]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/ti/cpts.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[karo-tx-linux.git] / drivers / net / ethernet / ti / cpts.c
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31
32 #include "cpts.h"
33
34 #ifdef CONFIG_TI_CPTS
35
36 #define cpts_read32(c, r)       __raw_readl(&c->reg->r)
37 #define cpts_write32(c, v, r)   __raw_writel(v, &c->reg->r)
38
39 static int event_expired(struct cpts_event *event)
40 {
41         return time_after(jiffies, event->tmo);
42 }
43
44 static int event_type(struct cpts_event *event)
45 {
46         return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
47 }
48
49 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
50 {
51         u32 r = cpts_read32(cpts, intstat_raw);
52
53         if (r & TS_PEND_RAW) {
54                 *high = cpts_read32(cpts, event_high);
55                 *low  = cpts_read32(cpts, event_low);
56                 cpts_write32(cpts, EVENT_POP, event_pop);
57                 return 0;
58         }
59         return -1;
60 }
61
62 /*
63  * Returns zero if matching event type was found.
64  */
65 static int cpts_fifo_read(struct cpts *cpts, int match)
66 {
67         int i, type = -1;
68         u32 hi, lo;
69         struct cpts_event *event;
70
71         for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
72                 if (cpts_fifo_pop(cpts, &hi, &lo))
73                         break;
74                 if (list_empty(&cpts->pool)) {
75                         pr_err("cpts: event pool is empty\n");
76                         return -1;
77                 }
78                 event = list_first_entry(&cpts->pool, struct cpts_event, list);
79                 event->tmo = jiffies + 2;
80                 event->high = hi;
81                 event->low = lo;
82                 type = event_type(event);
83                 switch (type) {
84                 case CPTS_EV_PUSH:
85                 case CPTS_EV_RX:
86                 case CPTS_EV_TX:
87                         list_del_init(&event->list);
88                         list_add_tail(&event->list, &cpts->events);
89                         break;
90                 case CPTS_EV_ROLL:
91                 case CPTS_EV_HALF:
92                 case CPTS_EV_HW:
93                         break;
94                 default:
95                         pr_err("cpts: unknown event type\n");
96                         break;
97                 }
98                 if (type == match)
99                         break;
100         }
101         return type == match ? 0 : -1;
102 }
103
104 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
105 {
106         u64 val = 0;
107         struct cpts_event *event;
108         struct list_head *this, *next;
109         struct cpts *cpts = container_of(cc, struct cpts, cc);
110
111         cpts_write32(cpts, TS_PUSH, ts_push);
112         if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
113                 pr_err("cpts: unable to obtain a time stamp\n");
114
115         list_for_each_safe(this, next, &cpts->events) {
116                 event = list_entry(this, struct cpts_event, list);
117                 if (event_type(event) == CPTS_EV_PUSH) {
118                         list_del_init(&event->list);
119                         list_add(&event->list, &cpts->pool);
120                         val = event->low;
121                         break;
122                 }
123         }
124
125         return val;
126 }
127
128 /* PTP clock operations */
129
130 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
131 {
132         u64 adj;
133         u32 diff, mult;
134         int neg_adj = 0;
135         unsigned long flags;
136         struct cpts *cpts = container_of(ptp, struct cpts, info);
137
138         if (ppb < 0) {
139                 neg_adj = 1;
140                 ppb = -ppb;
141         }
142         mult = cpts->cc_mult;
143         adj = mult;
144         adj *= ppb;
145         diff = div_u64(adj, 1000000000ULL);
146
147         spin_lock_irqsave(&cpts->lock, flags);
148
149         timecounter_read(&cpts->tc);
150
151         cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
152
153         spin_unlock_irqrestore(&cpts->lock, flags);
154
155         return 0;
156 }
157
158 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159 {
160         unsigned long flags;
161         struct cpts *cpts = container_of(ptp, struct cpts, info);
162
163         spin_lock_irqsave(&cpts->lock, flags);
164         timecounter_adjtime(&cpts->tc, delta);
165         spin_unlock_irqrestore(&cpts->lock, flags);
166
167         return 0;
168 }
169
170 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
171 {
172         u64 ns;
173         u32 remainder;
174         unsigned long flags;
175         struct cpts *cpts = container_of(ptp, struct cpts, info);
176
177         spin_lock_irqsave(&cpts->lock, flags);
178         ns = timecounter_read(&cpts->tc);
179         spin_unlock_irqrestore(&cpts->lock, flags);
180
181         ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
182         ts->tv_nsec = remainder;
183
184         return 0;
185 }
186
187 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
188                             const struct timespec *ts)
189 {
190         u64 ns;
191         unsigned long flags;
192         struct cpts *cpts = container_of(ptp, struct cpts, info);
193
194         ns = ts->tv_sec * 1000000000ULL;
195         ns += ts->tv_nsec;
196
197         spin_lock_irqsave(&cpts->lock, flags);
198         timecounter_init(&cpts->tc, &cpts->cc, ns);
199         spin_unlock_irqrestore(&cpts->lock, flags);
200
201         return 0;
202 }
203
204 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
205                            struct ptp_clock_request *rq, int on)
206 {
207         return -EOPNOTSUPP;
208 }
209
210 static struct ptp_clock_info cpts_info = {
211         .owner          = THIS_MODULE,
212         .name           = "CTPS timer",
213         .max_adj        = 1000000,
214         .n_ext_ts       = 0,
215         .n_pins         = 0,
216         .pps            = 0,
217         .adjfreq        = cpts_ptp_adjfreq,
218         .adjtime        = cpts_ptp_adjtime,
219         .gettime        = cpts_ptp_gettime,
220         .settime        = cpts_ptp_settime,
221         .enable         = cpts_ptp_enable,
222 };
223
224 static void cpts_overflow_check(struct work_struct *work)
225 {
226         struct timespec ts;
227         struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
228
229         cpts_write32(cpts, CPTS_EN, control);
230         cpts_write32(cpts, TS_PEND_EN, int_enable);
231         cpts_ptp_gettime(&cpts->info, &ts);
232         pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
233         schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
234 }
235
236 static void cpts_clk_init(struct device *dev, struct cpts *cpts)
237 {
238         cpts->refclk = devm_clk_get(dev, "cpts");
239         if (IS_ERR(cpts->refclk)) {
240                 dev_err(dev, "Failed to get cpts refclk\n");
241                 cpts->refclk = NULL;
242                 return;
243         }
244         clk_prepare_enable(cpts->refclk);
245 }
246
247 static void cpts_clk_release(struct cpts *cpts)
248 {
249         clk_disable(cpts->refclk);
250 }
251
252 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
253                       u16 ts_seqid, u8 ts_msgtype)
254 {
255         u16 *seqid;
256         unsigned int offset = 0;
257         u8 *msgtype, *data = skb->data;
258
259         if (ptp_class & PTP_CLASS_VLAN)
260                 offset += VLAN_HLEN;
261
262         switch (ptp_class & PTP_CLASS_PMASK) {
263         case PTP_CLASS_IPV4:
264                 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
265                 break;
266         case PTP_CLASS_IPV6:
267                 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
268                 break;
269         case PTP_CLASS_L2:
270                 offset += ETH_HLEN;
271                 break;
272         default:
273                 return 0;
274         }
275
276         if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
277                 return 0;
278
279         if (unlikely(ptp_class & PTP_CLASS_V1))
280                 msgtype = data + offset + OFF_PTP_CONTROL;
281         else
282                 msgtype = data + offset;
283
284         seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
285
286         return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
287 }
288
289 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
290 {
291         u64 ns = 0;
292         struct cpts_event *event;
293         struct list_head *this, *next;
294         unsigned int class = ptp_classify_raw(skb);
295         unsigned long flags;
296         u16 seqid;
297         u8 mtype;
298
299         if (class == PTP_CLASS_NONE)
300                 return 0;
301
302         spin_lock_irqsave(&cpts->lock, flags);
303         cpts_fifo_read(cpts, CPTS_EV_PUSH);
304         list_for_each_safe(this, next, &cpts->events) {
305                 event = list_entry(this, struct cpts_event, list);
306                 if (event_expired(event)) {
307                         list_del_init(&event->list);
308                         list_add(&event->list, &cpts->pool);
309                         continue;
310                 }
311                 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
312                 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
313                 if (ev_type == event_type(event) &&
314                     cpts_match(skb, class, seqid, mtype)) {
315                         ns = timecounter_cyc2time(&cpts->tc, event->low);
316                         list_del_init(&event->list);
317                         list_add(&event->list, &cpts->pool);
318                         break;
319                 }
320         }
321         spin_unlock_irqrestore(&cpts->lock, flags);
322
323         return ns;
324 }
325
326 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
327 {
328         u64 ns;
329         struct skb_shared_hwtstamps *ssh;
330
331         if (!cpts->rx_enable)
332                 return;
333         ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
334         if (!ns)
335                 return;
336         ssh = skb_hwtstamps(skb);
337         memset(ssh, 0, sizeof(*ssh));
338         ssh->hwtstamp = ns_to_ktime(ns);
339 }
340
341 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
342 {
343         u64 ns;
344         struct skb_shared_hwtstamps ssh;
345
346         if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
347                 return;
348         ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
349         if (!ns)
350                 return;
351         memset(&ssh, 0, sizeof(ssh));
352         ssh.hwtstamp = ns_to_ktime(ns);
353         skb_tstamp_tx(skb, &ssh);
354 }
355
356 #endif /*CONFIG_TI_CPTS*/
357
358 int cpts_register(struct device *dev, struct cpts *cpts,
359                   u32 mult, u32 shift)
360 {
361 #ifdef CONFIG_TI_CPTS
362         int err, i;
363         unsigned long flags;
364
365         cpts->info = cpts_info;
366         cpts->clock = ptp_clock_register(&cpts->info, dev);
367         if (IS_ERR(cpts->clock)) {
368                 err = PTR_ERR(cpts->clock);
369                 cpts->clock = NULL;
370                 return err;
371         }
372         spin_lock_init(&cpts->lock);
373
374         cpts->cc.read = cpts_systim_read;
375         cpts->cc.mask = CLOCKSOURCE_MASK(32);
376         cpts->cc_mult = mult;
377         cpts->cc.mult = mult;
378         cpts->cc.shift = shift;
379
380         INIT_LIST_HEAD(&cpts->events);
381         INIT_LIST_HEAD(&cpts->pool);
382         for (i = 0; i < CPTS_MAX_EVENTS; i++)
383                 list_add(&cpts->pool_data[i].list, &cpts->pool);
384
385         cpts_clk_init(dev, cpts);
386         cpts_write32(cpts, CPTS_EN, control);
387         cpts_write32(cpts, TS_PEND_EN, int_enable);
388
389         spin_lock_irqsave(&cpts->lock, flags);
390         timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
391         spin_unlock_irqrestore(&cpts->lock, flags);
392
393         INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
394         schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
395
396         cpts->phc_index = ptp_clock_index(cpts->clock);
397 #endif
398         return 0;
399 }
400
401 void cpts_unregister(struct cpts *cpts)
402 {
403 #ifdef CONFIG_TI_CPTS
404         if (cpts->clock) {
405                 ptp_clock_unregister(cpts->clock);
406                 cancel_delayed_work_sync(&cpts->overflow_work);
407         }
408         if (cpts->refclk)
409                 cpts_clk_release(cpts);
410 #endif
411 }