]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/tx.c
rt2x00: rt2800pci: use module_pci_driver macro
[karo-tx-linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
26                                struct efx_tx_buffer *buffer,
27                                unsigned int *pkts_compl,
28                                unsigned int *bytes_compl)
29 {
30         if (buffer->unmap_len) {
31                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
32                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
33                                          buffer->unmap_len);
34                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
35                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
36                                          DMA_TO_DEVICE);
37                 else
38                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
39                                        DMA_TO_DEVICE);
40                 buffer->unmap_len = 0;
41         }
42
43         if (buffer->flags & EFX_TX_BUF_SKB) {
44                 (*pkts_compl)++;
45                 (*bytes_compl) += buffer->skb->len;
46                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
47                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
48                            "TX queue %d transmission id %x complete\n",
49                            tx_queue->queue, tx_queue->read_count);
50         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
51                 kfree(buffer->heap_buf);
52         }
53
54         buffer->len = 0;
55         buffer->flags = 0;
56 }
57
58 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
59                                struct sk_buff *skb);
60
61 static inline unsigned
62 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
63 {
64         /* Depending on the NIC revision, we can use descriptor
65          * lengths up to 8K or 8K-1.  However, since PCI Express
66          * devices must split read requests at 4K boundaries, there is
67          * little benefit from using descriptors that cross those
68          * boundaries and we keep things simple by not doing so.
69          */
70         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
71
72         /* Work around hardware bug for unaligned buffers. */
73         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
74                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
75
76         return len;
77 }
78
79 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
80 {
81         /* Header and payload descriptor for each output segment, plus
82          * one for every input fragment boundary within a segment
83          */
84         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
85
86         /* Possibly one more per segment for the alignment workaround */
87         if (EFX_WORKAROUND_5391(efx))
88                 max_descs += EFX_TSO_MAX_SEGS;
89
90         /* Possibly more for PCIe page boundaries within input fragments */
91         if (PAGE_SIZE > EFX_PAGE_SIZE)
92                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
93                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
94
95         return max_descs;
96 }
97
98 /* Get partner of a TX queue, seen as part of the same net core queue */
99 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
100 {
101         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
102                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
103         else
104                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
105 }
106
107 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
108 {
109         /* We need to consider both queues that the net core sees as one */
110         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
111         struct efx_nic *efx = txq1->efx;
112         unsigned int fill_level;
113
114         fill_level = max(txq1->insert_count - txq1->old_read_count,
115                          txq2->insert_count - txq2->old_read_count);
116         if (likely(fill_level < efx->txq_stop_thresh))
117                 return;
118
119         /* We used the stale old_read_count above, which gives us a
120          * pessimistic estimate of the fill level (which may even
121          * validly be >= efx->txq_entries).  Now try again using
122          * read_count (more likely to be a cache miss).
123          *
124          * If we read read_count and then conditionally stop the
125          * queue, it is possible for the completion path to race with
126          * us and complete all outstanding descriptors in the middle,
127          * after which there will be no more completions to wake it.
128          * Therefore we stop the queue first, then read read_count
129          * (with a memory barrier to ensure the ordering), then
130          * restart the queue if the fill level turns out to be low
131          * enough.
132          */
133         netif_tx_stop_queue(txq1->core_txq);
134         smp_mb();
135         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
136         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
137
138         fill_level = max(txq1->insert_count - txq1->old_read_count,
139                          txq2->insert_count - txq2->old_read_count);
140         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141         if (likely(fill_level < efx->txq_stop_thresh)) {
142                 smp_mb();
143                 if (likely(!efx->loopback_selftest))
144                         netif_tx_start_queue(txq1->core_txq);
145         }
146 }
147
148 /*
149  * Add a socket buffer to a TX queue
150  *
151  * This maps all fragments of a socket buffer for DMA and adds them to
152  * the TX queue.  The queue's insert pointer will be incremented by
153  * the number of fragments in the socket buffer.
154  *
155  * If any DMA mapping fails, any mapped fragments will be unmapped,
156  * the queue's insert pointer will be restored to its original value.
157  *
158  * This function is split out from efx_hard_start_xmit to allow the
159  * loopback test to direct packets via specific TX queues.
160  *
161  * Returns NETDEV_TX_OK.
162  * You must hold netif_tx_lock() to call this function.
163  */
164 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
165 {
166         struct efx_nic *efx = tx_queue->efx;
167         struct device *dma_dev = &efx->pci_dev->dev;
168         struct efx_tx_buffer *buffer;
169         skb_frag_t *fragment;
170         unsigned int len, unmap_len = 0, insert_ptr;
171         dma_addr_t dma_addr, unmap_addr = 0;
172         unsigned int dma_len;
173         unsigned short dma_flags;
174         int i = 0;
175
176         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
177
178         if (skb_shinfo(skb)->gso_size)
179                 return efx_enqueue_skb_tso(tx_queue, skb);
180
181         /* Get size of the initial fragment */
182         len = skb_headlen(skb);
183
184         /* Pad if necessary */
185         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
186                 EFX_BUG_ON_PARANOID(skb->data_len);
187                 len = 32 + 1;
188                 if (skb_pad(skb, len - skb->len))
189                         return NETDEV_TX_OK;
190         }
191
192         /* Map for DMA.  Use dma_map_single rather than dma_map_page
193          * since this is more efficient on machines with sparse
194          * memory.
195          */
196         dma_flags = EFX_TX_BUF_MAP_SINGLE;
197         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
198
199         /* Process all fragments */
200         while (1) {
201                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
202                         goto dma_err;
203
204                 /* Store fields for marking in the per-fragment final
205                  * descriptor */
206                 unmap_len = len;
207                 unmap_addr = dma_addr;
208
209                 /* Add to TX queue, splitting across DMA boundaries */
210                 do {
211                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212                         buffer = &tx_queue->buffer[insert_ptr];
213                         EFX_BUG_ON_PARANOID(buffer->flags);
214                         EFX_BUG_ON_PARANOID(buffer->len);
215                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
216
217                         dma_len = efx_max_tx_len(efx, dma_addr);
218                         if (likely(dma_len >= len))
219                                 dma_len = len;
220
221                         /* Fill out per descriptor fields */
222                         buffer->len = dma_len;
223                         buffer->dma_addr = dma_addr;
224                         buffer->flags = EFX_TX_BUF_CONT;
225                         len -= dma_len;
226                         dma_addr += dma_len;
227                         ++tx_queue->insert_count;
228                 } while (len);
229
230                 /* Transfer ownership of the unmapping to the final buffer */
231                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
232                 buffer->unmap_len = unmap_len;
233                 unmap_len = 0;
234
235                 /* Get address and size of next fragment */
236                 if (i >= skb_shinfo(skb)->nr_frags)
237                         break;
238                 fragment = &skb_shinfo(skb)->frags[i];
239                 len = skb_frag_size(fragment);
240                 i++;
241                 /* Map for DMA */
242                 dma_flags = 0;
243                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
244                                             DMA_TO_DEVICE);
245         }
246
247         /* Transfer ownership of the skb to the final buffer */
248         buffer->skb = skb;
249         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
250
251         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
252
253         /* Pass off to hardware */
254         efx_nic_push_buffers(tx_queue);
255
256         efx_tx_maybe_stop_queue(tx_queue);
257
258         return NETDEV_TX_OK;
259
260  dma_err:
261         netif_err(efx, tx_err, efx->net_dev,
262                   " TX queue %d could not map skb with %d bytes %d "
263                   "fragments for DMA\n", tx_queue->queue, skb->len,
264                   skb_shinfo(skb)->nr_frags + 1);
265
266         /* Mark the packet as transmitted, and free the SKB ourselves */
267         dev_kfree_skb_any(skb);
268
269         /* Work backwards until we hit the original insert pointer value */
270         while (tx_queue->insert_count != tx_queue->write_count) {
271                 unsigned int pkts_compl = 0, bytes_compl = 0;
272                 --tx_queue->insert_count;
273                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274                 buffer = &tx_queue->buffer[insert_ptr];
275                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
276         }
277
278         /* Free the fragment we were mid-way through pushing */
279         if (unmap_len) {
280                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
281                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
282                                          DMA_TO_DEVICE);
283                 else
284                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
285                                        DMA_TO_DEVICE);
286         }
287
288         return NETDEV_TX_OK;
289 }
290
291 /* Remove packets from the TX queue
292  *
293  * This removes packets from the TX queue, up to and including the
294  * specified index.
295  */
296 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
297                                 unsigned int index,
298                                 unsigned int *pkts_compl,
299                                 unsigned int *bytes_compl)
300 {
301         struct efx_nic *efx = tx_queue->efx;
302         unsigned int stop_index, read_ptr;
303
304         stop_index = (index + 1) & tx_queue->ptr_mask;
305         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
306
307         while (read_ptr != stop_index) {
308                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
309
310                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
311                     unlikely(buffer->len == 0)) {
312                         netif_err(efx, tx_err, efx->net_dev,
313                                   "TX queue %d spurious TX completion id %x\n",
314                                   tx_queue->queue, read_ptr);
315                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
316                         return;
317                 }
318
319                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
320
321                 ++tx_queue->read_count;
322                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
323         }
324 }
325
326 /* Initiate a packet transmission.  We use one channel per CPU
327  * (sharing when we have more CPUs than channels).  On Falcon, the TX
328  * completion events will be directed back to the CPU that transmitted
329  * the packet, which should be cache-efficient.
330  *
331  * Context: non-blocking.
332  * Note that returning anything other than NETDEV_TX_OK will cause the
333  * OS to free the skb.
334  */
335 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
336                                 struct net_device *net_dev)
337 {
338         struct efx_nic *efx = netdev_priv(net_dev);
339         struct efx_tx_queue *tx_queue;
340         unsigned index, type;
341
342         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
343
344         /* PTP "event" packet */
345         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
346             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
347                 return efx_ptp_tx(efx, skb);
348         }
349
350         index = skb_get_queue_mapping(skb);
351         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352         if (index >= efx->n_tx_channels) {
353                 index -= efx->n_tx_channels;
354                 type |= EFX_TXQ_TYPE_HIGHPRI;
355         }
356         tx_queue = efx_get_tx_queue(efx, index, type);
357
358         return efx_enqueue_skb(tx_queue, skb);
359 }
360
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363         struct efx_nic *efx = tx_queue->efx;
364
365         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366         tx_queue->core_txq =
367                 netdev_get_tx_queue(efx->net_dev,
368                                     tx_queue->queue / EFX_TXQ_TYPES +
369                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370                                      efx->n_tx_channels : 0));
371 }
372
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375         struct efx_nic *efx = netdev_priv(net_dev);
376         struct efx_channel *channel;
377         struct efx_tx_queue *tx_queue;
378         unsigned tc;
379         int rc;
380
381         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382                 return -EINVAL;
383
384         if (num_tc == net_dev->num_tc)
385                 return 0;
386
387         for (tc = 0; tc < num_tc; tc++) {
388                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390         }
391
392         if (num_tc > net_dev->num_tc) {
393                 /* Initialise high-priority queues as necessary */
394                 efx_for_each_channel(channel, efx) {
395                         efx_for_each_possible_channel_tx_queue(tx_queue,
396                                                                channel) {
397                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398                                         continue;
399                                 if (!tx_queue->buffer) {
400                                         rc = efx_probe_tx_queue(tx_queue);
401                                         if (rc)
402                                                 return rc;
403                                 }
404                                 if (!tx_queue->initialised)
405                                         efx_init_tx_queue(tx_queue);
406                                 efx_init_tx_queue_core_txq(tx_queue);
407                         }
408                 }
409         } else {
410                 /* Reduce number of classes before number of queues */
411                 net_dev->num_tc = num_tc;
412         }
413
414         rc = netif_set_real_num_tx_queues(net_dev,
415                                           max_t(int, num_tc, 1) *
416                                           efx->n_tx_channels);
417         if (rc)
418                 return rc;
419
420         /* Do not destroy high-priority queues when they become
421          * unused.  We would have to flush them first, and it is
422          * fairly difficult to flush a subset of TX queues.  Leave
423          * it to efx_fini_channels().
424          */
425
426         net_dev->num_tc = num_tc;
427         return 0;
428 }
429
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432         unsigned fill_level;
433         struct efx_nic *efx = tx_queue->efx;
434         struct efx_tx_queue *txq2;
435         unsigned int pkts_compl = 0, bytes_compl = 0;
436
437         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
438
439         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
440         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
441
442         if (pkts_compl > 1)
443                 ++tx_queue->merge_events;
444
445         /* See if we need to restart the netif queue.  This memory
446          * barrier ensures that we write read_count (inside
447          * efx_dequeue_buffers()) before reading the queue status.
448          */
449         smp_mb();
450         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
451             likely(efx->port_enabled) &&
452             likely(netif_device_present(efx->net_dev))) {
453                 txq2 = efx_tx_queue_partner(tx_queue);
454                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
455                                  txq2->insert_count - txq2->read_count);
456                 if (fill_level <= efx->txq_wake_thresh)
457                         netif_tx_wake_queue(tx_queue->core_txq);
458         }
459
460         /* Check whether the hardware queue is now empty */
461         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
462                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
463                 if (tx_queue->read_count == tx_queue->old_write_count) {
464                         smp_mb();
465                         tx_queue->empty_read_count =
466                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
467                 }
468         }
469 }
470
471 /* Size of page-based TSO header buffers.  Larger blocks must be
472  * allocated from the heap.
473  */
474 #define TSOH_STD_SIZE   128
475 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
476
477 /* At most half the descriptors in the queue at any time will refer to
478  * a TSO header buffer, since they must always be followed by a
479  * payload descriptor referring to an skb.
480  */
481 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
482 {
483         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
484 }
485
486 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
487 {
488         struct efx_nic *efx = tx_queue->efx;
489         unsigned int entries;
490         int rc;
491
492         /* Create the smallest power-of-two aligned ring */
493         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
494         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
495         tx_queue->ptr_mask = entries - 1;
496
497         netif_dbg(efx, probe, efx->net_dev,
498                   "creating TX queue %d size %#x mask %#x\n",
499                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
500
501         /* Allocate software ring */
502         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
503                                    GFP_KERNEL);
504         if (!tx_queue->buffer)
505                 return -ENOMEM;
506
507         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
508                 tx_queue->tsoh_page =
509                         kcalloc(efx_tsoh_page_count(tx_queue),
510                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
511                 if (!tx_queue->tsoh_page) {
512                         rc = -ENOMEM;
513                         goto fail1;
514                 }
515         }
516
517         /* Allocate hardware ring */
518         rc = efx_nic_probe_tx(tx_queue);
519         if (rc)
520                 goto fail2;
521
522         return 0;
523
524 fail2:
525         kfree(tx_queue->tsoh_page);
526         tx_queue->tsoh_page = NULL;
527 fail1:
528         kfree(tx_queue->buffer);
529         tx_queue->buffer = NULL;
530         return rc;
531 }
532
533 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
534 {
535         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
536                   "initialising TX queue %d\n", tx_queue->queue);
537
538         tx_queue->insert_count = 0;
539         tx_queue->write_count = 0;
540         tx_queue->old_write_count = 0;
541         tx_queue->read_count = 0;
542         tx_queue->old_read_count = 0;
543         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
544
545         /* Set up TX descriptor ring */
546         efx_nic_init_tx(tx_queue);
547
548         tx_queue->initialised = true;
549 }
550
551 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
552 {
553         struct efx_tx_buffer *buffer;
554
555         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
556                   "shutting down TX queue %d\n", tx_queue->queue);
557
558         if (!tx_queue->buffer)
559                 return;
560
561         /* Free any buffers left in the ring */
562         while (tx_queue->read_count != tx_queue->write_count) {
563                 unsigned int pkts_compl = 0, bytes_compl = 0;
564                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
565                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
566
567                 ++tx_queue->read_count;
568         }
569         netdev_tx_reset_queue(tx_queue->core_txq);
570 }
571
572 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
573 {
574         int i;
575
576         if (!tx_queue->buffer)
577                 return;
578
579         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
580                   "destroying TX queue %d\n", tx_queue->queue);
581         efx_nic_remove_tx(tx_queue);
582
583         if (tx_queue->tsoh_page) {
584                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
585                         efx_nic_free_buffer(tx_queue->efx,
586                                             &tx_queue->tsoh_page[i]);
587                 kfree(tx_queue->tsoh_page);
588                 tx_queue->tsoh_page = NULL;
589         }
590
591         kfree(tx_queue->buffer);
592         tx_queue->buffer = NULL;
593 }
594
595
596 /* Efx TCP segmentation acceleration.
597  *
598  * Why?  Because by doing it here in the driver we can go significantly
599  * faster than the GSO.
600  *
601  * Requires TX checksum offload support.
602  */
603
604 /* Number of bytes inserted at the start of a TSO header buffer,
605  * similar to NET_IP_ALIGN.
606  */
607 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
608 #define TSOH_OFFSET     0
609 #else
610 #define TSOH_OFFSET     NET_IP_ALIGN
611 #endif
612
613 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
614
615 /**
616  * struct tso_state - TSO state for an SKB
617  * @out_len: Remaining length in current segment
618  * @seqnum: Current sequence number
619  * @ipv4_id: Current IPv4 ID, host endian
620  * @packet_space: Remaining space in current packet
621  * @dma_addr: DMA address of current position
622  * @in_len: Remaining length in current SKB fragment
623  * @unmap_len: Length of SKB fragment
624  * @unmap_addr: DMA address of SKB fragment
625  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
626  * @protocol: Network protocol (after any VLAN header)
627  * @ip_off: Offset of IP header
628  * @tcp_off: Offset of TCP header
629  * @header_len: Number of bytes of header
630  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
631  *
632  * The state used during segmentation.  It is put into this data structure
633  * just to make it easy to pass into inline functions.
634  */
635 struct tso_state {
636         /* Output position */
637         unsigned out_len;
638         unsigned seqnum;
639         unsigned ipv4_id;
640         unsigned packet_space;
641
642         /* Input position */
643         dma_addr_t dma_addr;
644         unsigned in_len;
645         unsigned unmap_len;
646         dma_addr_t unmap_addr;
647         unsigned short dma_flags;
648
649         __be16 protocol;
650         unsigned int ip_off;
651         unsigned int tcp_off;
652         unsigned header_len;
653         unsigned int ip_base_len;
654 };
655
656
657 /*
658  * Verify that our various assumptions about sk_buffs and the conditions
659  * under which TSO will be attempted hold true.  Return the protocol number.
660  */
661 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
662 {
663         __be16 protocol = skb->protocol;
664
665         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
666                             protocol);
667         if (protocol == htons(ETH_P_8021Q)) {
668                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
669                 protocol = veh->h_vlan_encapsulated_proto;
670         }
671
672         if (protocol == htons(ETH_P_IP)) {
673                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
674         } else {
675                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
676                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
677         }
678         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
679                              + (tcp_hdr(skb)->doff << 2u)) >
680                             skb_headlen(skb));
681
682         return protocol;
683 }
684
685 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
686                                struct efx_tx_buffer *buffer, unsigned int len)
687 {
688         u8 *result;
689
690         EFX_BUG_ON_PARANOID(buffer->len);
691         EFX_BUG_ON_PARANOID(buffer->flags);
692         EFX_BUG_ON_PARANOID(buffer->unmap_len);
693
694         if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
695                 unsigned index =
696                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
697                 struct efx_buffer *page_buf =
698                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
699                 unsigned offset =
700                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
701
702                 if (unlikely(!page_buf->addr) &&
703                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
704                                          GFP_ATOMIC))
705                         return NULL;
706
707                 result = (u8 *)page_buf->addr + offset;
708                 buffer->dma_addr = page_buf->dma_addr + offset;
709                 buffer->flags = EFX_TX_BUF_CONT;
710         } else {
711                 tx_queue->tso_long_headers++;
712
713                 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
714                 if (unlikely(!buffer->heap_buf))
715                         return NULL;
716                 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
717                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
718         }
719
720         buffer->len = len;
721
722         return result;
723 }
724
725 /**
726  * efx_tx_queue_insert - push descriptors onto the TX queue
727  * @tx_queue:           Efx TX queue
728  * @dma_addr:           DMA address of fragment
729  * @len:                Length of fragment
730  * @final_buffer:       The final buffer inserted into the queue
731  *
732  * Push descriptors onto the TX queue.
733  */
734 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
735                                 dma_addr_t dma_addr, unsigned len,
736                                 struct efx_tx_buffer **final_buffer)
737 {
738         struct efx_tx_buffer *buffer;
739         struct efx_nic *efx = tx_queue->efx;
740         unsigned dma_len, insert_ptr;
741
742         EFX_BUG_ON_PARANOID(len <= 0);
743
744         while (1) {
745                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
746                 buffer = &tx_queue->buffer[insert_ptr];
747                 ++tx_queue->insert_count;
748
749                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
750                                     tx_queue->read_count >=
751                                     efx->txq_entries);
752
753                 EFX_BUG_ON_PARANOID(buffer->len);
754                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
755                 EFX_BUG_ON_PARANOID(buffer->flags);
756
757                 buffer->dma_addr = dma_addr;
758
759                 dma_len = efx_max_tx_len(efx, dma_addr);
760
761                 /* If there is enough space to send then do so */
762                 if (dma_len >= len)
763                         break;
764
765                 buffer->len = dma_len;
766                 buffer->flags = EFX_TX_BUF_CONT;
767                 dma_addr += dma_len;
768                 len -= dma_len;
769         }
770
771         EFX_BUG_ON_PARANOID(!len);
772         buffer->len = len;
773         *final_buffer = buffer;
774 }
775
776
777 /*
778  * Put a TSO header into the TX queue.
779  *
780  * This is special-cased because we know that it is small enough to fit in
781  * a single fragment, and we know it doesn't cross a page boundary.  It
782  * also allows us to not worry about end-of-packet etc.
783  */
784 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
785                               struct efx_tx_buffer *buffer, u8 *header)
786 {
787         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
788                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
789                                                   header, buffer->len,
790                                                   DMA_TO_DEVICE);
791                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
792                                                buffer->dma_addr))) {
793                         kfree(buffer->heap_buf);
794                         buffer->len = 0;
795                         buffer->flags = 0;
796                         return -ENOMEM;
797                 }
798                 buffer->unmap_len = buffer->len;
799                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
800         }
801
802         ++tx_queue->insert_count;
803         return 0;
804 }
805
806
807 /* Remove buffers put into a tx_queue.  None of the buffers must have
808  * an skb attached.
809  */
810 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
811 {
812         struct efx_tx_buffer *buffer;
813
814         /* Work backwards until we hit the original insert pointer value */
815         while (tx_queue->insert_count != tx_queue->write_count) {
816                 --tx_queue->insert_count;
817                 buffer = &tx_queue->buffer[tx_queue->insert_count &
818                                            tx_queue->ptr_mask];
819                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
820         }
821 }
822
823
824 /* Parse the SKB header and initialise state. */
825 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
826 {
827         st->ip_off = skb_network_header(skb) - skb->data;
828         st->tcp_off = skb_transport_header(skb) - skb->data;
829         st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
830         if (st->protocol == htons(ETH_P_IP)) {
831                 st->ip_base_len = st->header_len - st->ip_off;
832                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
833         } else {
834                 st->ip_base_len = st->header_len - st->tcp_off;
835                 st->ipv4_id = 0;
836         }
837         st->seqnum = ntohl(tcp_hdr(skb)->seq);
838
839         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
840         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
841         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
842
843         st->out_len = skb->len - st->header_len;
844         st->unmap_len = 0;
845         st->dma_flags = 0;
846 }
847
848 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
849                             skb_frag_t *frag)
850 {
851         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
852                                           skb_frag_size(frag), DMA_TO_DEVICE);
853         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
854                 st->dma_flags = 0;
855                 st->unmap_len = skb_frag_size(frag);
856                 st->in_len = skb_frag_size(frag);
857                 st->dma_addr = st->unmap_addr;
858                 return 0;
859         }
860         return -ENOMEM;
861 }
862
863 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
864                                  const struct sk_buff *skb)
865 {
866         int hl = st->header_len;
867         int len = skb_headlen(skb) - hl;
868
869         st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
870                                         len, DMA_TO_DEVICE);
871         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
872                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
873                 st->unmap_len = len;
874                 st->in_len = len;
875                 st->dma_addr = st->unmap_addr;
876                 return 0;
877         }
878         return -ENOMEM;
879 }
880
881
882 /**
883  * tso_fill_packet_with_fragment - form descriptors for the current fragment
884  * @tx_queue:           Efx TX queue
885  * @skb:                Socket buffer
886  * @st:                 TSO state
887  *
888  * Form descriptors for the current fragment, until we reach the end
889  * of fragment or end-of-packet.
890  */
891 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
892                                           const struct sk_buff *skb,
893                                           struct tso_state *st)
894 {
895         struct efx_tx_buffer *buffer;
896         int n;
897
898         if (st->in_len == 0)
899                 return;
900         if (st->packet_space == 0)
901                 return;
902
903         EFX_BUG_ON_PARANOID(st->in_len <= 0);
904         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
905
906         n = min(st->in_len, st->packet_space);
907
908         st->packet_space -= n;
909         st->out_len -= n;
910         st->in_len -= n;
911
912         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
913
914         if (st->out_len == 0) {
915                 /* Transfer ownership of the skb */
916                 buffer->skb = skb;
917                 buffer->flags = EFX_TX_BUF_SKB;
918         } else if (st->packet_space != 0) {
919                 buffer->flags = EFX_TX_BUF_CONT;
920         }
921
922         if (st->in_len == 0) {
923                 /* Transfer ownership of the DMA mapping */
924                 buffer->unmap_len = st->unmap_len;
925                 buffer->flags |= st->dma_flags;
926                 st->unmap_len = 0;
927         }
928
929         st->dma_addr += n;
930 }
931
932
933 /**
934  * tso_start_new_packet - generate a new header and prepare for the new packet
935  * @tx_queue:           Efx TX queue
936  * @skb:                Socket buffer
937  * @st:                 TSO state
938  *
939  * Generate a new header and prepare for the new packet.  Return 0 on
940  * success, or -%ENOMEM if failed to alloc header.
941  */
942 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
943                                 const struct sk_buff *skb,
944                                 struct tso_state *st)
945 {
946         struct efx_tx_buffer *buffer =
947                 &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
948         struct tcphdr *tsoh_th;
949         unsigned ip_length;
950         u8 *header;
951         int rc;
952
953         /* Allocate and insert a DMA-mapped header buffer. */
954         header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
955         if (!header)
956                 return -ENOMEM;
957
958         tsoh_th = (struct tcphdr *)(header + st->tcp_off);
959
960         /* Copy and update the headers. */
961         memcpy(header, skb->data, st->header_len);
962
963         tsoh_th->seq = htonl(st->seqnum);
964         st->seqnum += skb_shinfo(skb)->gso_size;
965         if (st->out_len > skb_shinfo(skb)->gso_size) {
966                 /* This packet will not finish the TSO burst. */
967                 st->packet_space = skb_shinfo(skb)->gso_size;
968                 tsoh_th->fin = 0;
969                 tsoh_th->psh = 0;
970         } else {
971                 /* This packet will be the last in the TSO burst. */
972                 st->packet_space = st->out_len;
973                 tsoh_th->fin = tcp_hdr(skb)->fin;
974                 tsoh_th->psh = tcp_hdr(skb)->psh;
975         }
976         ip_length = st->ip_base_len + st->packet_space;
977
978         if (st->protocol == htons(ETH_P_IP)) {
979                 struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
980
981                 tsoh_iph->tot_len = htons(ip_length);
982
983                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
984                 tsoh_iph->id = htons(st->ipv4_id);
985                 st->ipv4_id++;
986         } else {
987                 struct ipv6hdr *tsoh_iph =
988                         (struct ipv6hdr *)(header + st->ip_off);
989
990                 tsoh_iph->payload_len = htons(ip_length);
991         }
992
993         rc = efx_tso_put_header(tx_queue, buffer, header);
994         if (unlikely(rc))
995                 return rc;
996
997         ++tx_queue->tso_packets;
998
999         return 0;
1000 }
1001
1002
1003 /**
1004  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1005  * @tx_queue:           Efx TX queue
1006  * @skb:                Socket buffer
1007  *
1008  * Context: You must hold netif_tx_lock() to call this function.
1009  *
1010  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1011  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1012  * %NETDEV_TX_OK.
1013  */
1014 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1015                                struct sk_buff *skb)
1016 {
1017         struct efx_nic *efx = tx_queue->efx;
1018         int frag_i, rc;
1019         struct tso_state state;
1020
1021         /* Find the packet protocol and sanity-check it */
1022         state.protocol = efx_tso_check_protocol(skb);
1023
1024         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1025
1026         tso_start(&state, skb);
1027
1028         /* Assume that skb header area contains exactly the headers, and
1029          * all payload is in the frag list.
1030          */
1031         if (skb_headlen(skb) == state.header_len) {
1032                 /* Grab the first payload fragment. */
1033                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1034                 frag_i = 0;
1035                 rc = tso_get_fragment(&state, efx,
1036                                       skb_shinfo(skb)->frags + frag_i);
1037                 if (rc)
1038                         goto mem_err;
1039         } else {
1040                 rc = tso_get_head_fragment(&state, efx, skb);
1041                 if (rc)
1042                         goto mem_err;
1043                 frag_i = -1;
1044         }
1045
1046         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1047                 goto mem_err;
1048
1049         while (1) {
1050                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1051
1052                 /* Move onto the next fragment? */
1053                 if (state.in_len == 0) {
1054                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1055                                 /* End of payload reached. */
1056                                 break;
1057                         rc = tso_get_fragment(&state, efx,
1058                                               skb_shinfo(skb)->frags + frag_i);
1059                         if (rc)
1060                                 goto mem_err;
1061                 }
1062
1063                 /* Start at new packet? */
1064                 if (state.packet_space == 0 &&
1065                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1066                         goto mem_err;
1067         }
1068
1069         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1070
1071         /* Pass off to hardware */
1072         efx_nic_push_buffers(tx_queue);
1073
1074         efx_tx_maybe_stop_queue(tx_queue);
1075
1076         tx_queue->tso_bursts++;
1077         return NETDEV_TX_OK;
1078
1079  mem_err:
1080         netif_err(efx, tx_err, efx->net_dev,
1081                   "Out of memory for TSO headers, or DMA mapping error\n");
1082         dev_kfree_skb_any(skb);
1083
1084         /* Free the DMA mapping we were in the process of writing out */
1085         if (state.unmap_len) {
1086                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1087                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1088                                          state.unmap_len, DMA_TO_DEVICE);
1089                 else
1090                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1091                                        state.unmap_len, DMA_TO_DEVICE);
1092         }
1093
1094         efx_enqueue_unwind(tx_queue);
1095         return NETDEV_TX_OK;
1096 }