]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/falcon.c
ASoC: Blackfin: ADAU1X81 eval board support
[karo-tx-linux.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
135         (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name)                              \
138         [FALCON_STAT_ ## ext_name] =                                    \
139         { #ext_name,                                                    \
140           /* 48-bit stats are zero-padded to 64 on DMA */               \
141           hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
142           hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)                                     \
144         [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145
146 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
147         FALCON_DMA_STAT(tx_bytes, XgTxOctets),
148         FALCON_DMA_STAT(tx_packets, XgTxPkts),
149         FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
150         FALCON_DMA_STAT(tx_control, XgTxControlPkts),
151         FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
152         FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
153         FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
154         FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
155         FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
156         FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
157         FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
158         FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
159         FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
160         FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
161         FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
162         FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
163         FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
164         FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
165         FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
166         FALCON_DMA_STAT(rx_bytes, XgRxOctets),
167         FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
168         FALCON_OTHER_STAT(rx_bad_bytes),
169         FALCON_DMA_STAT(rx_packets, XgRxPkts),
170         FALCON_DMA_STAT(rx_good, XgRxPktsOK),
171         FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
172         FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
173         FALCON_DMA_STAT(rx_control, XgRxControlPkts),
174         FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
175         FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
176         FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
177         FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
178         FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
179         FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
180         FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
181         FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
182         FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
183         FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
184         FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
185         FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
186         FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
187         FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
188         FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
189         FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
190         FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
191         FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
192         FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
193         FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
194 };
195 static const unsigned long falcon_stat_mask[] = {
196         [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
197 };
198
199 /**************************************************************************
200  *
201  * Basic SPI command set and bit definitions
202  *
203  *************************************************************************/
204
205 #define SPI_WRSR 0x01           /* Write status register */
206 #define SPI_WRITE 0x02          /* Write data to memory array */
207 #define SPI_READ 0x03           /* Read data from memory array */
208 #define SPI_WRDI 0x04           /* Reset write enable latch */
209 #define SPI_RDSR 0x05           /* Read status register */
210 #define SPI_WREN 0x06           /* Set write enable latch */
211 #define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
212
213 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
214 #define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
215 #define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
216 #define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
217 #define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
218 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
219
220 /**************************************************************************
221  *
222  * Non-volatile memory layout
223  *
224  **************************************************************************
225  */
226
227 /* SFC4000 flash is partitioned into:
228  *     0-0x400       chip and board config (see struct falcon_nvconfig)
229  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
230  *     0x8000-end    boot code (mapped to PCI expansion ROM)
231  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
232  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
233  *     0-0x400       chip and board config
234  *     configurable  VPD
235  *     0x800-0x1800  boot config
236  * Aside from the chip and board config, all of these are optional and may
237  * be absent or truncated depending on the devices used.
238  */
239 #define FALCON_NVCONFIG_END 0x400U
240 #define FALCON_FLASH_BOOTCODE_START 0x8000U
241 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
242 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
243
244 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
245 struct falcon_nvconfig_board_v2 {
246         __le16 nports;
247         u8 port0_phy_addr;
248         u8 port0_phy_type;
249         u8 port1_phy_addr;
250         u8 port1_phy_type;
251         __le16 asic_sub_revision;
252         __le16 board_revision;
253 } __packed;
254
255 /* Board configuration v3 extra information */
256 struct falcon_nvconfig_board_v3 {
257         __le32 spi_device_type[2];
258 } __packed;
259
260 /* Bit numbers for spi_device_type */
261 #define SPI_DEV_TYPE_SIZE_LBN 0
262 #define SPI_DEV_TYPE_SIZE_WIDTH 5
263 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
264 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
265 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
266 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
267 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
268 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
270 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
271 #define SPI_DEV_TYPE_FIELD(type, field)                                 \
272         (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
273
274 #define FALCON_NVCONFIG_OFFSET 0x300
275
276 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
277 struct falcon_nvconfig {
278         efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
279         u8 mac_address[2][8];                   /* 0x310 */
280         efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
281         efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
282         efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
283         efx_oword_t hw_init_reg;                        /* 0x350 */
284         efx_oword_t nic_stat_reg;                       /* 0x360 */
285         efx_oword_t glb_ctl_reg;                        /* 0x370 */
286         efx_oword_t srm_cfg_reg;                        /* 0x380 */
287         efx_oword_t spare_reg;                          /* 0x390 */
288         __le16 board_magic_num;                 /* 0x3A0 */
289         __le16 board_struct_ver;
290         __le16 board_checksum;
291         struct falcon_nvconfig_board_v2 board_v2;
292         efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
293         struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
294 } __packed;
295
296 /*************************************************************************/
297
298 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
299 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
300
301 static const unsigned int
302 /* "Large" EEPROM device: Atmel AT25640 or similar
303  * 8 KB, 16-bit address, 32 B write block */
304 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
305                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
306                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
307 /* Default flash device: Atmel AT25F1024
308  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
309 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
310                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
311                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
312                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
313                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
314
315 /**************************************************************************
316  *
317  * I2C bus - this is a bit-bashing interface using GPIO pins
318  * Note that it uses the output enables to tristate the outputs
319  * SDA is the data pin and SCL is the clock
320  *
321  **************************************************************************
322  */
323 static void falcon_setsda(void *data, int state)
324 {
325         struct efx_nic *efx = (struct efx_nic *)data;
326         efx_oword_t reg;
327
328         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
329         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
330         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
331 }
332
333 static void falcon_setscl(void *data, int state)
334 {
335         struct efx_nic *efx = (struct efx_nic *)data;
336         efx_oword_t reg;
337
338         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
339         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
340         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
341 }
342
343 static int falcon_getsda(void *data)
344 {
345         struct efx_nic *efx = (struct efx_nic *)data;
346         efx_oword_t reg;
347
348         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
349         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
350 }
351
352 static int falcon_getscl(void *data)
353 {
354         struct efx_nic *efx = (struct efx_nic *)data;
355         efx_oword_t reg;
356
357         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
358         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
359 }
360
361 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
362         .setsda         = falcon_setsda,
363         .setscl         = falcon_setscl,
364         .getsda         = falcon_getsda,
365         .getscl         = falcon_getscl,
366         .udelay         = 5,
367         /* Wait up to 50 ms for slave to let us pull SCL high */
368         .timeout        = DIV_ROUND_UP(HZ, 20),
369 };
370
371 static void falcon_push_irq_moderation(struct efx_channel *channel)
372 {
373         efx_dword_t timer_cmd;
374         struct efx_nic *efx = channel->efx;
375
376         /* Set timer register */
377         if (channel->irq_moderation) {
378                 EFX_POPULATE_DWORD_2(timer_cmd,
379                                      FRF_AB_TC_TIMER_MODE,
380                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
381                                      FRF_AB_TC_TIMER_VAL,
382                                      channel->irq_moderation - 1);
383         } else {
384                 EFX_POPULATE_DWORD_2(timer_cmd,
385                                      FRF_AB_TC_TIMER_MODE,
386                                      FFE_BB_TIMER_MODE_DIS,
387                                      FRF_AB_TC_TIMER_VAL, 0);
388         }
389         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
390         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
391                                channel->channel);
392 }
393
394 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
395
396 static void falcon_prepare_flush(struct efx_nic *efx)
397 {
398         falcon_deconfigure_mac_wrapper(efx);
399
400         /* Wait for the tx and rx fifo's to get to the next packet boundary
401          * (~1ms without back-pressure), then to drain the remainder of the
402          * fifo's at data path speeds (negligible), with a healthy margin. */
403         msleep(10);
404 }
405
406 /* Acknowledge a legacy interrupt from Falcon
407  *
408  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
409  *
410  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
411  * BIU. Interrupt acknowledge is read sensitive so must write instead
412  * (then read to ensure the BIU collector is flushed)
413  *
414  * NB most hardware supports MSI interrupts
415  */
416 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
417 {
418         efx_dword_t reg;
419
420         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
421         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
422         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
423 }
424
425 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
426 {
427         struct efx_nic *efx = dev_id;
428         efx_oword_t *int_ker = efx->irq_status.addr;
429         int syserr;
430         int queues;
431
432         /* Check to see if this is our interrupt.  If it isn't, we
433          * exit without having touched the hardware.
434          */
435         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
436                 netif_vdbg(efx, intr, efx->net_dev,
437                            "IRQ %d on CPU %d not for me\n", irq,
438                            raw_smp_processor_id());
439                 return IRQ_NONE;
440         }
441         efx->last_irq_cpu = raw_smp_processor_id();
442         netif_vdbg(efx, intr, efx->net_dev,
443                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
444                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
445
446         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
447                 return IRQ_HANDLED;
448
449         /* Check to see if we have a serious error condition */
450         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
451         if (unlikely(syserr))
452                 return efx_farch_fatal_interrupt(efx);
453
454         /* Determine interrupting queues, clear interrupt status
455          * register and acknowledge the device interrupt.
456          */
457         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
458         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
459         EFX_ZERO_OWORD(*int_ker);
460         wmb(); /* Ensure the vector is cleared before interrupt ack */
461         falcon_irq_ack_a1(efx);
462
463         if (queues & 1)
464                 efx_schedule_channel_irq(efx_get_channel(efx, 0));
465         if (queues & 2)
466                 efx_schedule_channel_irq(efx_get_channel(efx, 1));
467         return IRQ_HANDLED;
468 }
469
470 /**************************************************************************
471  *
472  * RSS
473  *
474  **************************************************************************
475  */
476
477 static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
478 {
479         efx_oword_t temp;
480
481         /* Set hash key for IPv4 */
482         memcpy(&temp, efx->rx_hash_key, sizeof(temp));
483         efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
484
485         efx_farch_rx_push_indir_table(efx);
486 }
487
488 /**************************************************************************
489  *
490  * EEPROM/flash
491  *
492  **************************************************************************
493  */
494
495 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
496
497 static int falcon_spi_poll(struct efx_nic *efx)
498 {
499         efx_oword_t reg;
500         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
501         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
502 }
503
504 /* Wait for SPI command completion */
505 static int falcon_spi_wait(struct efx_nic *efx)
506 {
507         /* Most commands will finish quickly, so we start polling at
508          * very short intervals.  Sometimes the command may have to
509          * wait for VPD or expansion ROM access outside of our
510          * control, so we allow up to 100 ms. */
511         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
512         int i;
513
514         for (i = 0; i < 10; i++) {
515                 if (!falcon_spi_poll(efx))
516                         return 0;
517                 udelay(10);
518         }
519
520         for (;;) {
521                 if (!falcon_spi_poll(efx))
522                         return 0;
523                 if (time_after_eq(jiffies, timeout)) {
524                         netif_err(efx, hw, efx->net_dev,
525                                   "timed out waiting for SPI\n");
526                         return -ETIMEDOUT;
527                 }
528                 schedule_timeout_uninterruptible(1);
529         }
530 }
531
532 static int
533 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
534                unsigned int command, int address,
535                const void *in, void *out, size_t len)
536 {
537         bool addressed = (address >= 0);
538         bool reading = (out != NULL);
539         efx_oword_t reg;
540         int rc;
541
542         /* Input validation */
543         if (len > FALCON_SPI_MAX_LEN)
544                 return -EINVAL;
545
546         /* Check that previous command is not still running */
547         rc = falcon_spi_poll(efx);
548         if (rc)
549                 return rc;
550
551         /* Program address register, if we have an address */
552         if (addressed) {
553                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
554                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
555         }
556
557         /* Program data register, if we have data */
558         if (in != NULL) {
559                 memcpy(&reg, in, len);
560                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
561         }
562
563         /* Issue read/write command */
564         EFX_POPULATE_OWORD_7(reg,
565                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
566                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
567                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
568                              FRF_AB_EE_SPI_HCMD_READ, reading,
569                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
570                              FRF_AB_EE_SPI_HCMD_ADBCNT,
571                              (addressed ? spi->addr_len : 0),
572                              FRF_AB_EE_SPI_HCMD_ENC, command);
573         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
574
575         /* Wait for read/write to complete */
576         rc = falcon_spi_wait(efx);
577         if (rc)
578                 return rc;
579
580         /* Read data */
581         if (out != NULL) {
582                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
583                 memcpy(out, &reg, len);
584         }
585
586         return 0;
587 }
588
589 static inline u8
590 falcon_spi_munge_command(const struct falcon_spi_device *spi,
591                          const u8 command, const unsigned int address)
592 {
593         return command | (((address >> 8) & spi->munge_address) << 3);
594 }
595
596 static int
597 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
598                 loff_t start, size_t len, size_t *retlen, u8 *buffer)
599 {
600         size_t block_len, pos = 0;
601         unsigned int command;
602         int rc = 0;
603
604         while (pos < len) {
605                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
606
607                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
608                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
609                                     buffer + pos, block_len);
610                 if (rc)
611                         break;
612                 pos += block_len;
613
614                 /* Avoid locking up the system */
615                 cond_resched();
616                 if (signal_pending(current)) {
617                         rc = -EINTR;
618                         break;
619                 }
620         }
621
622         if (retlen)
623                 *retlen = pos;
624         return rc;
625 }
626
627 #ifdef CONFIG_SFC_MTD
628
629 struct falcon_mtd_partition {
630         struct efx_mtd_partition common;
631         const struct falcon_spi_device *spi;
632         size_t offset;
633 };
634
635 #define to_falcon_mtd_partition(mtd)                            \
636         container_of(mtd, struct falcon_mtd_partition, common.mtd)
637
638 static size_t
639 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
640 {
641         return min(FALCON_SPI_MAX_LEN,
642                    (spi->block_size - (start & (spi->block_size - 1))));
643 }
644
645 /* Wait up to 10 ms for buffered write completion */
646 static int
647 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
648 {
649         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
650         u8 status;
651         int rc;
652
653         for (;;) {
654                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
655                                     &status, sizeof(status));
656                 if (rc)
657                         return rc;
658                 if (!(status & SPI_STATUS_NRDY))
659                         return 0;
660                 if (time_after_eq(jiffies, timeout)) {
661                         netif_err(efx, hw, efx->net_dev,
662                                   "SPI write timeout on device %d"
663                                   " last status=0x%02x\n",
664                                   spi->device_id, status);
665                         return -ETIMEDOUT;
666                 }
667                 schedule_timeout_uninterruptible(1);
668         }
669 }
670
671 static int
672 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
673                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
674 {
675         u8 verify_buffer[FALCON_SPI_MAX_LEN];
676         size_t block_len, pos = 0;
677         unsigned int command;
678         int rc = 0;
679
680         while (pos < len) {
681                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
682                 if (rc)
683                         break;
684
685                 block_len = min(len - pos,
686                                 falcon_spi_write_limit(spi, start + pos));
687                 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
688                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
689                                     buffer + pos, NULL, block_len);
690                 if (rc)
691                         break;
692
693                 rc = falcon_spi_wait_write(efx, spi);
694                 if (rc)
695                         break;
696
697                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
698                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
699                                     NULL, verify_buffer, block_len);
700                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
701                         rc = -EIO;
702                         break;
703                 }
704
705                 pos += block_len;
706
707                 /* Avoid locking up the system */
708                 cond_resched();
709                 if (signal_pending(current)) {
710                         rc = -EINTR;
711                         break;
712                 }
713         }
714
715         if (retlen)
716                 *retlen = pos;
717         return rc;
718 }
719
720 static int
721 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
722 {
723         const struct falcon_spi_device *spi = part->spi;
724         struct efx_nic *efx = part->common.mtd.priv;
725         u8 status;
726         int rc, i;
727
728         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
729         for (i = 0; i < 40; i++) {
730                 __set_current_state(uninterruptible ?
731                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
732                 schedule_timeout(HZ / 10);
733                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
734                                     &status, sizeof(status));
735                 if (rc)
736                         return rc;
737                 if (!(status & SPI_STATUS_NRDY))
738                         return 0;
739                 if (signal_pending(current))
740                         return -EINTR;
741         }
742         pr_err("%s: timed out waiting for %s\n",
743                part->common.name, part->common.dev_type_name);
744         return -ETIMEDOUT;
745 }
746
747 static int
748 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
749 {
750         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
751                                 SPI_STATUS_BP0);
752         u8 status;
753         int rc;
754
755         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
756                             &status, sizeof(status));
757         if (rc)
758                 return rc;
759
760         if (!(status & unlock_mask))
761                 return 0; /* already unlocked */
762
763         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
764         if (rc)
765                 return rc;
766         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
767         if (rc)
768                 return rc;
769
770         status &= ~unlock_mask;
771         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
772                             NULL, sizeof(status));
773         if (rc)
774                 return rc;
775         rc = falcon_spi_wait_write(efx, spi);
776         if (rc)
777                 return rc;
778
779         return 0;
780 }
781
782 #define FALCON_SPI_VERIFY_BUF_LEN 16
783
784 static int
785 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
786 {
787         const struct falcon_spi_device *spi = part->spi;
788         struct efx_nic *efx = part->common.mtd.priv;
789         unsigned pos, block_len;
790         u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
791         u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
792         int rc;
793
794         if (len != spi->erase_size)
795                 return -EINVAL;
796
797         if (spi->erase_command == 0)
798                 return -EOPNOTSUPP;
799
800         rc = falcon_spi_unlock(efx, spi);
801         if (rc)
802                 return rc;
803         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
804         if (rc)
805                 return rc;
806         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
807                             NULL, 0);
808         if (rc)
809                 return rc;
810         rc = falcon_spi_slow_wait(part, false);
811
812         /* Verify the entire region has been wiped */
813         memset(empty, 0xff, sizeof(empty));
814         for (pos = 0; pos < len; pos += block_len) {
815                 block_len = min(len - pos, sizeof(buffer));
816                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
817                                      NULL, buffer);
818                 if (rc)
819                         return rc;
820                 if (memcmp(empty, buffer, block_len))
821                         return -EIO;
822
823                 /* Avoid locking up the system */
824                 cond_resched();
825                 if (signal_pending(current))
826                         return -EINTR;
827         }
828
829         return rc;
830 }
831
832 static void falcon_mtd_rename(struct efx_mtd_partition *part)
833 {
834         struct efx_nic *efx = part->mtd.priv;
835
836         snprintf(part->name, sizeof(part->name), "%s %s",
837                  efx->name, part->type_name);
838 }
839
840 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
841                            size_t len, size_t *retlen, u8 *buffer)
842 {
843         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
844         struct efx_nic *efx = mtd->priv;
845         struct falcon_nic_data *nic_data = efx->nic_data;
846         int rc;
847
848         rc = mutex_lock_interruptible(&nic_data->spi_lock);
849         if (rc)
850                 return rc;
851         rc = falcon_spi_read(efx, part->spi, part->offset + start,
852                              len, retlen, buffer);
853         mutex_unlock(&nic_data->spi_lock);
854         return rc;
855 }
856
857 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
858 {
859         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
860         struct efx_nic *efx = mtd->priv;
861         struct falcon_nic_data *nic_data = efx->nic_data;
862         int rc;
863
864         rc = mutex_lock_interruptible(&nic_data->spi_lock);
865         if (rc)
866                 return rc;
867         rc = falcon_spi_erase(part, part->offset + start, len);
868         mutex_unlock(&nic_data->spi_lock);
869         return rc;
870 }
871
872 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
873                             size_t len, size_t *retlen, const u8 *buffer)
874 {
875         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
876         struct efx_nic *efx = mtd->priv;
877         struct falcon_nic_data *nic_data = efx->nic_data;
878         int rc;
879
880         rc = mutex_lock_interruptible(&nic_data->spi_lock);
881         if (rc)
882                 return rc;
883         rc = falcon_spi_write(efx, part->spi, part->offset + start,
884                               len, retlen, buffer);
885         mutex_unlock(&nic_data->spi_lock);
886         return rc;
887 }
888
889 static int falcon_mtd_sync(struct mtd_info *mtd)
890 {
891         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
892         struct efx_nic *efx = mtd->priv;
893         struct falcon_nic_data *nic_data = efx->nic_data;
894         int rc;
895
896         mutex_lock(&nic_data->spi_lock);
897         rc = falcon_spi_slow_wait(part, true);
898         mutex_unlock(&nic_data->spi_lock);
899         return rc;
900 }
901
902 static int falcon_mtd_probe(struct efx_nic *efx)
903 {
904         struct falcon_nic_data *nic_data = efx->nic_data;
905         struct falcon_mtd_partition *parts;
906         struct falcon_spi_device *spi;
907         size_t n_parts;
908         int rc = -ENODEV;
909
910         ASSERT_RTNL();
911
912         /* Allocate space for maximum number of partitions */
913         parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
914         if (!parts)
915                 return -ENOMEM;
916         n_parts = 0;
917
918         spi = &nic_data->spi_flash;
919         if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
920                 parts[n_parts].spi = spi;
921                 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
922                 parts[n_parts].common.dev_type_name = "flash";
923                 parts[n_parts].common.type_name = "sfc_flash_bootrom";
924                 parts[n_parts].common.mtd.type = MTD_NORFLASH;
925                 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
926                 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
927                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
928                 n_parts++;
929         }
930
931         spi = &nic_data->spi_eeprom;
932         if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
933                 parts[n_parts].spi = spi;
934                 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
935                 parts[n_parts].common.dev_type_name = "EEPROM";
936                 parts[n_parts].common.type_name = "sfc_bootconfig";
937                 parts[n_parts].common.mtd.type = MTD_RAM;
938                 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
939                 parts[n_parts].common.mtd.size =
940                         min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
941                         FALCON_EEPROM_BOOTCONFIG_START;
942                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
943                 n_parts++;
944         }
945
946         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
947         if (rc)
948                 kfree(parts);
949         return rc;
950 }
951
952 #endif /* CONFIG_SFC_MTD */
953
954 /**************************************************************************
955  *
956  * XMAC operations
957  *
958  **************************************************************************
959  */
960
961 /* Configure the XAUI driver that is an output from Falcon */
962 static void falcon_setup_xaui(struct efx_nic *efx)
963 {
964         efx_oword_t sdctl, txdrv;
965
966         /* Move the XAUI into low power, unless there is no PHY, in
967          * which case the XAUI will have to drive a cable. */
968         if (efx->phy_type == PHY_TYPE_NONE)
969                 return;
970
971         efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
972         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
973         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
974         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
975         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
976         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
977         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
978         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
979         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
980         efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
981
982         EFX_POPULATE_OWORD_8(txdrv,
983                              FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
984                              FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
985                              FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
986                              FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
987                              FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
988                              FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
989                              FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
990                              FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
991         efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
992 }
993
994 int falcon_reset_xaui(struct efx_nic *efx)
995 {
996         struct falcon_nic_data *nic_data = efx->nic_data;
997         efx_oword_t reg;
998         int count;
999
1000         /* Don't fetch MAC statistics over an XMAC reset */
1001         WARN_ON(nic_data->stats_disable_count == 0);
1002
1003         /* Start reset sequence */
1004         EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1005         efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1006
1007         /* Wait up to 10 ms for completion, then reinitialise */
1008         for (count = 0; count < 1000; count++) {
1009                 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1010                 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1011                     EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1012                         falcon_setup_xaui(efx);
1013                         return 0;
1014                 }
1015                 udelay(10);
1016         }
1017         netif_err(efx, hw, efx->net_dev,
1018                   "timed out waiting for XAUI/XGXS reset\n");
1019         return -ETIMEDOUT;
1020 }
1021
1022 static void falcon_ack_status_intr(struct efx_nic *efx)
1023 {
1024         struct falcon_nic_data *nic_data = efx->nic_data;
1025         efx_oword_t reg;
1026
1027         if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1028                 return;
1029
1030         /* We expect xgmii faults if the wireside link is down */
1031         if (!efx->link_state.up)
1032                 return;
1033
1034         /* We can only use this interrupt to signal the negative edge of
1035          * xaui_align [we have to poll the positive edge]. */
1036         if (nic_data->xmac_poll_required)
1037                 return;
1038
1039         efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1040 }
1041
1042 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1043 {
1044         efx_oword_t reg;
1045         bool align_done, link_ok = false;
1046         int sync_status;
1047
1048         /* Read link status */
1049         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1050
1051         align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1052         sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1053         if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1054                 link_ok = true;
1055
1056         /* Clear link status ready for next read */
1057         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1058         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1059         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1060         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1061
1062         return link_ok;
1063 }
1064
1065 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1066 {
1067         /*
1068          * Check MAC's XGXS link status except when using XGMII loopback
1069          * which bypasses the XGXS block.
1070          * If possible, check PHY's XGXS link status except when using
1071          * MAC loopback.
1072          */
1073         return (efx->loopback_mode == LOOPBACK_XGMII ||
1074                 falcon_xgxs_link_ok(efx)) &&
1075                 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1076                  LOOPBACK_INTERNAL(efx) ||
1077                  efx_mdio_phyxgxs_lane_sync(efx));
1078 }
1079
1080 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1081 {
1082         unsigned int max_frame_len;
1083         efx_oword_t reg;
1084         bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1085         bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1086
1087         /* Configure MAC  - cut-thru mode is hard wired on */
1088         EFX_POPULATE_OWORD_3(reg,
1089                              FRF_AB_XM_RX_JUMBO_MODE, 1,
1090                              FRF_AB_XM_TX_STAT_EN, 1,
1091                              FRF_AB_XM_RX_STAT_EN, 1);
1092         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1093
1094         /* Configure TX */
1095         EFX_POPULATE_OWORD_6(reg,
1096                              FRF_AB_XM_TXEN, 1,
1097                              FRF_AB_XM_TX_PRMBL, 1,
1098                              FRF_AB_XM_AUTO_PAD, 1,
1099                              FRF_AB_XM_TXCRC, 1,
1100                              FRF_AB_XM_FCNTL, tx_fc,
1101                              FRF_AB_XM_IPG, 0x3);
1102         efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1103
1104         /* Configure RX */
1105         EFX_POPULATE_OWORD_5(reg,
1106                              FRF_AB_XM_RXEN, 1,
1107                              FRF_AB_XM_AUTO_DEPAD, 0,
1108                              FRF_AB_XM_ACPT_ALL_MCAST, 1,
1109                              FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1110                              FRF_AB_XM_PASS_CRC_ERR, 1);
1111         efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1112
1113         /* Set frame length */
1114         max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1115         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1116         efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1117         EFX_POPULATE_OWORD_2(reg,
1118                              FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1119                              FRF_AB_XM_TX_JUMBO_MODE, 1);
1120         efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1121
1122         EFX_POPULATE_OWORD_2(reg,
1123                              FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1124                              FRF_AB_XM_DIS_FCNTL, !rx_fc);
1125         efx_writeo(efx, &reg, FR_AB_XM_FC);
1126
1127         /* Set MAC address */
1128         memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1129         efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1130         memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1131         efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1132 }
1133
1134 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1135 {
1136         efx_oword_t reg;
1137         bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1138         bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1139         bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1140         bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1141
1142         /* XGXS block is flaky and will need to be reset if moving
1143          * into our out of XGMII, XGXS or XAUI loopbacks. */
1144         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1145         old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1146         old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1147
1148         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1149         old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1150
1151         /* The PHY driver may have turned XAUI off */
1152         if ((xgxs_loopback != old_xgxs_loopback) ||
1153             (xaui_loopback != old_xaui_loopback) ||
1154             (xgmii_loopback != old_xgmii_loopback))
1155                 falcon_reset_xaui(efx);
1156
1157         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1158         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1159                             (xgxs_loopback || xaui_loopback) ?
1160                             FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1161         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1162         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1163         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1164
1165         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1167         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1168         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1169         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1170         efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1171 }
1172
1173
1174 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1175 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1176 {
1177         bool mac_up = falcon_xmac_link_ok(efx);
1178
1179         if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1180             efx_phy_mode_disabled(efx->phy_mode))
1181                 /* XAUI link is expected to be down */
1182                 return mac_up;
1183
1184         falcon_stop_nic_stats(efx);
1185
1186         while (!mac_up && tries) {
1187                 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1188                 falcon_reset_xaui(efx);
1189                 udelay(200);
1190
1191                 mac_up = falcon_xmac_link_ok(efx);
1192                 --tries;
1193         }
1194
1195         falcon_start_nic_stats(efx);
1196
1197         return mac_up;
1198 }
1199
1200 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1201 {
1202         return !falcon_xmac_link_ok_retry(efx, 5);
1203 }
1204
1205 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1206 {
1207         struct falcon_nic_data *nic_data = efx->nic_data;
1208
1209         efx_farch_filter_sync_rx_mode(efx);
1210
1211         falcon_reconfigure_xgxs_core(efx);
1212         falcon_reconfigure_xmac_core(efx);
1213
1214         falcon_reconfigure_mac_wrapper(efx);
1215
1216         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1217         falcon_ack_status_intr(efx);
1218
1219         return 0;
1220 }
1221
1222 static void falcon_poll_xmac(struct efx_nic *efx)
1223 {
1224         struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226         /* We expect xgmii faults if the wireside link is down */
1227         if (!efx->link_state.up || !nic_data->xmac_poll_required)
1228                 return;
1229
1230         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1231         falcon_ack_status_intr(efx);
1232 }
1233
1234 /**************************************************************************
1235  *
1236  * MAC wrapper
1237  *
1238  **************************************************************************
1239  */
1240
1241 static void falcon_push_multicast_hash(struct efx_nic *efx)
1242 {
1243         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1244
1245         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1246
1247         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1248         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1249 }
1250
1251 static void falcon_reset_macs(struct efx_nic *efx)
1252 {
1253         struct falcon_nic_data *nic_data = efx->nic_data;
1254         efx_oword_t reg, mac_ctrl;
1255         int count;
1256
1257         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1258                 /* It's not safe to use GLB_CTL_REG to reset the
1259                  * macs, so instead use the internal MAC resets
1260                  */
1261                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1262                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1263
1264                 for (count = 0; count < 10000; count++) {
1265                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1266                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1267                             0)
1268                                 return;
1269                         udelay(10);
1270                 }
1271
1272                 netif_err(efx, hw, efx->net_dev,
1273                           "timed out waiting for XMAC core reset\n");
1274         }
1275
1276         /* Mac stats will fail whist the TX fifo is draining */
1277         WARN_ON(nic_data->stats_disable_count == 0);
1278
1279         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1280         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1281         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1282
1283         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1284         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1285         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1286         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1287         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1288
1289         count = 0;
1290         while (1) {
1291                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1292                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1293                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1294                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1295                         netif_dbg(efx, hw, efx->net_dev,
1296                                   "Completed MAC reset after %d loops\n",
1297                                   count);
1298                         break;
1299                 }
1300                 if (count > 20) {
1301                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1302                         break;
1303                 }
1304                 count++;
1305                 udelay(10);
1306         }
1307
1308         /* Ensure the correct MAC is selected before statistics
1309          * are re-enabled by the caller */
1310         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1311
1312         falcon_setup_xaui(efx);
1313 }
1314
1315 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1316 {
1317         efx_oword_t reg;
1318
1319         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1320             (efx->loopback_mode != LOOPBACK_NONE))
1321                 return;
1322
1323         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1324         /* There is no point in draining more than once */
1325         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1326                 return;
1327
1328         falcon_reset_macs(efx);
1329 }
1330
1331 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1332 {
1333         efx_oword_t reg;
1334
1335         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1336                 return;
1337
1338         /* Isolate the MAC -> RX */
1339         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1340         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1341         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1342
1343         /* Isolate TX -> MAC */
1344         falcon_drain_tx_fifo(efx);
1345 }
1346
1347 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1348 {
1349         struct efx_link_state *link_state = &efx->link_state;
1350         efx_oword_t reg;
1351         int link_speed, isolate;
1352
1353         isolate = !!ACCESS_ONCE(efx->reset_pending);
1354
1355         switch (link_state->speed) {
1356         case 10000: link_speed = 3; break;
1357         case 1000:  link_speed = 2; break;
1358         case 100:   link_speed = 1; break;
1359         default:    link_speed = 0; break;
1360         }
1361
1362         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1363          * as advertised.  Disable to ensure packets are not
1364          * indefinitely held and TX queue can be flushed at any point
1365          * while the link is down. */
1366         EFX_POPULATE_OWORD_5(reg,
1367                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1368                              FRF_AB_MAC_BCAD_ACPT, 1,
1369                              FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1370                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1371                              FRF_AB_MAC_SPEED, link_speed);
1372         /* On B0, MAC backpressure can be disabled and packets get
1373          * discarded. */
1374         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1375                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1376                                     !link_state->up || isolate);
1377         }
1378
1379         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1380
1381         /* Restore the multicast hash registers. */
1382         falcon_push_multicast_hash(efx);
1383
1384         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1385         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1386          * initialisation but it may read back as 0) */
1387         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1388         /* Unisolate the MAC -> RX */
1389         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1390                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1391         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1392 }
1393
1394 static void falcon_stats_request(struct efx_nic *efx)
1395 {
1396         struct falcon_nic_data *nic_data = efx->nic_data;
1397         efx_oword_t reg;
1398
1399         WARN_ON(nic_data->stats_pending);
1400         WARN_ON(nic_data->stats_disable_count);
1401
1402         FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1403         nic_data->stats_pending = true;
1404         wmb(); /* ensure done flag is clear */
1405
1406         /* Initiate DMA transfer of stats */
1407         EFX_POPULATE_OWORD_2(reg,
1408                              FRF_AB_MAC_STAT_DMA_CMD, 1,
1409                              FRF_AB_MAC_STAT_DMA_ADR,
1410                              efx->stats_buffer.dma_addr);
1411         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1412
1413         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1414 }
1415
1416 static void falcon_stats_complete(struct efx_nic *efx)
1417 {
1418         struct falcon_nic_data *nic_data = efx->nic_data;
1419
1420         if (!nic_data->stats_pending)
1421                 return;
1422
1423         nic_data->stats_pending = false;
1424         if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1425                 rmb(); /* read the done flag before the stats */
1426                 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1427                                      falcon_stat_mask, nic_data->stats,
1428                                      efx->stats_buffer.addr, true);
1429         } else {
1430                 netif_err(efx, hw, efx->net_dev,
1431                           "timed out waiting for statistics\n");
1432         }
1433 }
1434
1435 static void falcon_stats_timer_func(unsigned long context)
1436 {
1437         struct efx_nic *efx = (struct efx_nic *)context;
1438         struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440         spin_lock(&efx->stats_lock);
1441
1442         falcon_stats_complete(efx);
1443         if (nic_data->stats_disable_count == 0)
1444                 falcon_stats_request(efx);
1445
1446         spin_unlock(&efx->stats_lock);
1447 }
1448
1449 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1450 {
1451         struct efx_link_state old_state = efx->link_state;
1452
1453         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1454         WARN_ON(!LOOPBACK_INTERNAL(efx));
1455
1456         efx->link_state.fd = true;
1457         efx->link_state.fc = efx->wanted_fc;
1458         efx->link_state.up = true;
1459         efx->link_state.speed = 10000;
1460
1461         return !efx_link_state_equal(&efx->link_state, &old_state);
1462 }
1463
1464 static int falcon_reconfigure_port(struct efx_nic *efx)
1465 {
1466         int rc;
1467
1468         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1469
1470         /* Poll the PHY link state *before* reconfiguring it. This means we
1471          * will pick up the correct speed (in loopback) to select the correct
1472          * MAC.
1473          */
1474         if (LOOPBACK_INTERNAL(efx))
1475                 falcon_loopback_link_poll(efx);
1476         else
1477                 efx->phy_op->poll(efx);
1478
1479         falcon_stop_nic_stats(efx);
1480         falcon_deconfigure_mac_wrapper(efx);
1481
1482         falcon_reset_macs(efx);
1483
1484         efx->phy_op->reconfigure(efx);
1485         rc = falcon_reconfigure_xmac(efx);
1486         BUG_ON(rc);
1487
1488         falcon_start_nic_stats(efx);
1489
1490         /* Synchronise efx->link_state with the kernel */
1491         efx_link_status_changed(efx);
1492
1493         return 0;
1494 }
1495
1496 /* TX flow control may automatically turn itself off if the link
1497  * partner (intermittently) stops responding to pause frames. There
1498  * isn't any indication that this has happened, so the best we do is
1499  * leave it up to the user to spot this and fix it by cycling transmit
1500  * flow control on this end.
1501  */
1502
1503 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1504 {
1505         /* Schedule a reset to recover */
1506         efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1507 }
1508
1509 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1510 {
1511         /* Recover by resetting the EM block */
1512         falcon_stop_nic_stats(efx);
1513         falcon_drain_tx_fifo(efx);
1514         falcon_reconfigure_xmac(efx);
1515         falcon_start_nic_stats(efx);
1516 }
1517
1518 /**************************************************************************
1519  *
1520  * PHY access via GMII
1521  *
1522  **************************************************************************
1523  */
1524
1525 /* Wait for GMII access to complete */
1526 static int falcon_gmii_wait(struct efx_nic *efx)
1527 {
1528         efx_oword_t md_stat;
1529         int count;
1530
1531         /* wait up to 50ms - taken max from datasheet */
1532         for (count = 0; count < 5000; count++) {
1533                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1534                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1535                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1536                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1537                                 netif_err(efx, hw, efx->net_dev,
1538                                           "error from GMII access "
1539                                           EFX_OWORD_FMT"\n",
1540                                           EFX_OWORD_VAL(md_stat));
1541                                 return -EIO;
1542                         }
1543                         return 0;
1544                 }
1545                 udelay(10);
1546         }
1547         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1548         return -ETIMEDOUT;
1549 }
1550
1551 /* Write an MDIO register of a PHY connected to Falcon. */
1552 static int falcon_mdio_write(struct net_device *net_dev,
1553                              int prtad, int devad, u16 addr, u16 value)
1554 {
1555         struct efx_nic *efx = netdev_priv(net_dev);
1556         struct falcon_nic_data *nic_data = efx->nic_data;
1557         efx_oword_t reg;
1558         int rc;
1559
1560         netif_vdbg(efx, hw, efx->net_dev,
1561                    "writing MDIO %d register %d.%d with 0x%04x\n",
1562                     prtad, devad, addr, value);
1563
1564         mutex_lock(&nic_data->mdio_lock);
1565
1566         /* Check MDIO not currently being accessed */
1567         rc = falcon_gmii_wait(efx);
1568         if (rc)
1569                 goto out;
1570
1571         /* Write the address/ID register */
1572         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1573         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1574
1575         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1576                              FRF_AB_MD_DEV_ADR, devad);
1577         efx_writeo(efx, &reg, FR_AB_MD_ID);
1578
1579         /* Write data */
1580         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1581         efx_writeo(efx, &reg, FR_AB_MD_TXD);
1582
1583         EFX_POPULATE_OWORD_2(reg,
1584                              FRF_AB_MD_WRC, 1,
1585                              FRF_AB_MD_GC, 0);
1586         efx_writeo(efx, &reg, FR_AB_MD_CS);
1587
1588         /* Wait for data to be written */
1589         rc = falcon_gmii_wait(efx);
1590         if (rc) {
1591                 /* Abort the write operation */
1592                 EFX_POPULATE_OWORD_2(reg,
1593                                      FRF_AB_MD_WRC, 0,
1594                                      FRF_AB_MD_GC, 1);
1595                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1596                 udelay(10);
1597         }
1598
1599 out:
1600         mutex_unlock(&nic_data->mdio_lock);
1601         return rc;
1602 }
1603
1604 /* Read an MDIO register of a PHY connected to Falcon. */
1605 static int falcon_mdio_read(struct net_device *net_dev,
1606                             int prtad, int devad, u16 addr)
1607 {
1608         struct efx_nic *efx = netdev_priv(net_dev);
1609         struct falcon_nic_data *nic_data = efx->nic_data;
1610         efx_oword_t reg;
1611         int rc;
1612
1613         mutex_lock(&nic_data->mdio_lock);
1614
1615         /* Check MDIO not currently being accessed */
1616         rc = falcon_gmii_wait(efx);
1617         if (rc)
1618                 goto out;
1619
1620         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1621         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1622
1623         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1624                              FRF_AB_MD_DEV_ADR, devad);
1625         efx_writeo(efx, &reg, FR_AB_MD_ID);
1626
1627         /* Request data to be read */
1628         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1629         efx_writeo(efx, &reg, FR_AB_MD_CS);
1630
1631         /* Wait for data to become available */
1632         rc = falcon_gmii_wait(efx);
1633         if (rc == 0) {
1634                 efx_reado(efx, &reg, FR_AB_MD_RXD);
1635                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1636                 netif_vdbg(efx, hw, efx->net_dev,
1637                            "read from MDIO %d register %d.%d, got %04x\n",
1638                            prtad, devad, addr, rc);
1639         } else {
1640                 /* Abort the read operation */
1641                 EFX_POPULATE_OWORD_2(reg,
1642                                      FRF_AB_MD_RIC, 0,
1643                                      FRF_AB_MD_GC, 1);
1644                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1645
1646                 netif_dbg(efx, hw, efx->net_dev,
1647                           "read from MDIO %d register %d.%d, got error %d\n",
1648                           prtad, devad, addr, rc);
1649         }
1650
1651 out:
1652         mutex_unlock(&nic_data->mdio_lock);
1653         return rc;
1654 }
1655
1656 /* This call is responsible for hooking in the MAC and PHY operations */
1657 static int falcon_probe_port(struct efx_nic *efx)
1658 {
1659         struct falcon_nic_data *nic_data = efx->nic_data;
1660         int rc;
1661
1662         switch (efx->phy_type) {
1663         case PHY_TYPE_SFX7101:
1664                 efx->phy_op = &falcon_sfx7101_phy_ops;
1665                 break;
1666         case PHY_TYPE_QT2022C2:
1667         case PHY_TYPE_QT2025C:
1668                 efx->phy_op = &falcon_qt202x_phy_ops;
1669                 break;
1670         case PHY_TYPE_TXC43128:
1671                 efx->phy_op = &falcon_txc_phy_ops;
1672                 break;
1673         default:
1674                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1675                           efx->phy_type);
1676                 return -ENODEV;
1677         }
1678
1679         /* Fill out MDIO structure and loopback modes */
1680         mutex_init(&nic_data->mdio_lock);
1681         efx->mdio.mdio_read = falcon_mdio_read;
1682         efx->mdio.mdio_write = falcon_mdio_write;
1683         rc = efx->phy_op->probe(efx);
1684         if (rc != 0)
1685                 return rc;
1686
1687         /* Initial assumption */
1688         efx->link_state.speed = 10000;
1689         efx->link_state.fd = true;
1690
1691         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1692         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1693                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1694         else
1695                 efx->wanted_fc = EFX_FC_RX;
1696         if (efx->mdio.mmds & MDIO_DEVS_AN)
1697                 efx->wanted_fc |= EFX_FC_AUTO;
1698
1699         /* Allocate buffer for stats */
1700         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1701                                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1702         if (rc)
1703                 return rc;
1704         netif_dbg(efx, probe, efx->net_dev,
1705                   "stats buffer at %llx (virt %p phys %llx)\n",
1706                   (u64)efx->stats_buffer.dma_addr,
1707                   efx->stats_buffer.addr,
1708                   (u64)virt_to_phys(efx->stats_buffer.addr));
1709
1710         return 0;
1711 }
1712
1713 static void falcon_remove_port(struct efx_nic *efx)
1714 {
1715         efx->phy_op->remove(efx);
1716         efx_nic_free_buffer(efx, &efx->stats_buffer);
1717 }
1718
1719 /* Global events are basically PHY events */
1720 static bool
1721 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1722 {
1723         struct efx_nic *efx = channel->efx;
1724         struct falcon_nic_data *nic_data = efx->nic_data;
1725
1726         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1727             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1728             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1729                 /* Ignored */
1730                 return true;
1731
1732         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1733             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1734                 nic_data->xmac_poll_required = true;
1735                 return true;
1736         }
1737
1738         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1739             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1740             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1741                 netif_err(efx, rx_err, efx->net_dev,
1742                           "channel %d seen global RX_RESET event. Resetting.\n",
1743                           channel->channel);
1744
1745                 atomic_inc(&efx->rx_reset);
1746                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1747                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1748                 return true;
1749         }
1750
1751         return false;
1752 }
1753
1754 /**************************************************************************
1755  *
1756  * Falcon test code
1757  *
1758  **************************************************************************/
1759
1760 static int
1761 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1762 {
1763         struct falcon_nic_data *nic_data = efx->nic_data;
1764         struct falcon_nvconfig *nvconfig;
1765         struct falcon_spi_device *spi;
1766         void *region;
1767         int rc, magic_num, struct_ver;
1768         __le16 *word, *limit;
1769         u32 csum;
1770
1771         if (falcon_spi_present(&nic_data->spi_flash))
1772                 spi = &nic_data->spi_flash;
1773         else if (falcon_spi_present(&nic_data->spi_eeprom))
1774                 spi = &nic_data->spi_eeprom;
1775         else
1776                 return -EINVAL;
1777
1778         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1779         if (!region)
1780                 return -ENOMEM;
1781         nvconfig = region + FALCON_NVCONFIG_OFFSET;
1782
1783         mutex_lock(&nic_data->spi_lock);
1784         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1785         mutex_unlock(&nic_data->spi_lock);
1786         if (rc) {
1787                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1788                           falcon_spi_present(&nic_data->spi_flash) ?
1789                           "flash" : "EEPROM");
1790                 rc = -EIO;
1791                 goto out;
1792         }
1793
1794         magic_num = le16_to_cpu(nvconfig->board_magic_num);
1795         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1796
1797         rc = -EINVAL;
1798         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1799                 netif_err(efx, hw, efx->net_dev,
1800                           "NVRAM bad magic 0x%x\n", magic_num);
1801                 goto out;
1802         }
1803         if (struct_ver < 2) {
1804                 netif_err(efx, hw, efx->net_dev,
1805                           "NVRAM has ancient version 0x%x\n", struct_ver);
1806                 goto out;
1807         } else if (struct_ver < 4) {
1808                 word = &nvconfig->board_magic_num;
1809                 limit = (__le16 *) (nvconfig + 1);
1810         } else {
1811                 word = region;
1812                 limit = region + FALCON_NVCONFIG_END;
1813         }
1814         for (csum = 0; word < limit; ++word)
1815                 csum += le16_to_cpu(*word);
1816
1817         if (~csum & 0xffff) {
1818                 netif_err(efx, hw, efx->net_dev,
1819                           "NVRAM has incorrect checksum\n");
1820                 goto out;
1821         }
1822
1823         rc = 0;
1824         if (nvconfig_out)
1825                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1826
1827  out:
1828         kfree(region);
1829         return rc;
1830 }
1831
1832 static int falcon_test_nvram(struct efx_nic *efx)
1833 {
1834         return falcon_read_nvram(efx, NULL);
1835 }
1836
1837 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1838         { FR_AZ_ADR_REGION,
1839           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1840         { FR_AZ_RX_CFG,
1841           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1842         { FR_AZ_TX_CFG,
1843           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1844         { FR_AZ_TX_RESERVED,
1845           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1846         { FR_AB_MAC_CTRL,
1847           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1848         { FR_AZ_SRM_TX_DC_CFG,
1849           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1850         { FR_AZ_RX_DC_CFG,
1851           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1852         { FR_AZ_RX_DC_PF_WM,
1853           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1854         { FR_BZ_DP_CTRL,
1855           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1856         { FR_AB_GM_CFG2,
1857           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1858         { FR_AB_GMF_CFG0,
1859           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1860         { FR_AB_XM_GLB_CFG,
1861           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1862         { FR_AB_XM_TX_CFG,
1863           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1864         { FR_AB_XM_RX_CFG,
1865           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1866         { FR_AB_XM_RX_PARAM,
1867           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1868         { FR_AB_XM_FC,
1869           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1870         { FR_AB_XM_ADR_LO,
1871           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1872         { FR_AB_XX_SD_CTL,
1873           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1874 };
1875
1876 static int
1877 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1878 {
1879         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1880         int rc, rc2;
1881
1882         mutex_lock(&efx->mac_lock);
1883         if (efx->loopback_modes) {
1884                 /* We need the 312 clock from the PHY to test the XMAC
1885                  * registers, so move into XGMII loopback if available */
1886                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1887                         efx->loopback_mode = LOOPBACK_XGMII;
1888                 else
1889                         efx->loopback_mode = __ffs(efx->loopback_modes);
1890         }
1891         __efx_reconfigure_port(efx);
1892         mutex_unlock(&efx->mac_lock);
1893
1894         efx_reset_down(efx, reset_method);
1895
1896         tests->registers =
1897                 efx_farch_test_registers(efx, falcon_b0_register_tests,
1898                                          ARRAY_SIZE(falcon_b0_register_tests))
1899                 ? -1 : 1;
1900
1901         rc = falcon_reset_hw(efx, reset_method);
1902         rc2 = efx_reset_up(efx, reset_method, rc == 0);
1903         return rc ? rc : rc2;
1904 }
1905
1906 /**************************************************************************
1907  *
1908  * Device reset
1909  *
1910  **************************************************************************
1911  */
1912
1913 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1914 {
1915         switch (reason) {
1916         case RESET_TYPE_RX_RECOVERY:
1917         case RESET_TYPE_DMA_ERROR:
1918         case RESET_TYPE_TX_SKIP:
1919                 /* These can occasionally occur due to hardware bugs.
1920                  * We try to reset without disrupting the link.
1921                  */
1922                 return RESET_TYPE_INVISIBLE;
1923         default:
1924                 return RESET_TYPE_ALL;
1925         }
1926 }
1927
1928 static int falcon_map_reset_flags(u32 *flags)
1929 {
1930         enum {
1931                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1932                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1933                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1934                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1935         };
1936
1937         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1938                 *flags &= ~FALCON_RESET_WORLD;
1939                 return RESET_TYPE_WORLD;
1940         }
1941
1942         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1943                 *flags &= ~FALCON_RESET_ALL;
1944                 return RESET_TYPE_ALL;
1945         }
1946
1947         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1948                 *flags &= ~FALCON_RESET_INVISIBLE;
1949                 return RESET_TYPE_INVISIBLE;
1950         }
1951
1952         return -EINVAL;
1953 }
1954
1955 /* Resets NIC to known state.  This routine must be called in process
1956  * context and is allowed to sleep. */
1957 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1958 {
1959         struct falcon_nic_data *nic_data = efx->nic_data;
1960         efx_oword_t glb_ctl_reg_ker;
1961         int rc;
1962
1963         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1964                   RESET_TYPE(method));
1965
1966         /* Initiate device reset */
1967         if (method == RESET_TYPE_WORLD) {
1968                 rc = pci_save_state(efx->pci_dev);
1969                 if (rc) {
1970                         netif_err(efx, drv, efx->net_dev,
1971                                   "failed to backup PCI state of primary "
1972                                   "function prior to hardware reset\n");
1973                         goto fail1;
1974                 }
1975                 if (efx_nic_is_dual_func(efx)) {
1976                         rc = pci_save_state(nic_data->pci_dev2);
1977                         if (rc) {
1978                                 netif_err(efx, drv, efx->net_dev,
1979                                           "failed to backup PCI state of "
1980                                           "secondary function prior to "
1981                                           "hardware reset\n");
1982                                 goto fail2;
1983                         }
1984                 }
1985
1986                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1987                                      FRF_AB_EXT_PHY_RST_DUR,
1988                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1989                                      FRF_AB_SWRST, 1);
1990         } else {
1991                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1992                                      /* exclude PHY from "invisible" reset */
1993                                      FRF_AB_EXT_PHY_RST_CTL,
1994                                      method == RESET_TYPE_INVISIBLE,
1995                                      /* exclude EEPROM/flash and PCIe */
1996                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1997                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1998                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1999                                      FRF_AB_EE_RST_CTL, 1,
2000                                      FRF_AB_EXT_PHY_RST_DUR,
2001                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2002                                      FRF_AB_SWRST, 1);
2003         }
2004         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2005
2006         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2007         schedule_timeout_uninterruptible(HZ / 20);
2008
2009         /* Restore PCI configuration if needed */
2010         if (method == RESET_TYPE_WORLD) {
2011                 if (efx_nic_is_dual_func(efx))
2012                         pci_restore_state(nic_data->pci_dev2);
2013                 pci_restore_state(efx->pci_dev);
2014                 netif_dbg(efx, drv, efx->net_dev,
2015                           "successfully restored PCI config\n");
2016         }
2017
2018         /* Assert that reset complete */
2019         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2020         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2021                 rc = -ETIMEDOUT;
2022                 netif_err(efx, hw, efx->net_dev,
2023                           "timed out waiting for hardware reset\n");
2024                 goto fail3;
2025         }
2026         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2027
2028         return 0;
2029
2030         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2031 fail2:
2032         pci_restore_state(efx->pci_dev);
2033 fail1:
2034 fail3:
2035         return rc;
2036 }
2037
2038 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2039 {
2040         struct falcon_nic_data *nic_data = efx->nic_data;
2041         int rc;
2042
2043         mutex_lock(&nic_data->spi_lock);
2044         rc = __falcon_reset_hw(efx, method);
2045         mutex_unlock(&nic_data->spi_lock);
2046
2047         return rc;
2048 }
2049
2050 static void falcon_monitor(struct efx_nic *efx)
2051 {
2052         bool link_changed;
2053         int rc;
2054
2055         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2056
2057         rc = falcon_board(efx)->type->monitor(efx);
2058         if (rc) {
2059                 netif_err(efx, hw, efx->net_dev,
2060                           "Board sensor %s; shutting down PHY\n",
2061                           (rc == -ERANGE) ? "reported fault" : "failed");
2062                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2063                 rc = __efx_reconfigure_port(efx);
2064                 WARN_ON(rc);
2065         }
2066
2067         if (LOOPBACK_INTERNAL(efx))
2068                 link_changed = falcon_loopback_link_poll(efx);
2069         else
2070                 link_changed = efx->phy_op->poll(efx);
2071
2072         if (link_changed) {
2073                 falcon_stop_nic_stats(efx);
2074                 falcon_deconfigure_mac_wrapper(efx);
2075
2076                 falcon_reset_macs(efx);
2077                 rc = falcon_reconfigure_xmac(efx);
2078                 BUG_ON(rc);
2079
2080                 falcon_start_nic_stats(efx);
2081
2082                 efx_link_status_changed(efx);
2083         }
2084
2085         falcon_poll_xmac(efx);
2086 }
2087
2088 /* Zeroes out the SRAM contents.  This routine must be called in
2089  * process context and is allowed to sleep.
2090  */
2091 static int falcon_reset_sram(struct efx_nic *efx)
2092 {
2093         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2094         int count;
2095
2096         /* Set the SRAM wake/sleep GPIO appropriately. */
2097         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2098         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2099         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2100         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2101
2102         /* Initiate SRAM reset */
2103         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2104                              FRF_AZ_SRM_INIT_EN, 1,
2105                              FRF_AZ_SRM_NB_SZ, 0);
2106         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2107
2108         /* Wait for SRAM reset to complete */
2109         count = 0;
2110         do {
2111                 netif_dbg(efx, hw, efx->net_dev,
2112                           "waiting for SRAM reset (attempt %d)...\n", count);
2113
2114                 /* SRAM reset is slow; expect around 16ms */
2115                 schedule_timeout_uninterruptible(HZ / 50);
2116
2117                 /* Check for reset complete */
2118                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2119                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2120                         netif_dbg(efx, hw, efx->net_dev,
2121                                   "SRAM reset complete\n");
2122
2123                         return 0;
2124                 }
2125         } while (++count < 20); /* wait up to 0.4 sec */
2126
2127         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2128         return -ETIMEDOUT;
2129 }
2130
2131 static void falcon_spi_device_init(struct efx_nic *efx,
2132                                   struct falcon_spi_device *spi_device,
2133                                   unsigned int device_id, u32 device_type)
2134 {
2135         if (device_type != 0) {
2136                 spi_device->device_id = device_id;
2137                 spi_device->size =
2138                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2139                 spi_device->addr_len =
2140                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2141                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2142                                              spi_device->addr_len == 1);
2143                 spi_device->erase_command =
2144                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2145                 spi_device->erase_size =
2146                         1 << SPI_DEV_TYPE_FIELD(device_type,
2147                                                 SPI_DEV_TYPE_ERASE_SIZE);
2148                 spi_device->block_size =
2149                         1 << SPI_DEV_TYPE_FIELD(device_type,
2150                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2151         } else {
2152                 spi_device->size = 0;
2153         }
2154 }
2155
2156 /* Extract non-volatile configuration */
2157 static int falcon_probe_nvconfig(struct efx_nic *efx)
2158 {
2159         struct falcon_nic_data *nic_data = efx->nic_data;
2160         struct falcon_nvconfig *nvconfig;
2161         int rc;
2162
2163         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2164         if (!nvconfig)
2165                 return -ENOMEM;
2166
2167         rc = falcon_read_nvram(efx, nvconfig);
2168         if (rc)
2169                 goto out;
2170
2171         efx->phy_type = nvconfig->board_v2.port0_phy_type;
2172         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2173
2174         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2175                 falcon_spi_device_init(
2176                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2177                         le32_to_cpu(nvconfig->board_v3
2178                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2179                 falcon_spi_device_init(
2180                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2181                         le32_to_cpu(nvconfig->board_v3
2182                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2183         }
2184
2185         /* Read the MAC addresses */
2186         ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2187
2188         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2189                   efx->phy_type, efx->mdio.prtad);
2190
2191         rc = falcon_probe_board(efx,
2192                                 le16_to_cpu(nvconfig->board_v2.board_revision));
2193 out:
2194         kfree(nvconfig);
2195         return rc;
2196 }
2197
2198 static int falcon_dimension_resources(struct efx_nic *efx)
2199 {
2200         efx->rx_dc_base = 0x20000;
2201         efx->tx_dc_base = 0x26000;
2202         return 0;
2203 }
2204
2205 /* Probe all SPI devices on the NIC */
2206 static void falcon_probe_spi_devices(struct efx_nic *efx)
2207 {
2208         struct falcon_nic_data *nic_data = efx->nic_data;
2209         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2210         int boot_dev;
2211
2212         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2213         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2214         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2215
2216         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2217                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2218                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2219                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2220                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2221                           "flash" : "EEPROM");
2222         } else {
2223                 /* Disable VPD and set clock dividers to safe
2224                  * values for initial programming. */
2225                 boot_dev = -1;
2226                 netif_dbg(efx, probe, efx->net_dev,
2227                           "Booted from internal ASIC settings;"
2228                           " setting SPI config\n");
2229                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2230                                      /* 125 MHz / 7 ~= 20 MHz */
2231                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2232                                      /* 125 MHz / 63 ~= 2 MHz */
2233                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2234                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235         }
2236
2237         mutex_init(&nic_data->spi_lock);
2238
2239         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2240                 falcon_spi_device_init(efx, &nic_data->spi_flash,
2241                                        FFE_AB_SPI_DEVICE_FLASH,
2242                                        default_flash_type);
2243         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2244                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2245                                        FFE_AB_SPI_DEVICE_EEPROM,
2246                                        large_eeprom_type);
2247 }
2248
2249 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2250 {
2251         return 0x20000;
2252 }
2253
2254 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2255 {
2256         /* Map everything up to and including the RSS indirection table.
2257          * The PCI core takes care of mapping the MSI-X tables.
2258          */
2259         return FR_BZ_RX_INDIRECTION_TBL +
2260                 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2261 }
2262
2263 static int falcon_probe_nic(struct efx_nic *efx)
2264 {
2265         struct falcon_nic_data *nic_data;
2266         struct falcon_board *board;
2267         int rc;
2268
2269         efx->primary = efx; /* only one usable function per controller */
2270
2271         /* Allocate storage for hardware specific data */
2272         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2273         if (!nic_data)
2274                 return -ENOMEM;
2275         efx->nic_data = nic_data;
2276
2277         rc = -ENODEV;
2278
2279         if (efx_farch_fpga_ver(efx) != 0) {
2280                 netif_err(efx, probe, efx->net_dev,
2281                           "Falcon FPGA not supported\n");
2282                 goto fail1;
2283         }
2284
2285         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2286                 efx_oword_t nic_stat;
2287                 struct pci_dev *dev;
2288                 u8 pci_rev = efx->pci_dev->revision;
2289
2290                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2291                         netif_err(efx, probe, efx->net_dev,
2292                                   "Falcon rev A0 not supported\n");
2293                         goto fail1;
2294                 }
2295                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2296                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2297                         netif_err(efx, probe, efx->net_dev,
2298                                   "Falcon rev A1 1G not supported\n");
2299                         goto fail1;
2300                 }
2301                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2302                         netif_err(efx, probe, efx->net_dev,
2303                                   "Falcon rev A1 PCI-X not supported\n");
2304                         goto fail1;
2305                 }
2306
2307                 dev = pci_dev_get(efx->pci_dev);
2308                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2309                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2310                                              dev))) {
2311                         if (dev->bus == efx->pci_dev->bus &&
2312                             dev->devfn == efx->pci_dev->devfn + 1) {
2313                                 nic_data->pci_dev2 = dev;
2314                                 break;
2315                         }
2316                 }
2317                 if (!nic_data->pci_dev2) {
2318                         netif_err(efx, probe, efx->net_dev,
2319                                   "failed to find secondary function\n");
2320                         rc = -ENODEV;
2321                         goto fail2;
2322                 }
2323         }
2324
2325         /* Now we can reset the NIC */
2326         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2327         if (rc) {
2328                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2329                 goto fail3;
2330         }
2331
2332         /* Allocate memory for INT_KER */
2333         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2334                                   GFP_KERNEL);
2335         if (rc)
2336                 goto fail4;
2337         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2338
2339         netif_dbg(efx, probe, efx->net_dev,
2340                   "INT_KER at %llx (virt %p phys %llx)\n",
2341                   (u64)efx->irq_status.dma_addr,
2342                   efx->irq_status.addr,
2343                   (u64)virt_to_phys(efx->irq_status.addr));
2344
2345         falcon_probe_spi_devices(efx);
2346
2347         /* Read in the non-volatile configuration */
2348         rc = falcon_probe_nvconfig(efx);
2349         if (rc) {
2350                 if (rc == -EINVAL)
2351                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2352                 goto fail5;
2353         }
2354
2355         efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2356                              EFX_MAX_CHANNELS);
2357         efx->timer_quantum_ns = 4968; /* 621 cycles */
2358
2359         /* Initialise I2C adapter */
2360         board = falcon_board(efx);
2361         board->i2c_adap.owner = THIS_MODULE;
2362         board->i2c_data = falcon_i2c_bit_operations;
2363         board->i2c_data.data = efx;
2364         board->i2c_adap.algo_data = &board->i2c_data;
2365         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2366         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2367                 sizeof(board->i2c_adap.name));
2368         rc = i2c_bit_add_bus(&board->i2c_adap);
2369         if (rc)
2370                 goto fail5;
2371
2372         rc = falcon_board(efx)->type->init(efx);
2373         if (rc) {
2374                 netif_err(efx, probe, efx->net_dev,
2375                           "failed to initialise board\n");
2376                 goto fail6;
2377         }
2378
2379         nic_data->stats_disable_count = 1;
2380         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2381                     (unsigned long)efx);
2382
2383         return 0;
2384
2385  fail6:
2386         i2c_del_adapter(&board->i2c_adap);
2387         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2388  fail5:
2389         efx_nic_free_buffer(efx, &efx->irq_status);
2390  fail4:
2391  fail3:
2392         if (nic_data->pci_dev2) {
2393                 pci_dev_put(nic_data->pci_dev2);
2394                 nic_data->pci_dev2 = NULL;
2395         }
2396  fail2:
2397  fail1:
2398         kfree(efx->nic_data);
2399         return rc;
2400 }
2401
2402 static void falcon_init_rx_cfg(struct efx_nic *efx)
2403 {
2404         /* RX control FIFO thresholds (32 entries) */
2405         const unsigned ctrl_xon_thr = 20;
2406         const unsigned ctrl_xoff_thr = 25;
2407         efx_oword_t reg;
2408
2409         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2410         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2411                 /* Data FIFO size is 5.5K.  The RX DMA engine only
2412                  * supports scattering for user-mode queues, but will
2413                  * split DMA writes at intervals of RX_USR_BUF_SIZE
2414                  * (32-byte units) even for kernel-mode queues.  We
2415                  * set it to be so large that that never happens.
2416                  */
2417                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2418                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2419                                     (3 * 4096) >> 5);
2420                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2421                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2422                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2423                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2424         } else {
2425                 /* Data FIFO size is 80K; register fields moved */
2426                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2427                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2428                                     EFX_RX_USR_BUF_SIZE >> 5);
2429                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2430                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2431                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2432                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2433                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2434                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2435
2436                 /* Enable hash insertion. This is broken for the
2437                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2438                  * IPv4 hashes. */
2439                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2440                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2441                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2442         }
2443         /* Always enable XOFF signal from RX FIFO.  We enable
2444          * or disable transmission of pause frames at the MAC. */
2445         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2446         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2447 }
2448
2449 /* This call performs hardware-specific global initialisation, such as
2450  * defining the descriptor cache sizes and number of RSS channels.
2451  * It does not set up any buffers, descriptor rings or event queues.
2452  */
2453 static int falcon_init_nic(struct efx_nic *efx)
2454 {
2455         efx_oword_t temp;
2456         int rc;
2457
2458         /* Use on-chip SRAM */
2459         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2460         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2461         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2462
2463         rc = falcon_reset_sram(efx);
2464         if (rc)
2465                 return rc;
2466
2467         /* Clear the parity enables on the TX data fifos as
2468          * they produce false parity errors because of timing issues
2469          */
2470         if (EFX_WORKAROUND_5129(efx)) {
2471                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2472                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2473                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2474         }
2475
2476         if (EFX_WORKAROUND_7244(efx)) {
2477                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2478                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2479                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2480                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2481                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2482                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2483         }
2484
2485         /* XXX This is documented only for Falcon A0/A1 */
2486         /* Setup RX.  Wait for descriptor is broken and must
2487          * be disabled.  RXDP recovery shouldn't be needed, but is.
2488          */
2489         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2490         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2491         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2492         if (EFX_WORKAROUND_5583(efx))
2493                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2494         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2495
2496         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2497          * descriptors (which is bad).
2498          */
2499         efx_reado(efx, &temp, FR_AZ_TX_CFG);
2500         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2501         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2502
2503         falcon_init_rx_cfg(efx);
2504
2505         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2506                 falcon_b0_rx_push_rss_config(efx);
2507
2508                 /* Set destination of both TX and RX Flush events */
2509                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2510                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2511         }
2512
2513         efx_farch_init_common(efx);
2514
2515         return 0;
2516 }
2517
2518 static void falcon_remove_nic(struct efx_nic *efx)
2519 {
2520         struct falcon_nic_data *nic_data = efx->nic_data;
2521         struct falcon_board *board = falcon_board(efx);
2522
2523         board->type->fini(efx);
2524
2525         /* Remove I2C adapter and clear it in preparation for a retry */
2526         i2c_del_adapter(&board->i2c_adap);
2527         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2528
2529         efx_nic_free_buffer(efx, &efx->irq_status);
2530
2531         __falcon_reset_hw(efx, RESET_TYPE_ALL);
2532
2533         /* Release the second function after the reset */
2534         if (nic_data->pci_dev2) {
2535                 pci_dev_put(nic_data->pci_dev2);
2536                 nic_data->pci_dev2 = NULL;
2537         }
2538
2539         /* Tear down the private nic state */
2540         kfree(efx->nic_data);
2541         efx->nic_data = NULL;
2542 }
2543
2544 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2545 {
2546         return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2547                                       falcon_stat_mask, names);
2548 }
2549
2550 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2551                                       struct rtnl_link_stats64 *core_stats)
2552 {
2553         struct falcon_nic_data *nic_data = efx->nic_data;
2554         u64 *stats = nic_data->stats;
2555         efx_oword_t cnt;
2556
2557         if (!nic_data->stats_disable_count) {
2558                 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2559                 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2560                         EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2561
2562                 if (nic_data->stats_pending &&
2563                     FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2564                         nic_data->stats_pending = false;
2565                         rmb(); /* read the done flag before the stats */
2566                         efx_nic_update_stats(
2567                                 falcon_stat_desc, FALCON_STAT_COUNT,
2568                                 falcon_stat_mask,
2569                                 stats, efx->stats_buffer.addr, true);
2570                 }
2571
2572                 /* Update derived statistic */
2573                 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2574                                      stats[FALCON_STAT_rx_bytes] -
2575                                      stats[FALCON_STAT_rx_good_bytes] -
2576                                      stats[FALCON_STAT_rx_control] * 64);
2577         }
2578
2579         if (full_stats)
2580                 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2581
2582         if (core_stats) {
2583                 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2584                 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2585                 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2586                 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2587                 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
2588                 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2589                 core_stats->rx_length_errors =
2590                         stats[FALCON_STAT_rx_gtjumbo] +
2591                         stats[FALCON_STAT_rx_length_error];
2592                 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2593                 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2594                 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2595
2596                 core_stats->rx_errors = (core_stats->rx_length_errors +
2597                                          core_stats->rx_crc_errors +
2598                                          core_stats->rx_frame_errors +
2599                                          stats[FALCON_STAT_rx_symbol_error]);
2600         }
2601
2602         return FALCON_STAT_COUNT;
2603 }
2604
2605 void falcon_start_nic_stats(struct efx_nic *efx)
2606 {
2607         struct falcon_nic_data *nic_data = efx->nic_data;
2608
2609         spin_lock_bh(&efx->stats_lock);
2610         if (--nic_data->stats_disable_count == 0)
2611                 falcon_stats_request(efx);
2612         spin_unlock_bh(&efx->stats_lock);
2613 }
2614
2615 /* We don't acutally pull stats on falcon. Wait 10ms so that
2616  * they arrive when we call this just after start_stats
2617  */
2618 static void falcon_pull_nic_stats(struct efx_nic *efx)
2619 {
2620         msleep(10);
2621 }
2622
2623 void falcon_stop_nic_stats(struct efx_nic *efx)
2624 {
2625         struct falcon_nic_data *nic_data = efx->nic_data;
2626         int i;
2627
2628         might_sleep();
2629
2630         spin_lock_bh(&efx->stats_lock);
2631         ++nic_data->stats_disable_count;
2632         spin_unlock_bh(&efx->stats_lock);
2633
2634         del_timer_sync(&nic_data->stats_timer);
2635
2636         /* Wait enough time for the most recent transfer to
2637          * complete. */
2638         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2639                 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2640                         break;
2641                 msleep(1);
2642         }
2643
2644         spin_lock_bh(&efx->stats_lock);
2645         falcon_stats_complete(efx);
2646         spin_unlock_bh(&efx->stats_lock);
2647 }
2648
2649 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2650 {
2651         falcon_board(efx)->type->set_id_led(efx, mode);
2652 }
2653
2654 /**************************************************************************
2655  *
2656  * Wake on LAN
2657  *
2658  **************************************************************************
2659  */
2660
2661 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2662 {
2663         wol->supported = 0;
2664         wol->wolopts = 0;
2665         memset(&wol->sopass, 0, sizeof(wol->sopass));
2666 }
2667
2668 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2669 {
2670         if (type != 0)
2671                 return -EINVAL;
2672         return 0;
2673 }
2674
2675 /**************************************************************************
2676  *
2677  * Revision-dependent attributes used by efx.c and nic.c
2678  *
2679  **************************************************************************
2680  */
2681
2682 const struct efx_nic_type falcon_a1_nic_type = {
2683         .mem_map_size = falcon_a1_mem_map_size,
2684         .probe = falcon_probe_nic,
2685         .remove = falcon_remove_nic,
2686         .init = falcon_init_nic,
2687         .dimension_resources = falcon_dimension_resources,
2688         .fini = falcon_irq_ack_a1,
2689         .monitor = falcon_monitor,
2690         .map_reset_reason = falcon_map_reset_reason,
2691         .map_reset_flags = falcon_map_reset_flags,
2692         .reset = falcon_reset_hw,
2693         .probe_port = falcon_probe_port,
2694         .remove_port = falcon_remove_port,
2695         .handle_global_event = falcon_handle_global_event,
2696         .fini_dmaq = efx_farch_fini_dmaq,
2697         .prepare_flush = falcon_prepare_flush,
2698         .finish_flush = efx_port_dummy_op_void,
2699         .describe_stats = falcon_describe_nic_stats,
2700         .update_stats = falcon_update_nic_stats,
2701         .start_stats = falcon_start_nic_stats,
2702         .pull_stats = falcon_pull_nic_stats,
2703         .stop_stats = falcon_stop_nic_stats,
2704         .set_id_led = falcon_set_id_led,
2705         .push_irq_moderation = falcon_push_irq_moderation,
2706         .reconfigure_port = falcon_reconfigure_port,
2707         .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2708         .reconfigure_mac = falcon_reconfigure_xmac,
2709         .check_mac_fault = falcon_xmac_check_fault,
2710         .get_wol = falcon_get_wol,
2711         .set_wol = falcon_set_wol,
2712         .resume_wol = efx_port_dummy_op_void,
2713         .test_nvram = falcon_test_nvram,
2714         .irq_enable_master = efx_farch_irq_enable_master,
2715         .irq_test_generate = efx_farch_irq_test_generate,
2716         .irq_disable_non_ev = efx_farch_irq_disable_master,
2717         .irq_handle_msi = efx_farch_msi_interrupt,
2718         .irq_handle_legacy = falcon_legacy_interrupt_a1,
2719         .tx_probe = efx_farch_tx_probe,
2720         .tx_init = efx_farch_tx_init,
2721         .tx_remove = efx_farch_tx_remove,
2722         .tx_write = efx_farch_tx_write,
2723         .rx_push_rss_config = efx_port_dummy_op_void,
2724         .rx_probe = efx_farch_rx_probe,
2725         .rx_init = efx_farch_rx_init,
2726         .rx_remove = efx_farch_rx_remove,
2727         .rx_write = efx_farch_rx_write,
2728         .rx_defer_refill = efx_farch_rx_defer_refill,
2729         .ev_probe = efx_farch_ev_probe,
2730         .ev_init = efx_farch_ev_init,
2731         .ev_fini = efx_farch_ev_fini,
2732         .ev_remove = efx_farch_ev_remove,
2733         .ev_process = efx_farch_ev_process,
2734         .ev_read_ack = efx_farch_ev_read_ack,
2735         .ev_test_generate = efx_farch_ev_test_generate,
2736
2737         /* We don't expose the filter table on Falcon A1 as it is not
2738          * mapped into function 0, but these implementations still
2739          * work with a degenerate case of all tables set to size 0.
2740          */
2741         .filter_table_probe = efx_farch_filter_table_probe,
2742         .filter_table_restore = efx_farch_filter_table_restore,
2743         .filter_table_remove = efx_farch_filter_table_remove,
2744         .filter_insert = efx_farch_filter_insert,
2745         .filter_remove_safe = efx_farch_filter_remove_safe,
2746         .filter_get_safe = efx_farch_filter_get_safe,
2747         .filter_clear_rx = efx_farch_filter_clear_rx,
2748         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2749         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2750         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2751
2752 #ifdef CONFIG_SFC_MTD
2753         .mtd_probe = falcon_mtd_probe,
2754         .mtd_rename = falcon_mtd_rename,
2755         .mtd_read = falcon_mtd_read,
2756         .mtd_erase = falcon_mtd_erase,
2757         .mtd_write = falcon_mtd_write,
2758         .mtd_sync = falcon_mtd_sync,
2759 #endif
2760
2761         .revision = EFX_REV_FALCON_A1,
2762         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2763         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2764         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2765         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2766         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2767         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2768         .rx_buffer_padding = 0x24,
2769         .can_rx_scatter = false,
2770         .max_interrupt_mode = EFX_INT_MODE_MSI,
2771         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2772         .offload_features = NETIF_F_IP_CSUM,
2773         .mcdi_max_ver = -1,
2774 };
2775
2776 const struct efx_nic_type falcon_b0_nic_type = {
2777         .mem_map_size = falcon_b0_mem_map_size,
2778         .probe = falcon_probe_nic,
2779         .remove = falcon_remove_nic,
2780         .init = falcon_init_nic,
2781         .dimension_resources = falcon_dimension_resources,
2782         .fini = efx_port_dummy_op_void,
2783         .monitor = falcon_monitor,
2784         .map_reset_reason = falcon_map_reset_reason,
2785         .map_reset_flags = falcon_map_reset_flags,
2786         .reset = falcon_reset_hw,
2787         .probe_port = falcon_probe_port,
2788         .remove_port = falcon_remove_port,
2789         .handle_global_event = falcon_handle_global_event,
2790         .fini_dmaq = efx_farch_fini_dmaq,
2791         .prepare_flush = falcon_prepare_flush,
2792         .finish_flush = efx_port_dummy_op_void,
2793         .describe_stats = falcon_describe_nic_stats,
2794         .update_stats = falcon_update_nic_stats,
2795         .start_stats = falcon_start_nic_stats,
2796         .pull_stats = falcon_pull_nic_stats,
2797         .stop_stats = falcon_stop_nic_stats,
2798         .set_id_led = falcon_set_id_led,
2799         .push_irq_moderation = falcon_push_irq_moderation,
2800         .reconfigure_port = falcon_reconfigure_port,
2801         .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2802         .reconfigure_mac = falcon_reconfigure_xmac,
2803         .check_mac_fault = falcon_xmac_check_fault,
2804         .get_wol = falcon_get_wol,
2805         .set_wol = falcon_set_wol,
2806         .resume_wol = efx_port_dummy_op_void,
2807         .test_chip = falcon_b0_test_chip,
2808         .test_nvram = falcon_test_nvram,
2809         .irq_enable_master = efx_farch_irq_enable_master,
2810         .irq_test_generate = efx_farch_irq_test_generate,
2811         .irq_disable_non_ev = efx_farch_irq_disable_master,
2812         .irq_handle_msi = efx_farch_msi_interrupt,
2813         .irq_handle_legacy = efx_farch_legacy_interrupt,
2814         .tx_probe = efx_farch_tx_probe,
2815         .tx_init = efx_farch_tx_init,
2816         .tx_remove = efx_farch_tx_remove,
2817         .tx_write = efx_farch_tx_write,
2818         .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2819         .rx_probe = efx_farch_rx_probe,
2820         .rx_init = efx_farch_rx_init,
2821         .rx_remove = efx_farch_rx_remove,
2822         .rx_write = efx_farch_rx_write,
2823         .rx_defer_refill = efx_farch_rx_defer_refill,
2824         .ev_probe = efx_farch_ev_probe,
2825         .ev_init = efx_farch_ev_init,
2826         .ev_fini = efx_farch_ev_fini,
2827         .ev_remove = efx_farch_ev_remove,
2828         .ev_process = efx_farch_ev_process,
2829         .ev_read_ack = efx_farch_ev_read_ack,
2830         .ev_test_generate = efx_farch_ev_test_generate,
2831         .filter_table_probe = efx_farch_filter_table_probe,
2832         .filter_table_restore = efx_farch_filter_table_restore,
2833         .filter_table_remove = efx_farch_filter_table_remove,
2834         .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2835         .filter_insert = efx_farch_filter_insert,
2836         .filter_remove_safe = efx_farch_filter_remove_safe,
2837         .filter_get_safe = efx_farch_filter_get_safe,
2838         .filter_clear_rx = efx_farch_filter_clear_rx,
2839         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2840         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2841         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2842 #ifdef CONFIG_RFS_ACCEL
2843         .filter_rfs_insert = efx_farch_filter_rfs_insert,
2844         .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2845 #endif
2846 #ifdef CONFIG_SFC_MTD
2847         .mtd_probe = falcon_mtd_probe,
2848         .mtd_rename = falcon_mtd_rename,
2849         .mtd_read = falcon_mtd_read,
2850         .mtd_erase = falcon_mtd_erase,
2851         .mtd_write = falcon_mtd_write,
2852         .mtd_sync = falcon_mtd_sync,
2853 #endif
2854
2855         .revision = EFX_REV_FALCON_B0,
2856         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2857         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2858         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2859         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2860         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2861         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2862         .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2863         .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2864         .rx_buffer_padding = 0,
2865         .can_rx_scatter = true,
2866         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2867         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2868         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2869         .mcdi_max_ver = -1,
2870         .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2871 };