969                 txdesc->buffer_length = ETHERSMALL;
1970         else
1971                 txdesc->buffer_length = skb->len;
1972
1973         if (entry >= mdp->num_tx_ring - 1)
1974                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1975         else
1976                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1977
1978         mdp->cur_tx++;
1979
1980         if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1981                 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1982
1983         return NETDEV_TX_OK;
1984 }
1985
1986 /* device close function */
1987 static int sh_eth_close(struct net_device *ndev)
1988 {
1989         struct sh_eth_private *mdp = netdev_priv(ndev);
1990
1991         netif_stop_queue(ndev);
1992
1993         /* Disable interrupts by clearing the interrupt mask. */
1994         sh_eth_write(ndev, 0x0000, EESIPR);
1995
1996         /* Stop the chip's Tx and Rx processes. */
1997         sh_eth_write(ndev, 0, EDTRR);
1998         sh_eth_write(ndev, 0, EDRRR);
1999
2000         /* PHY Disconnect */
2001         if (mdp->phydev) {
2002                 phy_stop(mdp->phydev);
2003                 phy_disconnect(mdp->phydev);
2004         }
2005
2006         free_irq(ndev->irq, ndev);
2007
2008         /* Free all the skbuffs in the Rx queue. */
2009         sh_eth_ring_free(ndev);
2010
2011         /* free DMA buffer */
2012         sh_eth_free_dma_buffer(mdp);
2013
2014         pm_runtime_put_sync(&mdp->pdev->dev);
2015
2016         return 0;
2017 }
2018
2019 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2020 {
2021         struct sh_eth_private *mdp = netdev_priv(ndev);
2022
2023         pm_runtime_get_sync(&mdp->pdev->dev);
2024
2025         ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2026         sh_eth_write(ndev, 0, TROCR);   /* (write clear) */
2027         ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2028         sh_eth_write(ndev, 0, CDCR);    /* (write clear) */
2029         ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2030         sh_eth_write(ndev, 0, LCCR);    /* (write clear) */
2031         if (sh_eth_is_gether(mdp)) {
2032                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2033                 sh_eth_write(ndev, 0, CERCR);   /* (write clear) */
2034                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2035                 sh_eth_write(ndev, 0, CEECR);   /* (write clear) */
2036         } else {
2037                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2038                 sh_eth_write(ndev, 0, CNDCR);   /* (write clear) */
2039         }
2040         pm_runtime_put_sync(&mdp->pdev->dev);
2041
2042         return &ndev->stats;
2043 }
2044
2045 /* ioctl to device function */
2046 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2047                                 int cmd)
2048 {
2049         struct sh_eth_private *mdp = netdev_priv(ndev);
2050         struct phy_device *phydev = mdp->phydev;
2051
2052         if (!netif_running(ndev))
2053                 return -EINVAL;
2054
2055         if (!phydev)
2056                 return -ENODEV;
2057
2058         return phy_mii_ioctl(phydev, rq, cmd);
2059 }
2060
2061 #if defined(SH_ETH_HAS_TSU)
2062 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2063 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2064                                             int entry)
2065 {
2066         return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2067 }
2068
2069 static u32 sh_eth_tsu_get_post_mask(int entry)
2070 {
2071         return 0x0f << (28 - ((entry % 8) * 4));
2072 }
2073
2074 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2075 {
2076         return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2077 }
2078
2079 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2080                                              int entry)
2081 {
2082         struct sh_eth_private *mdp = netdev_priv(ndev);
2083         u32 tmp;
2084         void *reg_offset;
2085
2086         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2087         tmp = ioread32(reg_offset);
2088         iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2089 }
2090
2091 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2092                                               int entry)
2093 {
2094         struct sh_eth_private *mdp = netdev_priv(ndev);
2095         u32 post_mask, ref_mask, tmp;
2096         void *reg_offset;
2097
2098         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2099         post_mask = sh_eth_tsu_get_post_mask(entry);
2100         ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2101
2102         tmp = ioread32(reg_offset);
2103         iowrite32(tmp & ~post_mask, reg_offset);
2104
2105         /* If other port enables, the function returns "true" */
2106         return tmp & ref_mask;
2107 }
2108
2109 static int sh_eth_tsu_busy(struct net_device *ndev)
2110 {
2111         int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2112         struct sh_eth_private *mdp = netdev_priv(ndev);
2113
2114         while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2115                 udelay(10);
2116                 timeout--;
2117                 if (timeout <= 0) {
2118                         dev_err(&ndev->dev, "%s: timeout\n", __func__);
2119                         return -ETIMEDOUT;
2120                 }
2121         }
2122
2123         return 0;
2124 }
2125
2126 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2127                                   const u8 *addr)
2128 {
2129         u32 val;
2130
2131         val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2132         iowrite32(val, reg);
2133         if (sh_eth_tsu_busy(ndev) < 0)
2134                 return -EBUSY;
2135
2136         val = addr[4] << 8 | addr[5];
2137         iowrite32(val, reg + 4);
2138         if (sh_eth_tsu_busy(ndev) < 0)
2139                 return -EBUSY;
2140
2141         return 0;
2142 }
2143
2144 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2145 {
2146         u32 val;
2147
2148         val = ioread32(reg);
2149         addr[0] = (val >> 24) & 0xff;
2150         addr[1] = (val >> 16) & 0xff;
2151         addr[2] = (val >> 8) & 0xff;
2152         addr[3] = val & 0xff;
2153         val = ioread32(reg + 4);
2154         addr[4] = (val >> 8) & 0xff;
2155         addr[5] = val & 0xff;
2156 }
2157
2158
2159 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2160 {
2161         struct sh_eth_private *mdp = netdev_priv(ndev);
2162         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2163         int i;
2164         u8 c_addr[ETH_ALEN];
2165
2166         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2167                 sh_eth_tsu_read_entry(reg_offset, c_addr);
2168                 if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2169                         return i;
2170         }
2171
2172         return -ENOENT;
2173 }
2174
2175 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2176 {
2177         u8 blank[ETH_ALEN];
2178         int entry;
2179
2180         memset(blank, 0, sizeof(blank));
2181         entry = sh_eth_tsu_find_entry(ndev, blank);
2182         return (entry < 0) ? -ENOMEM : entry;
2183 }
2184
2185 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2186                                               int entry)
2187 {
2188         struct sh_eth_private *mdp = netdev_priv(ndev);
2189         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2190         int ret;
2191         u8 blank[ETH_ALEN];
2192
2193         sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2194                          ~(1 << (31 - entry)), TSU_TEN);
2195
2196         memset(blank, 0, sizeof(blank));
2197         ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2198         if (ret < 0)
2199                 return ret;
2200         return 0;
2201 }
2202
2203 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2204 {
2205         struct sh_eth_private *mdp = netdev_priv(ndev);
2206         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2207         int i, ret;
2208
2209         if (!mdp->cd->tsu)
2210                 return 0;
2211
2212         i = sh_eth_tsu_find_entry(ndev, addr);
2213         if (i < 0) {
2214                 /* No entry found, create one */
2215                 i = sh_eth_tsu_find_empty(ndev);
2216                 if (i < 0)
2217                         return -ENOMEM;
2218                 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2219                 if (ret < 0)
2220                         return ret;
2221
2222                 /* Enable the entry */
2223                 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2224                                  (1 << (31 - i)), TSU_TEN);
2225         }
2226
2227         /* Entry found or created, enable POST */
2228         sh_eth_tsu_enable_cam_entry_post(ndev, i);
2229
2230         return 0;
2231 }
2232
2233 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2234 {
2235         struct sh_eth_private *mdp = netdev_priv(ndev);
2236         int i, ret;
2237
2238         if (!mdp->cd->tsu)
2239                 return 0;
2240
2241         i = sh_eth_tsu_find_entry(ndev, addr);
2242         if (i) {
2243                 /* Entry found */
2244                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2245                         goto done;
2246
2247                 /* Disable the entry if both ports was disabled */
2248                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2249                 if (ret < 0)
2250                         return ret;
2251         }
2252 done:
2253         return 0;
2254 }
2255
2256 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2257 {
2258         struct sh_eth_private *mdp = netdev_priv(ndev);
2259         int i, ret;
2260
2261         if (unlikely(!mdp->cd->tsu))
2262                 return 0;
2263
2264         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2265                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2266                         continue;
2267
2268                 /* Disable the entry if both ports was disabled */
2269                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2270                 if (ret < 0)
2271                         return ret;
2272         }
2273
2274         return 0;
2275 }
2276
2277 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2278 {
2279         struct sh_eth_private *mdp = netdev_priv(ndev);
2280         u8 addr[ETH_ALEN];
2281         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2282         int i;
2283
2284         if (unlikely(!mdp->cd->tsu))
2285                 return;
2286
2287         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2288                 sh_eth_tsu_read_entry(reg_offset, addr);
2289                 if (is_multicast_ether_addr(addr))
2290                         sh_eth_tsu_del_entry(ndev, addr);
2291         }
2292 }
2293
2294 /* Multicast reception directions set */
2295 static void sh_eth_set_multicast_list(struct net_device *ndev)
2296 {
2297         struct sh_eth_private *mdp = netdev_priv(ndev);
2298         u32 ecmr_bits;
2299         int mcast_all = 0;
2300         unsigned long flags;
2301
2302         spin_lock_irqsave(&mdp->lock, flags);
2303         /*
2304          * Initial condition is MCT = 1, PRM = 0.
2305          * Depending on ndev->flags, set PRM or clear MCT
2306          */
2307         ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2308
2309         if (!(ndev->flags & IFF_MULTICAST)) {
2310                 sh_eth_tsu_purge_mcast(ndev);
2311                 mcast_all = 1;
2312         }
2313         if (ndev->flags & IFF_ALLMULTI) {
2314                 sh_eth_tsu_purge_mcast(ndev);
2315                 ecmr_bits &= ~ECMR_MCT;
2316                 mcast_all = 1;
2317         }
2318
2319         if (ndev->flags & IFF_PROMISC) {
2320                 sh_eth_tsu_purge_all(ndev);
2321                 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2322         } else if (mdp->cd->tsu) {
2323                 struct netdev_hw_addr *ha;
2324                 netdev_for_each_mc_addr(ha, ndev) {
2325                         if (mcast_all && is_multicast_ether_addr(ha->addr))
2326                                 continue;
2327
2328                         if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2329                                 if (!mcast_all) {
2330                                         sh_eth_tsu_purge_mcast(ndev);
2331                                         ecmr_bits &= ~ECMR_MCT;
2332                                         mcast_all = 1;
2333                                 }
2334                         }
2335                 }
2336         } else {
2337                 /* Normal, unicast/broadcast-only mode. */
2338                 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2339         }
2340
2341         /* update the ethernet mode */
2342         sh_eth_write(ndev, ecmr_bits, ECMR);
2343
2344         spin_unlock_irqrestore(&mdp->lock, flags);
2345 }
2346
2347 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2348 {
2349         if (!mdp->port)
2350                 return TSU_VTAG0;
2351         else
2352                 return TSU_VTAG1;
2353 }
2354
2355 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2356 {
2357         struct sh_eth_private *mdp = netdev_priv(ndev);
2358         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2359
2360         if (unlikely(!mdp->cd->tsu))
2361                 return -EPERM;
2362
2363         /* No filtering if vid = 0 */
2364         if (!vid)
2365                 return 0;
2366
2367         mdp->vlan_num_ids++;
2368
2369         /*
2370          * The controller has one VLAN tag HW filter. So, if the filter is
2371          * already enabled, the driver disables it and the filte
2372          */
2373         if (mdp->vlan_num_ids > 1) {
2374                 /* disable VLAN filter */
2375                 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2376                 return 0;
2377         }
2378
2379         sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2380                          vtag_reg_index);
2381
2382         return 0;
2383 }
2384
2385 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2386 {
2387         struct sh_eth_private *mdp = netdev_priv(ndev);
2388         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2389
2390         if (unlikely(!mdp->cd->tsu))
2391                 return -EPERM;
2392
2393         /* No filtering if vid = 0 */
2394         if (!vid)
2395                 return 0;
2396
2397         mdp->vlan_num_ids--;
2398         sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2399
2400         return 0;
2401 }
2402 #endif /* SH_ETH_HAS_TSU */
2403
2404 /* SuperH's TSU register init function */
2405 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2406 {
2407         sh_eth_tsu_write(mdp, 0, TSU_FWEN0);    /* Disable forward(0->1) */
2408         sh_eth_tsu_write(mdp, 0, TSU_FWEN1);    /* Disable forward(1->0) */
2409         sh_eth_tsu_write(mdp, 0, TSU_FCM);      /* forward fifo 3k-3k */
2410         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2411         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2412         sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2413         sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2414         sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2415         sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2416         sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2417         if (sh_eth_is_gether(mdp)) {
2418                 sh_eth_tsu_write(mdp, 0, TSU_QTAG0);    /* Disable QTAG(0->1) */
2419                 sh_eth_tsu_write(mdp, 0, TSU_QTAG1);    /* Disable QTAG(1->0) */
2420         } else {
2421                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);   /* Disable QTAG(0->1) */
2422                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);   /* Disable QTAG(1->0) */
2423         }
2424         sh_eth_tsu_write(mdp, 0, TSU_FWSR);     /* all interrupt status clear */
2425         sh_eth_tsu_write(mdp, 0, TSU_FWINMK);   /* Disable all interrupt */
2426         sh_eth_tsu_write(mdp, 0, TSU_TEN);      /* Disable all CAM entry */
2427         sh_eth_tsu_write(mdp, 0, TSU_POST1);    /* Disable CAM entry [ 0- 7] */
2428         sh_eth_tsu_write(mdp, 0, TSU_POST2);    /* Disable CAM entry [ 8-15] */
2429         sh_eth_tsu_write(mdp, 0, TSU_POST3);    /* Disable CAM entry [16-23] */
2430         sh_eth_tsu_write(mdp, 0, TSU_POST4);    /* Disable CAM entry [24-31] */
2431 }
2432
2433 /* MDIO bus release function */
2434 static int sh_mdio_release(struct net_device *ndev)
2435 {
2436         struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2437
2438         /* unregister mdio bus */
2439         mdiobus_unregister(bus);
2440
2441         /* remove mdio bus info from net_device */
2442         dev_set_drvdata(&ndev->dev, NULL);
2443
2444         /* free bitbang info */
2445         free_mdio_bitbang(bus);
2446
2447         return 0;
2448 }
2449
2450 /* MDIO bus init function */
2451 static int sh_mdio_init(struct net_device *ndev, int id,
2452                         struct sh_eth_plat_data *pd)
2453 {
2454         int ret, i;
2455         struct bb_info *bitbang;
2456         struct sh_eth_private *mdp = netdev_priv(ndev);
2457
2458         /* create bit control struct for PHY */
2459         bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2460                                GFP_KERNEL);
2461         if (!bitbang) {
2462                 ret = -ENOMEM;
2463                 goto out;
2464         }
2465
2466         /* bitbang init */
2467         bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2468         bitbang->set_gate = pd->set_mdio_gate;
2469         bitbang->mdi_msk = PIR_MDI;
2470         bitbang->mdo_msk = PIR_MDO;
2471         bitbang->mmd_msk = PIR_MMD;
2472         bitbang->mdc_msk = PIR_MDC;
2473         bitbang->ctrl.ops = &bb_ops;
2474
2475         /* MII controller setting */
2476         mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2477         if (!mdp->mii_bus) {
2478                 ret = -ENOMEM;
2479                 goto out;
2480         }
2481
2482         /* Hook up MII support for ethtool */
2483         mdp->mii_bus->name = "sh_mii";
2484         mdp->mii_bus->parent = &ndev->dev;
2485         snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2486                 mdp->pdev->name, id);
2487
2488         /* PHY IRQ */
2489         mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2490                                          sizeof(int) * PHY_MAX_ADDR,
2491                                          GFP_KERNEL);
2492         if (!mdp->mii_bus->irq) {
2493                 ret = -ENOMEM;
2494                 goto out_free_bus;
2495         }
2496
2497         for (i = 0; i < PHY_MAX_ADDR; i++)
2498                 mdp->mii_bus->irq[i] = PHY_POLL;
2499
2500         /* register mdio bus */
2501         ret = mdiobus_register(mdp->mii_bus);
2502         if (ret)
2503                 goto out_free_bus;
2504
2505         dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2506
2507         return 0;
2508
2509 out_free_bus:
2510         free_mdio_bitbang(mdp->mii_bus);
2511
2512 out:
2513         return ret;
2514 }
2515
2516 static const u16 *sh_eth_get_register_offset(int register_type)
2517 {
2518         const u16 *reg_offset = NULL;
2519
2520         switch (register_type) {
2521         case SH_ETH_REG_GIGABIT:
2522                 reg_offset = sh_eth_offset_gigabit;
2523                 break;
2524         case SH_ETH_REG_FAST_SH4:
2525                 reg_offset = sh_eth_offset_fast_sh4;
2526                 break;
2527         case SH_ETH_REG_FAST_SH3_SH2:
2528                 reg_offset = sh_eth_offset_fast_sh3_sh2;
2529                 break;
2530         default:
2531                 pr_err("Unknown register type (%d)\n", register_type);
2532                 break;
2533         }
2534
2535         return reg_offset;
2536 }
2537
2538 static const struct net_device_ops sh_eth_netdev_ops = {
2539         .ndo_open               = sh_eth_open,
2540         .ndo_stop               = sh_eth_close,
2541         .ndo_start_xmit         = sh_eth_start_xmit,
2542         .ndo_get_stats          = sh_eth_get_stats,
2543 #if defined(SH_ETH_HAS_TSU)
2544         .ndo_set_rx_mode        = sh_eth_set_multicast_list,
2545         .ndo_vlan_rx_add_vid    = sh_eth_vlan_rx_add_vid,
2546         .ndo_vlan_rx_kill_vid   = sh_eth_vlan_rx_kill_vid,
2547 #endif
2548         .ndo_tx_timeout         = sh_eth_tx_timeout,
2549         .ndo_do_ioctl           = sh_eth_do_ioctl,
2550         .ndo_validate_addr      = eth_validate_addr,
2551         .ndo_set_mac_address    = eth_mac_addr,
2552         .ndo_change_mtu         = eth_change_mtu,
2553 };
2554
2555 static int sh_eth_drv_probe(struct platform_device *pdev)
2556 {
2557         int ret, devno = 0;
2558         struct resource *res;
2559         struct net_device *ndev = NULL;
2560         struct sh_eth_private *mdp = NULL;
2561         struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2562
2563         /* get base addr */
2564         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2565         if (unlikely(res == NULL)) {
2566                 dev_err(&pdev->dev, "invalid resource\n");
2567                 ret = -EINVAL;
2568                 goto out;
2569         }
2570
2571         ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2572         if (!ndev) {
2573                 ret = -ENOMEM;
2574                 goto out;
2575         }
2576
2577         /* The sh Ether-specific entries in the device structure. */
2578         ndev->base_addr = res->start;
2579         devno = pdev->id;
2580         if (devno < 0)
2581                 devno = 0;
2582
2583         ndev->dma = -1;
2584         ret = platform_get_irq(pdev, 0);
2585         if (ret < 0) {
2586                 ret = -ENODEV;
2587                 goto out_release;
2588         }
2589         ndev->irq = ret;
2590
2591         SET_NETDEV_DEV(ndev, &pdev->dev);
2592
2593         /* Fill in the fields of the device structure with ethernet values. */
2594         ether_setup(ndev);
2595
2596         mdp = netdev_priv(ndev);
2597         mdp->num_tx_ring = TX_RING_SIZE;
2598         mdp->num_rx_ring = RX_RING_SIZE;
2599         mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2600         if (IS_ERR(mdp->addr)) {
2601                 ret = PTR_ERR(mdp->addr);
2602                 goto out_release;
2603         }
2604
2605         spin_lock_init(&mdp->lock);
2606         mdp->pdev = pdev;
2607         pm_runtime_enable(&pdev->dev);
2608         pm_runtime_resume(&pdev->dev);
2609
2610         /* get PHY ID */
2611         mdp->phy_id = pd->phy;
2612         mdp->phy_interface = pd->phy_interface;
2613         /* EDMAC endian */
2614         mdp->edmac_endian = pd->edmac_endian;
2615         mdp->no_ether_link = pd->no_ether_link;
2616         mdp->ether_link_active_low = pd->ether_link_active_low;
2617         mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2618
2619         /* set cpu data */
2620 #if defined(SH_ETH_HAS_BOTH_MODULES)
2621         mdp->cd = sh_eth_get_cpu_data(mdp);
2622 #else
2623         mdp->cd = &sh_eth_my_cpu_data;
2624 #endif
2625         sh_eth_set_default_cpu_data(mdp->cd);
2626
2627         /* set function */
2628         ndev->netdev_ops = &sh_eth_netdev_ops;
2629         SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2630         ndev->watchdog_timeo = TX_TIMEOUT;
2631
2632         /* debug message level */
2633         mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2634
2635         /* read and set MAC address */
2636         read_mac_address(ndev, pd->mac_addr);
2637
2638         /* ioremap the TSU registers */
2639         if (mdp->cd->tsu) {
2640                 struct resource *rtsu;
2641                 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2642                 if (!rtsu) {
2643                         dev_err(&pdev->dev, "Not found TSU resource\n");
2644                         ret = -ENODEV;
2645                         goto out_release;
2646                 }
2647                 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2648                 if (IS_ERR(mdp->tsu_addr)) {
2649                         ret = PTR_ERR(mdp->tsu_addr);
2650                         goto out_release;
2651                 }
2652                 mdp->port = devno % 2;
2653                 ndev->features = NETIF_F_HW_VLAN_FILTER;
2654         }
2655
2656         /* initialize first or needed device */
2657         if (!devno || pd->needs_init) {
2658                 if (mdp->cd->chip_reset)
2659                         mdp->cd->chip_reset(ndev);
2660
2661                 if (mdp->cd->tsu) {
2662                         /* TSU init (Init only)*/
2663                         sh_eth_tsu_init(mdp);
2664                 }
2665         }
2666
2667         /* network device register */
2668         ret = register_netdev(ndev);
2669         if (ret)
2670                 goto out_release;
2671
2672         /* mdio bus init */
2673         ret = sh_mdio_init(ndev, pdev->id, pd);
2674         if (ret)
2675                 goto out_unregister;
2676
2677         /* print device information */
2678         pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2679                (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2680
2681         platform_set_drvdata(pdev, ndev);
2682
2683         return ret;
2684
2685 out_unregister:
2686         unregister_netdev(ndev);
2687
2688 out_release:
2689         /* net_dev free */
2690         if (ndev)
2691                 free_netdev(ndev);
2692
2693 out:
2694         return ret;
2695 }
2696
2697 static int sh_eth_drv_remove(struct platform_device *pdev)
2698 {
2699         struct net_device *ndev = platform_get_drvdata(pdev);
2700
2701         sh_mdio_release(ndev);
2702         unregister_netdev(ndev);
2703         pm_runtime_disable(&pdev->dev);
2704         free_netdev(ndev);
2705         platform_set_drvdata(pdev, NULL);
2706
2707         return 0;
2708 }
2709
2710 static int sh_eth_runtime_nop(struct device *dev)
2711 {
2712         /*
2713          * Runtime PM callback shared between ->runtime_suspend()
2714          * and ->runtime_resume(). Simply returns success.
2715          *
2716          * This driver re-initializes all registers after
2717          * pm_runtime_get_sync() anyway so there is no need
2718          * to save and restore registers here.
2719          */
2720         return 0;
2721 }
2722
2723 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2724         .runtime_suspend = sh_eth_runtime_nop,
2725         .runtime_resume = sh_eth_runtime_nop,
2726 };
2727
2728 static struct platform_driver sh_eth_driver = {
2729         .probe = sh_eth_drv_probe,
2730         .remove = sh_eth_drv_remove,
2731         .driver = {
2732                    .name = CARDNAME,
2733                    .pm = &sh_eth_dev_pm_ops,
2734         },
2735 };
2736
2737 module_platform_driver(sh_eth_driver);
2738
2739 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2740 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2741 MODULE_LICENSE("GPL v2");