]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: stmmac: prepare dma interrupt treatment for multiple queues
[karo-tx-linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20
21   Documentation available at:
22         http://www.stlinux.com
23   Support available at:
24         https://bugzilla.stlinux.com/
25 *******************************************************************************/
26
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include "stmmac_ptp.h"
49 #include "stmmac.h"
50 #include <linux/reset.h>
51 #include <linux/of_mdio.h>
52 #include "dwmac1000.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
56
57 /* Module parameters */
58 #define TX_TIMEO        5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 static int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
72 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
73
74 static int flow_ctrl = FLOW_OFF;
75 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
77
78 static int pause = PAUSE_TIME;
79 module_param(pause, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
81
82 #define TC_DEFAULT 64
83 static int tc = TC_DEFAULT;
84 module_param(tc, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(tc, "DMA threshold control value");
86
87 #define DEFAULT_BUFSIZE 1536
88 static int buf_sz = DEFAULT_BUFSIZE;
89 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
91
92 #define STMMAC_RX_COPYBREAK     256
93
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
96                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
97
98 #define STMMAC_DEFAULT_LPI_TIMER        1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
103
104 /* By default the driver will use the ring mode to manage tx and rx descriptors,
105  * but allow user to force to use the chain instead of the ring
106  */
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
110
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
112
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
116 #endif
117
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
119
120 /**
121  * stmmac_verify_args - verify the driver parameters.
122  * Description: it checks the driver parameters and set a default in case of
123  * errors.
124  */
125 static void stmmac_verify_args(void)
126 {
127         if (unlikely(watchdog < 0))
128                 watchdog = TX_TIMEO;
129         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130                 buf_sz = DEFAULT_BUFSIZE;
131         if (unlikely(flow_ctrl > 1))
132                 flow_ctrl = FLOW_AUTO;
133         else if (likely(flow_ctrl < 0))
134                 flow_ctrl = FLOW_OFF;
135         if (unlikely((pause < 0) || (pause > 0xffff)))
136                 pause = PAUSE_TIME;
137         if (eee_timer < 0)
138                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 }
140
141 /**
142  * stmmac_clk_csr_set - dynamically set the MDC clock
143  * @priv: driver private structure
144  * Description: this is to dynamically set the MDC clock according to the csr
145  * clock input.
146  * Note:
147  *      If a specific clk_csr value is passed from the platform
148  *      this means that the CSR Clock Range selection cannot be
149  *      changed at run-time and it is fixed (as reported in the driver
150  *      documentation). Viceversa the driver will try to set the MDC
151  *      clock dynamically according to the actual clock input.
152  */
153 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
154 {
155         u32 clk_rate;
156
157         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
158
159         /* Platform provided default clk_csr would be assumed valid
160          * for all other cases except for the below mentioned ones.
161          * For values higher than the IEEE 802.3 specified frequency
162          * we can not estimate the proper divider as it is not known
163          * the frequency of clk_csr_i. So we do not change the default
164          * divider.
165          */
166         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
167                 if (clk_rate < CSR_F_35M)
168                         priv->clk_csr = STMMAC_CSR_20_35M;
169                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
170                         priv->clk_csr = STMMAC_CSR_35_60M;
171                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
172                         priv->clk_csr = STMMAC_CSR_60_100M;
173                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
174                         priv->clk_csr = STMMAC_CSR_100_150M;
175                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
176                         priv->clk_csr = STMMAC_CSR_150_250M;
177                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
178                         priv->clk_csr = STMMAC_CSR_250_300M;
179         }
180 }
181
182 static void print_pkt(unsigned char *buf, int len)
183 {
184         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
185         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
186 }
187
188 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
189 {
190         u32 avail;
191
192         if (priv->dirty_tx > priv->cur_tx)
193                 avail = priv->dirty_tx - priv->cur_tx - 1;
194         else
195                 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
196
197         return avail;
198 }
199
200 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
201 {
202         u32 dirty;
203
204         if (priv->dirty_rx <= priv->cur_rx)
205                 dirty = priv->cur_rx - priv->dirty_rx;
206         else
207                 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
208
209         return dirty;
210 }
211
212 /**
213  * stmmac_hw_fix_mac_speed - callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuration
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220         struct net_device *ndev = priv->dev;
221         struct phy_device *phydev = ndev->phydev;
222
223         if (likely(priv->plat->fix_mac_speed))
224                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
225 }
226
227 /**
228  * stmmac_enable_eee_mode - check and enter in LPI mode
229  * @priv: driver private structure
230  * Description: this function is to verify and enter in LPI mode in case of
231  * EEE.
232  */
233 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
234 {
235         /* Check and enter in LPI mode */
236         if ((priv->dirty_tx == priv->cur_tx) &&
237             (priv->tx_path_in_lpi_mode == false))
238                 priv->hw->mac->set_eee_mode(priv->hw,
239                                             priv->plat->en_tx_lpi_clockgating);
240 }
241
242 /**
243  * stmmac_disable_eee_mode - disable and exit from LPI mode
244  * @priv: driver private structure
245  * Description: this function is to exit and disable EEE in case of
246  * LPI state is true. This is called by the xmit.
247  */
248 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
249 {
250         priv->hw->mac->reset_eee_mode(priv->hw);
251         del_timer_sync(&priv->eee_ctrl_timer);
252         priv->tx_path_in_lpi_mode = false;
253 }
254
255 /**
256  * stmmac_eee_ctrl_timer - EEE TX SW timer.
257  * @arg : data hook
258  * Description:
259  *  if there is no data transfer and if we are not in LPI state,
260  *  then MAC Transmitter can be moved to LPI state.
261  */
262 static void stmmac_eee_ctrl_timer(unsigned long arg)
263 {
264         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
265
266         stmmac_enable_eee_mode(priv);
267         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
268 }
269
270 /**
271  * stmmac_eee_init - init EEE
272  * @priv: driver private structure
273  * Description:
274  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
275  *  can also manage EEE, this function enable the LPI state and start related
276  *  timer.
277  */
278 bool stmmac_eee_init(struct stmmac_priv *priv)
279 {
280         struct net_device *ndev = priv->dev;
281         unsigned long flags;
282         bool ret = false;
283
284         /* Using PCS we cannot dial with the phy registers at this stage
285          * so we do not support extra feature like EEE.
286          */
287         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
288             (priv->hw->pcs == STMMAC_PCS_TBI) ||
289             (priv->hw->pcs == STMMAC_PCS_RTBI))
290                 goto out;
291
292         /* MAC core supports the EEE feature. */
293         if (priv->dma_cap.eee) {
294                 int tx_lpi_timer = priv->tx_lpi_timer;
295
296                 /* Check if the PHY supports EEE */
297                 if (phy_init_eee(ndev->phydev, 1)) {
298                         /* To manage at run-time if the EEE cannot be supported
299                          * anymore (for example because the lp caps have been
300                          * changed).
301                          * In that case the driver disable own timers.
302                          */
303                         spin_lock_irqsave(&priv->lock, flags);
304                         if (priv->eee_active) {
305                                 netdev_dbg(priv->dev, "disable EEE\n");
306                                 del_timer_sync(&priv->eee_ctrl_timer);
307                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
308                                                              tx_lpi_timer);
309                         }
310                         priv->eee_active = 0;
311                         spin_unlock_irqrestore(&priv->lock, flags);
312                         goto out;
313                 }
314                 /* Activate the EEE and start timers */
315                 spin_lock_irqsave(&priv->lock, flags);
316                 if (!priv->eee_active) {
317                         priv->eee_active = 1;
318                         setup_timer(&priv->eee_ctrl_timer,
319                                     stmmac_eee_ctrl_timer,
320                                     (unsigned long)priv);
321                         mod_timer(&priv->eee_ctrl_timer,
322                                   STMMAC_LPI_T(eee_timer));
323
324                         priv->hw->mac->set_eee_timer(priv->hw,
325                                                      STMMAC_DEFAULT_LIT_LS,
326                                                      tx_lpi_timer);
327                 }
328                 /* Set HW EEE according to the speed */
329                 priv->hw->mac->set_eee_pls(priv->hw, ndev->phydev->link);
330
331                 ret = true;
332                 spin_unlock_irqrestore(&priv->lock, flags);
333
334                 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
335         }
336 out:
337         return ret;
338 }
339
340 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
341  * @priv: driver private structure
342  * @p : descriptor pointer
343  * @skb : the socket buffer
344  * Description :
345  * This function will read timestamp from the descriptor & pass it to stack.
346  * and also perform some sanity checks.
347  */
348 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
349                                    struct dma_desc *p, struct sk_buff *skb)
350 {
351         struct skb_shared_hwtstamps shhwtstamp;
352         u64 ns;
353
354         if (!priv->hwts_tx_en)
355                 return;
356
357         /* exit if skb doesn't support hw tstamp */
358         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
359                 return;
360
361         /* check tx tstamp status */
362         if (!priv->hw->desc->get_tx_timestamp_status(p)) {
363                 /* get the valid tstamp */
364                 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
365
366                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
367                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
368
369                 netdev_info(priv->dev, "get valid TX hw timestamp %llu\n", ns);
370                 /* pass tstamp to stack */
371                 skb_tstamp_tx(skb, &shhwtstamp);
372         }
373
374         return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378  * @priv: driver private structure
379  * @p : descriptor pointer
380  * @np : next descriptor pointer
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
387                                    struct dma_desc *np, struct sk_buff *skb)
388 {
389         struct skb_shared_hwtstamps *shhwtstamp = NULL;
390         u64 ns;
391
392         if (!priv->hwts_rx_en)
393                 return;
394
395         /* Check if timestamp is available */
396         if (!priv->hw->desc->get_rx_timestamp_status(p, priv->adv_ts)) {
397                 /* For GMAC4, the valid timestamp is from CTX next desc. */
398                 if (priv->plat->has_gmac4)
399                         ns = priv->hw->desc->get_timestamp(np, priv->adv_ts);
400                 else
401                         ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
402
403                 netdev_info(priv->dev, "get valid RX hw timestamp %llu\n", ns);
404                 shhwtstamp = skb_hwtstamps(skb);
405                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
406                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
407         } else  {
408                 netdev_err(priv->dev, "cannot get RX hw timestamp\n");
409         }
410 }
411
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specific structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425         struct stmmac_priv *priv = netdev_priv(dev);
426         struct hwtstamp_config config;
427         struct timespec64 now;
428         u64 temp = 0;
429         u32 ptp_v2 = 0;
430         u32 tstamp_all = 0;
431         u32 ptp_over_ipv4_udp = 0;
432         u32 ptp_over_ipv6_udp = 0;
433         u32 ptp_over_ethernet = 0;
434         u32 snap_type_sel = 0;
435         u32 ts_master_en = 0;
436         u32 ts_event_en = 0;
437         u32 value = 0;
438         u32 sec_inc;
439
440         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
441                 netdev_alert(priv->dev, "No support for HW time stamping\n");
442                 priv->hwts_tx_en = 0;
443                 priv->hwts_rx_en = 0;
444
445                 return -EOPNOTSUPP;
446         }
447
448         if (copy_from_user(&config, ifr->ifr_data,
449                            sizeof(struct hwtstamp_config)))
450                 return -EFAULT;
451
452         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
453                    __func__, config.flags, config.tx_type, config.rx_filter);
454
455         /* reserved for future extensions */
456         if (config.flags)
457                 return -EINVAL;
458
459         if (config.tx_type != HWTSTAMP_TX_OFF &&
460             config.tx_type != HWTSTAMP_TX_ON)
461                 return -ERANGE;
462
463         if (priv->adv_ts) {
464                 switch (config.rx_filter) {
465                 case HWTSTAMP_FILTER_NONE:
466                         /* time stamp no incoming packet at all */
467                         config.rx_filter = HWTSTAMP_FILTER_NONE;
468                         break;
469
470                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
471                         /* PTP v1, UDP, any kind of event packet */
472                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
473                         /* take time stamp for all event messages */
474                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
475
476                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478                         break;
479
480                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
481                         /* PTP v1, UDP, Sync packet */
482                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
483                         /* take time stamp for SYNC messages only */
484                         ts_event_en = PTP_TCR_TSEVNTENA;
485
486                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
487                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
488                         break;
489
490                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
491                         /* PTP v1, UDP, Delay_req packet */
492                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
493                         /* take time stamp for Delay_Req messages only */
494                         ts_master_en = PTP_TCR_TSMSTRENA;
495                         ts_event_en = PTP_TCR_TSEVNTENA;
496
497                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
498                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
499                         break;
500
501                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
502                         /* PTP v2, UDP, any kind of event packet */
503                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
504                         ptp_v2 = PTP_TCR_TSVER2ENA;
505                         /* take time stamp for all event messages */
506                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
507
508                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
509                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
510                         break;
511
512                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
513                         /* PTP v2, UDP, Sync packet */
514                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
515                         ptp_v2 = PTP_TCR_TSVER2ENA;
516                         /* take time stamp for SYNC messages only */
517                         ts_event_en = PTP_TCR_TSEVNTENA;
518
519                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
520                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
521                         break;
522
523                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
524                         /* PTP v2, UDP, Delay_req packet */
525                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
526                         ptp_v2 = PTP_TCR_TSVER2ENA;
527                         /* take time stamp for Delay_Req messages only */
528                         ts_master_en = PTP_TCR_TSMSTRENA;
529                         ts_event_en = PTP_TCR_TSEVNTENA;
530
531                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
532                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
533                         break;
534
535                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
536                         /* PTP v2/802.AS1 any layer, any kind of event packet */
537                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
538                         ptp_v2 = PTP_TCR_TSVER2ENA;
539                         /* take time stamp for all event messages */
540                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
541
542                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
543                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
544                         ptp_over_ethernet = PTP_TCR_TSIPENA;
545                         break;
546
547                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
548                         /* PTP v2/802.AS1, any layer, Sync packet */
549                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
550                         ptp_v2 = PTP_TCR_TSVER2ENA;
551                         /* take time stamp for SYNC messages only */
552                         ts_event_en = PTP_TCR_TSEVNTENA;
553
554                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
555                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
556                         ptp_over_ethernet = PTP_TCR_TSIPENA;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
560                         /* PTP v2/802.AS1, any layer, Delay_req packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
562                         ptp_v2 = PTP_TCR_TSVER2ENA;
563                         /* take time stamp for Delay_Req messages only */
564                         ts_master_en = PTP_TCR_TSMSTRENA;
565                         ts_event_en = PTP_TCR_TSEVNTENA;
566
567                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569                         ptp_over_ethernet = PTP_TCR_TSIPENA;
570                         break;
571
572                 case HWTSTAMP_FILTER_ALL:
573                         /* time stamp any incoming packet */
574                         config.rx_filter = HWTSTAMP_FILTER_ALL;
575                         tstamp_all = PTP_TCR_TSENALL;
576                         break;
577
578                 default:
579                         return -ERANGE;
580                 }
581         } else {
582                 switch (config.rx_filter) {
583                 case HWTSTAMP_FILTER_NONE:
584                         config.rx_filter = HWTSTAMP_FILTER_NONE;
585                         break;
586                 default:
587                         /* PTP v1, UDP, any kind of event packet */
588                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
589                         break;
590                 }
591         }
592         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
593         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
594
595         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
596                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
597         else {
598                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
599                          tstamp_all | ptp_v2 | ptp_over_ethernet |
600                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
601                          ts_master_en | snap_type_sel);
602                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
603
604                 /* program Sub Second Increment reg */
605                 sec_inc = priv->hw->ptp->config_sub_second_increment(
606                         priv->ptpaddr, priv->plat->clk_ptp_rate,
607                         priv->plat->has_gmac4);
608                 temp = div_u64(1000000000ULL, sec_inc);
609
610                 /* calculate default added value:
611                  * formula is :
612                  * addend = (2^32)/freq_div_ratio;
613                  * where, freq_div_ratio = 1e9ns/sec_inc
614                  */
615                 temp = (u64)(temp << 32);
616                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
617                 priv->hw->ptp->config_addend(priv->ptpaddr,
618                                              priv->default_addend);
619
620                 /* initialize system time */
621                 ktime_get_real_ts64(&now);
622
623                 /* lower 32 bits of tv_sec are safe until y2106 */
624                 priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
625                                             now.tv_nsec);
626         }
627
628         return copy_to_user(ifr->ifr_data, &config,
629                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633  * stmmac_init_ptp - init PTP
634  * @priv: driver private structure
635  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636  * This is done by looking at the HW cap. register.
637  * This function also registers the ptp driver.
638  */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642                 return -EOPNOTSUPP;
643
644         priv->adv_ts = 0;
645         /* Check if adv_ts can be enabled for dwmac 4.x core */
646         if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
647                 priv->adv_ts = 1;
648         /* Dwmac 3.x core with extend_desc can support adv_ts */
649         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
650                 priv->adv_ts = 1;
651
652         if (priv->dma_cap.time_stamp)
653                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
654
655         if (priv->adv_ts)
656                 netdev_info(priv->dev,
657                             "IEEE 1588-2008 Advanced Timestamp supported\n");
658
659         priv->hw->ptp = &stmmac_ptp;
660         priv->hwts_tx_en = 0;
661         priv->hwts_rx_en = 0;
662
663         stmmac_ptp_register(priv);
664
665         return 0;
666 }
667
668 static void stmmac_release_ptp(struct stmmac_priv *priv)
669 {
670         if (priv->plat->clk_ptp_ref)
671                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
672         stmmac_ptp_unregister(priv);
673 }
674
675 /**
676  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
677  *  @priv: driver private structure
678  *  Description: It is used for configuring the flow control in all queues
679  */
680 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
681 {
682         u32 tx_cnt = priv->plat->tx_queues_to_use;
683
684         priv->hw->mac->flow_ctrl(priv->hw, duplex, priv->flow_ctrl,
685                                  priv->pause, tx_cnt);
686 }
687
688 /**
689  * stmmac_adjust_link - adjusts the link parameters
690  * @dev: net device structure
691  * Description: this is the helper called by the physical abstraction layer
692  * drivers to communicate the phy link status. According the speed and duplex
693  * this driver can invoke registered glue-logic as well.
694  * It also invoke the eee initialization because it could happen when switch
695  * on different networks (that are eee capable).
696  */
697 static void stmmac_adjust_link(struct net_device *dev)
698 {
699         struct stmmac_priv *priv = netdev_priv(dev);
700         struct phy_device *phydev = dev->phydev;
701         unsigned long flags;
702         int new_state = 0;
703
704         if (!phydev)
705                 return;
706
707         spin_lock_irqsave(&priv->lock, flags);
708
709         if (phydev->link) {
710                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
711
712                 /* Now we make sure that we can be in full duplex mode.
713                  * If not, we operate in half-duplex mode. */
714                 if (phydev->duplex != priv->oldduplex) {
715                         new_state = 1;
716                         if (!(phydev->duplex))
717                                 ctrl &= ~priv->hw->link.duplex;
718                         else
719                                 ctrl |= priv->hw->link.duplex;
720                         priv->oldduplex = phydev->duplex;
721                 }
722                 /* Flow Control operation */
723                 if (phydev->pause)
724                         stmmac_mac_flow_ctrl(priv, phydev->duplex);
725
726                 if (phydev->speed != priv->speed) {
727                         new_state = 1;
728                         switch (phydev->speed) {
729                         case 1000:
730                                 if (priv->plat->has_gmac ||
731                                     priv->plat->has_gmac4)
732                                         ctrl &= ~priv->hw->link.port;
733                                 break;
734                         case 100:
735                                 if (priv->plat->has_gmac ||
736                                     priv->plat->has_gmac4) {
737                                         ctrl |= priv->hw->link.port;
738                                         ctrl |= priv->hw->link.speed;
739                                 } else {
740                                         ctrl &= ~priv->hw->link.port;
741                                 }
742                                 break;
743                         case 10:
744                                 if (priv->plat->has_gmac ||
745                                     priv->plat->has_gmac4) {
746                                         ctrl |= priv->hw->link.port;
747                                         ctrl &= ~(priv->hw->link.speed);
748                                 } else {
749                                         ctrl &= ~priv->hw->link.port;
750                                 }
751                                 break;
752                         default:
753                                 netif_warn(priv, link, priv->dev,
754                                            "broken speed: %d\n", phydev->speed);
755                                 phydev->speed = SPEED_UNKNOWN;
756                                 break;
757                         }
758                         if (phydev->speed != SPEED_UNKNOWN)
759                                 stmmac_hw_fix_mac_speed(priv);
760                         priv->speed = phydev->speed;
761                 }
762
763                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
764
765                 if (!priv->oldlink) {
766                         new_state = 1;
767                         priv->oldlink = 1;
768                 }
769         } else if (priv->oldlink) {
770                 new_state = 1;
771                 priv->oldlink = 0;
772                 priv->speed = SPEED_UNKNOWN;
773                 priv->oldduplex = DUPLEX_UNKNOWN;
774         }
775
776         if (new_state && netif_msg_link(priv))
777                 phy_print_status(phydev);
778
779         spin_unlock_irqrestore(&priv->lock, flags);
780
781         if (phydev->is_pseudo_fixed_link)
782                 /* Stop PHY layer to call the hook to adjust the link in case
783                  * of a switch is attached to the stmmac driver.
784                  */
785                 phydev->irq = PHY_IGNORE_INTERRUPT;
786         else
787                 /* At this stage, init the EEE if supported.
788                  * Never called in case of fixed_link.
789                  */
790                 priv->eee_enabled = stmmac_eee_init(priv);
791 }
792
793 /**
794  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
795  * @priv: driver private structure
796  * Description: this is to verify if the HW supports the PCS.
797  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
798  * configured for the TBI, RTBI, or SGMII PHY interface.
799  */
800 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
801 {
802         int interface = priv->plat->interface;
803
804         if (priv->dma_cap.pcs) {
805                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
806                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
807                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
808                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
809                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
810                         priv->hw->pcs = STMMAC_PCS_RGMII;
811                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
812                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
813                         priv->hw->pcs = STMMAC_PCS_SGMII;
814                 }
815         }
816 }
817
818 /**
819  * stmmac_init_phy - PHY initialization
820  * @dev: net device structure
821  * Description: it initializes the driver's PHY state, and attaches the PHY
822  * to the mac driver.
823  *  Return value:
824  *  0 on success
825  */
826 static int stmmac_init_phy(struct net_device *dev)
827 {
828         struct stmmac_priv *priv = netdev_priv(dev);
829         struct phy_device *phydev;
830         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
831         char bus_id[MII_BUS_ID_SIZE];
832         int interface = priv->plat->interface;
833         int max_speed = priv->plat->max_speed;
834         priv->oldlink = 0;
835         priv->speed = SPEED_UNKNOWN;
836         priv->oldduplex = DUPLEX_UNKNOWN;
837
838         if (priv->plat->phy_node) {
839                 phydev = of_phy_connect(dev, priv->plat->phy_node,
840                                         &stmmac_adjust_link, 0, interface);
841         } else {
842                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
843                          priv->plat->bus_id);
844
845                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
846                          priv->plat->phy_addr);
847                 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
848                            phy_id_fmt);
849
850                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
851                                      interface);
852         }
853
854         if (IS_ERR_OR_NULL(phydev)) {
855                 netdev_err(priv->dev, "Could not attach to PHY\n");
856                 if (!phydev)
857                         return -ENODEV;
858
859                 return PTR_ERR(phydev);
860         }
861
862         /* Stop Advertising 1000BASE Capability if interface is not GMII */
863         if ((interface == PHY_INTERFACE_MODE_MII) ||
864             (interface == PHY_INTERFACE_MODE_RMII) ||
865                 (max_speed < 1000 && max_speed > 0))
866                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
867                                          SUPPORTED_1000baseT_Full);
868
869         /*
870          * Broken HW is sometimes missing the pull-up resistor on the
871          * MDIO line, which results in reads to non-existent devices returning
872          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
873          * device as well.
874          * Note: phydev->phy_id is the result of reading the UID PHY registers.
875          */
876         if (!priv->plat->phy_node && phydev->phy_id == 0) {
877                 phy_disconnect(phydev);
878                 return -ENODEV;
879         }
880
881         /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
882          * subsequent PHY polling, make sure we force a link transition if
883          * we have a UP/DOWN/UP transition
884          */
885         if (phydev->is_pseudo_fixed_link)
886                 phydev->irq = PHY_POLL;
887
888         phy_attached_info(phydev);
889         return 0;
890 }
891
892 static void stmmac_display_rings(struct stmmac_priv *priv)
893 {
894         void *head_rx, *head_tx;
895
896         if (priv->extend_desc) {
897                 head_rx = (void *)priv->dma_erx;
898                 head_tx = (void *)priv->dma_etx;
899         } else {
900                 head_rx = (void *)priv->dma_rx;
901                 head_tx = (void *)priv->dma_tx;
902         }
903
904         /* Display Rx ring */
905         priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
906         /* Display Tx ring */
907         priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
908 }
909
910 static int stmmac_set_bfsize(int mtu, int bufsize)
911 {
912         int ret = bufsize;
913
914         if (mtu >= BUF_SIZE_4KiB)
915                 ret = BUF_SIZE_8KiB;
916         else if (mtu >= BUF_SIZE_2KiB)
917                 ret = BUF_SIZE_4KiB;
918         else if (mtu > DEFAULT_BUFSIZE)
919                 ret = BUF_SIZE_2KiB;
920         else
921                 ret = DEFAULT_BUFSIZE;
922
923         return ret;
924 }
925
926 /**
927  * stmmac_clear_descriptors - clear descriptors
928  * @priv: driver private structure
929  * Description: this function is called to clear the tx and rx descriptors
930  * in case of both basic and extended descriptors are used.
931  */
932 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
933 {
934         int i;
935
936         /* Clear the Rx/Tx descriptors */
937         for (i = 0; i < DMA_RX_SIZE; i++)
938                 if (priv->extend_desc)
939                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
940                                                      priv->use_riwt, priv->mode,
941                                                      (i == DMA_RX_SIZE - 1));
942                 else
943                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
944                                                      priv->use_riwt, priv->mode,
945                                                      (i == DMA_RX_SIZE - 1));
946         for (i = 0; i < DMA_TX_SIZE; i++)
947                 if (priv->extend_desc)
948                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
949                                                      priv->mode,
950                                                      (i == DMA_TX_SIZE - 1));
951                 else
952                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
953                                                      priv->mode,
954                                                      (i == DMA_TX_SIZE - 1));
955 }
956
957 /**
958  * stmmac_init_rx_buffers - init the RX descriptor buffer.
959  * @priv: driver private structure
960  * @p: descriptor pointer
961  * @i: descriptor index
962  * @flags: gfp flag.
963  * Description: this function is called to allocate a receive buffer, perform
964  * the DMA mapping and init the descriptor.
965  */
966 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
967                                   int i, gfp_t flags)
968 {
969         struct sk_buff *skb;
970
971         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
972         if (!skb) {
973                 netdev_err(priv->dev,
974                            "%s: Rx init fails; skb is NULL\n", __func__);
975                 return -ENOMEM;
976         }
977         priv->rx_skbuff[i] = skb;
978         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
979                                                 priv->dma_buf_sz,
980                                                 DMA_FROM_DEVICE);
981         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
982                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
983                 dev_kfree_skb_any(skb);
984                 return -EINVAL;
985         }
986
987         if (priv->synopsys_id >= DWMAC_CORE_4_00)
988                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[i]);
989         else
990                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[i]);
991
992         if ((priv->hw->mode->init_desc3) &&
993             (priv->dma_buf_sz == BUF_SIZE_16KiB))
994                 priv->hw->mode->init_desc3(p);
995
996         return 0;
997 }
998
999 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1000 {
1001         if (priv->rx_skbuff[i]) {
1002                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1003                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1004                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1005         }
1006         priv->rx_skbuff[i] = NULL;
1007 }
1008
1009 /**
1010  * init_dma_desc_rings - init the RX/TX descriptor rings
1011  * @dev: net device structure
1012  * @flags: gfp flag.
1013  * Description: this function initializes the DMA RX/TX descriptors
1014  * and allocates the socket buffers. It supports the chained and ring
1015  * modes.
1016  */
1017 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1018 {
1019         int i;
1020         struct stmmac_priv *priv = netdev_priv(dev);
1021         unsigned int bfsize = 0;
1022         int ret = -ENOMEM;
1023
1024         if (priv->hw->mode->set_16kib_bfsize)
1025                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1026
1027         if (bfsize < BUF_SIZE_16KiB)
1028                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1029
1030         priv->dma_buf_sz = bfsize;
1031
1032         netif_dbg(priv, probe, priv->dev,
1033                   "(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n",
1034                   __func__, (u32)priv->dma_rx_phy, (u32)priv->dma_tx_phy);
1035
1036         /* RX INITIALIZATION */
1037         netif_dbg(priv, probe, priv->dev,
1038                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1039
1040         for (i = 0; i < DMA_RX_SIZE; i++) {
1041                 struct dma_desc *p;
1042                 if (priv->extend_desc)
1043                         p = &((priv->dma_erx + i)->basic);
1044                 else
1045                         p = priv->dma_rx + i;
1046
1047                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1048                 if (ret)
1049                         goto err_init_rx_buffers;
1050
1051                 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1052                           priv->rx_skbuff[i], priv->rx_skbuff[i]->data,
1053                           (unsigned int)priv->rx_skbuff_dma[i]);
1054         }
1055         priv->cur_rx = 0;
1056         priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1057         buf_sz = bfsize;
1058
1059         /* Setup the chained descriptor addresses */
1060         if (priv->mode == STMMAC_CHAIN_MODE) {
1061                 if (priv->extend_desc) {
1062                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1063                                              DMA_RX_SIZE, 1);
1064                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1065                                              DMA_TX_SIZE, 1);
1066                 } else {
1067                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1068                                              DMA_RX_SIZE, 0);
1069                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1070                                              DMA_TX_SIZE, 0);
1071                 }
1072         }
1073
1074         /* TX INITIALIZATION */
1075         for (i = 0; i < DMA_TX_SIZE; i++) {
1076                 struct dma_desc *p;
1077                 if (priv->extend_desc)
1078                         p = &((priv->dma_etx + i)->basic);
1079                 else
1080                         p = priv->dma_tx + i;
1081
1082                 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1083                         p->des0 = 0;
1084                         p->des1 = 0;
1085                         p->des2 = 0;
1086                         p->des3 = 0;
1087                 } else {
1088                         p->des2 = 0;
1089                 }
1090
1091                 priv->tx_skbuff_dma[i].buf = 0;
1092                 priv->tx_skbuff_dma[i].map_as_page = false;
1093                 priv->tx_skbuff_dma[i].len = 0;
1094                 priv->tx_skbuff_dma[i].last_segment = false;
1095                 priv->tx_skbuff[i] = NULL;
1096         }
1097
1098         priv->dirty_tx = 0;
1099         priv->cur_tx = 0;
1100         netdev_reset_queue(priv->dev);
1101
1102         stmmac_clear_descriptors(priv);
1103
1104         if (netif_msg_hw(priv))
1105                 stmmac_display_rings(priv);
1106
1107         return 0;
1108 err_init_rx_buffers:
1109         while (--i >= 0)
1110                 stmmac_free_rx_buffers(priv, i);
1111         return ret;
1112 }
1113
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116         int i;
1117
1118         for (i = 0; i < DMA_RX_SIZE; i++)
1119                 stmmac_free_rx_buffers(priv, i);
1120 }
1121
1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1123 {
1124         int i;
1125
1126         for (i = 0; i < DMA_TX_SIZE; i++) {
1127                 if (priv->tx_skbuff_dma[i].buf) {
1128                         if (priv->tx_skbuff_dma[i].map_as_page)
1129                                 dma_unmap_page(priv->device,
1130                                                priv->tx_skbuff_dma[i].buf,
1131                                                priv->tx_skbuff_dma[i].len,
1132                                                DMA_TO_DEVICE);
1133                         else
1134                                 dma_unmap_single(priv->device,
1135                                                  priv->tx_skbuff_dma[i].buf,
1136                                                  priv->tx_skbuff_dma[i].len,
1137                                                  DMA_TO_DEVICE);
1138                 }
1139
1140                 if (priv->tx_skbuff[i]) {
1141                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1142                         priv->tx_skbuff[i] = NULL;
1143                         priv->tx_skbuff_dma[i].buf = 0;
1144                         priv->tx_skbuff_dma[i].map_as_page = false;
1145                 }
1146         }
1147 }
1148
1149 /**
1150  * alloc_dma_desc_resources - alloc TX/RX resources.
1151  * @priv: private structure
1152  * Description: according to which descriptor can be used (extend or basic)
1153  * this function allocates the resources for TX and RX paths. In case of
1154  * reception, for example, it pre-allocated the RX socket buffer in order to
1155  * allow zero-copy mechanism.
1156  */
1157 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1158 {
1159         int ret = -ENOMEM;
1160
1161         priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1162                                             GFP_KERNEL);
1163         if (!priv->rx_skbuff_dma)
1164                 return -ENOMEM;
1165
1166         priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1167                                         GFP_KERNEL);
1168         if (!priv->rx_skbuff)
1169                 goto err_rx_skbuff;
1170
1171         priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1172                                             sizeof(*priv->tx_skbuff_dma),
1173                                             GFP_KERNEL);
1174         if (!priv->tx_skbuff_dma)
1175                 goto err_tx_skbuff_dma;
1176
1177         priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1178                                         GFP_KERNEL);
1179         if (!priv->tx_skbuff)
1180                 goto err_tx_skbuff;
1181
1182         if (priv->extend_desc) {
1183                 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1184                                                     sizeof(struct
1185                                                            dma_extended_desc),
1186                                                     &priv->dma_rx_phy,
1187                                                     GFP_KERNEL);
1188                 if (!priv->dma_erx)
1189                         goto err_dma;
1190
1191                 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1192                                                     sizeof(struct
1193                                                            dma_extended_desc),
1194                                                     &priv->dma_tx_phy,
1195                                                     GFP_KERNEL);
1196                 if (!priv->dma_etx) {
1197                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1198                                           sizeof(struct dma_extended_desc),
1199                                           priv->dma_erx, priv->dma_rx_phy);
1200                         goto err_dma;
1201                 }
1202         } else {
1203                 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1204                                                    sizeof(struct dma_desc),
1205                                                    &priv->dma_rx_phy,
1206                                                    GFP_KERNEL);
1207                 if (!priv->dma_rx)
1208                         goto err_dma;
1209
1210                 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1211                                                    sizeof(struct dma_desc),
1212                                                    &priv->dma_tx_phy,
1213                                                    GFP_KERNEL);
1214                 if (!priv->dma_tx) {
1215                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1216                                           sizeof(struct dma_desc),
1217                                           priv->dma_rx, priv->dma_rx_phy);
1218                         goto err_dma;
1219                 }
1220         }
1221
1222         return 0;
1223
1224 err_dma:
1225         kfree(priv->tx_skbuff);
1226 err_tx_skbuff:
1227         kfree(priv->tx_skbuff_dma);
1228 err_tx_skbuff_dma:
1229         kfree(priv->rx_skbuff);
1230 err_rx_skbuff:
1231         kfree(priv->rx_skbuff_dma);
1232         return ret;
1233 }
1234
1235 static void free_dma_desc_resources(struct stmmac_priv *priv)
1236 {
1237         /* Release the DMA TX/RX socket buffers */
1238         dma_free_rx_skbufs(priv);
1239         dma_free_tx_skbufs(priv);
1240
1241         /* Free DMA regions of consistent memory previously allocated */
1242         if (!priv->extend_desc) {
1243                 dma_free_coherent(priv->device,
1244                                   DMA_TX_SIZE * sizeof(struct dma_desc),
1245                                   priv->dma_tx, priv->dma_tx_phy);
1246                 dma_free_coherent(priv->device,
1247                                   DMA_RX_SIZE * sizeof(struct dma_desc),
1248                                   priv->dma_rx, priv->dma_rx_phy);
1249         } else {
1250                 dma_free_coherent(priv->device, DMA_TX_SIZE *
1251                                   sizeof(struct dma_extended_desc),
1252                                   priv->dma_etx, priv->dma_tx_phy);
1253                 dma_free_coherent(priv->device, DMA_RX_SIZE *
1254                                   sizeof(struct dma_extended_desc),
1255                                   priv->dma_erx, priv->dma_rx_phy);
1256         }
1257         kfree(priv->rx_skbuff_dma);
1258         kfree(priv->rx_skbuff);
1259         kfree(priv->tx_skbuff_dma);
1260         kfree(priv->tx_skbuff);
1261 }
1262
1263 /**
1264  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1265  *  @priv: driver private structure
1266  *  Description: It is used for enabling the rx queues in the MAC
1267  */
1268 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1269 {
1270         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1271         int queue;
1272         u8 mode;
1273
1274         for (queue = 0; queue < rx_queues_count; queue++) {
1275                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1276                 priv->hw->mac->rx_queue_enable(priv->hw, mode, queue);
1277         }
1278 }
1279
1280 /**
1281  * stmmac_start_rx_dma - start RX DMA channel
1282  * @priv: driver private structure
1283  * @chan: RX channel index
1284  * Description:
1285  * This starts a RX DMA channel
1286  */
1287 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1288 {
1289         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1290         priv->hw->dma->start_rx(priv->ioaddr, chan);
1291 }
1292
1293 /**
1294  * stmmac_start_tx_dma - start TX DMA channel
1295  * @priv: driver private structure
1296  * @chan: TX channel index
1297  * Description:
1298  * This starts a TX DMA channel
1299  */
1300 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1301 {
1302         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1303         priv->hw->dma->start_tx(priv->ioaddr, chan);
1304 }
1305
1306 /**
1307  * stmmac_stop_rx_dma - stop RX DMA channel
1308  * @priv: driver private structure
1309  * @chan: RX channel index
1310  * Description:
1311  * This stops a RX DMA channel
1312  */
1313 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1314 {
1315         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1316         priv->hw->dma->stop_rx(priv->ioaddr, chan);
1317 }
1318
1319 /**
1320  * stmmac_stop_tx_dma - stop TX DMA channel
1321  * @priv: driver private structure
1322  * @chan: TX channel index
1323  * Description:
1324  * This stops a TX DMA channel
1325  */
1326 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1327 {
1328         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1329         priv->hw->dma->stop_tx(priv->ioaddr, chan);
1330 }
1331
1332 /**
1333  * stmmac_start_all_dma - start all RX and TX DMA channels
1334  * @priv: driver private structure
1335  * Description:
1336  * This starts all the RX and TX DMA channels
1337  */
1338 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1339 {
1340         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1341         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1342         u32 chan = 0;
1343
1344         for (chan = 0; chan < rx_channels_count; chan++)
1345                 stmmac_start_rx_dma(priv, chan);
1346
1347         for (chan = 0; chan < tx_channels_count; chan++)
1348                 stmmac_start_tx_dma(priv, chan);
1349 }
1350
1351 /**
1352  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1353  * @priv: driver private structure
1354  * Description:
1355  * This stops the RX and TX DMA channels
1356  */
1357 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1358 {
1359         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1360         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1361         u32 chan = 0;
1362
1363         for (chan = 0; chan < rx_channels_count; chan++)
1364                 stmmac_stop_rx_dma(priv, chan);
1365
1366         for (chan = 0; chan < tx_channels_count; chan++)
1367                 stmmac_stop_tx_dma(priv, chan);
1368 }
1369
1370 /**
1371  *  stmmac_dma_operation_mode - HW DMA operation mode
1372  *  @priv: driver private structure
1373  *  Description: it is used for configuring the DMA operation mode register in
1374  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1375  */
1376 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1377 {
1378         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1379         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1380         int rxfifosz = priv->plat->rx_fifo_size;
1381         u32 txmode = 0;
1382         u32 rxmode = 0;
1383         u32 chan = 0;
1384
1385         if (rxfifosz == 0)
1386                 rxfifosz = priv->dma_cap.rx_fifo_size;
1387
1388         if (priv->plat->force_thresh_dma_mode) {
1389                 txmode = tc;
1390                 rxmode = tc;
1391         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1392                 /*
1393                  * In case of GMAC, SF mode can be enabled
1394                  * to perform the TX COE in HW. This depends on:
1395                  * 1) TX COE if actually supported
1396                  * 2) There is no bugged Jumbo frame support
1397                  *    that needs to not insert csum in the TDES.
1398                  */
1399                 txmode = SF_DMA_MODE;
1400                 rxmode = SF_DMA_MODE;
1401                 priv->xstats.threshold = SF_DMA_MODE;
1402         } else {
1403                 txmode = tc;
1404                 rxmode = SF_DMA_MODE;
1405         }
1406
1407         /* configure all channels */
1408         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1409                 for (chan = 0; chan < rx_channels_count; chan++)
1410                         priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1411                                                    rxfifosz);
1412
1413                 for (chan = 0; chan < tx_channels_count; chan++)
1414                         priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan);
1415         } else {
1416                 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1417                                         rxfifosz);
1418         }
1419 }
1420
1421 /**
1422  * stmmac_tx_clean - to manage the transmission completion
1423  * @priv: driver private structure
1424  * Description: it reclaims the transmit resources after transmission completes.
1425  */
1426 static void stmmac_tx_clean(struct stmmac_priv *priv)
1427 {
1428         unsigned int bytes_compl = 0, pkts_compl = 0;
1429         unsigned int entry = priv->dirty_tx;
1430
1431         netif_tx_lock(priv->dev);
1432
1433         priv->xstats.tx_clean++;
1434
1435         while (entry != priv->cur_tx) {
1436                 struct sk_buff *skb = priv->tx_skbuff[entry];
1437                 struct dma_desc *p;
1438                 int status;
1439
1440                 if (priv->extend_desc)
1441                         p = (struct dma_desc *)(priv->dma_etx + entry);
1442                 else
1443                         p = priv->dma_tx + entry;
1444
1445                 status = priv->hw->desc->tx_status(&priv->dev->stats,
1446                                                       &priv->xstats, p,
1447                                                       priv->ioaddr);
1448                 /* Check if the descriptor is owned by the DMA */
1449                 if (unlikely(status & tx_dma_own))
1450                         break;
1451
1452                 /* Just consider the last segment and ...*/
1453                 if (likely(!(status & tx_not_ls))) {
1454                         /* ... verify the status error condition */
1455                         if (unlikely(status & tx_err)) {
1456                                 priv->dev->stats.tx_errors++;
1457                         } else {
1458                                 priv->dev->stats.tx_packets++;
1459                                 priv->xstats.tx_pkt_n++;
1460                         }
1461                         stmmac_get_tx_hwtstamp(priv, p, skb);
1462                 }
1463
1464                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1465                         if (priv->tx_skbuff_dma[entry].map_as_page)
1466                                 dma_unmap_page(priv->device,
1467                                                priv->tx_skbuff_dma[entry].buf,
1468                                                priv->tx_skbuff_dma[entry].len,
1469                                                DMA_TO_DEVICE);
1470                         else
1471                                 dma_unmap_single(priv->device,
1472                                                  priv->tx_skbuff_dma[entry].buf,
1473                                                  priv->tx_skbuff_dma[entry].len,
1474                                                  DMA_TO_DEVICE);
1475                         priv->tx_skbuff_dma[entry].buf = 0;
1476                         priv->tx_skbuff_dma[entry].len = 0;
1477                         priv->tx_skbuff_dma[entry].map_as_page = false;
1478                 }
1479
1480                 if (priv->hw->mode->clean_desc3)
1481                         priv->hw->mode->clean_desc3(priv, p);
1482
1483                 priv->tx_skbuff_dma[entry].last_segment = false;
1484                 priv->tx_skbuff_dma[entry].is_jumbo = false;
1485
1486                 if (likely(skb != NULL)) {
1487                         pkts_compl++;
1488                         bytes_compl += skb->len;
1489                         dev_consume_skb_any(skb);
1490                         priv->tx_skbuff[entry] = NULL;
1491                 }
1492
1493                 priv->hw->desc->release_tx_desc(p, priv->mode);
1494
1495                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1496         }
1497         priv->dirty_tx = entry;
1498
1499         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1500
1501         if (unlikely(netif_queue_stopped(priv->dev) &&
1502             stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1503                 netif_dbg(priv, tx_done, priv->dev,
1504                           "%s: restart transmit\n", __func__);
1505                 netif_wake_queue(priv->dev);
1506         }
1507
1508         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1509                 stmmac_enable_eee_mode(priv);
1510                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1511         }
1512         netif_tx_unlock(priv->dev);
1513 }
1514
1515 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv, u32 chan)
1516 {
1517         priv->hw->dma->enable_dma_irq(priv->ioaddr, chan);
1518 }
1519
1520 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan)
1521 {
1522         priv->hw->dma->disable_dma_irq(priv->ioaddr, chan);
1523 }
1524
1525 /**
1526  * stmmac_tx_err - to manage the tx error
1527  * @priv: driver private structure
1528  * @chan: channel index
1529  * Description: it cleans the descriptors and restarts the transmission
1530  * in case of transmission errors.
1531  */
1532 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1533 {
1534         int i;
1535         netif_stop_queue(priv->dev);
1536
1537         stmmac_stop_tx_dma(priv, chan);
1538         dma_free_tx_skbufs(priv);
1539         for (i = 0; i < DMA_TX_SIZE; i++)
1540                 if (priv->extend_desc)
1541                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1542                                                      priv->mode,
1543                                                      (i == DMA_TX_SIZE - 1));
1544                 else
1545                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1546                                                      priv->mode,
1547                                                      (i == DMA_TX_SIZE - 1));
1548         priv->dirty_tx = 0;
1549         priv->cur_tx = 0;
1550         netdev_reset_queue(priv->dev);
1551         stmmac_start_tx_dma(priv, chan);
1552
1553         priv->dev->stats.tx_errors++;
1554         netif_wake_queue(priv->dev);
1555 }
1556
1557 /**
1558  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1559  *  @priv: driver private structure
1560  *  @txmode: TX operating mode
1561  *  @rxmode: RX operating mode
1562  *  @chan: channel index
1563  *  Description: it is used for configuring of the DMA operation mode in
1564  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1565  *  mode.
1566  */
1567 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1568                                           u32 rxmode, u32 chan)
1569 {
1570         int rxfifosz = priv->plat->rx_fifo_size;
1571
1572         if (rxfifosz == 0)
1573                 rxfifosz = priv->dma_cap.rx_fifo_size;
1574
1575         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1576                 priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1577                                            rxfifosz);
1578                 priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan);
1579         } else {
1580                 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1581                                         rxfifosz);
1582         }
1583 }
1584
1585 /**
1586  * stmmac_dma_interrupt - DMA ISR
1587  * @priv: driver private structure
1588  * Description: this is the DMA ISR. It is called by the main ISR.
1589  * It calls the dwmac dma routine and schedule poll method in case of some
1590  * work can be done.
1591  */
1592 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1593 {
1594         u32 tx_channel_count = priv->plat->tx_queues_to_use;
1595         int status;
1596         u32 chan;
1597
1598         for (chan = 0; chan < tx_channel_count; chan++) {
1599                 status = priv->hw->dma->dma_interrupt(priv->ioaddr,
1600                                                       &priv->xstats, chan);
1601                 if (likely((status & handle_rx)) || (status & handle_tx)) {
1602                         if (likely(napi_schedule_prep(&priv->napi))) {
1603                                 stmmac_disable_dma_irq(priv, chan);
1604                                 __napi_schedule(&priv->napi);
1605                         }
1606                 }
1607
1608                 if (unlikely(status & tx_hard_error_bump_tc)) {
1609                         /* Try to bump up the dma threshold on this failure */
1610                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1611                             (tc <= 256)) {
1612                                 tc += 64;
1613                                 if (priv->plat->force_thresh_dma_mode)
1614                                         stmmac_set_dma_operation_mode(priv,
1615                                                                       tc,
1616                                                                       tc,
1617                                                                       chan);
1618                                 else
1619                                         stmmac_set_dma_operation_mode(priv,
1620                                                                     tc,
1621                                                                     SF_DMA_MODE,
1622                                                                     chan);
1623                                 priv->xstats.threshold = tc;
1624                         }
1625                 } else if (unlikely(status == tx_hard_error)) {
1626                         stmmac_tx_err(priv, chan);
1627                 }
1628         }
1629 }
1630
1631 /**
1632  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1633  * @priv: driver private structure
1634  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1635  */
1636 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1637 {
1638         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1639                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1640
1641         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1642                 priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
1643                 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1644         } else {
1645                 priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
1646                 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1647         }
1648
1649         dwmac_mmc_intr_all_mask(priv->mmcaddr);
1650
1651         if (priv->dma_cap.rmon) {
1652                 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1653                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1654         } else
1655                 netdev_info(priv->dev, "No MAC Management Counters available\n");
1656 }
1657
1658 /**
1659  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1660  * @priv: driver private structure
1661  * Description: select the Enhanced/Alternate or Normal descriptors.
1662  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1663  * supported by the HW capability register.
1664  */
1665 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1666 {
1667         if (priv->plat->enh_desc) {
1668                 dev_info(priv->device, "Enhanced/Alternate descriptors\n");
1669
1670                 /* GMAC older than 3.50 has no extended descriptors */
1671                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1672                         dev_info(priv->device, "Enabled extended descriptors\n");
1673                         priv->extend_desc = 1;
1674                 } else
1675                         dev_warn(priv->device, "Extended descriptors not supported\n");
1676
1677                 priv->hw->desc = &enh_desc_ops;
1678         } else {
1679                 dev_info(priv->device, "Normal descriptors\n");
1680                 priv->hw->desc = &ndesc_ops;
1681         }
1682 }
1683
1684 /**
1685  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1686  * @priv: driver private structure
1687  * Description:
1688  *  new GMAC chip generations have a new register to indicate the
1689  *  presence of the optional feature/functions.
1690  *  This can be also used to override the value passed through the
1691  *  platform and necessary for old MAC10/100 and GMAC chips.
1692  */
1693 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1694 {
1695         u32 ret = 0;
1696
1697         if (priv->hw->dma->get_hw_feature) {
1698                 priv->hw->dma->get_hw_feature(priv->ioaddr,
1699                                               &priv->dma_cap);
1700                 ret = 1;
1701         }
1702
1703         return ret;
1704 }
1705
1706 /**
1707  * stmmac_check_ether_addr - check if the MAC addr is valid
1708  * @priv: driver private structure
1709  * Description:
1710  * it is to verify if the MAC address is valid, in case of failures it
1711  * generates a random MAC address
1712  */
1713 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1714 {
1715         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1716                 priv->hw->mac->get_umac_addr(priv->hw,
1717                                              priv->dev->dev_addr, 0);
1718                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1719                         eth_hw_addr_random(priv->dev);
1720                 netdev_info(priv->dev, "device MAC address %pM\n",
1721                             priv->dev->dev_addr);
1722         }
1723 }
1724
1725 /**
1726  * stmmac_init_dma_engine - DMA init.
1727  * @priv: driver private structure
1728  * Description:
1729  * It inits the DMA invoking the specific MAC/GMAC callback.
1730  * Some DMA parameters can be passed from the platform;
1731  * in case of these are not passed a default is kept for the MAC or GMAC.
1732  */
1733 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1734 {
1735         int atds = 0;
1736         int ret = 0;
1737
1738         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
1739                 dev_err(priv->device, "Invalid DMA configuration\n");
1740                 return -EINVAL;
1741         }
1742
1743         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1744                 atds = 1;
1745
1746         ret = priv->hw->dma->reset(priv->ioaddr);
1747         if (ret) {
1748                 dev_err(priv->device, "Failed to reset the dma\n");
1749                 return ret;
1750         }
1751
1752         priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
1753                             priv->dma_tx_phy, priv->dma_rx_phy, atds);
1754
1755         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1756                 priv->rx_tail_addr = priv->dma_rx_phy +
1757                             (DMA_RX_SIZE * sizeof(struct dma_desc));
1758                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1759                                                STMMAC_CHAN0);
1760
1761                 priv->tx_tail_addr = priv->dma_tx_phy +
1762                             (DMA_TX_SIZE * sizeof(struct dma_desc));
1763                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1764                                                STMMAC_CHAN0);
1765         }
1766
1767         if (priv->plat->axi && priv->hw->dma->axi)
1768                 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1769
1770         return ret;
1771 }
1772
1773 /**
1774  * stmmac_tx_timer - mitigation sw timer for tx.
1775  * @data: data pointer
1776  * Description:
1777  * This is the timer handler to directly invoke the stmmac_tx_clean.
1778  */
1779 static void stmmac_tx_timer(unsigned long data)
1780 {
1781         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1782
1783         stmmac_tx_clean(priv);
1784 }
1785
1786 /**
1787  * stmmac_init_tx_coalesce - init tx mitigation options.
1788  * @priv: driver private structure
1789  * Description:
1790  * This inits the transmit coalesce parameters: i.e. timer rate,
1791  * timer handler and default threshold used for enabling the
1792  * interrupt on completion bit.
1793  */
1794 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1795 {
1796         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1797         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1798         init_timer(&priv->txtimer);
1799         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1800         priv->txtimer.data = (unsigned long)priv;
1801         priv->txtimer.function = stmmac_tx_timer;
1802         add_timer(&priv->txtimer);
1803 }
1804
1805 /**
1806  *  stmmac_set_tx_queue_weight - Set TX queue weight
1807  *  @priv: driver private structure
1808  *  Description: It is used for setting TX queues weight
1809  */
1810 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
1811 {
1812         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1813         u32 weight;
1814         u32 queue;
1815
1816         for (queue = 0; queue < tx_queues_count; queue++) {
1817                 weight = priv->plat->tx_queues_cfg[queue].weight;
1818                 priv->hw->mac->set_mtl_tx_queue_weight(priv->hw, weight, queue);
1819         }
1820 }
1821
1822 /**
1823  *  stmmac_configure_cbs - Configure CBS in TX queue
1824  *  @priv: driver private structure
1825  *  Description: It is used for configuring CBS in AVB TX queues
1826  */
1827 static void stmmac_configure_cbs(struct stmmac_priv *priv)
1828 {
1829         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1830         u32 mode_to_use;
1831         u32 queue;
1832
1833         for (queue = 0; queue < tx_queues_count; queue++) {
1834                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
1835                 if (mode_to_use == MTL_QUEUE_DCB)
1836                         continue;
1837
1838                 priv->hw->mac->config_cbs(priv->hw,
1839                                 priv->plat->tx_queues_cfg[queue].send_slope,
1840                                 priv->plat->tx_queues_cfg[queue].idle_slope,
1841                                 priv->plat->tx_queues_cfg[queue].high_credit,
1842                                 priv->plat->tx_queues_cfg[queue].low_credit,
1843                                 queue);
1844         }
1845 }
1846
1847 /**
1848  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
1849  *  @priv: driver private structure
1850  *  Description: It is used for mapping RX queues to RX dma channels
1851  */
1852 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
1853 {
1854         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1855         u32 queue;
1856         u32 chan;
1857
1858         for (queue = 0; queue < rx_queues_count; queue++) {
1859                 chan = priv->plat->rx_queues_cfg[queue].chan;
1860                 priv->hw->mac->map_mtl_to_dma(priv->hw, queue, chan);
1861         }
1862 }
1863
1864 /**
1865  *  stmmac_mtl_configuration - Configure MTL
1866  *  @priv: driver private structure
1867  *  Description: It is used for configurring MTL
1868  */
1869 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
1870 {
1871         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1872         u32 tx_queues_count = priv->plat->tx_queues_to_use;
1873
1874         if (tx_queues_count > 1 && priv->hw->mac->set_mtl_tx_queue_weight)
1875                 stmmac_set_tx_queue_weight(priv);
1876
1877         /* Configure MTL RX algorithms */
1878         if (rx_queues_count > 1 && priv->hw->mac->prog_mtl_rx_algorithms)
1879                 priv->hw->mac->prog_mtl_rx_algorithms(priv->hw,
1880                                                 priv->plat->rx_sched_algorithm);
1881
1882         /* Configure MTL TX algorithms */
1883         if (tx_queues_count > 1 && priv->hw->mac->prog_mtl_tx_algorithms)
1884                 priv->hw->mac->prog_mtl_tx_algorithms(priv->hw,
1885                                                 priv->plat->tx_sched_algorithm);
1886
1887         /* Configure CBS in AVB TX queues */
1888         if (tx_queues_count > 1 && priv->hw->mac->config_cbs)
1889                 stmmac_configure_cbs(priv);
1890
1891         /* Map RX MTL to DMA channels */
1892         if (rx_queues_count > 1 && priv->hw->mac->map_mtl_to_dma)
1893                 stmmac_rx_queue_dma_chan_map(priv);
1894
1895         /* Enable MAC RX Queues */
1896         if (rx_queues_count > 1 && priv->hw->mac->rx_queue_enable)
1897                 stmmac_mac_enable_rx_queues(priv);
1898
1899         /* Set the HW DMA mode and the COE */
1900         stmmac_dma_operation_mode(priv);
1901 }
1902
1903 /**
1904  * stmmac_hw_setup - setup mac in a usable state.
1905  *  @dev : pointer to the device structure.
1906  *  Description:
1907  *  this is the main function to setup the HW in a usable state because the
1908  *  dma engine is reset, the core registers are configured (e.g. AXI,
1909  *  Checksum features, timers). The DMA is ready to start receiving and
1910  *  transmitting.
1911  *  Return value:
1912  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1913  *  file on failure.
1914  */
1915 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1916 {
1917         struct stmmac_priv *priv = netdev_priv(dev);
1918         int ret;
1919
1920         /* DMA initialization and SW reset */
1921         ret = stmmac_init_dma_engine(priv);
1922         if (ret < 0) {
1923                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
1924                            __func__);
1925                 return ret;
1926         }
1927
1928         /* Copy the MAC addr into the HW  */
1929         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1930
1931         /* PS and related bits will be programmed according to the speed */
1932         if (priv->hw->pcs) {
1933                 int speed = priv->plat->mac_port_sel_speed;
1934
1935                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1936                     (speed == SPEED_1000)) {
1937                         priv->hw->ps = speed;
1938                 } else {
1939                         dev_warn(priv->device, "invalid port speed\n");
1940                         priv->hw->ps = 0;
1941                 }
1942         }
1943
1944         /* Initialize the MAC Core */
1945         priv->hw->mac->core_init(priv->hw, dev->mtu);
1946
1947         /* Initialize MTL*/
1948         if (priv->synopsys_id >= DWMAC_CORE_4_00)
1949                 stmmac_mtl_configuration(priv);
1950
1951         ret = priv->hw->mac->rx_ipc(priv->hw);
1952         if (!ret) {
1953                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
1954                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1955                 priv->hw->rx_csum = 0;
1956         }
1957
1958         /* Enable the MAC Rx/Tx */
1959         if (priv->synopsys_id >= DWMAC_CORE_4_00)
1960                 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1961         else
1962                 stmmac_set_mac(priv->ioaddr, true);
1963
1964         stmmac_mmc_setup(priv);
1965
1966         if (init_ptp) {
1967                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
1968                 if (ret < 0)
1969                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
1970
1971                 ret = stmmac_init_ptp(priv);
1972                 if (ret == -EOPNOTSUPP)
1973                         netdev_warn(priv->dev, "PTP not supported by HW\n");
1974                 else if (ret)
1975                         netdev_warn(priv->dev, "PTP init failed\n");
1976         }
1977
1978 #ifdef CONFIG_DEBUG_FS
1979         ret = stmmac_init_fs(dev);
1980         if (ret < 0)
1981                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
1982                             __func__);
1983 #endif
1984         /* Start the ball rolling... */
1985         stmmac_start_all_dma(priv);
1986
1987         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1988
1989         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1990                 priv->rx_riwt = MAX_DMA_RIWT;
1991                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1992         }
1993
1994         if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1995                 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1996
1997         /*  set TX ring length */
1998         if (priv->hw->dma->set_tx_ring_len)
1999                 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
2000                                                (DMA_TX_SIZE - 1));
2001         /*  set RX ring length */
2002         if (priv->hw->dma->set_rx_ring_len)
2003                 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
2004                                                (DMA_RX_SIZE - 1));
2005         /* Enable TSO */
2006         if (priv->tso)
2007                 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
2008
2009         return 0;
2010 }
2011
2012 static void stmmac_hw_teardown(struct net_device *dev)
2013 {
2014         struct stmmac_priv *priv = netdev_priv(dev);
2015
2016         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2017 }
2018
2019 /**
2020  *  stmmac_open - open entry point of the driver
2021  *  @dev : pointer to the device structure.
2022  *  Description:
2023  *  This function is the open entry point of the driver.
2024  *  Return value:
2025  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2026  *  file on failure.
2027  */
2028 static int stmmac_open(struct net_device *dev)
2029 {
2030         struct stmmac_priv *priv = netdev_priv(dev);
2031         int ret;
2032
2033         stmmac_check_ether_addr(priv);
2034
2035         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2036             priv->hw->pcs != STMMAC_PCS_TBI &&
2037             priv->hw->pcs != STMMAC_PCS_RTBI) {
2038                 ret = stmmac_init_phy(dev);
2039                 if (ret) {
2040                         netdev_err(priv->dev,
2041                                    "%s: Cannot attach to PHY (error: %d)\n",
2042                                    __func__, ret);
2043                         return ret;
2044                 }
2045         }
2046
2047         /* Extra statistics */
2048         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2049         priv->xstats.threshold = tc;
2050
2051         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2052         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2053
2054         ret = alloc_dma_desc_resources(priv);
2055         if (ret < 0) {
2056                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2057                            __func__);
2058                 goto dma_desc_error;
2059         }
2060
2061         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2062         if (ret < 0) {
2063                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2064                            __func__);
2065                 goto init_error;
2066         }
2067
2068         ret = stmmac_hw_setup(dev, true);
2069         if (ret < 0) {
2070                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2071                 goto init_error;
2072         }
2073
2074         stmmac_init_tx_coalesce(priv);
2075
2076         if (dev->phydev)
2077                 phy_start(dev->phydev);
2078
2079         /* Request the IRQ lines */
2080         ret = request_irq(dev->irq, stmmac_interrupt,
2081                           IRQF_SHARED, dev->name, dev);
2082         if (unlikely(ret < 0)) {
2083                 netdev_err(priv->dev,
2084                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2085                            __func__, dev->irq, ret);
2086                 goto irq_error;
2087         }
2088
2089         /* Request the Wake IRQ in case of another line is used for WoL */
2090         if (priv->wol_irq != dev->irq) {
2091                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2092                                   IRQF_SHARED, dev->name, dev);
2093                 if (unlikely(ret < 0)) {
2094                         netdev_err(priv->dev,
2095                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2096                                    __func__, priv->wol_irq, ret);
2097                         goto wolirq_error;
2098                 }
2099         }
2100
2101         /* Request the IRQ lines */
2102         if (priv->lpi_irq > 0) {
2103                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2104                                   dev->name, dev);
2105                 if (unlikely(ret < 0)) {
2106                         netdev_err(priv->dev,
2107                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2108                                    __func__, priv->lpi_irq, ret);
2109                         goto lpiirq_error;
2110                 }
2111         }
2112
2113         napi_enable(&priv->napi);
2114         netif_start_queue(dev);
2115
2116         return 0;
2117
2118 lpiirq_error:
2119         if (priv->wol_irq != dev->irq)
2120                 free_irq(priv->wol_irq, dev);
2121 wolirq_error:
2122         free_irq(dev->irq, dev);
2123 irq_error:
2124         if (dev->phydev)
2125                 phy_stop(dev->phydev);
2126
2127         del_timer_sync(&priv->txtimer);
2128         stmmac_hw_teardown(dev);
2129 init_error:
2130         free_dma_desc_resources(priv);
2131 dma_desc_error:
2132         if (dev->phydev)
2133                 phy_disconnect(dev->phydev);
2134
2135         return ret;
2136 }
2137
2138 /**
2139  *  stmmac_release - close entry point of the driver
2140  *  @dev : device pointer.
2141  *  Description:
2142  *  This is the stop entry point of the driver.
2143  */
2144 static int stmmac_release(struct net_device *dev)
2145 {
2146         struct stmmac_priv *priv = netdev_priv(dev);
2147
2148         if (priv->eee_enabled)
2149                 del_timer_sync(&priv->eee_ctrl_timer);
2150
2151         /* Stop and disconnect the PHY */
2152         if (dev->phydev) {
2153                 phy_stop(dev->phydev);
2154                 phy_disconnect(dev->phydev);
2155         }
2156
2157         netif_stop_queue(dev);
2158
2159         napi_disable(&priv->napi);
2160
2161         del_timer_sync(&priv->txtimer);
2162
2163         /* Free the IRQ lines */
2164         free_irq(dev->irq, dev);
2165         if (priv->wol_irq != dev->irq)
2166                 free_irq(priv->wol_irq, dev);
2167         if (priv->lpi_irq > 0)
2168                 free_irq(priv->lpi_irq, dev);
2169
2170         /* Stop TX/RX DMA and clear the descriptors */
2171         stmmac_stop_all_dma(priv);
2172
2173         /* Release and free the Rx/Tx resources */
2174         free_dma_desc_resources(priv);
2175
2176         /* Disable the MAC Rx/Tx */
2177         stmmac_set_mac(priv->ioaddr, false);
2178
2179         netif_carrier_off(dev);
2180
2181 #ifdef CONFIG_DEBUG_FS
2182         stmmac_exit_fs(dev);
2183 #endif
2184
2185         stmmac_release_ptp(priv);
2186
2187         return 0;
2188 }
2189
2190 /**
2191  *  stmmac_tso_allocator - close entry point of the driver
2192  *  @priv: driver private structure
2193  *  @des: buffer start address
2194  *  @total_len: total length to fill in descriptors
2195  *  @last_segmant: condition for the last descriptor
2196  *  Description:
2197  *  This function fills descriptor and request new descriptors according to
2198  *  buffer length to fill
2199  */
2200 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2201                                  int total_len, bool last_segment)
2202 {
2203         struct dma_desc *desc;
2204         int tmp_len;
2205         u32 buff_size;
2206
2207         tmp_len = total_len;
2208
2209         while (tmp_len > 0) {
2210                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2211                 desc = priv->dma_tx + priv->cur_tx;
2212
2213                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2214                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2215                             TSO_MAX_BUFF_SIZE : tmp_len;
2216
2217                 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
2218                         0, 1,
2219                         (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
2220                         0, 0);
2221
2222                 tmp_len -= TSO_MAX_BUFF_SIZE;
2223         }
2224 }
2225
2226 /**
2227  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2228  *  @skb : the socket buffer
2229  *  @dev : device pointer
2230  *  Description: this is the transmit function that is called on TSO frames
2231  *  (support available on GMAC4 and newer chips).
2232  *  Diagram below show the ring programming in case of TSO frames:
2233  *
2234  *  First Descriptor
2235  *   --------
2236  *   | DES0 |---> buffer1 = L2/L3/L4 header
2237  *   | DES1 |---> TCP Payload (can continue on next descr...)
2238  *   | DES2 |---> buffer 1 and 2 len
2239  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2240  *   --------
2241  *      |
2242  *     ...
2243  *      |
2244  *   --------
2245  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2246  *   | DES1 | --|
2247  *   | DES2 | --> buffer 1 and 2 len
2248  *   | DES3 |
2249  *   --------
2250  *
2251  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2252  */
2253 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2254 {
2255         u32 pay_len, mss;
2256         int tmp_pay_len = 0;
2257         struct stmmac_priv *priv = netdev_priv(dev);
2258         int nfrags = skb_shinfo(skb)->nr_frags;
2259         unsigned int first_entry, des;
2260         struct dma_desc *desc, *first, *mss_desc = NULL;
2261         u8 proto_hdr_len;
2262         int i;
2263
2264         /* Compute header lengths */
2265         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2266
2267         /* Desc availability based on threshold should be enough safe */
2268         if (unlikely(stmmac_tx_avail(priv) <
2269                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2270                 if (!netif_queue_stopped(dev)) {
2271                         netif_stop_queue(dev);
2272                         /* This is a hard error, log it. */
2273                         netdev_err(priv->dev,
2274                                    "%s: Tx Ring full when queue awake\n",
2275                                    __func__);
2276                 }
2277                 return NETDEV_TX_BUSY;
2278         }
2279
2280         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2281
2282         mss = skb_shinfo(skb)->gso_size;
2283
2284         /* set new MSS value if needed */
2285         if (mss != priv->mss) {
2286                 mss_desc = priv->dma_tx + priv->cur_tx;
2287                 priv->hw->desc->set_mss(mss_desc, mss);
2288                 priv->mss = mss;
2289                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2290         }
2291
2292         if (netif_msg_tx_queued(priv)) {
2293                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2294                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2295                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2296                         skb->data_len);
2297         }
2298
2299         first_entry = priv->cur_tx;
2300
2301         desc = priv->dma_tx + first_entry;
2302         first = desc;
2303
2304         /* first descriptor: fill Headers on Buf1 */
2305         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2306                              DMA_TO_DEVICE);
2307         if (dma_mapping_error(priv->device, des))
2308                 goto dma_map_err;
2309
2310         priv->tx_skbuff_dma[first_entry].buf = des;
2311         priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2312         priv->tx_skbuff[first_entry] = skb;
2313
2314         first->des0 = cpu_to_le32(des);
2315
2316         /* Fill start of payload in buff2 of first descriptor */
2317         if (pay_len)
2318                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2319
2320         /* If needed take extra descriptors to fill the remaining payload */
2321         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2322
2323         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2324
2325         /* Prepare fragments */
2326         for (i = 0; i < nfrags; i++) {
2327                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2328
2329                 des = skb_frag_dma_map(priv->device, frag, 0,
2330                                        skb_frag_size(frag),
2331                                        DMA_TO_DEVICE);
2332                 if (dma_mapping_error(priv->device, des))
2333                         goto dma_map_err;
2334
2335                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2336                                      (i == nfrags - 1));
2337
2338                 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2339                 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2340                 priv->tx_skbuff[priv->cur_tx] = NULL;
2341                 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2342         }
2343
2344         priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2345
2346         priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2347
2348         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2349                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2350                           __func__);
2351                 netif_stop_queue(dev);
2352         }
2353
2354         dev->stats.tx_bytes += skb->len;
2355         priv->xstats.tx_tso_frames++;
2356         priv->xstats.tx_tso_nfrags += nfrags;
2357
2358         /* Manage tx mitigation */
2359         priv->tx_count_frames += nfrags + 1;
2360         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2361                 mod_timer(&priv->txtimer,
2362                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2363         } else {
2364                 priv->tx_count_frames = 0;
2365                 priv->hw->desc->set_tx_ic(desc);
2366                 priv->xstats.tx_set_ic_bit++;
2367         }
2368
2369         if (!priv->hwts_tx_en)
2370                 skb_tx_timestamp(skb);
2371
2372         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2373                      priv->hwts_tx_en)) {
2374                 /* declare that device is doing timestamping */
2375                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2376                 priv->hw->desc->enable_tx_timestamp(first);
2377         }
2378
2379         /* Complete the first descriptor before granting the DMA */
2380         priv->hw->desc->prepare_tso_tx_desc(first, 1,
2381                         proto_hdr_len,
2382                         pay_len,
2383                         1, priv->tx_skbuff_dma[first_entry].last_segment,
2384                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2385
2386         /* If context desc is used to change MSS */
2387         if (mss_desc)
2388                 priv->hw->desc->set_tx_owner(mss_desc);
2389
2390         /* The own bit must be the latest setting done when prepare the
2391          * descriptor and then barrier is needed to make sure that
2392          * all is coherent before granting the DMA engine.
2393          */
2394         dma_wmb();
2395
2396         if (netif_msg_pktdata(priv)) {
2397                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2398                         __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2399                         priv->cur_tx, first, nfrags);
2400
2401                 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2402                                              0);
2403
2404                 pr_info(">>> frame to be transmitted: ");
2405                 print_pkt(skb->data, skb_headlen(skb));
2406         }
2407
2408         netdev_sent_queue(dev, skb->len);
2409
2410         priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2411                                        STMMAC_CHAN0);
2412
2413         return NETDEV_TX_OK;
2414
2415 dma_map_err:
2416         dev_err(priv->device, "Tx dma map failed\n");
2417         dev_kfree_skb(skb);
2418         priv->dev->stats.tx_dropped++;
2419         return NETDEV_TX_OK;
2420 }
2421
2422 /**
2423  *  stmmac_xmit - Tx entry point of the driver
2424  *  @skb : the socket buffer
2425  *  @dev : device pointer
2426  *  Description : this is the tx entry point of the driver.
2427  *  It programs the chain or the ring and supports oversized frames
2428  *  and SG feature.
2429  */
2430 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2431 {
2432         struct stmmac_priv *priv = netdev_priv(dev);
2433         unsigned int nopaged_len = skb_headlen(skb);
2434         int i, csum_insertion = 0, is_jumbo = 0;
2435         int nfrags = skb_shinfo(skb)->nr_frags;
2436         unsigned int entry, first_entry;
2437         struct dma_desc *desc, *first;
2438         unsigned int enh_desc;
2439         unsigned int des;
2440
2441         /* Manage oversized TCP frames for GMAC4 device */
2442         if (skb_is_gso(skb) && priv->tso) {
2443                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2444                         return stmmac_tso_xmit(skb, dev);
2445         }
2446
2447         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2448                 if (!netif_queue_stopped(dev)) {
2449                         netif_stop_queue(dev);
2450                         /* This is a hard error, log it. */
2451                         netdev_err(priv->dev,
2452                                    "%s: Tx Ring full when queue awake\n",
2453                                    __func__);
2454                 }
2455                 return NETDEV_TX_BUSY;
2456         }
2457
2458         if (priv->tx_path_in_lpi_mode)
2459                 stmmac_disable_eee_mode(priv);
2460
2461         entry = priv->cur_tx;
2462         first_entry = entry;
2463
2464         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2465
2466         if (likely(priv->extend_desc))
2467                 desc = (struct dma_desc *)(priv->dma_etx + entry);
2468         else
2469                 desc = priv->dma_tx + entry;
2470
2471         first = desc;
2472
2473         priv->tx_skbuff[first_entry] = skb;
2474
2475         enh_desc = priv->plat->enh_desc;
2476         /* To program the descriptors according to the size of the frame */
2477         if (enh_desc)
2478                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2479
2480         if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2481                                          DWMAC_CORE_4_00)) {
2482                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2483                 if (unlikely(entry < 0))
2484                         goto dma_map_err;
2485         }
2486
2487         for (i = 0; i < nfrags; i++) {
2488                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2489                 int len = skb_frag_size(frag);
2490                 bool last_segment = (i == (nfrags - 1));
2491
2492                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2493
2494                 if (likely(priv->extend_desc))
2495                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2496                 else
2497                         desc = priv->dma_tx + entry;
2498
2499                 des = skb_frag_dma_map(priv->device, frag, 0, len,
2500                                        DMA_TO_DEVICE);
2501                 if (dma_mapping_error(priv->device, des))
2502                         goto dma_map_err; /* should reuse desc w/o issues */
2503
2504                 priv->tx_skbuff[entry] = NULL;
2505
2506                 priv->tx_skbuff_dma[entry].buf = des;
2507                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2508                         desc->des0 = cpu_to_le32(des);
2509                 else
2510                         desc->des2 = cpu_to_le32(des);
2511
2512                 priv->tx_skbuff_dma[entry].map_as_page = true;
2513                 priv->tx_skbuff_dma[entry].len = len;
2514                 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2515
2516                 /* Prepare the descriptor and set the own bit too */
2517                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2518                                                 priv->mode, 1, last_segment);
2519         }
2520
2521         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2522
2523         priv->cur_tx = entry;
2524
2525         if (netif_msg_pktdata(priv)) {
2526                 void *tx_head;
2527
2528                 netdev_dbg(priv->dev,
2529                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2530                            __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2531                            entry, first, nfrags);
2532
2533                 if (priv->extend_desc)
2534                         tx_head = (void *)priv->dma_etx;
2535                 else
2536                         tx_head = (void *)priv->dma_tx;
2537
2538                 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2539
2540                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
2541                 print_pkt(skb->data, skb->len);
2542         }
2543
2544         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2545                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2546                           __func__);
2547                 netif_stop_queue(dev);
2548         }
2549
2550         dev->stats.tx_bytes += skb->len;
2551
2552         /* According to the coalesce parameter the IC bit for the latest
2553          * segment is reset and the timer re-started to clean the tx status.
2554          * This approach takes care about the fragments: desc is the first
2555          * element in case of no SG.
2556          */
2557         priv->tx_count_frames += nfrags + 1;
2558         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2559                 mod_timer(&priv->txtimer,
2560                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2561         } else {
2562                 priv->tx_count_frames = 0;
2563                 priv->hw->desc->set_tx_ic(desc);
2564                 priv->xstats.tx_set_ic_bit++;
2565         }
2566
2567         if (!priv->hwts_tx_en)
2568                 skb_tx_timestamp(skb);
2569
2570         /* Ready to fill the first descriptor and set the OWN bit w/o any
2571          * problems because all the descriptors are actually ready to be
2572          * passed to the DMA engine.
2573          */
2574         if (likely(!is_jumbo)) {
2575                 bool last_segment = (nfrags == 0);
2576
2577                 des = dma_map_single(priv->device, skb->data,
2578                                      nopaged_len, DMA_TO_DEVICE);
2579                 if (dma_mapping_error(priv->device, des))
2580                         goto dma_map_err;
2581
2582                 priv->tx_skbuff_dma[first_entry].buf = des;
2583                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2584                         first->des0 = cpu_to_le32(des);
2585                 else
2586                         first->des2 = cpu_to_le32(des);
2587
2588                 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2589                 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2590
2591                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2592                              priv->hwts_tx_en)) {
2593                         /* declare that device is doing timestamping */
2594                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2595                         priv->hw->desc->enable_tx_timestamp(first);
2596                 }
2597
2598                 /* Prepare the first descriptor setting the OWN bit too */
2599                 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2600                                                 csum_insertion, priv->mode, 1,
2601                                                 last_segment);
2602
2603                 /* The own bit must be the latest setting done when prepare the
2604                  * descriptor and then barrier is needed to make sure that
2605                  * all is coherent before granting the DMA engine.
2606                  */
2607                 dma_wmb();
2608         }
2609
2610         netdev_sent_queue(dev, skb->len);
2611
2612         if (priv->synopsys_id < DWMAC_CORE_4_00)
2613                 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2614         else
2615                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2616                                                STMMAC_CHAN0);
2617
2618         return NETDEV_TX_OK;
2619
2620 dma_map_err:
2621         netdev_err(priv->dev, "Tx DMA map failed\n");
2622         dev_kfree_skb(skb);
2623         priv->dev->stats.tx_dropped++;
2624         return NETDEV_TX_OK;
2625 }
2626
2627 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2628 {
2629         struct ethhdr *ehdr;
2630         u16 vlanid;
2631
2632         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2633             NETIF_F_HW_VLAN_CTAG_RX &&
2634             !__vlan_get_tag(skb, &vlanid)) {
2635                 /* pop the vlan tag */
2636                 ehdr = (struct ethhdr *)skb->data;
2637                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2638                 skb_pull(skb, VLAN_HLEN);
2639                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2640         }
2641 }
2642
2643
2644 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2645 {
2646         if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2647                 return 0;
2648
2649         return 1;
2650 }
2651
2652 /**
2653  * stmmac_rx_refill - refill used skb preallocated buffers
2654  * @priv: driver private structure
2655  * Description : this is to reallocate the skb for the reception process
2656  * that is based on zero-copy.
2657  */
2658 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2659 {
2660         int bfsize = priv->dma_buf_sz;
2661         unsigned int entry = priv->dirty_rx;
2662         int dirty = stmmac_rx_dirty(priv);
2663
2664         while (dirty-- > 0) {
2665                 struct dma_desc *p;
2666
2667                 if (priv->extend_desc)
2668                         p = (struct dma_desc *)(priv->dma_erx + entry);
2669                 else
2670                         p = priv->dma_rx + entry;
2671
2672                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2673                         struct sk_buff *skb;
2674
2675                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2676                         if (unlikely(!skb)) {
2677                                 /* so for a while no zero-copy! */
2678                                 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2679                                 if (unlikely(net_ratelimit()))
2680                                         dev_err(priv->device,
2681                                                 "fail to alloc skb entry %d\n",
2682                                                 entry);
2683                                 break;
2684                         }
2685
2686                         priv->rx_skbuff[entry] = skb;
2687                         priv->rx_skbuff_dma[entry] =
2688                             dma_map_single(priv->device, skb->data, bfsize,
2689                                            DMA_FROM_DEVICE);
2690                         if (dma_mapping_error(priv->device,
2691                                               priv->rx_skbuff_dma[entry])) {
2692                                 netdev_err(priv->dev, "Rx DMA map failed\n");
2693                                 dev_kfree_skb(skb);
2694                                 break;
2695                         }
2696
2697                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2698                                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2699                                 p->des1 = 0;
2700                         } else {
2701                                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2702                         }
2703                         if (priv->hw->mode->refill_desc3)
2704                                 priv->hw->mode->refill_desc3(priv, p);
2705
2706                         if (priv->rx_zeroc_thresh > 0)
2707                                 priv->rx_zeroc_thresh--;
2708
2709                         netif_dbg(priv, rx_status, priv->dev,
2710                                   "refill entry #%d\n", entry);
2711                 }
2712                 dma_wmb();
2713
2714                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2715                         priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2716                 else
2717                         priv->hw->desc->set_rx_owner(p);
2718
2719                 dma_wmb();
2720
2721                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2722         }
2723         priv->dirty_rx = entry;
2724 }
2725
2726 /**
2727  * stmmac_rx - manage the receive process
2728  * @priv: driver private structure
2729  * @limit: napi bugget.
2730  * Description :  this the function called by the napi poll method.
2731  * It gets all the frames inside the ring.
2732  */
2733 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2734 {
2735         unsigned int entry = priv->cur_rx;
2736         unsigned int next_entry;
2737         unsigned int count = 0;
2738         int coe = priv->hw->rx_csum;
2739
2740         if (netif_msg_rx_status(priv)) {
2741                 void *rx_head;
2742
2743                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
2744                 if (priv->extend_desc)
2745                         rx_head = (void *)priv->dma_erx;
2746                 else
2747                         rx_head = (void *)priv->dma_rx;
2748
2749                 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2750         }
2751         while (count < limit) {
2752                 int status;
2753                 struct dma_desc *p;
2754                 struct dma_desc *np;
2755
2756                 if (priv->extend_desc)
2757                         p = (struct dma_desc *)(priv->dma_erx + entry);
2758                 else
2759                         p = priv->dma_rx + entry;
2760
2761                 /* read the status of the incoming frame */
2762                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2763                                                    &priv->xstats, p);
2764                 /* check if managed by the DMA otherwise go ahead */
2765                 if (unlikely(status & dma_own))
2766                         break;
2767
2768                 count++;
2769
2770                 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2771                 next_entry = priv->cur_rx;
2772
2773                 if (priv->extend_desc)
2774                         np = (struct dma_desc *)(priv->dma_erx + next_entry);
2775                 else
2776                         np = priv->dma_rx + next_entry;
2777
2778                 prefetch(np);
2779
2780                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2781                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2782                                                            &priv->xstats,
2783                                                            priv->dma_erx +
2784                                                            entry);
2785                 if (unlikely(status == discard_frame)) {
2786                         priv->dev->stats.rx_errors++;
2787                         if (priv->hwts_rx_en && !priv->extend_desc) {
2788                                 /* DESC2 & DESC3 will be overwritten by device
2789                                  * with timestamp value, hence reinitialize
2790                                  * them in stmmac_rx_refill() function so that
2791                                  * device can reuse it.
2792                                  */
2793                                 priv->rx_skbuff[entry] = NULL;
2794                                 dma_unmap_single(priv->device,
2795                                                  priv->rx_skbuff_dma[entry],
2796                                                  priv->dma_buf_sz,
2797                                                  DMA_FROM_DEVICE);
2798                         }
2799                 } else {
2800                         struct sk_buff *skb;
2801                         int frame_len;
2802                         unsigned int des;
2803
2804                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2805                                 des = le32_to_cpu(p->des0);
2806                         else
2807                                 des = le32_to_cpu(p->des2);
2808
2809                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2810
2811                         /*  If frame length is greater than skb buffer size
2812                          *  (preallocated during init) then the packet is
2813                          *  ignored
2814                          */
2815                         if (frame_len > priv->dma_buf_sz) {
2816                                 netdev_err(priv->dev,
2817                                            "len %d larger than size (%d)\n",
2818                                            frame_len, priv->dma_buf_sz);
2819                                 priv->dev->stats.rx_length_errors++;
2820                                 break;
2821                         }
2822
2823                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2824                          * Type frames (LLC/LLC-SNAP)
2825                          */
2826                         if (unlikely(status != llc_snap))
2827                                 frame_len -= ETH_FCS_LEN;
2828
2829                         if (netif_msg_rx_status(priv)) {
2830                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
2831                                            p, entry, des);
2832                                 if (frame_len > ETH_FRAME_LEN)
2833                                         netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
2834                                                    frame_len, status);
2835                         }
2836
2837                         /* The zero-copy is always used for all the sizes
2838                          * in case of GMAC4 because it needs
2839                          * to refill the used descriptors, always.
2840                          */
2841                         if (unlikely(!priv->plat->has_gmac4 &&
2842                                      ((frame_len < priv->rx_copybreak) ||
2843                                      stmmac_rx_threshold_count(priv)))) {
2844                                 skb = netdev_alloc_skb_ip_align(priv->dev,
2845                                                                 frame_len);
2846                                 if (unlikely(!skb)) {
2847                                         if (net_ratelimit())
2848                                                 dev_warn(priv->device,
2849                                                          "packet dropped\n");
2850                                         priv->dev->stats.rx_dropped++;
2851                                         break;
2852                                 }
2853
2854                                 dma_sync_single_for_cpu(priv->device,
2855                                                         priv->rx_skbuff_dma
2856                                                         [entry], frame_len,
2857                                                         DMA_FROM_DEVICE);
2858                                 skb_copy_to_linear_data(skb,
2859                                                         priv->
2860                                                         rx_skbuff[entry]->data,
2861                                                         frame_len);
2862
2863                                 skb_put(skb, frame_len);
2864                                 dma_sync_single_for_device(priv->device,
2865                                                            priv->rx_skbuff_dma
2866                                                            [entry], frame_len,
2867                                                            DMA_FROM_DEVICE);
2868                         } else {
2869                                 skb = priv->rx_skbuff[entry];
2870                                 if (unlikely(!skb)) {
2871                                         netdev_err(priv->dev,
2872                                                    "%s: Inconsistent Rx chain\n",
2873                                                    priv->dev->name);
2874                                         priv->dev->stats.rx_dropped++;
2875                                         break;
2876                                 }
2877                                 prefetch(skb->data - NET_IP_ALIGN);
2878                                 priv->rx_skbuff[entry] = NULL;
2879                                 priv->rx_zeroc_thresh++;
2880
2881                                 skb_put(skb, frame_len);
2882                                 dma_unmap_single(priv->device,
2883                                                  priv->rx_skbuff_dma[entry],
2884                                                  priv->dma_buf_sz,
2885                                                  DMA_FROM_DEVICE);
2886                         }
2887
2888                         if (netif_msg_pktdata(priv)) {
2889                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
2890                                            frame_len);
2891                                 print_pkt(skb->data, frame_len);
2892                         }
2893
2894                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
2895
2896                         stmmac_rx_vlan(priv->dev, skb);
2897
2898                         skb->protocol = eth_type_trans(skb, priv->dev);
2899
2900                         if (unlikely(!coe))
2901                                 skb_checksum_none_assert(skb);
2902                         else
2903                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2904
2905                         napi_gro_receive(&priv->napi, skb);
2906
2907                         priv->dev->stats.rx_packets++;
2908                         priv->dev->stats.rx_bytes += frame_len;
2909                 }
2910                 entry = next_entry;
2911         }
2912
2913         stmmac_rx_refill(priv);
2914
2915         priv->xstats.rx_pkt_n += count;
2916
2917         return count;
2918 }
2919
2920 /**
2921  *  stmmac_poll - stmmac poll method (NAPI)
2922  *  @napi : pointer to the napi structure.
2923  *  @budget : maximum number of packets that the current CPU can receive from
2924  *            all interfaces.
2925  *  Description :
2926  *  To look at the incoming frames and clear the tx resources.
2927  */
2928 static int stmmac_poll(struct napi_struct *napi, int budget)
2929 {
2930         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2931         int work_done = 0;
2932         u32 chan = STMMAC_CHAN0;
2933
2934         priv->xstats.napi_poll++;
2935         stmmac_tx_clean(priv);
2936
2937         work_done = stmmac_rx(priv, budget);
2938         if (work_done < budget) {
2939                 napi_complete_done(napi, work_done);
2940                 stmmac_enable_dma_irq(priv, chan);
2941         }
2942         return work_done;
2943 }
2944
2945 /**
2946  *  stmmac_tx_timeout
2947  *  @dev : Pointer to net device structure
2948  *  Description: this function is called when a packet transmission fails to
2949  *   complete within a reasonable time. The driver will mark the error in the
2950  *   netdev structure and arrange for the device to be reset to a sane state
2951  *   in order to transmit a new packet.
2952  */
2953 static void stmmac_tx_timeout(struct net_device *dev)
2954 {
2955         struct stmmac_priv *priv = netdev_priv(dev);
2956         u32 chan = STMMAC_CHAN0;
2957
2958         /* Clear Tx resources and restart transmitting again */
2959         stmmac_tx_err(priv, chan);
2960 }
2961
2962 /**
2963  *  stmmac_set_rx_mode - entry point for multicast addressing
2964  *  @dev : pointer to the device structure
2965  *  Description:
2966  *  This function is a driver entry point which gets called by the kernel
2967  *  whenever multicast addresses must be enabled/disabled.
2968  *  Return value:
2969  *  void.
2970  */
2971 static void stmmac_set_rx_mode(struct net_device *dev)
2972 {
2973         struct stmmac_priv *priv = netdev_priv(dev);
2974
2975         priv->hw->mac->set_filter(priv->hw, dev);
2976 }
2977
2978 /**
2979  *  stmmac_change_mtu - entry point to change MTU size for the device.
2980  *  @dev : device pointer.
2981  *  @new_mtu : the new MTU size for the device.
2982  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2983  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2984  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2985  *  Return value:
2986  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2987  *  file on failure.
2988  */
2989 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2990 {
2991         struct stmmac_priv *priv = netdev_priv(dev);
2992
2993         if (netif_running(dev)) {
2994                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
2995                 return -EBUSY;
2996         }
2997
2998         dev->mtu = new_mtu;
2999
3000         netdev_update_features(dev);
3001
3002         return 0;
3003 }
3004
3005 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3006                                              netdev_features_t features)
3007 {
3008         struct stmmac_priv *priv = netdev_priv(dev);
3009
3010         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3011                 features &= ~NETIF_F_RXCSUM;
3012
3013         if (!priv->plat->tx_coe)
3014                 features &= ~NETIF_F_CSUM_MASK;
3015
3016         /* Some GMAC devices have a bugged Jumbo frame support that
3017          * needs to have the Tx COE disabled for oversized frames
3018          * (due to limited buffer sizes). In this case we disable
3019          * the TX csum insertion in the TDES and not use SF.
3020          */
3021         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3022                 features &= ~NETIF_F_CSUM_MASK;
3023
3024         /* Disable tso if asked by ethtool */
3025         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3026                 if (features & NETIF_F_TSO)
3027                         priv->tso = true;
3028                 else
3029                         priv->tso = false;
3030         }
3031
3032         return features;
3033 }
3034
3035 static int stmmac_set_features(struct net_device *netdev,
3036                                netdev_features_t features)
3037 {
3038         struct stmmac_priv *priv = netdev_priv(netdev);
3039
3040         /* Keep the COE Type in case of csum is supporting */
3041         if (features & NETIF_F_RXCSUM)
3042                 priv->hw->rx_csum = priv->plat->rx_coe;
3043         else
3044                 priv->hw->rx_csum = 0;
3045         /* No check needed because rx_coe has been set before and it will be
3046          * fixed in case of issue.
3047          */
3048         priv->hw->mac->rx_ipc(priv->hw);
3049
3050         return 0;
3051 }
3052
3053 /**
3054  *  stmmac_interrupt - main ISR
3055  *  @irq: interrupt number.
3056  *  @dev_id: to pass the net device pointer.
3057  *  Description: this is the main driver interrupt service routine.
3058  *  It can call:
3059  *  o DMA service routine (to manage incoming frame reception and transmission
3060  *    status)
3061  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3062  *    interrupts.
3063  */
3064 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3065 {
3066         struct net_device *dev = (struct net_device *)dev_id;
3067         struct stmmac_priv *priv = netdev_priv(dev);
3068
3069         if (priv->irq_wake)
3070                 pm_wakeup_event(priv->device, 0);
3071
3072         if (unlikely(!dev)) {
3073                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3074                 return IRQ_NONE;
3075         }
3076
3077         /* To handle GMAC own interrupts */
3078         if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
3079                 int status = priv->hw->mac->host_irq_status(priv->hw,
3080                                                             &priv->xstats);
3081
3082                 if (priv->synopsys_id >= DWMAC_CORE_4_00)
3083                         status |= priv->hw->mac->host_mtl_irq_status(priv->hw,
3084                                                                 STMMAC_CHAN0);
3085
3086                 if (unlikely(status)) {
3087                         /* For LPI we need to save the tx status */
3088                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3089                                 priv->tx_path_in_lpi_mode = true;
3090                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3091                                 priv->tx_path_in_lpi_mode = false;
3092                         if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
3093                                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
3094                                                         priv->rx_tail_addr,
3095                                                         STMMAC_CHAN0);
3096                 }
3097
3098                 /* PCS link status */
3099                 if (priv->hw->pcs) {
3100                         if (priv->xstats.pcs_link)
3101                                 netif_carrier_on(dev);
3102                         else
3103                                 netif_carrier_off(dev);
3104                 }
3105         }
3106
3107         /* To handle DMA interrupts */
3108         stmmac_dma_interrupt(priv);
3109
3110         return IRQ_HANDLED;
3111 }
3112
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3115  * to allow network I/O with interrupts disabled.
3116  */
3117 static void stmmac_poll_controller(struct net_device *dev)
3118 {
3119         disable_irq(dev->irq);
3120         stmmac_interrupt(dev->irq, dev);
3121         enable_irq(dev->irq);
3122 }
3123 #endif
3124
3125 /**
3126  *  stmmac_ioctl - Entry point for the Ioctl
3127  *  @dev: Device pointer.
3128  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3129  *  a proprietary structure used to pass information to the driver.
3130  *  @cmd: IOCTL command
3131  *  Description:
3132  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3133  */
3134 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3135 {
3136         int ret = -EOPNOTSUPP;
3137
3138         if (!netif_running(dev))
3139                 return -EINVAL;
3140
3141         switch (cmd) {
3142         case SIOCGMIIPHY:
3143         case SIOCGMIIREG:
3144         case SIOCSMIIREG:
3145                 if (!dev->phydev)
3146                         return -EINVAL;
3147                 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3148                 break;
3149         case SIOCSHWTSTAMP:
3150                 ret = stmmac_hwtstamp_ioctl(dev, rq);
3151                 break;
3152         default:
3153                 break;
3154         }
3155
3156         return ret;
3157 }
3158
3159 #ifdef CONFIG_DEBUG_FS
3160 static struct dentry *stmmac_fs_dir;
3161
3162 static void sysfs_display_ring(void *head, int size, int extend_desc,
3163                                struct seq_file *seq)
3164 {
3165         int i;
3166         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3167         struct dma_desc *p = (struct dma_desc *)head;
3168
3169         for (i = 0; i < size; i++) {
3170                 if (extend_desc) {
3171                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3172                                    i, (unsigned int)virt_to_phys(ep),
3173                                    le32_to_cpu(ep->basic.des0),
3174                                    le32_to_cpu(ep->basic.des1),
3175                                    le32_to_cpu(ep->basic.des2),
3176                                    le32_to_cpu(ep->basic.des3));
3177                         ep++;
3178                 } else {
3179                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3180                                    i, (unsigned int)virt_to_phys(ep),
3181                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3182                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3183                         p++;
3184                 }
3185                 seq_printf(seq, "\n");
3186         }
3187 }
3188
3189 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3190 {
3191         struct net_device *dev = seq->private;
3192         struct stmmac_priv *priv = netdev_priv(dev);
3193
3194         if (priv->extend_desc) {
3195                 seq_printf(seq, "Extended RX descriptor ring:\n");
3196                 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
3197                 seq_printf(seq, "Extended TX descriptor ring:\n");
3198                 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
3199         } else {
3200                 seq_printf(seq, "RX descriptor ring:\n");
3201                 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
3202                 seq_printf(seq, "TX descriptor ring:\n");
3203                 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
3204         }
3205
3206         return 0;
3207 }
3208
3209 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3210 {
3211         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3212 }
3213
3214 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3215
3216 static const struct file_operations stmmac_rings_status_fops = {
3217         .owner = THIS_MODULE,
3218         .open = stmmac_sysfs_ring_open,
3219         .read = seq_read,
3220         .llseek = seq_lseek,
3221         .release = single_release,
3222 };
3223
3224 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3225 {
3226         struct net_device *dev = seq->private;
3227         struct stmmac_priv *priv = netdev_priv(dev);
3228
3229         if (!priv->hw_cap_support) {
3230                 seq_printf(seq, "DMA HW features not supported\n");
3231                 return 0;
3232         }
3233
3234         seq_printf(seq, "==============================\n");
3235         seq_printf(seq, "\tDMA HW features\n");
3236         seq_printf(seq, "==============================\n");
3237
3238         seq_printf(seq, "\t10/100 Mbps: %s\n",
3239                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3240         seq_printf(seq, "\t1000 Mbps: %s\n",
3241                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
3242         seq_printf(seq, "\tHalf duplex: %s\n",
3243                    (priv->dma_cap.half_duplex) ? "Y" : "N");
3244         seq_printf(seq, "\tHash Filter: %s\n",
3245                    (priv->dma_cap.hash_filter) ? "Y" : "N");
3246         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3247                    (priv->dma_cap.multi_addr) ? "Y" : "N");
3248         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3249                    (priv->dma_cap.pcs) ? "Y" : "N");
3250         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3251                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
3252         seq_printf(seq, "\tPMT Remote wake up: %s\n",
3253                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3254         seq_printf(seq, "\tPMT Magic Frame: %s\n",
3255                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3256         seq_printf(seq, "\tRMON module: %s\n",
3257                    (priv->dma_cap.rmon) ? "Y" : "N");
3258         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3259                    (priv->dma_cap.time_stamp) ? "Y" : "N");
3260         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3261                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
3262         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3263                    (priv->dma_cap.eee) ? "Y" : "N");
3264         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3265         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3266                    (priv->dma_cap.tx_coe) ? "Y" : "N");
3267         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3268                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3269                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3270         } else {
3271                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3272                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3273                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3274                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3275         }
3276         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3277                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3278         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3279                    priv->dma_cap.number_rx_channel);
3280         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3281                    priv->dma_cap.number_tx_channel);
3282         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3283                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3284
3285         return 0;
3286 }
3287
3288 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3289 {
3290         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3291 }
3292
3293 static const struct file_operations stmmac_dma_cap_fops = {
3294         .owner = THIS_MODULE,
3295         .open = stmmac_sysfs_dma_cap_open,
3296         .read = seq_read,
3297         .llseek = seq_lseek,
3298         .release = single_release,
3299 };
3300
3301 static int stmmac_init_fs(struct net_device *dev)
3302 {
3303         struct stmmac_priv *priv = netdev_priv(dev);
3304
3305         /* Create per netdev entries */
3306         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3307
3308         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3309                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3310
3311                 return -ENOMEM;
3312         }
3313
3314         /* Entry to report DMA RX/TX rings */
3315         priv->dbgfs_rings_status =
3316                 debugfs_create_file("descriptors_status", S_IRUGO,
3317                                     priv->dbgfs_dir, dev,
3318                                     &stmmac_rings_status_fops);
3319
3320         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3321                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3322                 debugfs_remove_recursive(priv->dbgfs_dir);
3323
3324                 return -ENOMEM;
3325         }
3326
3327         /* Entry to report the DMA HW features */
3328         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3329                                             priv->dbgfs_dir,
3330                                             dev, &stmmac_dma_cap_fops);
3331
3332         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3333                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3334                 debugfs_remove_recursive(priv->dbgfs_dir);
3335
3336                 return -ENOMEM;
3337         }
3338
3339         return 0;
3340 }
3341
3342 static void stmmac_exit_fs(struct net_device *dev)
3343 {
3344         struct stmmac_priv *priv = netdev_priv(dev);
3345
3346         debugfs_remove_recursive(priv->dbgfs_dir);
3347 }
3348 #endif /* CONFIG_DEBUG_FS */
3349
3350 static const struct net_device_ops stmmac_netdev_ops = {
3351         .ndo_open = stmmac_open,
3352         .ndo_start_xmit = stmmac_xmit,
3353         .ndo_stop = stmmac_release,
3354         .ndo_change_mtu = stmmac_change_mtu,
3355         .ndo_fix_features = stmmac_fix_features,
3356         .ndo_set_features = stmmac_set_features,
3357         .ndo_set_rx_mode = stmmac_set_rx_mode,
3358         .ndo_tx_timeout = stmmac_tx_timeout,
3359         .ndo_do_ioctl = stmmac_ioctl,
3360 #ifdef CONFIG_NET_POLL_CONTROLLER
3361         .ndo_poll_controller = stmmac_poll_controller,
3362 #endif
3363         .ndo_set_mac_address = eth_mac_addr,
3364 };
3365
3366 /**
3367  *  stmmac_hw_init - Init the MAC device
3368  *  @priv: driver private structure
3369  *  Description: this function is to configure the MAC device according to
3370  *  some platform parameters or the HW capability register. It prepares the
3371  *  driver to use either ring or chain modes and to setup either enhanced or
3372  *  normal descriptors.
3373  */
3374 static int stmmac_hw_init(struct stmmac_priv *priv)
3375 {
3376         struct mac_device_info *mac;
3377
3378         /* Identify the MAC HW device */
3379         if (priv->plat->has_gmac) {
3380                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3381                 mac = dwmac1000_setup(priv->ioaddr,
3382                                       priv->plat->multicast_filter_bins,
3383                                       priv->plat->unicast_filter_entries,
3384                                       &priv->synopsys_id);
3385         } else if (priv->plat->has_gmac4) {
3386                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3387                 mac = dwmac4_setup(priv->ioaddr,
3388                                    priv->plat->multicast_filter_bins,
3389                                    priv->plat->unicast_filter_entries,
3390                                    &priv->synopsys_id);
3391         } else {
3392                 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3393         }
3394         if (!mac)
3395                 return -ENOMEM;
3396
3397         priv->hw = mac;
3398
3399         /* To use the chained or ring mode */
3400         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3401                 priv->hw->mode = &dwmac4_ring_mode_ops;
3402         } else {
3403                 if (chain_mode) {
3404                         priv->hw->mode = &chain_mode_ops;
3405                         dev_info(priv->device, "Chain mode enabled\n");
3406                         priv->mode = STMMAC_CHAIN_MODE;
3407                 } else {
3408                         priv->hw->mode = &ring_mode_ops;
3409                         dev_info(priv->device, "Ring mode enabled\n");
3410                         priv->mode = STMMAC_RING_MODE;
3411                 }
3412         }
3413
3414         /* Get the HW capability (new GMAC newer than 3.50a) */
3415         priv->hw_cap_support = stmmac_get_hw_features(priv);
3416         if (priv->hw_cap_support) {
3417                 dev_info(priv->device, "DMA HW capability register supported\n");
3418
3419                 /* We can override some gmac/dma configuration fields: e.g.
3420                  * enh_desc, tx_coe (e.g. that are passed through the
3421                  * platform) with the values from the HW capability
3422                  * register (if supported).
3423                  */
3424                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3425                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3426                 priv->hw->pmt = priv->plat->pmt;
3427
3428                 /* TXCOE doesn't work in thresh DMA mode */
3429                 if (priv->plat->force_thresh_dma_mode)
3430                         priv->plat->tx_coe = 0;
3431                 else
3432                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
3433
3434                 /* In case of GMAC4 rx_coe is from HW cap register. */
3435                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3436
3437                 if (priv->dma_cap.rx_coe_type2)
3438                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3439                 else if (priv->dma_cap.rx_coe_type1)
3440                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3441
3442         } else {
3443                 dev_info(priv->device, "No HW DMA feature register supported\n");
3444         }
3445
3446         /* To use alternate (extended), normal or GMAC4 descriptor structures */
3447         if (priv->synopsys_id >= DWMAC_CORE_4_00)
3448                 priv->hw->desc = &dwmac4_desc_ops;
3449         else
3450                 stmmac_selec_desc_mode(priv);
3451
3452         if (priv->plat->rx_coe) {
3453                 priv->hw->rx_csum = priv->plat->rx_coe;
3454                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
3455                 if (priv->synopsys_id < DWMAC_CORE_4_00)
3456                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
3457         }
3458         if (priv->plat->tx_coe)
3459                 dev_info(priv->device, "TX Checksum insertion supported\n");
3460
3461         if (priv->plat->pmt) {
3462                 dev_info(priv->device, "Wake-Up On Lan supported\n");
3463                 device_set_wakeup_capable(priv->device, 1);
3464         }
3465
3466         if (priv->dma_cap.tsoen)
3467                 dev_info(priv->device, "TSO supported\n");
3468
3469         return 0;
3470 }
3471
3472 /**
3473  * stmmac_dvr_probe
3474  * @device: device pointer
3475  * @plat_dat: platform data pointer
3476  * @res: stmmac resource pointer
3477  * Description: this is the main probe function used to
3478  * call the alloc_etherdev, allocate the priv structure.
3479  * Return:
3480  * returns 0 on success, otherwise errno.
3481  */
3482 int stmmac_dvr_probe(struct device *device,
3483                      struct plat_stmmacenet_data *plat_dat,
3484                      struct stmmac_resources *res)
3485 {
3486         int ret = 0;
3487         struct net_device *ndev = NULL;
3488         struct stmmac_priv *priv;
3489
3490         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3491         if (!ndev)
3492                 return -ENOMEM;
3493
3494         SET_NETDEV_DEV(ndev, device);
3495
3496         priv = netdev_priv(ndev);
3497         priv->device = device;
3498         priv->dev = ndev;
3499
3500         stmmac_set_ethtool_ops(ndev);
3501         priv->pause = pause;
3502         priv->plat = plat_dat;
3503         priv->ioaddr = res->addr;
3504         priv->dev->base_addr = (unsigned long)res->addr;
3505
3506         priv->dev->irq = res->irq;
3507         priv->wol_irq = res->wol_irq;
3508         priv->lpi_irq = res->lpi_irq;
3509
3510         if (res->mac)
3511                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3512
3513         dev_set_drvdata(device, priv->dev);
3514
3515         /* Verify driver arguments */
3516         stmmac_verify_args();
3517
3518         /* Override with kernel parameters if supplied XXX CRS XXX
3519          * this needs to have multiple instances
3520          */
3521         if ((phyaddr >= 0) && (phyaddr <= 31))
3522                 priv->plat->phy_addr = phyaddr;
3523
3524         if (priv->plat->stmmac_rst)
3525                 reset_control_deassert(priv->plat->stmmac_rst);
3526
3527         /* Init MAC and get the capabilities */
3528         ret = stmmac_hw_init(priv);
3529         if (ret)
3530                 goto error_hw_init;
3531
3532         ndev->netdev_ops = &stmmac_netdev_ops;
3533
3534         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3535                             NETIF_F_RXCSUM;
3536
3537         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3538                 ndev->hw_features |= NETIF_F_TSO;
3539                 priv->tso = true;
3540                 dev_info(priv->device, "TSO feature enabled\n");
3541         }
3542         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3543         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3544 #ifdef STMMAC_VLAN_TAG_USED
3545         /* Both mac100 and gmac support receive VLAN tag detection */
3546         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3547 #endif
3548         priv->msg_enable = netif_msg_init(debug, default_msg_level);
3549
3550         /* MTU range: 46 - hw-specific max */
3551         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
3552         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
3553                 ndev->max_mtu = JUMBO_LEN;
3554         else
3555                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
3556         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
3557          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
3558          */
3559         if ((priv->plat->maxmtu < ndev->max_mtu) &&
3560             (priv->plat->maxmtu >= ndev->min_mtu))
3561                 ndev->max_mtu = priv->plat->maxmtu;
3562         else if (priv->plat->maxmtu < ndev->min_mtu)
3563                 dev_warn(priv->device,
3564                          "%s: warning: maxmtu having invalid value (%d)\n",
3565                          __func__, priv->plat->maxmtu);
3566
3567         if (flow_ctrl)
3568                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
3569
3570         /* Rx Watchdog is available in the COREs newer than the 3.40.
3571          * In some case, for example on bugged HW this feature
3572          * has to be disable and this can be done by passing the
3573          * riwt_off field from the platform.
3574          */
3575         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3576                 priv->use_riwt = 1;
3577                 dev_info(priv->device,
3578                          "Enable RX Mitigation via HW Watchdog Timer\n");
3579         }
3580
3581         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3582
3583         spin_lock_init(&priv->lock);
3584
3585         /* If a specific clk_csr value is passed from the platform
3586          * this means that the CSR Clock Range selection cannot be
3587          * changed at run-time and it is fixed. Viceversa the driver'll try to
3588          * set the MDC clock dynamically according to the csr actual
3589          * clock input.
3590          */
3591         if (!priv->plat->clk_csr)
3592                 stmmac_clk_csr_set(priv);
3593         else
3594                 priv->clk_csr = priv->plat->clk_csr;
3595
3596         stmmac_check_pcs_mode(priv);
3597
3598         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3599             priv->hw->pcs != STMMAC_PCS_TBI &&
3600             priv->hw->pcs != STMMAC_PCS_RTBI) {
3601                 /* MDIO bus Registration */
3602                 ret = stmmac_mdio_register(ndev);
3603                 if (ret < 0) {
3604                         dev_err(priv->device,
3605                                 "%s: MDIO bus (id: %d) registration failed",
3606                                 __func__, priv->plat->bus_id);
3607                         goto error_mdio_register;
3608                 }
3609         }
3610
3611         ret = register_netdev(ndev);
3612         if (ret) {
3613                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
3614                         __func__, ret);
3615                 goto error_netdev_register;
3616         }
3617
3618         return ret;
3619
3620 error_netdev_register:
3621         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3622             priv->hw->pcs != STMMAC_PCS_TBI &&
3623             priv->hw->pcs != STMMAC_PCS_RTBI)
3624                 stmmac_mdio_unregister(ndev);
3625 error_mdio_register:
3626         netif_napi_del(&priv->napi);
3627 error_hw_init:
3628         free_netdev(ndev);
3629
3630         return ret;
3631 }
3632 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3633
3634 /**
3635  * stmmac_dvr_remove
3636  * @dev: device pointer
3637  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3638  * changes the link status, releases the DMA descriptor rings.
3639  */
3640 int stmmac_dvr_remove(struct device *dev)
3641 {
3642         struct net_device *ndev = dev_get_drvdata(dev);
3643         struct stmmac_priv *priv = netdev_priv(ndev);
3644
3645         netdev_info(priv->dev, "%s: removing driver", __func__);
3646
3647         stmmac_stop_all_dma(priv);
3648
3649         stmmac_set_mac(priv->ioaddr, false);
3650         netif_carrier_off(ndev);
3651         unregister_netdev(ndev);
3652         if (priv->plat->stmmac_rst)
3653                 reset_control_assert(priv->plat->stmmac_rst);
3654         clk_disable_unprepare(priv->plat->pclk);
3655         clk_disable_unprepare(priv->plat->stmmac_clk);
3656         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3657             priv->hw->pcs != STMMAC_PCS_TBI &&
3658             priv->hw->pcs != STMMAC_PCS_RTBI)
3659                 stmmac_mdio_unregister(ndev);
3660         free_netdev(ndev);
3661
3662         return 0;
3663 }
3664 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3665
3666 /**
3667  * stmmac_suspend - suspend callback
3668  * @dev: device pointer
3669  * Description: this is the function to suspend the device and it is called
3670  * by the platform driver to stop the network queue, release the resources,
3671  * program the PMT register (for WoL), clean and release driver resources.
3672  */
3673 int stmmac_suspend(struct device *dev)
3674 {
3675         struct net_device *ndev = dev_get_drvdata(dev);
3676         struct stmmac_priv *priv = netdev_priv(ndev);
3677         unsigned long flags;
3678
3679         if (!ndev || !netif_running(ndev))
3680                 return 0;
3681
3682         if (ndev->phydev)
3683                 phy_stop(ndev->phydev);
3684
3685         spin_lock_irqsave(&priv->lock, flags);
3686
3687         netif_device_detach(ndev);
3688         netif_stop_queue(ndev);
3689
3690         napi_disable(&priv->napi);
3691
3692         /* Stop TX/RX DMA */
3693         stmmac_stop_all_dma(priv);
3694
3695         /* Enable Power down mode by programming the PMT regs */
3696         if (device_may_wakeup(priv->device)) {
3697                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3698                 priv->irq_wake = 1;
3699         } else {
3700                 stmmac_set_mac(priv->ioaddr, false);
3701                 pinctrl_pm_select_sleep_state(priv->device);
3702                 /* Disable clock in case of PWM is off */
3703                 clk_disable(priv->plat->pclk);
3704                 clk_disable(priv->plat->stmmac_clk);
3705         }
3706         spin_unlock_irqrestore(&priv->lock, flags);
3707
3708         priv->oldlink = 0;
3709         priv->speed = SPEED_UNKNOWN;
3710         priv->oldduplex = DUPLEX_UNKNOWN;
3711         return 0;
3712 }
3713 EXPORT_SYMBOL_GPL(stmmac_suspend);
3714
3715 /**
3716  * stmmac_resume - resume callback
3717  * @dev: device pointer
3718  * Description: when resume this function is invoked to setup the DMA and CORE
3719  * in a usable state.
3720  */
3721 int stmmac_resume(struct device *dev)
3722 {
3723         struct net_device *ndev = dev_get_drvdata(dev);
3724         struct stmmac_priv *priv = netdev_priv(ndev);
3725         unsigned long flags;
3726
3727         if (!netif_running(ndev))
3728                 return 0;
3729
3730         /* Power Down bit, into the PM register, is cleared
3731          * automatically as soon as a magic packet or a Wake-up frame
3732          * is received. Anyway, it's better to manually clear
3733          * this bit because it can generate problems while resuming
3734          * from another devices (e.g. serial console).
3735          */
3736         if (device_may_wakeup(priv->device)) {
3737                 spin_lock_irqsave(&priv->lock, flags);
3738                 priv->hw->mac->pmt(priv->hw, 0);
3739                 spin_unlock_irqrestore(&priv->lock, flags);
3740                 priv->irq_wake = 0;
3741         } else {
3742                 pinctrl_pm_select_default_state(priv->device);
3743                 /* enable the clk previously disabled */
3744                 clk_enable(priv->plat->stmmac_clk);
3745                 clk_enable(priv->plat->pclk);
3746                 /* reset the phy so that it's ready */
3747                 if (priv->mii)
3748                         stmmac_mdio_reset(priv->mii);
3749         }
3750
3751         netif_device_attach(ndev);
3752
3753         spin_lock_irqsave(&priv->lock, flags);
3754
3755         priv->cur_rx = 0;
3756         priv->dirty_rx = 0;
3757         priv->dirty_tx = 0;
3758         priv->cur_tx = 0;
3759         /* reset private mss value to force mss context settings at
3760          * next tso xmit (only used for gmac4).
3761          */
3762         priv->mss = 0;
3763
3764         stmmac_clear_descriptors(priv);
3765
3766         stmmac_hw_setup(ndev, false);
3767         stmmac_init_tx_coalesce(priv);
3768         stmmac_set_rx_mode(ndev);
3769
3770         napi_enable(&priv->napi);
3771
3772         netif_start_queue(ndev);
3773
3774         spin_unlock_irqrestore(&priv->lock, flags);
3775
3776         if (ndev->phydev)
3777                 phy_start(ndev->phydev);
3778
3779         return 0;
3780 }
3781 EXPORT_SYMBOL_GPL(stmmac_resume);
3782
3783 #ifndef MODULE
3784 static int __init stmmac_cmdline_opt(char *str)
3785 {
3786         char *opt;
3787
3788         if (!str || !*str)
3789                 return -EINVAL;
3790         while ((opt = strsep(&str, ",")) != NULL) {
3791                 if (!strncmp(opt, "debug:", 6)) {
3792                         if (kstrtoint(opt + 6, 0, &debug))
3793                                 goto err;
3794                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3795                         if (kstrtoint(opt + 8, 0, &phyaddr))
3796                                 goto err;
3797                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3798                         if (kstrtoint(opt + 7, 0, &buf_sz))
3799                                 goto err;
3800                 } else if (!strncmp(opt, "tc:", 3)) {
3801                         if (kstrtoint(opt + 3, 0, &tc))
3802                                 goto err;
3803                 } else if (!strncmp(opt, "watchdog:", 9)) {
3804                         if (kstrtoint(opt + 9, 0, &watchdog))
3805                                 goto err;
3806                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3807                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3808                                 goto err;
3809                 } else if (!strncmp(opt, "pause:", 6)) {
3810                         if (kstrtoint(opt + 6, 0, &pause))
3811                                 goto err;
3812                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3813                         if (kstrtoint(opt + 10, 0, &eee_timer))
3814                                 goto err;
3815                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3816                         if (kstrtoint(opt + 11, 0, &chain_mode))
3817                                 goto err;
3818                 }
3819         }
3820         return 0;
3821
3822 err:
3823         pr_err("%s: ERROR broken module parameter conversion", __func__);
3824         return -EINVAL;
3825 }
3826
3827 __setup("stmmaceth=", stmmac_cmdline_opt);
3828 #endif /* MODULE */
3829
3830 static int __init stmmac_init(void)
3831 {
3832 #ifdef CONFIG_DEBUG_FS
3833         /* Create debugfs main directory if it doesn't exist yet */
3834         if (!stmmac_fs_dir) {
3835                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3836
3837                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3838                         pr_err("ERROR %s, debugfs create directory failed\n",
3839                                STMMAC_RESOURCE_NAME);
3840
3841                         return -ENOMEM;
3842                 }
3843         }
3844 #endif
3845
3846         return 0;
3847 }
3848
3849 static void __exit stmmac_exit(void)
3850 {
3851 #ifdef CONFIG_DEBUG_FS
3852         debugfs_remove_recursive(stmmac_fs_dir);
3853 #endif
3854 }
3855
3856 module_init(stmmac_init)
3857 module_exit(stmmac_exit)
3858
3859 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3860 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3861 MODULE_LICENSE("GPL");