]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/tx.c
sfc: Implement firmware-assisted TSO for EF10
[karo-tx-linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24 #include "ef10_regs.h"
25
26 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
27                                struct efx_tx_buffer *buffer,
28                                unsigned int *pkts_compl,
29                                unsigned int *bytes_compl)
30 {
31         if (buffer->unmap_len) {
32                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
33                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
34                                          buffer->unmap_len);
35                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
36                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
37                                          DMA_TO_DEVICE);
38                 else
39                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
40                                        DMA_TO_DEVICE);
41                 buffer->unmap_len = 0;
42         }
43
44         if (buffer->flags & EFX_TX_BUF_SKB) {
45                 (*pkts_compl)++;
46                 (*bytes_compl) += buffer->skb->len;
47                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
48                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
49                            "TX queue %d transmission id %x complete\n",
50                            tx_queue->queue, tx_queue->read_count);
51         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
52                 kfree(buffer->heap_buf);
53         }
54
55         buffer->len = 0;
56         buffer->flags = 0;
57 }
58
59 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
60                                struct sk_buff *skb);
61
62 static inline unsigned
63 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
64 {
65         /* Depending on the NIC revision, we can use descriptor
66          * lengths up to 8K or 8K-1.  However, since PCI Express
67          * devices must split read requests at 4K boundaries, there is
68          * little benefit from using descriptors that cross those
69          * boundaries and we keep things simple by not doing so.
70          */
71         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
72
73         /* Work around hardware bug for unaligned buffers. */
74         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
75                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
76
77         return len;
78 }
79
80 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
81 {
82         /* Header and payload descriptor for each output segment, plus
83          * one for every input fragment boundary within a segment
84          */
85         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
86
87         /* Possibly one more per segment for the alignment workaround,
88          * or for option descriptors
89          */
90         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
91                 max_descs += EFX_TSO_MAX_SEGS;
92
93         /* Possibly more for PCIe page boundaries within input fragments */
94         if (PAGE_SIZE > EFX_PAGE_SIZE)
95                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
96                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
97
98         return max_descs;
99 }
100
101 /* Get partner of a TX queue, seen as part of the same net core queue */
102 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
103 {
104         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
105                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
106         else
107                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
108 }
109
110 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
111 {
112         /* We need to consider both queues that the net core sees as one */
113         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
114         struct efx_nic *efx = txq1->efx;
115         unsigned int fill_level;
116
117         fill_level = max(txq1->insert_count - txq1->old_read_count,
118                          txq2->insert_count - txq2->old_read_count);
119         if (likely(fill_level < efx->txq_stop_thresh))
120                 return;
121
122         /* We used the stale old_read_count above, which gives us a
123          * pessimistic estimate of the fill level (which may even
124          * validly be >= efx->txq_entries).  Now try again using
125          * read_count (more likely to be a cache miss).
126          *
127          * If we read read_count and then conditionally stop the
128          * queue, it is possible for the completion path to race with
129          * us and complete all outstanding descriptors in the middle,
130          * after which there will be no more completions to wake it.
131          * Therefore we stop the queue first, then read read_count
132          * (with a memory barrier to ensure the ordering), then
133          * restart the queue if the fill level turns out to be low
134          * enough.
135          */
136         netif_tx_stop_queue(txq1->core_txq);
137         smp_mb();
138         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
139         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
140
141         fill_level = max(txq1->insert_count - txq1->old_read_count,
142                          txq2->insert_count - txq2->old_read_count);
143         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
144         if (likely(fill_level < efx->txq_stop_thresh)) {
145                 smp_mb();
146                 if (likely(!efx->loopback_selftest))
147                         netif_tx_start_queue(txq1->core_txq);
148         }
149 }
150
151 /*
152  * Add a socket buffer to a TX queue
153  *
154  * This maps all fragments of a socket buffer for DMA and adds them to
155  * the TX queue.  The queue's insert pointer will be incremented by
156  * the number of fragments in the socket buffer.
157  *
158  * If any DMA mapping fails, any mapped fragments will be unmapped,
159  * the queue's insert pointer will be restored to its original value.
160  *
161  * This function is split out from efx_hard_start_xmit to allow the
162  * loopback test to direct packets via specific TX queues.
163  *
164  * Returns NETDEV_TX_OK.
165  * You must hold netif_tx_lock() to call this function.
166  */
167 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
168 {
169         struct efx_nic *efx = tx_queue->efx;
170         struct device *dma_dev = &efx->pci_dev->dev;
171         struct efx_tx_buffer *buffer;
172         skb_frag_t *fragment;
173         unsigned int len, unmap_len = 0, insert_ptr;
174         dma_addr_t dma_addr, unmap_addr = 0;
175         unsigned int dma_len;
176         unsigned short dma_flags;
177         int i = 0;
178
179         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
180
181         if (skb_shinfo(skb)->gso_size)
182                 return efx_enqueue_skb_tso(tx_queue, skb);
183
184         /* Get size of the initial fragment */
185         len = skb_headlen(skb);
186
187         /* Pad if necessary */
188         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
189                 EFX_BUG_ON_PARANOID(skb->data_len);
190                 len = 32 + 1;
191                 if (skb_pad(skb, len - skb->len))
192                         return NETDEV_TX_OK;
193         }
194
195         /* Map for DMA.  Use dma_map_single rather than dma_map_page
196          * since this is more efficient on machines with sparse
197          * memory.
198          */
199         dma_flags = EFX_TX_BUF_MAP_SINGLE;
200         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
201
202         /* Process all fragments */
203         while (1) {
204                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
205                         goto dma_err;
206
207                 /* Store fields for marking in the per-fragment final
208                  * descriptor */
209                 unmap_len = len;
210                 unmap_addr = dma_addr;
211
212                 /* Add to TX queue, splitting across DMA boundaries */
213                 do {
214                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
215                         buffer = &tx_queue->buffer[insert_ptr];
216                         EFX_BUG_ON_PARANOID(buffer->flags);
217                         EFX_BUG_ON_PARANOID(buffer->len);
218                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220                         dma_len = efx_max_tx_len(efx, dma_addr);
221                         if (likely(dma_len >= len))
222                                 dma_len = len;
223
224                         /* Fill out per descriptor fields */
225                         buffer->len = dma_len;
226                         buffer->dma_addr = dma_addr;
227                         buffer->flags = EFX_TX_BUF_CONT;
228                         len -= dma_len;
229                         dma_addr += dma_len;
230                         ++tx_queue->insert_count;
231                 } while (len);
232
233                 /* Transfer ownership of the unmapping to the final buffer */
234                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
235                 buffer->unmap_len = unmap_len;
236                 unmap_len = 0;
237
238                 /* Get address and size of next fragment */
239                 if (i >= skb_shinfo(skb)->nr_frags)
240                         break;
241                 fragment = &skb_shinfo(skb)->frags[i];
242                 len = skb_frag_size(fragment);
243                 i++;
244                 /* Map for DMA */
245                 dma_flags = 0;
246                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
247                                             DMA_TO_DEVICE);
248         }
249
250         /* Transfer ownership of the skb to the final buffer */
251         buffer->skb = skb;
252         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
253
254         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
255
256         /* Pass off to hardware */
257         efx_nic_push_buffers(tx_queue);
258
259         efx_tx_maybe_stop_queue(tx_queue);
260
261         return NETDEV_TX_OK;
262
263  dma_err:
264         netif_err(efx, tx_err, efx->net_dev,
265                   " TX queue %d could not map skb with %d bytes %d "
266                   "fragments for DMA\n", tx_queue->queue, skb->len,
267                   skb_shinfo(skb)->nr_frags + 1);
268
269         /* Mark the packet as transmitted, and free the SKB ourselves */
270         dev_kfree_skb_any(skb);
271
272         /* Work backwards until we hit the original insert pointer value */
273         while (tx_queue->insert_count != tx_queue->write_count) {
274                 unsigned int pkts_compl = 0, bytes_compl = 0;
275                 --tx_queue->insert_count;
276                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
277                 buffer = &tx_queue->buffer[insert_ptr];
278                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
279         }
280
281         /* Free the fragment we were mid-way through pushing */
282         if (unmap_len) {
283                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
284                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
285                                          DMA_TO_DEVICE);
286                 else
287                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
288                                        DMA_TO_DEVICE);
289         }
290
291         return NETDEV_TX_OK;
292 }
293
294 /* Remove packets from the TX queue
295  *
296  * This removes packets from the TX queue, up to and including the
297  * specified index.
298  */
299 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
300                                 unsigned int index,
301                                 unsigned int *pkts_compl,
302                                 unsigned int *bytes_compl)
303 {
304         struct efx_nic *efx = tx_queue->efx;
305         unsigned int stop_index, read_ptr;
306
307         stop_index = (index + 1) & tx_queue->ptr_mask;
308         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
309
310         while (read_ptr != stop_index) {
311                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
312
313                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
314                     unlikely(buffer->len == 0)) {
315                         netif_err(efx, tx_err, efx->net_dev,
316                                   "TX queue %d spurious TX completion id %x\n",
317                                   tx_queue->queue, read_ptr);
318                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
319                         return;
320                 }
321
322                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
323
324                 ++tx_queue->read_count;
325                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
326         }
327 }
328
329 /* Initiate a packet transmission.  We use one channel per CPU
330  * (sharing when we have more CPUs than channels).  On Falcon, the TX
331  * completion events will be directed back to the CPU that transmitted
332  * the packet, which should be cache-efficient.
333  *
334  * Context: non-blocking.
335  * Note that returning anything other than NETDEV_TX_OK will cause the
336  * OS to free the skb.
337  */
338 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
339                                 struct net_device *net_dev)
340 {
341         struct efx_nic *efx = netdev_priv(net_dev);
342         struct efx_tx_queue *tx_queue;
343         unsigned index, type;
344
345         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
346
347         /* PTP "event" packet */
348         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
349             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
350                 return efx_ptp_tx(efx, skb);
351         }
352
353         index = skb_get_queue_mapping(skb);
354         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
355         if (index >= efx->n_tx_channels) {
356                 index -= efx->n_tx_channels;
357                 type |= EFX_TXQ_TYPE_HIGHPRI;
358         }
359         tx_queue = efx_get_tx_queue(efx, index, type);
360
361         return efx_enqueue_skb(tx_queue, skb);
362 }
363
364 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
365 {
366         struct efx_nic *efx = tx_queue->efx;
367
368         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
369         tx_queue->core_txq =
370                 netdev_get_tx_queue(efx->net_dev,
371                                     tx_queue->queue / EFX_TXQ_TYPES +
372                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
373                                      efx->n_tx_channels : 0));
374 }
375
376 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
377 {
378         struct efx_nic *efx = netdev_priv(net_dev);
379         struct efx_channel *channel;
380         struct efx_tx_queue *tx_queue;
381         unsigned tc;
382         int rc;
383
384         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
385                 return -EINVAL;
386
387         if (num_tc == net_dev->num_tc)
388                 return 0;
389
390         for (tc = 0; tc < num_tc; tc++) {
391                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
392                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
393         }
394
395         if (num_tc > net_dev->num_tc) {
396                 /* Initialise high-priority queues as necessary */
397                 efx_for_each_channel(channel, efx) {
398                         efx_for_each_possible_channel_tx_queue(tx_queue,
399                                                                channel) {
400                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
401                                         continue;
402                                 if (!tx_queue->buffer) {
403                                         rc = efx_probe_tx_queue(tx_queue);
404                                         if (rc)
405                                                 return rc;
406                                 }
407                                 if (!tx_queue->initialised)
408                                         efx_init_tx_queue(tx_queue);
409                                 efx_init_tx_queue_core_txq(tx_queue);
410                         }
411                 }
412         } else {
413                 /* Reduce number of classes before number of queues */
414                 net_dev->num_tc = num_tc;
415         }
416
417         rc = netif_set_real_num_tx_queues(net_dev,
418                                           max_t(int, num_tc, 1) *
419                                           efx->n_tx_channels);
420         if (rc)
421                 return rc;
422
423         /* Do not destroy high-priority queues when they become
424          * unused.  We would have to flush them first, and it is
425          * fairly difficult to flush a subset of TX queues.  Leave
426          * it to efx_fini_channels().
427          */
428
429         net_dev->num_tc = num_tc;
430         return 0;
431 }
432
433 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
434 {
435         unsigned fill_level;
436         struct efx_nic *efx = tx_queue->efx;
437         struct efx_tx_queue *txq2;
438         unsigned int pkts_compl = 0, bytes_compl = 0;
439
440         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
441
442         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
443         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
444
445         if (pkts_compl > 1)
446                 ++tx_queue->merge_events;
447
448         /* See if we need to restart the netif queue.  This memory
449          * barrier ensures that we write read_count (inside
450          * efx_dequeue_buffers()) before reading the queue status.
451          */
452         smp_mb();
453         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
454             likely(efx->port_enabled) &&
455             likely(netif_device_present(efx->net_dev))) {
456                 txq2 = efx_tx_queue_partner(tx_queue);
457                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
458                                  txq2->insert_count - txq2->read_count);
459                 if (fill_level <= efx->txq_wake_thresh)
460                         netif_tx_wake_queue(tx_queue->core_txq);
461         }
462
463         /* Check whether the hardware queue is now empty */
464         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
465                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
466                 if (tx_queue->read_count == tx_queue->old_write_count) {
467                         smp_mb();
468                         tx_queue->empty_read_count =
469                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
470                 }
471         }
472 }
473
474 /* Size of page-based TSO header buffers.  Larger blocks must be
475  * allocated from the heap.
476  */
477 #define TSOH_STD_SIZE   128
478 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
479
480 /* At most half the descriptors in the queue at any time will refer to
481  * a TSO header buffer, since they must always be followed by a
482  * payload descriptor referring to an skb.
483  */
484 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
485 {
486         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
487 }
488
489 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         unsigned int entries;
493         int rc;
494
495         /* Create the smallest power-of-two aligned ring */
496         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
497         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
498         tx_queue->ptr_mask = entries - 1;
499
500         netif_dbg(efx, probe, efx->net_dev,
501                   "creating TX queue %d size %#x mask %#x\n",
502                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
503
504         /* Allocate software ring */
505         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
506                                    GFP_KERNEL);
507         if (!tx_queue->buffer)
508                 return -ENOMEM;
509
510         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
511                 tx_queue->tsoh_page =
512                         kcalloc(efx_tsoh_page_count(tx_queue),
513                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
514                 if (!tx_queue->tsoh_page) {
515                         rc = -ENOMEM;
516                         goto fail1;
517                 }
518         }
519
520         /* Allocate hardware ring */
521         rc = efx_nic_probe_tx(tx_queue);
522         if (rc)
523                 goto fail2;
524
525         return 0;
526
527 fail2:
528         kfree(tx_queue->tsoh_page);
529         tx_queue->tsoh_page = NULL;
530 fail1:
531         kfree(tx_queue->buffer);
532         tx_queue->buffer = NULL;
533         return rc;
534 }
535
536 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
537 {
538         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
539                   "initialising TX queue %d\n", tx_queue->queue);
540
541         tx_queue->insert_count = 0;
542         tx_queue->write_count = 0;
543         tx_queue->old_write_count = 0;
544         tx_queue->read_count = 0;
545         tx_queue->old_read_count = 0;
546         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
547
548         /* Set up TX descriptor ring */
549         efx_nic_init_tx(tx_queue);
550
551         tx_queue->initialised = true;
552 }
553
554 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
555 {
556         struct efx_tx_buffer *buffer;
557
558         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
559                   "shutting down TX queue %d\n", tx_queue->queue);
560
561         if (!tx_queue->buffer)
562                 return;
563
564         /* Free any buffers left in the ring */
565         while (tx_queue->read_count != tx_queue->write_count) {
566                 unsigned int pkts_compl = 0, bytes_compl = 0;
567                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
568                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
569
570                 ++tx_queue->read_count;
571         }
572         netdev_tx_reset_queue(tx_queue->core_txq);
573 }
574
575 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
576 {
577         int i;
578
579         if (!tx_queue->buffer)
580                 return;
581
582         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
583                   "destroying TX queue %d\n", tx_queue->queue);
584         efx_nic_remove_tx(tx_queue);
585
586         if (tx_queue->tsoh_page) {
587                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
588                         efx_nic_free_buffer(tx_queue->efx,
589                                             &tx_queue->tsoh_page[i]);
590                 kfree(tx_queue->tsoh_page);
591                 tx_queue->tsoh_page = NULL;
592         }
593
594         kfree(tx_queue->buffer);
595         tx_queue->buffer = NULL;
596 }
597
598
599 /* Efx TCP segmentation acceleration.
600  *
601  * Why?  Because by doing it here in the driver we can go significantly
602  * faster than the GSO.
603  *
604  * Requires TX checksum offload support.
605  */
606
607 /* Number of bytes inserted at the start of a TSO header buffer,
608  * similar to NET_IP_ALIGN.
609  */
610 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
611 #define TSOH_OFFSET     0
612 #else
613 #define TSOH_OFFSET     NET_IP_ALIGN
614 #endif
615
616 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
617
618 /**
619  * struct tso_state - TSO state for an SKB
620  * @out_len: Remaining length in current segment
621  * @seqnum: Current sequence number
622  * @ipv4_id: Current IPv4 ID, host endian
623  * @packet_space: Remaining space in current packet
624  * @dma_addr: DMA address of current position
625  * @in_len: Remaining length in current SKB fragment
626  * @unmap_len: Length of SKB fragment
627  * @unmap_addr: DMA address of SKB fragment
628  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
629  * @protocol: Network protocol (after any VLAN header)
630  * @ip_off: Offset of IP header
631  * @tcp_off: Offset of TCP header
632  * @header_len: Number of bytes of header
633  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
634  * @header_dma_addr: Header DMA address, when using option descriptors
635  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
636  *      descriptors
637  *
638  * The state used during segmentation.  It is put into this data structure
639  * just to make it easy to pass into inline functions.
640  */
641 struct tso_state {
642         /* Output position */
643         unsigned out_len;
644         unsigned seqnum;
645         u16 ipv4_id;
646         unsigned packet_space;
647
648         /* Input position */
649         dma_addr_t dma_addr;
650         unsigned in_len;
651         unsigned unmap_len;
652         dma_addr_t unmap_addr;
653         unsigned short dma_flags;
654
655         __be16 protocol;
656         unsigned int ip_off;
657         unsigned int tcp_off;
658         unsigned header_len;
659         unsigned int ip_base_len;
660         dma_addr_t header_dma_addr;
661         unsigned int header_unmap_len;
662 };
663
664
665 /*
666  * Verify that our various assumptions about sk_buffs and the conditions
667  * under which TSO will be attempted hold true.  Return the protocol number.
668  */
669 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
670 {
671         __be16 protocol = skb->protocol;
672
673         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
674                             protocol);
675         if (protocol == htons(ETH_P_8021Q)) {
676                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
677                 protocol = veh->h_vlan_encapsulated_proto;
678         }
679
680         if (protocol == htons(ETH_P_IP)) {
681                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
682         } else {
683                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
684                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
685         }
686         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
687                              + (tcp_hdr(skb)->doff << 2u)) >
688                             skb_headlen(skb));
689
690         return protocol;
691 }
692
693 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
694                                struct efx_tx_buffer *buffer, unsigned int len)
695 {
696         u8 *result;
697
698         EFX_BUG_ON_PARANOID(buffer->len);
699         EFX_BUG_ON_PARANOID(buffer->flags);
700         EFX_BUG_ON_PARANOID(buffer->unmap_len);
701
702         if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
703                 unsigned index =
704                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
705                 struct efx_buffer *page_buf =
706                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
707                 unsigned offset =
708                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
709
710                 if (unlikely(!page_buf->addr) &&
711                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
712                                          GFP_ATOMIC))
713                         return NULL;
714
715                 result = (u8 *)page_buf->addr + offset;
716                 buffer->dma_addr = page_buf->dma_addr + offset;
717                 buffer->flags = EFX_TX_BUF_CONT;
718         } else {
719                 tx_queue->tso_long_headers++;
720
721                 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
722                 if (unlikely(!buffer->heap_buf))
723                         return NULL;
724                 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
725                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
726         }
727
728         buffer->len = len;
729
730         return result;
731 }
732
733 /**
734  * efx_tx_queue_insert - push descriptors onto the TX queue
735  * @tx_queue:           Efx TX queue
736  * @dma_addr:           DMA address of fragment
737  * @len:                Length of fragment
738  * @final_buffer:       The final buffer inserted into the queue
739  *
740  * Push descriptors onto the TX queue.
741  */
742 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
743                                 dma_addr_t dma_addr, unsigned len,
744                                 struct efx_tx_buffer **final_buffer)
745 {
746         struct efx_tx_buffer *buffer;
747         struct efx_nic *efx = tx_queue->efx;
748         unsigned dma_len, insert_ptr;
749
750         EFX_BUG_ON_PARANOID(len <= 0);
751
752         while (1) {
753                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
754                 buffer = &tx_queue->buffer[insert_ptr];
755                 ++tx_queue->insert_count;
756
757                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
758                                     tx_queue->read_count >=
759                                     efx->txq_entries);
760
761                 EFX_BUG_ON_PARANOID(buffer->len);
762                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
763                 EFX_BUG_ON_PARANOID(buffer->flags);
764
765                 buffer->dma_addr = dma_addr;
766
767                 dma_len = efx_max_tx_len(efx, dma_addr);
768
769                 /* If there is enough space to send then do so */
770                 if (dma_len >= len)
771                         break;
772
773                 buffer->len = dma_len;
774                 buffer->flags = EFX_TX_BUF_CONT;
775                 dma_addr += dma_len;
776                 len -= dma_len;
777         }
778
779         EFX_BUG_ON_PARANOID(!len);
780         buffer->len = len;
781         *final_buffer = buffer;
782 }
783
784
785 /*
786  * Put a TSO header into the TX queue.
787  *
788  * This is special-cased because we know that it is small enough to fit in
789  * a single fragment, and we know it doesn't cross a page boundary.  It
790  * also allows us to not worry about end-of-packet etc.
791  */
792 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
793                               struct efx_tx_buffer *buffer, u8 *header)
794 {
795         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
796                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
797                                                   header, buffer->len,
798                                                   DMA_TO_DEVICE);
799                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
800                                                buffer->dma_addr))) {
801                         kfree(buffer->heap_buf);
802                         buffer->len = 0;
803                         buffer->flags = 0;
804                         return -ENOMEM;
805                 }
806                 buffer->unmap_len = buffer->len;
807                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
808         }
809
810         ++tx_queue->insert_count;
811         return 0;
812 }
813
814
815 /* Remove buffers put into a tx_queue.  None of the buffers must have
816  * an skb attached.
817  */
818 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
819 {
820         struct efx_tx_buffer *buffer;
821
822         /* Work backwards until we hit the original insert pointer value */
823         while (tx_queue->insert_count != tx_queue->write_count) {
824                 --tx_queue->insert_count;
825                 buffer = &tx_queue->buffer[tx_queue->insert_count &
826                                            tx_queue->ptr_mask];
827                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
828         }
829 }
830
831
832 /* Parse the SKB header and initialise state. */
833 static int tso_start(struct tso_state *st, struct efx_nic *efx,
834                      const struct sk_buff *skb)
835 {
836         bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
837         struct device *dma_dev = &efx->pci_dev->dev;
838         unsigned int header_len, in_len;
839         dma_addr_t dma_addr;
840
841         st->ip_off = skb_network_header(skb) - skb->data;
842         st->tcp_off = skb_transport_header(skb) - skb->data;
843         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
844         in_len = skb_headlen(skb) - header_len;
845         st->header_len = header_len;
846         st->in_len = in_len;
847         if (st->protocol == htons(ETH_P_IP)) {
848                 st->ip_base_len = st->header_len - st->ip_off;
849                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
850         } else {
851                 st->ip_base_len = st->header_len - st->tcp_off;
852                 st->ipv4_id = 0;
853         }
854         st->seqnum = ntohl(tcp_hdr(skb)->seq);
855
856         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
857         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
858         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
859
860         st->out_len = skb->len - header_len;
861
862         if (!use_options) {
863                 st->header_unmap_len = 0;
864
865                 if (likely(in_len == 0)) {
866                         st->dma_flags = 0;
867                         st->unmap_len = 0;
868                         return 0;
869                 }
870
871                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
872                                           in_len, DMA_TO_DEVICE);
873                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
874                 st->dma_addr = dma_addr;
875                 st->unmap_addr = dma_addr;
876                 st->unmap_len = in_len;
877         } else {
878                 dma_addr = dma_map_single(dma_dev, skb->data,
879                                           skb_headlen(skb), DMA_TO_DEVICE);
880                 st->header_dma_addr = dma_addr;
881                 st->header_unmap_len = skb_headlen(skb);
882                 st->dma_flags = 0;
883                 st->dma_addr = dma_addr + header_len;
884                 st->unmap_len = 0;
885         }
886
887         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
888 }
889
890 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
891                             skb_frag_t *frag)
892 {
893         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
894                                           skb_frag_size(frag), DMA_TO_DEVICE);
895         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
896                 st->dma_flags = 0;
897                 st->unmap_len = skb_frag_size(frag);
898                 st->in_len = skb_frag_size(frag);
899                 st->dma_addr = st->unmap_addr;
900                 return 0;
901         }
902         return -ENOMEM;
903 }
904
905
906 /**
907  * tso_fill_packet_with_fragment - form descriptors for the current fragment
908  * @tx_queue:           Efx TX queue
909  * @skb:                Socket buffer
910  * @st:                 TSO state
911  *
912  * Form descriptors for the current fragment, until we reach the end
913  * of fragment or end-of-packet.
914  */
915 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
916                                           const struct sk_buff *skb,
917                                           struct tso_state *st)
918 {
919         struct efx_tx_buffer *buffer;
920         int n;
921
922         if (st->in_len == 0)
923                 return;
924         if (st->packet_space == 0)
925                 return;
926
927         EFX_BUG_ON_PARANOID(st->in_len <= 0);
928         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
929
930         n = min(st->in_len, st->packet_space);
931
932         st->packet_space -= n;
933         st->out_len -= n;
934         st->in_len -= n;
935
936         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
937
938         if (st->out_len == 0) {
939                 /* Transfer ownership of the skb */
940                 buffer->skb = skb;
941                 buffer->flags = EFX_TX_BUF_SKB;
942         } else if (st->packet_space != 0) {
943                 buffer->flags = EFX_TX_BUF_CONT;
944         }
945
946         if (st->in_len == 0) {
947                 /* Transfer ownership of the DMA mapping */
948                 buffer->unmap_len = st->unmap_len;
949                 buffer->flags |= st->dma_flags;
950                 st->unmap_len = 0;
951         }
952
953         st->dma_addr += n;
954 }
955
956
957 /**
958  * tso_start_new_packet - generate a new header and prepare for the new packet
959  * @tx_queue:           Efx TX queue
960  * @skb:                Socket buffer
961  * @st:                 TSO state
962  *
963  * Generate a new header and prepare for the new packet.  Return 0 on
964  * success, or -%ENOMEM if failed to alloc header.
965  */
966 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
967                                 const struct sk_buff *skb,
968                                 struct tso_state *st)
969 {
970         struct efx_tx_buffer *buffer =
971                 &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
972         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
973         u8 tcp_flags_clear;
974
975         if (!is_last) {
976                 st->packet_space = skb_shinfo(skb)->gso_size;
977                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
978         } else {
979                 st->packet_space = st->out_len;
980                 tcp_flags_clear = 0x00;
981         }
982
983         if (!st->header_unmap_len) {
984                 /* Allocate and insert a DMA-mapped header buffer. */
985                 struct tcphdr *tsoh_th;
986                 unsigned ip_length;
987                 u8 *header;
988                 int rc;
989
990                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
991                 if (!header)
992                         return -ENOMEM;
993
994                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
995
996                 /* Copy and update the headers. */
997                 memcpy(header, skb->data, st->header_len);
998
999                 tsoh_th->seq = htonl(st->seqnum);
1000                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1001
1002                 ip_length = st->ip_base_len + st->packet_space;
1003
1004                 if (st->protocol == htons(ETH_P_IP)) {
1005                         struct iphdr *tsoh_iph =
1006                                 (struct iphdr *)(header + st->ip_off);
1007
1008                         tsoh_iph->tot_len = htons(ip_length);
1009                         tsoh_iph->id = htons(st->ipv4_id);
1010                 } else {
1011                         struct ipv6hdr *tsoh_iph =
1012                                 (struct ipv6hdr *)(header + st->ip_off);
1013
1014                         tsoh_iph->payload_len = htons(ip_length);
1015                 }
1016
1017                 rc = efx_tso_put_header(tx_queue, buffer, header);
1018                 if (unlikely(rc))
1019                         return rc;
1020         } else {
1021                 /* Send the original headers with a TSO option descriptor
1022                  * in front
1023                  */
1024                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1025
1026                 buffer->flags = EFX_TX_BUF_OPTION;
1027                 buffer->len = 0;
1028                 buffer->unmap_len = 0;
1029                 EFX_POPULATE_QWORD_5(buffer->option,
1030                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1031                                      ESF_DZ_TX_OPTION_TYPE,
1032                                      ESE_DZ_TX_OPTION_DESC_TSO,
1033                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1034                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1035                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1036                 ++tx_queue->insert_count;
1037
1038                 /* We mapped the headers in tso_start().  Unmap them
1039                  * when the last segment is completed.
1040                  */
1041                 buffer = &tx_queue->buffer[tx_queue->insert_count &
1042                                            tx_queue->ptr_mask];
1043                 buffer->dma_addr = st->header_dma_addr;
1044                 buffer->len = st->header_len;
1045                 if (is_last) {
1046                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1047                         buffer->unmap_len = st->header_unmap_len;
1048                         /* Ensure we only unmap them once in case of a
1049                          * later DMA mapping error and rollback
1050                          */
1051                         st->header_unmap_len = 0;
1052                 } else {
1053                         buffer->flags = EFX_TX_BUF_CONT;
1054                         buffer->unmap_len = 0;
1055                 }
1056                 ++tx_queue->insert_count;
1057         }
1058
1059         st->seqnum += skb_shinfo(skb)->gso_size;
1060
1061         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1062         ++st->ipv4_id;
1063
1064         ++tx_queue->tso_packets;
1065
1066         return 0;
1067 }
1068
1069
1070 /**
1071  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1072  * @tx_queue:           Efx TX queue
1073  * @skb:                Socket buffer
1074  *
1075  * Context: You must hold netif_tx_lock() to call this function.
1076  *
1077  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1078  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1079  * %NETDEV_TX_OK.
1080  */
1081 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1082                                struct sk_buff *skb)
1083 {
1084         struct efx_nic *efx = tx_queue->efx;
1085         int frag_i, rc;
1086         struct tso_state state;
1087
1088         /* Find the packet protocol and sanity-check it */
1089         state.protocol = efx_tso_check_protocol(skb);
1090
1091         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1092
1093         rc = tso_start(&state, efx, skb);
1094         if (rc)
1095                 goto mem_err;
1096
1097         if (likely(state.in_len == 0)) {
1098                 /* Grab the first payload fragment. */
1099                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1100                 frag_i = 0;
1101                 rc = tso_get_fragment(&state, efx,
1102                                       skb_shinfo(skb)->frags + frag_i);
1103                 if (rc)
1104                         goto mem_err;
1105         } else {
1106                 /* Payload starts in the header area. */
1107                 frag_i = -1;
1108         }
1109
1110         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1111                 goto mem_err;
1112
1113         while (1) {
1114                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1115
1116                 /* Move onto the next fragment? */
1117                 if (state.in_len == 0) {
1118                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1119                                 /* End of payload reached. */
1120                                 break;
1121                         rc = tso_get_fragment(&state, efx,
1122                                               skb_shinfo(skb)->frags + frag_i);
1123                         if (rc)
1124                                 goto mem_err;
1125                 }
1126
1127                 /* Start at new packet? */
1128                 if (state.packet_space == 0 &&
1129                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1130                         goto mem_err;
1131         }
1132
1133         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1134
1135         /* Pass off to hardware */
1136         efx_nic_push_buffers(tx_queue);
1137
1138         efx_tx_maybe_stop_queue(tx_queue);
1139
1140         tx_queue->tso_bursts++;
1141         return NETDEV_TX_OK;
1142
1143  mem_err:
1144         netif_err(efx, tx_err, efx->net_dev,
1145                   "Out of memory for TSO headers, or DMA mapping error\n");
1146         dev_kfree_skb_any(skb);
1147
1148         /* Free the DMA mapping we were in the process of writing out */
1149         if (state.unmap_len) {
1150                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1151                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1152                                          state.unmap_len, DMA_TO_DEVICE);
1153                 else
1154                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1155                                        state.unmap_len, DMA_TO_DEVICE);
1156         }
1157
1158         /* Free the header DMA mapping, if using option descriptors */
1159         if (state.header_unmap_len)
1160                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1161                                  state.header_unmap_len, DMA_TO_DEVICE);
1162
1163         efx_enqueue_unwind(tx_queue);
1164         return NETDEV_TX_OK;
1165 }