]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
71b64857e3a61bf2e9c8b738d2bae521310c4d94
[karo-tx-linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53
54 #undef STMMAC_DEBUG
55 /*#define STMMAC_DEBUG*/
56 #ifdef STMMAC_DEBUG
57 #define DBG(nlevel, klevel, fmt, args...) \
58                 ((void)(netif_msg_##nlevel(priv) && \
59                 printk(KERN_##klevel fmt, ## args)))
60 #else
61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #endif
63
64 #undef STMMAC_RX_DEBUG
65 /*#define STMMAC_RX_DEBUG*/
66 #ifdef STMMAC_RX_DEBUG
67 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
68 #else
69 #define RX_DBG(fmt, args...)  do { } while (0)
70 #endif
71
72 #undef STMMAC_XMIT_DEBUG
73 /*#define STMMAC_XMIT_DEBUG*/
74 #ifdef STMMAC_XMIT_DEBUG
75 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
76 #else
77 #define TX_DBG(fmt, args...)  do { } while (0)
78 #endif
79
80 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
81 #define JUMBO_LEN       9000
82
83 /* Module parameters */
84 #define TX_TIMEO        5000
85 static int watchdog = TX_TIMEO;
86 module_param(watchdog, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
88
89 static int debug = -1;
90 module_param(debug, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
92
93 int phyaddr = -1;
94 module_param(phyaddr, int, S_IRUGO);
95 MODULE_PARM_DESC(phyaddr, "Physical device address");
96
97 #define DMA_TX_SIZE 256
98 static int dma_txsize = DMA_TX_SIZE;
99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
101
102 #define DMA_RX_SIZE 256
103 static int dma_rxsize = DMA_RX_SIZE;
104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
106
107 static int flow_ctrl = FLOW_OFF;
108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
110
111 static int pause = PAUSE_TIME;
112 module_param(pause, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
114
115 #define TC_DEFAULT 64
116 static int tc = TC_DEFAULT;
117 module_param(tc, int, S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(tc, "DMA threshold control value");
119
120 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
121 static int buf_sz = DMA_BUFFER_SIZE;
122 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
123 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
124
125 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
126                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
127                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
128
129 #define STMMAC_DEFAULT_LPI_TIMER        1000
130 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
131 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
132 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
133 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
134
135 /* By default the driver will use the ring mode to manage tx and rx descriptors
136  * but passing this value so user can force to use the chain instead of the ring
137  */
138 static unsigned int chain_mode;
139 module_param(chain_mode, int, S_IRUGO);
140 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
141
142 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
143
144 #ifdef CONFIG_STMMAC_DEBUG_FS
145 static int stmmac_init_fs(struct net_device *dev);
146 static void stmmac_exit_fs(void);
147 #endif
148
149 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
150
151 /**
152  * stmmac_verify_args - verify the driver parameters.
153  * Description: it verifies if some wrong parameter is passed to the driver.
154  * Note that wrong parameters are replaced with the default values.
155  */
156 static void stmmac_verify_args(void)
157 {
158         if (unlikely(watchdog < 0))
159                 watchdog = TX_TIMEO;
160         if (unlikely(dma_rxsize < 0))
161                 dma_rxsize = DMA_RX_SIZE;
162         if (unlikely(dma_txsize < 0))
163                 dma_txsize = DMA_TX_SIZE;
164         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165                 buf_sz = DMA_BUFFER_SIZE;
166         if (unlikely(flow_ctrl > 1))
167                 flow_ctrl = FLOW_AUTO;
168         else if (likely(flow_ctrl < 0))
169                 flow_ctrl = FLOW_OFF;
170         if (unlikely((pause < 0) || (pause > 0xffff)))
171                 pause = PAUSE_TIME;
172         if (eee_timer < 0)
173                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
174 }
175
176 /**
177  * stmmac_clk_csr_set - dynamically set the MDC clock
178  * @priv: driver private structure
179  * Description: this is to dynamically set the MDC clock according to the csr
180  * clock input.
181  * Note:
182  *      If a specific clk_csr value is passed from the platform
183  *      this means that the CSR Clock Range selection cannot be
184  *      changed at run-time and it is fixed (as reported in the driver
185  *      documentation). Viceversa the driver will try to set the MDC
186  *      clock dynamically according to the actual clock input.
187  */
188 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
189 {
190         u32 clk_rate;
191
192         clk_rate = clk_get_rate(priv->stmmac_clk);
193
194         /* Platform provided default clk_csr would be assumed valid
195          * for all other cases except for the below mentioned ones.
196          * For values higher than the IEEE 802.3 specified frequency
197          * we can not estimate the proper divider as it is not known
198          * the frequency of clk_csr_i. So we do not change the default
199          * divider.
200          */
201         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
202                 if (clk_rate < CSR_F_35M)
203                         priv->clk_csr = STMMAC_CSR_20_35M;
204                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
205                         priv->clk_csr = STMMAC_CSR_35_60M;
206                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
207                         priv->clk_csr = STMMAC_CSR_60_100M;
208                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
209                         priv->clk_csr = STMMAC_CSR_100_150M;
210                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
211                         priv->clk_csr = STMMAC_CSR_150_250M;
212                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
213                         priv->clk_csr = STMMAC_CSR_250_300M;
214         }
215 }
216
217 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
218 static void print_pkt(unsigned char *buf, int len)
219 {
220         int j;
221         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
222         for (j = 0; j < len; j++) {
223                 if ((j % 16) == 0)
224                         pr_info("\n %03x:", j);
225                 pr_info(" %02x", buf[j]);
226         }
227         pr_info("\n");
228 }
229 #endif
230
231 /* minimum number of free TX descriptors required to wake up TX process */
232 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
233
234 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
235 {
236         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
237 }
238
239 /**
240  * stmmac_hw_fix_mac_speed: callback for speed selection
241  * @priv: driver private structure
242  * Description: on some platforms (e.g. ST), some HW system configuraton
243  * registers have to be set according to the link speed negotiated.
244  */
245 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
246 {
247         struct phy_device *phydev = priv->phydev;
248
249         if (likely(priv->plat->fix_mac_speed))
250                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
251 }
252
253 /**
254  * stmmac_enable_eee_mode: Check and enter in LPI mode
255  * @priv: driver private structure
256  * Description: this function is to verify and enter in LPI mode for EEE.
257  */
258 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
259 {
260         /* Check and enter in LPI mode */
261         if ((priv->dirty_tx == priv->cur_tx) &&
262             (priv->tx_path_in_lpi_mode == false))
263                 priv->hw->mac->set_eee_mode(priv->ioaddr);
264 }
265
266 /**
267  * stmmac_disable_eee_mode: disable/exit from EEE
268  * @priv: driver private structure
269  * Description: this function is to exit and disable EEE in case of
270  * LPI state is true. This is called by the xmit.
271  */
272 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
273 {
274         priv->hw->mac->reset_eee_mode(priv->ioaddr);
275         del_timer_sync(&priv->eee_ctrl_timer);
276         priv->tx_path_in_lpi_mode = false;
277 }
278
279 /**
280  * stmmac_eee_ctrl_timer: EEE TX SW timer.
281  * @arg : data hook
282  * Description:
283  *  if there is no data transfer and if we are not in LPI state,
284  *  then MAC Transmitter can be moved to LPI state.
285  */
286 static void stmmac_eee_ctrl_timer(unsigned long arg)
287 {
288         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
289
290         stmmac_enable_eee_mode(priv);
291         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
292 }
293
294 /**
295  * stmmac_eee_init: init EEE
296  * @priv: driver private structure
297  * Description:
298  *  If the EEE support has been enabled while configuring the driver,
299  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
300  *  phy can also manage EEE, so enable the LPI state and start the timer
301  *  to verify if the tx path can enter in LPI state.
302  */
303 bool stmmac_eee_init(struct stmmac_priv *priv)
304 {
305         bool ret = false;
306
307         /* MAC core supports the EEE feature. */
308         if (priv->dma_cap.eee) {
309                 /* Check if the PHY supports EEE */
310                 if (phy_init_eee(priv->phydev, 1))
311                         goto out;
312
313                 priv->eee_active = 1;
314                 init_timer(&priv->eee_ctrl_timer);
315                 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
316                 priv->eee_ctrl_timer.data = (unsigned long)priv;
317                 priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
318                 add_timer(&priv->eee_ctrl_timer);
319
320                 priv->hw->mac->set_eee_timer(priv->ioaddr,
321                                              STMMAC_DEFAULT_LIT_LS_TIMER,
322                                              priv->tx_lpi_timer);
323
324                 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
325
326                 ret = true;
327         }
328 out:
329         return ret;
330 }
331
332 /**
333  * stmmac_eee_adjust: adjust HW EEE according to the speed
334  * @priv: driver private structure
335  * Description:
336  *      When the EEE has been already initialised we have to
337  *      modify the PLS bit in the LPI ctrl & status reg according
338  *      to the PHY link status. For this reason.
339  */
340 static void stmmac_eee_adjust(struct stmmac_priv *priv)
341 {
342         if (priv->eee_enabled)
343                 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
344 }
345
346 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
347  * @priv: driver private structure
348  * @entry : descriptor index to be used.
349  * @skb : the socket buffer
350  * Description :
351  * This function will read timestamp from the descriptor & pass it to stack.
352  * and also perform some sanity checks.
353  */
354 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
355                                    unsigned int entry, struct sk_buff *skb)
356 {
357         struct skb_shared_hwtstamps shhwtstamp;
358         u64 ns;
359         void *desc = NULL;
360
361         if (!priv->hwts_tx_en)
362                 return;
363
364         /* exit if skb doesn't support hw tstamp */
365         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
366                 return;
367
368         if (priv->adv_ts)
369                 desc = (priv->dma_etx + entry);
370         else
371                 desc = (priv->dma_tx + entry);
372
373         /* check tx tstamp status */
374         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
375                 return;
376
377         /* get the valid tstamp */
378         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
379
380         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
381         shhwtstamp.hwtstamp = ns_to_ktime(ns);
382         /* pass tstamp to stack */
383         skb_tstamp_tx(skb, &shhwtstamp);
384
385         return;
386 }
387
388 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
389  * @priv: driver private structure
390  * @entry : descriptor index to be used.
391  * @skb : the socket buffer
392  * Description :
393  * This function will read received packet's timestamp from the descriptor
394  * and pass it to stack. It also perform some sanity checks.
395  */
396 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
397                                    unsigned int entry, struct sk_buff *skb)
398 {
399         struct skb_shared_hwtstamps *shhwtstamp = NULL;
400         u64 ns;
401         void *desc = NULL;
402
403         if (!priv->hwts_rx_en)
404                 return;
405
406         if (priv->adv_ts)
407                 desc = (priv->dma_erx + entry);
408         else
409                 desc = (priv->dma_rx + entry);
410
411         /* exit if rx tstamp is not valid */
412         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
413                 return;
414
415         /* get valid tstamp */
416         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
417         shhwtstamp = skb_hwtstamps(skb);
418         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
419         shhwtstamp->hwtstamp = ns_to_ktime(ns);
420 }
421
422 /**
423  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
424  *  @dev: device pointer.
425  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
426  *  a proprietary structure used to pass information to the driver.
427  *  Description:
428  *  This function configures the MAC to enable/disable both outgoing(TX)
429  *  and incoming(RX) packets time stamping based on user input.
430  *  Return Value:
431  *  0 on success and an appropriate -ve integer on failure.
432  */
433 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
434 {
435         struct stmmac_priv *priv = netdev_priv(dev);
436         struct hwtstamp_config config;
437         struct timespec now;
438         u64 temp = 0;
439         u32 ptp_v2 = 0;
440         u32 tstamp_all = 0;
441         u32 ptp_over_ipv4_udp = 0;
442         u32 ptp_over_ipv6_udp = 0;
443         u32 ptp_over_ethernet = 0;
444         u32 snap_type_sel = 0;
445         u32 ts_master_en = 0;
446         u32 ts_event_en = 0;
447         u32 value = 0;
448
449         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
450                 netdev_alert(priv->dev, "No support for HW time stamping\n");
451                 priv->hwts_tx_en = 0;
452                 priv->hwts_rx_en = 0;
453
454                 return -EOPNOTSUPP;
455         }
456
457         if (copy_from_user(&config, ifr->ifr_data,
458                            sizeof(struct hwtstamp_config)))
459                 return -EFAULT;
460
461         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
462                  __func__, config.flags, config.tx_type, config.rx_filter);
463
464         /* reserved for future extensions */
465         if (config.flags)
466                 return -EINVAL;
467
468         switch (config.tx_type) {
469         case HWTSTAMP_TX_OFF:
470                 priv->hwts_tx_en = 0;
471                 break;
472         case HWTSTAMP_TX_ON:
473                 priv->hwts_tx_en = 1;
474                 break;
475         default:
476                 return -ERANGE;
477         }
478
479         if (priv->adv_ts) {
480                 switch (config.rx_filter) {
481                 case HWTSTAMP_FILTER_NONE:
482                         /* time stamp no incoming packet at all */
483                         config.rx_filter = HWTSTAMP_FILTER_NONE;
484                         break;
485
486                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
487                         /* PTP v1, UDP, any kind of event packet */
488                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
489                         /* take time stamp for all event messages */
490                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
491
492                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
493                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
494                         break;
495
496                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
497                         /* PTP v1, UDP, Sync packet */
498                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
499                         /* take time stamp for SYNC messages only */
500                         ts_event_en = PTP_TCR_TSEVNTENA;
501
502                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504                         break;
505
506                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
507                         /* PTP v1, UDP, Delay_req packet */
508                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
509                         /* take time stamp for Delay_Req messages only */
510                         ts_master_en = PTP_TCR_TSMSTRENA;
511                         ts_event_en = PTP_TCR_TSEVNTENA;
512
513                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515                         break;
516
517                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
518                         /* PTP v2, UDP, any kind of event packet */
519                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
520                         ptp_v2 = PTP_TCR_TSVER2ENA;
521                         /* take time stamp for all event messages */
522                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
523
524                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526                         break;
527
528                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
529                         /* PTP v2, UDP, Sync packet */
530                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
531                         ptp_v2 = PTP_TCR_TSVER2ENA;
532                         /* take time stamp for SYNC messages only */
533                         ts_event_en = PTP_TCR_TSEVNTENA;
534
535                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537                         break;
538
539                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
540                         /* PTP v2, UDP, Delay_req packet */
541                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
542                         ptp_v2 = PTP_TCR_TSVER2ENA;
543                         /* take time stamp for Delay_Req messages only */
544                         ts_master_en = PTP_TCR_TSMSTRENA;
545                         ts_event_en = PTP_TCR_TSEVNTENA;
546
547                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549                         break;
550
551                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
552                         /* PTP v2/802.AS1 any layer, any kind of event packet */
553                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
554                         ptp_v2 = PTP_TCR_TSVER2ENA;
555                         /* take time stamp for all event messages */
556                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
557
558                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560                         ptp_over_ethernet = PTP_TCR_TSIPENA;
561                         break;
562
563                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
564                         /* PTP v2/802.AS1, any layer, Sync packet */
565                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
566                         ptp_v2 = PTP_TCR_TSVER2ENA;
567                         /* take time stamp for SYNC messages only */
568                         ts_event_en = PTP_TCR_TSEVNTENA;
569
570                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
571                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
572                         ptp_over_ethernet = PTP_TCR_TSIPENA;
573                         break;
574
575                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
576                         /* PTP v2/802.AS1, any layer, Delay_req packet */
577                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
578                         ptp_v2 = PTP_TCR_TSVER2ENA;
579                         /* take time stamp for Delay_Req messages only */
580                         ts_master_en = PTP_TCR_TSMSTRENA;
581                         ts_event_en = PTP_TCR_TSEVNTENA;
582
583                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
584                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
585                         ptp_over_ethernet = PTP_TCR_TSIPENA;
586                         break;
587
588                 case HWTSTAMP_FILTER_ALL:
589                         /* time stamp any incoming packet */
590                         config.rx_filter = HWTSTAMP_FILTER_ALL;
591                         tstamp_all = PTP_TCR_TSENALL;
592                         break;
593
594                 default:
595                         return -ERANGE;
596                 }
597         } else {
598                 switch (config.rx_filter) {
599                 case HWTSTAMP_FILTER_NONE:
600                         config.rx_filter = HWTSTAMP_FILTER_NONE;
601                         break;
602                 default:
603                         /* PTP v1, UDP, any kind of event packet */
604                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
605                         break;
606                 }
607         }
608         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
609
610         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
611                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
612         else {
613                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
614                          tstamp_all | ptp_v2 | ptp_over_ethernet |
615                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
616                          ts_master_en | snap_type_sel);
617
618                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
619
620                 /* program Sub Second Increment reg */
621                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
622
623                 /* calculate default added value:
624                  * formula is :
625                  * addend = (2^32)/freq_div_ratio;
626                  * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
627                  * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
628                  * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
629                  *       achive 20ns accuracy.
630                  *
631                  * 2^x * y == (y << x), hence
632                  * 2^32 * 50000000 ==> (50000000 << 32)
633                  */
634                 temp = (u64) (50000000ULL << 32);
635                 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
636                 priv->hw->ptp->config_addend(priv->ioaddr,
637                                              priv->default_addend);
638
639                 /* initialize system time */
640                 getnstimeofday(&now);
641                 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
642                                             now.tv_nsec);
643         }
644
645         return copy_to_user(ifr->ifr_data, &config,
646                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
647 }
648
649 /**
650  * stmmac_init_ptp: init PTP
651  * @priv: driver private structure
652  * Description: this is to verify if the HW supports the PTPv1 or v2.
653  * This is done by looking at the HW cap. register.
654  * Also it registers the ptp driver.
655  */
656 static int stmmac_init_ptp(struct stmmac_priv *priv)
657 {
658         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
659                 return -EOPNOTSUPP;
660
661         if (netif_msg_hw(priv)) {
662                 if (priv->dma_cap.time_stamp) {
663                         pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664                         priv->adv_ts = 0;
665                 }
666                 if (priv->dma_cap.atime_stamp && priv->extend_desc) {
667                         pr_debug
668                             ("IEEE 1588-2008 Advanced Time Stamp supported\n");
669                         priv->adv_ts = 1;
670                 }
671         }
672
673         priv->hw->ptp = &stmmac_ptp;
674         priv->hwts_tx_en = 0;
675         priv->hwts_rx_en = 0;
676
677         return stmmac_ptp_register(priv);
678 }
679
680 static void stmmac_release_ptp(struct stmmac_priv *priv)
681 {
682         stmmac_ptp_unregister(priv);
683 }
684
685 /**
686  * stmmac_adjust_link
687  * @dev: net device structure
688  * Description: it adjusts the link parameters.
689  */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692         struct stmmac_priv *priv = netdev_priv(dev);
693         struct phy_device *phydev = priv->phydev;
694         unsigned long flags;
695         int new_state = 0;
696         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697
698         if (phydev == NULL)
699                 return;
700
701         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
702             phydev->addr, phydev->link);
703
704         spin_lock_irqsave(&priv->lock, flags);
705
706         if (phydev->link) {
707                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
708
709                 /* Now we make sure that we can be in full duplex mode.
710                  * If not, we operate in half-duplex mode. */
711                 if (phydev->duplex != priv->oldduplex) {
712                         new_state = 1;
713                         if (!(phydev->duplex))
714                                 ctrl &= ~priv->hw->link.duplex;
715                         else
716                                 ctrl |= priv->hw->link.duplex;
717                         priv->oldduplex = phydev->duplex;
718                 }
719                 /* Flow Control operation */
720                 if (phydev->pause)
721                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
722                                                  fc, pause_time);
723
724                 if (phydev->speed != priv->speed) {
725                         new_state = 1;
726                         switch (phydev->speed) {
727                         case 1000:
728                                 if (likely(priv->plat->has_gmac))
729                                         ctrl &= ~priv->hw->link.port;
730                                 stmmac_hw_fix_mac_speed(priv);
731                                 break;
732                         case 100:
733                         case 10:
734                                 if (priv->plat->has_gmac) {
735                                         ctrl |= priv->hw->link.port;
736                                         if (phydev->speed == SPEED_100) {
737                                                 ctrl |= priv->hw->link.speed;
738                                         } else {
739                                                 ctrl &= ~(priv->hw->link.speed);
740                                         }
741                                 } else {
742                                         ctrl &= ~priv->hw->link.port;
743                                 }
744                                 stmmac_hw_fix_mac_speed(priv);
745                                 break;
746                         default:
747                                 if (netif_msg_link(priv))
748                                         pr_warn("%s: Speed (%d) not 10/100\n",
749                                                 dev->name, phydev->speed);
750                                 break;
751                         }
752
753                         priv->speed = phydev->speed;
754                 }
755
756                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
757
758                 if (!priv->oldlink) {
759                         new_state = 1;
760                         priv->oldlink = 1;
761                 }
762         } else if (priv->oldlink) {
763                 new_state = 1;
764                 priv->oldlink = 0;
765                 priv->speed = 0;
766                 priv->oldduplex = -1;
767         }
768
769         if (new_state && netif_msg_link(priv))
770                 phy_print_status(phydev);
771
772         stmmac_eee_adjust(priv);
773
774         spin_unlock_irqrestore(&priv->lock, flags);
775
776         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
777 }
778
779 /**
780  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
781  * @priv: driver private structure
782  * Description: this is to verify if the HW supports the PCS.
783  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
784  * configured for the TBI, RTBI, or SGMII PHY interface.
785  */
786 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
787 {
788         int interface = priv->plat->interface;
789
790         if (priv->dma_cap.pcs) {
791                 if ((interface & PHY_INTERFACE_MODE_RGMII) ||
792                     (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
793                     (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
794                     (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
795                         pr_debug("STMMAC: PCS RGMII support enable\n");
796                         priv->pcs = STMMAC_PCS_RGMII;
797                 } else if (interface & PHY_INTERFACE_MODE_SGMII) {
798                         pr_debug("STMMAC: PCS SGMII support enable\n");
799                         priv->pcs = STMMAC_PCS_SGMII;
800                 }
801         }
802 }
803
804 /**
805  * stmmac_init_phy - PHY initialization
806  * @dev: net device structure
807  * Description: it initializes the driver's PHY state, and attaches the PHY
808  * to the mac driver.
809  *  Return value:
810  *  0 on success
811  */
812 static int stmmac_init_phy(struct net_device *dev)
813 {
814         struct stmmac_priv *priv = netdev_priv(dev);
815         struct phy_device *phydev;
816         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
817         char bus_id[MII_BUS_ID_SIZE];
818         int interface = priv->plat->interface;
819         priv->oldlink = 0;
820         priv->speed = 0;
821         priv->oldduplex = -1;
822
823         if (priv->plat->phy_bus_name)
824                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
825                          priv->plat->phy_bus_name, priv->plat->bus_id);
826         else
827                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
828                          priv->plat->bus_id);
829
830         snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
831                  priv->plat->phy_addr);
832         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
833
834         phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
835
836         if (IS_ERR(phydev)) {
837                 pr_err("%s: Could not attach to PHY\n", dev->name);
838                 return PTR_ERR(phydev);
839         }
840
841         /* Stop Advertising 1000BASE Capability if interface is not GMII */
842         if ((interface == PHY_INTERFACE_MODE_MII) ||
843             (interface == PHY_INTERFACE_MODE_RMII))
844                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
845                                          SUPPORTED_1000baseT_Full);
846
847         /*
848          * Broken HW is sometimes missing the pull-up resistor on the
849          * MDIO line, which results in reads to non-existent devices returning
850          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
851          * device as well.
852          * Note: phydev->phy_id is the result of reading the UID PHY registers.
853          */
854         if (phydev->phy_id == 0) {
855                 phy_disconnect(phydev);
856                 return -ENODEV;
857         }
858         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
859                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860
861         priv->phydev = phydev;
862
863         return 0;
864 }
865
866 /**
867  * stmmac_display_ring: display ring
868  * @head: pointer to the head of the ring passed.
869  * @size: size of the ring.
870  * @extend_desc: to verify if extended descriptors are used.
871  * Description: display the control/status and buffer descriptors.
872  */
873 static void stmmac_display_ring(void *head, int size, int extend_desc)
874 {
875         int i;
876         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
877         struct dma_desc *p = (struct dma_desc *)head;
878
879         for (i = 0; i < size; i++) {
880                 u64 x;
881                 if (extend_desc) {
882                         x = *(u64 *) ep;
883                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
884                                 i, (unsigned int)virt_to_phys(ep),
885                                 (unsigned int)x, (unsigned int)(x >> 32),
886                                 ep->basic.des2, ep->basic.des3);
887                         ep++;
888                 } else {
889                         x = *(u64 *) p;
890                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
891                                 i, (unsigned int)virt_to_phys(p),
892                                 (unsigned int)x, (unsigned int)(x >> 32),
893                                 p->des2, p->des3);
894                         p++;
895                 }
896                 pr_info("\n");
897         }
898 }
899
900 static void stmmac_display_rings(struct stmmac_priv *priv)
901 {
902         unsigned int txsize = priv->dma_tx_size;
903         unsigned int rxsize = priv->dma_rx_size;
904
905         if (priv->extend_desc) {
906                 pr_info("Extended RX descriptor ring:\n");
907                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
908                 pr_info("Extended TX descriptor ring:\n");
909                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
910         } else {
911                 pr_info("RX descriptor ring:\n");
912                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
913                 pr_info("TX descriptor ring:\n");
914                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
915         }
916 }
917
918 static int stmmac_set_bfsize(int mtu, int bufsize)
919 {
920         int ret = bufsize;
921
922         if (mtu >= BUF_SIZE_4KiB)
923                 ret = BUF_SIZE_8KiB;
924         else if (mtu >= BUF_SIZE_2KiB)
925                 ret = BUF_SIZE_4KiB;
926         else if (mtu >= DMA_BUFFER_SIZE)
927                 ret = BUF_SIZE_2KiB;
928         else
929                 ret = DMA_BUFFER_SIZE;
930
931         return ret;
932 }
933
934 /**
935  * stmmac_clear_descriptors: clear descriptors
936  * @priv: driver private structure
937  * Description: this function is called to clear the tx and rx descriptors
938  * in case of both basic and extended descriptors are used.
939  */
940 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
941 {
942         int i;
943         unsigned int txsize = priv->dma_tx_size;
944         unsigned int rxsize = priv->dma_rx_size;
945
946         /* Clear the Rx/Tx descriptors */
947         for (i = 0; i < rxsize; i++)
948                 if (priv->extend_desc)
949                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
950                                                      priv->use_riwt, priv->mode,
951                                                      (i == rxsize - 1));
952                 else
953                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
954                                                      priv->use_riwt, priv->mode,
955                                                      (i == rxsize - 1));
956         for (i = 0; i < txsize; i++)
957                 if (priv->extend_desc)
958                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
959                                                      priv->mode,
960                                                      (i == txsize - 1));
961                 else
962                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
963                                                      priv->mode,
964                                                      (i == txsize - 1));
965 }
966
967 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
968                                   int i)
969 {
970         struct sk_buff *skb;
971
972         skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
973                                  GFP_KERNEL);
974         if (unlikely(skb == NULL)) {
975                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
976                 return 1;
977         }
978         skb_reserve(skb, NET_IP_ALIGN);
979         priv->rx_skbuff[i] = skb;
980         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
981                                                 priv->dma_buf_sz,
982                                                 DMA_FROM_DEVICE);
983
984         p->des2 = priv->rx_skbuff_dma[i];
985
986         if ((priv->mode == STMMAC_RING_MODE) &&
987             (priv->dma_buf_sz == BUF_SIZE_16KiB))
988                 priv->hw->ring->init_desc3(p);
989
990         return 0;
991 }
992
993 /**
994  * init_dma_desc_rings - init the RX/TX descriptor rings
995  * @dev: net device structure
996  * Description:  this function initializes the DMA RX/TX descriptors
997  * and allocates the socket buffers. It suppors the chained and ring
998  * modes.
999  */
1000 static void init_dma_desc_rings(struct net_device *dev)
1001 {
1002         int i;
1003         struct stmmac_priv *priv = netdev_priv(dev);
1004         unsigned int txsize = priv->dma_tx_size;
1005         unsigned int rxsize = priv->dma_rx_size;
1006         unsigned int bfsize = 0;
1007
1008         /* Set the max buffer size according to the DESC mode
1009          * and the MTU. Note that RING mode allows 16KiB bsize.
1010          */
1011         if (priv->mode == STMMAC_RING_MODE)
1012                 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
1013
1014         if (bfsize < BUF_SIZE_16KiB)
1015                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1016
1017         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
1018             txsize, rxsize, bfsize);
1019
1020         if (priv->extend_desc) {
1021                 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1022                                                    sizeof(struct
1023                                                           dma_extended_desc),
1024                                                    &priv->dma_rx_phy,
1025                                                    GFP_KERNEL);
1026                 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1027                                                    sizeof(struct
1028                                                           dma_extended_desc),
1029                                                    &priv->dma_tx_phy,
1030                                                    GFP_KERNEL);
1031                 if ((!priv->dma_erx) || (!priv->dma_etx))
1032                         return;
1033         } else {
1034                 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1035                                                   sizeof(struct dma_desc),
1036                                                   &priv->dma_rx_phy,
1037                                                   GFP_KERNEL);
1038                 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1039                                                   sizeof(struct dma_desc),
1040                                                   &priv->dma_tx_phy,
1041                                                   GFP_KERNEL);
1042                 if ((!priv->dma_rx) || (!priv->dma_tx))
1043                         return;
1044         }
1045
1046         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1047                                             GFP_KERNEL);
1048         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1049                                         GFP_KERNEL);
1050         priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1051                                             GFP_KERNEL);
1052         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1053                                         GFP_KERNEL);
1054         if (netif_msg_drv(priv))
1055                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1056                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1057
1058         /* RX INITIALIZATION */
1059         DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1060         for (i = 0; i < rxsize; i++) {
1061                 struct dma_desc *p;
1062                 if (priv->extend_desc)
1063                         p = &((priv->dma_erx + i)->basic);
1064                 else
1065                         p = priv->dma_rx + i;
1066
1067                 if (stmmac_init_rx_buffers(priv, p, i))
1068                         break;
1069
1070                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1071                     priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
1072         }
1073         priv->cur_rx = 0;
1074         priv->dirty_rx = (unsigned int)(i - rxsize);
1075         priv->dma_buf_sz = bfsize;
1076         buf_sz = bfsize;
1077
1078         /* Setup the chained descriptor addresses */
1079         if (priv->mode == STMMAC_CHAIN_MODE) {
1080                 if (priv->extend_desc) {
1081                         priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1082                                               rxsize, 1);
1083                         priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1084                                               txsize, 1);
1085                 } else {
1086                         priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1087                                               rxsize, 0);
1088                         priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1089                                               txsize, 0);
1090                 }
1091         }
1092
1093         /* TX INITIALIZATION */
1094         for (i = 0; i < txsize; i++) {
1095                 struct dma_desc *p;
1096                 if (priv->extend_desc)
1097                         p = &((priv->dma_etx + i)->basic);
1098                 else
1099                         p = priv->dma_tx + i;
1100                 p->des2 = 0;
1101                 priv->tx_skbuff_dma[i] = 0;
1102                 priv->tx_skbuff[i] = NULL;
1103         }
1104
1105         priv->dirty_tx = 0;
1106         priv->cur_tx = 0;
1107
1108         stmmac_clear_descriptors(priv);
1109
1110         if (netif_msg_hw(priv))
1111                 stmmac_display_rings(priv);
1112 }
1113
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116         int i;
1117
1118         for (i = 0; i < priv->dma_rx_size; i++) {
1119                 if (priv->rx_skbuff[i]) {
1120                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1121                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1122                         dev_kfree_skb_any(priv->rx_skbuff[i]);
1123                 }
1124                 priv->rx_skbuff[i] = NULL;
1125         }
1126 }
1127
1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1129 {
1130         int i;
1131
1132         for (i = 0; i < priv->dma_tx_size; i++) {
1133                 if (priv->tx_skbuff[i] != NULL) {
1134                         struct dma_desc *p;
1135                         if (priv->extend_desc)
1136                                 p = &((priv->dma_etx + i)->basic);
1137                         else
1138                                 p = priv->dma_tx + i;
1139
1140                         if (priv->tx_skbuff_dma[i])
1141                                 dma_unmap_single(priv->device,
1142                                                  priv->tx_skbuff_dma[i],
1143                                                  priv->hw->desc->get_tx_len(p),
1144                                                  DMA_TO_DEVICE);
1145                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1146                         priv->tx_skbuff[i] = NULL;
1147                         priv->tx_skbuff_dma[i] = 0;
1148                 }
1149         }
1150 }
1151
1152 static void free_dma_desc_resources(struct stmmac_priv *priv)
1153 {
1154         /* Release the DMA TX/RX socket buffers */
1155         dma_free_rx_skbufs(priv);
1156         dma_free_tx_skbufs(priv);
1157
1158         /* Free DMA regions of consistent memory previously allocated */
1159         if (!priv->extend_desc) {
1160                 dma_free_coherent(priv->device,
1161                                   priv->dma_tx_size * sizeof(struct dma_desc),
1162                                   priv->dma_tx, priv->dma_tx_phy);
1163                 dma_free_coherent(priv->device,
1164                                   priv->dma_rx_size * sizeof(struct dma_desc),
1165                                   priv->dma_rx, priv->dma_rx_phy);
1166         } else {
1167                 dma_free_coherent(priv->device, priv->dma_tx_size *
1168                                   sizeof(struct dma_extended_desc),
1169                                   priv->dma_etx, priv->dma_tx_phy);
1170                 dma_free_coherent(priv->device, priv->dma_rx_size *
1171                                   sizeof(struct dma_extended_desc),
1172                                   priv->dma_erx, priv->dma_rx_phy);
1173         }
1174         kfree(priv->rx_skbuff_dma);
1175         kfree(priv->rx_skbuff);
1176         kfree(priv->tx_skbuff_dma);
1177         kfree(priv->tx_skbuff);
1178 }
1179
1180 /**
1181  *  stmmac_dma_operation_mode - HW DMA operation mode
1182  *  @priv: driver private structure
1183  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1184  *  or Store-And-Forward capability.
1185  */
1186 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1187 {
1188         if (likely(priv->plat->force_sf_dma_mode ||
1189                    ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1190                 /*
1191                  * In case of GMAC, SF mode can be enabled
1192                  * to perform the TX COE in HW. This depends on:
1193                  * 1) TX COE if actually supported
1194                  * 2) There is no bugged Jumbo frame support
1195                  *    that needs to not insert csum in the TDES.
1196                  */
1197                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1198                 tc = SF_DMA_MODE;
1199         } else
1200                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1201 }
1202
1203 /**
1204  * stmmac_tx_clean:
1205  * @priv: driver private structure
1206  * Description: it reclaims resources after transmission completes.
1207  */
1208 static void stmmac_tx_clean(struct stmmac_priv *priv)
1209 {
1210         unsigned int txsize = priv->dma_tx_size;
1211
1212         spin_lock(&priv->tx_lock);
1213
1214         priv->xstats.tx_clean++;
1215
1216         while (priv->dirty_tx != priv->cur_tx) {
1217                 int last;
1218                 unsigned int entry = priv->dirty_tx % txsize;
1219                 struct sk_buff *skb = priv->tx_skbuff[entry];
1220                 struct dma_desc *p;
1221
1222                 if (priv->extend_desc)
1223                         p = (struct dma_desc *)(priv->dma_etx + entry);
1224                 else
1225                         p = priv->dma_tx + entry;
1226
1227                 /* Check if the descriptor is owned by the DMA. */
1228                 if (priv->hw->desc->get_tx_owner(p))
1229                         break;
1230
1231                 /* Verify tx error by looking at the last segment. */
1232                 last = priv->hw->desc->get_tx_ls(p);
1233                 if (likely(last)) {
1234                         int tx_error =
1235                             priv->hw->desc->tx_status(&priv->dev->stats,
1236                                                       &priv->xstats, p,
1237                                                       priv->ioaddr);
1238                         if (likely(tx_error == 0)) {
1239                                 priv->dev->stats.tx_packets++;
1240                                 priv->xstats.tx_pkt_n++;
1241                         } else
1242                                 priv->dev->stats.tx_errors++;
1243
1244                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1245                 }
1246                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
1247                        priv->cur_tx, priv->dirty_tx);
1248
1249                 if (likely(priv->tx_skbuff_dma[entry])) {
1250                         dma_unmap_single(priv->device,
1251                                          priv->tx_skbuff_dma[entry],
1252                                          priv->hw->desc->get_tx_len(p),
1253                                          DMA_TO_DEVICE);
1254                         priv->tx_skbuff_dma[entry] = 0;
1255                 }
1256                 priv->hw->ring->clean_desc3(priv, p);
1257
1258                 if (likely(skb != NULL)) {
1259                         dev_kfree_skb(skb);
1260                         priv->tx_skbuff[entry] = NULL;
1261                 }
1262
1263                 priv->hw->desc->release_tx_desc(p, priv->mode);
1264
1265                 priv->dirty_tx++;
1266         }
1267         if (unlikely(netif_queue_stopped(priv->dev) &&
1268                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1269                 netif_tx_lock(priv->dev);
1270                 if (netif_queue_stopped(priv->dev) &&
1271                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1272                         TX_DBG("%s: restart transmit\n", __func__);
1273                         netif_wake_queue(priv->dev);
1274                 }
1275                 netif_tx_unlock(priv->dev);
1276         }
1277
1278         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1279                 stmmac_enable_eee_mode(priv);
1280                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
1281         }
1282         spin_unlock(&priv->tx_lock);
1283 }
1284
1285 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1286 {
1287         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1288 }
1289
1290 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1291 {
1292         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1293 }
1294
1295 /**
1296  * stmmac_tx_err: irq tx error mng function
1297  * @priv: driver private structure
1298  * Description: it cleans the descriptors and restarts the transmission
1299  * in case of errors.
1300  */
1301 static void stmmac_tx_err(struct stmmac_priv *priv)
1302 {
1303         int i;
1304         int txsize = priv->dma_tx_size;
1305         netif_stop_queue(priv->dev);
1306
1307         priv->hw->dma->stop_tx(priv->ioaddr);
1308         dma_free_tx_skbufs(priv);
1309         for (i = 0; i < txsize; i++)
1310                 if (priv->extend_desc)
1311                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1312                                                      priv->mode,
1313                                                      (i == txsize - 1));
1314                 else
1315                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1316                                                      priv->mode,
1317                                                      (i == txsize - 1));
1318         priv->dirty_tx = 0;
1319         priv->cur_tx = 0;
1320         priv->hw->dma->start_tx(priv->ioaddr);
1321
1322         priv->dev->stats.tx_errors++;
1323         netif_wake_queue(priv->dev);
1324 }
1325
1326 /**
1327  * stmmac_dma_interrupt: DMA ISR
1328  * @priv: driver private structure
1329  * Description: this is the DMA ISR. It is called by the main ISR.
1330  * It calls the dwmac dma routine to understand which type of interrupt
1331  * happened. In case of there is a Normal interrupt and either TX or RX
1332  * interrupt happened so the NAPI is scheduled.
1333  */
1334 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1335 {
1336         int status;
1337
1338         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1339         if (likely((status & handle_rx)) || (status & handle_tx)) {
1340                 if (likely(napi_schedule_prep(&priv->napi))) {
1341                         stmmac_disable_dma_irq(priv);
1342                         __napi_schedule(&priv->napi);
1343                 }
1344         }
1345         if (unlikely(status & tx_hard_error_bump_tc)) {
1346                 /* Try to bump up the dma threshold on this failure */
1347                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1348                         tc += 64;
1349                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1350                         priv->xstats.threshold = tc;
1351                 }
1352         } else if (unlikely(status == tx_hard_error))
1353                 stmmac_tx_err(priv);
1354 }
1355
1356 /**
1357  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1358  * @priv: driver private structure
1359  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1360  */
1361 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1362 {
1363         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1364             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1365
1366         dwmac_mmc_intr_all_mask(priv->ioaddr);
1367
1368         if (priv->dma_cap.rmon) {
1369                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1370                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1371         } else
1372                 pr_info(" No MAC Management Counters available\n");
1373 }
1374
1375 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1376 {
1377         u32 hwid = priv->hw->synopsys_uid;
1378
1379         /* Check Synopsys Id (not available on old chips) */
1380         if (likely(hwid)) {
1381                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1382                 u32 synid = (hwid & 0x000000ff);
1383
1384                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1385                         uid, synid);
1386
1387                 return synid;
1388         }
1389         return 0;
1390 }
1391
1392 /**
1393  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1394  * @priv: driver private structure
1395  * Description: select the Enhanced/Alternate or Normal descriptors.
1396  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1397  * supported by the HW cap. register.
1398  */
1399 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1400 {
1401         if (priv->plat->enh_desc) {
1402                 pr_info(" Enhanced/Alternate descriptors\n");
1403
1404                 /* GMAC older than 3.50 has no extended descriptors */
1405                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1406                         pr_info("\tEnabled extended descriptors\n");
1407                         priv->extend_desc = 1;
1408                 } else
1409                         pr_warn("Extended descriptors not supported\n");
1410
1411                 priv->hw->desc = &enh_desc_ops;
1412         } else {
1413                 pr_info(" Normal descriptors\n");
1414                 priv->hw->desc = &ndesc_ops;
1415         }
1416 }
1417
1418 /**
1419  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1420  * @priv: driver private structure
1421  * Description:
1422  *  new GMAC chip generations have a new register to indicate the
1423  *  presence of the optional feature/functions.
1424  *  This can be also used to override the value passed through the
1425  *  platform and necessary for old MAC10/100 and GMAC chips.
1426  */
1427 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1428 {
1429         u32 hw_cap = 0;
1430
1431         if (priv->hw->dma->get_hw_feature) {
1432                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1433
1434                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1435                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1436                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1437                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1438                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1439                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1440                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1441                 priv->dma_cap.pmt_remote_wake_up =
1442                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1443                 priv->dma_cap.pmt_magic_frame =
1444                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1445                 /* MMC */
1446                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1447                 /* IEEE 1588-2002 */
1448                 priv->dma_cap.time_stamp =
1449                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1450                 /* IEEE 1588-2008 */
1451                 priv->dma_cap.atime_stamp =
1452                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1453                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1454                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1455                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1456                 /* TX and RX csum */
1457                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1458                 priv->dma_cap.rx_coe_type1 =
1459                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1460                 priv->dma_cap.rx_coe_type2 =
1461                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1462                 priv->dma_cap.rxfifo_over_2048 =
1463                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1464                 /* TX and RX number of channels */
1465                 priv->dma_cap.number_rx_channel =
1466                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1467                 priv->dma_cap.number_tx_channel =
1468                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1469                 /* Alternate (enhanced) DESC mode */
1470                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1471         }
1472
1473         return hw_cap;
1474 }
1475
1476 /**
1477  * stmmac_check_ether_addr: check if the MAC addr is valid
1478  * @priv: driver private structure
1479  * Description:
1480  * it is to verify if the MAC address is valid, in case of failures it
1481  * generates a random MAC address
1482  */
1483 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1484 {
1485         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1486                 priv->hw->mac->get_umac_addr((void __iomem *)
1487                                              priv->dev->base_addr,
1488                                              priv->dev->dev_addr, 0);
1489                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1490                         eth_hw_addr_random(priv->dev);
1491         }
1492         pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1493                 priv->dev->dev_addr);
1494 }
1495
1496 /**
1497  * stmmac_init_dma_engine: DMA init.
1498  * @priv: driver private structure
1499  * Description:
1500  * It inits the DMA invoking the specific MAC/GMAC callback.
1501  * Some DMA parameters can be passed from the platform;
1502  * in case of these are not passed a default is kept for the MAC or GMAC.
1503  */
1504 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1505 {
1506         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1507         int mixed_burst = 0;
1508         int atds = 0;
1509
1510         if (priv->plat->dma_cfg) {
1511                 pbl = priv->plat->dma_cfg->pbl;
1512                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1513                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1514                 burst_len = priv->plat->dma_cfg->burst_len;
1515         }
1516
1517         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1518                 atds = 1;
1519
1520         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1521                                    burst_len, priv->dma_tx_phy,
1522                                    priv->dma_rx_phy, atds);
1523 }
1524
1525 /**
1526  * stmmac_tx_timer: mitigation sw timer for tx.
1527  * @data: data pointer
1528  * Description:
1529  * This is the timer handler to directly invoke the stmmac_tx_clean.
1530  */
1531 static void stmmac_tx_timer(unsigned long data)
1532 {
1533         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1534
1535         stmmac_tx_clean(priv);
1536 }
1537
1538 /**
1539  * stmmac_init_tx_coalesce: init tx mitigation options.
1540  * @priv: driver private structure
1541  * Description:
1542  * This inits the transmit coalesce parameters: i.e. timer rate,
1543  * timer handler and default threshold used for enabling the
1544  * interrupt on completion bit.
1545  */
1546 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1547 {
1548         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1549         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1550         init_timer(&priv->txtimer);
1551         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1552         priv->txtimer.data = (unsigned long)priv;
1553         priv->txtimer.function = stmmac_tx_timer;
1554         add_timer(&priv->txtimer);
1555 }
1556
1557 /**
1558  *  stmmac_open - open entry point of the driver
1559  *  @dev : pointer to the device structure.
1560  *  Description:
1561  *  This function is the open entry point of the driver.
1562  *  Return value:
1563  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1564  *  file on failure.
1565  */
1566 static int stmmac_open(struct net_device *dev)
1567 {
1568         struct stmmac_priv *priv = netdev_priv(dev);
1569         int ret;
1570
1571         clk_prepare_enable(priv->stmmac_clk);
1572
1573         stmmac_check_ether_addr(priv);
1574
1575         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1576             priv->pcs != STMMAC_PCS_RTBI) {
1577                 ret = stmmac_init_phy(dev);
1578                 if (ret) {
1579                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1580                                __func__, ret);
1581                         goto open_error;
1582                 }
1583         }
1584
1585         /* Create and initialize the TX/RX descriptors chains. */
1586         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1587         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1588         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1589         init_dma_desc_rings(dev);
1590
1591         /* DMA initialization and SW reset */
1592         ret = stmmac_init_dma_engine(priv);
1593         if (ret < 0) {
1594                 pr_err("%s: DMA initialization failed\n", __func__);
1595                 goto open_error;
1596         }
1597
1598         /* Copy the MAC addr into the HW  */
1599         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1600
1601         /* If required, perform hw setup of the bus. */
1602         if (priv->plat->bus_setup)
1603                 priv->plat->bus_setup(priv->ioaddr);
1604
1605         /* Initialize the MAC Core */
1606         priv->hw->mac->core_init(priv->ioaddr);
1607
1608         /* Request the IRQ lines */
1609         ret = request_irq(dev->irq, stmmac_interrupt,
1610                           IRQF_SHARED, dev->name, dev);
1611         if (unlikely(ret < 0)) {
1612                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1613                        __func__, dev->irq, ret);
1614                 goto open_error;
1615         }
1616
1617         /* Request the Wake IRQ in case of another line is used for WoL */
1618         if (priv->wol_irq != dev->irq) {
1619                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1620                                   IRQF_SHARED, dev->name, dev);
1621                 if (unlikely(ret < 0)) {
1622                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1623                                __func__, priv->wol_irq, ret);
1624                         goto open_error_wolirq;
1625                 }
1626         }
1627
1628         /* Request the IRQ lines */
1629         if (priv->lpi_irq != -ENXIO) {
1630                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1631                                   dev->name, dev);
1632                 if (unlikely(ret < 0)) {
1633                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1634                                __func__, priv->lpi_irq, ret);
1635                         goto open_error_lpiirq;
1636                 }
1637         }
1638
1639         /* Enable the MAC Rx/Tx */
1640         stmmac_set_mac(priv->ioaddr, true);
1641
1642         /* Set the HW DMA mode and the COE */
1643         stmmac_dma_operation_mode(priv);
1644
1645         /* Extra statistics */
1646         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1647         priv->xstats.threshold = tc;
1648
1649         stmmac_mmc_setup(priv);
1650
1651         ret = stmmac_init_ptp(priv);
1652         if (ret)
1653                 pr_warn("%s: failed PTP initialisation\n", __func__);
1654
1655 #ifdef CONFIG_STMMAC_DEBUG_FS
1656         ret = stmmac_init_fs(dev);
1657         if (ret < 0)
1658                 pr_warn("%s: failed debugFS registration\n", __func__);
1659 #endif
1660         /* Start the ball rolling... */
1661         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1662         priv->hw->dma->start_tx(priv->ioaddr);
1663         priv->hw->dma->start_rx(priv->ioaddr);
1664
1665         /* Dump DMA/MAC registers */
1666         if (netif_msg_hw(priv)) {
1667                 priv->hw->mac->dump_regs(priv->ioaddr);
1668                 priv->hw->dma->dump_regs(priv->ioaddr);
1669         }
1670
1671         if (priv->phydev)
1672                 phy_start(priv->phydev);
1673
1674         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1675
1676         /* Using PCS we cannot dial with the phy registers at this stage
1677          * so we do not support extra feature like EEE.
1678          */
1679         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1680             priv->pcs != STMMAC_PCS_RTBI)
1681                 priv->eee_enabled = stmmac_eee_init(priv);
1682
1683         stmmac_init_tx_coalesce(priv);
1684
1685         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1686                 priv->rx_riwt = MAX_DMA_RIWT;
1687                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1688         }
1689
1690         if (priv->pcs && priv->hw->mac->ctrl_ane)
1691                 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1692
1693         napi_enable(&priv->napi);
1694         netif_start_queue(dev);
1695
1696         return 0;
1697
1698 open_error_lpiirq:
1699         if (priv->wol_irq != dev->irq)
1700                 free_irq(priv->wol_irq, dev);
1701
1702 open_error_wolirq:
1703         free_irq(dev->irq, dev);
1704
1705 open_error:
1706         if (priv->phydev)
1707                 phy_disconnect(priv->phydev);
1708
1709         clk_disable_unprepare(priv->stmmac_clk);
1710
1711         return ret;
1712 }
1713
1714 /**
1715  *  stmmac_release - close entry point of the driver
1716  *  @dev : device pointer.
1717  *  Description:
1718  *  This is the stop entry point of the driver.
1719  */
1720 static int stmmac_release(struct net_device *dev)
1721 {
1722         struct stmmac_priv *priv = netdev_priv(dev);
1723
1724         if (priv->eee_enabled)
1725                 del_timer_sync(&priv->eee_ctrl_timer);
1726
1727         /* Stop and disconnect the PHY */
1728         if (priv->phydev) {
1729                 phy_stop(priv->phydev);
1730                 phy_disconnect(priv->phydev);
1731                 priv->phydev = NULL;
1732         }
1733
1734         netif_stop_queue(dev);
1735
1736         napi_disable(&priv->napi);
1737
1738         del_timer_sync(&priv->txtimer);
1739
1740         /* Free the IRQ lines */
1741         free_irq(dev->irq, dev);
1742         if (priv->wol_irq != dev->irq)
1743                 free_irq(priv->wol_irq, dev);
1744         if (priv->lpi_irq != -ENXIO)
1745                 free_irq(priv->lpi_irq, dev);
1746
1747         /* Stop TX/RX DMA and clear the descriptors */
1748         priv->hw->dma->stop_tx(priv->ioaddr);
1749         priv->hw->dma->stop_rx(priv->ioaddr);
1750
1751         /* Release and free the Rx/Tx resources */
1752         free_dma_desc_resources(priv);
1753
1754         /* Disable the MAC Rx/Tx */
1755         stmmac_set_mac(priv->ioaddr, false);
1756
1757         netif_carrier_off(dev);
1758
1759 #ifdef CONFIG_STMMAC_DEBUG_FS
1760         stmmac_exit_fs();
1761 #endif
1762         clk_disable_unprepare(priv->stmmac_clk);
1763
1764         stmmac_release_ptp(priv);
1765
1766         return 0;
1767 }
1768
1769 /**
1770  *  stmmac_xmit: Tx entry point of the driver
1771  *  @skb : the socket buffer
1772  *  @dev : device pointer
1773  *  Description : this is the tx entry point of the driver.
1774  *  It programs the chain or the ring and supports oversized frames
1775  *  and SG feature.
1776  */
1777 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1778 {
1779         struct stmmac_priv *priv = netdev_priv(dev);
1780         unsigned int txsize = priv->dma_tx_size;
1781         unsigned int entry;
1782         int i, csum_insertion = 0, is_jumbo = 0;
1783         int nfrags = skb_shinfo(skb)->nr_frags;
1784         struct dma_desc *desc, *first;
1785         unsigned int nopaged_len = skb_headlen(skb);
1786
1787         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1788                 if (!netif_queue_stopped(dev)) {
1789                         netif_stop_queue(dev);
1790                         /* This is a hard error, log it. */
1791                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1792                 }
1793                 return NETDEV_TX_BUSY;
1794         }
1795
1796         spin_lock(&priv->tx_lock);
1797
1798         if (priv->tx_path_in_lpi_mode)
1799                 stmmac_disable_eee_mode(priv);
1800
1801         entry = priv->cur_tx % txsize;
1802
1803 #ifdef STMMAC_XMIT_DEBUG
1804         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1805                 pr_debug("%s: [entry %d]: skb addr %p len: %d nopagedlen: %d\n"
1806                          "\tn_frags: %d - ip_summed: %d - %s gso\n"
1807                          "\ttx_count_frames %d\n", __func__, entry,
1808                          skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1809                          !skb_is_gso(skb) ? "isn't" : "is",
1810                          priv->tx_count_frames);
1811 #endif
1812
1813         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1814
1815         if (priv->extend_desc)
1816                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1817         else
1818                 desc = priv->dma_tx + entry;
1819
1820         first = desc;
1821
1822 #ifdef STMMAC_XMIT_DEBUG
1823         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1824                 pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1825                          "\t\tn_frags: %d, ip_summed: %d\n",
1826                          skb->len, nopaged_len, nfrags, skb->ip_summed);
1827 #endif
1828         priv->tx_skbuff[entry] = skb;
1829
1830         /* To program the descriptors according to the size of the frame */
1831         if (priv->mode == STMMAC_RING_MODE) {
1832                 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1833                                                         priv->plat->enh_desc);
1834                 if (unlikely(is_jumbo))
1835                         entry = priv->hw->ring->jumbo_frm(priv, skb,
1836                                                           csum_insertion);
1837         } else {
1838                 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1839                                                          priv->plat->enh_desc);
1840                 if (unlikely(is_jumbo))
1841                         entry = priv->hw->chain->jumbo_frm(priv, skb,
1842                                                            csum_insertion);
1843         }
1844         if (likely(!is_jumbo)) {
1845                 desc->des2 = dma_map_single(priv->device, skb->data,
1846                                             nopaged_len, DMA_TO_DEVICE);
1847                 priv->tx_skbuff_dma[entry] = desc->des2;
1848                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1849                                                 csum_insertion, priv->mode);
1850         } else
1851                 desc = first;
1852
1853         for (i = 0; i < nfrags; i++) {
1854                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1855                 int len = skb_frag_size(frag);
1856
1857                 entry = (++priv->cur_tx) % txsize;
1858                 if (priv->extend_desc)
1859                         desc = (struct dma_desc *)(priv->dma_etx + entry);
1860                 else
1861                         desc = priv->dma_tx + entry;
1862
1863                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1864                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1865                                               DMA_TO_DEVICE);
1866                 priv->tx_skbuff_dma[entry] = desc->des2;
1867                 priv->tx_skbuff[entry] = NULL;
1868                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1869                                                 priv->mode);
1870                 wmb();
1871                 priv->hw->desc->set_tx_owner(desc);
1872                 wmb();
1873         }
1874
1875         /* Finalize the latest segment. */
1876         priv->hw->desc->close_tx_desc(desc);
1877
1878         wmb();
1879         /* According to the coalesce parameter the IC bit for the latest
1880          * segment could be reset and the timer re-started to invoke the
1881          * stmmac_tx function. This approach takes care about the fragments.
1882          */
1883         priv->tx_count_frames += nfrags + 1;
1884         if (priv->tx_coal_frames > priv->tx_count_frames) {
1885                 priv->hw->desc->clear_tx_ic(desc);
1886                 priv->xstats.tx_reset_ic_bit++;
1887                 TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1888                        priv->tx_count_frames);
1889                 mod_timer(&priv->txtimer,
1890                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
1891         } else
1892                 priv->tx_count_frames = 0;
1893
1894         /* To avoid raise condition */
1895         priv->hw->desc->set_tx_owner(first);
1896         wmb();
1897
1898         priv->cur_tx++;
1899
1900 #ifdef STMMAC_XMIT_DEBUG
1901         if (netif_msg_pktdata(priv)) {
1902                 pr_info("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d"
1903                         __func__, (priv->cur_tx % txsize),
1904                         (priv->dirty_tx % txsize), entry, first, nfrags);
1905                 if (priv->extend_desc)
1906                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1907                 else
1908                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1909
1910                 pr_info(">>> frame to be transmitted: ");
1911                 print_pkt(skb->data, skb->len);
1912         }
1913 #endif
1914         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1915                 TX_DBG("%s: stop transmitted packets\n", __func__);
1916                 netif_stop_queue(dev);
1917         }
1918
1919         dev->stats.tx_bytes += skb->len;
1920
1921         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1922                      priv->hwts_tx_en)) {
1923                 /* declare that device is doing timestamping */
1924                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1925                 priv->hw->desc->enable_tx_timestamp(first);
1926         }
1927
1928         if (!priv->hwts_tx_en)
1929                 skb_tx_timestamp(skb);
1930
1931         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1932
1933         spin_unlock(&priv->tx_lock);
1934
1935         return NETDEV_TX_OK;
1936 }
1937
1938 /**
1939  * stmmac_rx_refill: refill used skb preallocated buffers
1940  * @priv: driver private structure
1941  * Description : this is to reallocate the skb for the reception process
1942  * that is based on zero-copy.
1943  */
1944 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1945 {
1946         unsigned int rxsize = priv->dma_rx_size;
1947         int bfsize = priv->dma_buf_sz;
1948
1949         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1950                 unsigned int entry = priv->dirty_rx % rxsize;
1951                 struct dma_desc *p;
1952
1953                 if (priv->extend_desc)
1954                         p = (struct dma_desc *)(priv->dma_erx + entry);
1955                 else
1956                         p = priv->dma_rx + entry;
1957
1958                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1959                         struct sk_buff *skb;
1960
1961                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1962
1963                         if (unlikely(skb == NULL))
1964                                 break;
1965
1966                         priv->rx_skbuff[entry] = skb;
1967                         priv->rx_skbuff_dma[entry] =
1968                             dma_map_single(priv->device, skb->data, bfsize,
1969                                            DMA_FROM_DEVICE);
1970
1971                         p->des2 = priv->rx_skbuff_dma[entry];
1972
1973                         priv->hw->ring->refill_desc3(priv, p);
1974
1975                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1976                 }
1977                 wmb();
1978                 priv->hw->desc->set_rx_owner(p);
1979                 wmb();
1980         }
1981 }
1982
1983 /**
1984  * stmmac_rx_refill: refill used skb preallocated buffers
1985  * @priv: driver private structure
1986  * @limit: napi bugget.
1987  * Description :  this the function called by the napi poll method.
1988  * It gets all the frames inside the ring.
1989  */
1990 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1991 {
1992         unsigned int rxsize = priv->dma_rx_size;
1993         unsigned int entry = priv->cur_rx % rxsize;
1994         unsigned int next_entry;
1995         unsigned int count = 0;
1996         int coe = priv->plat->rx_coe;
1997
1998 #ifdef STMMAC_RX_DEBUG
1999         if (netif_msg_hw(priv)) {
2000                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
2001                 if (priv->extend_desc)
2002                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2003                 else
2004                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2005         }
2006 #endif
2007         while (count < limit) {
2008                 int status;
2009                 struct dma_desc *p;
2010
2011                 if (priv->extend_desc)
2012                         p = (struct dma_desc *)(priv->dma_erx + entry);
2013                 else
2014                         p = priv->dma_rx + entry;
2015
2016                 if (priv->hw->desc->get_rx_owner(p))
2017                         break;
2018
2019                 count++;
2020
2021                 next_entry = (++priv->cur_rx) % rxsize;
2022                 if (priv->extend_desc)
2023                         prefetch(priv->dma_erx + next_entry);
2024                 else
2025                         prefetch(priv->dma_rx + next_entry);
2026
2027                 /* read the status of the incoming frame */
2028                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2029                                                    &priv->xstats, p);
2030                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2031                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2032                                                            &priv->xstats,
2033                                                            priv->dma_erx +
2034                                                            entry);
2035                 if (unlikely(status == discard_frame)) {
2036                         priv->dev->stats.rx_errors++;
2037                         if (priv->hwts_rx_en && !priv->extend_desc) {
2038                                 /* DESC2 & DESC3 will be overwitten by device
2039                                  * with timestamp value, hence reinitialize
2040                                  * them in stmmac_rx_refill() function so that
2041                                  * device can reuse it.
2042                                  */
2043                                 priv->rx_skbuff[entry] = NULL;
2044                                 dma_unmap_single(priv->device,
2045                                                  priv->rx_skbuff_dma[entry],
2046                                                  priv->dma_buf_sz,
2047                                                  DMA_FROM_DEVICE);
2048                         }
2049                 } else {
2050                         struct sk_buff *skb;
2051                         int frame_len;
2052
2053                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2054
2055                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2056                          * Type frames (LLC/LLC-SNAP)
2057                          */
2058                         if (unlikely(status != llc_snap))
2059                                 frame_len -= ETH_FCS_LEN;
2060 #ifdef STMMAC_RX_DEBUG
2061                         if (frame_len > ETH_FRAME_LEN)
2062                                 pr_debug("\tRX frame size %d, COE status: %d\n",
2063                                          frame_len, status);
2064
2065                         if (netif_msg_hw(priv))
2066                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2067                                          p, entry, p->des2);
2068 #endif
2069                         skb = priv->rx_skbuff[entry];
2070                         if (unlikely(!skb)) {
2071                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2072                                        priv->dev->name);
2073                                 priv->dev->stats.rx_dropped++;
2074                                 break;
2075                         }
2076                         prefetch(skb->data - NET_IP_ALIGN);
2077                         priv->rx_skbuff[entry] = NULL;
2078
2079                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2080
2081                         skb_put(skb, frame_len);
2082                         dma_unmap_single(priv->device,
2083                                          priv->rx_skbuff_dma[entry],
2084                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2085 #ifdef STMMAC_RX_DEBUG
2086                         if (netif_msg_pktdata(priv)) {
2087                                 pr_info(" frame received (%dbytes)", frame_len);
2088                                 print_pkt(skb->data, frame_len);
2089                         }
2090 #endif
2091                         skb->protocol = eth_type_trans(skb, priv->dev);
2092
2093                         if (unlikely(!coe))
2094                                 skb_checksum_none_assert(skb);
2095                         else
2096                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2097
2098                         napi_gro_receive(&priv->napi, skb);
2099
2100                         priv->dev->stats.rx_packets++;
2101                         priv->dev->stats.rx_bytes += frame_len;
2102                 }
2103                 entry = next_entry;
2104         }
2105
2106         stmmac_rx_refill(priv);
2107
2108         priv->xstats.rx_pkt_n += count;
2109
2110         return count;
2111 }
2112
2113 /**
2114  *  stmmac_poll - stmmac poll method (NAPI)
2115  *  @napi : pointer to the napi structure.
2116  *  @budget : maximum number of packets that the current CPU can receive from
2117  *            all interfaces.
2118  *  Description :
2119  *  To look at the incoming frames and clear the tx resources.
2120  */
2121 static int stmmac_poll(struct napi_struct *napi, int budget)
2122 {
2123         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2124         int work_done = 0;
2125
2126         priv->xstats.napi_poll++;
2127         stmmac_tx_clean(priv);
2128
2129         work_done = stmmac_rx(priv, budget);
2130         if (work_done < budget) {
2131                 napi_complete(napi);
2132                 stmmac_enable_dma_irq(priv);
2133         }
2134         return work_done;
2135 }
2136
2137 /**
2138  *  stmmac_tx_timeout
2139  *  @dev : Pointer to net device structure
2140  *  Description: this function is called when a packet transmission fails to
2141  *   complete within a reasonable time. The driver will mark the error in the
2142  *   netdev structure and arrange for the device to be reset to a sane state
2143  *   in order to transmit a new packet.
2144  */
2145 static void stmmac_tx_timeout(struct net_device *dev)
2146 {
2147         struct stmmac_priv *priv = netdev_priv(dev);
2148
2149         /* Clear Tx resources and restart transmitting again */
2150         stmmac_tx_err(priv);
2151 }
2152
2153 /* Configuration changes (passed on by ifconfig) */
2154 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2155 {
2156         if (dev->flags & IFF_UP)        /* can't act on a running interface */
2157                 return -EBUSY;
2158
2159         /* Don't allow changing the I/O address */
2160         if (map->base_addr != dev->base_addr) {
2161                 pr_warn("%s: can't change I/O address\n", dev->name);
2162                 return -EOPNOTSUPP;
2163         }
2164
2165         /* Don't allow changing the IRQ */
2166         if (map->irq != dev->irq) {
2167                 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2168                 return -EOPNOTSUPP;
2169         }
2170
2171         return 0;
2172 }
2173
2174 /**
2175  *  stmmac_set_rx_mode - entry point for multicast addressing
2176  *  @dev : pointer to the device structure
2177  *  Description:
2178  *  This function is a driver entry point which gets called by the kernel
2179  *  whenever multicast addresses must be enabled/disabled.
2180  *  Return value:
2181  *  void.
2182  */
2183 static void stmmac_set_rx_mode(struct net_device *dev)
2184 {
2185         struct stmmac_priv *priv = netdev_priv(dev);
2186
2187         spin_lock(&priv->lock);
2188         priv->hw->mac->set_filter(dev, priv->synopsys_id);
2189         spin_unlock(&priv->lock);
2190 }
2191
2192 /**
2193  *  stmmac_change_mtu - entry point to change MTU size for the device.
2194  *  @dev : device pointer.
2195  *  @new_mtu : the new MTU size for the device.
2196  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2197  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2198  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2199  *  Return value:
2200  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2201  *  file on failure.
2202  */
2203 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2204 {
2205         struct stmmac_priv *priv = netdev_priv(dev);
2206         int max_mtu;
2207
2208         if (netif_running(dev)) {
2209                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2210                 return -EBUSY;
2211         }
2212
2213         if (priv->plat->enh_desc)
2214                 max_mtu = JUMBO_LEN;
2215         else
2216                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2217
2218         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2219                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2220                 return -EINVAL;
2221         }
2222
2223         dev->mtu = new_mtu;
2224         netdev_update_features(dev);
2225
2226         return 0;
2227 }
2228
2229 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2230                                              netdev_features_t features)
2231 {
2232         struct stmmac_priv *priv = netdev_priv(dev);
2233
2234         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2235                 features &= ~NETIF_F_RXCSUM;
2236         else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2237                 features &= ~NETIF_F_IPV6_CSUM;
2238         if (!priv->plat->tx_coe)
2239                 features &= ~NETIF_F_ALL_CSUM;
2240
2241         /* Some GMAC devices have a bugged Jumbo frame support that
2242          * needs to have the Tx COE disabled for oversized frames
2243          * (due to limited buffer sizes). In this case we disable
2244          * the TX csum insertionin the TDES and not use SF.
2245          */
2246         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2247                 features &= ~NETIF_F_ALL_CSUM;
2248
2249         return features;
2250 }
2251
2252 /**
2253  *  stmmac_interrupt - main ISR
2254  *  @irq: interrupt number.
2255  *  @dev_id: to pass the net device pointer.
2256  *  Description: this is the main driver interrupt service routine.
2257  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2258  *  interrupts.
2259  */
2260 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2261 {
2262         struct net_device *dev = (struct net_device *)dev_id;
2263         struct stmmac_priv *priv = netdev_priv(dev);
2264
2265         if (unlikely(!dev)) {
2266                 pr_err("%s: invalid dev pointer\n", __func__);
2267                 return IRQ_NONE;
2268         }
2269
2270         /* To handle GMAC own interrupts */
2271         if (priv->plat->has_gmac) {
2272                 int status = priv->hw->mac->host_irq_status((void __iomem *)
2273                                                             dev->base_addr,
2274                                                             &priv->xstats);
2275                 if (unlikely(status)) {
2276                         /* For LPI we need to save the tx status */
2277                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2278                                 priv->tx_path_in_lpi_mode = true;
2279                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2280                                 priv->tx_path_in_lpi_mode = false;
2281                 }
2282         }
2283
2284         /* To handle DMA interrupts */
2285         stmmac_dma_interrupt(priv);
2286
2287         return IRQ_HANDLED;
2288 }
2289
2290 #ifdef CONFIG_NET_POLL_CONTROLLER
2291 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2292  * to allow network I/O with interrupts disabled.
2293  */
2294 static void stmmac_poll_controller(struct net_device *dev)
2295 {
2296         disable_irq(dev->irq);
2297         stmmac_interrupt(dev->irq, dev);
2298         enable_irq(dev->irq);
2299 }
2300 #endif
2301
2302 /**
2303  *  stmmac_ioctl - Entry point for the Ioctl
2304  *  @dev: Device pointer.
2305  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2306  *  a proprietary structure used to pass information to the driver.
2307  *  @cmd: IOCTL command
2308  *  Description:
2309  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2310  */
2311 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2312 {
2313         struct stmmac_priv *priv = netdev_priv(dev);
2314         int ret = -EOPNOTSUPP;
2315
2316         if (!netif_running(dev))
2317                 return -EINVAL;
2318
2319         switch (cmd) {
2320         case SIOCGMIIPHY:
2321         case SIOCGMIIREG:
2322         case SIOCSMIIREG:
2323                 if (!priv->phydev)
2324                         return -EINVAL;
2325                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2326                 break;
2327         case SIOCSHWTSTAMP:
2328                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2329                 break;
2330         default:
2331                 break;
2332         }
2333
2334         return ret;
2335 }
2336
2337 #ifdef CONFIG_STMMAC_DEBUG_FS
2338 static struct dentry *stmmac_fs_dir;
2339 static struct dentry *stmmac_rings_status;
2340 static struct dentry *stmmac_dma_cap;
2341
2342 static void sysfs_display_ring(void *head, int size, int extend_desc,
2343                                struct seq_file *seq)
2344 {
2345         int i;
2346         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2347         struct dma_desc *p = (struct dma_desc *)head;
2348
2349         for (i = 0; i < size; i++) {
2350                 u64 x;
2351                 if (extend_desc) {
2352                         x = *(u64 *) ep;
2353                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2354                                    i, (unsigned int)virt_to_phys(ep),
2355                                    (unsigned int)x, (unsigned int)(x >> 32),
2356                                    ep->basic.des2, ep->basic.des3);
2357                         ep++;
2358                 } else {
2359                         x = *(u64 *) p;
2360                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2361                                    i, (unsigned int)virt_to_phys(ep),
2362                                    (unsigned int)x, (unsigned int)(x >> 32),
2363                                    p->des2, p->des3);
2364                         p++;
2365                 }
2366                 seq_printf(seq, "\n");
2367         }
2368 }
2369
2370 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2371 {
2372         struct net_device *dev = seq->private;
2373         struct stmmac_priv *priv = netdev_priv(dev);
2374         unsigned int txsize = priv->dma_tx_size;
2375         unsigned int rxsize = priv->dma_rx_size;
2376
2377         if (priv->extend_desc) {
2378                 seq_printf(seq, "Extended RX descriptor ring:\n");
2379                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2380                 seq_printf(seq, "Extended TX descriptor ring:\n");
2381                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2382         } else {
2383                 seq_printf(seq, "RX descriptor ring:\n");
2384                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2385                 seq_printf(seq, "TX descriptor ring:\n");
2386                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2393 {
2394         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2395 }
2396
2397 static const struct file_operations stmmac_rings_status_fops = {
2398         .owner = THIS_MODULE,
2399         .open = stmmac_sysfs_ring_open,
2400         .read = seq_read,
2401         .llseek = seq_lseek,
2402         .release = single_release,
2403 };
2404
2405 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2406 {
2407         struct net_device *dev = seq->private;
2408         struct stmmac_priv *priv = netdev_priv(dev);
2409
2410         if (!priv->hw_cap_support) {
2411                 seq_printf(seq, "DMA HW features not supported\n");
2412                 return 0;
2413         }
2414
2415         seq_printf(seq, "==============================\n");
2416         seq_printf(seq, "\tDMA HW features\n");
2417         seq_printf(seq, "==============================\n");
2418
2419         seq_printf(seq, "\t10/100 Mbps %s\n",
2420                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2421         seq_printf(seq, "\t1000 Mbps %s\n",
2422                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2423         seq_printf(seq, "\tHalf duple %s\n",
2424                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2425         seq_printf(seq, "\tHash Filter: %s\n",
2426                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2427         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2428                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2429         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2430                    (priv->dma_cap.pcs) ? "Y" : "N");
2431         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2432                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2433         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2434                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2435         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2436                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2437         seq_printf(seq, "\tRMON module: %s\n",
2438                    (priv->dma_cap.rmon) ? "Y" : "N");
2439         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2440                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2441         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2442                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2443         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2444                    (priv->dma_cap.eee) ? "Y" : "N");
2445         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2446         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2447                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2448         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2449                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2450         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2451                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2452         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2453                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2454         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2455                    priv->dma_cap.number_rx_channel);
2456         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2457                    priv->dma_cap.number_tx_channel);
2458         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2459                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2460
2461         return 0;
2462 }
2463
2464 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2465 {
2466         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2467 }
2468
2469 static const struct file_operations stmmac_dma_cap_fops = {
2470         .owner = THIS_MODULE,
2471         .open = stmmac_sysfs_dma_cap_open,
2472         .read = seq_read,
2473         .llseek = seq_lseek,
2474         .release = single_release,
2475 };
2476
2477 static int stmmac_init_fs(struct net_device *dev)
2478 {
2479         /* Create debugfs entries */
2480         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2481
2482         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2483                 pr_err("ERROR %s, debugfs create directory failed\n",
2484                        STMMAC_RESOURCE_NAME);
2485
2486                 return -ENOMEM;
2487         }
2488
2489         /* Entry to report DMA RX/TX rings */
2490         stmmac_rings_status = debugfs_create_file("descriptors_status",
2491                                                   S_IRUGO, stmmac_fs_dir, dev,
2492                                                   &stmmac_rings_status_fops);
2493
2494         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2495                 pr_info("ERROR creating stmmac ring debugfs file\n");
2496                 debugfs_remove(stmmac_fs_dir);
2497
2498                 return -ENOMEM;
2499         }
2500
2501         /* Entry to report the DMA HW features */
2502         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2503                                              dev, &stmmac_dma_cap_fops);
2504
2505         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2506                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2507                 debugfs_remove(stmmac_rings_status);
2508                 debugfs_remove(stmmac_fs_dir);
2509
2510                 return -ENOMEM;
2511         }
2512
2513         return 0;
2514 }
2515
2516 static void stmmac_exit_fs(void)
2517 {
2518         debugfs_remove(stmmac_rings_status);
2519         debugfs_remove(stmmac_dma_cap);
2520         debugfs_remove(stmmac_fs_dir);
2521 }
2522 #endif /* CONFIG_STMMAC_DEBUG_FS */
2523
2524 static const struct net_device_ops stmmac_netdev_ops = {
2525         .ndo_open = stmmac_open,
2526         .ndo_start_xmit = stmmac_xmit,
2527         .ndo_stop = stmmac_release,
2528         .ndo_change_mtu = stmmac_change_mtu,
2529         .ndo_fix_features = stmmac_fix_features,
2530         .ndo_set_rx_mode = stmmac_set_rx_mode,
2531         .ndo_tx_timeout = stmmac_tx_timeout,
2532         .ndo_do_ioctl = stmmac_ioctl,
2533         .ndo_set_config = stmmac_config,
2534 #ifdef CONFIG_NET_POLL_CONTROLLER
2535         .ndo_poll_controller = stmmac_poll_controller,
2536 #endif
2537         .ndo_set_mac_address = eth_mac_addr,
2538 };
2539
2540 /**
2541  *  stmmac_hw_init - Init the MAC device
2542  *  @priv: driver private structure
2543  *  Description: this function detects which MAC device
2544  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2545  *  (if supported) and sets the driver's features (for example
2546  *  to use the ring or chaine mode or support the normal/enh
2547  *  descriptor structure).
2548  */
2549 static int stmmac_hw_init(struct stmmac_priv *priv)
2550 {
2551         int ret;
2552         struct mac_device_info *mac;
2553
2554         /* Identify the MAC HW device */
2555         if (priv->plat->has_gmac) {
2556                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2557                 mac = dwmac1000_setup(priv->ioaddr);
2558         } else {
2559                 mac = dwmac100_setup(priv->ioaddr);
2560         }
2561         if (!mac)
2562                 return -ENOMEM;
2563
2564         priv->hw = mac;
2565
2566         /* Get and dump the chip ID */
2567         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2568
2569         /* To use alternate (extended) or normal descriptor structures */
2570         stmmac_selec_desc_mode(priv);
2571
2572         /* To use the chained or ring mode */
2573         if (chain_mode) {
2574                 priv->hw->chain = &chain_mode_ops;
2575                 pr_info(" Chain mode enabled\n");
2576                 priv->mode = STMMAC_CHAIN_MODE;
2577         } else {
2578                 priv->hw->ring = &ring_mode_ops;
2579                 pr_info(" Ring mode enabled\n");
2580                 priv->mode = STMMAC_RING_MODE;
2581         }
2582
2583         /* Get the HW capability (new GMAC newer than 3.50a) */
2584         priv->hw_cap_support = stmmac_get_hw_features(priv);
2585         if (priv->hw_cap_support) {
2586                 pr_info(" DMA HW capability register supported");
2587
2588                 /* We can override some gmac/dma configuration fields: e.g.
2589                  * enh_desc, tx_coe (e.g. that are passed through the
2590                  * platform) with the values from the HW capability
2591                  * register (if supported).
2592                  */
2593                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2594                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2595
2596                 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2597
2598                 if (priv->dma_cap.rx_coe_type2)
2599                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2600                 else if (priv->dma_cap.rx_coe_type1)
2601                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2602
2603         } else
2604                 pr_info(" No HW DMA feature register supported");
2605
2606         ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2607         if (!ret) {
2608                 pr_warn(" RX IPC Checksum Offload not configured.\n");
2609                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2610         }
2611
2612         if (priv->plat->rx_coe)
2613                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2614                         priv->plat->rx_coe);
2615         if (priv->plat->tx_coe)
2616                 pr_info(" TX Checksum insertion supported\n");
2617
2618         if (priv->plat->pmt) {
2619                 pr_info(" Wake-Up On Lan supported\n");
2620                 device_set_wakeup_capable(priv->device, 1);
2621         }
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * stmmac_dvr_probe
2628  * @device: device pointer
2629  * @plat_dat: platform data pointer
2630  * @addr: iobase memory address
2631  * Description: this is the main probe function used to
2632  * call the alloc_etherdev, allocate the priv structure.
2633  */
2634 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2635                                      struct plat_stmmacenet_data *plat_dat,
2636                                      void __iomem *addr)
2637 {
2638         int ret = 0;
2639         struct net_device *ndev = NULL;
2640         struct stmmac_priv *priv;
2641
2642         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2643         if (!ndev)
2644                 return NULL;
2645
2646         SET_NETDEV_DEV(ndev, device);
2647
2648         priv = netdev_priv(ndev);
2649         priv->device = device;
2650         priv->dev = ndev;
2651
2652         ether_setup(ndev);
2653
2654         stmmac_set_ethtool_ops(ndev);
2655         priv->pause = pause;
2656         priv->plat = plat_dat;
2657         priv->ioaddr = addr;
2658         priv->dev->base_addr = (unsigned long)addr;
2659
2660         /* Verify driver arguments */
2661         stmmac_verify_args();
2662
2663         /* Override with kernel parameters if supplied XXX CRS XXX
2664          * this needs to have multiple instances
2665          */
2666         if ((phyaddr >= 0) && (phyaddr <= 31))
2667                 priv->plat->phy_addr = phyaddr;
2668
2669         /* Init MAC and get the capabilities */
2670         ret = stmmac_hw_init(priv);
2671         if (ret)
2672                 goto error_free_netdev;
2673
2674         ndev->netdev_ops = &stmmac_netdev_ops;
2675
2676         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2677                             NETIF_F_RXCSUM;
2678         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2679         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2680 #ifdef STMMAC_VLAN_TAG_USED
2681         /* Both mac100 and gmac support receive VLAN tag detection */
2682         ndev->features |= NETIF_F_HW_VLAN_RX;
2683 #endif
2684         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2685
2686         if (flow_ctrl)
2687                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2688
2689         /* Rx Watchdog is available in the COREs newer than the 3.40.
2690          * In some case, for example on bugged HW this feature
2691          * has to be disable and this can be done by passing the
2692          * riwt_off field from the platform.
2693          */
2694         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2695                 priv->use_riwt = 1;
2696                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2697         }
2698
2699         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2700
2701         spin_lock_init(&priv->lock);
2702         spin_lock_init(&priv->tx_lock);
2703
2704         ret = register_netdev(ndev);
2705         if (ret) {
2706                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2707                 goto error_netdev_register;
2708         }
2709
2710         priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2711         if (IS_ERR(priv->stmmac_clk)) {
2712                 pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2713                 goto error_clk_get;
2714         }
2715
2716         /* If a specific clk_csr value is passed from the platform
2717          * this means that the CSR Clock Range selection cannot be
2718          * changed at run-time and it is fixed. Viceversa the driver'll try to
2719          * set the MDC clock dynamically according to the csr actual
2720          * clock input.
2721          */
2722         if (!priv->plat->clk_csr)
2723                 stmmac_clk_csr_set(priv);
2724         else
2725                 priv->clk_csr = priv->plat->clk_csr;
2726
2727         stmmac_check_pcs_mode(priv);
2728
2729         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2730             priv->pcs != STMMAC_PCS_RTBI) {
2731                 /* MDIO bus Registration */
2732                 ret = stmmac_mdio_register(ndev);
2733                 if (ret < 0) {
2734                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2735                                  __func__, priv->plat->bus_id);
2736                         goto error_mdio_register;
2737                 }
2738         }
2739
2740         return priv;
2741
2742 error_mdio_register:
2743         clk_put(priv->stmmac_clk);
2744 error_clk_get:
2745         unregister_netdev(ndev);
2746 error_netdev_register:
2747         netif_napi_del(&priv->napi);
2748 error_free_netdev:
2749         free_netdev(ndev);
2750
2751         return NULL;
2752 }
2753
2754 /**
2755  * stmmac_dvr_remove
2756  * @ndev: net device pointer
2757  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2758  * changes the link status, releases the DMA descriptor rings.
2759  */
2760 int stmmac_dvr_remove(struct net_device *ndev)
2761 {
2762         struct stmmac_priv *priv = netdev_priv(ndev);
2763
2764         pr_info("%s:\n\tremoving driver", __func__);
2765
2766         priv->hw->dma->stop_rx(priv->ioaddr);
2767         priv->hw->dma->stop_tx(priv->ioaddr);
2768
2769         stmmac_set_mac(priv->ioaddr, false);
2770         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2771             priv->pcs != STMMAC_PCS_RTBI)
2772                 stmmac_mdio_unregister(ndev);
2773         netif_carrier_off(ndev);
2774         unregister_netdev(ndev);
2775         free_netdev(ndev);
2776
2777         return 0;
2778 }
2779
2780 #ifdef CONFIG_PM
2781 int stmmac_suspend(struct net_device *ndev)
2782 {
2783         struct stmmac_priv *priv = netdev_priv(ndev);
2784         unsigned long flags;
2785
2786         if (!ndev || !netif_running(ndev))
2787                 return 0;
2788
2789         if (priv->phydev)
2790                 phy_stop(priv->phydev);
2791
2792         spin_lock_irqsave(&priv->lock, flags);
2793
2794         netif_device_detach(ndev);
2795         netif_stop_queue(ndev);
2796
2797         napi_disable(&priv->napi);
2798
2799         /* Stop TX/RX DMA */
2800         priv->hw->dma->stop_tx(priv->ioaddr);
2801         priv->hw->dma->stop_rx(priv->ioaddr);
2802
2803         stmmac_clear_descriptors(priv);
2804
2805         /* Enable Power down mode by programming the PMT regs */
2806         if (device_may_wakeup(priv->device))
2807                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2808         else {
2809                 stmmac_set_mac(priv->ioaddr, false);
2810                 /* Disable clock in case of PWM is off */
2811                 clk_disable_unprepare(priv->stmmac_clk);
2812         }
2813         spin_unlock_irqrestore(&priv->lock, flags);
2814         return 0;
2815 }
2816
2817 int stmmac_resume(struct net_device *ndev)
2818 {
2819         struct stmmac_priv *priv = netdev_priv(ndev);
2820         unsigned long flags;
2821
2822         if (!netif_running(ndev))
2823                 return 0;
2824
2825         spin_lock_irqsave(&priv->lock, flags);
2826
2827         /* Power Down bit, into the PM register, is cleared
2828          * automatically as soon as a magic packet or a Wake-up frame
2829          * is received. Anyway, it's better to manually clear
2830          * this bit because it can generate problems while resuming
2831          * from another devices (e.g. serial console).
2832          */
2833         if (device_may_wakeup(priv->device))
2834                 priv->hw->mac->pmt(priv->ioaddr, 0);
2835         else
2836                 /* enable the clk prevously disabled */
2837                 clk_prepare_enable(priv->stmmac_clk);
2838
2839         netif_device_attach(ndev);
2840
2841         /* Enable the MAC and DMA */
2842         stmmac_set_mac(priv->ioaddr, true);
2843         priv->hw->dma->start_tx(priv->ioaddr);
2844         priv->hw->dma->start_rx(priv->ioaddr);
2845
2846         napi_enable(&priv->napi);
2847
2848         netif_start_queue(ndev);
2849
2850         spin_unlock_irqrestore(&priv->lock, flags);
2851
2852         if (priv->phydev)
2853                 phy_start(priv->phydev);
2854
2855         return 0;
2856 }
2857
2858 int stmmac_freeze(struct net_device *ndev)
2859 {
2860         if (!ndev || !netif_running(ndev))
2861                 return 0;
2862
2863         return stmmac_release(ndev);
2864 }
2865
2866 int stmmac_restore(struct net_device *ndev)
2867 {
2868         if (!ndev || !netif_running(ndev))
2869                 return 0;
2870
2871         return stmmac_open(ndev);
2872 }
2873 #endif /* CONFIG_PM */
2874
2875 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2876  * depending on the configuration selected.
2877  */
2878 static int __init stmmac_init(void)
2879 {
2880         int ret;
2881
2882         ret = stmmac_register_platform();
2883         if (ret)
2884                 goto err;
2885         ret = stmmac_register_pci();
2886         if (ret)
2887                 goto err_pci;
2888         return 0;
2889 err_pci:
2890         stmmac_unregister_platform();
2891 err:
2892         pr_err("stmmac: driver registration failed\n");
2893         return ret;
2894 }
2895
2896 static void __exit stmmac_exit(void)
2897 {
2898         stmmac_unregister_platform();
2899         stmmac_unregister_pci();
2900 }
2901
2902 module_init(stmmac_init);
2903 module_exit(stmmac_exit);
2904
2905 #ifndef MODULE
2906 static int __init stmmac_cmdline_opt(char *str)
2907 {
2908         char *opt;
2909
2910         if (!str || !*str)
2911                 return -EINVAL;
2912         while ((opt = strsep(&str, ",")) != NULL) {
2913                 if (!strncmp(opt, "debug:", 6)) {
2914                         if (kstrtoint(opt + 6, 0, &debug))
2915                                 goto err;
2916                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2917                         if (kstrtoint(opt + 8, 0, &phyaddr))
2918                                 goto err;
2919                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2920                         if (kstrtoint(opt + 11, 0, &dma_txsize))
2921                                 goto err;
2922                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2923                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
2924                                 goto err;
2925                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2926                         if (kstrtoint(opt + 7, 0, &buf_sz))
2927                                 goto err;
2928                 } else if (!strncmp(opt, "tc:", 3)) {
2929                         if (kstrtoint(opt + 3, 0, &tc))
2930                                 goto err;
2931                 } else if (!strncmp(opt, "watchdog:", 9)) {
2932                         if (kstrtoint(opt + 9, 0, &watchdog))
2933                                 goto err;
2934                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2935                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
2936                                 goto err;
2937                 } else if (!strncmp(opt, "pause:", 6)) {
2938                         if (kstrtoint(opt + 6, 0, &pause))
2939                                 goto err;
2940                 } else if (!strncmp(opt, "eee_timer:", 10)) {
2941                         if (kstrtoint(opt + 10, 0, &eee_timer))
2942                                 goto err;
2943                 } else if (!strncmp(opt, "chain_mode:", 11)) {
2944                         if (kstrtoint(opt + 11, 0, &chain_mode))
2945                                 goto err;
2946                 }
2947         }
2948         return 0;
2949
2950 err:
2951         pr_err("%s: ERROR broken module parameter conversion", __func__);
2952         return -EINVAL;
2953 }
2954
2955 __setup("stmmaceth=", stmmac_cmdline_opt);
2956 #endif /* MODULE */
2957
2958 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2959 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2960 MODULE_LICENSE("GPL");