]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: stmmac: stmmac interrupt treatment prepared for multiple queues
[karo-tx-linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20
21   Documentation available at:
22         http://www.stlinux.com
23   Support available at:
24         https://bugzilla.stlinux.com/
25 *******************************************************************************/
26
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include "stmmac_ptp.h"
49 #include "stmmac.h"
50 #include <linux/reset.h>
51 #include <linux/of_mdio.h>
52 #include "dwmac1000.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
56
57 /* Module parameters */
58 #define TX_TIMEO        5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 static int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
72 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
73
74 static int flow_ctrl = FLOW_OFF;
75 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
77
78 static int pause = PAUSE_TIME;
79 module_param(pause, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
81
82 #define TC_DEFAULT 64
83 static int tc = TC_DEFAULT;
84 module_param(tc, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(tc, "DMA threshold control value");
86
87 #define DEFAULT_BUFSIZE 1536
88 static int buf_sz = DEFAULT_BUFSIZE;
89 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
91
92 #define STMMAC_RX_COPYBREAK     256
93
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
96                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
97
98 #define STMMAC_DEFAULT_LPI_TIMER        1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
103
104 /* By default the driver will use the ring mode to manage tx and rx descriptors,
105  * but allow user to force to use the chain instead of the ring
106  */
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
110
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
112
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
116 #endif
117
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
119
120 /**
121  * stmmac_verify_args - verify the driver parameters.
122  * Description: it checks the driver parameters and set a default in case of
123  * errors.
124  */
125 static void stmmac_verify_args(void)
126 {
127         if (unlikely(watchdog < 0))
128                 watchdog = TX_TIMEO;
129         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130                 buf_sz = DEFAULT_BUFSIZE;
131         if (unlikely(flow_ctrl > 1))
132                 flow_ctrl = FLOW_AUTO;
133         else if (likely(flow_ctrl < 0))
134                 flow_ctrl = FLOW_OFF;
135         if (unlikely((pause < 0) || (pause > 0xffff)))
136                 pause = PAUSE_TIME;
137         if (eee_timer < 0)
138                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 }
140
141 /**
142  * stmmac_clk_csr_set - dynamically set the MDC clock
143  * @priv: driver private structure
144  * Description: this is to dynamically set the MDC clock according to the csr
145  * clock input.
146  * Note:
147  *      If a specific clk_csr value is passed from the platform
148  *      this means that the CSR Clock Range selection cannot be
149  *      changed at run-time and it is fixed (as reported in the driver
150  *      documentation). Viceversa the driver will try to set the MDC
151  *      clock dynamically according to the actual clock input.
152  */
153 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
154 {
155         u32 clk_rate;
156
157         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
158
159         /* Platform provided default clk_csr would be assumed valid
160          * for all other cases except for the below mentioned ones.
161          * For values higher than the IEEE 802.3 specified frequency
162          * we can not estimate the proper divider as it is not known
163          * the frequency of clk_csr_i. So we do not change the default
164          * divider.
165          */
166         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
167                 if (clk_rate < CSR_F_35M)
168                         priv->clk_csr = STMMAC_CSR_20_35M;
169                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
170                         priv->clk_csr = STMMAC_CSR_35_60M;
171                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
172                         priv->clk_csr = STMMAC_CSR_60_100M;
173                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
174                         priv->clk_csr = STMMAC_CSR_100_150M;
175                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
176                         priv->clk_csr = STMMAC_CSR_150_250M;
177                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
178                         priv->clk_csr = STMMAC_CSR_250_300M;
179         }
180 }
181
182 static void print_pkt(unsigned char *buf, int len)
183 {
184         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
185         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
186 }
187
188 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
189 {
190         u32 avail;
191
192         if (priv->dirty_tx > priv->cur_tx)
193                 avail = priv->dirty_tx - priv->cur_tx - 1;
194         else
195                 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
196
197         return avail;
198 }
199
200 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
201 {
202         u32 dirty;
203
204         if (priv->dirty_rx <= priv->cur_rx)
205                 dirty = priv->cur_rx - priv->dirty_rx;
206         else
207                 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
208
209         return dirty;
210 }
211
212 /**
213  * stmmac_hw_fix_mac_speed - callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuration
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220         struct net_device *ndev = priv->dev;
221         struct phy_device *phydev = ndev->phydev;
222
223         if (likely(priv->plat->fix_mac_speed))
224                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
225 }
226
227 /**
228  * stmmac_enable_eee_mode - check and enter in LPI mode
229  * @priv: driver private structure
230  * Description: this function is to verify and enter in LPI mode in case of
231  * EEE.
232  */
233 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
234 {
235         /* Check and enter in LPI mode */
236         if ((priv->dirty_tx == priv->cur_tx) &&
237             (priv->tx_path_in_lpi_mode == false))
238                 priv->hw->mac->set_eee_mode(priv->hw,
239                                             priv->plat->en_tx_lpi_clockgating);
240 }
241
242 /**
243  * stmmac_disable_eee_mode - disable and exit from LPI mode
244  * @priv: driver private structure
245  * Description: this function is to exit and disable EEE in case of
246  * LPI state is true. This is called by the xmit.
247  */
248 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
249 {
250         priv->hw->mac->reset_eee_mode(priv->hw);
251         del_timer_sync(&priv->eee_ctrl_timer);
252         priv->tx_path_in_lpi_mode = false;
253 }
254
255 /**
256  * stmmac_eee_ctrl_timer - EEE TX SW timer.
257  * @arg : data hook
258  * Description:
259  *  if there is no data transfer and if we are not in LPI state,
260  *  then MAC Transmitter can be moved to LPI state.
261  */
262 static void stmmac_eee_ctrl_timer(unsigned long arg)
263 {
264         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
265
266         stmmac_enable_eee_mode(priv);
267         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
268 }
269
270 /**
271  * stmmac_eee_init - init EEE
272  * @priv: driver private structure
273  * Description:
274  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
275  *  can also manage EEE, this function enable the LPI state and start related
276  *  timer.
277  */
278 bool stmmac_eee_init(struct stmmac_priv *priv)
279 {
280         struct net_device *ndev = priv->dev;
281         unsigned long flags;
282         bool ret = false;
283
284         /* Using PCS we cannot dial with the phy registers at this stage
285          * so we do not support extra feature like EEE.
286          */
287         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
288             (priv->hw->pcs == STMMAC_PCS_TBI) ||
289             (priv->hw->pcs == STMMAC_PCS_RTBI))
290                 goto out;
291
292         /* MAC core supports the EEE feature. */
293         if (priv->dma_cap.eee) {
294                 int tx_lpi_timer = priv->tx_lpi_timer;
295
296                 /* Check if the PHY supports EEE */
297                 if (phy_init_eee(ndev->phydev, 1)) {
298                         /* To manage at run-time if the EEE cannot be supported
299                          * anymore (for example because the lp caps have been
300                          * changed).
301                          * In that case the driver disable own timers.
302                          */
303                         spin_lock_irqsave(&priv->lock, flags);
304                         if (priv->eee_active) {
305                                 netdev_dbg(priv->dev, "disable EEE\n");
306                                 del_timer_sync(&priv->eee_ctrl_timer);
307                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
308                                                              tx_lpi_timer);
309                         }
310                         priv->eee_active = 0;
311                         spin_unlock_irqrestore(&priv->lock, flags);
312                         goto out;
313                 }
314                 /* Activate the EEE and start timers */
315                 spin_lock_irqsave(&priv->lock, flags);
316                 if (!priv->eee_active) {
317                         priv->eee_active = 1;
318                         setup_timer(&priv->eee_ctrl_timer,
319                                     stmmac_eee_ctrl_timer,
320                                     (unsigned long)priv);
321                         mod_timer(&priv->eee_ctrl_timer,
322                                   STMMAC_LPI_T(eee_timer));
323
324                         priv->hw->mac->set_eee_timer(priv->hw,
325                                                      STMMAC_DEFAULT_LIT_LS,
326                                                      tx_lpi_timer);
327                 }
328                 /* Set HW EEE according to the speed */
329                 priv->hw->mac->set_eee_pls(priv->hw, ndev->phydev->link);
330
331                 ret = true;
332                 spin_unlock_irqrestore(&priv->lock, flags);
333
334                 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
335         }
336 out:
337         return ret;
338 }
339
340 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
341  * @priv: driver private structure
342  * @p : descriptor pointer
343  * @skb : the socket buffer
344  * Description :
345  * This function will read timestamp from the descriptor & pass it to stack.
346  * and also perform some sanity checks.
347  */
348 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
349                                    struct dma_desc *p, struct sk_buff *skb)
350 {
351         struct skb_shared_hwtstamps shhwtstamp;
352         u64 ns;
353
354         if (!priv->hwts_tx_en)
355                 return;
356
357         /* exit if skb doesn't support hw tstamp */
358         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
359                 return;
360
361         /* check tx tstamp status */
362         if (!priv->hw->desc->get_tx_timestamp_status(p)) {
363                 /* get the valid tstamp */
364                 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
365
366                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
367                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
368
369                 netdev_info(priv->dev, "get valid TX hw timestamp %llu\n", ns);
370                 /* pass tstamp to stack */
371                 skb_tstamp_tx(skb, &shhwtstamp);
372         }
373
374         return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378  * @priv: driver private structure
379  * @p : descriptor pointer
380  * @np : next descriptor pointer
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
387                                    struct dma_desc *np, struct sk_buff *skb)
388 {
389         struct skb_shared_hwtstamps *shhwtstamp = NULL;
390         u64 ns;
391
392         if (!priv->hwts_rx_en)
393                 return;
394
395         /* Check if timestamp is available */
396         if (!priv->hw->desc->get_rx_timestamp_status(p, priv->adv_ts)) {
397                 /* For GMAC4, the valid timestamp is from CTX next desc. */
398                 if (priv->plat->has_gmac4)
399                         ns = priv->hw->desc->get_timestamp(np, priv->adv_ts);
400                 else
401                         ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
402
403                 netdev_info(priv->dev, "get valid RX hw timestamp %llu\n", ns);
404                 shhwtstamp = skb_hwtstamps(skb);
405                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
406                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
407         } else  {
408                 netdev_err(priv->dev, "cannot get RX hw timestamp\n");
409         }
410 }
411
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specific structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425         struct stmmac_priv *priv = netdev_priv(dev);
426         struct hwtstamp_config config;
427         struct timespec64 now;
428         u64 temp = 0;
429         u32 ptp_v2 = 0;
430         u32 tstamp_all = 0;
431         u32 ptp_over_ipv4_udp = 0;
432         u32 ptp_over_ipv6_udp = 0;
433         u32 ptp_over_ethernet = 0;
434         u32 snap_type_sel = 0;
435         u32 ts_master_en = 0;
436         u32 ts_event_en = 0;
437         u32 value = 0;
438         u32 sec_inc;
439
440         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
441                 netdev_alert(priv->dev, "No support for HW time stamping\n");
442                 priv->hwts_tx_en = 0;
443                 priv->hwts_rx_en = 0;
444
445                 return -EOPNOTSUPP;
446         }
447
448         if (copy_from_user(&config, ifr->ifr_data,
449                            sizeof(struct hwtstamp_config)))
450                 return -EFAULT;
451
452         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
453                    __func__, config.flags, config.tx_type, config.rx_filter);
454
455         /* reserved for future extensions */
456         if (config.flags)
457                 return -EINVAL;
458
459         if (config.tx_type != HWTSTAMP_TX_OFF &&
460             config.tx_type != HWTSTAMP_TX_ON)
461                 return -ERANGE;
462
463         if (priv->adv_ts) {
464                 switch (config.rx_filter) {
465                 case HWTSTAMP_FILTER_NONE:
466                         /* time stamp no incoming packet at all */
467                         config.rx_filter = HWTSTAMP_FILTER_NONE;
468                         break;
469
470                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
471                         /* PTP v1, UDP, any kind of event packet */
472                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
473                         /* take time stamp for all event messages */
474                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
475
476                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478                         break;
479
480                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
481                         /* PTP v1, UDP, Sync packet */
482                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
483                         /* take time stamp for SYNC messages only */
484                         ts_event_en = PTP_TCR_TSEVNTENA;
485
486                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
487                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
488                         break;
489
490                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
491                         /* PTP v1, UDP, Delay_req packet */
492                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
493                         /* take time stamp for Delay_Req messages only */
494                         ts_master_en = PTP_TCR_TSMSTRENA;
495                         ts_event_en = PTP_TCR_TSEVNTENA;
496
497                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
498                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
499                         break;
500
501                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
502                         /* PTP v2, UDP, any kind of event packet */
503                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
504                         ptp_v2 = PTP_TCR_TSVER2ENA;
505                         /* take time stamp for all event messages */
506                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
507
508                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
509                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
510                         break;
511
512                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
513                         /* PTP v2, UDP, Sync packet */
514                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
515                         ptp_v2 = PTP_TCR_TSVER2ENA;
516                         /* take time stamp for SYNC messages only */
517                         ts_event_en = PTP_TCR_TSEVNTENA;
518
519                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
520                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
521                         break;
522
523                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
524                         /* PTP v2, UDP, Delay_req packet */
525                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
526                         ptp_v2 = PTP_TCR_TSVER2ENA;
527                         /* take time stamp for Delay_Req messages only */
528                         ts_master_en = PTP_TCR_TSMSTRENA;
529                         ts_event_en = PTP_TCR_TSEVNTENA;
530
531                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
532                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
533                         break;
534
535                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
536                         /* PTP v2/802.AS1 any layer, any kind of event packet */
537                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
538                         ptp_v2 = PTP_TCR_TSVER2ENA;
539                         /* take time stamp for all event messages */
540                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
541
542                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
543                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
544                         ptp_over_ethernet = PTP_TCR_TSIPENA;
545                         break;
546
547                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
548                         /* PTP v2/802.AS1, any layer, Sync packet */
549                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
550                         ptp_v2 = PTP_TCR_TSVER2ENA;
551                         /* take time stamp for SYNC messages only */
552                         ts_event_en = PTP_TCR_TSEVNTENA;
553
554                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
555                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
556                         ptp_over_ethernet = PTP_TCR_TSIPENA;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
560                         /* PTP v2/802.AS1, any layer, Delay_req packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
562                         ptp_v2 = PTP_TCR_TSVER2ENA;
563                         /* take time stamp for Delay_Req messages only */
564                         ts_master_en = PTP_TCR_TSMSTRENA;
565                         ts_event_en = PTP_TCR_TSEVNTENA;
566
567                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569                         ptp_over_ethernet = PTP_TCR_TSIPENA;
570                         break;
571
572                 case HWTSTAMP_FILTER_ALL:
573                         /* time stamp any incoming packet */
574                         config.rx_filter = HWTSTAMP_FILTER_ALL;
575                         tstamp_all = PTP_TCR_TSENALL;
576                         break;
577
578                 default:
579                         return -ERANGE;
580                 }
581         } else {
582                 switch (config.rx_filter) {
583                 case HWTSTAMP_FILTER_NONE:
584                         config.rx_filter = HWTSTAMP_FILTER_NONE;
585                         break;
586                 default:
587                         /* PTP v1, UDP, any kind of event packet */
588                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
589                         break;
590                 }
591         }
592         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
593         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
594
595         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
596                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
597         else {
598                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
599                          tstamp_all | ptp_v2 | ptp_over_ethernet |
600                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
601                          ts_master_en | snap_type_sel);
602                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
603
604                 /* program Sub Second Increment reg */
605                 sec_inc = priv->hw->ptp->config_sub_second_increment(
606                         priv->ptpaddr, priv->plat->clk_ptp_rate,
607                         priv->plat->has_gmac4);
608                 temp = div_u64(1000000000ULL, sec_inc);
609
610                 /* calculate default added value:
611                  * formula is :
612                  * addend = (2^32)/freq_div_ratio;
613                  * where, freq_div_ratio = 1e9ns/sec_inc
614                  */
615                 temp = (u64)(temp << 32);
616                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
617                 priv->hw->ptp->config_addend(priv->ptpaddr,
618                                              priv->default_addend);
619
620                 /* initialize system time */
621                 ktime_get_real_ts64(&now);
622
623                 /* lower 32 bits of tv_sec are safe until y2106 */
624                 priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
625                                             now.tv_nsec);
626         }
627
628         return copy_to_user(ifr->ifr_data, &config,
629                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633  * stmmac_init_ptp - init PTP
634  * @priv: driver private structure
635  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636  * This is done by looking at the HW cap. register.
637  * This function also registers the ptp driver.
638  */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642                 return -EOPNOTSUPP;
643
644         priv->adv_ts = 0;
645         /* Check if adv_ts can be enabled for dwmac 4.x core */
646         if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
647                 priv->adv_ts = 1;
648         /* Dwmac 3.x core with extend_desc can support adv_ts */
649         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
650                 priv->adv_ts = 1;
651
652         if (priv->dma_cap.time_stamp)
653                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
654
655         if (priv->adv_ts)
656                 netdev_info(priv->dev,
657                             "IEEE 1588-2008 Advanced Timestamp supported\n");
658
659         priv->hw->ptp = &stmmac_ptp;
660         priv->hwts_tx_en = 0;
661         priv->hwts_rx_en = 0;
662
663         stmmac_ptp_register(priv);
664
665         return 0;
666 }
667
668 static void stmmac_release_ptp(struct stmmac_priv *priv)
669 {
670         if (priv->plat->clk_ptp_ref)
671                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
672         stmmac_ptp_unregister(priv);
673 }
674
675 /**
676  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
677  *  @priv: driver private structure
678  *  Description: It is used for configuring the flow control in all queues
679  */
680 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
681 {
682         u32 tx_cnt = priv->plat->tx_queues_to_use;
683
684         priv->hw->mac->flow_ctrl(priv->hw, duplex, priv->flow_ctrl,
685                                  priv->pause, tx_cnt);
686 }
687
688 /**
689  * stmmac_adjust_link - adjusts the link parameters
690  * @dev: net device structure
691  * Description: this is the helper called by the physical abstraction layer
692  * drivers to communicate the phy link status. According the speed and duplex
693  * this driver can invoke registered glue-logic as well.
694  * It also invoke the eee initialization because it could happen when switch
695  * on different networks (that are eee capable).
696  */
697 static void stmmac_adjust_link(struct net_device *dev)
698 {
699         struct stmmac_priv *priv = netdev_priv(dev);
700         struct phy_device *phydev = dev->phydev;
701         unsigned long flags;
702         int new_state = 0;
703
704         if (!phydev)
705                 return;
706
707         spin_lock_irqsave(&priv->lock, flags);
708
709         if (phydev->link) {
710                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
711
712                 /* Now we make sure that we can be in full duplex mode.
713                  * If not, we operate in half-duplex mode. */
714                 if (phydev->duplex != priv->oldduplex) {
715                         new_state = 1;
716                         if (!(phydev->duplex))
717                                 ctrl &= ~priv->hw->link.duplex;
718                         else
719                                 ctrl |= priv->hw->link.duplex;
720                         priv->oldduplex = phydev->duplex;
721                 }
722                 /* Flow Control operation */
723                 if (phydev->pause)
724                         stmmac_mac_flow_ctrl(priv, phydev->duplex);
725
726                 if (phydev->speed != priv->speed) {
727                         new_state = 1;
728                         switch (phydev->speed) {
729                         case 1000:
730                                 if (priv->plat->has_gmac ||
731                                     priv->plat->has_gmac4)
732                                         ctrl &= ~priv->hw->link.port;
733                                 break;
734                         case 100:
735                                 if (priv->plat->has_gmac ||
736                                     priv->plat->has_gmac4) {
737                                         ctrl |= priv->hw->link.port;
738                                         ctrl |= priv->hw->link.speed;
739                                 } else {
740                                         ctrl &= ~priv->hw->link.port;
741                                 }
742                                 break;
743                         case 10:
744                                 if (priv->plat->has_gmac ||
745                                     priv->plat->has_gmac4) {
746                                         ctrl |= priv->hw->link.port;
747                                         ctrl &= ~(priv->hw->link.speed);
748                                 } else {
749                                         ctrl &= ~priv->hw->link.port;
750                                 }
751                                 break;
752                         default:
753                                 netif_warn(priv, link, priv->dev,
754                                            "broken speed: %d\n", phydev->speed);
755                                 phydev->speed = SPEED_UNKNOWN;
756                                 break;
757                         }
758                         if (phydev->speed != SPEED_UNKNOWN)
759                                 stmmac_hw_fix_mac_speed(priv);
760                         priv->speed = phydev->speed;
761                 }
762
763                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
764
765                 if (!priv->oldlink) {
766                         new_state = 1;
767                         priv->oldlink = 1;
768                 }
769         } else if (priv->oldlink) {
770                 new_state = 1;
771                 priv->oldlink = 0;
772                 priv->speed = SPEED_UNKNOWN;
773                 priv->oldduplex = DUPLEX_UNKNOWN;
774         }
775
776         if (new_state && netif_msg_link(priv))
777                 phy_print_status(phydev);
778
779         spin_unlock_irqrestore(&priv->lock, flags);
780
781         if (phydev->is_pseudo_fixed_link)
782                 /* Stop PHY layer to call the hook to adjust the link in case
783                  * of a switch is attached to the stmmac driver.
784                  */
785                 phydev->irq = PHY_IGNORE_INTERRUPT;
786         else
787                 /* At this stage, init the EEE if supported.
788                  * Never called in case of fixed_link.
789                  */
790                 priv->eee_enabled = stmmac_eee_init(priv);
791 }
792
793 /**
794  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
795  * @priv: driver private structure
796  * Description: this is to verify if the HW supports the PCS.
797  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
798  * configured for the TBI, RTBI, or SGMII PHY interface.
799  */
800 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
801 {
802         int interface = priv->plat->interface;
803
804         if (priv->dma_cap.pcs) {
805                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
806                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
807                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
808                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
809                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
810                         priv->hw->pcs = STMMAC_PCS_RGMII;
811                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
812                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
813                         priv->hw->pcs = STMMAC_PCS_SGMII;
814                 }
815         }
816 }
817
818 /**
819  * stmmac_init_phy - PHY initialization
820  * @dev: net device structure
821  * Description: it initializes the driver's PHY state, and attaches the PHY
822  * to the mac driver.
823  *  Return value:
824  *  0 on success
825  */
826 static int stmmac_init_phy(struct net_device *dev)
827 {
828         struct stmmac_priv *priv = netdev_priv(dev);
829         struct phy_device *phydev;
830         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
831         char bus_id[MII_BUS_ID_SIZE];
832         int interface = priv->plat->interface;
833         int max_speed = priv->plat->max_speed;
834         priv->oldlink = 0;
835         priv->speed = SPEED_UNKNOWN;
836         priv->oldduplex = DUPLEX_UNKNOWN;
837
838         if (priv->plat->phy_node) {
839                 phydev = of_phy_connect(dev, priv->plat->phy_node,
840                                         &stmmac_adjust_link, 0, interface);
841         } else {
842                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
843                          priv->plat->bus_id);
844
845                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
846                          priv->plat->phy_addr);
847                 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
848                            phy_id_fmt);
849
850                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
851                                      interface);
852         }
853
854         if (IS_ERR_OR_NULL(phydev)) {
855                 netdev_err(priv->dev, "Could not attach to PHY\n");
856                 if (!phydev)
857                         return -ENODEV;
858
859                 return PTR_ERR(phydev);
860         }
861
862         /* Stop Advertising 1000BASE Capability if interface is not GMII */
863         if ((interface == PHY_INTERFACE_MODE_MII) ||
864             (interface == PHY_INTERFACE_MODE_RMII) ||
865                 (max_speed < 1000 && max_speed > 0))
866                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
867                                          SUPPORTED_1000baseT_Full);
868
869         /*
870          * Broken HW is sometimes missing the pull-up resistor on the
871          * MDIO line, which results in reads to non-existent devices returning
872          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
873          * device as well.
874          * Note: phydev->phy_id is the result of reading the UID PHY registers.
875          */
876         if (!priv->plat->phy_node && phydev->phy_id == 0) {
877                 phy_disconnect(phydev);
878                 return -ENODEV;
879         }
880
881         /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
882          * subsequent PHY polling, make sure we force a link transition if
883          * we have a UP/DOWN/UP transition
884          */
885         if (phydev->is_pseudo_fixed_link)
886                 phydev->irq = PHY_POLL;
887
888         phy_attached_info(phydev);
889         return 0;
890 }
891
892 static void stmmac_display_rings(struct stmmac_priv *priv)
893 {
894         void *head_rx, *head_tx;
895
896         if (priv->extend_desc) {
897                 head_rx = (void *)priv->dma_erx;
898                 head_tx = (void *)priv->dma_etx;
899         } else {
900                 head_rx = (void *)priv->dma_rx;
901                 head_tx = (void *)priv->dma_tx;
902         }
903
904         /* Display Rx ring */
905         priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
906         /* Display Tx ring */
907         priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
908 }
909
910 static int stmmac_set_bfsize(int mtu, int bufsize)
911 {
912         int ret = bufsize;
913
914         if (mtu >= BUF_SIZE_4KiB)
915                 ret = BUF_SIZE_8KiB;
916         else if (mtu >= BUF_SIZE_2KiB)
917                 ret = BUF_SIZE_4KiB;
918         else if (mtu > DEFAULT_BUFSIZE)
919                 ret = BUF_SIZE_2KiB;
920         else
921                 ret = DEFAULT_BUFSIZE;
922
923         return ret;
924 }
925
926 /**
927  * stmmac_clear_descriptors - clear descriptors
928  * @priv: driver private structure
929  * Description: this function is called to clear the tx and rx descriptors
930  * in case of both basic and extended descriptors are used.
931  */
932 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
933 {
934         int i;
935
936         /* Clear the Rx/Tx descriptors */
937         for (i = 0; i < DMA_RX_SIZE; i++)
938                 if (priv->extend_desc)
939                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
940                                                      priv->use_riwt, priv->mode,
941                                                      (i == DMA_RX_SIZE - 1));
942                 else
943                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
944                                                      priv->use_riwt, priv->mode,
945                                                      (i == DMA_RX_SIZE - 1));
946         for (i = 0; i < DMA_TX_SIZE; i++)
947                 if (priv->extend_desc)
948                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
949                                                      priv->mode,
950                                                      (i == DMA_TX_SIZE - 1));
951                 else
952                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
953                                                      priv->mode,
954                                                      (i == DMA_TX_SIZE - 1));
955 }
956
957 /**
958  * stmmac_init_rx_buffers - init the RX descriptor buffer.
959  * @priv: driver private structure
960  * @p: descriptor pointer
961  * @i: descriptor index
962  * @flags: gfp flag.
963  * Description: this function is called to allocate a receive buffer, perform
964  * the DMA mapping and init the descriptor.
965  */
966 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
967                                   int i, gfp_t flags)
968 {
969         struct sk_buff *skb;
970
971         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
972         if (!skb) {
973                 netdev_err(priv->dev,
974                            "%s: Rx init fails; skb is NULL\n", __func__);
975                 return -ENOMEM;
976         }
977         priv->rx_skbuff[i] = skb;
978         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
979                                                 priv->dma_buf_sz,
980                                                 DMA_FROM_DEVICE);
981         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
982                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
983                 dev_kfree_skb_any(skb);
984                 return -EINVAL;
985         }
986
987         if (priv->synopsys_id >= DWMAC_CORE_4_00)
988                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[i]);
989         else
990                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[i]);
991
992         if ((priv->hw->mode->init_desc3) &&
993             (priv->dma_buf_sz == BUF_SIZE_16KiB))
994                 priv->hw->mode->init_desc3(p);
995
996         return 0;
997 }
998
999 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1000 {
1001         if (priv->rx_skbuff[i]) {
1002                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1003                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1004                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1005         }
1006         priv->rx_skbuff[i] = NULL;
1007 }
1008
1009 /**
1010  * init_dma_desc_rings - init the RX/TX descriptor rings
1011  * @dev: net device structure
1012  * @flags: gfp flag.
1013  * Description: this function initializes the DMA RX/TX descriptors
1014  * and allocates the socket buffers. It supports the chained and ring
1015  * modes.
1016  */
1017 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1018 {
1019         int i;
1020         struct stmmac_priv *priv = netdev_priv(dev);
1021         unsigned int bfsize = 0;
1022         int ret = -ENOMEM;
1023
1024         if (priv->hw->mode->set_16kib_bfsize)
1025                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1026
1027         if (bfsize < BUF_SIZE_16KiB)
1028                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1029
1030         priv->dma_buf_sz = bfsize;
1031
1032         netif_dbg(priv, probe, priv->dev,
1033                   "(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n",
1034                   __func__, (u32)priv->dma_rx_phy, (u32)priv->dma_tx_phy);
1035
1036         /* RX INITIALIZATION */
1037         netif_dbg(priv, probe, priv->dev,
1038                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1039
1040         for (i = 0; i < DMA_RX_SIZE; i++) {
1041                 struct dma_desc *p;
1042                 if (priv->extend_desc)
1043                         p = &((priv->dma_erx + i)->basic);
1044                 else
1045                         p = priv->dma_rx + i;
1046
1047                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1048                 if (ret)
1049                         goto err_init_rx_buffers;
1050
1051                 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1052                           priv->rx_skbuff[i], priv->rx_skbuff[i]->data,
1053                           (unsigned int)priv->rx_skbuff_dma[i]);
1054         }
1055         priv->cur_rx = 0;
1056         priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1057         buf_sz = bfsize;
1058
1059         /* Setup the chained descriptor addresses */
1060         if (priv->mode == STMMAC_CHAIN_MODE) {
1061                 if (priv->extend_desc) {
1062                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1063                                              DMA_RX_SIZE, 1);
1064                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1065                                              DMA_TX_SIZE, 1);
1066                 } else {
1067                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1068                                              DMA_RX_SIZE, 0);
1069                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1070                                              DMA_TX_SIZE, 0);
1071                 }
1072         }
1073
1074         /* TX INITIALIZATION */
1075         for (i = 0; i < DMA_TX_SIZE; i++) {
1076                 struct dma_desc *p;
1077                 if (priv->extend_desc)
1078                         p = &((priv->dma_etx + i)->basic);
1079                 else
1080                         p = priv->dma_tx + i;
1081
1082                 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1083                         p->des0 = 0;
1084                         p->des1 = 0;
1085                         p->des2 = 0;
1086                         p->des3 = 0;
1087                 } else {
1088                         p->des2 = 0;
1089                 }
1090
1091                 priv->tx_skbuff_dma[i].buf = 0;
1092                 priv->tx_skbuff_dma[i].map_as_page = false;
1093                 priv->tx_skbuff_dma[i].len = 0;
1094                 priv->tx_skbuff_dma[i].last_segment = false;
1095                 priv->tx_skbuff[i] = NULL;
1096         }
1097
1098         priv->dirty_tx = 0;
1099         priv->cur_tx = 0;
1100         netdev_reset_queue(priv->dev);
1101
1102         stmmac_clear_descriptors(priv);
1103
1104         if (netif_msg_hw(priv))
1105                 stmmac_display_rings(priv);
1106
1107         return 0;
1108 err_init_rx_buffers:
1109         while (--i >= 0)
1110                 stmmac_free_rx_buffers(priv, i);
1111         return ret;
1112 }
1113
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116         int i;
1117
1118         for (i = 0; i < DMA_RX_SIZE; i++)
1119                 stmmac_free_rx_buffers(priv, i);
1120 }
1121
1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1123 {
1124         int i;
1125
1126         for (i = 0; i < DMA_TX_SIZE; i++) {
1127                 if (priv->tx_skbuff_dma[i].buf) {
1128                         if (priv->tx_skbuff_dma[i].map_as_page)
1129                                 dma_unmap_page(priv->device,
1130                                                priv->tx_skbuff_dma[i].buf,
1131                                                priv->tx_skbuff_dma[i].len,
1132                                                DMA_TO_DEVICE);
1133                         else
1134                                 dma_unmap_single(priv->device,
1135                                                  priv->tx_skbuff_dma[i].buf,
1136                                                  priv->tx_skbuff_dma[i].len,
1137                                                  DMA_TO_DEVICE);
1138                 }
1139
1140                 if (priv->tx_skbuff[i]) {
1141                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1142                         priv->tx_skbuff[i] = NULL;
1143                         priv->tx_skbuff_dma[i].buf = 0;
1144                         priv->tx_skbuff_dma[i].map_as_page = false;
1145                 }
1146         }
1147 }
1148
1149 /**
1150  * alloc_dma_desc_resources - alloc TX/RX resources.
1151  * @priv: private structure
1152  * Description: according to which descriptor can be used (extend or basic)
1153  * this function allocates the resources for TX and RX paths. In case of
1154  * reception, for example, it pre-allocated the RX socket buffer in order to
1155  * allow zero-copy mechanism.
1156  */
1157 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1158 {
1159         int ret = -ENOMEM;
1160
1161         priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1162                                             GFP_KERNEL);
1163         if (!priv->rx_skbuff_dma)
1164                 return -ENOMEM;
1165
1166         priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1167                                         GFP_KERNEL);
1168         if (!priv->rx_skbuff)
1169                 goto err_rx_skbuff;
1170
1171         priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1172                                             sizeof(*priv->tx_skbuff_dma),
1173                                             GFP_KERNEL);
1174         if (!priv->tx_skbuff_dma)
1175                 goto err_tx_skbuff_dma;
1176
1177         priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1178                                         GFP_KERNEL);
1179         if (!priv->tx_skbuff)
1180                 goto err_tx_skbuff;
1181
1182         if (priv->extend_desc) {
1183                 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1184                                                     sizeof(struct
1185                                                            dma_extended_desc),
1186                                                     &priv->dma_rx_phy,
1187                                                     GFP_KERNEL);
1188                 if (!priv->dma_erx)
1189                         goto err_dma;
1190
1191                 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1192                                                     sizeof(struct
1193                                                            dma_extended_desc),
1194                                                     &priv->dma_tx_phy,
1195                                                     GFP_KERNEL);
1196                 if (!priv->dma_etx) {
1197                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1198                                           sizeof(struct dma_extended_desc),
1199                                           priv->dma_erx, priv->dma_rx_phy);
1200                         goto err_dma;
1201                 }
1202         } else {
1203                 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1204                                                    sizeof(struct dma_desc),
1205                                                    &priv->dma_rx_phy,
1206                                                    GFP_KERNEL);
1207                 if (!priv->dma_rx)
1208                         goto err_dma;
1209
1210                 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1211                                                    sizeof(struct dma_desc),
1212                                                    &priv->dma_tx_phy,
1213                                                    GFP_KERNEL);
1214                 if (!priv->dma_tx) {
1215                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1216                                           sizeof(struct dma_desc),
1217                                           priv->dma_rx, priv->dma_rx_phy);
1218                         goto err_dma;
1219                 }
1220         }
1221
1222         return 0;
1223
1224 err_dma:
1225         kfree(priv->tx_skbuff);
1226 err_tx_skbuff:
1227         kfree(priv->tx_skbuff_dma);
1228 err_tx_skbuff_dma:
1229         kfree(priv->rx_skbuff);
1230 err_rx_skbuff:
1231         kfree(priv->rx_skbuff_dma);
1232         return ret;
1233 }
1234
1235 static void free_dma_desc_resources(struct stmmac_priv *priv)
1236 {
1237         /* Release the DMA TX/RX socket buffers */
1238         dma_free_rx_skbufs(priv);
1239         dma_free_tx_skbufs(priv);
1240
1241         /* Free DMA regions of consistent memory previously allocated */
1242         if (!priv->extend_desc) {
1243                 dma_free_coherent(priv->device,
1244                                   DMA_TX_SIZE * sizeof(struct dma_desc),
1245                                   priv->dma_tx, priv->dma_tx_phy);
1246                 dma_free_coherent(priv->device,
1247                                   DMA_RX_SIZE * sizeof(struct dma_desc),
1248                                   priv->dma_rx, priv->dma_rx_phy);
1249         } else {
1250                 dma_free_coherent(priv->device, DMA_TX_SIZE *
1251                                   sizeof(struct dma_extended_desc),
1252                                   priv->dma_etx, priv->dma_tx_phy);
1253                 dma_free_coherent(priv->device, DMA_RX_SIZE *
1254                                   sizeof(struct dma_extended_desc),
1255                                   priv->dma_erx, priv->dma_rx_phy);
1256         }
1257         kfree(priv->rx_skbuff_dma);
1258         kfree(priv->rx_skbuff);
1259         kfree(priv->tx_skbuff_dma);
1260         kfree(priv->tx_skbuff);
1261 }
1262
1263 /**
1264  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1265  *  @priv: driver private structure
1266  *  Description: It is used for enabling the rx queues in the MAC
1267  */
1268 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1269 {
1270         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1271         int queue;
1272         u8 mode;
1273
1274         for (queue = 0; queue < rx_queues_count; queue++) {
1275                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1276                 priv->hw->mac->rx_queue_enable(priv->hw, mode, queue);
1277         }
1278 }
1279
1280 /**
1281  * stmmac_start_rx_dma - start RX DMA channel
1282  * @priv: driver private structure
1283  * @chan: RX channel index
1284  * Description:
1285  * This starts a RX DMA channel
1286  */
1287 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1288 {
1289         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1290         priv->hw->dma->start_rx(priv->ioaddr, chan);
1291 }
1292
1293 /**
1294  * stmmac_start_tx_dma - start TX DMA channel
1295  * @priv: driver private structure
1296  * @chan: TX channel index
1297  * Description:
1298  * This starts a TX DMA channel
1299  */
1300 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1301 {
1302         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1303         priv->hw->dma->start_tx(priv->ioaddr, chan);
1304 }
1305
1306 /**
1307  * stmmac_stop_rx_dma - stop RX DMA channel
1308  * @priv: driver private structure
1309  * @chan: RX channel index
1310  * Description:
1311  * This stops a RX DMA channel
1312  */
1313 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1314 {
1315         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1316         priv->hw->dma->stop_rx(priv->ioaddr, chan);
1317 }
1318
1319 /**
1320  * stmmac_stop_tx_dma - stop TX DMA channel
1321  * @priv: driver private structure
1322  * @chan: TX channel index
1323  * Description:
1324  * This stops a TX DMA channel
1325  */
1326 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1327 {
1328         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1329         priv->hw->dma->stop_tx(priv->ioaddr, chan);
1330 }
1331
1332 /**
1333  * stmmac_start_all_dma - start all RX and TX DMA channels
1334  * @priv: driver private structure
1335  * Description:
1336  * This starts all the RX and TX DMA channels
1337  */
1338 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1339 {
1340         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1341         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1342         u32 chan = 0;
1343
1344         for (chan = 0; chan < rx_channels_count; chan++)
1345                 stmmac_start_rx_dma(priv, chan);
1346
1347         for (chan = 0; chan < tx_channels_count; chan++)
1348                 stmmac_start_tx_dma(priv, chan);
1349 }
1350
1351 /**
1352  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1353  * @priv: driver private structure
1354  * Description:
1355  * This stops the RX and TX DMA channels
1356  */
1357 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1358 {
1359         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1360         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1361         u32 chan = 0;
1362
1363         for (chan = 0; chan < rx_channels_count; chan++)
1364                 stmmac_stop_rx_dma(priv, chan);
1365
1366         for (chan = 0; chan < tx_channels_count; chan++)
1367                 stmmac_stop_tx_dma(priv, chan);
1368 }
1369
1370 /**
1371  *  stmmac_dma_operation_mode - HW DMA operation mode
1372  *  @priv: driver private structure
1373  *  Description: it is used for configuring the DMA operation mode register in
1374  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1375  */
1376 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1377 {
1378         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1379         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1380         int rxfifosz = priv->plat->rx_fifo_size;
1381         u32 txmode = 0;
1382         u32 rxmode = 0;
1383         u32 chan = 0;
1384
1385         if (rxfifosz == 0)
1386                 rxfifosz = priv->dma_cap.rx_fifo_size;
1387
1388         if (priv->plat->force_thresh_dma_mode) {
1389                 txmode = tc;
1390                 rxmode = tc;
1391         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1392                 /*
1393                  * In case of GMAC, SF mode can be enabled
1394                  * to perform the TX COE in HW. This depends on:
1395                  * 1) TX COE if actually supported
1396                  * 2) There is no bugged Jumbo frame support
1397                  *    that needs to not insert csum in the TDES.
1398                  */
1399                 txmode = SF_DMA_MODE;
1400                 rxmode = SF_DMA_MODE;
1401                 priv->xstats.threshold = SF_DMA_MODE;
1402         } else {
1403                 txmode = tc;
1404                 rxmode = SF_DMA_MODE;
1405         }
1406
1407         /* configure all channels */
1408         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1409                 for (chan = 0; chan < rx_channels_count; chan++)
1410                         priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1411                                                    rxfifosz);
1412
1413                 for (chan = 0; chan < tx_channels_count; chan++)
1414                         priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan);
1415         } else {
1416                 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1417                                         rxfifosz);
1418         }
1419 }
1420
1421 /**
1422  * stmmac_tx_clean - to manage the transmission completion
1423  * @priv: driver private structure
1424  * Description: it reclaims the transmit resources after transmission completes.
1425  */
1426 static void stmmac_tx_clean(struct stmmac_priv *priv)
1427 {
1428         unsigned int bytes_compl = 0, pkts_compl = 0;
1429         unsigned int entry = priv->dirty_tx;
1430
1431         netif_tx_lock(priv->dev);
1432
1433         priv->xstats.tx_clean++;
1434
1435         while (entry != priv->cur_tx) {
1436                 struct sk_buff *skb = priv->tx_skbuff[entry];
1437                 struct dma_desc *p;
1438                 int status;
1439
1440                 if (priv->extend_desc)
1441                         p = (struct dma_desc *)(priv->dma_etx + entry);
1442                 else
1443                         p = priv->dma_tx + entry;
1444
1445                 status = priv->hw->desc->tx_status(&priv->dev->stats,
1446                                                       &priv->xstats, p,
1447                                                       priv->ioaddr);
1448                 /* Check if the descriptor is owned by the DMA */
1449                 if (unlikely(status & tx_dma_own))
1450                         break;
1451
1452                 /* Just consider the last segment and ...*/
1453                 if (likely(!(status & tx_not_ls))) {
1454                         /* ... verify the status error condition */
1455                         if (unlikely(status & tx_err)) {
1456                                 priv->dev->stats.tx_errors++;
1457                         } else {
1458                                 priv->dev->stats.tx_packets++;
1459                                 priv->xstats.tx_pkt_n++;
1460                         }
1461                         stmmac_get_tx_hwtstamp(priv, p, skb);
1462                 }
1463
1464                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1465                         if (priv->tx_skbuff_dma[entry].map_as_page)
1466                                 dma_unmap_page(priv->device,
1467                                                priv->tx_skbuff_dma[entry].buf,
1468                                                priv->tx_skbuff_dma[entry].len,
1469                                                DMA_TO_DEVICE);
1470                         else
1471                                 dma_unmap_single(priv->device,
1472                                                  priv->tx_skbuff_dma[entry].buf,
1473                                                  priv->tx_skbuff_dma[entry].len,
1474                                                  DMA_TO_DEVICE);
1475                         priv->tx_skbuff_dma[entry].buf = 0;
1476                         priv->tx_skbuff_dma[entry].len = 0;
1477                         priv->tx_skbuff_dma[entry].map_as_page = false;
1478                 }
1479
1480                 if (priv->hw->mode->clean_desc3)
1481                         priv->hw->mode->clean_desc3(priv, p);
1482
1483                 priv->tx_skbuff_dma[entry].last_segment = false;
1484                 priv->tx_skbuff_dma[entry].is_jumbo = false;
1485
1486                 if (likely(skb != NULL)) {
1487                         pkts_compl++;
1488                         bytes_compl += skb->len;
1489                         dev_consume_skb_any(skb);
1490                         priv->tx_skbuff[entry] = NULL;
1491                 }
1492
1493                 priv->hw->desc->release_tx_desc(p, priv->mode);
1494
1495                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1496         }
1497         priv->dirty_tx = entry;
1498
1499         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1500
1501         if (unlikely(netif_queue_stopped(priv->dev) &&
1502             stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1503                 netif_dbg(priv, tx_done, priv->dev,
1504                           "%s: restart transmit\n", __func__);
1505                 netif_wake_queue(priv->dev);
1506         }
1507
1508         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1509                 stmmac_enable_eee_mode(priv);
1510                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1511         }
1512         netif_tx_unlock(priv->dev);
1513 }
1514
1515 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv, u32 chan)
1516 {
1517         priv->hw->dma->enable_dma_irq(priv->ioaddr, chan);
1518 }
1519
1520 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan)
1521 {
1522         priv->hw->dma->disable_dma_irq(priv->ioaddr, chan);
1523 }
1524
1525 /**
1526  * stmmac_tx_err - to manage the tx error
1527  * @priv: driver private structure
1528  * @chan: channel index
1529  * Description: it cleans the descriptors and restarts the transmission
1530  * in case of transmission errors.
1531  */
1532 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1533 {
1534         int i;
1535         netif_stop_queue(priv->dev);
1536
1537         stmmac_stop_tx_dma(priv, chan);
1538         dma_free_tx_skbufs(priv);
1539         for (i = 0; i < DMA_TX_SIZE; i++)
1540                 if (priv->extend_desc)
1541                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1542                                                      priv->mode,
1543                                                      (i == DMA_TX_SIZE - 1));
1544                 else
1545                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1546                                                      priv->mode,
1547                                                      (i == DMA_TX_SIZE - 1));
1548         priv->dirty_tx = 0;
1549         priv->cur_tx = 0;
1550         netdev_reset_queue(priv->dev);
1551         stmmac_start_tx_dma(priv, chan);
1552
1553         priv->dev->stats.tx_errors++;
1554         netif_wake_queue(priv->dev);
1555 }
1556
1557 /**
1558  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1559  *  @priv: driver private structure
1560  *  @txmode: TX operating mode
1561  *  @rxmode: RX operating mode
1562  *  @chan: channel index
1563  *  Description: it is used for configuring of the DMA operation mode in
1564  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1565  *  mode.
1566  */
1567 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1568                                           u32 rxmode, u32 chan)
1569 {
1570         int rxfifosz = priv->plat->rx_fifo_size;
1571
1572         if (rxfifosz == 0)
1573                 rxfifosz = priv->dma_cap.rx_fifo_size;
1574
1575         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1576                 priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1577                                            rxfifosz);
1578                 priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan);
1579         } else {
1580                 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1581                                         rxfifosz);
1582         }
1583 }
1584
1585 /**
1586  * stmmac_dma_interrupt - DMA ISR
1587  * @priv: driver private structure
1588  * Description: this is the DMA ISR. It is called by the main ISR.
1589  * It calls the dwmac dma routine and schedule poll method in case of some
1590  * work can be done.
1591  */
1592 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1593 {
1594         u32 tx_channel_count = priv->plat->tx_queues_to_use;
1595         int status;
1596         u32 chan;
1597
1598         for (chan = 0; chan < tx_channel_count; chan++) {
1599                 status = priv->hw->dma->dma_interrupt(priv->ioaddr,
1600                                                       &priv->xstats, chan);
1601                 if (likely((status & handle_rx)) || (status & handle_tx)) {
1602                         if (likely(napi_schedule_prep(&priv->napi))) {
1603                                 stmmac_disable_dma_irq(priv, chan);
1604                                 __napi_schedule(&priv->napi);
1605                         }
1606                 }
1607
1608                 if (unlikely(status & tx_hard_error_bump_tc)) {
1609                         /* Try to bump up the dma threshold on this failure */
1610                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1611                             (tc <= 256)) {
1612                                 tc += 64;
1613                                 if (priv->plat->force_thresh_dma_mode)
1614                                         stmmac_set_dma_operation_mode(priv,
1615                                                                       tc,
1616                                                                       tc,
1617                                                                       chan);
1618                                 else
1619                                         stmmac_set_dma_operation_mode(priv,
1620                                                                     tc,
1621                                                                     SF_DMA_MODE,
1622                                                                     chan);
1623                                 priv->xstats.threshold = tc;
1624                         }
1625                 } else if (unlikely(status == tx_hard_error)) {
1626                         stmmac_tx_err(priv, chan);
1627                 }
1628         }
1629 }
1630
1631 /**
1632  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1633  * @priv: driver private structure
1634  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1635  */
1636 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1637 {
1638         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1639                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1640
1641         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1642                 priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
1643                 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1644         } else {
1645                 priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
1646                 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1647         }
1648
1649         dwmac_mmc_intr_all_mask(priv->mmcaddr);
1650
1651         if (priv->dma_cap.rmon) {
1652                 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1653                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1654         } else
1655                 netdev_info(priv->dev, "No MAC Management Counters available\n");
1656 }
1657
1658 /**
1659  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1660  * @priv: driver private structure
1661  * Description: select the Enhanced/Alternate or Normal descriptors.
1662  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1663  * supported by the HW capability register.
1664  */
1665 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1666 {
1667         if (priv->plat->enh_desc) {
1668                 dev_info(priv->device, "Enhanced/Alternate descriptors\n");
1669
1670                 /* GMAC older than 3.50 has no extended descriptors */
1671                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1672                         dev_info(priv->device, "Enabled extended descriptors\n");
1673                         priv->extend_desc = 1;
1674                 } else
1675                         dev_warn(priv->device, "Extended descriptors not supported\n");
1676
1677                 priv->hw->desc = &enh_desc_ops;
1678         } else {
1679                 dev_info(priv->device, "Normal descriptors\n");
1680                 priv->hw->desc = &ndesc_ops;
1681         }
1682 }
1683
1684 /**
1685  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1686  * @priv: driver private structure
1687  * Description:
1688  *  new GMAC chip generations have a new register to indicate the
1689  *  presence of the optional feature/functions.
1690  *  This can be also used to override the value passed through the
1691  *  platform and necessary for old MAC10/100 and GMAC chips.
1692  */
1693 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1694 {
1695         u32 ret = 0;
1696
1697         if (priv->hw->dma->get_hw_feature) {
1698                 priv->hw->dma->get_hw_feature(priv->ioaddr,
1699                                               &priv->dma_cap);
1700                 ret = 1;
1701         }
1702
1703         return ret;
1704 }
1705
1706 /**
1707  * stmmac_check_ether_addr - check if the MAC addr is valid
1708  * @priv: driver private structure
1709  * Description:
1710  * it is to verify if the MAC address is valid, in case of failures it
1711  * generates a random MAC address
1712  */
1713 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1714 {
1715         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1716                 priv->hw->mac->get_umac_addr(priv->hw,
1717                                              priv->dev->dev_addr, 0);
1718                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1719                         eth_hw_addr_random(priv->dev);
1720                 netdev_info(priv->dev, "device MAC address %pM\n",
1721                             priv->dev->dev_addr);
1722         }
1723 }
1724
1725 /**
1726  * stmmac_init_dma_engine - DMA init.
1727  * @priv: driver private structure
1728  * Description:
1729  * It inits the DMA invoking the specific MAC/GMAC callback.
1730  * Some DMA parameters can be passed from the platform;
1731  * in case of these are not passed a default is kept for the MAC or GMAC.
1732  */
1733 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1734 {
1735         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1736         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1737         u32 dummy_dma_rx_phy = 0;
1738         u32 dummy_dma_tx_phy = 0;
1739         u32 chan = 0;
1740         int atds = 0;
1741         int ret = 0;
1742
1743         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
1744                 dev_err(priv->device, "Invalid DMA configuration\n");
1745                 return -EINVAL;
1746         }
1747
1748         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1749                 atds = 1;
1750
1751         ret = priv->hw->dma->reset(priv->ioaddr);
1752         if (ret) {
1753                 dev_err(priv->device, "Failed to reset the dma\n");
1754                 return ret;
1755         }
1756
1757         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1758                 /* DMA Configuration */
1759                 priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
1760                                     dummy_dma_tx_phy, dummy_dma_rx_phy, atds);
1761
1762                 /* DMA RX Channel Configuration */
1763                 for (chan = 0; chan < rx_channels_count; chan++) {
1764                         priv->hw->dma->init_rx_chan(priv->ioaddr,
1765                                                     priv->plat->dma_cfg,
1766                                                     priv->dma_rx_phy, chan);
1767
1768                         priv->rx_tail_addr = priv->dma_rx_phy +
1769                                     (DMA_RX_SIZE * sizeof(struct dma_desc));
1770                         priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
1771                                                        priv->rx_tail_addr,
1772                                                        chan);
1773                 }
1774
1775                 /* DMA TX Channel Configuration */
1776                 for (chan = 0; chan < tx_channels_count; chan++) {
1777                         priv->hw->dma->init_chan(priv->ioaddr,
1778                                                         priv->plat->dma_cfg,
1779                                                         chan);
1780
1781                         priv->hw->dma->init_tx_chan(priv->ioaddr,
1782                                                     priv->plat->dma_cfg,
1783                                                     priv->dma_tx_phy, chan);
1784
1785                         priv->tx_tail_addr = priv->dma_tx_phy +
1786                                     (DMA_TX_SIZE * sizeof(struct dma_desc));
1787                         priv->hw->dma->set_tx_tail_ptr(priv->ioaddr,
1788                                                        priv->tx_tail_addr,
1789                                                        chan);
1790                 }
1791         } else {
1792                 priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
1793                                     priv->dma_tx_phy, priv->dma_rx_phy, atds);
1794         }
1795
1796         if (priv->plat->axi && priv->hw->dma->axi)
1797                 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1798
1799         return ret;
1800 }
1801
1802 /**
1803  * stmmac_tx_timer - mitigation sw timer for tx.
1804  * @data: data pointer
1805  * Description:
1806  * This is the timer handler to directly invoke the stmmac_tx_clean.
1807  */
1808 static void stmmac_tx_timer(unsigned long data)
1809 {
1810         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1811
1812         stmmac_tx_clean(priv);
1813 }
1814
1815 /**
1816  * stmmac_init_tx_coalesce - init tx mitigation options.
1817  * @priv: driver private structure
1818  * Description:
1819  * This inits the transmit coalesce parameters: i.e. timer rate,
1820  * timer handler and default threshold used for enabling the
1821  * interrupt on completion bit.
1822  */
1823 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1824 {
1825         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1826         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1827         init_timer(&priv->txtimer);
1828         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1829         priv->txtimer.data = (unsigned long)priv;
1830         priv->txtimer.function = stmmac_tx_timer;
1831         add_timer(&priv->txtimer);
1832 }
1833
1834 static void stmmac_set_rings_length(struct stmmac_priv *priv)
1835 {
1836         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1837         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1838         u32 chan;
1839
1840         /* set TX ring length */
1841         if (priv->hw->dma->set_tx_ring_len) {
1842                 for (chan = 0; chan < tx_channels_count; chan++)
1843                         priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1844                                                        (DMA_TX_SIZE - 1), chan);
1845         }
1846
1847         /* set RX ring length */
1848         if (priv->hw->dma->set_rx_ring_len) {
1849                 for (chan = 0; chan < rx_channels_count; chan++)
1850                         priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1851                                                        (DMA_RX_SIZE - 1), chan);
1852         }
1853 }
1854
1855 /**
1856  *  stmmac_set_tx_queue_weight - Set TX queue weight
1857  *  @priv: driver private structure
1858  *  Description: It is used for setting TX queues weight
1859  */
1860 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
1861 {
1862         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1863         u32 weight;
1864         u32 queue;
1865
1866         for (queue = 0; queue < tx_queues_count; queue++) {
1867                 weight = priv->plat->tx_queues_cfg[queue].weight;
1868                 priv->hw->mac->set_mtl_tx_queue_weight(priv->hw, weight, queue);
1869         }
1870 }
1871
1872 /**
1873  *  stmmac_configure_cbs - Configure CBS in TX queue
1874  *  @priv: driver private structure
1875  *  Description: It is used for configuring CBS in AVB TX queues
1876  */
1877 static void stmmac_configure_cbs(struct stmmac_priv *priv)
1878 {
1879         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1880         u32 mode_to_use;
1881         u32 queue;
1882
1883         for (queue = 0; queue < tx_queues_count; queue++) {
1884                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
1885                 if (mode_to_use == MTL_QUEUE_DCB)
1886                         continue;
1887
1888                 priv->hw->mac->config_cbs(priv->hw,
1889                                 priv->plat->tx_queues_cfg[queue].send_slope,
1890                                 priv->plat->tx_queues_cfg[queue].idle_slope,
1891                                 priv->plat->tx_queues_cfg[queue].high_credit,
1892                                 priv->plat->tx_queues_cfg[queue].low_credit,
1893                                 queue);
1894         }
1895 }
1896
1897 /**
1898  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
1899  *  @priv: driver private structure
1900  *  Description: It is used for mapping RX queues to RX dma channels
1901  */
1902 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
1903 {
1904         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1905         u32 queue;
1906         u32 chan;
1907
1908         for (queue = 0; queue < rx_queues_count; queue++) {
1909                 chan = priv->plat->rx_queues_cfg[queue].chan;
1910                 priv->hw->mac->map_mtl_to_dma(priv->hw, queue, chan);
1911         }
1912 }
1913
1914 /**
1915  *  stmmac_mtl_configuration - Configure MTL
1916  *  @priv: driver private structure
1917  *  Description: It is used for configurring MTL
1918  */
1919 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
1920 {
1921         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1922         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1923
1924         if (tx_queues_count > 1 && priv->hw->mac->set_mtl_tx_queue_weight)
1925                 stmmac_set_tx_queue_weight(priv);
1926
1927         /* Configure MTL RX algorithms */
1928         if (rx_queues_count > 1 && priv->hw->mac->prog_mtl_rx_algorithms)
1929                 priv->hw->mac->prog_mtl_rx_algorithms(priv->hw,
1930                                                 priv->plat->rx_sched_algorithm);
1931
1932         /* Configure MTL TX algorithms */
1933         if (tx_queues_count > 1 && priv->hw->mac->prog_mtl_tx_algorithms)
1934                 priv->hw->mac->prog_mtl_tx_algorithms(priv->hw,
1935                                                 priv->plat->tx_sched_algorithm);
1936
1937         /* Configure CBS in AVB TX queues */
1938         if (tx_queues_count > 1 && priv->hw->mac->config_cbs)
1939                 stmmac_configure_cbs(priv);
1940
1941         /* Map RX MTL to DMA channels */
1942         if (rx_queues_count > 1 && priv->hw->mac->map_mtl_to_dma)
1943                 stmmac_rx_queue_dma_chan_map(priv);
1944
1945         /* Enable MAC RX Queues */
1946         if (rx_queues_count > 1 && priv->hw->mac->rx_queue_enable)
1947                 stmmac_mac_enable_rx_queues(priv);
1948
1949         /* Set the HW DMA mode and the COE */
1950         stmmac_dma_operation_mode(priv);
1951 }
1952
1953 /**
1954  * stmmac_hw_setup - setup mac in a usable state.
1955  *  @dev : pointer to the device structure.
1956  *  Description:
1957  *  this is the main function to setup the HW in a usable state because the
1958  *  dma engine is reset, the core registers are configured (e.g. AXI,
1959  *  Checksum features, timers). The DMA is ready to start receiving and
1960  *  transmitting.
1961  *  Return value:
1962  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1963  *  file on failure.
1964  */
1965 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1966 {
1967         struct stmmac_priv *priv = netdev_priv(dev);
1968         u32 rx_cnt = priv->plat->rx_queues_to_use;
1969         u32 tx_cnt = priv->plat->tx_queues_to_use;
1970         u32 chan;
1971         int ret;
1972
1973         /* DMA initialization and SW reset */
1974         ret = stmmac_init_dma_engine(priv);
1975         if (ret < 0) {
1976                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
1977                            __func__);
1978                 return ret;
1979         }
1980
1981         /* Copy the MAC addr into the HW  */
1982         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1983
1984         /* PS and related bits will be programmed according to the speed */
1985         if (priv->hw->pcs) {
1986                 int speed = priv->plat->mac_port_sel_speed;
1987
1988                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1989                     (speed == SPEED_1000)) {
1990                         priv->hw->ps = speed;
1991                 } else {
1992                         dev_warn(priv->device, "invalid port speed\n");
1993                         priv->hw->ps = 0;
1994                 }
1995         }
1996
1997         /* Initialize the MAC Core */
1998         priv->hw->mac->core_init(priv->hw, dev->mtu);
1999
2000         /* Initialize MTL*/
2001         if (priv->synopsys_id >= DWMAC_CORE_4_00)
2002                 stmmac_mtl_configuration(priv);
2003
2004         ret = priv->hw->mac->rx_ipc(priv->hw);
2005         if (!ret) {
2006                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2007                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2008                 priv->hw->rx_csum = 0;
2009         }
2010
2011         /* Enable the MAC Rx/Tx */
2012         if (priv->synopsys_id >= DWMAC_CORE_4_00)
2013                 stmmac_dwmac4_set_mac(priv->ioaddr, true);
2014         else
2015                 stmmac_set_mac(priv->ioaddr, true);
2016
2017         stmmac_mmc_setup(priv);
2018
2019         if (init_ptp) {
2020                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2021                 if (ret < 0)
2022                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2023
2024                 ret = stmmac_init_ptp(priv);
2025                 if (ret == -EOPNOTSUPP)
2026                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2027                 else if (ret)
2028                         netdev_warn(priv->dev, "PTP init failed\n");
2029         }
2030
2031 #ifdef CONFIG_DEBUG_FS
2032         ret = stmmac_init_fs(dev);
2033         if (ret < 0)
2034                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2035                             __func__);
2036 #endif
2037         /* Start the ball rolling... */
2038         stmmac_start_all_dma(priv);
2039
2040         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2041
2042         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
2043                 priv->rx_riwt = MAX_DMA_RIWT;
2044                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2045         }
2046
2047         if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
2048                 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
2049
2050         /* set TX and RX rings length */
2051         stmmac_set_rings_length(priv);
2052
2053         /* Enable TSO */
2054         if (priv->tso) {
2055                 for (chan = 0; chan < tx_cnt; chan++)
2056                         priv->hw->dma->enable_tso(priv->ioaddr, 1, chan);
2057         }
2058
2059         return 0;
2060 }
2061
2062 static void stmmac_hw_teardown(struct net_device *dev)
2063 {
2064         struct stmmac_priv *priv = netdev_priv(dev);
2065
2066         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2067 }
2068
2069 /**
2070  *  stmmac_open - open entry point of the driver
2071  *  @dev : pointer to the device structure.
2072  *  Description:
2073  *  This function is the open entry point of the driver.
2074  *  Return value:
2075  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2076  *  file on failure.
2077  */
2078 static int stmmac_open(struct net_device *dev)
2079 {
2080         struct stmmac_priv *priv = netdev_priv(dev);
2081         int ret;
2082
2083         stmmac_check_ether_addr(priv);
2084
2085         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2086             priv->hw->pcs != STMMAC_PCS_TBI &&
2087             priv->hw->pcs != STMMAC_PCS_RTBI) {
2088                 ret = stmmac_init_phy(dev);
2089                 if (ret) {
2090                         netdev_err(priv->dev,
2091                                    "%s: Cannot attach to PHY (error: %d)\n",
2092                                    __func__, ret);
2093                         return ret;
2094                 }
2095         }
2096
2097         /* Extra statistics */
2098         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2099         priv->xstats.threshold = tc;
2100
2101         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2102         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2103
2104         ret = alloc_dma_desc_resources(priv);
2105         if (ret < 0) {
2106                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2107                            __func__);
2108                 goto dma_desc_error;
2109         }
2110
2111         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2112         if (ret < 0) {
2113                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2114                            __func__);
2115                 goto init_error;
2116         }
2117
2118         ret = stmmac_hw_setup(dev, true);
2119         if (ret < 0) {
2120                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2121                 goto init_error;
2122         }
2123
2124         stmmac_init_tx_coalesce(priv);
2125
2126         if (dev->phydev)
2127                 phy_start(dev->phydev);
2128
2129         /* Request the IRQ lines */
2130         ret = request_irq(dev->irq, stmmac_interrupt,
2131                           IRQF_SHARED, dev->name, dev);
2132         if (unlikely(ret < 0)) {
2133                 netdev_err(priv->dev,
2134                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2135                            __func__, dev->irq, ret);
2136                 goto irq_error;
2137         }
2138
2139         /* Request the Wake IRQ in case of another line is used for WoL */
2140         if (priv->wol_irq != dev->irq) {
2141                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2142                                   IRQF_SHARED, dev->name, dev);
2143                 if (unlikely(ret < 0)) {
2144                         netdev_err(priv->dev,
2145                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2146                                    __func__, priv->wol_irq, ret);
2147                         goto wolirq_error;
2148                 }
2149         }
2150
2151         /* Request the IRQ lines */
2152         if (priv->lpi_irq > 0) {
2153                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2154                                   dev->name, dev);
2155                 if (unlikely(ret < 0)) {
2156                         netdev_err(priv->dev,
2157                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2158                                    __func__, priv->lpi_irq, ret);
2159                         goto lpiirq_error;
2160                 }
2161         }
2162
2163         napi_enable(&priv->napi);
2164         netif_start_queue(dev);
2165
2166         return 0;
2167
2168 lpiirq_error:
2169         if (priv->wol_irq != dev->irq)
2170                 free_irq(priv->wol_irq, dev);
2171 wolirq_error:
2172         free_irq(dev->irq, dev);
2173 irq_error:
2174         if (dev->phydev)
2175                 phy_stop(dev->phydev);
2176
2177         del_timer_sync(&priv->txtimer);
2178         stmmac_hw_teardown(dev);
2179 init_error:
2180         free_dma_desc_resources(priv);
2181 dma_desc_error:
2182         if (dev->phydev)
2183                 phy_disconnect(dev->phydev);
2184
2185         return ret;
2186 }
2187
2188 /**
2189  *  stmmac_release - close entry point of the driver
2190  *  @dev : device pointer.
2191  *  Description:
2192  *  This is the stop entry point of the driver.
2193  */
2194 static int stmmac_release(struct net_device *dev)
2195 {
2196         struct stmmac_priv *priv = netdev_priv(dev);
2197
2198         if (priv->eee_enabled)
2199                 del_timer_sync(&priv->eee_ctrl_timer);
2200
2201         /* Stop and disconnect the PHY */
2202         if (dev->phydev) {
2203                 phy_stop(dev->phydev);
2204                 phy_disconnect(dev->phydev);
2205         }
2206
2207         netif_stop_queue(dev);
2208
2209         napi_disable(&priv->napi);
2210
2211         del_timer_sync(&priv->txtimer);
2212
2213         /* Free the IRQ lines */
2214         free_irq(dev->irq, dev);
2215         if (priv->wol_irq != dev->irq)
2216                 free_irq(priv->wol_irq, dev);
2217         if (priv->lpi_irq > 0)
2218                 free_irq(priv->lpi_irq, dev);
2219
2220         /* Stop TX/RX DMA and clear the descriptors */
2221         stmmac_stop_all_dma(priv);
2222
2223         /* Release and free the Rx/Tx resources */
2224         free_dma_desc_resources(priv);
2225
2226         /* Disable the MAC Rx/Tx */
2227         stmmac_set_mac(priv->ioaddr, false);
2228
2229         netif_carrier_off(dev);
2230
2231 #ifdef CONFIG_DEBUG_FS
2232         stmmac_exit_fs(dev);
2233 #endif
2234
2235         stmmac_release_ptp(priv);
2236
2237         return 0;
2238 }
2239
2240 /**
2241  *  stmmac_tso_allocator - close entry point of the driver
2242  *  @priv: driver private structure
2243  *  @des: buffer start address
2244  *  @total_len: total length to fill in descriptors
2245  *  @last_segmant: condition for the last descriptor
2246  *  Description:
2247  *  This function fills descriptor and request new descriptors according to
2248  *  buffer length to fill
2249  */
2250 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2251                                  int total_len, bool last_segment)
2252 {
2253         struct dma_desc *desc;
2254         int tmp_len;
2255         u32 buff_size;
2256
2257         tmp_len = total_len;
2258
2259         while (tmp_len > 0) {
2260                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2261                 desc = priv->dma_tx + priv->cur_tx;
2262
2263                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2264                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2265                             TSO_MAX_BUFF_SIZE : tmp_len;
2266
2267                 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
2268                         0, 1,
2269                         (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
2270                         0, 0);
2271
2272                 tmp_len -= TSO_MAX_BUFF_SIZE;
2273         }
2274 }
2275
2276 /**
2277  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2278  *  @skb : the socket buffer
2279  *  @dev : device pointer
2280  *  Description: this is the transmit function that is called on TSO frames
2281  *  (support available on GMAC4 and newer chips).
2282  *  Diagram below show the ring programming in case of TSO frames:
2283  *
2284  *  First Descriptor
2285  *   --------
2286  *   | DES0 |---> buffer1 = L2/L3/L4 header
2287  *   | DES1 |---> TCP Payload (can continue on next descr...)
2288  *   | DES2 |---> buffer 1 and 2 len
2289  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2290  *   --------
2291  *      |
2292  *     ...
2293  *      |
2294  *   --------
2295  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2296  *   | DES1 | --|
2297  *   | DES2 | --> buffer 1 and 2 len
2298  *   | DES3 |
2299  *   --------
2300  *
2301  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2302  */
2303 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305         u32 pay_len, mss;
2306         int tmp_pay_len = 0;
2307         struct stmmac_priv *priv = netdev_priv(dev);
2308         int nfrags = skb_shinfo(skb)->nr_frags;
2309         unsigned int first_entry, des;
2310         struct dma_desc *desc, *first, *mss_desc = NULL;
2311         u8 proto_hdr_len;
2312         int i;
2313
2314         /* Compute header lengths */
2315         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2316
2317         /* Desc availability based on threshold should be enough safe */
2318         if (unlikely(stmmac_tx_avail(priv) <
2319                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2320                 if (!netif_queue_stopped(dev)) {
2321                         netif_stop_queue(dev);
2322                         /* This is a hard error, log it. */
2323                         netdev_err(priv->dev,
2324                                    "%s: Tx Ring full when queue awake\n",
2325                                    __func__);
2326                 }
2327                 return NETDEV_TX_BUSY;
2328         }
2329
2330         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2331
2332         mss = skb_shinfo(skb)->gso_size;
2333
2334         /* set new MSS value if needed */
2335         if (mss != priv->mss) {
2336                 mss_desc = priv->dma_tx + priv->cur_tx;
2337                 priv->hw->desc->set_mss(mss_desc, mss);
2338                 priv->mss = mss;
2339                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2340         }
2341
2342         if (netif_msg_tx_queued(priv)) {
2343                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2344                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2345                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2346                         skb->data_len);
2347         }
2348
2349         first_entry = priv->cur_tx;
2350
2351         desc = priv->dma_tx + first_entry;
2352         first = desc;
2353
2354         /* first descriptor: fill Headers on Buf1 */
2355         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2356                              DMA_TO_DEVICE);
2357         if (dma_mapping_error(priv->device, des))
2358                 goto dma_map_err;
2359
2360         priv->tx_skbuff_dma[first_entry].buf = des;
2361         priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2362         priv->tx_skbuff[first_entry] = skb;
2363
2364         first->des0 = cpu_to_le32(des);
2365
2366         /* Fill start of payload in buff2 of first descriptor */
2367         if (pay_len)
2368                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2369
2370         /* If needed take extra descriptors to fill the remaining payload */
2371         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2372
2373         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2374
2375         /* Prepare fragments */
2376         for (i = 0; i < nfrags; i++) {
2377                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2378
2379                 des = skb_frag_dma_map(priv->device, frag, 0,
2380                                        skb_frag_size(frag),
2381                                        DMA_TO_DEVICE);
2382                 if (dma_mapping_error(priv->device, des))
2383                         goto dma_map_err;
2384
2385                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2386                                      (i == nfrags - 1));
2387
2388                 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2389                 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2390                 priv->tx_skbuff[priv->cur_tx] = NULL;
2391                 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2392         }
2393
2394         priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2395
2396         priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2397
2398         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2399                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2400                           __func__);
2401                 netif_stop_queue(dev);
2402         }
2403
2404         dev->stats.tx_bytes += skb->len;
2405         priv->xstats.tx_tso_frames++;
2406         priv->xstats.tx_tso_nfrags += nfrags;
2407
2408         /* Manage tx mitigation */
2409         priv->tx_count_frames += nfrags + 1;
2410         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2411                 mod_timer(&priv->txtimer,
2412                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2413         } else {
2414                 priv->tx_count_frames = 0;
2415                 priv->hw->desc->set_tx_ic(desc);
2416                 priv->xstats.tx_set_ic_bit++;
2417         }
2418
2419         if (!priv->hwts_tx_en)
2420                 skb_tx_timestamp(skb);
2421
2422         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2423                      priv->hwts_tx_en)) {
2424                 /* declare that device is doing timestamping */
2425                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2426                 priv->hw->desc->enable_tx_timestamp(first);
2427         }
2428
2429         /* Complete the first descriptor before granting the DMA */
2430         priv->hw->desc->prepare_tso_tx_desc(first, 1,
2431                         proto_hdr_len,
2432                         pay_len,
2433                         1, priv->tx_skbuff_dma[first_entry].last_segment,
2434                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2435
2436         /* If context desc is used to change MSS */
2437         if (mss_desc)
2438                 priv->hw->desc->set_tx_owner(mss_desc);
2439
2440         /* The own bit must be the latest setting done when prepare the
2441          * descriptor and then barrier is needed to make sure that
2442          * all is coherent before granting the DMA engine.
2443          */
2444         dma_wmb();
2445
2446         if (netif_msg_pktdata(priv)) {
2447                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2448                         __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2449                         priv->cur_tx, first, nfrags);
2450
2451                 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2452                                              0);
2453
2454                 pr_info(">>> frame to be transmitted: ");
2455                 print_pkt(skb->data, skb_headlen(skb));
2456         }
2457
2458         netdev_sent_queue(dev, skb->len);
2459
2460         priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2461                                        STMMAC_CHAN0);
2462
2463         return NETDEV_TX_OK;
2464
2465 dma_map_err:
2466         dev_err(priv->device, "Tx dma map failed\n");
2467         dev_kfree_skb(skb);
2468         priv->dev->stats.tx_dropped++;
2469         return NETDEV_TX_OK;
2470 }
2471
2472 /**
2473  *  stmmac_xmit - Tx entry point of the driver
2474  *  @skb : the socket buffer
2475  *  @dev : device pointer
2476  *  Description : this is the tx entry point of the driver.
2477  *  It programs the chain or the ring and supports oversized frames
2478  *  and SG feature.
2479  */
2480 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2481 {
2482         struct stmmac_priv *priv = netdev_priv(dev);
2483         unsigned int nopaged_len = skb_headlen(skb);
2484         int i, csum_insertion = 0, is_jumbo = 0;
2485         int nfrags = skb_shinfo(skb)->nr_frags;
2486         unsigned int entry, first_entry;
2487         struct dma_desc *desc, *first;
2488         unsigned int enh_desc;
2489         unsigned int des;
2490
2491         /* Manage oversized TCP frames for GMAC4 device */
2492         if (skb_is_gso(skb) && priv->tso) {
2493                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2494                         return stmmac_tso_xmit(skb, dev);
2495         }
2496
2497         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2498                 if (!netif_queue_stopped(dev)) {
2499                         netif_stop_queue(dev);
2500                         /* This is a hard error, log it. */
2501                         netdev_err(priv->dev,
2502                                    "%s: Tx Ring full when queue awake\n",
2503                                    __func__);
2504                 }
2505                 return NETDEV_TX_BUSY;
2506         }
2507
2508         if (priv->tx_path_in_lpi_mode)
2509                 stmmac_disable_eee_mode(priv);
2510
2511         entry = priv->cur_tx;
2512         first_entry = entry;
2513
2514         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2515
2516         if (likely(priv->extend_desc))
2517                 desc = (struct dma_desc *)(priv->dma_etx + entry);
2518         else
2519                 desc = priv->dma_tx + entry;
2520
2521         first = desc;
2522
2523         priv->tx_skbuff[first_entry] = skb;
2524
2525         enh_desc = priv->plat->enh_desc;
2526         /* To program the descriptors according to the size of the frame */
2527         if (enh_desc)
2528                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2529
2530         if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2531                                          DWMAC_CORE_4_00)) {
2532                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2533                 if (unlikely(entry < 0))
2534                         goto dma_map_err;
2535         }
2536
2537         for (i = 0; i < nfrags; i++) {
2538                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2539                 int len = skb_frag_size(frag);
2540                 bool last_segment = (i == (nfrags - 1));
2541
2542                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2543
2544                 if (likely(priv->extend_desc))
2545                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2546                 else
2547                         desc = priv->dma_tx + entry;
2548
2549                 des = skb_frag_dma_map(priv->device, frag, 0, len,
2550                                        DMA_TO_DEVICE);
2551                 if (dma_mapping_error(priv->device, des))
2552                         goto dma_map_err; /* should reuse desc w/o issues */
2553
2554                 priv->tx_skbuff[entry] = NULL;
2555
2556                 priv->tx_skbuff_dma[entry].buf = des;
2557                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2558                         desc->des0 = cpu_to_le32(des);
2559                 else
2560                         desc->des2 = cpu_to_le32(des);
2561
2562                 priv->tx_skbuff_dma[entry].map_as_page = true;
2563                 priv->tx_skbuff_dma[entry].len = len;
2564                 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2565
2566                 /* Prepare the descriptor and set the own bit too */
2567                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2568                                                 priv->mode, 1, last_segment);
2569         }
2570
2571         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2572
2573         priv->cur_tx = entry;
2574
2575         if (netif_msg_pktdata(priv)) {
2576                 void *tx_head;
2577
2578                 netdev_dbg(priv->dev,
2579                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2580                            __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2581                            entry, first, nfrags);
2582
2583                 if (priv->extend_desc)
2584                         tx_head = (void *)priv->dma_etx;
2585                 else
2586                         tx_head = (void *)priv->dma_tx;
2587
2588                 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2589
2590                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
2591                 print_pkt(skb->data, skb->len);
2592         }
2593
2594         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2595                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2596                           __func__);
2597                 netif_stop_queue(dev);
2598         }
2599
2600         dev->stats.tx_bytes += skb->len;
2601
2602         /* According to the coalesce parameter the IC bit for the latest
2603          * segment is reset and the timer re-started to clean the tx status.
2604          * This approach takes care about the fragments: desc is the first
2605          * element in case of no SG.
2606          */
2607         priv->tx_count_frames += nfrags + 1;
2608         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2609                 mod_timer(&priv->txtimer,
2610                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2611         } else {
2612                 priv->tx_count_frames = 0;
2613                 priv->hw->desc->set_tx_ic(desc);
2614                 priv->xstats.tx_set_ic_bit++;
2615         }
2616
2617         if (!priv->hwts_tx_en)
2618                 skb_tx_timestamp(skb);
2619
2620         /* Ready to fill the first descriptor and set the OWN bit w/o any
2621          * problems because all the descriptors are actually ready to be
2622          * passed to the DMA engine.
2623          */
2624         if (likely(!is_jumbo)) {
2625                 bool last_segment = (nfrags == 0);
2626
2627                 des = dma_map_single(priv->device, skb->data,
2628                                      nopaged_len, DMA_TO_DEVICE);
2629                 if (dma_mapping_error(priv->device, des))
2630                         goto dma_map_err;
2631
2632                 priv->tx_skbuff_dma[first_entry].buf = des;
2633                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2634                         first->des0 = cpu_to_le32(des);
2635                 else
2636                         first->des2 = cpu_to_le32(des);
2637
2638                 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2639                 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2640
2641                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2642                              priv->hwts_tx_en)) {
2643                         /* declare that device is doing timestamping */
2644                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2645                         priv->hw->desc->enable_tx_timestamp(first);
2646                 }
2647
2648                 /* Prepare the first descriptor setting the OWN bit too */
2649                 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2650                                                 csum_insertion, priv->mode, 1,
2651                                                 last_segment);
2652
2653                 /* The own bit must be the latest setting done when prepare the
2654                  * descriptor and then barrier is needed to make sure that
2655                  * all is coherent before granting the DMA engine.
2656                  */
2657                 dma_wmb();
2658         }
2659
2660         netdev_sent_queue(dev, skb->len);
2661
2662         if (priv->synopsys_id < DWMAC_CORE_4_00)
2663                 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2664         else
2665                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2666                                                STMMAC_CHAN0);
2667
2668         return NETDEV_TX_OK;
2669
2670 dma_map_err:
2671         netdev_err(priv->dev, "Tx DMA map failed\n");
2672         dev_kfree_skb(skb);
2673         priv->dev->stats.tx_dropped++;
2674         return NETDEV_TX_OK;
2675 }
2676
2677 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2678 {
2679         struct ethhdr *ehdr;
2680         u16 vlanid;
2681
2682         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2683             NETIF_F_HW_VLAN_CTAG_RX &&
2684             !__vlan_get_tag(skb, &vlanid)) {
2685                 /* pop the vlan tag */
2686                 ehdr = (struct ethhdr *)skb->data;
2687                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2688                 skb_pull(skb, VLAN_HLEN);
2689                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2690         }
2691 }
2692
2693
2694 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2695 {
2696         if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2697                 return 0;
2698
2699         return 1;
2700 }
2701
2702 /**
2703  * stmmac_rx_refill - refill used skb preallocated buffers
2704  * @priv: driver private structure
2705  * Description : this is to reallocate the skb for the reception process
2706  * that is based on zero-copy.
2707  */
2708 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2709 {
2710         int bfsize = priv->dma_buf_sz;
2711         unsigned int entry = priv->dirty_rx;
2712         int dirty = stmmac_rx_dirty(priv);
2713
2714         while (dirty-- > 0) {
2715                 struct dma_desc *p;
2716
2717                 if (priv->extend_desc)
2718                         p = (struct dma_desc *)(priv->dma_erx + entry);
2719                 else
2720                         p = priv->dma_rx + entry;
2721
2722                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2723                         struct sk_buff *skb;
2724
2725                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2726                         if (unlikely(!skb)) {
2727                                 /* so for a while no zero-copy! */
2728                                 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2729                                 if (unlikely(net_ratelimit()))
2730                                         dev_err(priv->device,
2731                                                 "fail to alloc skb entry %d\n",
2732                                                 entry);
2733                                 break;
2734                         }
2735
2736                         priv->rx_skbuff[entry] = skb;
2737                         priv->rx_skbuff_dma[entry] =
2738                             dma_map_single(priv->device, skb->data, bfsize,
2739                                            DMA_FROM_DEVICE);
2740                         if (dma_mapping_error(priv->device,
2741                                               priv->rx_skbuff_dma[entry])) {
2742                                 netdev_err(priv->dev, "Rx DMA map failed\n");
2743                                 dev_kfree_skb(skb);
2744                                 break;
2745                         }
2746
2747                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2748                                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2749                                 p->des1 = 0;
2750                         } else {
2751                                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2752                         }
2753                         if (priv->hw->mode->refill_desc3)
2754                                 priv->hw->mode->refill_desc3(priv, p);
2755
2756                         if (priv->rx_zeroc_thresh > 0)
2757                                 priv->rx_zeroc_thresh--;
2758
2759                         netif_dbg(priv, rx_status, priv->dev,
2760                                   "refill entry #%d\n", entry);
2761                 }
2762                 dma_wmb();
2763
2764                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2765                         priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2766                 else
2767                         priv->hw->desc->set_rx_owner(p);
2768
2769                 dma_wmb();
2770
2771                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2772         }
2773         priv->dirty_rx = entry;
2774 }
2775
2776 /**
2777  * stmmac_rx - manage the receive process
2778  * @priv: driver private structure
2779  * @limit: napi bugget.
2780  * Description :  this the function called by the napi poll method.
2781  * It gets all the frames inside the ring.
2782  */
2783 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2784 {
2785         unsigned int entry = priv->cur_rx;
2786         unsigned int next_entry;
2787         unsigned int count = 0;
2788         int coe = priv->hw->rx_csum;
2789
2790         if (netif_msg_rx_status(priv)) {
2791                 void *rx_head;
2792
2793                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
2794                 if (priv->extend_desc)
2795                         rx_head = (void *)priv->dma_erx;
2796                 else
2797                         rx_head = (void *)priv->dma_rx;
2798
2799                 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2800         }
2801         while (count < limit) {
2802                 int status;
2803                 struct dma_desc *p;
2804                 struct dma_desc *np;
2805
2806                 if (priv->extend_desc)
2807                         p = (struct dma_desc *)(priv->dma_erx + entry);
2808                 else
2809                         p = priv->dma_rx + entry;
2810
2811                 /* read the status of the incoming frame */
2812                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2813                                                    &priv->xstats, p);
2814                 /* check if managed by the DMA otherwise go ahead */
2815                 if (unlikely(status & dma_own))
2816                         break;
2817
2818                 count++;
2819
2820                 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2821                 next_entry = priv->cur_rx;
2822
2823                 if (priv->extend_desc)
2824                         np = (struct dma_desc *)(priv->dma_erx + next_entry);
2825                 else
2826                         np = priv->dma_rx + next_entry;
2827
2828                 prefetch(np);
2829
2830                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2831                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2832                                                            &priv->xstats,
2833                                                            priv->dma_erx +
2834                                                            entry);
2835                 if (unlikely(status == discard_frame)) {
2836                         priv->dev->stats.rx_errors++;
2837                         if (priv->hwts_rx_en && !priv->extend_desc) {
2838                                 /* DESC2 & DESC3 will be overwritten by device
2839                                  * with timestamp value, hence reinitialize
2840                                  * them in stmmac_rx_refill() function so that
2841                                  * device can reuse it.
2842                                  */
2843                                 priv->rx_skbuff[entry] = NULL;
2844                                 dma_unmap_single(priv->device,
2845                                                  priv->rx_skbuff_dma[entry],
2846                                                  priv->dma_buf_sz,
2847                                                  DMA_FROM_DEVICE);
2848                         }
2849                 } else {
2850                         struct sk_buff *skb;
2851                         int frame_len;
2852                         unsigned int des;
2853
2854                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2855                                 des = le32_to_cpu(p->des0);
2856                         else
2857                                 des = le32_to_cpu(p->des2);
2858
2859                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2860
2861                         /*  If frame length is greater than skb buffer size
2862                          *  (preallocated during init) then the packet is
2863                          *  ignored
2864                          */
2865                         if (frame_len > priv->dma_buf_sz) {
2866                                 netdev_err(priv->dev,
2867                                            "len %d larger than size (%d)\n",
2868                                            frame_len, priv->dma_buf_sz);
2869                                 priv->dev->stats.rx_length_errors++;
2870                                 break;
2871                         }
2872
2873                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2874                          * Type frames (LLC/LLC-SNAP)
2875                          */
2876                         if (unlikely(status != llc_snap))
2877                                 frame_len -= ETH_FCS_LEN;
2878
2879                         if (netif_msg_rx_status(priv)) {
2880                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
2881                                            p, entry, des);
2882                                 if (frame_len > ETH_FRAME_LEN)
2883                                         netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
2884                                                    frame_len, status);
2885                         }
2886
2887                         /* The zero-copy is always used for all the sizes
2888                          * in case of GMAC4 because it needs
2889                          * to refill the used descriptors, always.
2890                          */
2891                         if (unlikely(!priv->plat->has_gmac4 &&
2892                                      ((frame_len < priv->rx_copybreak) ||
2893                                      stmmac_rx_threshold_count(priv)))) {
2894                                 skb = netdev_alloc_skb_ip_align(priv->dev,
2895                                                                 frame_len);
2896                                 if (unlikely(!skb)) {
2897                                         if (net_ratelimit())
2898                                                 dev_warn(priv->device,
2899                                                          "packet dropped\n");
2900                                         priv->dev->stats.rx_dropped++;
2901                                         break;
2902                                 }
2903
2904                                 dma_sync_single_for_cpu(priv->device,
2905                                                         priv->rx_skbuff_dma
2906                                                         [entry], frame_len,
2907                                                         DMA_FROM_DEVICE);
2908                                 skb_copy_to_linear_data(skb,
2909                                                         priv->
2910                                                         rx_skbuff[entry]->data,
2911                                                         frame_len);
2912
2913                                 skb_put(skb, frame_len);
2914                                 dma_sync_single_for_device(priv->device,
2915                                                            priv->rx_skbuff_dma
2916                                                            [entry], frame_len,
2917                                                            DMA_FROM_DEVICE);
2918                         } else {
2919                                 skb = priv->rx_skbuff[entry];
2920                                 if (unlikely(!skb)) {
2921                                         netdev_err(priv->dev,
2922                                                    "%s: Inconsistent Rx chain\n",
2923                                                    priv->dev->name);
2924                                         priv->dev->stats.rx_dropped++;
2925                                         break;
2926                                 }
2927                                 prefetch(skb->data - NET_IP_ALIGN);
2928                                 priv->rx_skbuff[entry] = NULL;
2929                                 priv->rx_zeroc_thresh++;
2930
2931                                 skb_put(skb, frame_len);
2932                                 dma_unmap_single(priv->device,
2933                                                  priv->rx_skbuff_dma[entry],
2934                                                  priv->dma_buf_sz,
2935                                                  DMA_FROM_DEVICE);
2936                         }
2937
2938                         if (netif_msg_pktdata(priv)) {
2939                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
2940                                            frame_len);
2941                                 print_pkt(skb->data, frame_len);
2942                         }
2943
2944                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
2945
2946                         stmmac_rx_vlan(priv->dev, skb);
2947
2948                         skb->protocol = eth_type_trans(skb, priv->dev);
2949
2950                         if (unlikely(!coe))
2951                                 skb_checksum_none_assert(skb);
2952                         else
2953                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2954
2955                         napi_gro_receive(&priv->napi, skb);
2956
2957                         priv->dev->stats.rx_packets++;
2958                         priv->dev->stats.rx_bytes += frame_len;
2959                 }
2960                 entry = next_entry;
2961         }
2962
2963         stmmac_rx_refill(priv);
2964
2965         priv->xstats.rx_pkt_n += count;
2966
2967         return count;
2968 }
2969
2970 /**
2971  *  stmmac_poll - stmmac poll method (NAPI)
2972  *  @napi : pointer to the napi structure.
2973  *  @budget : maximum number of packets that the current CPU can receive from
2974  *            all interfaces.
2975  *  Description :
2976  *  To look at the incoming frames and clear the tx resources.
2977  */
2978 static int stmmac_poll(struct napi_struct *napi, int budget)
2979 {
2980         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2981         int work_done = 0;
2982         u32 chan = STMMAC_CHAN0;
2983
2984         priv->xstats.napi_poll++;
2985         stmmac_tx_clean(priv);
2986
2987         work_done = stmmac_rx(priv, budget);
2988         if (work_done < budget) {
2989                 napi_complete_done(napi, work_done);
2990                 stmmac_enable_dma_irq(priv, chan);
2991         }
2992         return work_done;
2993 }
2994
2995 /**
2996  *  stmmac_tx_timeout
2997  *  @dev : Pointer to net device structure
2998  *  Description: this function is called when a packet transmission fails to
2999  *   complete within a reasonable time. The driver will mark the error in the
3000  *   netdev structure and arrange for the device to be reset to a sane state
3001  *   in order to transmit a new packet.
3002  */
3003 static void stmmac_tx_timeout(struct net_device *dev)
3004 {
3005         struct stmmac_priv *priv = netdev_priv(dev);
3006         u32 chan = STMMAC_CHAN0;
3007
3008         /* Clear Tx resources and restart transmitting again */
3009         stmmac_tx_err(priv, chan);
3010 }
3011
3012 /**
3013  *  stmmac_set_rx_mode - entry point for multicast addressing
3014  *  @dev : pointer to the device structure
3015  *  Description:
3016  *  This function is a driver entry point which gets called by the kernel
3017  *  whenever multicast addresses must be enabled/disabled.
3018  *  Return value:
3019  *  void.
3020  */
3021 static void stmmac_set_rx_mode(struct net_device *dev)
3022 {
3023         struct stmmac_priv *priv = netdev_priv(dev);
3024
3025         priv->hw->mac->set_filter(priv->hw, dev);
3026 }
3027
3028 /**
3029  *  stmmac_change_mtu - entry point to change MTU size for the device.
3030  *  @dev : device pointer.
3031  *  @new_mtu : the new MTU size for the device.
3032  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3033  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3034  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3035  *  Return value:
3036  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3037  *  file on failure.
3038  */
3039 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3040 {
3041         struct stmmac_priv *priv = netdev_priv(dev);
3042
3043         if (netif_running(dev)) {
3044                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3045                 return -EBUSY;
3046         }
3047
3048         dev->mtu = new_mtu;
3049
3050         netdev_update_features(dev);
3051
3052         return 0;
3053 }
3054
3055 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3056                                              netdev_features_t features)
3057 {
3058         struct stmmac_priv *priv = netdev_priv(dev);
3059
3060         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3061                 features &= ~NETIF_F_RXCSUM;
3062
3063         if (!priv->plat->tx_coe)
3064                 features &= ~NETIF_F_CSUM_MASK;
3065
3066         /* Some GMAC devices have a bugged Jumbo frame support that
3067          * needs to have the Tx COE disabled for oversized frames
3068          * (due to limited buffer sizes). In this case we disable
3069          * the TX csum insertion in the TDES and not use SF.
3070          */
3071         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3072                 features &= ~NETIF_F_CSUM_MASK;
3073
3074         /* Disable tso if asked by ethtool */
3075         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3076                 if (features & NETIF_F_TSO)
3077                         priv->tso = true;
3078                 else
3079                         priv->tso = false;
3080         }
3081
3082         return features;
3083 }
3084
3085 static int stmmac_set_features(struct net_device *netdev,
3086                                netdev_features_t features)
3087 {
3088         struct stmmac_priv *priv = netdev_priv(netdev);
3089
3090         /* Keep the COE Type in case of csum is supporting */
3091         if (features & NETIF_F_RXCSUM)
3092                 priv->hw->rx_csum = priv->plat->rx_coe;
3093         else
3094                 priv->hw->rx_csum = 0;
3095         /* No check needed because rx_coe has been set before and it will be
3096          * fixed in case of issue.
3097          */
3098         priv->hw->mac->rx_ipc(priv->hw);
3099
3100         return 0;
3101 }
3102
3103 /**
3104  *  stmmac_interrupt - main ISR
3105  *  @irq: interrupt number.
3106  *  @dev_id: to pass the net device pointer.
3107  *  Description: this is the main driver interrupt service routine.
3108  *  It can call:
3109  *  o DMA service routine (to manage incoming frame reception and transmission
3110  *    status)
3111  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3112  *    interrupts.
3113  */
3114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3115 {
3116         struct net_device *dev = (struct net_device *)dev_id;
3117         struct stmmac_priv *priv = netdev_priv(dev);
3118         u32 rx_cnt = priv->plat->rx_queues_to_use;
3119         u32 tx_cnt = priv->plat->tx_queues_to_use;
3120         u32 queues_count;
3121         u32 queue;
3122
3123         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3124
3125         if (priv->irq_wake)
3126                 pm_wakeup_event(priv->device, 0);
3127
3128         if (unlikely(!dev)) {
3129                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3130                 return IRQ_NONE;
3131         }
3132
3133         /* To handle GMAC own interrupts */
3134         if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
3135                 int status = priv->hw->mac->host_irq_status(priv->hw,
3136                                                             &priv->xstats);
3137
3138                 if (unlikely(status)) {
3139                         /* For LPI we need to save the tx status */
3140                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3141                                 priv->tx_path_in_lpi_mode = true;
3142                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3143                                 priv->tx_path_in_lpi_mode = false;
3144                 }
3145
3146                 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3147                         for (queue = 0; queue < queues_count; queue++) {
3148                                 status |=
3149                                 priv->hw->mac->host_mtl_irq_status(priv->hw,
3150                                                                    queue);
3151
3152                                 if (status & CORE_IRQ_MTL_RX_OVERFLOW &&
3153                                     priv->hw->dma->set_rx_tail_ptr)
3154                                         priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
3155                                                                 priv->rx_tail_addr,
3156                                                                 queue);
3157                         }
3158                 }
3159
3160                 /* PCS link status */
3161                 if (priv->hw->pcs) {
3162                         if (priv->xstats.pcs_link)
3163                                 netif_carrier_on(dev);
3164                         else
3165                                 netif_carrier_off(dev);
3166                 }
3167         }
3168
3169         /* To handle DMA interrupts */
3170         stmmac_dma_interrupt(priv);
3171
3172         return IRQ_HANDLED;
3173 }
3174
3175 #ifdef CONFIG_NET_POLL_CONTROLLER
3176 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3177  * to allow network I/O with interrupts disabled.
3178  */
3179 static void stmmac_poll_controller(struct net_device *dev)
3180 {
3181         disable_irq(dev->irq);
3182         stmmac_interrupt(dev->irq, dev);
3183         enable_irq(dev->irq);
3184 }
3185 #endif
3186
3187 /**
3188  *  stmmac_ioctl - Entry point for the Ioctl
3189  *  @dev: Device pointer.
3190  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3191  *  a proprietary structure used to pass information to the driver.
3192  *  @cmd: IOCTL command
3193  *  Description:
3194  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3195  */
3196 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3197 {
3198         int ret = -EOPNOTSUPP;
3199
3200         if (!netif_running(dev))
3201                 return -EINVAL;
3202
3203         switch (cmd) {
3204         case SIOCGMIIPHY:
3205         case SIOCGMIIREG:
3206         case SIOCSMIIREG:
3207                 if (!dev->phydev)
3208                         return -EINVAL;
3209                 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3210                 break;
3211         case SIOCSHWTSTAMP:
3212                 ret = stmmac_hwtstamp_ioctl(dev, rq);
3213                 break;
3214         default:
3215                 break;
3216         }
3217
3218         return ret;
3219 }
3220
3221 #ifdef CONFIG_DEBUG_FS
3222 static struct dentry *stmmac_fs_dir;
3223
3224 static void sysfs_display_ring(void *head, int size, int extend_desc,
3225                                struct seq_file *seq)
3226 {
3227         int i;
3228         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3229         struct dma_desc *p = (struct dma_desc *)head;
3230
3231         for (i = 0; i < size; i++) {
3232                 if (extend_desc) {
3233                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3234                                    i, (unsigned int)virt_to_phys(ep),
3235                                    le32_to_cpu(ep->basic.des0),
3236                                    le32_to_cpu(ep->basic.des1),
3237                                    le32_to_cpu(ep->basic.des2),
3238                                    le32_to_cpu(ep->basic.des3));
3239                         ep++;
3240                 } else {
3241                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3242                                    i, (unsigned int)virt_to_phys(ep),
3243                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3244                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3245                         p++;
3246                 }
3247                 seq_printf(seq, "\n");
3248         }
3249 }
3250
3251 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3252 {
3253         struct net_device *dev = seq->private;
3254         struct stmmac_priv *priv = netdev_priv(dev);
3255
3256         if (priv->extend_desc) {
3257                 seq_printf(seq, "Extended RX descriptor ring:\n");
3258                 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
3259                 seq_printf(seq, "Extended TX descriptor ring:\n");
3260                 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
3261         } else {
3262                 seq_printf(seq, "RX descriptor ring:\n");
3263                 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
3264                 seq_printf(seq, "TX descriptor ring:\n");
3265                 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
3266         }
3267
3268         return 0;
3269 }
3270
3271 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3272 {
3273         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3274 }
3275
3276 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3277
3278 static const struct file_operations stmmac_rings_status_fops = {
3279         .owner = THIS_MODULE,
3280         .open = stmmac_sysfs_ring_open,
3281         .read = seq_read,
3282         .llseek = seq_lseek,
3283         .release = single_release,
3284 };
3285
3286 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3287 {
3288         struct net_device *dev = seq->private;
3289         struct stmmac_priv *priv = netdev_priv(dev);
3290
3291         if (!priv->hw_cap_support) {
3292                 seq_printf(seq, "DMA HW features not supported\n");
3293                 return 0;
3294         }
3295
3296         seq_printf(seq, "==============================\n");
3297         seq_printf(seq, "\tDMA HW features\n");
3298         seq_printf(seq, "==============================\n");
3299
3300         seq_printf(seq, "\t10/100 Mbps: %s\n",
3301                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3302         seq_printf(seq, "\t1000 Mbps: %s\n",
3303                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
3304         seq_printf(seq, "\tHalf duplex: %s\n",
3305                    (priv->dma_cap.half_duplex) ? "Y" : "N");
3306         seq_printf(seq, "\tHash Filter: %s\n",
3307                    (priv->dma_cap.hash_filter) ? "Y" : "N");
3308         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3309                    (priv->dma_cap.multi_addr) ? "Y" : "N");
3310         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3311                    (priv->dma_cap.pcs) ? "Y" : "N");
3312         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3313                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
3314         seq_printf(seq, "\tPMT Remote wake up: %s\n",
3315                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3316         seq_printf(seq, "\tPMT Magic Frame: %s\n",
3317                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3318         seq_printf(seq, "\tRMON module: %s\n",
3319                    (priv->dma_cap.rmon) ? "Y" : "N");
3320         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3321                    (priv->dma_cap.time_stamp) ? "Y" : "N");
3322         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3323                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
3324         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3325                    (priv->dma_cap.eee) ? "Y" : "N");
3326         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3327         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3328                    (priv->dma_cap.tx_coe) ? "Y" : "N");
3329         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3330                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3331                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3332         } else {
3333                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3334                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3335                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3336                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3337         }
3338         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3339                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3340         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3341                    priv->dma_cap.number_rx_channel);
3342         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3343                    priv->dma_cap.number_tx_channel);
3344         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3345                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3346
3347         return 0;
3348 }
3349
3350 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3351 {
3352         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3353 }
3354
3355 static const struct file_operations stmmac_dma_cap_fops = {
3356         .owner = THIS_MODULE,
3357         .open = stmmac_sysfs_dma_cap_open,
3358         .read = seq_read,
3359         .llseek = seq_lseek,
3360         .release = single_release,
3361 };
3362
3363 static int stmmac_init_fs(struct net_device *dev)
3364 {
3365         struct stmmac_priv *priv = netdev_priv(dev);
3366
3367         /* Create per netdev entries */
3368         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3369
3370         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3371                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3372
3373                 return -ENOMEM;
3374         }
3375
3376         /* Entry to report DMA RX/TX rings */
3377         priv->dbgfs_rings_status =
3378                 debugfs_create_file("descriptors_status", S_IRUGO,
3379                                     priv->dbgfs_dir, dev,
3380                                     &stmmac_rings_status_fops);
3381
3382         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3383                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3384                 debugfs_remove_recursive(priv->dbgfs_dir);
3385
3386                 return -ENOMEM;
3387         }
3388
3389         /* Entry to report the DMA HW features */
3390         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3391                                             priv->dbgfs_dir,
3392                                             dev, &stmmac_dma_cap_fops);
3393
3394         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3395                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3396                 debugfs_remove_recursive(priv->dbgfs_dir);
3397
3398                 return -ENOMEM;
3399         }
3400
3401         return 0;
3402 }
3403
3404 static void stmmac_exit_fs(struct net_device *dev)
3405 {
3406         struct stmmac_priv *priv = netdev_priv(dev);
3407
3408         debugfs_remove_recursive(priv->dbgfs_dir);
3409 }
3410 #endif /* CONFIG_DEBUG_FS */
3411
3412 static const struct net_device_ops stmmac_netdev_ops = {
3413         .ndo_open = stmmac_open,
3414         .ndo_start_xmit = stmmac_xmit,
3415         .ndo_stop = stmmac_release,
3416         .ndo_change_mtu = stmmac_change_mtu,
3417         .ndo_fix_features = stmmac_fix_features,
3418         .ndo_set_features = stmmac_set_features,
3419         .ndo_set_rx_mode = stmmac_set_rx_mode,
3420         .ndo_tx_timeout = stmmac_tx_timeout,
3421         .ndo_do_ioctl = stmmac_ioctl,
3422 #ifdef CONFIG_NET_POLL_CONTROLLER
3423         .ndo_poll_controller = stmmac_poll_controller,
3424 #endif
3425         .ndo_set_mac_address = eth_mac_addr,
3426 };
3427
3428 /**
3429  *  stmmac_hw_init - Init the MAC device
3430  *  @priv: driver private structure
3431  *  Description: this function is to configure the MAC device according to
3432  *  some platform parameters or the HW capability register. It prepares the
3433  *  driver to use either ring or chain modes and to setup either enhanced or
3434  *  normal descriptors.
3435  */
3436 static int stmmac_hw_init(struct stmmac_priv *priv)
3437 {
3438         struct mac_device_info *mac;
3439
3440         /* Identify the MAC HW device */
3441         if (priv->plat->has_gmac) {
3442                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3443                 mac = dwmac1000_setup(priv->ioaddr,
3444                                       priv->plat->multicast_filter_bins,
3445                                       priv->plat->unicast_filter_entries,
3446                                       &priv->synopsys_id);
3447         } else if (priv->plat->has_gmac4) {
3448                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3449                 mac = dwmac4_setup(priv->ioaddr,
3450                                    priv->plat->multicast_filter_bins,
3451                                    priv->plat->unicast_filter_entries,
3452                                    &priv->synopsys_id);
3453         } else {
3454                 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3455         }
3456         if (!mac)
3457                 return -ENOMEM;
3458
3459         priv->hw = mac;
3460
3461         /* To use the chained or ring mode */
3462         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3463                 priv->hw->mode = &dwmac4_ring_mode_ops;
3464         } else {
3465                 if (chain_mode) {
3466                         priv->hw->mode = &chain_mode_ops;
3467                         dev_info(priv->device, "Chain mode enabled\n");
3468                         priv->mode = STMMAC_CHAIN_MODE;
3469                 } else {
3470                         priv->hw->mode = &ring_mode_ops;
3471                         dev_info(priv->device, "Ring mode enabled\n");
3472                         priv->mode = STMMAC_RING_MODE;
3473                 }
3474         }
3475
3476         /* Get the HW capability (new GMAC newer than 3.50a) */
3477         priv->hw_cap_support = stmmac_get_hw_features(priv);
3478         if (priv->hw_cap_support) {
3479                 dev_info(priv->device, "DMA HW capability register supported\n");
3480
3481                 /* We can override some gmac/dma configuration fields: e.g.
3482                  * enh_desc, tx_coe (e.g. that are passed through the
3483                  * platform) with the values from the HW capability
3484                  * register (if supported).
3485                  */
3486                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3487                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3488                 priv->hw->pmt = priv->plat->pmt;
3489
3490                 /* TXCOE doesn't work in thresh DMA mode */
3491                 if (priv->plat->force_thresh_dma_mode)
3492                         priv->plat->tx_coe = 0;
3493                 else
3494                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
3495
3496                 /* In case of GMAC4 rx_coe is from HW cap register. */
3497                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3498
3499                 if (priv->dma_cap.rx_coe_type2)
3500                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3501                 else if (priv->dma_cap.rx_coe_type1)
3502                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3503
3504         } else {
3505                 dev_info(priv->device, "No HW DMA feature register supported\n");
3506         }
3507
3508         /* To use alternate (extended), normal or GMAC4 descriptor structures */
3509         if (priv->synopsys_id >= DWMAC_CORE_4_00)
3510                 priv->hw->desc = &dwmac4_desc_ops;
3511         else
3512                 stmmac_selec_desc_mode(priv);
3513
3514         if (priv->plat->rx_coe) {
3515                 priv->hw->rx_csum = priv->plat->rx_coe;
3516                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
3517                 if (priv->synopsys_id < DWMAC_CORE_4_00)
3518                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
3519         }
3520         if (priv->plat->tx_coe)
3521                 dev_info(priv->device, "TX Checksum insertion supported\n");
3522
3523         if (priv->plat->pmt) {
3524                 dev_info(priv->device, "Wake-Up On Lan supported\n");
3525                 device_set_wakeup_capable(priv->device, 1);
3526         }
3527
3528         if (priv->dma_cap.tsoen)
3529                 dev_info(priv->device, "TSO supported\n");
3530
3531         return 0;
3532 }
3533
3534 /**
3535  * stmmac_dvr_probe
3536  * @device: device pointer
3537  * @plat_dat: platform data pointer
3538  * @res: stmmac resource pointer
3539  * Description: this is the main probe function used to
3540  * call the alloc_etherdev, allocate the priv structure.
3541  * Return:
3542  * returns 0 on success, otherwise errno.
3543  */
3544 int stmmac_dvr_probe(struct device *device,
3545                      struct plat_stmmacenet_data *plat_dat,
3546                      struct stmmac_resources *res)
3547 {
3548         int ret = 0;
3549         struct net_device *ndev = NULL;
3550         struct stmmac_priv *priv;
3551
3552         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3553         if (!ndev)
3554                 return -ENOMEM;
3555
3556         SET_NETDEV_DEV(ndev, device);
3557
3558         priv = netdev_priv(ndev);
3559         priv->device = device;
3560         priv->dev = ndev;
3561
3562         stmmac_set_ethtool_ops(ndev);
3563         priv->pause = pause;
3564         priv->plat = plat_dat;
3565         priv->ioaddr = res->addr;
3566         priv->dev->base_addr = (unsigned long)res->addr;
3567
3568         priv->dev->irq = res->irq;
3569         priv->wol_irq = res->wol_irq;
3570         priv->lpi_irq = res->lpi_irq;
3571
3572         if (res->mac)
3573                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3574
3575         dev_set_drvdata(device, priv->dev);
3576
3577         /* Verify driver arguments */
3578         stmmac_verify_args();
3579
3580         /* Override with kernel parameters if supplied XXX CRS XXX
3581          * this needs to have multiple instances
3582          */
3583         if ((phyaddr >= 0) && (phyaddr <= 31))
3584                 priv->plat->phy_addr = phyaddr;
3585
3586         if (priv->plat->stmmac_rst)
3587                 reset_control_deassert(priv->plat->stmmac_rst);
3588
3589         /* Init MAC and get the capabilities */
3590         ret = stmmac_hw_init(priv);
3591         if (ret)
3592                 goto error_hw_init;
3593
3594         ndev->netdev_ops = &stmmac_netdev_ops;
3595
3596         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3597                             NETIF_F_RXCSUM;
3598
3599         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3600                 ndev->hw_features |= NETIF_F_TSO;
3601                 priv->tso = true;
3602                 dev_info(priv->device, "TSO feature enabled\n");
3603         }
3604         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3605         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3606 #ifdef STMMAC_VLAN_TAG_USED
3607         /* Both mac100 and gmac support receive VLAN tag detection */
3608         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3609 #endif
3610         priv->msg_enable = netif_msg_init(debug, default_msg_level);
3611
3612         /* MTU range: 46 - hw-specific max */
3613         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
3614         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
3615                 ndev->max_mtu = JUMBO_LEN;
3616         else
3617                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
3618         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
3619          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
3620          */
3621         if ((priv->plat->maxmtu < ndev->max_mtu) &&
3622             (priv->plat->maxmtu >= ndev->min_mtu))
3623                 ndev->max_mtu = priv->plat->maxmtu;
3624         else if (priv->plat->maxmtu < ndev->min_mtu)
3625                 dev_warn(priv->device,
3626                          "%s: warning: maxmtu having invalid value (%d)\n",
3627                          __func__, priv->plat->maxmtu);
3628
3629         if (flow_ctrl)
3630                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
3631
3632         /* Rx Watchdog is available in the COREs newer than the 3.40.
3633          * In some case, for example on bugged HW this feature
3634          * has to be disable and this can be done by passing the
3635          * riwt_off field from the platform.
3636          */
3637         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3638                 priv->use_riwt = 1;
3639                 dev_info(priv->device,
3640                          "Enable RX Mitigation via HW Watchdog Timer\n");
3641         }
3642
3643         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3644
3645         spin_lock_init(&priv->lock);
3646
3647         /* If a specific clk_csr value is passed from the platform
3648          * this means that the CSR Clock Range selection cannot be
3649          * changed at run-time and it is fixed. Viceversa the driver'll try to
3650          * set the MDC clock dynamically according to the csr actual
3651          * clock input.
3652          */
3653         if (!priv->plat->clk_csr)
3654                 stmmac_clk_csr_set(priv);
3655         else
3656                 priv->clk_csr = priv->plat->clk_csr;
3657
3658         stmmac_check_pcs_mode(priv);
3659
3660         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3661             priv->hw->pcs != STMMAC_PCS_TBI &&
3662             priv->hw->pcs != STMMAC_PCS_RTBI) {
3663                 /* MDIO bus Registration */
3664                 ret = stmmac_mdio_register(ndev);
3665                 if (ret < 0) {
3666                         dev_err(priv->device,
3667                                 "%s: MDIO bus (id: %d) registration failed",
3668                                 __func__, priv->plat->bus_id);
3669                         goto error_mdio_register;
3670                 }
3671         }
3672
3673         ret = register_netdev(ndev);
3674         if (ret) {
3675                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
3676                         __func__, ret);
3677                 goto error_netdev_register;
3678         }
3679
3680         return ret;
3681
3682 error_netdev_register:
3683         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3684             priv->hw->pcs != STMMAC_PCS_TBI &&
3685             priv->hw->pcs != STMMAC_PCS_RTBI)
3686                 stmmac_mdio_unregister(ndev);
3687 error_mdio_register:
3688         netif_napi_del(&priv->napi);
3689 error_hw_init:
3690         free_netdev(ndev);
3691
3692         return ret;
3693 }
3694 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3695
3696 /**
3697  * stmmac_dvr_remove
3698  * @dev: device pointer
3699  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3700  * changes the link status, releases the DMA descriptor rings.
3701  */
3702 int stmmac_dvr_remove(struct device *dev)
3703 {
3704         struct net_device *ndev = dev_get_drvdata(dev);
3705         struct stmmac_priv *priv = netdev_priv(ndev);
3706
3707         netdev_info(priv->dev, "%s: removing driver", __func__);
3708
3709         stmmac_stop_all_dma(priv);
3710
3711         stmmac_set_mac(priv->ioaddr, false);
3712         netif_carrier_off(ndev);
3713         unregister_netdev(ndev);
3714         if (priv->plat->stmmac_rst)
3715                 reset_control_assert(priv->plat->stmmac_rst);
3716         clk_disable_unprepare(priv->plat->pclk);
3717         clk_disable_unprepare(priv->plat->stmmac_clk);
3718         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3719             priv->hw->pcs != STMMAC_PCS_TBI &&
3720             priv->hw->pcs != STMMAC_PCS_RTBI)
3721                 stmmac_mdio_unregister(ndev);
3722         free_netdev(ndev);
3723
3724         return 0;
3725 }
3726 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3727
3728 /**
3729  * stmmac_suspend - suspend callback
3730  * @dev: device pointer
3731  * Description: this is the function to suspend the device and it is called
3732  * by the platform driver to stop the network queue, release the resources,
3733  * program the PMT register (for WoL), clean and release driver resources.
3734  */
3735 int stmmac_suspend(struct device *dev)
3736 {
3737         struct net_device *ndev = dev_get_drvdata(dev);
3738         struct stmmac_priv *priv = netdev_priv(ndev);
3739         unsigned long flags;
3740
3741         if (!ndev || !netif_running(ndev))
3742                 return 0;
3743
3744         if (ndev->phydev)
3745                 phy_stop(ndev->phydev);
3746
3747         spin_lock_irqsave(&priv->lock, flags);
3748
3749         netif_device_detach(ndev);
3750         netif_stop_queue(ndev);
3751
3752         napi_disable(&priv->napi);
3753
3754         /* Stop TX/RX DMA */
3755         stmmac_stop_all_dma(priv);
3756
3757         /* Enable Power down mode by programming the PMT regs */
3758         if (device_may_wakeup(priv->device)) {
3759                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3760                 priv->irq_wake = 1;
3761         } else {
3762                 stmmac_set_mac(priv->ioaddr, false);
3763                 pinctrl_pm_select_sleep_state(priv->device);
3764                 /* Disable clock in case of PWM is off */
3765                 clk_disable(priv->plat->pclk);
3766                 clk_disable(priv->plat->stmmac_clk);
3767         }
3768         spin_unlock_irqrestore(&priv->lock, flags);
3769
3770         priv->oldlink = 0;
3771         priv->speed = SPEED_UNKNOWN;
3772         priv->oldduplex = DUPLEX_UNKNOWN;
3773         return 0;
3774 }
3775 EXPORT_SYMBOL_GPL(stmmac_suspend);
3776
3777 /**
3778  * stmmac_resume - resume callback
3779  * @dev: device pointer
3780  * Description: when resume this function is invoked to setup the DMA and CORE
3781  * in a usable state.
3782  */
3783 int stmmac_resume(struct device *dev)
3784 {
3785         struct net_device *ndev = dev_get_drvdata(dev);
3786         struct stmmac_priv *priv = netdev_priv(ndev);
3787         unsigned long flags;
3788
3789         if (!netif_running(ndev))
3790                 return 0;
3791
3792         /* Power Down bit, into the PM register, is cleared
3793          * automatically as soon as a magic packet or a Wake-up frame
3794          * is received. Anyway, it's better to manually clear
3795          * this bit because it can generate problems while resuming
3796          * from another devices (e.g. serial console).
3797          */
3798         if (device_may_wakeup(priv->device)) {
3799                 spin_lock_irqsave(&priv->lock, flags);
3800                 priv->hw->mac->pmt(priv->hw, 0);
3801                 spin_unlock_irqrestore(&priv->lock, flags);
3802                 priv->irq_wake = 0;
3803         } else {
3804                 pinctrl_pm_select_default_state(priv->device);
3805                 /* enable the clk previously disabled */
3806                 clk_enable(priv->plat->stmmac_clk);
3807                 clk_enable(priv->plat->pclk);
3808                 /* reset the phy so that it's ready */
3809                 if (priv->mii)
3810                         stmmac_mdio_reset(priv->mii);
3811         }
3812
3813         netif_device_attach(ndev);
3814
3815         spin_lock_irqsave(&priv->lock, flags);
3816
3817         priv->cur_rx = 0;
3818         priv->dirty_rx = 0;
3819         priv->dirty_tx = 0;
3820         priv->cur_tx = 0;
3821         /* reset private mss value to force mss context settings at
3822          * next tso xmit (only used for gmac4).
3823          */
3824         priv->mss = 0;
3825
3826         stmmac_clear_descriptors(priv);
3827
3828         stmmac_hw_setup(ndev, false);
3829         stmmac_init_tx_coalesce(priv);
3830         stmmac_set_rx_mode(ndev);
3831
3832         napi_enable(&priv->napi);
3833
3834         netif_start_queue(ndev);
3835
3836         spin_unlock_irqrestore(&priv->lock, flags);
3837
3838         if (ndev->phydev)
3839                 phy_start(ndev->phydev);
3840
3841         return 0;
3842 }
3843 EXPORT_SYMBOL_GPL(stmmac_resume);
3844
3845 #ifndef MODULE
3846 static int __init stmmac_cmdline_opt(char *str)
3847 {
3848         char *opt;
3849
3850         if (!str || !*str)
3851                 return -EINVAL;
3852         while ((opt = strsep(&str, ",")) != NULL) {
3853                 if (!strncmp(opt, "debug:", 6)) {
3854                         if (kstrtoint(opt + 6, 0, &debug))
3855                                 goto err;
3856                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3857                         if (kstrtoint(opt + 8, 0, &phyaddr))
3858                                 goto err;
3859                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3860                         if (kstrtoint(opt + 7, 0, &buf_sz))
3861                                 goto err;
3862                 } else if (!strncmp(opt, "tc:", 3)) {
3863                         if (kstrtoint(opt + 3, 0, &tc))
3864                                 goto err;
3865                 } else if (!strncmp(opt, "watchdog:", 9)) {
3866                         if (kstrtoint(opt + 9, 0, &watchdog))
3867                                 goto err;
3868                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3869                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3870                                 goto err;
3871                 } else if (!strncmp(opt, "pause:", 6)) {
3872                         if (kstrtoint(opt + 6, 0, &pause))
3873                                 goto err;
3874                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3875                         if (kstrtoint(opt + 10, 0, &eee_timer))
3876                                 goto err;
3877                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3878                         if (kstrtoint(opt + 11, 0, &chain_mode))
3879                                 goto err;
3880                 }
3881         }
3882         return 0;
3883
3884 err:
3885         pr_err("%s: ERROR broken module parameter conversion", __func__);
3886         return -EINVAL;
3887 }
3888
3889 __setup("stmmaceth=", stmmac_cmdline_opt);
3890 #endif /* MODULE */
3891
3892 static int __init stmmac_init(void)
3893 {
3894 #ifdef CONFIG_DEBUG_FS
3895         /* Create debugfs main directory if it doesn't exist yet */
3896         if (!stmmac_fs_dir) {
3897                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3898
3899                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3900                         pr_err("ERROR %s, debugfs create directory failed\n",
3901                                STMMAC_RESOURCE_NAME);
3902
3903                         return -ENOMEM;
3904                 }
3905         }
3906 #endif
3907
3908         return 0;
3909 }
3910
3911 static void __exit stmmac_exit(void)
3912 {
3913 #ifdef CONFIG_DEBUG_FS
3914         debugfs_remove_recursive(stmmac_fs_dir);
3915 #endif
3916 }
3917
3918 module_init(stmmac_init)
3919 module_exit(stmmac_exit)
3920
3921 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3922 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3923 MODULE_LICENSE("GPL");